1
|
Sun Y, Wang X, Guo W, Li F, Hua J, Zhu B, Guo Y, Han J, Yang L, Zhou B. Life-time exposure to decabromodiphenyl ethane (DBDPE) caused transgenerational epigenetic alterations of thyroid endocrine system in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175337. [PMID: 39117194 DOI: 10.1016/j.scitotenv.2024.175337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Because of its ubiquitous occurrence in the environment, decabromodiphenyl ethane (DBDPE), a novel brominated flame retardant, has been widely concerned. However, its transgenerational thyroid disrupting potential and intricate mechanism are barely explored. Therefore, zebrafish embryos were exposed to environmentally relevant concentrations of DBDPE (0, 0.1, 1 and 10 nM) until sexual maturity. The results indicated that life-time exposure to DBDPE caused anxiety-like behavior in unexposed offspring. Furthermore, the changing of thyroid hormones as well as transcriptional and DNA methylation level in the promoter region of related genes were evaluated. The thyroid disruptions observed in F1 larvae were primarily attributed to excessive transfer of thyroid hormone from F0 adults to F1 eggs. Conversely, the disruptions in F2 larvae were likely due to inherited epigenetic changes, specifically hypomethylation of crh and hypermethylation of ugt1ab, passed down from the F1 generation. Additionally, our results revealed sex-specific responses of the hypothalamic-pituitary-thyroid (HPT) axis in adult zebrafish. Furthermore, thyroid disruptions observed in unexposed offspring were more likely inherited from their mothers. The current results prompted our in-depth understanding of the multi- and transgenerational toxicity by DBDPE, and also highlighted the need to consider their adverse effects on persistent and inheritable epigenetic changes in future research on emerging pollutants.
Collapse
Affiliation(s)
- Yumiao Sun
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaochen Wang
- Ecology and Environment Monitoring and Scientific Research Center, Ecology and Environment Administration of Yangtze River Basin, Ministry of Ecology and Environment, Wuhan 430010, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Sciences, Yunnan University, Kunming 650504, China
| | - Fan Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianghuan Hua
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Biran Zhu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongyong Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
2
|
Ihn Y, Cho Y, Lee I, Oh JS, Moon HB, Choi K. Thyroid and neurobehavioral effects of DiNP on GH3 cells and larval zebrafish (Danio rerio). CHEMOSPHERE 2024; 362:142593. [PMID: 38866335 DOI: 10.1016/j.chemosphere.2024.142593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Diisononyl phthalate (DiNP) has been used to replace bis(2-ethylhexyl) phthalate (DEHP) and is frequently found in the environment and humans. DiNP is reported for its anti-androgenic activity; however, little is known about its effects on thyroid function and neurodevelopment. In the present study, the thyroid disruption and neurobehavioral alteration potential of DiNP and its major metabolites were assessed in a rat pituitary carcinoma cell line (GH3) and embryo-larval zebrafish (Danio rerio). In GH3 cells, exposure to DiNP and its metabolites not only increased proliferation but also induced transcriptional changes in several target genes, which were different from those observed with DEHP exposure. In larval fish, a 5-day exposure to DiNP caused significant increases in thyroid hormone levels, following a similar pattern to that reported for DEHP exposure. Following exposure to DiNP, the activity of the larval fish decreased, and neurodevelopment-related genes, such as c-fos, elavl3, and mbp, were down-regulated. These changes are generally similar to those observed for DEHP. Up-regulation of gap43 and down-regulation of elavl3 gene, which are important for both thyroid hormone production and neurodevelopment, respectively, support the potential for both thyroid and behavioral disruption of DiNP. Overall, these results emphasize the need to consider the adverse thyroid and neurodevelopmental effects in developing regulations for DEHP-replacing phthalates.
Collapse
Affiliation(s)
- Yunchul Ihn
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Yoojin Cho
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Inae Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea
| | - Jin-Su Oh
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Ihn Y, Cho Y, Lee Y, Seok H, Oh JS, Moon HB, Choi K. Thyroid and sex hormone disrupting effects of DEHTP at different life stages of zebrafish (Danio rerio). CHEMOSPHERE 2024; 358:142105. [PMID: 38657690 DOI: 10.1016/j.chemosphere.2024.142105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024]
Abstract
Di(2-ethylhexyl) terephthalate (DEHTP) is an alternative plasticizer widely used in numerous consumer products, replacing di(2-ethylhexyl) phthalate (DEHP). Hence, DEHTP has been frequently detected in the environment and humans. As a structural isomer and functional analog of DEHP, DEHTP is a suspected endocrine disruptor. Here, we evaluated thyroid-disrupting effects of DEHTP using embryo-larval and adult male zebrafish. We also investigated its sex hormone disruption potential in the adult zebrafish. After 5- and 7-days of exposure to DEHTP, significant increases in whole-body thyroid hormonal levels were observed in the larval fish. Down-regulation of several thyroid-regulating genes, including trh, tshβ, nis, and dio2, was observed, but only after 5-day exposure. Following a 21-day exposure, the adult male zebrafish exhibited a significant decrease in total triiodothyronine and an increase in thyroid-stimulating hormones. Potential changes in the deiodination of thyroid hormones, supported by the up-regulation of two deiodinases, dio1 and dio3a, along with the down-regulation of dio2, could explain the thyroid hormone changes in the adult zebrafish. Moreover, significant trends of decrease in estradiol and 11-ketotestosterone, along with increase of testosterone (T), were observed in the adult zebrafish. Up-regulation of several steroidogenic genes may explain elevated T, while exact mechanisms of action warrant further investigation. Our results demonstrate that DEHTP can cause disruptions of thyroid and sex hormones at different life stages in zebrafish.
Collapse
Affiliation(s)
- Yunchul Ihn
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - Yoojin Cho
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - Yura Lee
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - Hyesun Seok
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea.
| | - Jin-Su Oh
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea; Institute of Health and Environment, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Motamedi-Tehrani J, Peyghan R, Shahriari A, Razijalali M, Ebrahimi E. Combined effects of ammonia-N exposure and salinity changes on hematological and serum biochemical factors and thyroid hormones in Nile tilapia ( Oreochromis niloticus). Heliyon 2024; 10:e29103. [PMID: 38601621 PMCID: PMC11004645 DOI: 10.1016/j.heliyon.2024.e29103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/30/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024] Open
Abstract
The aim of this research was to evaluate the interaction effects of ammonia-N levels and salinity on hematological and serum biochemical parameters in Nile tilapia (Oreochromis niloticus). The fish were randomly divided into 12 treatments including the levels of salinity (0, 4, 8 and 12 ppt) and 0, 50% of LC50-96 h of ammonia-N and 30% of LC50-96 h of ammonia-N in a factorial design (4 salinity levels x 3 ammonia levels). Hemoglobin value in all treatments, except for salinity treatments, namely 2, 3, 4, showed a significant decrease than the control (0 ppt and no poisoning). Also, red blood cells in treatment ammonia-N levels were significantly less than the control. Serum protein concentration, in treatments 9 (50% of LC50-96 h of ammonia-N) and 5 and also with increasing salinity (treatments 2, 3 and 4) had a significant decrease compared to the control. There is a significant increase in serum glucose, cortisol, ammonia and urea levels in 50% and 30% of LC50-96 h of ammonia-N treatments compared to the control, meanwhile these parameters were significantly increased with increasing salinity. Serum thyroid stimulating hormone (TSH), T3 and T4 levels in acute and sub-acute ammonia-N treatments were significantly lower than the control. Moreover, with increasing salinity in 50% and 30% of LC50-96 h of ammonia-N treatments, TSH showed a decreasing pattern. According to the results, fluctuations in blood biochemical factors, increase of stress and decrease of thyroid hormones show that the salinity, ammonia, and their interaction caused adverse effects on fish health during the 96 h of testing.
Collapse
Affiliation(s)
- Javad Motamedi-Tehrani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Rahim Peyghan
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Razijalali
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Eisa Ebrahimi
- Department of Natural Resources, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
5
|
Wang H, Kang G, Ma C, Lian H, Zhao K, Zhao B, Feng Y, Dong W. Inhibitory Effect of Acetaminophen on Ocular Pigmentation and its Relationship with Thyroxine in Zebrafish Embryos. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 112:39. [PMID: 38353786 DOI: 10.1007/s00128-024-03867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/31/2024] [Indexed: 02/16/2024]
Abstract
Acetaminophen (N-acetyl-p-aminophenol; APAP) is one of the most widely used analgesics. To examine the toxicity of APAP, we used zebrafish embryos as model animals to detect the effect of APAP on the thyroid system of zebrafish embryos. The zebrafish embryos were exposed to APAP from 4 h post fertilization (4 hpf) until observation. The experimental results showed that APAP caused pericardial edema and decreased pigmentation in the zebrafish embryos or larvae. The APAP treatment caused a decrease in the expression of tpo and thrβ in the zebrafish at 36 and 72 hpf. The transcriptomic analysis found that APAP affected retinol metabolism, the metabolism of xenobiotics by cytochrome P450, and the tyrosine metabolism pathway. The harmful effect of APAP on zebrafish embryos might be due to its disrupting effect on the functional regulation of the thyroid hormone system.
Collapse
Affiliation(s)
- Huan Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Guiying Kang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China.
- , No. 996, Xilamulun Street, Keerqin District, Tongliao, 028000, China.
| | - Chenglong Ma
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Hua Lian
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Kexin Zhao
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Yuanzhou Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Toxicology and Pharmacology, Academy of Military Medical Sciences, Beijing, 100850, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, 028000, China.
- , No. 996, Xilamulun Street, Keerqin District, Tongliao, 028000, China.
| |
Collapse
|
6
|
Volz SN, Poulsen R, Hansen M, Holbech H. Bisphenol A alters retinal morphology, visually guided behavior, and thyroid hormone levels in zebrafish larvae. CHEMOSPHERE 2024; 348:140776. [PMID: 38000552 DOI: 10.1016/j.chemosphere.2023.140776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/12/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Bisphenols are industrial chemicals that are produced in large quantities and have been detected in all parts of the environment as well as in a multitude of different organisms including humans and fish. Several bisphenols, such as bisphenol A (BPA) and bisphenol F, have been shown to disrupt endocrine systems thereby affecting development and reproduction. While numerous studies investigated the effect of bisphenols on estrogen signaling, their impact on the thyroid hormone system (THS), which is vital for neurodevelopment including sensory development, has been explored to a lesser extent. The present work selected BPA as a representative for structurally similar bisphenols and assessed its impact on the THS as well as sensory development and function in zebrafish. To this end, zebrafish were exposed to BPA until up to 8 days post fertilization (dpf) and thyroid hormone levels, eye morphology, and sensory-mediated behaviors were analyzed. Zebrafish larvae exposed to BPA showed altered retinal layering, decreased motility across varying light conditions, and a loss of responsiveness to red light. Furthermore, whole-body levels of the thyroid hormones thyroxine (T4) and 3,5-diiodothyronine (3,5-T2) were significantly decreased in 5 dpf zebrafish. Taken together, BPA disrupted THS homeostasis and compromised visual development and function, which is pivotal for the survival of fish larvae. This work underlines the necessity for ongoing research on BPA and its numerous substitutes, particularly concerning their effects on the THS and neurodevelopment, to ensure a high level of protection for the environment and human health.
Collapse
Affiliation(s)
- Sina N Volz
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| | - Rikke Poulsen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Martin Hansen
- Department of Environmental Science, University of Aarhus, Frederiksborgvej 399, 4000, Roskilde, Denmark.
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Campusvej 55, 5230, Odense M, Denmark.
| |
Collapse
|
7
|
Pannetier P, Poulsen R, Gölz L, Coordes S, Stegeman H, Koegst J, Reger L, Braunbeck T, Hansen M, Baumann L. Reversibility of Thyroid Hormone System-Disrupting Effects on Eye and Thyroid Follicle Development in Zebrafish (Danio rerio) Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:1276-1292. [PMID: 36920003 DOI: 10.1002/etc.5608] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 03/10/2023] [Indexed: 05/27/2023]
Abstract
Early vertebrate development is partially regulated by thyroid hormones (THs). Environmental pollutants that interact with the TH system (TH system-disrupting chemicals [THSDCs]) can have massively disrupting effects on this essential phase. Eye development of fish is directly regulated by THs and can, therefore, be used as a thyroid-related endpoint in endocrine disruptor testing. To evaluate the effects of THSDC-induced eye malformations during early development, zebrafish (Danio rerio) embryos were exposed for 5 days postfertilization (dpf) to either propylthiouracil, a TH synthesis inhibitor, or tetrabromobisphenol A, which interacts with TH receptors. Subsequently, one half of the embryos were exposed further to the THSDCs until 8 dpf, while the other half of the embryos were raised in clean water for 3 days to check for reversibility of effects. Continued THSDC exposure altered eye size and pigmentation and induced changes in the cellular structure of the retina. This correlated with morphological alterations of thyroid follicles as revealed by use of a transgenic zebrafish line. Interestingly, effects were partly reversible after a recovery period as short as 3 days. Results are consistent with changes in TH levels measured in different tissues of the embryos, for example, in the eyes. The results show that eye development in zebrafish embryos is very sensitive to THSDC treatment but able to recover quickly from early exposure by effective repair mechanisms. Environ Toxicol Chem 2023;42:1276-1292. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Pauline Pannetier
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Rikke Poulsen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Gölz
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Sara Coordes
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Hanna Stegeman
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Johannes Koegst
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Luisa Reger
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Martin Hansen
- Environmental Metabolomics Laboratory, Department of Environmental Science, University of Aarhus, Aarhus, Denmark
| | - Lisa Baumann
- Aquatic Ecology & Toxicology, Center for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- Amsterdam Institute for Life and Environment (A-LIFE), Section on Environmental Health & Toxicology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Lazcano I, Pech-Pool SM, Olvera A, García-Martínez I, Palacios-Pérez S, Orozco A. The importance of thyroid hormone signaling during early development: Lessons from the zebrafish model. Gen Comp Endocrinol 2023; 334:114225. [PMID: 36709002 DOI: 10.1016/j.ygcen.2023.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 11/16/2022] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
The zebrafish is an optimal experimental model to study thyroid hormone (TH) involvement in vertebrate development. The use of state-of-the-art zebrafish genetic tools available for the study of the effect of gene silencing, cell fate decisions and cell lineage differentiation have contributed to a more insightful comprehension of molecular, cellular, and tissue-specific TH actions. In contrast to intrauterine development, extrauterine embryogenesis observed in zebrafish has facilitated a more detailed study of the development of the hypothalamic-pituitary-thyroid axis. This model has also enabled a more insightful analysis of TH molecular actions upon the organization and function of the brain, the retina, the heart, and the immune system. Consequently, zebrafish has become a trendy model to address paradigms of TH-related functional and biomedical importance. We here compilate the available knowledge regarding zebrafish developmental events for which specific components of TH signaling are essential.
Collapse
Affiliation(s)
- I Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S M Pech-Pool
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Olvera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - I García-Martínez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - S Palacios-Pérez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico
| | - A Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Campus Juriquilla, Querétaro 76230, Mexico; Escuela Nacional de Estudios Superiores, Unidad Juriquilla, Universidad Nacional Autónoma de México (UNAM), Campus Juriquilla, Querétaro 76230, Mexico.
| |
Collapse
|
9
|
Zhou X, Deng Y, Wang R, Wang F, Cui H, Hu D, Lu P. Toxic effects of imidacloprid and sulfoxaflor on Rana nigromaculata tadpoles: growth, antioxidant indices and thyroid hormone-related endocrine system. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
|
10
|
Wasserman-Bartov T, Admati I, Lebenthal-Loinger I, Sharabany J, Lerer-Goldshtein T, Appelbaum L. Tsh Induces Agrp1 Neuron Proliferation in Oatp1c1-Deficient Zebrafish. J Neurosci 2022; 42:8214-8224. [PMID: 36150888 PMCID: PMC9653277 DOI: 10.1523/jneurosci.0002-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/25/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormones (THs), thyroxine (T4), and triiodothyronine (T3), regulate growth, metabolism, and neurodevelopment. THs secretion is controlled by the pituitary thyroid-stimulating hormone (TSH) and the hypothalamic-pituitary-thyroid (HPT) axis. The organic anion-transporting polypeptide 1C1 (OATP1C1/SLCO1C1) and the monocarboxylate transporter 8 (MCT8/SLC16A2) actively transport THs, which bind to their nuclear receptors and induce gene expression. A mutation in OATP1C1 is associated with brain hypometabolism, gradual neurodegeneration, and impaired cognitive and motor functioning in adolescent patients. To understand the role of Oatp1c1 and the mechanisms of the disease, we profiled the transcriptome of oatp1c1 mutant (oatp1c1 -/-) and mct8 -/- xoatp1c1 -/- adult male and female zebrafish brains. Among dozens of differentially expressed genes, agouti-related neuropeptide 1 (agrp1) expression increased in oatp1c1 -/- adult brains. Imaging in the hypothalamus revealed enhanced proliferation of Agrp1 neurons in oatp1c1 -/- larvae and adults, and increased food consumption in oatp1c1 -/- larvae. Similarly, feeding and the number of Agrp1 neurons increased in thyroid gland-ablated zebrafish. Pharmacological treatments showed that the T3 analog TRIAC (3,3',5-tri-iodothyroacetic acid), but not T4, normalized the number of Agrp1 neurons in oatp1c1 -/- zebrafish. Since the HPT axis is hyperactive in the oatp1c1 -/- brain, we used the CRISPR-Cas9 system to knockdown tsh in oatp1c1 -/- larvae, and inducibly enhanced the HPT axis in wild-type larvae. These manipulations showed that Tsh promotes proliferation of Agrp1 neurons and increases food consumption in zebrafish. The results revealed upregulation of both the HPT axis-Agrp1 circuitry and feeding in a zebrafish model for OATP1C1 deficiency.SIGNIFICANCE STATEMENT Mutation in the thyroid hormone (TH) transporter OATP1C1 is associated with cognitive and motor functioning disturbances in humans. Here, we used an oatp1c1 -/- zebrafish to understand the role of organic anion-transporting polypeptide 1C1 (Oatp1c1), and the characteristics of OATP1C1 deficiency. Transcriptome profiling identified upregulation of agrp1 expression in the oatp1c1 -/- brain. The oatp1c1 -/- larvae showed increased thyroid-stimulating hormone (tsh) levels, proliferation of Agrp1 neurons and food consumption. Genetic manipulations of the hypothalamic-pituitary-thyroid (HPT) axis showed that Tsh increases the number of Agrp1 neurons and food consumption. The T3 analog TRIAC (3,3',5-tri-iodothyroacetic acid) normalizes the number of Agrp1 neurons and may have potential for the treatment of Oatp1c1 deficiency. The findings demonstrate a functional interaction between the thyroid and feeding systems in the brain of zebrafish and suggest a neuroendocrinological mechanism for OATP1C1 deficiency.
Collapse
Affiliation(s)
- Talya Wasserman-Bartov
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Inbal Admati
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | | | - Julia Sharabany
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Tali Lerer-Goldshtein
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
11
|
Gölz L, Baumann L, Pannetier P, Braunbeck T, Knapen D, Vergauwen L. AOP Report: Thyroperoxidase Inhibition Leading to Altered Visual Function in Fish Via Altered Retinal Layer Structure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2632-2648. [PMID: 35942927 DOI: 10.1002/etc.5452] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Thyroid hormones (THs) are involved in the regulation of many important physiological and developmental processes, including vertebrate eye development. Thyroid hormone system-disrupting chemicals (THSDCs) may have severe consequences, because proper functioning of the visual system is a key factor for survival in wildlife. However, the sequence of events leading from TH system disruption (THSD) to altered eye development in fish has not yet been fully described. The development of this adverse outcome pathway (AOP) was based on an intensive literature review of studies that focused on THSD and impacts on eye development, mainly in fish. In total, approximately 120 studies (up to the end of 2021) were used in the development of this AOP linking inhibition of the key enzyme for TH synthesis, thyroperoxidase (TPO), to effects on retinal layer structure and visual function in fish (AOP-Wiki, AOP 363). In a weight-of-evidence evaluation, the confidence levels were overall moderate, with ample studies showing the link between reduced TH levels and altered retinal layer structure. However, some uncertainties about the underlying mechanism(s) remain. Although the current weight-of-evidence evaluation is based on fish, the AOP is plausibly applicable to other vertebrate classes. Through the re-use of several building blocks, this AOP is connected to the AOPs leading from TPO and deiodinase inhibition to impaired swim bladder inflation in fish (AOPs 155-159), together forming an AOP network describing THSD in fish. This AOP network addresses the lack of thyroid-related endpoints in existing fish test guidelines for the evaluation of THSDCs. Environ Toxicol Chem 2022;41:2632-2648. © 2022 SETAC.
Collapse
Affiliation(s)
- Lisa Gölz
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Pauline Pannetier
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Research Group, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
12
|
Gao X, Wang X, Wang X, Fang Y, Cao S, Huang B, Chen H, Xing R, Liu B. Toxicity in Takifugu rubripes exposed to acute ammonia: Effects on immune responses, brain neurotransmitter levels, and thyroid endocrine hormones. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 244:114050. [PMID: 36063614 DOI: 10.1016/j.ecoenv.2022.114050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/13/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Exposure to ammonia can cause convulsions, coma, and death. In this study, we investigate the effects of ammonia exposure on immunoregulatory and neuroendocrine changes in Takifugu rubripes. Fish were sampled at 0, 12, 24, 48, and 96 h following exposure to different ammonia concentrations (0, 5, 50, 100, and 150 mg/L). Our results showed that exposure to ammonia significantly reduced the concentrations of C3, C4, IgM, and LZM whereas the heat shock protein 70 and 90 levels significantly increased. In addition, the transcription levels of Mn-SOD, CAT, GRx, and GR in the liver were significantly upregulated following exposure to low ammonia concertation, however, downregulated with increased exposure time. These findings suggest that ammonia poisoning causes oxidative damage and suppresses plasma immunity. Ammonia exposure also resulted in the elevation and depletion of the T3 and T4 levels, respectively. Furthermore, ammonia stress induced an increase in the corticotrophin-releasing hormone, adrenocorticotropic hormone, and cortisol levels, and a decrease in dopamine, noradrenaline, and 5-hydroxytryptamine levels in the brain, illustrating that ammonia poisoning can disrupt the endocrine and neurotransmitter systems. Our results provide insights into the mechanisms underlying the neurotoxic effects of ammonia exposure, which helps to assess the ecological and environmental health risks of this contaminant in marine fish.
Collapse
Affiliation(s)
- Xiaoqiang Gao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Xi Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China; College of Fisheries and Life Science, Ocean University, Shanghai 201306, People's Republic of China
| | - Xinyi Wang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China; College of Fisheries and Life Science, Ocean University, Shanghai 201306, People's Republic of China
| | - Yingying Fang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Shuquan Cao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Haibin Chen
- Yuhai Hongqi Ocean Engineering Co. LTD, Rizhao 276800, People's Republic of China
| | - Rui Xing
- Yuhai Hongqi Ocean Engineering Co. LTD, Rizhao 276800, People's Republic of China
| | - Baoliang Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China.
| |
Collapse
|
13
|
Yadav P, Sarode LP, Gaddam RR, Kumar P, Bhatti JS, Khurana A, Navik U. Zebrafish as an emerging tool for drug discovery and development for thyroid diseases. FISH & SHELLFISH IMMUNOLOGY 2022; 130:53-60. [PMID: 36084888 DOI: 10.1016/j.fsi.2022.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 12/06/2022]
Abstract
Zebrafish is a useful model for understanding human genetics and diseases and has evolved into a prominent scientific research model. The genetic structure of zebrafish is 70% identical to that of humans. Its small size, low cost, and transparent embryo make it a valuable tool in experimentation. Zebrafish and mammals possess the same molecular mechanism of thyroid organogenesis and development. Thus, thyroid hormone signaling, embryonic development, thyroid-related disorders, and novel genes involved in early thyroid development can all be studied using zebrafish as a model. Here in this review, we emphasize the evolving role of zebrafish as a possible tool for studying the thyroid gland in the context of physiology and pathology. The transcription factors nkx2.1a, pax2a, and hhex which contribute a pivotal role in the differentiation of thyroid primordium are discussed. Further, we have described the role of zebrafish as a model for thyroid cancer, evaluation of defects in thyroid hormone transport, thyroid hormone (TH) metabolism, and as a screening tool to study thyrotoxins. Hence, the present review highlights the role of zebrafish as a novel approach to understand thyroid development and organogenesis.
Collapse
Affiliation(s)
- Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Lopmudra P Sarode
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, 440033, Maharashtra, India
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, IA, USA
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Amit Khurana
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH Aachen University Hospital, Pauwelsstr. 30, D-52074, Aachen, Germany.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, Punjab, India.
| |
Collapse
|
14
|
Dang Z, Arena M, Kienzler A. Fish toxicity testing for identification of thyroid disrupting chemicals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117374. [PMID: 34051580 DOI: 10.1016/j.envpol.2021.117374] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 05/03/2023]
Abstract
Identification of thyroid disrupting chemicals (TDCs), one of the most studied types of endocrine disruptors (EDs), is required according to EU regulations on industrial chemicals, pesticides, and biocides. Following that requirement, the use of fish as a unique non-mammalian model species for identification of EDs may be warranted. This study summarized and evaluated effects of TDCs on fish thyroid sensitive endpoints including thyroid hormones, thyroid related gene expression, immunostaining for thyroid follicles, eye size and pigmentation, swim bladder inflation as well as effects of TDCs on secondary sex characteristics, sex ratio, growth and reproduction. Changes in thyroid sensitive endpoints may reflect the balanced outcome of different processes of the thyroid cascade. Thyroid sensitive endpoints may also be altered by non-thyroid molecular or endocrine pathways as well as non-specific factors such as general toxicity, development, stress, nutrient, and the environmental factors like temperature and pH. Defining chemical specific effects on thyroid sensitive endpoints is important for identification of TDCs. Application of the AOP (adverse outcome pathway) concept could be helpful for defining critical events needed for testing and identification of TDCs in fish.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment A. van Leeuwenhoeklaan, 93720, BA, Bilthoven, the Netherlands.
| | - Maria Arena
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| | - Aude Kienzler
- European Food Safety Authority Via Carlo Magno 1/A, 43126, Parma, Italy
| |
Collapse
|
15
|
Pang S, Gao Y, Li A, Yao X, Qu G, Hu L, Liang Y, Song M, Jiang G. Tetrabromobisphenol A Perturbs Erythropoiesis and Impairs Blood Circulation in Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12998-13007. [PMID: 32841016 DOI: 10.1021/acs.est.0c02934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a ubiquitous environmental pollutant, has been implicated in developmental toxicity of aquatic animals. However, the impact of TBBPA on development and the related mechanism have not been fully elucidated. In this study, using a live imaging technique and transgenic labeling of zebrafish embryos, we described the toxic effects of TBBPA on hematopoietic development in zebrafish. We demonstrated that TBBPA induced erythroid precursor expansion in the intermediate cell mass (ICM), which perturbed the onset of blood circulation at 24-26 hours postfertilization (hpf). Consequently, excessive blood cells accumulated in the posterior blood island (PBI) and vascular cells formed defective caudal veins (CVs), preventing blood cell flow to the heart at 32-34 hpf. We found that the one-cell to 50% epiboly stage was the most sensitive period to TBBPA exposure during hematopoietic development. Furthermore, our results demonstrated that PBI malformation induced by TBBPA resulted from effects on erythroid precursor cells, which might involve THR signaling in complex ways. These findings will improve the understanding of TBBPA-induced developmental toxicity in teleost.
Collapse
Affiliation(s)
- Shaochen Pang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yue Gao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aijing Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglei Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan 430056, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Colella M, Cuomo D, Giacco A, Mallardo M, De Felice M, Ambrosino C. Thyroid Hormones and Functional Ovarian Reserve: Systemic vs. Peripheral Dysfunctions. J Clin Med 2020; 9:E1679. [PMID: 32492950 PMCID: PMC7355968 DOI: 10.3390/jcm9061679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Thyroid hormones (THs) exert pleiotropic effects in different mammalian organs, including gonads. Genetic and non-genetic factors, such as ageing and environmental stressors (e.g., low-iodine intake, exposure to endocrine disruptors, etc.), can alter T4/T3 synthesis by the thyroid. In any case, peripheral T3, controlled by tissue-specific enzymes (deiodinases), receptors and transporters, ensures organ homeostasis. Conflicting reports suggest that both hypothyroidism and hyperthyroidism, assessed by mean of circulating T4, T3 and Thyroid-Stimulating Hormone (TSH), could affect the functionality of the ovarian reserve determining infertility. The relationship between ovarian T3 level and functional ovarian reserve (FOR) is poorly understood despite that the modifications of local T3 metabolism and signalling have been associated with dysfunctions of several organs. Here, we will summarize the current knowledge on the role of TH signalling and its crosstalk with other pathways in controlling the physiological and premature ovarian ageing and, finally, in preserving FOR. We will consider separately the reports describing the effects of circulating and local THs on the ovarian health to elucidate their role in ovarian dysfunctions.
Collapse
Affiliation(s)
- Marco Colella
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
| | - Danila Cuomo
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
| | - Antonia Giacco
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
| | - Massimo Mallardo
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Mario De Felice
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA;
- Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, via De Sanctis, 82100 Benevento, Italy; (M.C.); (A.G.)
- IRGS, Biogem-Scarl, Via Camporeale, Ariano Irpino, 83031 Avellino, Italy
- IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| |
Collapse
|
17
|
Stinckens E, Vergauwen L, Blackwell BR, Ankley GT, Villeneuve DL, Knapen D. Effect of Thyroperoxidase and Deiodinase Inhibition on Anterior Swim Bladder Inflation in the Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6213-6223. [PMID: 32320227 PMCID: PMC7477623 DOI: 10.1021/acs.est.9b07204] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
A set of adverse outcome pathways (AOPs) linking inhibition of thyroperoxidase and deiodinase to impaired swim bladder inflation in fish has recently been developed. These AOPs help to establish links between these thyroid hormone (TH) disrupting molecular events and adverse outcomes relevant to aquatic ecological risk assessment. Until now, very little data on the effects of TH disruption on inflation of the anterior chamber (AC) of the swim bladder were available. The present study used zebrafish exposure experiments with three model compounds with distinct thyroperoxidase and deiodinase inhibition potencies (methimazole, iopanoic acid, and propylthiouracil) to evaluate this linkage. Exposure to all three chemicals decreased whole body triiodothyronine (T3) concentrations, either through inhibition of thyroxine (T4) synthesis or through inhibition of Dio mediated conversion of T4 to T3. A quantitative relationship between reduced T3 and reduced AC inflation was established, a critical key event relationship linking impaired swim bladder inflation to TH disruption. Reduced inflation of the AC was directly linked to reductions in swimming distance compared to controls as well as to chemical-exposed fish whose ACs inflated. Together the data provide compelling support for AOPs linking TH disruption to impaired AC inflation in fish.
Collapse
Affiliation(s)
- Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Brett R. Blackwell
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Gerald T. Ankley
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Daniel L. Villeneuve
- United States Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
18
|
Couderq S, Leemans M, Fini JB. Testing for thyroid hormone disruptors, a review of non-mammalian in vivo models. Mol Cell Endocrinol 2020; 508:110779. [PMID: 32147522 DOI: 10.1016/j.mce.2020.110779] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs) play critical roles in profound changes in many vertebrates, notably in mammalian neurodevelopment, although the precise molecular mechanisms of these fundamental biological processes are still being unravelled. Environmental and health concerns prompted the development of chemical safety testing and, in the context of endocrine disruption, identification of thyroid hormone axis disrupting chemicals (THADCs) remains particularly challenging. As various molecules are known to interfere with different levels of TH signalling, screening tests for THADCs may not rely solely on in vitro ligand/receptor binding to TH receptors. Therefore, alternatives to mammalian in vivo assays featuring TH-related endpoints that are more sensitive than circulatory THs and more rapid than thyroid histopathology are needed to fulfil the ambition of higher throughput screening of the myriad of environmental chemicals. After a detailed introduction of the context, we have listed current assays and parameters to assess thyroid disruption following a literature search of recent publications referring to non-mammalian models. Potential THADCs were mostly investigated in zebrafish and the frog Xenopus laevis, an amphibian model extensively used to study TH signalling.
Collapse
Affiliation(s)
- Stephan Couderq
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Michelle Leemans
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France
| | - Jean-Baptiste Fini
- Unité PhyMA laboratory, Adaptation du Vivant, Muséum national d'Histoire naturelle, 7 rue Cuvier, 75005, Paris, France.
| |
Collapse
|
19
|
Abstract
In all vertebrates, the thyroid axis is an endocrine feedback system that affects growth, differentiation, and reproduction, by sensing and translating central and peripheral signals to maintain homeostasis and a proper thyroidal set-point. Fish, the most diverse group of vertebrates, rely on this system for somatic growth, metamorphosis, reproductive events, and the ability to tolerate changing environments. The vast majority of the research on the thyroid axis pertains to mammals, in particular rodents, and although some progress has been made to understand the role of this endocrine axis in non-mammalian vertebrates, including amphibians and teleost fish, major gaps in our knowledge remain regarding other groups, such as elasmobranchs and cyclostomes. In this review, we discuss the roles of the thyroid axis in fish and its contributions to growth and development, metamorphosis, reproduction, osmoregulation, as well as feeding and nutrient metabolism. We also discuss how thyroid hormones have been/can be used in aquaculture, and potential threats to the thyroid system in this regard.
Collapse
|
20
|
Wang J, Shi G, Yao J, Sheng N, Cui R, Su Z, Guo Y, Dai J. Perfluoropolyether carboxylic acids (novel alternatives to PFOA) impair zebrafish posterior swim bladder development via thyroid hormone disruption. ENVIRONMENT INTERNATIONAL 2020; 134:105317. [PMID: 31733528 DOI: 10.1016/j.envint.2019.105317] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/07/2019] [Accepted: 11/06/2019] [Indexed: 05/26/2023]
Abstract
Perfluoropolyether carboxylic acids (PFECAs, CF3(OCF2)nCOO-, n = 2-5) are novel alternatives to perfluorooctanoic acid (PFOA) and are widely used in industrial production. However, although they have been detected in surface water and human blood, their toxicities on aquatic organisms remain unknown. We used zebrafish embryos to compare the developmental toxicities of various PFECAs (e.g., perfluoro (3,5,7-trioxaoctanoic) acid (PFO3OA), perfluoro (3,5,7,9-tetraoxadecanoic) acid (PFO4DA), and perfluoro (3,5,7,9,11-pentaoxadodecanoic) acid (PFO5DoDA)) with that of PFOA and to further reveal the key events related to toxicity caused by these chemicals. Results showed that, based on half maximal effective concentrations (EC50), toxicity increased in the order: PFO5DoDA > PFO4DA > PFOA > PFO3OA, with uninflated posterior swim bladders the most frequently observed malformation. Similar to PFOA, PFECA exposure significantly lowered thyroid hormone (TH) levels (e.g., T3 (3,5,3'-L-triiodothyronine) and T4 (L-thyroxine)) in the whole body of larvae at 5 d post-fertilization following disrupted TH metabolism. In addition, the transcription of UDP glucuronosyltransferase 1 family a, b (ugt1ab), a gene related to TH metabolism, increased dose-dependently. Exogeneous T3 or T4 supplementation partly rescued PFECA-induced posterior swim bladder malformation. Our results further suggested that PFECAs primarily damaged the swim bladder mesothelium during early development. This study is the first to report on novel emerging PFECAs as thyroid disruptors causing swim bladder malformation. Furthermore, given that PFECA toxicity increased with backbone OCF2 moieties, they may not be safer alternatives to PFOA.
Collapse
Affiliation(s)
- Jinxing Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guohui Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingzhi Yao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Nan Sheng
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruina Cui
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaoben Su
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jiayin Dai
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
21
|
Gao XQ, Fei F, Huo HH, Huang B, Meng XS, Zhang T, Liu WB, Liu BL. Exposure to nitrite alters thyroid hormone levels and morphology in Takifugu rubripes. Comp Biochem Physiol C Toxicol Pharmacol 2019; 225:108578. [PMID: 31374293 DOI: 10.1016/j.cbpc.2019.108578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 01/24/2023]
Abstract
Nitrite (NO2-) can act as a toxic nitrogenous compound with the potential to disrupt endocrine systems in fish. The aim of the present study was to investigate the effects of nitrite on the thyroid endocrine system of Takifugu rubripes. Fish were exposed to 0, 0.5, 1, 3, and 6 mM nitrite concentrations. Blood was collected to assay the concentrations of thyroid-stimulating hormone (TSH), thyroxine (T4), triiodothyronine (T3), free thyroxine (FT4), free triiodothyronine (FT3), and 3,3,5'-triiodothyronine (rT3), as well as the activity of iodothyronine deiodinases (Dio1, Dio2, and Dio3,) after 0, 12, 24, 48, and 96 h of exposure to nitrite. The first branchial arch to the third branchial arch of T. rubripes were sampled and fixed, and thyroid morphology was observed. The results showed that exposure to nitrite significantly increased the concentrations of TSH, T3, FT3, and reduced the concentrations of T4, FT4, and rT3. The activity of Dio1 and Dio2 increased significantly, whereas Dio3 activity decreased significantly. Additionally, thyroid follicles degenerated and became blurred and most colloid material disappeared 96 h after exposure to high nitrite concentrations. Based on these results, high nitrite concentration exposure can disturb thyroid hormone homeostasis, alter thyroid follicle morphology, and result in thyroid endocrine toxicity.
Collapse
Affiliation(s)
- Xiao-Qiang Gao
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Fan Fei
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China; Aquacultural Engineering R&D Team, Dalian Ocean University, Dalian, People's Republic of China
| | - Huan Huan Huo
- College of Animal Science and Technology,Jiangxi Agricultural University, NanChang 330045,People's Republic of China
| | - Bin Huang
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China
| | - Xue Song Meng
- Dalian Tianzheng Industrial Co. Ltd., Dalian 116000, People's Republic of China
| | - Tao Zhang
- Aquatic products bureau of Leting county, Tangshan, People's Republic of China
| | - Wei Bin Liu
- Dalian Tianzheng Industrial Co. Ltd., Dalian 116000, People's Republic of China
| | - Bao-Liang Liu
- Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao Key Laboratory for Marine Fish Breeding and Biotechnology, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, People's Republic of China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071,China.
| |
Collapse
|
22
|
Eales JG. The relationship between ingested thyroid hormones, thyroid homeostasis and iodine metabolism in humans and teleost fish. Gen Comp Endocrinol 2019; 280:62-72. [PMID: 30980803 DOI: 10.1016/j.ygcen.2019.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/03/2019] [Accepted: 04/10/2019] [Indexed: 11/27/2022]
Abstract
Oral l-thyroxine (T4) therapy is used to treat human hypothyroidism but T4 fed to teleost fish does not raise plasma thyroid hormone (TH) levels nor induce growth, even though oral 3,5,3'-triiodo-l-thyronine (T3) is effective. This suggests a major difference in TH metabolism between teleosts and humans, often used as a starting thyroid model for lower vertebrates. To gain further insight on the proximate (mechanistic) and ultimate (survival value) factors underlying this difference, the several steps in TH homeostasis from intestinal TH uptake to hypothalamic-hypophyseal regulation were compared between humans and teleosts, and following dietary TH challenges. A major proximate factor limiting trout T4 uptake is a potent constitutive thiol-inhibited intestinal complete T4 deiodination that is ineffective for T3. At the hepatic level, T4 deiodination, conjugation and extensive biliary excretion with negligible T4 enterohepatic recycling can further block teleost T4 uptake to plasma. Such protection of plasma T4 from dietary T4 may be particularly critical for piscivorous fish consuming thyroid tissue, rich in T4 but not T3. It would prevent disruption by unregulated ingested T4 of the characteristic acute and transient changes in teleost plasma T4 due to diel rhythms, food intake and stress-related factors. These marked natural short-term fluctuations in teleost plasma T4 levels are enabled by the relatively small and rapidly-cleared plasma T4 pool, stemming largely from properties of the plasma T4-binding proteins. Humans, however, due mainly to plasma T4-binding globulin, have a relatively massive circulating pool of T4 and an extremely well-buffered free T4 level, consistent with the major TH role in regulating basal metabolic rate. Furthermore, this large well-buffered and slowly-cleared plasma T4 pool, in conjuction with enterohepatic recycling and relaxation of hypothalamic-hypophyseal negative feedback, allows humans to temporarily 'store' ingested T4 in plasma, thereby sparing endogenous TH secretion and conserving thyroidal iodine reserves. Indeed, iodine conservation is likely the key ultimate factor determining the divergent evolution of the human and teleost systems. For humans, ingested iodine in the form of I-, or TH and their derivatives, is the sole iodine source and may be limiting in many environments. However, most freshwater teleosts, in addition to their ability to assimilate dietary I-, can derive sufficient I- from their copious gill irrigation, with no selective advantage in absorbing dietary T4 which would disrupt their natural acute and transient changes in plasma T4. Thus T4 may act also as a vitamin (vitamone) in humans but not in teleosts; in contrast, T3, naturally ingested at much lower levels, may act as a vitamone in both humans and teleosts.
Collapse
Affiliation(s)
- J Geoffrey Eales
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada.
| |
Collapse
|
23
|
Liu M, Yi S, Chen P, Chen M, Zhong W, Yang J, Sun B, Zhu L. Thyroid endocrine disruption effects of perfluoroalkyl phosphinic acids on zebrafish at early development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:290-297. [PMID: 31048160 DOI: 10.1016/j.scitotenv.2019.04.177] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/08/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Perfluoroalkyl phosphinic acids (PFPiAs, including 6:6, 6:8 and 8:8 PFPiAs) are one kind of emerging perfluoroalkyl substances and usually used as leveling and wetting agents in household cleaning products and pesticide formulations. In this study, zebrafish embryos (6 h post-fertilization [hpf]) were exposed to 6:6, 6:8 and 8:8 PFPiAs individually (0.5, 5 and 50 nM) for 168 hpf. 8:8 PFPiA at 5 and 50 nM reduced the body length, while all treatments of 6:8 and 8:8 PFPiA depressed the heartbeat of the zebrafish larvae. 8:8 PFPiA at 50 nM distinctly enhanced the thyroxine (T4) and triiodothyronine (T3) contents. In a negative feedback mechanism, the three PFPiAs remarkably suppressed the genes responsible for THs regulation (corticotropin-releasing hormone, crh; thyroid stimulating hormone, tshβ), and 8:8 PFPiA displayed the strongest effect. In addition, 8:8 PFPiA significantly promoted the gene expressions corresponding to THs transport, metabolism and action (transthyretin, ttr; uridine diphosphate glucuronosyltransferase, ugt1ab; deiodinases, dio1 and dio2; thyroid hormone receptors, trα and trβ). As a result, 8:8 PFPiA displayed the strongest thyroid endocrine disrupting effect and significantly affected the growth of zebrafish larvae among the three PFPiAs in the present study.
Collapse
Affiliation(s)
- Menglin Liu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shujun Yi
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Pengyu Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Meng Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Binbin Sun
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
24
|
Vancamp P, Houbrechts AM, Darras VM. Insights from zebrafish deficiency models to understand the impact of local thyroid hormone regulator action on early development. Gen Comp Endocrinol 2019; 279:45-52. [PMID: 30244055 DOI: 10.1016/j.ygcen.2018.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/05/2018] [Accepted: 09/18/2018] [Indexed: 12/23/2022]
Abstract
Thyroid hormones (THs) stimulate and coordinate a wide range of processes to ensure normal development, mainly by binding of the most active TH 3,5,3'-triiodothyronine (T3) to nuclear receptors resulting in changes in gene transcription. Local TH action is monitored at three distinct levels by different types of regulators: transmembrane transporters (TH influx and efflux), deiodinases (TH activation and inactivation) and nuclear receptors (TH signalling). Since TH regulators are strongly conserved among vertebrate species, the externally and rapidly developing zebrafish (Danio rerio) has become one of the favourite models to study their role in TH-dependent development. Most regulators are expressed in zebrafish from early stages in development in a dynamic and tissue-specific pattern. Transient or permanent disruption of a given regulator severely perturbs development of multiple organs. These zebrafish deficiency models help to explain why, next to overall hypo-/hyperthyroidism, inactivating mutations in the genes encoding TH regulators such as MCT8 and THRA/B have irreversible adverse effects on human development. Zebrafish are also increasingly used as a high-throughput model to assess the toxicity of various xenobiotics and their impact on development. While adverse effects on TH metabolism and gene expression have been shown, information on direct interaction with TH regulators is scarce, albeit essential to fully understand their mechanism of action. For the future, the combination of novel gene silencing tools, fluorescent reporter lines and (single-cell) transcriptomics holds promise for new zebrafish models to further elucidate the role of each TH regulator in vertebrate development.
Collapse
Affiliation(s)
- Pieter Vancamp
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Anne M Houbrechts
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium
| | - Veerle M Darras
- KU Leuven, Laboratory of Comparative Endocrinology, Department of Biology, B-3000 Leuven, Belgium.
| |
Collapse
|
25
|
Wang X, Ling S, Guan K, Luo X, Chen L, Han J, Zhang W, Mai B, Zhou B. Bioconcentration, Biotransformation, and Thyroid Endocrine Disruption of Decabromodiphenyl Ethane (Dbdpe), A Novel Brominated Flame Retardant, in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8437-8446. [PMID: 31188578 DOI: 10.1021/acs.est.9b02831] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The brominated flame retardant decabromodiphenyl ethane (DBDPE), an alternative to decabrominated diphenyl ether (BDE209), has become a widespread environmental contaminant, but its possible toxic effects to wildlife remain unknown. Using zebrafish as a model, we investigated the bioconcentration and impact of DBDPE on thyroid endocrine function after water-borne exposure, compared to BDE209. Zebrafish embryos were exposed to DBDPE or BDE209 (0, 3, 10, 30, 100, 300 nM) for 6 or 14 days. Chemical analysis revealed that DBDPE and BDE209 were bioconcentrated in zebrafish larvae, with similar magnitudes of accumulated concentrations. Based on screened by chromatograms, at least seven unknown compounds were observed in DBDPE-treated larvae, indicating biotransformation of the chemical. Significant increases in whole body content of triiodothyronine (T3) and thyroxine (T4) were detected in DBDPE-treated larvae, but decreased in BDE209-treated groups. Alterations in gene transcription along the related hypothalamic-pituitary-thyroid (HPT) axis were observed. Furthermore, the binding and transport protein transthyretin (TTR) was significantly increased in DBDPE exposure groups. Histological examination and stereological analysis showed no obvious pathological changes in the thyroid gland. The present study demonstrates for the first time the bioavailability, biotransformation and thyroid endocrine disruption associated with DBDPE exposure in fish. Further studies are warranted to identify the metabolites of DBDPE and to define its environmental risks to aquatic organisms.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Kelan Guan
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , P.R. China
| | - Xiaojun Luo
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , P.R. China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering , East China University of Science and Technology , Shanghai 200237 , China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , P.R. China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology , Institute of Hydrobiology, Chinese Academy of Sciences , Wuhan 430072 , China
| |
Collapse
|
26
|
Shkil F, Siomava N, Voronezhskaya E, Diogo R. Effects of hyperthyroidism in the development of the appendicular skeleton and muscles of zebrafish, with notes on evolutionary developmental pathology (Evo-Devo-Path). Sci Rep 2019; 9:5413. [PMID: 30931985 PMCID: PMC6443675 DOI: 10.1038/s41598-019-41912-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/20/2019] [Indexed: 12/17/2022] Open
Abstract
The hypothalamus-pituitary-thyroid (HPT) axis plays a crucial role in the metabolism, homeostasis, somatic growth and development of teleostean fishes. Thyroid hormones regulate essential biological functions such as growth and development, regulation of stress, energy expenditure, tissue compound, and psychological processes. Teleost thyroid follicles produce the same thyroid hormones as in other vertebrates: thyroxin (T4) and triiodothyronine (T3), making the zebrafish a very useful model to study hypo- and hyperthyroidism in other vertebrate taxa, including humans. Here we investigate morphological changes in T3 hyperthyroid cases in the zebrafish to better understand malformations provoked by alterations of T3 levels. In particular, we describe musculoskeletal abnormalities during the development of the zebrafish appendicular skeleton and muscles, compare our observations with those recently done by us on the normal developmental of the zebrafish, and discuss these comparisons within the context of evolutionary developmental pathology (Evo-Devo-Path), including human pathologies.
Collapse
Affiliation(s)
- Fedor Shkil
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, pr. Leninskii 33, Moscow, 119071, Russia
| | - Natalia Siomava
- Department of Anatomy, Howard University College of Medicine, 520W Street NW, 20059, Washington, DC, USA
| | - Elena Voronezhskaya
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, ul. Vavilova 26, Moscow, 119334, Russia
| | - Rui Diogo
- Department of Anatomy, Howard University College of Medicine, 520W Street NW, 20059, Washington, DC, USA.
| |
Collapse
|
27
|
Spaan K, Haigis AC, Weiss J, Legradi J. Effects of 25 thyroid hormone disruptors on zebrafish embryos: A literature review of potential biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1238-1249. [PMID: 30625654 DOI: 10.1016/j.scitotenv.2018.11.071] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 05/28/2023]
Abstract
It is estimated that many organic compounds found in our environment can interfere with the thyroid system and act as thyroid hormone (TH) disruptor. Despite that, there is a clear lack of assays to identify TH disruptors. Recently zebrafish embryos were suggested as screening tool to identify compounds which impact thyroid synthesis. Effects on hormone level, gene transcript expression, eye development and swim bladder inflation are suggested as potential biomarker for TH disruptors. In order to assess the applicability of these biomarkers we performed a literature review. The effects of 25 known TH disrupting compounds were compared between studies. The studies were limited to exposures with embryos prior 7 days of development. The different study designs and the lack of standardized methods complicated the comparison of the results. The most common responses were morphological alterations and gene transcript expression changes, but no specific biomarker for TH disruption could be identified. In studies addressing TH disruption behavioral effects were more commonly monitored than in studies not mentioning the TH pathway. TH disruption in developing zebrafish embryos might be caused by different modes of action e.g. disruption of follicle development, binding of TH, activation of TH receptors causing different effects. Timing of developmental processes in combination with exposure duration might also play a role. On the other side compound characteristics (uptake, stability, metabolization) could also cause differences between substances. Further studies are necessary to gain better understanding into the mechanisms of TH disruption in early zebrafish development.
Collapse
Affiliation(s)
- Kyra Spaan
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 11418 Stockholm, Sweden; Environment & Health, VU University Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Ann-Cathrin Haigis
- Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Jana Weiss
- Department of Environmental Science and Analytical Chemistry (ACES), Stockholm University, 11418 Stockholm, Sweden; Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | - Jessica Legradi
- Environment & Health, VU University Amsterdam, 1081 HV, Amsterdam, the Netherlands; Institute for Environmental Research, Department of Ecosystem Analysis, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| |
Collapse
|
28
|
Walter KM, Miller GW, Chen X, Yaghoobi B, Puschner B, Lein PJ. Effects of thyroid hormone disruption on the ontogenetic expression of thyroid hormone signaling genes in developing zebrafish (Danio rerio). Gen Comp Endocrinol 2019; 272:20-32. [PMID: 30448381 PMCID: PMC6331280 DOI: 10.1016/j.ygcen.2018.11.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/25/2022]
Abstract
Thyroid hormones (THs) regulate neurodevelopment, thus TH disruption is widely posited as a mechanism of developmental neurotoxicity for diverse environmental chemicals. Zebrafish have been proposed as an alternative model for studying the role of TH in developmental neurotoxicity. To realize this goal, it is critical to characterize the normal ontogenetic expression profile of TH signaling molecules in the developing zebrafish and determine the sensitivity of these molecules to perturbations in TH levels. To address these gaps in the existing database, we characterized the transcriptional profiles of TH transporters, deiodinases (DIOs), receptors (TRs), nuclear coactivators (NCOAs), nuclear corepressors (NCORs), and retinoid X receptors (RXRs) in parallel with measurements of endogenous TH concentrations and tshβ mRNA expression throughout the first five days of zebrafish development. Transcripts encoding these TH signaling components were identified and observed to be upregulated around 48-72 h post fertilization (hpf) concurrent with the onset of larval production of T4. Exposure to exogenous T4 and T3 upregulated mct8, dio3-b, trα-a, trβ, and mbp-a levels, and downregulated expression of oatp1c1. Morpholino knockdown of TH transporter mct8 and treatment with 6-propyl-2-thiouracil (PTU) was used to reduce cellular uptake and production of TH, an effect that was associated with downregulation of dio3-b at 120 hpf. Collectively, these data confirm that larval zebrafish express orthologs of TH signaling molecules important in mammalian development and suggest that there may be species differences with respect to impacts of TH disruption on gene transcription.
Collapse
Affiliation(s)
- Kyla M Walter
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Galen W Miller
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Xiaopeng Chen
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Birgit Puschner
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California-Davis School of Veterinary Medicine, Davis, CA 95616, United States.
| |
Collapse
|
29
|
Vergauwen L, Cavallin JE, Ankley GT, Bars C, Gabriëls IJ, Michiels EDG, Fitzpatrick KR, Periz-Stanacev J, Randolph EC, Robinson SL, Saari TW, Schroeder AL, Stinckens E, Swintek J, Van Cruchten SJ, Verbueken E, Villeneuve DL, Knapen D. Gene transcription ontogeny of hypothalamic-pituitary-thyroid axis development in early-life stage fathead minnow and zebrafish. Gen Comp Endocrinol 2018; 266:87-100. [PMID: 29733815 PMCID: PMC6540109 DOI: 10.1016/j.ygcen.2018.05.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 03/23/2018] [Accepted: 05/03/2018] [Indexed: 11/30/2022]
Abstract
The hypothalamic-pituitary-thyroid (HPT) axis is known to play a crucial role in the development of teleost fish. However, knowledge of endogenous transcription profiles of thyroid-related genes in developing teleosts remains fragmented. We selected two model teleost species, the fathead minnow (Pimephales promelas) and the zebrafish (Danio rerio), to compare the gene transcription ontogeny of the HPT axis. Control organisms were sampled at several time points during embryonic and larval development until 33 days post-fertilization. Total RNA was extracted from pooled, whole fish, and thyroid-related mRNA expression was evaluated using quantitative polymerase chain reaction. Gene transcripts examined included: thyrotropin-releasing hormone receptor (trhr), thyroid-stimulating hormone receptor (tshr), sodium-iodide symporter (nis), thyroid peroxidase (tpo), thyroglobulin (tg), transthyretin (ttr), deiodinases 1, 2, 3a, and 3b (dio1, dio2, dio3a and 3b), and thyroid hormone receptors alpha and beta (thrα and β). A loess regression method was successful in identifying maxima and minima of transcriptional expression during early development of both species. Overall, we observed great similarities between the species, including maternal transfer, at least to some extent, of almost all transcripts (confirmed in unfertilized eggs), increasing expression of most transcripts during hatching and embryo-larval transition, and indications of a fully functional HPT axis in larvae. These data will aid in the development of hypotheses on the role of certain genes and pathways during development. Furthermore, this provides a background reference dataset for designing and interpreting targeted transcriptional expression studies both for fundamental research and for applications such as toxicology.
Collapse
Affiliation(s)
- Lucia Vergauwen
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium; University of Antwerp, Systemic Physiological and Ecotoxicological Research (SPHERE), Dept. Biology, Groenenborgerlaan 171, 2020 Antwerp, Belgium.
| | - Jenna E Cavallin
- Badger Technical Services, US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Gerald T Ankley
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Chloé Bars
- University of Antwerp, Applied Veterinary Morphology, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Isabelle J Gabriëls
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Ellen D G Michiels
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Krysta R Fitzpatrick
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Jelena Periz-Stanacev
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Eric C Randolph
- ORISE Research Participation Program, US EPA Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | | | - Travis W Saari
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Anthony L Schroeder
- University of Minnesota-Crookston, Math, Science, and Technology Department, 2900 University Ave., Crookston, MN 56716, USA.
| | - Evelyn Stinckens
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Joe Swintek
- Badger Technical Services, US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Steven J Van Cruchten
- University of Antwerp, Applied Veterinary Morphology, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Evy Verbueken
- University of Antwerp, Applied Veterinary Morphology, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Daniel L Villeneuve
- US EPA, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA.
| | - Dries Knapen
- University of Antwerp, Zebrafishlab, Veterinary Physiology and Biochemistry, Dept. Veterinary Sciences, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
30
|
Lazcano I, Orozco A. Revisiting available knowledge on teleostean thyroid hormone receptors. Gen Comp Endocrinol 2018; 265:128-132. [PMID: 29574147 DOI: 10.1016/j.ygcen.2018.03.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 11/25/2022]
Abstract
Teleosts are the most numerous class of living vertebrates. They exhibit great diversity in terms of morphology, developmental strategies, ecology and adaptation. In spite of this diversity, teleosts conserve similarities at molecular, cellular and endocrine levels. In the context of thyroidal systems, and as in the rest of vertebrates, thyroid hormones in fish regulate development, growth and metabolism by actively entering the nucleus and interacting with thyroid hormone receptors, the final sensors of this endocrine signal, to regulate gene expression. In general terms, vertebrates express the functional thyroid hormone receptors alpha and beta, encoded by two distinct genes (thra and thrb, respectively). However, different species of teleosts express thyroid hormone receptor isoforms with particular structural characteristics that confer singular functional traits to these receptors. For example, teleosts contain two thra genes and in some species also two thrb; some of the expressed isoforms can bind alternative ligands. Also, some identified isoforms contain deletions or large insertions that have not been described in other vertebrates and that have not yet been functionally characterized. As in amphibians, the regulation of some of these teleost isoforms coincides with the climax of metamorphosis and/or life transitions during development and growth. In this review, we aimed to gain further insights into thyroid signaling from a comparative perspective by proposing a systematic nomenclature for teleost thyroid hormone receptor isoforms and summarize their particular functional features when the information was available.
Collapse
Affiliation(s)
- Iván Lazcano
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico
| | - Aurea Orozco
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Boulevard Juriquilla 3001, Querétaro, Querétaro 76230, Mexico.
| |
Collapse
|
31
|
Rehberger K, Baumann L, Hecker M, Braunbeck T. Intrafollicular thyroid hormone staining in whole-mount zebrafish (Danio rerio) embryos for the detection of thyroid hormone synthesis disruption. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:997-1010. [PMID: 29568982 DOI: 10.1007/s10695-018-0488-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
Endocrine-disrupting chemicals are known to impact multiple hormonal axes of vertebrates, among which the thyroid system is crucial for multiple developmental and physiological processes. Thus, the present study focused on the semi-quantitative visualization of intrafollicular triiodothyronine (T3) and thyroxin (T4) in zebrafish embryos as a potential test system for the detection of disrupted thyroid hormone synthesis. To this end, an antibody-based fluorescence double-staining protocol for whole-mount zebrafish embryos and larvae was adapted to simultaneously detect intrafollicular T3 and T4. During normal development until 10 days post-fertilization (dpf), the number of thyroid follicles increased along the ventral aorta. Concentrations of T4 and T3, measured by fluorescence intensity, increased until 6 dpf, but decreased thereafter. Exposure of zebrafish embryos to propylthiouracil (PTU), a known inhibitor of TH synthesis, resulted in a significant decrease in the number of follicles that stained for T3, whereas a trend for increase in follicles that stained for T4 was observed. In contrast, fluorescence intensity for both thyroid hormones decreased significantly after exposure to PTU. Overall, the zebrafish embryo appears to be suitable for the simultaneous visualization and detection of changing intrafollicular TH contents during normal development and after PTU treatment.
Collapse
Affiliation(s)
- Kristina Rehberger
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
- Vetsuisse Faculty, Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse122, 3012, Bern, Switzerland
| | - Lisa Baumann
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| | - Markus Hecker
- School of the Environment & Sustainability and Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Thomas Braunbeck
- Centre for Organismal Studies, Aquatic Ecology and Toxicology, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
32
|
Kollitz EM, De Carbonnel L, Stapleton HM, Lee Ferguson P. The Affinity of Brominated Phenolic Compounds for Human and Zebrafish Thyroid Receptor β: Influence of Chemical Structure. Toxicol Sci 2018; 163:226-239. [PMID: 29409039 PMCID: PMC5920296 DOI: 10.1093/toxsci/kfy028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Brominated phenolic compounds (BPCs) are found in the environment, and in human and wildlife tissues, and some are considered to have endocrine disrupting activities. The goal of this study was to determine how structural differences of 3 BPC classes impact binding affinities for the thyroid receptor beta (TRβ) in humans and zebrafish. BPC classes included halogenated bisphenol A derivatives, halogenated oxidative transformation products of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), and brominated phenols. Affinities were assessed using recombinant TRβ protein in competitive binding assays with 125I-triiodothyronine (125I-T3) as the radioligand. Zebrafish and human TRβ displayed similar binding affinities for T3 (Ki = 0.40 and 0.49 nM) and thyroxine (T4, Ki = 6.7 and 6.8 nM). TRβ affinity increased with increasing halogen mass and atomic radius for both species, with the iodinated compounds having the highest affinity within their compound classes. Increasing halogen mass and radius increases the molecular weight, volume, and hydrophobicity of a compound, which are all highly correlated with increasing affinity. TRβ affinity also increased with the degree of halogenation for both species. Human TRβ displayed higher binding affinities for the halogenate bisphenol A compounds, whereas zebrafish TRβ displayed higher affinities for 2,4,6-trichlorophenol and 2,4,6-trifluorophenol. Observed species differences may be related to amino acid differences within the ligand binding domains. Overall, structural variations impact TRβ affinities in a similar manner, supporting the use of zebrafish as a model for TRβ disruption. Further studies are necessary to investigate how the identified structural modifications impact downstream receptor activities and potential in vivo effects.
Collapse
Affiliation(s)
| | | | | | - Patrick Lee Ferguson
- Nicholas School of the Environment
- Pratt School of Engineering, Duke University, Durham, North Carolina 27708
| |
Collapse
|
33
|
Abstract
In recent years, the zebrafish has become a powerful model not only for the developmental biology studies, but also for genetic analyses and drug screenings, mostly thanks to the ease with which its embryos can be manipulated and to its translucent body, which allows in vivo imaging. In this chapter, we will provide an overview of the current knowledge about the role of thyroid hormone receptors during zebrafish embryonic development. Moreover, we will explore the methodologies applied to zebrafish biology to knock down a gene of interest and to analyze in vivo the molecular mechanisms of the mutated receptors.
Collapse
Affiliation(s)
- Federica Marelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.
- Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| |
Collapse
|
34
|
Zada D, Blitz E, Appelbaum L. Zebrafish - An emerging model to explore thyroid hormone transporters and psychomotor retardation. Mol Cell Endocrinol 2017; 459:53-58. [PMID: 28274736 DOI: 10.1016/j.mce.2017.03.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/18/2017] [Accepted: 03/02/2017] [Indexed: 12/17/2022]
Abstract
Thyroid hormones (THs) regulate a variety of fundamental physiological processes, including the development and maintenance of the brain. For decades, it was thought that THs enter the cells by passive diffusion. However, it is now clear that TH transport across the cell membrane requires specific transporter proteins that facilitate the uptake and efflux of THs. Several thyroid hormone transmembrane transporters (THTTs) have been identified, including monocarboxylate transporter 8 (MCT8), MCT10, and organic anion transporting polypeptide 1C1 (OATP1C1). The critical role of THTTs in regulating metabolism and brain function is demonstrated in the Allan-Herndon-Dudley syndrome (AHDS), an X-linked psychomotor retardation associated with mutations in the MCT8/SLC16A2 gene. In addition to traditional research on humans, cell-lines, and rodents, the zebrafish has recently emerged as an attractive model to study THTTs and neuroendocrinological-related disorders. In this review, we describe the unique contribution of zebrafish studies to the understanding of the functional role of THTTs in live animals, and how this transparent vertebrate model can be used for translational studies on TH-related disorders.
Collapse
Affiliation(s)
- David Zada
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Einat Blitz
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
35
|
Abstract
As one of the most basal living vertebrates, lampreys represent an excellent model system to study the evolution of thyroid hormone (TH) signaling. The lamprey hypothalamic-pituitary-thyroid and reproductive axes overlap functionally. Lampreys have 3 gonadotropin-releasing hormones and a single glycoprotein hormone from the hypothalamus and pituitary, respectively, that regulate both the reproductive and thyroid axes. TH synthesis in larval lampreys takes place in an endostyle that transforms into typical vertebrate thyroid tissue during metamorphosis; both the endostyle and follicular tissue have all the typical TH synthetic components found in other vertebrates. Furthermore, lampreys also have the vertebrate suite of peripheral regulators including TH distributor proteins (THDPs), deiodinases and TH receptors (TRs). Although at the molecular level the components of the lamprey thyroid system are ancestral to other vertebrates, their functions have been largely conserved. TH signaling as it relates to lamprey metamorphosis represents a particularly interesting phenomenon. Unlike other metamorphosing vertebrates, lamprey THs increase throughout the larval period, peak prior to metamorphosis and decline rapidly at the onset of metamorphosis; patterns of deiodinase activity are consistent with these increases and declines. Moreover, goitrogens (which suppress TH levels) initiate precocious metamorphosis, and exogenous TH treatment blocks goitrogen-induced metamorphosis and disrupts natural metamorphosis. Despite this clear physiological difference, TH action via TRs is consistent with higher vertebrates. Based on observations that TRs are upregulated in a tissue-specific fashion during morphogenesis and the finding that lamprey TRs upregulate genes via THs in a fashion similar to higher vertebrates, we propose the following hypothesis for further testing. THs have a dual role in lampreys where high TH levels promote larval feeding and growth and then at the onset of metamorphosis TH levels decrease rapidly; at this time the relatively low TH levels function via TRs in a fashion similar to that of other metamorphosing vertebrates.
Collapse
Affiliation(s)
- Richard G Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada.
| | - Lori A Manzon
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
36
|
Abstract
Next-generation sequencing technologies have revolutionized the identification of disease-causing genes, accelerating the discovery of new mutations and new candidate genes for thyroid diseases. To face this flow of novel genetic information, it is important to have suitable animal models to study the mechanisms regulating thyroid development and thyroid hormone availability and activity. Zebrafish ( Danio rerio), with its rapid external embryonic development, has been extensively used in developmental biology. To date, almost all of the components of the zebrafish thyroid axis have been characterized and are structurally and functionally comparable with those of higher vertebrates. The availability of transgenic fluorescent zebrafish lines allows the real-time analysis of thyroid organogenesis and its alterations. Transient morpholino-knockdown is a solution to silence the expression of a gene of interest and promptly obtain insights on its contribution during the development of the zebrafish thyroid axis. The recently available tools for targeted stable gene knockout have further increased the value of zebrafish to the study of thyroid disease. All of the reported zebrafish models can also be used to screen small compounds and to test new drugs and may allow the establishment of experimental proof of concept to plan subsequent clinical trials.
Collapse
Affiliation(s)
- Federica Marelli
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luca Persani
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy.,Lab of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| |
Collapse
|
37
|
Delbaere J, Van Herck SLJ, Bourgeois NMA, Vancamp P, Yang S, Wingate RJT, Darras VM. Mosaic Expression of Thyroid Hormone Regulatory Genes Defines Cell Type-Specific Dependency in the Developing Chicken Cerebellum. THE CEREBELLUM 2017; 15:710-725. [PMID: 26559893 DOI: 10.1007/s12311-015-0744-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The cerebellum is a morphologically unique brain structure that requires thyroid hormones (THs) for the correct coordination of key cellular events driving its development. Unravelling the interplay between the multiple factors that can regulate intracellular TH levels is a key step to understanding their role in the regulation of these cellular processes. We therefore investigated the regional/cell-specific expression pattern of TH transporters and deiodinases in the cerebellum using the chicken embryo as a model. In situ hybridisation revealed expression of the TH transporters monocarboxylate transporter 8 (MCT8) and 10 (MCT10), L-type amino acid transporter 1 (LAT1) and organic anion transporting polypeptide 1C1 (OATP1C1) as well as the inactivating type 3 deiodinase (D3) in the fourth ventricle choroid plexus, suggesting a possible contribution of the resulting proteins to TH exchange and subsequent inactivation of excess hormone at the blood-cerebrospinal fluid barrier. Exclusive expression of LAT1 and the activating type 2 deiodinase (D2) mRNA was found at the level of the blood-brain barrier, suggesting a concerted function for LAT1 and D2 in the direct access of active T3 to the developing cerebellum via the capillary endothelial cells. The presence of MCT8 mRNA in Purkinje cells and cerebellar nuclei during the first 2 weeks of embryonic development points to a potential role of this transporter in the uptake of T3 in central neurons. At later stages, together with MCT10, detection of MCT8 signal in close association with the Purkinje cell dendritic tree suggests a role of both transporters in TH signalling during Purkinje cell synaptogenesis. MCT10 was also expressed in late-born cells in the rhombic lip lineage with a clear hybridisation signal in the outer external granular layer, indicating a potential role for MCT10 in the proliferation of granule cell precursors. By contrast, expression of D3 in the first-born rhombic lip-derived population may serve as a buffering mechanism against high T3 levels during early embryonic development, a hypothesis supported by the pattern of expression of a fluorescent TH reporter in this lineage. Overall, this study builds a picture of the TH dependency in multiple cerebellar cell types starting from early embryonic development.
Collapse
Affiliation(s)
- Joke Delbaere
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Stijn L J Van Herck
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Nele M A Bourgeois
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Pieter Vancamp
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium
| | - Shuo Yang
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard J T Wingate
- Medical Research Council Centre for Developmental Neurobiology, King's College London, London, UK
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Department of Biology, KU Leuven, Naamsestraat 61, P.O. Box 2464, B-3000, Leuven, Belgium.
| |
Collapse
|
38
|
Tonyushkina KN, Krug S, Ortiz-Toro T, Mascari T, Karlstrom RO. Low Thyroid Hormone Levels Disrupt Thyrotrope Development. Endocrinology 2017; 158:2774-2782. [PMID: 28658938 PMCID: PMC5659672 DOI: 10.1210/en.2016-1935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/22/2017] [Indexed: 11/19/2022]
Abstract
Low thyroid hormone (TH) conditions caused by a variety of prenatal and perinatal problems have been shown to alter postnatal regulatory thyrotropin (TSH) responsiveness to TH in humans and rodents. The mechanisms underlying this pituitary TH resistance remain unknown. Here we use the evolutionarily conserved zebrafish model to examine the effects of low TH on thyrotrope development and function. Zebrafish were exposed to the goitrogen 6-propyl-2-thiouracil (PTU) to block TH synthesis, and this led to an approximately 50% increase in thyrotrope numbers and an 8- to 10-fold increase in tshb mRNA abundance in 2-week-old larvae and 1-month-old juveniles. Thyrotrope numbers returned to normal 3 weeks after cessation of PTU treatment, demonstrating that these effects were reversible and revealing substantial plasticity in pituitary-thyroid axis regulation. Using a T4 challenge assay, we found that development under low-TH conditions did not affect the ability of T4 to suppress tshb mRNA levels despite the thyrotrope hyperplasia that resulted from temporary low-TH conditions. Together, these studies show that low developmental TH levels can lead to changes in thyrotrope number and function, providing a possible cellular mechanism underlying elevated TSH levels seen in neonates with either permanent or transient congenital hypothyroidism.
Collapse
Affiliation(s)
- Ksenia N. Tonyushkina
- Division of Pediatric Endocrinology, Baystate Children’s Hospital, Baystate Health, Springfield, Massachusetts 01199
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Stefanie Krug
- Division of Pediatric Endocrinology, Baystate Children’s Hospital, Baystate Health, Springfield, Massachusetts 01199
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Theresa Ortiz-Toro
- Division of Pediatric Endocrinology, Baystate Children’s Hospital, Baystate Health, Springfield, Massachusetts 01199
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Tibor Mascari
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Rolf O. Karlstrom
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003
| |
Collapse
|
39
|
Geven EJW, Klaren PHM. The teleost head kidney: Integrating thyroid and immune signalling. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:73-83. [PMID: 27387152 DOI: 10.1016/j.dci.2016.06.025] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/17/2016] [Accepted: 06/30/2016] [Indexed: 06/06/2023]
Abstract
The head kidney, analogous to the mammalian adrenal gland, is an organ unique for teleost fish. It comprises cytokine-producing lymphoid cells from the immune system and endocrine cells secreting cortisol, catecholamines, and thyroid hormones. The intimate organization of the immune system and endocrine system in one single organ makes bidirectional signalling between these possible. In this review we explore putative interactions between the thyroid and immune system in the head kidney. We give a short overview of the thyroid system, and consider the evidence for the presence of thyroid follicles in the head kidney as a normal, healthy trait in fishes. From mammalian studies we gather data on the effects of three important pro-inflammatory cytokines (TNFα, IL-1β, IL-6) on the thyroid system. A general picture that emerges is that pro-inflammatory cytokines inhibit the activity of the thyroid system at different targets. Extrapolating from these studies, we suggest that the interaction of the thyroid system by paracrine actions of cytokines in the head kidney is involved in fine-tuning the availability and redistribution of energy substrates during acclimation processes such as an immune response or stress response.
Collapse
Affiliation(s)
- Edwin J W Geven
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands
| | - Peter H M Klaren
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Radboud University, Nijmegen, the Netherlands.
| |
Collapse
|
40
|
Liu Z, Li D, Hu Q, Tang R, Li L. Effects of exposure to microcystin-LR at environmentally relevant concentrations on the metabolism of thyroid hormones in adult zebrafish (Danio rerio). Toxicon 2016; 124:15-25. [PMID: 27826021 DOI: 10.1016/j.toxicon.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 10/31/2016] [Accepted: 11/03/2016] [Indexed: 11/16/2022]
Abstract
Microcystin-LR (MC-LR) has the potential to disturb thyroid hormone homeostasis. However, the effects of MC-LR at environmentally relevant concentrations on the thyroid system in adult fish are still unclear. In this study, adult zebrafish were exposed to 0, 1, 5, and 25 μg/L MC-LR for 7, 14, 21, and 28 days. Whole-body thyroid hormones (THs) levels and thyroid follicle histology were used to assess thyroid function. The transcription of corticotropin-releasing hormone (crh), thyroid-stimulating hormone (tsh), transthyretin (ttr), thyroid hormone receptors (trs) genes, and the activities of iodothyronine deiodinases (IDs) were investigated to study the process of TH metabolism disruption. No differences in the histopathology of thyroid follicles and unchanged T4 levels were observed in adult zebrafish. A significant decline in T3 levels associated with a decrease in ID2 activity in male zebrafish was observed at 21 days exposure. Moreover, the mRNA expression of tsh, ttr and trs appeared to be a dynamic process as expression first decreased and then increased with continued exposure. These results indicated that exposure to MC-LR did not inhibit the production of TH. The decrease in ID2 activity may be an important factor in the decline of T3 levels. Furthermore, it seems that the fish triggered a compensatory mechanism to maintain TH homeostasis in respond to environmental concentrations of MC-LR which induced TH disruption.
Collapse
Affiliation(s)
- Zidong Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, PR China
| | - Dapeng Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, PR China.
| | - Qing Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, PR China
| | - Rong Tang
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, PR China
| | - Li Li
- College of Fisheries, Huazhong Agricultural University, Wuhan, 430070, PR China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Wuhan, 430070, PR China; Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Wuhan, 430070, PR China
| |
Collapse
|
41
|
Houbrechts AM, Delarue J, Gabriëls IJ, Sourbron J, Darras VM. Permanent Deiodinase Type 2 Deficiency Strongly Perturbs Zebrafish Development, Growth, and Fertility. Endocrinology 2016; 157:3668-81. [PMID: 27580812 DOI: 10.1210/en.2016-1077] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Iodothyronine deiodinases are selenocysteine-containing enzymes that activate or inactivate thyroid hormones (THs). Deiodinase type 2 (Dio2) catalyzes the conversion of the prohormone T4 into the transcriptionally active T3 and is the predominant activating deiodinase in zebrafish. Using zinc finger nucleases, we generated two different dio2(-/-) mutant zebrafish lines to investigate the physiological function of this TH activator. The first line contains a deletion of 9 bp, resulting in an in-frame elimination of three conserved amino acids. The other line is characterized by an insertion of 4 bp, leading to the introduction of a premature stop-codon. Both lines completely lack Dio2 activity, resulting in a strong reduction of T3 abundancy in all tissues tested. Early development is clearly perturbed in these animals, as shown by a diverse set of morphometric parameters, defects in swim bladder inflation, and disturbed locomotor activity tested between 1 and 7 days after fertilization. Permanent Dio2 deficiency also provokes long-term effects because growth and especially fertility are severely hampered. Possible compensatory mechanisms were investigated in adult dio2(-/-) mutants, revealing a down-regulation of the inactivating deiodinase Dio3 and TH receptor transcript levels. As the first nonmammalian model with permanent Dio2 deficiency, these mutant zebrafish lines provide evidence that Dio2 is essential to assure normal development and to obtain a normal adult phenotype.
Collapse
Affiliation(s)
- Anne M Houbrechts
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| | - Julie Delarue
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| | - Isabelle J Gabriëls
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| | - Jo Sourbron
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology (A.M.H., J.D., I.J.G., V.M.D.), Department of Biology, Division of Animal Physiology and Neurobiology, and Laboratory for Molecular Biodiscovery (J.S.), Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000, Leuven, Belgium
| |
Collapse
|
42
|
Nelson KR, Schroeder AL, Ankley GT, Blackwell BR, Blanksma C, Degitz SJ, Flynn KM, Jensen KM, Johnson RD, Kahl MD, Knapen D, Kosian PA, Milsk RY, Randolph EC, Saari T, Stinckens E, Vergauwen L, Villeneuve DL. Impaired anterior swim bladder inflation following exposure to the thyroid peroxidase inhibitor 2-mercaptobenzothiazole part I: Fathead minnow. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 173:204-217. [PMID: 26818709 DOI: 10.1016/j.aquatox.2015.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/17/2015] [Accepted: 12/30/2015] [Indexed: 05/09/2023]
Abstract
In the present study, a hypothesized adverse outcome pathway linking inhibition of thyroid peroxidase (TPO) activity to impaired swim bladder inflation was investigated in two experiments in which fathead minnows (Pimephales promelas) were exposed to 2-mercaptobenzothiazole (MBT). Continuous exposure to 1mg MBT/L for up to 22 days had no effect on inflation of the posterior chamber of the swim bladder, which typically inflates around 6 days post fertilization (dpf), a period during which maternally-derived thyroid hormone is presumed to be present. In contrast, inflation of the anterior swim bladder, which occurs around 14dpf, was impacted. Specifically, at 14dpf, approximately 50% of fish exposed to 1mg MBT/L did not have an inflated anterior swim bladder. In fish exposed to MBT through 21 or 22dpf, the anterior swim bladder was able to inflate, but the ratio of the anterior/posterior chamber length was significantly reduced compared to controls. Both abundance of thyroid peroxidase mRNA and thyroid follicle histology suggest that fathead minnows mounted a compensatory response to the presumed inhibition of TPO activity by MBT. Time-course characterization showed that fish exposed to MBT for at least 4 days prior to normal anterior swim bladder inflation had significant reductions in anterior swim bladder size, relative to the posterior chamber, compared to controls. These results, along with similar results observed in zebrafish (see part II, this issue) are consistent with the hypothesis that thyroid hormone signaling plays a significant role in mediating anterior swim bladder inflation and development in cyprinids, and that role can be disrupted by exposure to thyroid hormone synthesis inhibitors. Nonetheless, possible thyroid-independent actions of MBT on anterior swim bladder inflation cannot be ruled out based on the present results. Overall, although anterior swim bladder inflation has not been directly linked to survival as posterior swim bladder inflation has, potential links to adverse ecological outcomes are plausible given involvement of the anterior chamber in sound production and detection.
Collapse
Affiliation(s)
- Krysta R Nelson
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Anthony L Schroeder
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA; University of Minnesota-Twin Cities, Water Resources Center, 1985 Lower Buford Circle, St. Paul, MN 55108, USA.
| | - Gerald T Ankley
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Brett R Blackwell
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Chad Blanksma
- Badger Technical Services, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Sigmund J Degitz
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Kevin M Flynn
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Kathleen M Jensen
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Rodney D Johnson
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Michael D Kahl
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Patricia A Kosian
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Rebecca Y Milsk
- Oak Ridge Institute for Science and Education (ORISE) Research Participation Program, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Eric C Randolph
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Travis Saari
- Student Services Contractor, U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| | - Evelyn Stinckens
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Daniel L Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201Congdon Blvd., Duluth, MN 55804, USA
| |
Collapse
|
43
|
Marelli F, Carra S, Agostini M, Cotelli F, Peeters R, Chatterjee K, Persani L. Patterns of thyroid hormone receptor expression in zebrafish and generation of a novel model of resistance to thyroid hormone action. Mol Cell Endocrinol 2016; 424:102-17. [PMID: 26802880 DOI: 10.1016/j.mce.2016.01.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 11/15/2022]
Abstract
Resistance to thyroid hormone can be due to heterozygous, dominant negative (DN) THRA (RTHα) or THRB (RTHβ) mutations, but the underlying mechanisms are incompletely understood. Here, we delineate the spatiotemporal expression of TH receptors (TRs) in zebrafish and generated morphants expressing equivalent amounts of wild-type and DN TRαs (thraa_MOs) and TRβs (thrb_MOs) in vivo. Both morphants show severe developmental abnormalities. The phenotype of thraa_MOs includes brain and cardiac defects, but normal thyroid volume and tshba expression. A combined modification of dio2 and dio3 expression can explain the high T3/T4 ratio seen in thraa_MOs, as in RTHα. Thrb_MOs show abnormal eyes and otoliths, with a typical RTHβ pattern of thyroid axis. The coexpression of wild-type, but not mutant, human TRs can rescue the phenotype in both morphants. High T3 doses can partially revert the dominant negative action of mutant TRs in morphant fish. Therefore, our morphants recapitulate the RTHα and RTHβ key manifestations representing new models in which the functional consequences of human TR mutations can be rapidly and faithfully evaluated.
Collapse
Affiliation(s)
- Federica Marelli
- Laboratorio Sperimentale di Ricerche Endocrino-Metaboliche, Istituto Auxologico Italiano, 20149 Milan, Italy
| | - Silvia Carra
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | - Maura Agostini
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milano, Italy
| | | | - Krishna Chatterjee
- Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Luca Persani
- Laboratorio Sperimentale di Ricerche Endocrino-Metaboliche, Istituto Auxologico Italiano, 20149 Milan, Italy; Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, 20122 Milan, Italy.
| |
Collapse
|
44
|
Bagci E, Heijlen M, Vergauwen L, Hagenaars A, Houbrechts AM, Esguerra CV, Blust R, Darras VM, Knapen D. Deiodinase knockdown during early zebrafish development affects growth, development, energy metabolism, motility and phototransduction. PLoS One 2015; 10:e0123285. [PMID: 25855985 PMCID: PMC4391947 DOI: 10.1371/journal.pone.0123285] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 02/26/2015] [Indexed: 11/19/2022] Open
Abstract
Thyroid hormone (TH) balance is essential for vertebrate development. Deiodinase type 1 (D1) and type 2 (D2) increase and deiodinase type 3 (D3) decreases local intracellular levels of T3, the most important active TH. The role of deiodinase-mediated TH effects in early vertebrate development is only partially understood. Therefore, we investigated the role of deiodinases during early development of zebrafish until 96 hours post fertilization at the level of the transcriptome (microarray), biochemistry, morphology and physiology using morpholino (MO) knockdown. Knockdown of D1+D2 (D1D2MO) and knockdown of D3 (D3MO) both resulted in transcriptional regulation of energy metabolism and (muscle) development in abdomen and tail, together with reduced growth, impaired swim bladder inflation, reduced protein content and reduced motility. The reduced growth and impaired swim bladder inflation in D1D2MO could be due to lower levels of T3 which is known to drive growth and development. The pronounced upregulation of a large number of transcripts coding for key proteins in ATP-producing pathways in D1D2MO could reflect a compensatory response to a decreased metabolic rate, also typically linked to hypothyroidism. Compared to D1D2MO, the effects were more pronounced or more frequent in D3MO, in which hyperthyroidism is expected. More specifically, increased heart rate, delayed hatching and increased carbohydrate content were observed only in D3MO. An increase of the metabolic rate, a decrease of the metabolic efficiency and a stimulation of gluconeogenesis using amino acids as substrates may have been involved in the observed reduced protein content, growth and motility in D3MO larvae. Furthermore, expression of transcripts involved in purine metabolism coupled to vision was decreased in both knockdown conditions, suggesting that both may impair vision. This study provides new insights, not only into the role of deiodinases, but also into the importance of a correct TH balance during vertebrate embryonic development.
Collapse
Affiliation(s)
- Enise Bagci
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, B-2020 Antwerpen, Belgium
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, B-2160 Wilrijk, Belgium
| | - Marjolein Heijlen
- Laboratory of Comparative Endocrinology, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, B-2160 Wilrijk, Belgium
| | - An Hagenaars
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, B-2160 Wilrijk, Belgium
| | - Anne M. Houbrechts
- Laboratory of Comparative Endocrinology, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Camila V. Esguerra
- Laboratory for Molecular Biodiscovery, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, B-3000 Leuven, Belgium
| | - Ronny Blust
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, B-2160 Wilrijk, Belgium
| | - Veerle M. Darras
- Laboratory of Comparative Endocrinology, Animal Physiology and Neurobiology Section, Department of Biology, KU Leuven, B-3000 Leuven, Belgium
| | - Dries Knapen
- Systemic Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, B-2020 Antwerpen, Belgium
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, B-2160 Wilrijk, Belgium
| |
Collapse
|
45
|
Kim S, Jung J, Lee I, Jung D, Youn H, Choi K. Thyroid disruption by triphenyl phosphate, an organophosphate flame retardant, in zebrafish (Danio rerio) embryos/larvae, and in GH3 and FRTL-5 cell lines. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 160:188-96. [PMID: 25646720 DOI: 10.1016/j.aquatox.2015.01.016] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 05/03/2023]
Abstract
Triphenyl phosphate (TPP), one of the most widely used organophosphate flame retardants (OPFRs), has frequently been detected in the environment and biota. However, knowledge of its toxicological effects is limited. The present study was conducted to determine the adverse effects of TPP on the thyroid endocrine system of embryonic/larval zebrafish, and the underlying mechanisms for these effects were studied using rat pituitary (GH3) and thyroid follicular (FRTL-5) cell lines. In the GH3 cells, TPP up-regulated the expression of the tshβ, trα, and trβ genes, while T3, a positive control, down-regulated the expression of these genes. In the FRTL-5 cells, the expression of the nis and tpo genes was significantly up-regulated, suggesting that TPP stimulates thyroid hormone synthesis in the thyroid gland. In zebrafish larvae at 7 days post-fertilization (dpf), TPP exposure led to significant increases in both T3 and T4 concentrations and expression of the genes involved in thyroid hormone synthesis. Exposure to TPP also significantly up-regulated the expression of the genes related to the metabolism (dio1), transport (ttr), and elimination (ugt1ab) of thyroid hormones. The down-regulation of the crh and tshβ genes in the zebrafish larvae suggests the activation of a central regulatory feedback mechanism induced by the increased T3 levels in vivo. Taken together, our observations show that TPP could increase the thyroid hormone concentrations in the early life stages of zebrafish by disrupting the central regulation and hormone synthesis pathways.
Collapse
Affiliation(s)
- Sujin Kim
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Joeun Jung
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Inae Lee
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Dawoon Jung
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyewon Youn
- Department of Nuclear Medicine, Cancer Imaging Center, Seoul National University Hospital, 110-744, Republic of Korea; Tumor Microenvironment Global Core Research Center, Cancer Research Institute, College of Medicine, Seoul National University, 110-799, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
46
|
Darras VM, Houbrechts AM, Van Herck SL. Intracellular thyroid hormone metabolism as a local regulator of nuclear thyroid hormone receptor-mediated impact on vertebrate development. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:130-41. [DOI: 10.1016/j.bbagrm.2014.05.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/17/2014] [Accepted: 05/07/2014] [Indexed: 01/13/2023]
|
47
|
Jarque S, Piña B. Deiodinases and thyroid metabolism disruption in teleost fish. ENVIRONMENTAL RESEARCH 2014; 135:361-375. [PMID: 25462686 DOI: 10.1016/j.envres.2014.09.022] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/09/2014] [Accepted: 09/26/2014] [Indexed: 06/04/2023]
Abstract
Many xenobiotic compounds with endocrine disrupting activity have been described since the late eighties. These compounds are able to interact with natural hormone systems and potentially induce deleterious effects in wildlife, notably piscine species. However, while the characterization of endocrine disruptors with "dioxin-like", estrogenic or androgenic activities is relatively well established, little is known about environmentally relevant pollutants that may act at thyroid system level. Iodothyronine deiodinases, the key enzymes in the activation and inactivation of thyroid hormones, have been suggested as suitable biomarkers for thyroid metabolism disruption. The present article reviews the biotic and abiotic factors that are able to modulate deiodinases in teleosts, a representative model organism for vertebrates. Data show that deiodinases are highly sensitive to several physiological and physical variables, so they should be taken into account to establish natural basal deiodination patterns to further understand responses under chemical exposure. Among xenobiotic compounds, brominated flame retardants are postulated as chemicals of major concern because of their similar structure shared with thyroid hormones. More ambiguous results are shown for the rest of compounds, i.e. polychlorinated biphenyls, perfluorinated chemicals, pesticides, metals and synthetic drugs, in part due to the limited information available. The different mechanisms of action still remain unknown for most of those compounds, although several hypothesis based on observed effects are discussed. Future tasks are also suggested with the aim of moving forward in the full characterization of chemical compounds with thyroid disrupting activity.
Collapse
Affiliation(s)
- Sergio Jarque
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5/753, CZ62500 Brno, Czech Republic.
| | - Benjamin Piña
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Jordi Girona, 18, 08034 Barcelona, Spain.
| |
Collapse
|
48
|
Saravanan M, Hur JH, Arul N, Ramesh M. Toxicological effects of clofibric acid and diclofenac on plasma thyroid hormones of an Indian major carp, Cirrhinus mrigala during short and long-term exposures. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:948-958. [PMID: 25461555 DOI: 10.1016/j.etap.2014.10.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/16/2014] [Accepted: 10/18/2014] [Indexed: 06/04/2023]
Abstract
In the present investigation, the toxicity of most commonly detected pharmaceuticals in the aquatic environment namely clofibric acid (CA) and diclofenac (DCF) was investigated in an Indian major carp Cirrhinus mrigala. Fingerlings of C. mrigala were exposed to different concentrations (1, 10 and 100μgL(-1)) of CA and DCF for a period of 96h (short term) and 35 days (long term). The toxic effects of CA and DCF on thyroid hormones (THs) such as thyroid stimulating hormone (TSH), thyroxine (T4) and triiodothyronine (T3) levels were evaluated. During the short and long-term exposure period TSH level was found to be decreased at all concentrations of CA (except at the end of 14(th) day in 1 and 10μgL(-l) and 21(st) day in 1μgL(-l)) whereas in DCF exposed fish TSH level was found to be increased when compared to control groups. T4 level was found to be decreased at 1 and 100μgL(-l) of CA exposure at the end of 96h. However, T4 level was decreased at all concentrations of CA and DCF during long-term (35 days) exposure period. Fish exposed to all concentrations of CA and DCF had lower level of T3 in both the treatments. These results suggest that both CA and DCF drugs induced significant changes (P<0.01 and P<0.05) on thyroid hormonal levels of C. mrigala. The alterations of these hormonal levels can be used as potential biomarkers in monitoring of pharmaceutical drugs in aquatic organisms.
Collapse
Affiliation(s)
- Manoharan Saravanan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India; Bio-Regulatory Chemistry Lab, Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Jang-Hyun Hur
- Bio-Regulatory Chemistry Lab, Department of Biological Environment, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Narayanasamy Arul
- Department of Life Science, Research Center for Cell Homeostasis, Ewha Womens University, Seoul 120-750, Republic of Korea
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| |
Collapse
|
49
|
Guo C, Chen X, Song H, Maynard MA, Zhou Y, Lobanov AV, Gladyshev VN, Ganis JJ, Wiley D, Jugo RH, Lee NY, Castroneves LA, Zon LI, Scanlan TS, Feldman HA, Huang SA. Intrinsic expression of a multiexon type 3 deiodinase gene controls zebrafish embryo size. Endocrinology 2014; 155:4069-80. [PMID: 25004091 PMCID: PMC4164935 DOI: 10.1210/en.2013-2029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone is a master regulator of differentiation and growth, and its action is terminated by the enzymatic removal of an inner-ring iodine catalyzed by the selenoenzyme type 3 deiodinase (dio3). Our studies of the zebrafish reveal that the dio3 gene is duplicated in this species and that embryonic deiodination is an important determinant of embryo size. Although both dio3 paralogs encode enzymatically active proteins with high affinity for thyroid hormones, their anatomic patterns of expression are markedly divergent and only embryos with knockdown of dio3b, a biallelically expressed selenoenzyme expressed in the developing central nervous system, manifest severe thyroid hormone-dependent growth restriction at 72 hours post fertilization. This indicates that the embryonic deficiency of dio3, once considered only a placental enzyme, causes microsomia independently of placental physiology and raises the intriguing possibility that fetal abnormalities in human deiodination may present as intrauterine growth retardation. By mapping the gene structures and enzymatic properties of all four zebrafish deiodinases, we also identify dio3b as the first multiexon dio3 gene, containing a large intron separating its open reading frame from its selenocysteine insertion sequence (SECIS) element.
Collapse
Affiliation(s)
- Cuicui Guo
- State Key Laboratory of Medical Genomics (C.G., X.C., H.S.), Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025 China; Thyroid Program of the Division of Endocrinology (C.G., X.C., H.S., M.A.M., R.H.J., N.Y.L., L.A.C., S.A.H.) and Clinical Research Center (H.A.F.), Boston Children's Hospital; Stem Cell Program and Division of Hematology/Oncology (Y.Z., J.J.G., D.W., L.I.Z.), Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, and Howard Hughes Medical Institute; Department of Medicine (A.V.L., V.N.G., S.A.H.), Brigham and Women's Hospital; Dana Farber Cancer Institute (V.N.G., L.I.Z., S.A.H.), Boston, Massachusetts 02115; and Departments of Physiology and Pharmacology (T.S.S.), Oregon Health and Science University, Portland, Oregon 97239
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zada D, Tovin A, Lerer-Goldshtein T, Vatine GD, Appelbaum L. Altered behavioral performance and live imaging of circuit-specific neural deficiencies in a zebrafish model for psychomotor retardation. PLoS Genet 2014; 10:e1004615. [PMID: 25255244 PMCID: PMC4177677 DOI: 10.1371/journal.pgen.1004615] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 07/18/2014] [Indexed: 11/28/2022] Open
Abstract
The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS) is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH) parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2) gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8−/−) zebrafish using zinc-finger nuclease (ZFN)-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8−/− larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8−/− larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8−/− larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8−/− larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit assembly, ultimately mediating sensory and motor control of behavioral performance. We also propose that the administration of TH analogs early during embryo development can specifically reduce neurological damage in AHDS patients. In a wide range of brain disorders, mutations in specific genes cause alterations in the development and function of neural circuits that ultimately affect behavior. A major challenge is to uncover the mechanism and provide treatment which is capable of preventing brain damage. Allan-Herndon-Dudley syndrome (AHDS) is a severe psychomotor retardation characterized by intellectual disabilities, neurological impairment and abnormal thyroid hormone (TH) levels. Mutations in the TH transporter MCT8 are associated with AHDS. Mice that lack the MCT8 protein exhibited impaired TH levels, as is the case in human patients; however, they lack neurological defects. Here, we generated an mct8 mutant (mct8−/−) zebrafish, which exhibited neurological and behavioral deficiencies and mimics pathological conditions of AHDS patients. The zebrafish is a simple transparent vertebrate and its nervous system is conserved with mammals. Time-lapse live imaging of single axons and synapses, and video-tracking of behavior revealed deficiencies in neural circuit assembly, which are associated with disturbed sleep and altered locomotor activity. In addition, since the mct8−/− larvae provides a highthroughput platform for testing therapeutic drugs, we showed that TH analogs can recover neurological deficiencies in an animal model for psychomotor retardation.
Collapse
Affiliation(s)
- David Zada
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Adi Tovin
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Lerer-Goldshtein
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Gad David Vatine
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Lior Appelbaum
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| |
Collapse
|