1
|
Huang Y, Zhang H, Lv Y, Yu L, Liu H, Xu S, Chen T, Li Y. Joint association of polycyclic aromatic hydrocarbon and heavy metal exposures with sex steroid hormones in children and adolescents aged 6-19 years in NHANES 2013-2016. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:114. [PMID: 39739052 DOI: 10.1007/s10661-024-13534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/09/2024] [Indexed: 01/02/2025]
Abstract
Sex hormone homeostasis is crucial for the proper development of children and adolescents. Previous studies have indicated that exposure to heavy metals and polycyclic aromatic hydrocarbons (PAHs) is linked to disruptions in sex hormone levels in this age group. However, there is limited research on the harm caused by exposure to chemical mixtures. Our study analyzed data from 1059 participants aged 6-19 years who participated in the 2013-2016 National Health and Nutrition Examination Survey (NHANES) to examine the association between 15 heavy metals, 8 PAH metabolites, and sex hormone levels in children and adolescents. We used various statistical models, such as generalized linear regression models, weighted quantile sum (WQS) regression models, and Bayesian kernel regression (BKMR) models, to analyze the single effects of chemicals and the combined effects of chemical mixtures. We discovered that exposure to a mixture of heavy metals and PAHs was linked to a decrease in testosterone (TT) and estradiol (E2) levels, as well as an increase in sex hormone-binding globulin (SHBG) levels. We identified Cesium (Cs), molybdenum (Mo), tin (Sn), antimony (Sb), lead (Pb), and metabolites of naphthalene and phenanthrene as significant contributors to these associations. This association was more significant in adolescents. Our results suggest that exposure to a mixture of heavy metals and PAHs can disrupt sex hormone levels in children and adolescents.
Collapse
Affiliation(s)
- Yizhao Huang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongling Zhang
- Wuchang University of Technology, Wuhan, Hubei, People's Republic of China
| | - Yiqing Lv
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Ling Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
- Division of Public Health Service and Safety Assessment, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
- State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants On Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
2
|
Choe Y, Kim KN, Lee YJ, Kim JI, Kim BN, Lim YH, Hong YC, Shin CH, Lee YA. Prenatal and childhood exposure to endocrine-disrupting chemicals and early thelarche in 8-year-old girls: A prospective study using Bayesian kernel regression. ENVIRONMENTAL RESEARCH 2024; 263:120056. [PMID: 39343343 DOI: 10.1016/j.envres.2024.120056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/20/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Studies on the combined effects of persistent and non-persistent endocrine-disrupting chemicals (EDCs) on puberty are insufficient. To date, no studies have analyzed breast development at age 8 years, a key criterion for determining precocious puberty. We investigated the relationship between prenatal or childhood exposure to EDC mixtures and early thelarche, defined as breast development before age 8 years in girls. METHODS This prospective study included 211 girls with data on prenatal and 8-year-old exposure of cadmium (Cd), lead, mercury, bisphenol-A (BPA), 3-phenoxybenzoic acid, and three phthalate metabolites from the Environment and Development of Children cohort. Prenatal exposure was assessed through samples from pregnant women at 14-27th weeks of gestation. Tanner staging was assessed by a pediatric endocrinologist. The relationship between single and mixed chemical exposures and outcomes was assessed using logistic regression, generalized additive models (GAM), and Bayesian kernel machine regression (BKMR) models. RESULTS Early thelarche was observed in 42 (19.9%) girls at age 8 years. In the logistic regression models, the risk of early thelarche increased with increased exposure to Cd in their mothers (adjusted odds ratio [aOR] per interquartile range [IQR] = 1.80, 95% confidence interval [CI] 1.23-2.65) but decreased with prenatal BPA exposure (aOR per IQR = 0.57, 95% CI 0.35-0.92). None of the 8-year-old chemical exposures was associated with early thelarche. In the GAM, early thelarche was positively correlated with prenatal Cd and inversely associated with prenatal BPA exposure (p = 0.004 for Cd and p = 0.036 for BPA). In the BKMR models, an increase in log-transformed prenatal Cd concentrations from the 25th to 75th percentile was associated with an increase in the estimated probability of early thelarche at age 8 years (risk difference: 0.46 [95% credible interval: 0.04-0.88]) when other chemicals were set at their median values. CONCLUSIONS Considering the combined effects of persistent and non-persistent chemical mixtures, maternal Cd exposure during the second trimester may be associated with early thelarche in 8-year-old girls.
Collapse
Affiliation(s)
- Yunsoo Choe
- Department of Pediatrics, Hanyang University Guri Hospital, Guri, South Korea; Department of Pediatrics, Hanyang University College of Medicine, Seoul, South Korea
| | - Kyoung-Nam Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Yun Jeong Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University College of Medicine, Seoul, South Korea
| | - Bung-Nyun Kim
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea; Department of Human Systems Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea.
| |
Collapse
|
3
|
Nagata C, Wada K, Yamakawa M, Sugino M, Mori T, Ueyama J, Sumoto Y. Acrylamide exposure, sex hormones, and pubertal status in Japanese adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-10. [PMID: 39257043 DOI: 10.1080/09603123.2024.2401578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/02/2024] [Indexed: 09/12/2024]
Abstract
Acrylamide may affect sex hormone levels and the timing of sexual maturation. The present study cross-sectionally examined interrelationship between the urinary metabolite of acrylamide exposure, serum sex hormone levels, and pubertal status in 408 Japanese adolescents aged 13-14 years. Their caregivers completed a questionnaire concerning the health status of their children, including pubertal maturation, and the lifestyles of children and parents. Pubertal status was queried by the Pubertal Development Scale. A major metabolite of acrylamide, N-acetyl-S-(2-carbamoylethyl)-cysteine (AAMA) in first-void urine samples. In male students, urinary AAMA was significantly inversely associated with testosterone, puberty stage, and facial hair growth after controlling for covariates. Serum testosterone and DHEAS were significantly positively associated with puberty stage. In female students, urinary AAMA was not associated with puberty stage, the indices, or any measured hormones. The data suggest that exposure to acrylamide may impact the pubertal development of boys through the effects on testosterone level.
Collapse
Affiliation(s)
- Chisato Nagata
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Keiko Wada
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Michiyo Yamakawa
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Masaaki Sugino
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Tomoka Mori
- Department of Epidemiology and Preventive Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Jun Ueyama
- Department of Biomolecular Sciences, Field of Omics Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshio Sumoto
- Department of Social Studies Education, Graduate School of Education, Gifu University, Gifu, Japan
| |
Collapse
|
4
|
Papageorgiou A, Charmandari E, Efthymiou V, Vlachakis D, Bacopoulou F. Indications of younger age at menarche in Greek adolescents but with no relation to body mass index. Hormones (Athens) 2024; 23:527-534. [PMID: 38647964 DOI: 10.1007/s42000-024-00557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 04/01/2024] [Indexed: 04/25/2024]
Abstract
PURPOSE This study aimed to present recent trends in the pubertal timing of a Greek female sample. METHODS Data were collected retrospectively from medical records of healthy females aged 6-18 years who attended a tertiary Adolescent Friendly Health Center over a 5-year period (2016-2020) and included gestational age, birth anthropometrics, and age of thelarche and/or pubarche and/or menarche, along with corresponding anthropometric, hormonal, and biochemical measurements. RESULTS Data from 298 girls' medical records were included in the analysis. Median age at menarche, thelarche, and pubarche was 12, 9, and 9 years, respectively. The mean interval between pubertal onset and menarche was 1.99 years. The mean body mass index (BMI) at menarche and thelarche was 20.99 kg/m2 and 18.90 kg/m2, respectively. The mean weight at menarche was 49.6 kg, whereas the mean height difference between thelarche and menarche was 19.17 cm. Among participants, 6.3% had premature menarche, while 24.0% had premature thelarche. Birth weight was moderately correlated with BMI at thelarche/pubarche (rs=0.334, p = 0.005). Birth weight and BMI at thelarche/pubarche were not predictive of premature menarche or premature thelarche. Median (interquartile range, IQR) levels at menarche vs. thelarche were significantly higher for insulin-like growth factor-1 [358.00 (140.50) vs. 176.00 (55.00) ng/ml], follicle stimulation hormone [5.65 (3.14) vs. 3.10 (4.23) mIU/ml], testosterone [25.50 (31.00) vs. 13.00 (21.00) ng/dl], dehydroepiandrosterone sulfate [117.00 (112.50) vs. 46.40 (51.90) µg/dl], and insulin [17.40 (15.05) vs. 8.47 (4.97) µIU/ml]. CONCLUSION The timing of pubertal stages in the Greek female sample studied followed the recent international downward trends. Younger age at menarche was not related to BMI.
Collapse
Affiliation(s)
- Anastasia Papageorgiou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 1 Thivon Street, Goudi, Athens, 11527, Greece.
- First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece.
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece
- Division of Endocrinology and Metabolism, Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, 11527, Greece
| | - Vasiliki Efthymiou
- University Research Institute of Maternal and Child Health and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece
| | - Dimitrios Vlachakis
- University Research Institute of Maternal and Child Health and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece
| | - Flora Bacopoulou
- Center for Adolescent Medicine and UNESCO Chair in Adolescent Health Care, First Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 1 Thivon Street, Goudi, Athens, 11527, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, 11527, Greece
| |
Collapse
|
5
|
Rohayem J, Alexander EC, Heger S, Nordenström A, Howard SR. Mini-Puberty, Physiological and Disordered: Consequences, and Potential for Therapeutic Replacement. Endocr Rev 2024; 45:460-492. [PMID: 38436980 PMCID: PMC11244267 DOI: 10.1210/endrev/bnae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Indexed: 03/05/2024]
Abstract
There are 3 physiological waves of central hypothalamic-pituitary-gonadal (HPG) axis activity over the lifetime. The first occurs during fetal life, the second-termed "mini-puberty"-in the first months after birth, and the third at puberty. After adolescence, the axis remains active all through adulthood. Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by a deficiency in hypothalamic gonadotropin-releasing hormone (GnRH) secretion or action. In cases of severe CHH, all 3 waves of GnRH pulsatility are absent. The absence of fetal HPG axis activation manifests in around 50% of male newborns with micropenis and/or undescended testes (cryptorchidism). In these boys, the lack of the mini-puberty phase accentuates testicular immaturity. This is characterized by a low number of Sertoli cells, which are important for future reproductive capacity. Thus, absent mini-puberty will have detrimental effects on later fertility in these males. The diagnosis of CHH is often missed in infants, and even if recognized, there is no consensus on optimal therapeutic management. Here we review physiological mini-puberty and consequences of central HPG axis disorders; provide a diagnostic approach to allow for early identification of these conditions; and review current treatment options for replacement of mini-puberty in male infants with CHH. There is evidence from small case series that replacement with gonadotropins to mimic "mini-puberty" in males could have beneficial outcomes not only regarding testis descent, but also normalization of testis and penile sizes. Moreover, such therapeutic replacement regimens in disordered mini-puberty could address both reproductive and nonreproductive implications.
Collapse
Affiliation(s)
- Julia Rohayem
- Department of Pediatric Endocrinology and Diabetology, Children's Hospital of Eastern Switzerland, 9006 St. Gallen, Switzerland
- University of Muenster, 48149 Muenster, Germany
| | - Emma C Alexander
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Sabine Heger
- Department of Pediatric Endocrinology, Children's Hospital Auf der Bult, 30173 Hannover, Germany
| | - Anna Nordenström
- Pediatric Endocrinology, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Sasha R Howard
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, London EC1M 6BQ, UK
- Department of Paediatric Endocrinology, Royal London Children's Hospital, Barts Health NHS Trust, London E1 1FR, UK
| |
Collapse
|
6
|
Lee DH, Kim J, Kim HY. Temporal trend of age at menarche in Korean females born between 1927 and 2004: a population-based study. Front Endocrinol (Lausanne) 2024; 15:1399984. [PMID: 38894747 PMCID: PMC11182987 DOI: 10.3389/fendo.2024.1399984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 06/21/2024] Open
Abstract
Backgrounds The age at menarche has decreased worldwide. Previous studies on Korean adolescents have reported a downward trend in age at menarche. This study aimed to investigate the current trends in age at menarche among Korean adolescents using nationally representative data. Materials and methods The study used data from the Korea National Health and Nutrition Examination Survey 2007-2021. A total of 50,730 females born between 1927 and 2004 with information on age at menarche were included. The trend in age at menarche was analyzed according to 15 birth-year groups (with 5-year intervals) using quantile regression analysis. Results The mean age at menarche decreased from 16.92 ± 0.06 years for females born before 1935 to 12.45 ± 0.04 years for females born between 2000 and 2004 (p <.001). According to the percentile group of age at menarche, mean menarche age decreased by -0.071 years per year (95% confidence interval [CI], -0.072 to -0.070) in total, -0.050 years per year (95% CI, -0.052 to -0.048) in the 3rd percentile group, -0.088 years per year (95% CI, -0.091 to -0.085) in the 97th percentile group (p <.001 for all). A decreasing trend of age at menarche was more prominent in the obesity group (-0.080 years per year, 95% CI, -0.082 to -0.078) compared to the non-obesity group (-0.069 years per year, 95% CI, -0.071 to -0.068) (p <.001 for both). Conclusion Ongoing downward trend in age at menarche was observed in Korean females born until 2004, decreasing by 0.71 years per decade. The downward trend was faster in individuals with a higher percentile of age at menarche and in those with obesity.
Collapse
Affiliation(s)
- Da Hye Lee
- Department of Pediatrics, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Jaehyun Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hwa Young Kim
- Department of Pediatrics, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
- Department of Pediatrics, College of Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Sun X, Zhang H, Huang X, Yang D, Wu C, Liu H, Zhang L. Associations of glyphosate exposure and serum sex steroid hormones among 6-19-year-old children and adolescents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116266. [PMID: 38564862 DOI: 10.1016/j.ecoenv.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Glyphosate, ranked as one of the most widely used herbicides in the world, has raised concerns about its potential disruptive effects on sex hormones. However, limited human evidence was available, especially for children and adolescents. The present study aimed to examine the associations between exposure to glyphosate and sex hormones among participants aged 6-19 years, utilizing data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2013 and 2016. Children and adolescents who had available data on urinary glyphosate, serum sex steroid hormones, including testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG), and covariates were selected. Additionally, the ratio of TT to E2 (TT/E2) and the free androgen index (FAI), which was calculated using TT/SHBG, were also included as sex hormone indicators. Survey regression statistical modeling was used to examine the associations between urinary glyphosate concentration and sex hormone indicators by age and sex group. Among the 964 participants, 83.71% had been exposed to glyphosate (>lower limit of detection). The survey regression revealed a marginally negative association between urinary glyphosate and E2 in the overall population, while this association was more pronounced in adolescents with a significant trend. In further sex-stratified analyses among adolescents, a significant decrease in E2, FAI, and TT (p trend <0.05) was observed in female adolescents for the highest quartile of urinary glyphosate compared to the lowest quartile. However, no similar association was observed among male adolescents. Our findings suggest that exposure to glyphosate at the current level may decrease the levels of sex steroids in adolescents, particularly female adolescents. Considering the cross-sectional study design, further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Xiaojie Sun
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Huang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Di Yang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Chuansha Wu
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Li D, Xiong J, Cheng G. Long-term exposure to ambient PM 2.5 and its components on menarche timing among Chinese adolescents: evidence from a representative nationwide cohort. BMC Public Health 2024; 24:707. [PMID: 38443853 PMCID: PMC10916212 DOI: 10.1186/s12889-024-18209-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/25/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Ambient air pollutants have been suggested to affect pubertal development. Nevertheless, current studies indicate inconsistent effects of these pollutants, causing precocious or delayed puberty onset. This study aimed to explore the associations between long-term exposure to particulate matter with aerodynamic diameters ≤ 2.5 μm (PM2.5) along with its components and menarche timing among Chinese girls. METHOD Self-reported age at menarche was collected among 855 girls from China Health and Nutrition Survey 2004 to 2015. The pre-menarche annual average concentrations of PM2.5 and its components were calculated on the basis of a long-term (2000-2014) high-resolution PM2.5 components dataset. Generalized linear models (GLM) and logistic regression models were used to analyze the associations of exposure to a single pollutant (PM2.5, sulfate, nitrate, ammonium, black carbon and organic matter) with age at menarche and early menarche (< 12 years), respectively. Weighted quantile sum methods were applied to examine the impacts of joint exposure on menarche timing. RESULTS In the adjusted GLM, per 1 µg/m3 increase of annual average concentrations of nitrate and ammonium decreased age at menarche by 0.098 years and 0.127 years, respectively (all P < 0.05). Every 1 µg/m3 increase of annual average concentrations of PM2.5 (OR: 1.04, 95% CI: 1.00-1.08), sulfate (OR: 1.23, 95% CI: 1.01-1.50), nitrate (OR: 1.23, 95% CI: 1.06-1.43) and ammonium (OR: 1.32, 95% CI: 1.06-1.66) were significantly positively associated with early menarche. Higher level of joint exposure to PM2.5 and its components was associated with 11% higher odds of early menarche (P = 0.04). Additionally, the estimated weight of sulfate was the largest among the mixed pollutants. CONCLUSIONS Long-term exposure to PM2.5 and its components could increase the risk of early menarche among Chinese girls. Moreover, sulfate might be the most critical components responsible for this relationship. Our study provides foundation for targeted prevention of PM2.5 components.
Collapse
Affiliation(s)
- Danting Li
- Department of Nutrition and Food Safety, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jingyuan Xiong
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Demir A, Büyükgebiz A, Aydin A, Hero M. Quantification of overnight urinary gonadotropin excretion predicts imminent puberty in girls: a semi-longitudinal study. Hormones (Athens) 2024; 23:141-150. [PMID: 37934386 PMCID: PMC10847198 DOI: 10.1007/s42000-023-00499-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE We explored the alternative of using overnight fold change in gonadotropin levels by comparing the last-night-voided (LNV) and first-morning-voided (FMV) urine concentrations of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) as a conceptual analogy to the invasive gonadotropin-releasing hormone (GnRH) stimulation test setting. METHODS We investigated the nocturnal changes in the immunoreactivity levels of urinary gonadotropins between early and late prepubertal stages as well as between early and late pubertal stages in FMV and LNV urine samples from 30 girls, of whom those who were prepubertal were further investigated through follow-up visits within the 1-year period from the start of the study. RESULTS ROC analysis revealed that the FMV total U-LH and FMV U-FSH concentrations at or above 0.3 IU/L and 2.5 IU/L, respectively, were excellent predictors of forthcoming onset of puberty within 1 year (100% sensitivity, 100% specificity, AUC: 1.00, and n = 10, for both). FMV total U-LH concentration at or above 0.8 IU/L represented the cut-off for clinical signs of puberty. FMV/LNV total U-LH and FMV/LNV U-FSH ratios at or below 4.11 and 1.38, respectively, were also good predictors of the onset of clinical puberty within 1 year. An overnight increase (FMV/LNV ratio) in total U-LH concentrations and in the U-LH/U-FSH ratio at or below 1.2-fold in pubertal girls was associated with the postmenarcheal pubertal stage. CONCLUSION FMV total U-LH and U-FSH above 0.3 IU/L and 2.5 IU/L, respectively, can be used as cut-off values to predict the manifestation of the clinical signs of puberty within 1 year. FMV total U-LH concentrations 0.3-0.8 IU/L and 0.6 IU/L may represent the range and the threshold, respectively, that reflect the loosening of the central brake on the GnRH pulse generator. An overnight increase of 20% or less in total U-LH concentrations and in the U-LH/U-FSH ratio in an early pubertal girl may serve as an indicator of imminent menarche, a presumed timing of which can be unraveled by future longitudinal studies.
Collapse
Affiliation(s)
- And Demir
- Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Biomedicum 2 C, 6th Floor, Tukholmankatu 8 A, FIN-00290, Helsinki, Finland.
| | - Atilla Büyükgebiz
- Department of Pediatrics, Division of Pediatric Endocrinology, Demiroğlu Bilim University, İstanbul, Türkiye
| | - Adem Aydin
- Department of Pediatrics, Dokuz Eylül University Faculty of Medicine, İzmir, Türkiye
| | - Matti Hero
- Pediatric Research Center, New Children's Hospital, University of Helsinki and Helsinki University Hospital, Biomedicum 2 C, 6th Floor, Tukholmankatu 8 A, FIN-00290, Helsinki, Finland
| |
Collapse
|
10
|
Gunawan SP, Huang SY, Wang CC, Huynh LBP, Nguyen NN, Hsu SY, Chen YC. Sleep deprivation alters pubertal timing in humans and rats: the role of the gut microbiome. Sleep 2024; 47:zsad308. [PMID: 38065690 DOI: 10.1093/sleep/zsad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/27/2023] [Indexed: 02/09/2024] Open
Abstract
STUDY OBJECTIVES Evidence implied that sleeping duration is associated with the timing of puberty and that sleep deprivation triggers early pubertal onset in adolescents. Sleep deprivation can affect metabolic changes and gut microbiota composition. This study investigated the effects of sleep deprivation on pubertal onset and gut microbiota composition in animal models and a human cohort. METHODS This study comprised 459 boys and 959 girls from the Taiwan Pubertal Longitudinal Study. Sleep duration was evaluated using the self-report Pittsburgh Sleep Quality Index questionnaire. Early sexual maturation was defined by pediatric endocrinologist assessments. Mediation analyses were done to examine the association between sleep parameters, obesity, and early sexual maturation. Besides, Sprague Dawley juvenile rats were exposed to 4 weeks of chronic sleep deprivation. Vaginal opening (VO) and preputial separation (PS) were observed every morning to determine pubertal onset in female and male rats. RESULTS The sleep-deprived juvenile rats in the sleep-deprived-female (SDF) and sleep-deprived-male (SDM) groups experienced delayed VO (mean VO days: 33 days in control; 35 days in SDF; p-value < 0.05) and PS (mean PS days: 42 days in control; 45 days in SDM; p-value < 0.05), respectively. Relative to their non-sleep-deprived counterparts, the sleep-deprived juvenile rats exhibited lower body weight and body fat percentage. Significant differences in relative bacterial abundance at genus levels and decreased fecal short-chain-fatty-acid levels were identified in both the SDF and SDM groups. In the human cohort, insufficient sleep increased the risk of early sexual maturation, particularly in girls (OR, 1.44; 95% CI: 1.09 to 1.89; p-value < 0.01). Insufficient sleep also indirectly affected early sexual maturation in girls, with obesity serving as the mediator. CONCLUSIONS Overall, sleep deprivation altered the timing of puberty in both animal and human models but in different directions. In the rat model, sleep deprivation delayed the pubertal onset in juvenile rats through gut dysbiosis and metabolic changes, leading to a low body weight and body fat percentage. In the human model, sleep deprivation led to fat accumulation, causing obesity in girls, which increased the risk of early puberty.
Collapse
Affiliation(s)
| | - Shih-Yi Huang
- Graduate Institute of Metabolism and Obesity Sciences Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Chun-Chi Wang
- Department of Family Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Linh Ba Phuong Huynh
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Nam Nhat Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yuan Hsu
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yang-Ching Chen
- Graduate Institute of Metabolism and Obesity Sciences Taipei Medical University, Taipei, Taiwan
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
11
|
Lan H, Hu Z, Gan H, Wu L, Xie S, Jiang Y, Ye D, Ye X. Association between exposure to persistent organic pollutants and pubertal timing in boys and girls: A systematic review and meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 265:115540. [PMID: 37801753 DOI: 10.1016/j.ecoenv.2023.115540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/28/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
In recent years, the phenomenon of abnormal pubertal timing in children has become increasingly common worldwide. Persistent organic pollutants (POPs) may be one of the risk factors contributing to this phenomenon, but the relationship between them is unclear based on current evidence. The purpose of this study was to determine the association of POPs exposure with pubertal timing in girls and boys by conducting a systematic review and meta-analysis. We searched PubMed and Embase databases for studies before June 1, 2023. Meta-analysis was performed by pooling relative risk (RR) or odds ratio (OR) or prevalence ratio (PR) or hazard ratio (HR) estimates with 95 % confidence intervals (CIs). Subgroup analysis, publication bias assessment and sensitivity analysis were also carried out. A total of 21 studies were included, involving 2479 boys and 8718 girls. The results of meta-analysis showed that exposure to POPs was significantly associated with delayed pubertal timing in girls (RR: 0.85; 95 % CI: 0.79-0.91; p < 0.001). There was no statistically significant association between exposure to POPs and pubertal timing in boys (RR: 1.18; 95 % CI: 0.99-1.40; p = 0.070). Subgroup analysis showed that there may be gender differences in the effects of exposure to POPs on pubertal timing. Our results suggested that exposure to POPs could delay pubertal timing in girls. However, based on current evidence, no significant association was found between POPs exposure and pubertal timing in boys.
Collapse
Affiliation(s)
- Huili Lan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhiqin Hu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Lixiang Wu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shushu Xie
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yan Jiang
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ding Ye
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
12
|
Wang S, Fang J, Li J, Wang S, Su P, Wan Y, Tao F, Sun Y. Identification of urine biomarkers associated with early puberty in children: An untargeted metabolomics analysis. Physiol Behav 2023; 270:114305. [PMID: 37507079 DOI: 10.1016/j.physbeh.2023.114305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/07/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
A trend toward earlier pubertal maturation in both sexes has been shown in many countries. Early puberty affects an increasing proportion of children for reasons that remain obscure. Novel candidate biomarkers are strongly needed. We sought to apply untargeted metabolomic profiling to identify triggering mechanisms and candidate biomarkers in children with early puberty. Participants aged 7 - 12 years old were recruited directly from two elementary schools of Bengbu, Anhui Province, China, from Feb 2021 to May 2021. Early puberty was determined by breast and testicular development at baseline (May 2021) and 6-month later. Ultra-high-performance liquid chromatography-based untargeted metabolomic profiling was performed on urine samples of children with early puberty and control subjects. Metabolomic profiling for early puberty in a sex dependent manner. For boys, we identified several perturbed pathways, including histidine metabolism, glycine, serine and threonine metabolism, and selenoamino acid metabolism, associated with early puberty. In contrast, there were differences in pyruvate metabolism, one carbon pool by folate, and D-glutamine and D-glutamate metabolism pathways in girls with early puberty compared with controls. In addition, 4-hydroxyhippuric acid and 5-methoxytryptophol were shown as potential independent diagnostic biomarker for early puberty in boys, 3-hydroxybenzoic acid and glutaminylproline were shown as early biomarker for early puberty in girls, achieving area under the ROC curve of 0.71 and 0.72 in discriminating early puberty boys, and 0.70 and 0.74 in discriminating early puberty girls from controls. Through metabolomic analysis, we have identified metabolic perturbations and potential biomarkers of early puberty.
Collapse
Affiliation(s)
- Shanshan Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Jiao Fang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Jing Li
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Shihong Wang
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China
| | - Puyu Su
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Yuhui Wan
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, Anhui Medical University School of Public Health, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, Hefei, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
13
|
Rahimi F, Mirghafourvand M, Farvareshi M, Yavarikia P. The effect of cognitive behavioral therapy on stress and anxiety of mothers of girls with precocious puberty symptoms: a randomized controlled trial. BMC Psychiatry 2023; 23:738. [PMID: 37817169 PMCID: PMC10565989 DOI: 10.1186/s12888-023-05216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Precocious puberty in girls has been associated with an increased risk of stress and anxiety in their mothers. This study aimed to investigate the effect of cognitive behavioral therapy (CBT) on perceived stress and anxiety of mothers of girls with precocious puberty symptoms. METHODS This randomized controlled trial was conducted on 70 mothers of girls with precocious puberty symptoms in Tabriz-Iran, 2021. The participants were randomly assigned to CBT and control groups through blocked randomization. Group counseling was provided to the intervention group in eight sessions of 45-60 min weekly with 5 to 7 women. A booklet containing explanations about puberty was provided for the both groups. Data were collected using the questionnaires of socio-demographic characteristics, Spielberger State-Trait Anxiety Inventory (STAI), Perceived Stress Scale (PSS) and quality of life (SF-36). Independent t-test, ANCOVA, chi-square, and fisher's exact tests were used to compare the outcomes between the groups. FINDINGS After the intervention, based on ANCOVA test with adjusting the baseline values, mean scores of stress (mean difference (MD): -10.75; 95% confidence interval (95% CI): -11.77 to -9.72; P < 0.001), state anxiety (MD: -14.36; 95% CI: -15.7 to -12.7; P < 0.001) and trait anxiety (MD: -12.8; 95% CI: -14.4 to -11.1; P < 0.001) were significantly lower in CBT group compared to the control group. Also mean score of quality of life (MD: 9.82; 95% CI: -6.74 to -12.90; P < 0.001) was significantly higher in CBT group compared to the control group. CONCLUSION Based on the results, group CBT is effective in reducing stress and anxiety and improving the quality of life of mothers of girls with precocious puberty symptoms. However, more studies are required to make a definite conclusion in this field. TRIAL REGISTRATION Iranian Registry of Clinical Trials (IRCT): IRCT20110826007418N6. Date of registration: 11/10/2021. URL: https://en.irct.ir/trial/57346 ; Date of first registration: 11/10/2021.
Collapse
Affiliation(s)
- Faranak Rahimi
- Department of midwifery, Student Research Committee, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mojgan Mirghafourvand
- Social Determinants of Health Research Center, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahmoud Farvareshi
- Clinical Psychologist, Razi Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Yavarikia
- Department of midwifery, Faculty of Nursing and Midwifery, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Liu Y, Calafat AM, Chen A, Lanphear BP, Jones NHY, Cecil KM, Rose SR, Yolton K, Buckley JP, Braun JM. Associations of prenatal and postnatal exposure to perfluoroalkyl substances with pubertal development and reproductive hormones in females and males: The HOME study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 890:164353. [PMID: 37225096 PMCID: PMC10330798 DOI: 10.1016/j.scitotenv.2023.164353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Prenatal and childhood exposure to per- and polyfluoroalkyl substances (PFAS) may be associated with lower reproductive hormones and later puberty, but epidemiological studies evaluating these associations are scarce. OBJECTIVES We examined associations of PFAS concentrations assessed from pregnancy to adolescence with pubertal development and reproductive hormones at age 12 years. METHODS We studied 200 mother-child pairs from the HOME Study in Cincinnati, OH (enrolled: 2003-2006). We quantified serum concentrations of perfluorooctanoate (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoate (PFNA), and perfluorohexane sulfonate (PFHxS) in pregnant women and their children at age 3, 8 and 12 years. At age 12 years, children self-assessed pubertal development using Tanner staging of pubic hair growth (males and females) and breast growth (females), and age at menarche. We quantified serum concentrations of dehydroepiandrosterone sulfate, luteinizing hormone, and follicle-stimulating hormone in both sexes; estradiol in females; testosterone in males. We estimated associations of PFAS with pubertal outcomes and reproductive hormones using a combination of ordinal regression, Cox proportional-hazard regression, and linear regression. Quantile-based g-computation was used for PFAS mixture. RESULTS In females, adolescent PFAS concentrations and their mixture were associated with later pubic hair growth, breast maturation, and age at menarche, but there was no pattern for prenatal or other postnatal concentrations. For instance, in females, each doubling in adolescent PFAS concentrations was associated with 79 % (PFOA), 63 % (PFOS), 56 % (PFNA), and 47 % (PFHxS) lower odds of attaining a higher stage for breast growth. In addition, adolescent PFAS concentrations were consistently associated with lower estradiol concentrations in females. No pattern was observed for associations of PFAS concentrations with pubic hair growth or reproductive hormones in males. CONCLUSIONS We observed associations between PFAS concentrations in adolescence and later pubertal development in females, but this could be due to reverse causation induced by excretion of PFAS through menstrual fluid.
Collapse
Affiliation(s)
- Yun Liu
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA.
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Aimin Chen
- Department of Biostatics, Epidemiology & Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Nana-Hawa Yayah Jones
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kim M Cecil
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Susan R Rose
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jessie P Buckley
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| |
Collapse
|
15
|
Evans NP, Bellingham M, Elcombe CS, Ghasemzadeh-Hasankolaei M, Lea RG, Sinclair KD, Padmanabhan V. Sexually dimorphic impact of preconceptional and gestational exposure to a real-life environmental chemical mixture (biosolids) on offspring growth dynamics and puberty in sheep. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104257. [PMID: 37659607 DOI: 10.1016/j.etap.2023.104257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/04/2023]
Abstract
Humans are ubiquitously exposed to complex mixtures of environmental chemicals (ECs). This study characterised changes in post-natal and peripubertal growth, and the activation of the reproductive axis, in male and female offspring of sheep exposed to a translationally relevant EC mixture (in biosolids), during pregnancy. Birthweight in both sexes was unaffected by gestational biosolids exposure. In contrast to females (unaffected), bodyweight in biosolids males was significantly lower than controls across the peripubertal period, however, they exhibited catch-up growth eventually surpassing controls. Despite weighing less, testosterone concentrations were elevated earlier, indicative of early puberty in the biosolids males. This contrasted with females in which the mean date of puberty (first progesterone cycle) was delayed. These results demonstrate that developmental EC-mixture exposure has sexually dimorphic effects on growth, puberty and the relationship between body size and puberty. Such programmed metabolic/reproductive effects could have significant impacts on human health and wellbeing.
Collapse
Affiliation(s)
- Neil P Evans
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK.
| | - Michelle Bellingham
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Christopher S Elcombe
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Mohammad Ghasemzadeh-Hasankolaei
- School of Biodiversity One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Richard G Lea
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | - Kevin D Sinclair
- University of Nottingham, Sutton Bonington Campus, Loughborough, UK
| | | |
Collapse
|
16
|
Gaml-Sørensen A, Brix N, Lunddorf LLH, Ernst A, Høyer BB, Olsen SF, Granström C, Toft G, Henriksen TB, Ramlau-Hansen CH. Maternal intake of folate and folic acid during pregnancy and pubertal timing in girls and boys: A population-based cohort study. Paediatr Perinat Epidemiol 2023; 37:618-629. [PMID: 37132131 DOI: 10.1111/ppe.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Folate is essential for normal foetal development as it plays an important role for gene expression during different periods of foetal development. Thus, prenatal exposure to folate may have a programming effect on pubertal timing. OBJECTIVES To study the association between maternal intake of folate during pregnancy and pubertal timing in girls and boys. METHODS We studied 6585 girls and 6326 boys from a Danish population-based Puberty Cohort, 2000-2021. Information on maternal intake of folate from diet and folic acid from supplements was obtained from a food-frequency questionnaire in mid-pregnancy, and total folate was calculated as dietary folate equivalents. Information on age at menarche in girls, age at first ejaculation and voice break in boys, and Tanner stages, acne and axillary hair in both girls and boys was obtained every 6 months throughout puberty. We estimated mean monthly differences according to exposure groups for each pubertal milestone in addition to a combined estimate for the average age at attaining all pubertal milestones using multivariable interval-censored regression models. Total folate was analysed in quintiles, continuous and as restricted cubic splines. RESULTS Maternal intake of total folate in mid-pregnancy was not associated with pubertal timing in girls (combined estimate for overall pubertal timing per standard deviation (SD 325 μg/day) decrease in maternal intake of total folate: -0.14 months (95% confidence interval [CI] -0.51, 0.22)). Boys had slightly later overall pubertal timing per standard deviation (SD 325 μg/day) decrease in maternal intake of total folate (combined estimate: 0.40 months, 95% CI 0.01, 0.72). Spline plots supported these findings. CONCLUSIONS Prenatal exposure to low maternal intake of total folate in mid-pregnancy was not associated with pubertal timing in girls but associated with slightly later pubertal timing in boys. This minor delay is likely not of clinical importance.
Collapse
Affiliation(s)
| | - Nis Brix
- Department of Public Health, Aarhus University, Aarhus C, Denmark
- Department of Clinical Genetics, Aarhus University Hospital, Aarhus N, Denmark
| | | | - Andreas Ernst
- Department of Public Health, Aarhus University, Aarhus C, Denmark
- Department of Urology, Aarhus University Hospital, Aarhus N, Denmark
| | - Birgit Bjerre Høyer
- Open Patient Data Explorative Network, Odense University Hospital, Odense, Denmark
| | - Sjurdur Frodi Olsen
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen S, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen K, Denmark
| | - Charlotta Granström
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen S, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus N, Denmark
| | - Tine Brink Henriksen
- Perinatal Epidemiology Research Unit, Department of Paediatrics and Adolescent Medicine, Aarhus University Hospital, Aarhus N, Denmark
| | | |
Collapse
|
17
|
Lin D, Chen Y, Liang L, Huang Z, Guo Y, Cai P, Wang W. Effects of exposure to the explosive and environmental pollutant 2,4,6-trinitrotoluene on ovarian follicle development in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:96412-96423. [PMID: 37567992 DOI: 10.1007/s11356-023-29161-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Although 2,4,6-trinitrotoluene (TNT) is a dangerous carcinogen in environmental pollution, information on the reproductive effects of TNT explosive contamination is limited. To explore the possible ovarian effects, TNT explosive-exposed rat models were established, and Wistar female rats were exposed to low and high TNT (40 g and 80 g, air and internal) explosives. After a month of exposure, the estrous cycle, ovarian histopathology, and follicle counting were conducted. Serum hormones follicle-stimulating hormone (FSH), luteinizing hormone (LH), anti-Müllerian hormone (AMH), progesterone, testosterone, and estradiol were detected, and the mRNA and protein expression of steroidogenic enzymes were measured. The results showed that the diestrus phase duration was significantly (P < 0.05) increased in the high TNT-exposed groups. In addition, the proportions of preantral follicles were significantly (P < 0.05) decreased in the high TNT-exposed groups, as well as the proportions of atretic follicles. The serum estradiol levels were significantly (P < 0.05) increased, and the follicle-stimulating hormone and luteinizing hormone levels were significantly (P < 0.05) decreased in the high TNT-exposed groups. The mRNA levels of steroidogenic acute regulatory protein (Star), cytochrome P450 cholesterol side chain cleavage (Cyp11a1, Cyp17a1 and Cyp19a1), hydroxysteroid dehydrogenase 3b (Hsd3b) and steroidogenic factor-1 (SF-1) were significantly (P < 0.05) increased in the TNT-exposed groups. The protein levels of Star, Cyp11a1 and Hsd3b were increased (P < 0.05) in the TNT-exposed groups. These results indicate that the exposure of rats to TNT explosive can subsequently affect ovarian follicle development, suggesting that the mechanism may involve disrupting steroidogenesis.
Collapse
Affiliation(s)
- Dai Lin
- Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Yiqin Chen
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Lisheng Liang
- Department of Nursing, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Zuxiong Huang
- Department of Hepatology, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Yiwei Guo
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ping Cai
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
18
|
Goering M, Albright MG, Mrug S. The Effects of Pubertal Timing on Academic Performance in Adolescence and Career Success in Adulthood: Evidence from a 16-year Longitudinal Study. J Youth Adolesc 2023:10.1007/s10964-023-01814-6. [PMID: 37365304 DOI: 10.1007/s10964-023-01814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Previous research showed inconsistent effects of pubertal timing on adolescent academic performance and adult career success. Moreover, the relative importance of biological vs. perceived pubertal timing has not been examined. This study examined effects of biological and perceived pubertal timing on academic performance throughout adolescence and career success in adulthood together with sex differences in an understudied population of pre-dominantly Black youth from lower income families. The sample included 704 youth (52% male, 76% Black, 22% White) interviewed at four time points (Mean ages: 11.8, 13.2, 17.6, and 27.7 years). The results from a mediation path model showed that among males, perceived off-time pubertal timing uniquely predicted lower concurrent academic performance as well as lower objective career success in adulthood; this effect was mediated by lower academic performance throughout adolescence. Additionally, results from bivariate correlation analyses showed associations between early biological pubertal timing and lower concurrent academic performance in males and early perceived pubertal timing and lower concurrent academic performance among females. These findings contribute to the understanding of more nuanced links between pubertal timing, academic performance and subsequent career success in an understudied population of pre-dominantly Black youth from lower income families.
Collapse
Affiliation(s)
- Marlon Goering
- University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Sylvie Mrug
- University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
19
|
Yuan M, Chen S, Zeng C, Fan Y, Ge W, Chen W. Estrogenic and non-estrogenic effects of bisphenol A and its action mechanism in the zebrafish model: An overview of the past two decades of work. ENVIRONMENT INTERNATIONAL 2023; 176:107976. [PMID: 37236126 DOI: 10.1016/j.envint.2023.107976] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/11/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Bisphenol A (BPA) is the most simple and predominant component of the Bisphenol family. BPA is widely present in the environment and the human body as a result of its extensive usage in the plastic and epoxy resins of consumer goods like water bottles, food containers, and tableware. Since the 1930s, when BPA's estrogenic activity was first observed, and it was labeled as a "mimic hormone of E2", studies on the endocrine-disrupting effects of BPA then have been widely conducted. As a top vertebrate model for genetic and developmental studies, the zebrafish has caught tremendous attention in the past two decades. By using the zebrafish, the negative effects of BPA either through estrogenic signaling pathways or non-estrogenic signaling pathways were largely found. In this review, we tried to draw a full picture of the current state of knowledge on the estrogenic and non-estrogenic effects of BPA with their mechanisms of action through the zebrafish model of the past two decades, which may help to fully understand the endocrine-disrupting effects of BPA and its action mechanism, and give a direction for the future studies.
Collapse
Affiliation(s)
- Mingzhe Yuan
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Shan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Chu Zeng
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Yuqin Fan
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China
| | - Wei Ge
- Department of Biomedical Sciences and Centre of Reproduction, Development and Aging (CRDA), Faculty of Health Sciences, University of Macau, Taipa, Macau, China.
| | - Weiting Chen
- Guangdong Provincial Key Laboratory of Conservation and Precision Utilization of Characteristic Agricultural Resources in Mountainous Area, School of Life Sciences, Jiaying University, Meizhou 514015, China.
| |
Collapse
|
20
|
Grant AD, Kriegsfeld LJ. Continuous body temperature as a window into adolescent development. Dev Cogn Neurosci 2023; 60:101221. [PMID: 36821877 PMCID: PMC9981811 DOI: 10.1016/j.dcn.2023.101221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Continuous body temperature is a rich source of information on hormonal status, biological rhythms, and metabolism, all of which undergo stereotyped change across adolescence. Due to the direct actions of these dynamic systems on body temperature regulation, continuous temperature may be uniquely suited to monitoring adolescent development and the impacts of exogenous reproductive hormones or peptides (e.g., hormonal contraception, puberty blockers, gender affirming hormone treatment). This mini-review outlines how traditional methods for monitoring the timing and tempo of puberty may be augmented by markers derived from continuous body temperature. These features may provide greater temporal precision, scalability, and reduce reliance on self-report, particularly in females. Continuous body temperature data can now be gathered with ease across a variety of wearable form factors, providing the opportunity to develop tools that aid in individual, parental, clinical, and researcher awareness and education.
Collapse
Affiliation(s)
- Azure D Grant
- Levels Health, Inc., New York City, NY 10003, United States
| | - Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA 94720, United States; Department of Integrative Biology, University of California, Berkeley, CA 94720, United States; Graduate Group in Endocrinology, University of California, Berkeley, CA 94720, United States; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
21
|
Natterson-Horowitz B, Aktipis A, Fox M, Gluckman PD, Low FM, Mace R, Read A, Turner PE, Blumstein DT. The future of evolutionary medicine: sparking innovation in biomedicine and public health. FRONTIERS IN SCIENCE 2023; 1:997136. [PMID: 37869257 PMCID: PMC10590274 DOI: 10.3389/fsci.2023.997136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Evolutionary medicine - i.e. the application of insights from evolution and ecology to biomedicine - has tremendous untapped potential to spark transformational innovation in biomedical research, clinical care and public health. Fundamentally, a systematic mapping across the full diversity of life is required to identify animal model systems for disease vulnerability, resistance, and counter-resistance that could lead to novel clinical treatments. Evolutionary dynamics should guide novel therapeutic approaches that target the development of treatment resistance in cancers (e.g., via adaptive or extinction therapy) and antimicrobial resistance (e.g., via innovations in chemistry, antimicrobial usage, and phage therapy). With respect to public health, the insight that many modern human pathologies (e.g., obesity) result from mismatches between the ecologies in which we evolved and our modern environments has important implications for disease prevention. Life-history evolution can also shed important light on patterns of disease burden, for example in reproductive health. Experience during the COVID-19 (SARS-CoV-2) pandemic has underlined the critical role of evolutionary dynamics (e.g., with respect to virulence and transmissibility) in predicting and managing this and future pandemics, and in using evolutionary principles to understand and address aspects of human behavior that impede biomedical innovation and public health (e.g., unhealthy behaviors and vaccine hesitancy). In conclusion, greater interdisciplinary collaboration is vital to systematically leverage the insight-generating power of evolutionary medicine to better understand, prevent, and treat existing and emerging threats to human, animal, and planetary health.
Collapse
Affiliation(s)
- B. Natterson-Horowitz
- Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Athena Aktipis
- Department of Psychology, Arizona State University, Tempe, AZ, United States
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, United States
| | - Molly Fox
- Department of Anthropology, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, United States
| | - Peter D. Gluckman
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Felicia M. Low
- Koi Tū: The Centre for Informed Futures, University of Auckland, Auckland, New Zealand
| | - Ruth Mace
- Department of Anthropology, University College London, London, United Kingdom
| | - Andrew Read
- Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, State College, PA, United States
- Department of Entomology, The Pennsylvania State University, State College, PA, United States
- Huck Institutes of the Life Sciences, The Pennsylvania State University, State College, PA, United States
| | - Paul E. Turner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
- Program in Microbiology, Yale School of Medicine, New Haven, CT, United States
| | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
22
|
Guarnieri G, Becatti M, Squecco R, Comeglio P, Garella R, Tamburrino L, Marchiani S, Vignozzi L, Vannelli GB, Maggi M, Morelli A. Effects of benzo[a]pyrene on the reproductive axis: Impairment of kisspeptin signaling in human gonadotropin-releasing hormone primary neurons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120766. [PMID: 36460192 DOI: 10.1016/j.envpol.2022.120766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The neuroendocrine control of reproduction is strictly coordinated at the central level by the pulsatile release of gonadotropin-releasing hormone (GnRH) by the hypothalamic GnRH neurons. Alterations of the GnRH-network, especially during development, lead to long-term reproductive and systemic consequences, also causing infertility. Recent evidence shows that benzo[a]pyrene (BaP), a diffuse pollutant that can play a role as an endocrine disruptor, affects gonadal function and gamete maturation, whereas data demonstrating its impact at hypothalamic level are very scarce. This study investigated the effects of BaP (10 μM) in a primary cell culture isolated from the human fetal hypothalamus (hfHypo) and exhibiting a clear GnRH neuron phenotype. BaP significantly decreased gene and protein expression of both GnRH and kisspeptin receptor (KISS1R), the master regulator of GnRH neuron function. Moreover, BaP exposure increased phospho-ERK1/2 signaling, a well-known mechanism associated with KISS1R activation. Interestingly, BaP altered the electrophysiological membrane properties leading to a significant depolarizing effect and it also significantly increased GnRH release, with both effects being not affected by kisspeptin addition. In conclusion, our findings demonstrate that BaP may alter GnRH neuron phenotype and function, mainly interfering with KISS1R signaling and GnRH secretion and therefore with crucial mechanisms implicated in the central neuroendocrine control of reproduction.
Collapse
Affiliation(s)
- Giulia Guarnieri
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Matteo Becatti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Roberta Squecco
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Comeglio
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rachele Garella
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Lara Tamburrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sara Marchiani
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Linda Vignozzi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| | | | - Mario Maggi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy; I.N.B.B. (Istituto Nazionale Biostrutture e Biosistemi), Rome, Italy
| | - Annamaria Morelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
23
|
Franssen D, Johansson HKL, Lopez-Rodriguez D, Lavergne A, Terwagne Q, Boberg J, Christiansen S, Svingen T, Parent AS. Perinatal exposure to the fungicide ketoconazole alters hypothalamic control of puberty in female rats. Front Endocrinol (Lausanne) 2023; 14:1140886. [PMID: 37077353 PMCID: PMC10108553 DOI: 10.3389/fendo.2023.1140886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/03/2023] [Indexed: 04/05/2023] Open
Abstract
INTRODUCTION Estrogenic endocrine disrupting chemicals (EDCs) such as diethylstilbestrol (DES) are known to alter the timing of puberty onset and reproductive function in females. Accumulating evidence suggests that steroid synthesis inhibitors such as ketoconazole (KTZ) or phthalates may also affect female reproductive health, however their mode of action is poorly understood. Because hypothalamic activity is very sensitive to sex steroids, we aimed at determining whether and how EDCs with different mode of action can alter the hypothalamic transcriptome and GnRH release in female rats. DESIGN Female rats were exposed to KTZ or DES during perinatal (DES 3-6-12μg/kg.d; KTZ 3-6-12mg/kg.d), pubertal or adult periods (DES 3-12-48μg/kg.d; KTZ 3-12-48mg/kg.d). RESULTS Ex vivo study of GnRH pulsatility revealed that perinatal exposure to the highest doses of KTZ and DES delayed maturation of GnRH secretion before puberty, whereas pubertal or adult exposure had no effect on GnRH pulsatility. Hypothalamic transcriptome, studied by RNAsequencing in the preoptic area and in the mediobasal hypothalamus, was found to be very sensitive to perinatal exposure to all doses of KTZ before puberty with effects persisting until adulthood. Bioinformatic analysis with Ingenuity Pathway Analysis predicted "Creb signaling in Neurons" and "IGF-1 signaling" among the most downregulated pathways by all doses of KTZ and DES before puberty, and "PPARg" as a common upstream regulator driving gene expression changes. Deeper screening ofRNAseq datasets indicated that a high number of genes regulating the activity of the extrinsic GnRH pulse generator were consistently affected by all the doses of DES and KTZ before puberty. Several, including MKRN3, DNMT3 or Cbx7, showed similar alterations in expression at adulthood. CONCLUSION nRH secretion and the hypothalamic transcriptome are highly sensitive to perinatal exposure to both DES and KTZ. The identified pathways should be exploredfurther to identify biomarkers for future testing strategies for EDC identification and when enhancing the current standard information requirements in regulation.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- *Correspondence: Delphine Franssen,
| | | | | | - Arnaud Lavergne
- GIGA-Bioinformatics, GIGA Institute, Université de Liège, Liège, Belgium
| | - Quentin Terwagne
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Julie Boberg
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Sofie Christiansen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liege, Liege, Belgium
| |
Collapse
|
24
|
Yan Y, Guo F, Liu K, Ding R, Wang Y. The effect of endocrine-disrupting chemicals on placental development. Front Endocrinol (Lausanne) 2023; 14:1059854. [PMID: 36896182 PMCID: PMC9989293 DOI: 10.3389/fendo.2023.1059854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) or endocrine disruptors are substances that are either naturally occurring or artificial and are released into the natural environment. Humans are exposed to EDCs through ingestion, inhalation, and skin contact. Many everyday household items, such as plastic bottles and containers, the liners of metal food cans, detergents, flame retardants, food, gadgets, cosmetics, and pesticides, contain endocrine disruptors. Each hormone has a unique chemical makeup and structural attributes. The way that endocrine hormones connect to receptors is described as a "lock and key" mechanism, with each hormone serving as the key (lock). This mechanism is enabled by the complementary shape of receptors to their hormone, which allows the hormone to activate the receptors. EDCs are described as exogenous chemicals or compounds that have a negative impact on organisms' health by interacting with the functioning of the endocrine system. EDCs are associated with cancer, cardiovascular risk, behavioural disorders, autoimmune abnormalities, and reproductive disorders. EDCs exposure in humans is highly harmful during critical life stages. Nonetheless, the effect of EDCs on the placenta is often underestimated. The placenta is especially sensitive to EDCs due to its abundance of hormone receptors. In this review, we evaluated the most recent data on the effects of EDCs on placental development and function, including heavy metals, plasticizers, pesticides, flame retardants, UV filters and preservatives. The EDCs under evaluation have evidence from human biomonitoring and are found in nature. Additionally, this study indicates important knowledge gaps that will direct future research on the topic.
Collapse
Affiliation(s)
- Yan Yan
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, China
| | - Fengjun Guo
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Kexin Liu
- Department of Gastrointestinal Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Rixin Ding
- Department of Cardiovascular Medicine, Changchun Central Hospital, Changchun, China
| | - Yichao Wang
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Yichao Wang,
| |
Collapse
|
25
|
Gan H, Zhu B, Zhou F, Ding Z, Liu J, Ye X. Perinatal exposure to low doses of cypermethrin induce the puberty-related hormones and decrease the time to puberty in the female offspring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:2665-2675. [PMID: 35931855 DOI: 10.1007/s11356-022-22328-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Pyrethroid insecticides are ubiquitously detected in environmental media, food, and urine samples. Our previous epidemiological study reported a correlation between increased pyrethroid exposure and delayed pubertal development in Chinese girls. In this study, we further investigated the effects of perinatal exposure to low doses of cypermethrin (CP) on pubertal onset and hypothalamic-pituitary-ovarian axis in the female mice offspring. The treatment of CP with 60 μg/kg/day from gestation day 6 (GD6) to postnatal day 21 (PND21) significantly decreased the time to puberty in the female offspring. Exposure of CP increased the serum levels of gonadotropin-releasing hormone (GnRH) and the expression of GnRH genes in a dose-dependent manner in the female offspring. CP also induced the serum levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as the expression of gonadotropin subunit genes [LHβ, FSHβ, and chorionic gonadotropin α (Cgα)]. Furthermore, CP induced serum estradiol (E2) levels and the expression of steroidogenesis-related genes [steroidogenic acute regulatory (StAR) and Cytochrome p 450, family 11, subfamily A, polypeptide 1 (CYP11A1)] in the ovary. In accordance with the in vivo tests, administration of CP (6.7, 20, and 60 μg/L) stimulated a dose-dependent increase in the synthesis and secretion of the puberty-related hormones in the explants of hypothalamus, pituitary, and ovary. The interference with calcium channels in the ovary may be responsible for CP-induced pubertal onset. Our study provided evidence that perinatal exposure to low doses of CP induced puberty-related hormones and decreased the time to puberty in the female offspring.
Collapse
Affiliation(s)
- Hongya Gan
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| |
Collapse
|
26
|
Xiong J, Tian Y, Ma G, Wang X, Shan S, Cheng G. Impact of Physiologically Relevant Genistein Exposure at Different Time Windows on Puberty Onset and Neuroendocrine Function in Female Rats. Mol Nutr Food Res 2022; 66:e2200486. [PMID: 36106654 DOI: 10.1002/mnfr.202200486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Indexed: 01/18/2023]
Abstract
SCOPE Puberty timing, critical for adulthood wellbeing, is influenced by the environment, life-style, and diets. However, differential puberty-interfering effects of soy and soy isoflavone are observed in both epidemiological and toxicological studies. Additionally, their impact on neuroendocrine function at various pre-pubertal developmental windows is unclear. METHODS AND RESULTS This study investigates the effect of genistein, a typical soy isoflavone, at neonatal, lactational, and post-weaning stages on the time of vaginal opening and determines the levels of neuroendocrine factors in female rats using immunofluorescence, immunochemistry, and enzyme-linked immunosorbent assays. A physiologically relevant dosage (10 mg kg-1 ) is used to resemble human exposure. The results show that genistein exposure at lactational stage significantly accelerates vaginal opening time, marginally increases hypothalamic gonadotropin-releasing hormone (GnRH) secretion, significantly enhances kisspeptin receptor expression, and markedly elevates blood levels of GnRH, luteinizing hormone, and follicle-stimulating hormone, while neonatal and post-weaning exposures do not induce significant alternations. CONCLUSION Lactational stage may be an important window for genistein to impact reproductive development and neuroendocrine regulations.
Collapse
Affiliation(s)
- Jingyuan Xiong
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Ye Tian
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Guochen Ma
- Healthy Food Evaluation Research Center, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoyu Wang
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Shufang Shan
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| | - Guo Cheng
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
27
|
Fang B, Bravo MA, Wang H, Sheng L, Wu W, Zhou Y, Xi X, Østbye T, Liu Q. Polycyclic aromatic hydrocarbons are associated with later puberty in girls: A longitudinal study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157497. [PMID: 35868395 DOI: 10.1016/j.scitotenv.2022.157497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The objective of this study is to explore associations between PAH exposures and puberty timing in girls. Beginning in May 2014, 734 girls age 7.2-11.8 years in Chongqing, China, were enrolled in a prospective cohort study. They were followed up every 6 months from enrollment through June 2021, at which point participants were ages 13.6-18.3 years. Metabolite concentrations of four PAHs (1-hydroxypyrene [1-OHPyr], 2-hydroxynaphthalene [2-OHNap], 2-hydroxyfluorine [2-OHFlu], and 9-hydroxyphenanthrene [9-OHPhe]) were measured in urine samples at baseline. At each follow up visit, the Tanner's Sexual Maturity Rating scale was administered. Cox proportional hazards models were used to estimate associations between four urinary PAH metabolite concentrations and four markers of puberty: menarche, breast development, pubic hair development, and axillary hair development. Geometric mean concentrations of 1-OHPyr, 2-OHNap, 2-OHFlu and 9-OHPhe in urine were 0.47 μg/L, 3.31 μg/L, 1.49 μg/L, 3.75 μg/L, respectively. There were statistically significant associations between several urinary PAH metabolite concentrations and puberty outcomes. PAH metabolite concentrations were grouped as Low (<25th percentile, referent group), Moderate (25th-75th percentile) or High (>75th). Girls with moderate levels of 1-OHPyr were at higher risk of delayed pubic hair development (hazard ratio [HR]: 0.82, 95 % confidence interval [CI]: 0.68-0.99). Delayed breast development (HR: 0.77, 95 % CI: 0.60-0.99) and pubic hair development (HR: 0.76, 95 % CI: 0.60-0.95) were associated with high 2-OHNap. High c 2-OHFlu was associated with delayed pubic hair development (HR: 0.77, 95 % CI: 0.61-0.96). Delayed breast (HR: 0.79, 95 % CI: 0.64-0.97), pubic hair (HR: 0.79, 95 % CI: 0.65-0.96) and axillary hair development (HR: 0.80, 95 % CI: 0.65-0.99) was associated with moderate 9-OHPhe. In conclusion, PAH exposure may delay puberty onset in girls.
Collapse
Affiliation(s)
- Bo Fang
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Mercedes A Bravo
- Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Hong Wang
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Lulu Sheng
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Wenyi Wu
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Yuanke Zhou
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Xuan Xi
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China
| | - Truls Østbye
- Department of Family Medicine & Community Health and Duke Global Health Institute, Duke University, Durham, NC, United States
| | - Qin Liu
- School of Public Health, Research Center for Medicine and Social Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
28
|
Ivell R, Vinggaard AM, Soyama H, Anand‐Ivell R. Influence on the adult male Leydig cell biomarker insulin‐like peptide 3 of maternal exposure to estrogenic and anti‐androgenic endocrine disrupting compound mixtures: A retrospective study. Andrologia 2022; 54:e14566. [PMID: 36054713 PMCID: PMC10078366 DOI: 10.1111/and.14566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/01/2022] [Accepted: 08/07/2022] [Indexed: 11/27/2022] Open
Abstract
Insulin-like peptide 3 (INSL3) is a peptide biomarker secreted specifically by the mature Leydig cells of the testes. It is constitutive, has low within-individual variance, and effectively measures the functional capacity of Leydig cells to make testosterone. In young adult men there is a large 10-fold range of serum INSL3 concentration, persisting into old age, and implying that later hypogonadal status might be programmed in early life. To determine whether maternal exposure to environmental endocrine disrupting compounds (EDCs) influences adult serum INSL3 concentration, using a retrospective paradigm, INSL3 was measured in young adult male rats (80-90 days) from the F1 generation of females maternally exposed to varied doses of bisphenol A (BPA), butylparaben, epoxiconazole, and fludioxonil as single compounds, as well as estrogenic and anti-androgenic mixtures of BPA and butylparaben, and di(2-ethylhexyl) phthalate and procymidone respectively. A mixture of BPA and butylparaben significantly reduced circulating INSL3 concentration in adult male progeny. The remaining compounds or mixtures tested, though sufficient to induce other effects in the F1 generation were without significant effect. Maternal exposure to low concentrations of some EDCs may be a contributing factor to the variation in the Leydig cell biomarker INSL3 in young adulthood, though caution is warranted translating results from rats to humans.
Collapse
Affiliation(s)
- Richard Ivell
- School of Bioscience University of Nottingham, Sutton Bonington UK
| | | | - Hiroaki Soyama
- School of Bioscience University of Nottingham, Sutton Bonington UK
| | | |
Collapse
|
29
|
Xu LN, Li HT, Liu S, Jiang J, Liu YQ, Cheng HYM, Yu Y, Cao JM, Zhang P. Constitutional delay of growth and puberty in female mice is induced by circadian rhythm disruption in utero. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113723. [PMID: 35679725 DOI: 10.1016/j.ecoenv.2022.113723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Constitutional delay of growth and puberty (CDGP) refers to the late onset of puberty. CDGP is associated with poor psychosocial outcomes and elevated risk of cardiovascular and osteoporotic diseases, especially in women. The environmental factors that contribute to CDGP are poorly understood. Here, we investigated the effects of chronic circadian disturbance (CCD) during the fetal stage on the pubertal development of female mice. Compared to non-stressed female (NS-F) mice that were not exposed to CCD in utero, adolescent CCD female (CCD-F) mice exhibited phenotypes that were consistent with CDGP, including lower body weight, reduced levels of circulating gonadal hormones, decreased expression of gonadal hormones and steroid synthesis-related enzymes in the ovary and hypothalamus, irregular estrus cycles, and tardive vaginal introitus initial opening (VO) days (equivalent to the menarche). Phenotypic differences in the above-noted parameters were not observed in CCD-F mice once they had reached adulthood. The expression of genes involved in fatty acid metabolism was perturbed in the ovary and hypothalamus of CCD-F mice. In addition, the ovaries of these animals exhibited altered diurnal expression profiles of circadian clock genes. Together, our findings not only suggest that CCD during fetal development may result in delayed puberty in female mice, they also offer insights on potential mechanisms that underlie CDGP.
Collapse
Affiliation(s)
- Lin-Na Xu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Hui-Ting Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Shuang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Jiang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ya-Qin Liu
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Yang Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China; Department of Human Anatomy and Histoembryology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China.
| | - Ji-Min Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Department of Physiology, Shanxi Medical University, Taiyuan, China.
| | - Peng Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, (Collaborative Innovation Center for Prevention of Cardiovascular Diseases), Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
30
|
Liang H, Wu X, Yao H, Weng X, Liu S, Chen J, Li Y, Wu Y, Wen L, Chen Q, Jing C. Association of urinary metabolites of non-persistent pesticides with serum sex hormones among the US females: NHANES 2013-2014. CHEMOSPHERE 2022; 300:134577. [PMID: 35421444 DOI: 10.1016/j.chemosphere.2022.134577] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/25/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Evidence indicated the possibility of non-persistent pesticides disrupting the homeostasis of sex hormones. However, few studies have focused on this relationship in females. We aimed to explore the relationship between non-persistent pesticide exposure and sex hormones among the US females from the National Health and Nutrition Examination Survey 2013-2014. METHODS A total of 790 females, including girls (6-11 years), female adolescents (12-19 years), and adult females (>19 years), were enrolled in this study. Age stratified associations of individual non-persistent pesticide metabolites and their mixtures with sex hormones were analyzed by weighted multiple linear regression and Bayesian kernel machine regression (BKMR) using spot urinary non-persistent pesticide measurement, including 2,4-dichlorophenoxyacetic acid (2,4-D), 3,5,6-trichloropyridinol (TCPY), para-nitrophenol (PNP) and 3-phenoxybenzoic acid (3-PBA), and three serum sex hormones [total testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG)]. RESULTS In girls, weighted multivariate linear regression indicated that both 2,4-D and PNP were negatively associated with TT, and TCPY was inversely associated with SHBG. In female adolescents, TCPY was negatively associated with TT and E2, and 3-PBA was negatively associated with SHBG; positive associations were detected both in 2,4-D with SHBG, and in PNP with TT. In adult females, a higher concentration of 3-PBA was associated with higher levels of TT. The BKMR model showed that in female adolescents, the concentrations of pesticide metabolite mixtures at or above the 55th percentile were negatively related to the levels of E2 compared with their mixtures at 50th percentile, and an inverse U-shaped exposure-response function between PNP and E2 was found. CONCLUSIONS Associations between the four non-persistent pesticide metabolites and serum sex hormones were identified in the US females from NHANES 2013-2014 and these associations were age dependent, especially in adolescents. Large-scale cohort studies are needed to confirm these findings and elucidate the potential biological mechanisms.
Collapse
Affiliation(s)
- Huanzhu Liang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xiaomei Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Huojie Yao
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Xueqiong Weng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Shan Liu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Jingmin Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yexin Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Yingying Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Lin Wen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Qian Chen
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China
| | - Chunxia Jing
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, No.601 Huangpu Ave West, Guangzhou, 510632, Guangdong, China; Guangdong Key Laboratory of Environmental Exposure and Health, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
31
|
Rami Y, Ebrahimpour K, Maghami M, Shoshtari-Yeganeh B, Kelishadi R. The Association Between Heavy Metals Exposure and Sex Hormones: a Systematic Review on Current Evidence. Biol Trace Elem Res 2022; 200:3491-3510. [PMID: 34668113 DOI: 10.1007/s12011-021-02947-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 10/20/2022]
Abstract
The general population is voluntarily or unintentionally exposed to heavy metals through ingestion of food, polluted water, or contact with soil, dust, or polluted air. A number of metals are considered as endocrine disruptors and can alter the level of reproductive hormones. This study aims to systematically review the epidemiological studies on the association between heavy metals exposure and sex hormones level. We conducted a systematic search from available databases, including PubMed, Clarivate Web of Science, Scopus, Google Scholar, and Cochrane Collaboration, until April 2021. The relevant studies were selected, and two reviewers conducted the quality assessment. Then, data were extracted based on the inclusion criteria. We identified nine articles related to the association between heavy metals exposure and sex hormones level. We summarized the relevant information. Due to the diversity of metals and the variety of sex hormones, the effect of exposure on hormones level was not clear; however in most studies, at least for one metal, a significant association (inverse or positive) was observed between metals exposure and hormones level. Heavy metals exposure may potentially alter sex hormone levels; however, further research is needed to evaluate the impact of this association.
Collapse
Affiliation(s)
- Yasaman Rami
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Karim Ebrahimpour
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahboobeh Maghami
- Department of Bio-Statistics and Epidemiology, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahareh Shoshtari-Yeganeh
- Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Roya Kelishadi
- Child Growth and Development Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
32
|
Prenatal Environmental Exposure to Persistent Organic Pollutants and Reproductive Hormone Profile and Pubertal Development in Dutch Adolescents. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159423. [PMID: 35954780 PMCID: PMC9367960 DOI: 10.3390/ijerph19159423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022]
Abstract
Persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), may interfere with hormonal processes. Knowledge about the effects of prenatal exposure to PCBs and their hydroxylated metabolites (OH-PCBs) on pubertal development is limited. Therefore, the aim of the current study was to determine whether prenatal environmental PCB and OH-PCB exposure are associated with reproductive hormone levels and pubertal characteristics in 13- to 15-year-old children. In this Dutch observational cohort study, 194 mother–infant pairs were included (1998–2002). Maternal pregnancy serum levels of PCBs, OH-PCBs, and other POPs were measured. At follow-up (2014–2016), we measured serum or plasma levels of reproductive hormones in their children. We assessed Tanner stages and testicular volume (by clinician or standardized self-assessment), and participants completed questionnaires on pubertal onset. In total, 101 adolescents (14.4 ± 0.8 years; 53.7% of invited) participated, and 55 were boys. In boys, higher prenatal PCB levels were associated with higher testosterone levels, higher pubic hair stage, larger testicular volume, and younger age at onset of growth spurt and voice break. In girls, higher prenatal PCB levels were associated with higher stages for breast development. In conclusion, higher prenatal PCB exposure could be associated with more advanced pubertal development in 13- to 15-year-old children.
Collapse
|
33
|
Eaton JL. Maternal thyroid disease and pubertal timing in offspring: novel evidence for a potential association. Fertil Steril 2022; 118:147. [PMID: 35725115 DOI: 10.1016/j.fertnstert.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 11/04/2022]
Affiliation(s)
- Jennifer L Eaton
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Women and Infants Hospital and Warren Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
34
|
Hu P, Pan C, Su W, Vinturache A, Hu Y, Dong X, Ding G. Associations between exposure to a mixture of phenols, parabens, and phthalates and sex steroid hormones in children 6-19 years from NHANES, 2013-2016. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153548. [PMID: 35114227 DOI: 10.1016/j.scitotenv.2022.153548] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/25/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Humans are typically exposed to mixtures of environmental endocrine-disrupting chemicals simultaneously, but most studies have considered only a single chemical or a class of similar chemicals. OBJECTIVES We examined the association of exposure to mixtures of 7 chemicals, including 2 phenols [bisphenol A (BPA) and bisphenol S (BPS)], 2 parabens [methylparaben (MeP) and propyl paraben (PrP)], and 3 phthalate metabolites [Mono-benzyl phthalate (MBzP), mono-isobutyl phthalate (MiBP), mono (carboxyoctyl) phthalate (MCOP)] with sex steroid hormones. METHODS A total of 1179 children aged 6-19 years who had complete data on both 7 chemicals and sex steroid hormones of estradiol (E2), total testosterone (TT), and sex hormone-binding globulin (SHBG) were analyzed from the U.S. National Health and Nutrition Examination Survey 2013-2016. Free androgen index (FAI) calculated by TT/SHBG, and the ratio of TT to E2 (TT/E2) were also estimated. Puberty was defined if TT ≥ 50 ng/dL in boys, E2 ≥ 20 pg/mL in girls; otherwise prepuberty was defined. Linear regression, weighted quantile sum (WQS) regression, and Bayesian kernel machine regression (BKMR) were performed to estimate the associations of individual chemical or chemical mixtures with sex hormones. RESULTS The linear regression showed that 2 phenols, 2 parabens, and 3 phthalate metabolites were generally negatively associated with E2, TT, FAI, and TT/E2, while positively with SHBG. Moreover, these associations were more pronounced among pubertal than prepubertal children. The aforementioned associations were confirmed when further applying WQS and BKMR, and the 3 phthalates metabolites were identified to be the most heavily weighing chemicals. CONCLUSIONS Exposure to phenols, parabens, and phthalates, either individuals or as a mixture, was negatively associated with E2, TT, FAI and TT/E2, while positively with SHBG. Those associations were stronger among pubertal children.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Chengyu Pan
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Weiwei Su
- Department of Respiratory Medicine, the Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, China
| | - Angela Vinturache
- Department of Obstetrics & Gynecology, Queen Elizabeth II Hospital, Alberta, Canada
| | - Yi Hu
- Center for Medical Bioinformatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoyan Dong
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Guodong Ding
- Department of Respiratory Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
35
|
Lunddorf LLH, Ernst A, Brix N, Arendt LH, Andersen SL, Olsen J, Ramlau-Hansen CH. Maternal thyroid disease in pregnancy and timing of pubertal development in sons and daughters. Fertil Steril 2022; 118:136-146. [PMID: 35568525 DOI: 10.1016/j.fertnstert.2022.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To study whether maternal thyroid disease in pregnancy is associated with pubertal timing in sons and daughters. DESIGN Cohort study. SETTING National birth cohort and health registers. PATIENT(S) A total of 15,763 mothers and children from the Danish National Birth Cohort and its Puberty Cohort. INTERVENTION(S) Register-based and self-reported information on maternal thyroid diseases during pregnancy (hyperthyroidism, hypothyroidism, benign goiter, or no thyroid disease [reference group]). MAIN OUTCOME MEASURE(S) The adjusted mean age difference (months) at attaining several self-reported pubertal milestones collected every 6 months using an interval-censored regression and the average difference in age at attaining all pubertal milestones using the Huber-White robust variance estimation (primary outcome). RESULT(S) Sons of mothers with hyperthyroidism had earlier pubertal development (average difference, -2.9 [95% confidence interval (CI), -5.0 to -0.7] months) than unexposed sons. Maternal hypothyroidism was not associated with pubertal development in sons (average difference, -1.2 [95% CI, -5.1 to 2.7] months). We observed nonstatistically significant indications of earlier pubertal development in sons of mothers with benign goiter (average difference, -1.9 [95% CI, -4.6 to 0.9] months). Maternal thyroid disease was not associated with pubertal development in daughters (average difference (months), hyperthyroidism, -0.8 [95% CI, -2.8 to 1.2]; hypothyroidism, 0.3 [95% CI, -3.1 to 3.8]; and benign goiter, 0.7 [95% CI, -2.0 to 3.4]). CONCLUSION(S) We found indications of earlier pubertal development in sons of mothers with hyperthyroidism. More research is needed to further investigate the observed sex-specific association.
Collapse
Affiliation(s)
- Lea L H Lunddorf
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark.
| | - Andreas Ernst
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark; Department of Urology, Aarhus University Hospital, Aarhus, Denmark
| | - Nis Brix
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark; Department of Clinical Genetics, and Aarhus University Hospital, Aarhus, Denmark
| | - Linn H Arendt
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark; Department of Obstetrics and Gynecology, Aarhus University Hospital, Aarhus, Denmark
| | - Stine L Andersen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Department of Clinical Biochemistry, Aalborg University Hospital, Aalborg, Denmark
| | - Jørn Olsen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark; Department of Clinical Epidemiology, Aarhus University Hospital, Aarhus, Denmark
| | - Cecilia H Ramlau-Hansen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
36
|
Sánchez-Garrido MA, García-Galiano D, Tena-Sempere M. Early programming of reproductive health and fertility: novel neuroendocrine mechanisms and implications in reproductive medicine. Hum Reprod Update 2022; 28:346-375. [PMID: 35187579 PMCID: PMC9071071 DOI: 10.1093/humupd/dmac005] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND According to the Developmental Origins of Health and Disease (DOHaD) hypothesis, environmental changes taking place during early maturational periods may alter normal development and predispose to the occurrence of diverse pathologies later in life. Indeed, adverse conditions during these critical developmental windows of high plasticity have been reported to alter the offspring developmental trajectory, causing permanent functional and structural perturbations that in the long term may enhance disease susceptibility. However, while solid evidence has documented that fluctuations in environmental factors, ranging from nutrient availability to chemicals, in early developmental stages (including the peri-conceptional period) have discernible programming effects that increase vulnerability to develop metabolic perturbations, the impact and eventual mechanisms involved, of such developmental alterations on the reproductive phenotype of offspring have received less attention. OBJECTIVE AND RATIONALE This review will summarize recent advances in basic and clinical research that support the concept of DOHaD in the context of the impact of nutritional and hormonal perturbations, occurring during the periconceptional, fetal and early postnatal stages, on different aspects of reproductive function in both sexes. Special emphasis will be given to the effects of early nutritional stress on the timing of puberty and adult gonadotropic function, and to address the underlying neuroendocrine pathways, with particular attention to involvement of the Kiss1 system in these reproductive perturbations. The implications of such phenomena in terms of reproductive medicine will also be considered. SEARCH METHODS A comprehensive MEDLINE search, using PubMed as main interface, of research articles and reviews, published mainly between 2006 and 2021, has been carried out. Search was implemented using multiple terms, focusing on clinical and preclinical data from DOHaD studies, addressing periconceptional, gestational and perinatal programming of reproduction. Selected studies addressing early programming of metabolic function have also been considered, when relevant. OUTCOMES A solid body of evidence, from clinical and preclinical studies, has documented the impact of nutritional and hormonal fluctuations during the periconceptional, prenatal and early postnatal periods on pubertal maturation, as well as adult gonadotropic function and fertility. Furthermore, exposure to environmental chemicals, such as bisphenol A, and maternal stress has been shown to negatively influence pubertal development and gonadotropic function in adulthood. The underlying neuroendocrine pathways and mechanisms involved have been also addressed, mainly by preclinical studies, which have identified an, as yet incomplete, array of molecular and neurohormonal effectors. These include, prominently, epigenetic regulatory mechanisms and the hypothalamic Kiss1 system, which likely contribute to the generation of reproductive alterations in conditions of early nutritional and/or metabolic stress. In addition to the Kiss1 system, other major hypothalamic regulators of GnRH neurosecretion, such as γ-aminobutyric acid and glutamate, may be targets of developmental programming. WIDER IMPLICATIONS This review addresses an underdeveloped area of reproductive biology and medicine that may help to improve our understanding of human reproductive disorders and stresses the importance, and eventual pathogenic impact, of early determinants of puberty, adult reproductive function and fertility.
Collapse
Affiliation(s)
- Miguel Angel Sánchez-Garrido
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - David García-Galiano
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), Cordoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Cordoba, Cordoba, Spain
- Hospital Universitario Reina Sofia, Cordoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Cordoba, Spain
- Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
37
|
Dong W, He J, Wang J, Sun W, Sun Y, Yu J. Bisphenol A exposure advances puberty onset by changing Kiss1 expression firstly in arcuate nucleus at juvenile period in female rats. Reprod Toxicol 2022; 110:141-149. [DOI: 10.1016/j.reprotox.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 10/18/2022]
|
38
|
Intergenerational protein deficiency and adolescent reproductive function of subsequent female generations (F 1 and F 2) in rat model. Curr Res Physiol 2022; 5:16-24. [PMID: 35024624 PMCID: PMC8724923 DOI: 10.1016/j.crphys.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 12/02/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Background Efficient reproductive function is an important characteristic that has evolved through natural selection. Nutrition can modulate reproductive activities at different levels, and its effect on reproduction is deemed complex and less predictable. Objective This study aims at investigating the underlying effect of persistent dietary protein deficiency during early life on reproductive parameters of subsequent (F1 and F2) generations. Method Rats in group of four (4) were fed daily, different ration of protein diet (PD) formulated as: 21% protein diet, 10%protein diet, 5%protein diet and control diet (rat chow, containing 16–18% protein). They were fed ad libitum before mating, throughout gestation and lactation, and next generations were weaned to the maternal diet. Reproductive function analysis (which include; gestation and pubertal hormonal profiling, onset of puberty, oestrus cyclicity, sexual response) and morphometric analysis of the ovarian structure were carried out to assess associated consequences. Results There was significant reduction in the fertility index (Control; 85.8%., 21%PD; 88.43%., as compared to 10%PD; 65.9%., 5%PD; 35.78%.,) at F1, also recurring in F2 respectively as a consequence of altered reproductive function in the protein deficient models at P ≤ 0.05. Low protein diet posed suboptimal intrauterine condition, which was linked to increased prenatal morbidity and mortality (control; 11.3%., 21%PD; 3.3%., 10%PD; 27.4%., 5%PD; 32.9%), low birthweight (control; 5.29, 4.9 g., 21%PD; 5.5, 5.06 g., 10%PD; 4.05, 3.86 g., 5%PD; 2.7, 2.5 g) at F1 and F2 respectively, delayed onset of puberty (with average pubertal age set at: control; PND 36, 21%PD; PND 38 while 10%PD; PND 62., and 5%PD; PND 67), followed by induced cycle irregularity, altered follicular maturation and endocrine dysfunction, more severe in 5%PD. Conclusion Reproductive status of a female organism depends on the maintenance of ovarian structure and function that has been associated with the hypothalamic pituitary-gonadal axis, hormonal events and sexual maturity. There is therefore an association between persistent early life protein deficiency and reproductive response which mechanistically involves life-long changes in key ovarian cytoarchitecture and function. Intergenerational protein malnutrition exerts female hormonal dysregulation and irregular cyclicity at adolescence. It delayed pubertal attainment and reproductive performance that persists to the next–generation of rats. Perinatal protein deficiency also altered the ovarian morphology with an implication on fertility index across generations.
Collapse
Key Words
- (↑), Concentration Increase
- (↓), Concentration decrease
- Cycle irregularity
- E2, Estradiol/Estrogen
- F0, Parent
- F1, First filial generation
- F2, Second filial generation
- FSH, Follicle Stimulating Hormone
- Fertility index
- Follicle
- GD, Gestation Day
- IUGR, Intrauterine Growth Restriction
- LH, Leutenizing Hormone
- Ovarian-degeneration. ovarian function
- PD, Protein Diet
- PDD, Protein Deficient Diet
- PND, Postnatal Day
- PROG, Progesterone
- Protein deficiency
- Reproductive hormone
Collapse
|
39
|
Franssen D, Svingen T, Lopez Rodriguez D, Van Duursen M, Boberg J, Parent AS. A Putative Adverse Outcome Pathway Network for Disrupted Female Pubertal Onset to Improve Testing and Regulation of Endocrine Disrupting Chemicals. Neuroendocrinology 2022; 112:101-114. [PMID: 33640887 DOI: 10.1159/000515478] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
The average age for pubertal onset in girls has declined over recent decades. Epidemiological studies in humans and experimental studies in animals suggest a causal role for endocrine disrupting chemicals (EDCs) that are present in our environment. Of concern, current testing and screening regimens are inadequate in identifying EDCs that may affect pubertal maturation, not least because they do not consider early-life exposure. Also, the causal relationship between EDC exposure and pubertal timing is still a matter of debate. To address this issue, we have used current knowledge to elaborate a network of putative adverse outcome pathways (pAOPs) to identify how chemicals can affect pubertal onset. By using the AOP framework, we highlight current gaps in mechanistic understanding that need to be addressed and simultaneously point towards events causative of pubertal disturbance that could be exploited for alternative test methods. We propose 6 pAOPs that could explain the disruption of pubertal timing by interfering with the central hypothalamic trigger of puberty, GnRH neurons, and by so doing highlight specific modes of action that could be targeted for alternative test method development.
Collapse
Affiliation(s)
- Delphine Franssen
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Majorie Van Duursen
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Julie Boberg
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA Neurosciences, University of Liège, Liège, Belgium
- Department of Pediatrics, CHU de Liège, Liège, Belgium
| |
Collapse
|
40
|
Faienza MF, Urbano F, Moscogiuri LA, Chiarito M, De Santis S, Giordano P. Genetic, epigenetic and enviromental influencing factors on the regulation of precocious and delayed puberty. Front Endocrinol (Lausanne) 2022; 13:1019468. [PMID: 36619551 PMCID: PMC9813382 DOI: 10.3389/fendo.2022.1019468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
The pubertal development onset is controlled by a network of genes that regulate the gonadotropin releasing hormone (GnRH) pulsatile release and the subsequent increase of the circulating levels of pituitary gonadotropins that activate the gonadal function. Although the transition from pre-pubertal condition to puberty occurs physiologically in a delimited age-range, the inception of pubertal development can be anticipated or delayed due to genetic and epigenetic changes or environmental conditions. Most of the genetic and epigenetic alterations concern genes which encode for kisspeptin, GnRH, LH, FSH and their receptor, which represent crucial factors of the hypothalamic-pituitary-gonadal (HPG) axis. Recent data indicate a central role of the epigenome in the regulation of genes in the hypothalamus and pituitary that could mediate the flexibility of pubertal timing. Identification of epigenetically regulated genes, such as Makorin ring finger 3 (MKRN3) and Delta-like 1 homologue (DLK1), respectively responsible for the repression and the activation of pubertal development, provides additional evidence of how epigenetic variations affect pubertal timing. This review aims to investigate genetic, epigenetic, and environmental factors responsible for the regulation of precocious and delayed puberty.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- *Correspondence: Maria Felicia Faienza,
| | | | | | | | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Giordano
- Giovanni XXIII Pediatric Hospital, Bari, Italy
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
41
|
Vazquez MJ, Daza-Dueñas S, Tena-Sempere M. Emerging Roles of Epigenetics in the Control of Reproductive Function: Focus on Central Neuroendocrine Mechanisms. J Endocr Soc 2021; 5:bvab152. [PMID: 34703958 PMCID: PMC8533971 DOI: 10.1210/jendso/bvab152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Reproduction is an essential function for perpetuation of the species. As such, it is controlled by sophisticated regulatory mechanisms that allow a perfect match between environmental conditions and internal cues to ensure adequate pubertal maturation and achievement of reproductive capacity. Besides classical genetic regulatory events, mounting evidence has documented that different epigenetic mechanisms operate at different levels of the reproductive axis to finely tune the development and function of this complex neuroendocrine system along the lifespan. In this mini-review, we summarize recent evidence on the role of epigenetics in the control of reproduction, with special focus on the modulation of the central components of this axis. Particular attention will be paid to the epigenetic control of puberty and Kiss1 neurons because major developments have taken place in this domain recently. In addition, the putative role of central epigenetic mechanisms in mediating the influence of nutritional and environmental cues on reproductive function will be discussed.
Collapse
Affiliation(s)
- Maria Jesus Vazquez
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain
| | - Silvia Daza-Dueñas
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Cordoba (IMIBIC), 14004 Cordoba, Spain.,Department of Cell Biology, Physiology and Immunology, University of Cordoba, 14004 Cordoba, Spain.,Hospital Universitario Reina Sofia, 14004 Cordoba, Spain.,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.,Institute of Biomedicine, University of Turku, FIN-20520 Turku, Finland
| |
Collapse
|
42
|
Assirelli V, Baronio F, Ortolano R, Maltoni G, Zucchini S, Di Natale V, Cassio A. Transient central precocious puberty: a new entity among the spectrum of precocious puberty? Ital J Pediatr 2021; 47:210. [PMID: 34688301 PMCID: PMC8542285 DOI: 10.1186/s13052-021-01163-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/28/2021] [Indexed: 11/18/2022] Open
Abstract
Objective Recently, we observed some cases of Precocious Puberty (PP) with a partial central activation of hypothalamic-pituitary-gonadal (HPG) axis that tended to normalized in 6–12 months. To evaluate the frequency of this form within the spectrum of forms of PP, we retrospectively assessed the clinical, hormonal and ultrasound characteristics of patients attending to our Center for signs of PP, between 2007 and 2017. To hypothesize some causes of this “pubertal poussée” a questionnaire about environmental data was provided to patients. Methods 96 girls were recruited for the study and divided into three Groups. Group 1: 56 subjects with Central PP (CPP) requiring treatment with GnRH analogue; Group 2: 22 subjects with transient activation of pubertal axis, that tended to normalize, “Transient CPP”(T-CPP); Group 3: 18 subjects with Isolated Thelarche (IT). Results Mean age at diagnosis was 6.8 ± 1.0 years in Group 1, 5.9 ± 1.3 years in Group 2 and 5.6 ± 1.5 years in Group 3. A significant increase of diagnosis of T-CPP was observed over the study period. Significantly higher use of some homeopathic medicines and potential exposure to pesticides was reported in Group 2 vs Group 1. Conclusions To our knowledge, we first reported a form defined as T-CPP, characterized by partial activation in the HPG axis normalizing over time. An increased use of homeopathic medicines and exposure to environmental pollutants in these patients was evidenced.
Collapse
Affiliation(s)
- Valentina Assirelli
- Program of Endocrine-Metabolic Diseases, Unit of Pediatrics, University of Bologna, IRCCS- University Hospital of Bologna, Via Massarenti 11, Bologna, Italy.,Specialty School of Paediatrics - Alma Mater Studiorum, Università di Bologna, Bologna, Italy
| | - Federico Baronio
- Program of Endocrine-Metabolic Diseases, Unit of Pediatrics, University of Bologna, IRCCS- University Hospital of Bologna, Via Massarenti 11, Bologna, Italy
| | - Rita Ortolano
- Program of Endocrine-Metabolic Diseases, Unit of Pediatrics, University of Bologna, IRCCS- University Hospital of Bologna, Via Massarenti 11, Bologna, Italy
| | - Giulio Maltoni
- Program of Endocrine-Metabolic Diseases, Unit of Pediatrics, University of Bologna, IRCCS- University Hospital of Bologna, Via Massarenti 11, Bologna, Italy
| | - Stefano Zucchini
- Program of Endocrine-Metabolic Diseases, Unit of Pediatrics, University of Bologna, IRCCS- University Hospital of Bologna, Via Massarenti 11, Bologna, Italy
| | - Valeria Di Natale
- Program of Endocrine-Metabolic Diseases, Unit of Pediatrics, University of Bologna, IRCCS- University Hospital of Bologna, Via Massarenti 11, Bologna, Italy
| | - Alessandra Cassio
- Program of Endocrine-Metabolic Diseases, Unit of Pediatrics, University of Bologna, IRCCS- University Hospital of Bologna, Via Massarenti 11, Bologna, Italy.
| |
Collapse
|
43
|
Mesquita I, Lorigo M, Cairrao E. Update about the disrupting-effects of phthalates on the human reproductive system. Mol Reprod Dev 2021; 88:650-672. [PMID: 34617353 DOI: 10.1002/mrd.23541] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 11/07/2022]
Abstract
Phthalate esters are synthetic chemicals used in the plastic industry as plasticizers and consumable products. According to United Nations, about 400 million tons of plastic are produced every year. In parallel with increased production, the concerns about its effects on human health have increased because phthalates are endocrine-disrupting compounds. Humans are continuously exposed to phthalates through different routes of exposure. Experimental data have associated the phthalates exposure to adverse effects on development and reproduction in women (e.g., earlier puberty, primary ovarian insufficiency, endometriosis, preterm birth, or in vitro fertilization) and men (e.g., anogenital distance, cryptorchidism, hypospadias, and changes in adult reproductive function) although there is no consensus. Therefore, one question arises: could the increase in infertility be related to phthalates exposure? To answer this question, we aimed to assess the disrupting-effects of phthalates on the human reproductive system. For this, we reviewed the current literature based on epidemiological and experimental data and experimental studies in humans. The phthalate effects were discussed in a separate mode for female and male reproductive systems. In summary, phthalates induce toxicity in the reproductive system and human development. The increased plastic production may be related to the increase in human infertility.
Collapse
Affiliation(s)
- Inês Mesquita
- CHUCB, University Hospital Centre of Cova da Beira, Covilhã, Portugal
| | - Margarida Lorigo
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Elisa Cairrao
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.,CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| |
Collapse
|
44
|
Yang J, Link C, Henderson YO, Bithi N, Hine C. Peripubertal Bisphenol A Exposure Imparts Detrimental Age-Related Changes in Body Composition, Cognition, and Hydrogen Sulfide Production Capacities. Antioxid Redox Signal 2021; 36:1246-1267. [PMID: 34314248 PMCID: PMC9221154 DOI: 10.1089/ars.2020.8226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 07/16/2021] [Accepted: 07/18/2021] [Indexed: 12/19/2022]
Abstract
Aims: Peripubertal endocrine disruption has immediate and lifelong consequences on health, cognition, and lifespan. Disruption comes from dietary, environmental, and pharmaceutical sources. The plasticizer Bisphenol A (BPA) is one such endocrine disrupting chemical. However, it is unclear whether peripubertal BPA exposure incites long-lasting physiological, neuro-cognitive, and/or longevity-related metabolic impairments. Catabolism of cysteine via transsulfuration enzymes produces hydrogen sulfide (H2S), a redox-modulating gasotransmitter causative to endocrine and metabolic homeostasis and improved cognitive function with age. As thyroid hormone (TH) regulates hepatic H2S production and BPA is a TH receptor antagonist, we hypothesized that BPA exposure during peripubertal development impairs metabolic and neuro-cognitive/behavioral endpoints in aged mice, in part, due to altered peripheral and/or localized H2S production and redox status. Results: To test this, male C57BL/6J mice at 5 weeks of age were orally exposed daily for 5 weeks to 250 μg BPA/kg, defined as low dose group (LD BPA), or 250 mg BPA/kg, defined as high dose group (HD BPA). Both LD and HD BPA exposure decreased lean mass and increased fat mass accompanied by decreased serum total TH at advanced ages. In addition, LD BPA had an anxiogenic effect whereas HD BPA caused cognitive deficits. Notably, HD BPA disrupted tissue-specific H2S production capacities and/or protein persulfidation, with the former negatively correlated with memory deficits and oxidative stress. Innovation and Conclusion: These findings provide a potential mechanism of action for acute and long-term health impacts of BPA-induced peripubertal endocrine disruption and bolster the need for improved monitoring and limitation of adolescent BPA exposure.
Collapse
Affiliation(s)
- Jie Yang
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Christopher Link
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Yoko O. Henderson
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Nazmin Bithi
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Christopher Hine
- Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
45
|
Lopez-Rodriguez D, Franssen D, Heger S, Parent AS. Endocrine-disrupting chemicals and their effects on puberty. Best Pract Res Clin Endocrinol Metab 2021; 35:101579. [PMID: 34563408 DOI: 10.1016/j.beem.2021.101579] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sexual maturation in humans is characterized by a unique individual variability. Pubertal onset is a highly heritable polygenic trait but it is also affected by environmental factors such as obesity or endocrine disrupting chemicals. The last 30 years have been marked by a constant secular trend toward earlier age at onset of puberty in girls and boys around the world. More recent data, although more disputed, suggest an increased incidence in idiopathic central precocious puberty. Such trends point to a role for environmental factors in pubertal changes. Animal data suggest that the GnRH-neuronal network is highly sensitive to endocrine disruption during development. This review focuses on the most recent data regarding secular trend in pubertal timing as well as potential new epigenetic mechanisms explaining the developmental and transgenerational effects of endocrine disrupting chemicals on pubertal timing.
Collapse
Affiliation(s)
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium
| | - Sabine Heger
- Children's Hospital Bult, Janusz-Korczak-Allee 12, 30173, Hannover, Germany
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Belgium; Department of Pediatrics, University Hospital Liège, Belgium.
| |
Collapse
|
46
|
Heo YJ, Kim HS. Ambient air pollution and endocrinologic disorders in childhood. Ann Pediatr Endocrinol Metab 2021; 26:158-170. [PMID: 34610703 PMCID: PMC8505042 DOI: 10.6065/apem.2142132.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/23/2021] [Indexed: 02/01/2023] Open
Abstract
Ambient air pollution has been proposed as an important environmental risk factor that increases global mortality and morbidity. Over the past decade, several human and animal studies have reported an association between exposure to air pollution and altered metabolic and endocrine systems in children. However, the results for these studies were mixed and inconclusive and did not demonstrate causality because different outcomes were observed due to different study designs, exposure periods, and methodologies for exposure measurements. Current proposed mechanisms include altered immune response, oxidative stress, neuroinflammation, inadequate placental development, and epigenetic modulation. In this review, we summarized the results of previous pediatric studies that reported effects of prenatal and postnatal air pollution exposure on childhood type 1 diabetes mellitus, obesity, insulin resistance, thyroid dysfunction, and timing of pubertal onset, along with underlying related mechanisms.
Collapse
Affiliation(s)
- You Joung Heo
- Department of Pediatrics, Ewha Women’s University College of Medicine, Seoul, Korea
| | - Hae Soon Kim
- Department of Pediatrics, Ewha Women’s University College of Medicine, Seoul, Korea,Address for correspondence: Hae Soon Kim Department of Pediatrics, Ewha Women’s University College of Medicine, 260, Gonghang-daero, Gangseo-gu, Seoul 07804, Korea
| |
Collapse
|
47
|
López-Rodríguez D, Aylwin CF, Delli V, Sevrin E, Campanile M, Martin M, Franssen D, Gérard A, Blacher S, Tirelli E, Noël A, Lomniczi A, Parent AS. Multi- and Transgenerational Outcomes of an Exposure to a Mixture of Endocrine-Disrupting Chemicals (EDCs) on Puberty and Maternal Behavior in the Female Rat. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:87003. [PMID: 34383603 PMCID: PMC8360047 DOI: 10.1289/ehp8795] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/28/2021] [Accepted: 07/13/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND The effects of endocrine-disrupting chemicals (EDCs) on fertility and reproductive development represent a rising concern in modern societies. Although the neuroendocrine control of sexual maturation is a major target of EDCs, little is known about the potential role of the hypothalamus in puberty and ovulation disruption transmitted across generations. OBJECTIVES We hypothesized that developmental exposure to an environmentally relevant dose of EDC mixture could induce multi- and/or transgenerational alterations of sexual maturation and maternal care in female rats through epigenetic reprograming of the hypothalamus. We investigated the transmission of a disrupted reproductive phenotype via the maternal germline or via nongenomic mechanisms involving maternal care. METHODS Adult female Wistar rats were exposed prior to and during gestation and until the end of lactation to a mixture of the following 13 EDCs: di-n-butyl phthalate (DnBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), vinclozolin, prochloraz, procymidone, linuron, epoxynaxole, dichlorodiphenyldichloroethylene, octyl methoxynimmate, 4-methylbenzylidene camphor (4-MBC), butylparaben, and acetaminophen. Perinatally exposed offspring (F1) were mated with unexposed males to generate germ cell (F2) and transgenerationally exposed (F3 and F4) females. Sexual maturation, maternal behavior, and hypothalamic targets of exposure were studied across generations. RESULTS Germ cell (F2) and transgenerationally (F3) EDC-exposed females, but not F1, displayed delayed pubertal onset and altered folliculogenesis. We reported a transgenerational alteration of key hypothalamic genes controlling puberty and ovulation (Kiss1, Esr1, and Oxt), and we identified the hypothalamic polycomb group of epigenetic repressors as actors of this mechanism. Furthermore, we found a multigenerational reduction of maternal behavior (F1-F3) induced by a loss in hypothalamic dopaminergic signaling. Using a cross-fostering paradigm, we identified that the reduction in maternal phenotype was normalized in EDC-exposed pups raised by unexposed dams, but no reversal of the pubertal phenotype was achieved. DISCUSSION Rats developmentally exposed to an EDC mixture exhibited multi- and transgenerational disruption of sexual maturation and maternal care via hypothalamic epigenetic reprogramming. These results raise concerns about the impact of EDC mixtures on future generations. https://doi.org/10.1289/EHP8795.
Collapse
Affiliation(s)
| | - Carlos Francisco Aylwin
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | | | - Elena Sevrin
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marzia Campanile
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Marion Martin
- Lille Neuroscience & Cognition (LilNCog), Institut national de la santé et de la recherche médicale (Inserm), CHU Lille, Lille, France
| | - Delphine Franssen
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Arlette Gérard
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
| | - Silvia Blacher
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Ezio Tirelli
- Department of Psychology: Cognition and Behavior, University of Liège, Liège, Belgium
| | - Agnès Noël
- Tumor and Development Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alejandro Lomniczi
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University (OHSU), Portland, Oregon, USA
| | - Anne-Simone Parent
- GIGA Neurosciences, Neuroendocrinology Unit, University of Liège, Liège, Belgium
- Department of Pediatrics, University Hospital Liège, Liège, Belgium
| |
Collapse
|
48
|
Ma T, Zhou Y, Xia Y, Jin H, Wang B, Wu J, Ding J, Wang J, Yang F, Han X, Li D. Environmentally relevant perinatal exposure to DBP disturbs testicular development and puberty onset in male mice. Toxicology 2021; 459:152860. [PMID: 34280466 DOI: 10.1016/j.tox.2021.152860] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Di-n-butyl phthalate (DBP) is considered as a potential modifier of puberty. However, different results indicate that DBP plays an accelerated, delayed, or neutral role in the initiation of puberty. Furthermore, whether the effect of DBP on puberty will disrupt the function of reproductive system in the adults is still ambiguous. Therefore, we aimed to investigate the effect of maternal exposure to DBP on the onset of puberty in male offspring mice and the subsequent changes in the development of reproductive system. Here, pregnant mice were treated with 0 (control), 50, 250, or 500 mg/kg/day DBP in 1 mL/kg corn oil administered daily by oral gavage from gestation day (GD) 12.5 to parturition. Compared with the control group, the 50 mg/kg/day DBP group accelerated puberty onset and testicular development were quite remarkable in male offspring mice during early puberty. Furthermore, in 22-day male offspring mice, 50 mg/kg/day DBP induced increased levels of gonadotropin-releasing hormone (GnRH), luteinizing hormone (LH), follicle-stimulating hormone (FSH), and testosterone in serum, and promoted the expression of steroidogenesis-related genes in the testes. Testicular Leydig cells (LCs) were isolated from the testes of 3-week-old mice and treated with 0 (control), 0.1, 1 mM monobutyl phthalate (MBP, the active metabolite of DBP) for 24 h. Consistent with the in vivo results, the expression of steroidogenesis-related genes and testosterone production were increased in LCs following exposure to 0.1 mM MBP. In adulthood, testes of the male offspring mice exposed to all doses of DBP exhibited adverse morphology compared with the control group. These results demonstrated that maternal exposure to 50 mg/kg/day DBP induced earlier puberty and precocious development of the testis, and eventually damaged the reproductive system in the later life.
Collapse
Affiliation(s)
- Tan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yuan Zhou
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yunhui Xia
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Haibo Jin
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bo Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China; Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, China
| | - Jiang Wu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Ding
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Junli Wang
- Center of Reproductive Medicine, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Fenglian Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Dongmei Li
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, Jiangsu, 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
49
|
Zhao T, Triebner K, Markevych I, Standl M, Altug H, de Hoogh K, Schikowski T, Berdel D, Koletzko S, Bauer CP, von Berg A, Nowak D, Heinrich J. Outdoor air pollution and hormone-assessed pubertal development in children: Results from the GINIplus and LISA birth cohorts. ENVIRONMENT INTERNATIONAL 2021; 152:106476. [PMID: 33714142 DOI: 10.1016/j.envint.2021.106476] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/31/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Air pollution is hypothesized to affect pubertal development. However, the few studies on this topic yielded overall mixed results. These studies did not consider important pollutants like ozone, and none of them involved pubertal development assessed by estradiol and testosterone measurements. We aimed to analyze associations between long-term exposure to four pollutants and pubertal development based on sex hormone concentrations among 10-year-old children. METHODS These cross-sectional analyses were based on the 10-year follow-up medical examinations of 1945 children from the Munich and Wesel centers of the GINIplus and LISA German birth cohorts. Female and male pubertal development was assessed by dichotomizing the concentration of hormones in serum at 18.4 pmol/L and 0.087 nmol/L using the lower limits of quantification for estradiol and testosterone, respectively. Land-use regression models derived annual average concentrations of particulate matter with an aerodynamic diameter < 2.5 and 10 µm (PM2.5 and PM10), as well as spatial models assessed yearly average concentrations of nitrogen dioxide (NO2) and ozone, were calculated at the 10-year residential addresses. To evaluate associations, we utilized logistic regressions adjusted for potential covariates. The analyses were stratified by area and sex. RESULTS Around 73% of the 943 females and 25% of the 1002 males had a high level of hormones and had already started puberty at the age of 10. Overall, we found no statistically significant associations between exposure to particles (PM2.5 or PM10) and pubertal development. Results on NO2 and ozone were not significant as well; for instance, per 10 µg/m3 increase in ozone concentration, odds ratios and 95% confidence intervals were 0.900 (0.605, 1.339) and 0.830 (0.573, 1.203) for females and males, respectively. Stratified by area, the aforementioned results did not reveal any associations either. CONCLUSIONS Our study did not observe the associations between ambient air pollutants and pubertal development determined by estradiol and testosterone levels in children. However, due to the current limited number of studies on this topic, our results should be cautiously interpreted. Future longitudinal studies are needed to assess the association.
Collapse
Affiliation(s)
- Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital Munich, Comprehensive Pneumology Center (CPC) Munich, member, German Center for Lung Research (DZL), Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Department of Applied Social Sciences, Munich University of Applied Sciences, Munich, Germany
| | - Kai Triebner
- Department of Clinical Science, University of Bergen, Bergen, Norway; Core Facility for Metabolomics, University of Bergen, Bergen, Norway
| | - Iana Markevych
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital Munich, Comprehensive Pneumology Center (CPC) Munich, member, German Center for Lung Research (DZL), Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany; Institute of Psychology, Jagiellonian University, Krakow, Poland
| | - Marie Standl
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Hicran Altug
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Tamara Schikowski
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Dietrich Berdel
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Sibylle Koletzko
- Department of Pediatrics, Dr. von Hauner Children's Hospital Munich, University Hospital, LMU Munich, Munich, Germany; Department of Pediatrics, Gastroenterology and Nutrition, School of Medicine Collegium Medicum University of Warmia and Mazury, Olsztyn, Poland
| | - Carl-Peter Bauer
- Department of Pediatrics, Technical University of Munich, Munich, Germany
| | - Andrea von Berg
- Research Institute, Department of Pediatrics, Marien-Hospital Wesel, Wesel, Germany
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital Munich, Comprehensive Pneumology Center (CPC) Munich, member, German Center for Lung Research (DZL), Munich, Germany
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU University Hospital Munich, Comprehensive Pneumology Center (CPC) Munich, member, German Center for Lung Research (DZL), Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
50
|
Lunddorf LLH, Brix N, Ernst A, Arendt LH, Støvring H, Clemmensen PJ, Olsen J, Ramlau-Hansen CH. Hypertensive disorders in pregnancy and timing of pubertal development in daughters and sons. Hum Reprod 2021; 35:2124-2133. [PMID: 32766758 DOI: 10.1093/humrep/deaa147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION Do maternal hypertensive disorders affect pubertal development in daughters and sons? SUMMARY ANSWER Pubertal development tended to occur earlier in daughters of mothers with 'preeclampsia, eclampsia or HELLP syndrome' (hemolysis, elevated liver enzymes and low blood platelets) or hypertension in pregnancy compared to daughters born of normotensive mothers. WHAT IS KNOWN ALREADY The existing literature suggests some or no association between preeclampsia and pubertal development in daughters, but not in sons. None of the previous studies has investigated the possible association between other types of hypertensive disorders (hypertension, eclampsia or HELLP syndrome) and pubertal timing in children. STUDY DESIGN, SIZE, DURATION Longitudinal cohort study consisting of 15 819 mother-child pairs with information on maternal hypertensive disorders collected during pregnancy and information on pubertal development collected half-yearly from the age of 11 years and until fully developed or 18 years of age. PARTICIPANTS/MATERIALS, SETTING, METHODS Participants are children from the Puberty Cohort nested within the Danish National Birth Cohort. The exposure was register-based and self-reported information on maternal hypertensive disorders during pregnancy. The outcomes were children's self-reported information on pubertal development, including Tanner stage 1-5 (pubic hair (both daughters and sons) and breast development (daughters) or genital development (sons)), first menstrual bleeding (daughters) or first ejaculation (sons), voice break episode (sons), axillary hair development and acne occurrence (both daughters and sons). The main outcome was mean difference in age at attaining each pubertal milestone and a combined pubertal marker in children of mothers with hypertensive disorders in pregnancy (either hypertension (n = 490), 'preeclampsia, eclampsia or HELLP syndrome' (n = 419) or 'unspecific hypertensive disorders' (n = 334) with unexposed children as reference (n = 14 576)). MAIN RESULTS AND THE ROLE OF CHANCE In daughters of mothers with 'preeclampsia, eclampsia or HELLP syndrome', we observed tendencies of earlier pubertal timing (combined marker: -2.0 (95% CI: -3.9; 0.0) months). In daughters of mothers with hypertension, several pubertal milestones tended to occur earlier than in daughters of normotensive mothers; however, all 95% CIs overlapped the null resulting in a combined pubertal marker of -1.0 (95% CI: -3.2; 1.1) months. In sons of mothers with any of the hypertensive disorders, we observed no difference in pubertal timing (combined markers: 'preeclampsia, eclampsia or HELLP syndrome': 0.1 (95% CI: -2.0; 2.1) months; hypertension: -0.6 (95% CI: -2.3; 1.1) months; 'unspecific hypertensive disorders': 0.2 (95% CI: -1.9; 2.2) months). LIMITATIONS, REASONS FOR CAUTION The study is subject to non-differential misclassification of self-reported information on maternal hypertensive disorders in pregnancy and current pubertal status; possibly causing bias toward the null. WIDER IMPLICATIONS OF THE FINDINGS Hypertensive disorders in pregnancy might accelerate pubertal timing in daughters; however, more studies are needed for causal conclusions. STUDY FUNDING/COMPETING INTEREST(S) The study was funded by the Faculty of Health at Aarhus University. The authors have no financial relationships or competing interests to disclose. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
| | - Nis Brix
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreas Ernst
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000 Aarhus C, Denmark.,Department of Urology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Linn H Arendt
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000 Aarhus C, Denmark.,Department of Gynecology and Obstetrics, Horsens Regional Hospital, 8700 Horsens, Denmark
| | - Henrik Støvring
- Department of Public Health, Research Unit for Biostatistics, Aarhus University, 8000 Aarhus C, Denmark
| | - Pernille J Clemmensen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000 Aarhus C, Denmark
| | - Jørn Olsen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000 Aarhus C, Denmark.,Department of Clinical Epidemiology, Aarhus University Hospital, 8200 Aarhus N, Denmark
| | - Cecilia H Ramlau-Hansen
- Department of Public Health, Research Unit for Epidemiology, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|