1
|
Herzberg MP, Nielsen AN, Luby J, Sylvester CM. Measuring neuroplasticity in human development: the potential to inform the type and timing of mental health interventions. Neuropsychopharmacology 2024; 50:124-136. [PMID: 39103496 PMCID: PMC11525577 DOI: 10.1038/s41386-024-01947-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/17/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024]
Abstract
Neuroplasticity during sensitive periods, the molecular and cellular process of enduring neural change in response to external stimuli during windows of high environmental sensitivity, is crucial for adaptation to expected environments and has implications for psychiatry. Animal research has characterized the developmental sequence and neurobiological mechanisms that govern neuroplasticity, yet gaps in our ability to measure neuroplasticity in humans limit the clinical translation of these principles. Here, we present a roadmap for the development and validation of neuroimaging and electrophysiology measures that index neuroplasticity to begin to address these gaps. We argue that validation of measures to track neuroplasticity in humans will elucidate the etiology of mental illness and inform the type and timing of mental health interventions to optimize effectiveness. We outline criteria for evaluating putative neuroimaging measures of plasticity in humans including links to neurobiological mechanisms shown to govern plasticity in animal models, developmental change that reflects heightened early life plasticity, and prediction of neural and/or behavior change. These criteria are applied to three putative measures of neuroplasticity using electroencephalography (gamma oscillations, aperiodic exponent of power/frequency) or functional magnetic resonance imaging (amplitude of low frequency fluctuations). We discuss the use of these markers in psychiatry, envision future uses for clinical and developmental translation, and suggest steps to address the limitations of the current putative neuroimaging measures of plasticity. With additional work, we expect these markers will significantly impact mental health and be used to characterize mechanisms, devise new interventions, and optimize developmental trajectories to reduce psychopathology risk.
Collapse
Affiliation(s)
- Max P Herzberg
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA.
| | - Ashley N Nielsen
- Department of Neurology, Washington University in St. Louis, St. Louis, MO, USA.
| | - Joan Luby
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Chu L, Zeng D, He Y, Dong X, Li Q, Liao X, Zhao T, Chen X, Lei T, Men W, Wang Y, Wang D, Hu M, Pan Z, Tan S, Gao JH, Qin S, Tao S, Dong Q, He Y, Li S. Segregation of the regional radiomics similarity network exhibited an increase from late childhood to early adolescence: A developmental investigation. Neuroimage 2024; 302:120893. [PMID: 39426642 DOI: 10.1016/j.neuroimage.2024.120893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024] Open
Abstract
Brain development is characterized by an increase in structural and functional segregation, which supports the specialization of cognitive processes within the context of network neuroscience. In this study, we investigated age-related changes in morphological segregation using individual Regional Radiomics Similarity Networks (R2SNs) constructed with a longitudinal dataset of 494 T1-weighted MR scans from 309 typically developing children aged 6.2 to 13 years at baseline. Segertation indices were defined as the relative difference in connectivity strengths within and between modules and cacluated at the global, system and local levels. Linear mixed-effect models revealed longitudinal increases in both global and system segregation indices, particularly within the limbic and dorsal attention network, and decreases within the ventral attention network. Superior performance in working memory and inhibitory control was associated with higher system-level segregation indices in default, frontoparietal, ventral attention, somatomotor and subcortical systems, and lower local segregation indices in visual network regions, regardless of age. Furthermore, gene enrichment analysis revealed correlations between age-related changes in local segregation indices and regional expression levels of genes related to developmental processes. These findings provide novel insights into typical brain developmental changes using R2SN-derived segregation indices, offering a valuable tool for understanding human brain structural and cognitive maturation.
Collapse
Affiliation(s)
- Lei Chu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing 100083, China
| | - Debin Zeng
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science & Medical Engineering, Beihang University, Beijing 100083, China
| | - Yirong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Xiaoxi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Qiongling Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xiaodan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tianyuan Lei
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Weiwei Men
- Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China; Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China
| | - Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Daoyang Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Zhejiang Philosophy and Social Science Laboratory for Research in Early Development and Childcare, Hangzhou Normal University, Hangzhou 311121, China
| | - Mingming Hu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Zhiying Pan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Shuping Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing 100096, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Beijing City Key Laboratory for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing 100871, China; IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Shuyu Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
3
|
Overholtzer LN, Torgerson C, Morrel J, Ahmadi H, Tyszka JM, Herting MM. Amygdala Subregion Volumes and Apportionment in Preadolescents - Associations with Age, Sex, and Body Mass Index. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617048. [PMID: 39416063 PMCID: PMC11482789 DOI: 10.1101/2024.10.07.617048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Importance The amygdala, a key limbic structure, plays a critical role in emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. Objective To characterize the associations between developmental variables and amygdala subregion volumes during preadolescence. Design Setting and Participants Cross-sectional Adolescent Brain Cognitive Development (ABCD®) Study data was collected from 3,953 9- and 10-year-old children between September 1, 2016, and October 15, 2018. Data analysis was conducted between June 1, 2023, and July 30, 2024. Main Outcomes and Measures Using the CIT168 Amygdala Atlas, nine amygdala subregion volumes were quantified from high-quality MRI scans. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Results The study population consisted of 3,953 preadolescents (mean [SD] age, 120 [7.41] months; 1,763 [44.6%] female; 57 [1.4%] Asian, 527 [13.3%] Black, 740 [18.7%] Hispanic, 2,279 [57.7%] white, and 350 [8.9%] from other racial/ethnic groups [identified by parents as American Indian/Native American, Alaska Native, Native Hawaiian, Guamanian, Samoan, other Pacific Islander, or other race]). Distinct associations were observed between age, sex, and BMIz and whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in dorsal amygdala subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large laterobasal subregions, with increased relative apportionment in smaller subregions. Conclusions and Relevance This cross-sectional study suggests that age, but not pubertal stage, is associated with near-global expansion of the amygdala at ages 9 and 10, while sex and BMIz are linked to distinct changes in amygdala subregions that explain observed differences in total volumes. These findings provide a foundational context for understanding how developmental variables influence amygdala structure in preadolescents, with implications for understanding future risk for brain disorders.
Collapse
Affiliation(s)
- L. Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
- USC-Caltech MD-PhD Program, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carinna Torgerson
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - J. Michael Tyszka
- Caltech Brain Imaging Center, California Institute of Technology, Pasadena, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
4
|
Manelis A, Miceli R, Satz S, Suss SJ, Hu H, Versace A. The Development of Ambiguity Processing Is Explained by an Inverted U-Shaped Curve. Behav Sci (Basel) 2024; 14:826. [PMID: 39336041 PMCID: PMC11429131 DOI: 10.3390/bs14090826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Understanding the developmental trajectories for recognizing facial expressions is important for a better understanding of development of psychiatric disorders. In this study, we examined the recognition of emotional and neutral facial expressions in 93 typically developing adolescents and adults. The Emotion Intensity Rating task required participants to rate the intensity of emotional expression in happy, neutral, and sad faces on a scale from 1 to 9. A score of '5' had to be assigned to neutral faces, scores between '6' (slightly happy) and '9' (very happy) to happy faces, and scores between '4' (slightly sad) and '1' (very sad) to sad faces. Mixed effects models were used to examine the effects of age and emotion on recognition accuracy, reaction time (RT), and emotional intensity. Participants tended to misjudge neutral faces as sad. Adolescents were less accurate than adults for neutral face recognition. There were significant quadratic effects of age on accuracy (negative quadratic effect) and RT (positive quadratic effect). The most accurate and fastest performance was observed in 25- to 35-year-old subjects. This trajectory may be associated with prefrontal cortex maturation, which provides top-down control over the heightened amygdala response to ambiguity that may be misinterpreted as emotional content.
Collapse
Affiliation(s)
- Anna Manelis
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Rachel Miceli
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Skye Satz
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Stephen J Suss
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hang Hu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Radiology, Magnetic Resonance Research Center, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
5
|
Teymornejad S, Majka P, Worthy KH, Atapour N, Rosa MGP. Bilateral connections from the amygdala to extrastriate visual cortex in the marmoset monkey. Cereb Cortex 2024; 34:bhae348. [PMID: 39227312 DOI: 10.1093/cercor/bhae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 09/05/2024] Open
Abstract
It is known that the primate amygdala forms projections to many areas of the ipsilateral cortex, but the extent to which it forms connections with the contralateral visual cortex remains less understood. Based on retrograde tracer injections in marmoset monkeys, we report that the amygdala forms widespread projections to the ipsilateral extrastriate cortex, including V1 and areas in both the dorsal (MT, V4T, V3a, 19M, and PG/PFG) and the ventral (VLP and TEO) streams. In addition, contralateral projections were found to target each of the extrastriate areas, but not V1. In both hemispheres, the tracer-labeled neurons were exclusively located in the basolateral nuclear complex. The number of labeled neurons in the contralateral amygdala was small relative to the ipsilateral connection (1.2% to 5.8%). The percentage of contralateral connections increased progressively with hierarchical level. An injection in the corpus callosum demonstrated that at least some of the amygdalo-cortical connections cross through this fiber tract, in addition to the previously documented path through the anterior commissure. Our results expand knowledge of the amygdalofugal projections to the extrastriate cortex, while also revealing pathways through which visual stimuli conveying affective content can directly influence early stages of neural processing in the contralateral visual field.
Collapse
Affiliation(s)
- Sadaf Teymornejad
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia
| | - Piotr Majka
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Katrina H Worthy
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia
| | - Nafiseh Atapour
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia
| | - Marcello G P Rosa
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, 26 Innovation Walk, Clayton, Melbourne, VIC 3800, Australia
| |
Collapse
|
6
|
Sibilia F, Jost-Mousseau C, Banaschewski T, Barker GJ, Büchel C, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Ittermann B, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Poustka L, Millenet S, Fröhner JH, Smolka MN, Walter H, Whelan R, Schumann G, Bokde AL. The relationship between negative life events and cortical structural connectivity in adolescents. IBRO Neurosci Rep 2024; 16:201-210. [PMID: 38348392 PMCID: PMC10859284 DOI: 10.1016/j.ibneur.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/27/2024] [Indexed: 02/15/2024] Open
Abstract
Adolescence is a crucial period for physical and psychological development. The impact of negative life events represents a risk factor for the onset of neuropsychiatric disorders. This study aims to investigate the relationship between negative life events and structural brain connectivity, considering both graph theory and connectivity strength. A group (n = 487) of adolescents from the IMAGEN Consortium was divided into Low and High Stress groups. Brain networks were extracted at an individual level, based on morphological similarity between grey matter regions with regions defined using an atlas-based region of interest (ROI) approach. Between-group comparisons were performed with global and local graph theory measures in a range of sparsity levels. The analysis was also performed in a larger sample of adolescents (n = 976) to examine linear correlations between stress level and network measures. Connectivity strength differences were investigated with network-based statistics. Negative life events were not found to be a factor influencing global network measures at any sparsity level. At local network level, between-group differences were found in centrality measures of the left somato-motor network (a decrease of betweenness centrality was seen at sparsity 5%), of the bilateral central visual and the left dorsal attention network (increase of degree at sparsity 10% at sparsity 30% respectively). Network-based statistics analysis showed an increase in connectivity strength in the High stress group in edges connecting the dorsal attention, limbic and salience networks. This study suggests negative life events alone do not alter structural connectivity globally, but they are associated to connectivity properties in areas involved in emotion and attention.
Collapse
Affiliation(s)
- Francesca Sibilia
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Coline Jost-Mousseau
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Paris Institute of Technology for Life, Food and Environmental Sciences, Paris, France
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J. Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Christian Büchel
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
| | - Sylvane Desrivières
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Herta Flor
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Charité – Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
| | - Bernd Ittermann
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Saclay, University Paris Descartes – Sorbonne Paris Cité; and Maison de Solenn, Paris, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Saclay, University Paris Descartes; and AP-HP.Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Psychiatry Department 91G16, Orsay Hospital, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
| | | | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Juliane H. Fröhner
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Michael N. Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Henrik Walter
- Charité – Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
| | - Arun L.W. Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - IMAGEN Consortium
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Paris Institute of Technology for Life, Food and Environmental Sciences, Paris, France
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- University Medical Centre Hamburg-Eppendorf, House W34, 3.OG, Martinistr. 52, 20246, Hamburg, Germany
- Medical Research Council - Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, United Kingdom
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, VT, USA
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
- Charité – Universitätsmedizin Berlin, Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charitéplatz 1, Berlin, Germany
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Saclay, University Paris Descartes – Sorbonne Paris Cité; and Maison de Solenn, Paris, France
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Saclay, University Paris Descartes; and AP-HP.Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
- Institut National de la Santé et de la Recherche Médicale, INSERM Unit 1000 “Neuroimaging & Psychiatry”, University Paris Sud, University Paris Descartes - Sorbonne Paris Cité; and Psychiatry Department 91G16, Orsay Hospital, France
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, von-Siebold-Str. 5, 37075, Göttingen, Germany
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| |
Collapse
|
7
|
Sequeira SL, Silk JS, Jones NP, Forbes EE, Hanson JL, Hallion LS, Ladouceur CD. Pathways to adolescent social anxiety: Testing interactions between neural social reward function and perceived social threat in daily life. Dev Psychopathol 2024:1-16. [PMID: 38801123 DOI: 10.1017/s0954579424001068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Recent theories suggest that for youth highly sensitive to incentives, perceiving more social threat may contribute to social anxiety (SA) symptoms. In 129 girls (ages 11-13) oversampled for shy/fearful temperament, we thus examined how interactions between neural responses to social reward (vs. neutral) cues (measured during anticipation of peer feedback) and perceived social threat in daily peer interactions (measured using ecological momentary assessment) predict SA symptoms two years later. No significant interactions emerged when neural reward function was modeled as a latent factor. Secondary analyses showed that higher perceived social threat was associated with more severe SA symptoms two years later only for girls with higher basolateral amygdala (BLA) activation to social reward cues at baseline. Interaction effects were specific to BLA activation to social reward (not threat) cues, though a main effect of BLA activation to social threat (vs. neutral) cues on SA emerged. Unexpectedly, interactions between social threat and BLA activation to social reward cues also predicted generalized anxiety and depression symptoms two years later, suggesting possible transdiagnostic risk pathways. Perceiving high social threat may be particularly detrimental for youth highly sensitive to reward incentives, potentially due to mediating reward learning processes, though this remains to be tested.
Collapse
Affiliation(s)
| | - Jennifer S Silk
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil P Jones
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erika E Forbes
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jamie L Hanson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lauren S Hallion
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | | |
Collapse
|
8
|
Bohnsack JP, Zhang H, Pandey SC. EZH2-dependent epigenetic reprogramming in the central nucleus of amygdala regulates adult anxiety in both sexes after adolescent alcohol exposure. Transl Psychiatry 2024; 14:197. [PMID: 38670959 PMCID: PMC11053082 DOI: 10.1038/s41398-024-02906-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Alcohol use and anxiety disorders occur in both males and females, but despite sharing similar presentation and classical symptoms, the prevalence of alcohol use disorder (AUD) is lower in females. While anxiety is a symptom and comorbidity shared by both sexes, the common underlying mechanism that leads to AUD and the subsequent development of anxiety is still understudied. Using a rodent model of adolescent intermittent ethanol (AIE) exposure in both sexes, we investigated the epigenetic mechanism mediated by enhancer of zeste 2 (EZH2), a histone methyltransferase, in regulating both the expression of activity-regulated cytoskeleton-associated protein (Arc) and an anxiety-like phenotype in adulthood. Here, we report that EZH2 protein levels were significantly higher in PKC-δ positive GABAergic neurons in the central nucleus of amygdala (CeA) of adult male and female rats after AIE. Reducing protein and mRNA levels of EZH2 using siRNA infusion in the CeA prevented AIE-induced anxiety-like behavior, increased H3K27me3, decreased H3K27ac at the Arc synaptic activity response element (SARE) site, and restored deficits in Arc mRNA and protein expression in both male and female adult rats. Our data indicate that an EZH2-mediated epigenetic mechanism in the CeA plays an important role in regulating anxiety-like behavior and Arc expression after AIE in both male and female rats in adulthood. This study suggests that EZH2 may serve as a tractable drug target for the treatment of adult psychopathology after adolescent alcohol exposure.
Collapse
Affiliation(s)
- John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois Chicago, Chicago, IL, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL, 60612, USA.
- Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
9
|
Nusslock R, Alloy LB, Brody GH, Miller GE. Annual Research Review: Neuroimmune network model of depression: a developmental perspective. J Child Psychol Psychiatry 2024; 65:538-567. [PMID: 38426610 PMCID: PMC11090270 DOI: 10.1111/jcpp.13961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 03/02/2024]
Abstract
Depression is a serious public health problem, and adolescence is an 'age of risk' for the onset of Major Depressive Disorder. Recently, we and others have proposed neuroimmune network models that highlight bidirectional communication between the brain and the immune system in both mental and physical health, including depression. These models draw on research indicating that the cellular actors (particularly monocytes) and signaling molecules (particularly cytokines) that orchestrate inflammation in the periphery can directly modulate the structure and function of the brain. In the brain, inflammatory activity heightens sensitivity to threats in the cortico-amygdala circuit, lowers sensitivity to rewards in the cortico-striatal circuit, and alters executive control and emotion regulation in the prefrontal cortex. When dysregulated, and particularly under conditions of chronic stress, inflammation can generate feelings of dysphoria, distress, and anhedonia. This is proposed to initiate unhealthy, self-medicating behaviors (e.g. substance use, poor diet) to manage the dysphoria, which further heighten inflammation. Over time, dysregulation in these brain circuits and the inflammatory response may compound each other to form a positive feedback loop, whereby dysregulation in one organ system exacerbates the other. We and others suggest that this neuroimmune dysregulation is a dynamic joint vulnerability for depression, particularly during adolescence. We have three goals for the present paper. First, we extend neuroimmune network models of mental and physical health to generate a developmental framework of risk for the onset of depression during adolescence. Second, we examine how a neuroimmune network perspective can help explain the high rates of comorbidity between depression and other psychiatric disorders across development, and multimorbidity between depression and stress-related medical illnesses. Finally, we consider how identifying neuroimmune pathways to depression can facilitate a 'next generation' of behavioral and biological interventions that target neuroimmune signaling to treat, and ideally prevent, depression in youth and adolescents.
Collapse
Affiliation(s)
- Robin Nusslock
- Department of Psychology, Northwestern University, Evanston IL, USA
- Institute for Policy Research, Northwestern University, Evanston IL, USA
| | - Lauren B. Alloy
- Department of Psychology and Neuroscience, Temple University, Philadelphia, PA. USA
| | - Gene H. Brody
- Center for Family Research, University of Georgia, Athens GA, USA
| | - Gregory E. Miller
- Department of Psychology, Northwestern University, Evanston IL, USA
- Institute for Policy Research, Northwestern University, Evanston IL, USA
| |
Collapse
|
10
|
Alderman PJ, Saxon D, Torrijos-Saiz LI, Sharief M, Page CE, Baroudi JK, Biagiotti SW, Butyrkin VA, Melamed A, Kuo CT, Vicini S, García-Verdugo JM, Herranz-Pérez V, Corbin JG, Sorrells SF. Delayed maturation and migration of excitatory neurons in the juvenile mouse paralaminar amygdala. Neuron 2024; 112:574-592.e10. [PMID: 38086370 PMCID: PMC10922384 DOI: 10.1016/j.neuron.2023.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 05/05/2023] [Accepted: 11/09/2023] [Indexed: 02/12/2024]
Abstract
The human amygdala paralaminar nucleus (PL) contains many immature excitatory neurons that undergo prolonged maturation from birth to adulthood. We describe a previously unidentified homologous PL region in mice that contains immature excitatory neurons and has previously been considered part of the amygdala intercalated cell clusters or ventral endopiriform cortex. Mouse PL neurons are born embryonically, not from postnatal neurogenesis, despite a subset retaining immature molecular and morphological features in adults. During juvenile-adolescent ages (P21-P35), the majority of PL neurons undergo molecular, structural, and physiological maturation, and a subset of excitatory PL neurons migrate into the adjacent endopiriform cortex. Alongside these changes, PL neurons develop responses to aversive and appetitive olfactory stimuli. The presence of this homologous region in both humans and mice points to the significance of this conserved mechanism of neuronal maturation and migration during adolescence, a key time period for amygdala circuit maturation and related behavioral changes.
Collapse
Affiliation(s)
- Pia J Alderman
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - David Saxon
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA; Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Lucía I Torrijos-Saiz
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain
| | - Malaz Sharief
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chloe E Page
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jude K Baroudi
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Sean W Biagiotti
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Vladimir A Butyrkin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Anna Melamed
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Chay T Kuo
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC 20007, USA; Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Jose M García-Verdugo
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain; Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot 46100, Spain
| | - Vicente Herranz-Pérez
- Laboratory of Comparative Neurobiology, Cavanilles Institute of Biodiversity and Comparative Neurobiology, University of Valencia, CIBERNED-ISCIII, Valencia 46980, Spain; Department of Cell Biology, Functional Biology and Physical Anthropology, University of Valencia, Burjassot 46100, Spain
| | - Joshua G Corbin
- Center for Neuroscience Research, Children's Research Institute, Children's National Hospital, Washington, DC 20011, USA
| | - Shawn F Sorrells
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA 15260, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
11
|
Kwon SJ, Prinstein MJ, Lindquist KA, Telzer EH. Friendship changes differentially predict neural correlates of decision-making for friends across adolescence. Dev Cogn Neurosci 2024; 65:101342. [PMID: 38219708 PMCID: PMC10825619 DOI: 10.1016/j.dcn.2024.101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024] Open
Abstract
Adolescents' peer world is highly dynamic with constant dissolution of old friendships and formation of new ones. Though many of adolescents' risky decisions involve their peers, little is known about how adolescents' ever-changing friendships shape their ability to make these peer-involving risky decisions, particularly adaptive ones, and whether this association shifts over time. In a 5-wave longitudinal fMRI study, 173 adolescents (at wave 1: Mage = 12.8, SDage = 0.52; range = 11.9-14.5) made risky choices to win money for their best friend. We assessed whether participants nominated the same or different best friend as their previous participation year (a total of 340 data points of friendship maintenance / change). In early adolescence, adolescents with the same best friend took more adaptive risks for that best friend than those with a different best friend. In late adolescence, however, adolescents with a different best friend took more adaptive risks for the new best friend than those with the same best friend. Further, the amygdala was differentially sensitive to friendship maintenance / change during these peer-involving adaptive risks across time. This study has implications for how stable and flexible peer landscapes differentially modulate social motivation and social decision-making over the course of adolescence.
Collapse
Affiliation(s)
- Seh-Joo Kwon
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC, USA
| | - Mitchell J Prinstein
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC, USA
| | - Kristen A Lindquist
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC, USA
| | - Eva H Telzer
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, 235 E. Cameron Avenue, Chapel Hill, NC, USA.
| |
Collapse
|
12
|
Collet S, Bhaduri S, Kiyar M, Van Den Eynde T, Guillamon A, T'Sjoen G, Mueller SC. Testosterone administration affects 1H-MRS metabolite spectra in transgender men. Psychoneuroendocrinology 2023; 156:106337. [PMID: 37536143 DOI: 10.1016/j.psyneuen.2023.106337] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Recently, a variety of studies using different neuroimaging techniques attempted to identify the existence of a brain endophenotype in people with gender dysphoria (GD). However, despite mounting neuroimaging work, brain gender differences and effects of gender-affirming hormone therapy (GAHT) at the metabolite level remain understudied. METHODS Thirty-one transgender men (TM) before and after testosterone administration (7.7 months ± 3.5 months), relative to 30 cisgender men (CM) and 35 cisgender women (CW) underwent magnetic resonance spectroscopy (1H-MRS) at two time points. Two brain regions were assessed, i.e. the lateral parietal cortex and the amygdala/anterior hippocampus. Associated metabolites that were measured include N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), glutamate and glutamine (Glx), myo-inositol (mI), glycine (Gly) and their respective ratios. RESULTS A critical time by group interaction revealed an effect of GAHT in the lateral parietal cortex of TM. MI+Gly/Cr ratios decreased upon initiation of GAHT. In addition, NAA/Cr and Cho/Cr ratios were lower in CW when compared to CM in the lateral parietal cortex. Glx levels and Glx/Cr ratios in TM differed from those in CW in the amygdala/anterior hippocampus. Interestingly, pubertal age of onset of gender dysphoria (i.e. GD) in TM differentially affected testosterone-mediated effects on Cr concentration and NAA/Cr ratios when compared to childhood and adult GD onset in the amygdala/anterior hippocampus. CONCLUSION This 1H-MRS study demonstrated that testosterone administration shifts mI+Gly/Cr ratios in the parietal cortex. In the amygdala/anterior hippocampus, modulation of metabolite concentrations by age of onset of GD is suggestive for a possible developmental trend.
Collapse
Affiliation(s)
- Sarah Collet
- Department of Endocrinology, Ghent University Hospital, Ghent, Belgium.
| | - Sourav Bhaduri
- Symbiosis Centre for Medical Image Analysis, Symbiosis International (Deemed University), Pune, India
| | - Meltem Kiyar
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| | | | - Antonio Guillamon
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia, Madrid, Spain
| | - Guy T'Sjoen
- Department of Endocrinology, Center for Sexology and Gender, Ghent University Hospital, Ghent, Belgium
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Belgium
| |
Collapse
|
13
|
Tymofiyeva O, Reeves KW, Shaw C, Lopez E, Aziz S, Max JE, Yang TT. A Systematic Review of MRI Studies and the "Emotional paiN and social Disconnect (END)" Brain Model of Suicidal Behavior in Youth. Behav Neurol 2023; 2023:7254574. [PMID: 37786433 PMCID: PMC10541999 DOI: 10.1155/2023/7254574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 08/03/2023] [Accepted: 09/02/2023] [Indexed: 10/04/2023] Open
Abstract
Introduction Risk of suicidal ideation and suicidal behaviors greatly increases during adolescence, and rates have risen dramatically over the past two decades. However, few risk factors or biomarkers predictive of suicidal ideation or attempted suicide have been identified in adolescents. Neuroimaging correlates hold potential for early identification of adolescents at increased risk of suicidality and risk stratification for those at high risk of suicide attempt. Methods In this systematic review, we evaluated neural regions and networks associated with suicidal ideation and suicide attempt in adolescents derived from magnetic resonance imaging (MRI) studies. A total of 28 articles were included in this review. Results After descriptively synthesizing the literature, we propose the Emotional paiN and social Disconnect (END) model of adolescent suicidality and present two key neural circuits: (1) the emotional/mental pain circuit and (2) the social disconnect/distortion circuit. In the END model, the emotional pain circuit-consisting of the cerebellum, amygdala, and hippocampus-shows similar aberrations in adolescents with suicidal ideation as in those with a history of a suicide attempt (but to a smaller degree). The social disconnect circuit is unique to adolescent suicide attempters and includes the lateral orbitofrontal cortex (OFC), the temporal gyri, and the connections between them. Conclusion Our proposed END brain model of suicidal behavior in youth, if confirmed by future prospective studies, can have implications for clinical goals of early detection, risk stratification, and intervention development. Treatments that target emotional pain and social disconnect may be ideal interventions for reducing suicidality in adolescents.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Katherine W. Reeves
- Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, CA, USA
| | - Chace Shaw
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Eric Lopez
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Sepehr Aziz
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| | - Jeffrey E. Max
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Tony T. Yang
- Department of Psychiatry and Behavioral Sciences, The Langley Porter Psychiatric Institute, Division of Child and Adolescent Psychiatry, Weill Institute for Neurosciences, University of California, San Francisco, CA, USA
| |
Collapse
|
14
|
Li Y, Zhou Z, Zhang Y, Ai H, Liu M, Liu J, Wang L, Qiu J, Rachel Han Z, Zhang Z, Luo YJ, Xu P. Brain development mediates the relationship between self-reported poor parental monitoring and adolescent anxiety. Neuroimage Clin 2023; 40:103514. [PMID: 37778196 PMCID: PMC10542017 DOI: 10.1016/j.nicl.2023.103514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Adolescence is the peak period for the onset of generalized anxiety disorder (GAD). Brain networks of cognitive and affective control in adolescents are not well developed when their exposure to external stimuli suddenly increases.Reasonable parental monitoring is especially important during this period.To examine the role of parental monitoring in the development of functional brain networks of GAD, we conducted a cross-validation-based predictive study based on the functional brain networks of 192 participants. We found that a set of functional brain networks, especially the default mode network and its connectivity with the frontoparietal network, could predict the ages of adolescents, which was replicated in three independent samples.Importantly, the difference between predicted age and chronological age significantly mediated the relationship between parental monitoring and anxiety levels. These findings suggest that inadequate parental monitoring plays a crucial role in the delayed development of specific brain networks associated with GAD in adolescents. Our work highlights the important role of parental monitoring in adolescent development.
Collapse
Affiliation(s)
- Yiman Li
- School of Psychology, Shenzhen University, Shenzhen, China; Institute for Neuropsychological Rehabilitation, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zheyi Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Yuqi Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Hui Ai
- Institute of Applied Psychology, Tianjin University, Tianjin, China; Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Mingfang Liu
- Community Health Service Center, Beijing Normal University, Beijing, China
| | - Jing Liu
- The China Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Li Wang
- College of Electronic Information and Automation, Civil Aviation University of China, Tianjin, China
| | - Jiang Qiu
- School of Psychology, Southwest University (SWU), Chongqing, China
| | - Zhuo Rachel Han
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Yue-Jia Luo
- School of Psychology, Shenzhen University, Shenzhen, China; Institute for Neuropsychological Rehabilitation, University of Health and Rehabilitation Sciences, Qingdao, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China.
| | - Pengfei Xu
- Beijing Key Laboratory of Applied Experimental Psychology, National Demonstration Center for Experimental Psychology Education (BNU), Faculty of Psychology, Beijing Normal University, Beijing, China; Center for Emotion and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China.
| |
Collapse
|
15
|
Kobiec T, Mardaraz C, Toro-Urrego N, Kölliker-Frers R, Capani F, Otero-Losada M. Neuroprotection in metabolic syndrome by environmental enrichment. A lifespan perspective. Front Neurosci 2023; 17:1214468. [PMID: 37638319 PMCID: PMC10447983 DOI: 10.3389/fnins.2023.1214468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 07/17/2023] [Indexed: 08/29/2023] Open
Abstract
Metabolic syndrome (MetS) is defined by the concurrence of different metabolic conditions: obesity, hypertension, dyslipidemia, and hyperglycemia. Its incidence has been increasingly rising over the past decades and has become a global health problem. MetS has deleterious consequences on the central nervous system (CNS) and neurological development. MetS can last several years or be lifelong, affecting the CNS in different ways and treatments can help manage condition, though there is no known cure. The early childhood years are extremely important in neurodevelopment, which extends beyond, encompassing a lifetime. Neuroplastic changes take place all life through - childhood, adolescence, adulthood, and old age - are highly sensitive to environmental input. Environmental factors have an important role in the etiopathogenesis and treatment of MetS, so environmental enrichment (EE) stands as a promising non-invasive therapeutic approach. While the EE paradigm has been designed for animal housing, its principles can be and actually are applied in cognitive, sensory, social, and physical stimulation programs for humans. Here, we briefly review the central milestones in neurodevelopment at each life stage, along with the research studies carried out on how MetS affects neurodevelopment at each life stage and the contributions that EE models can provide to improve health over the lifespan.
Collapse
Affiliation(s)
- Tamara Kobiec
- Facultad de Psicología, Centro de Investigaciones en Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Claudia Mardaraz
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Nicolás Toro-Urrego
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Rodolfo Kölliker-Frers
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Francisco Capani
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Facultad de Ciencias de la Salud, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
| | - Matilde Otero-Losada
- Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
16
|
Beckerson ME, Remmel RJ, Glenn AL, Kana RK. Psychopathic traits and social brain responses during moral evaluation in adolescence. Psychiatry Res Neuroimaging 2023; 333:111672. [PMID: 37352594 DOI: 10.1016/j.pscychresns.2023.111672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 05/21/2023] [Accepted: 06/05/2023] [Indexed: 06/25/2023]
Abstract
Brain functioning underlying moral decision-making in adolescents with psychopathic traits is relatively less understood. This fMRI study examined the neural correlates of moral decision-making in relation to psychopathic traits, as measured by the Youth Psychopathic Traits Inventory (YPI), in a sample of 16 community-recruited youth (mean age=13.94) with reported behavior problems. Participants viewed images that depicted a moral violation, a conflict with no moral violation, and a neutral scenario. We analyzed activation, seed-to-voxel, and seed-to-seed functional connectivity using a social brain mask during moral reasoning and decision-making. Results indicated: a) greater activity in social brain regions while assessing acts of moral, compared to nonmoral, violations; b) positive correlations between activation of several social brain regions and YPI subscale scores; c) a positive association between YPI and functional connectivity between the social brain network and the bilateral middle cingulate cortices; d) significant effects of YPI on connectivity between social brain regions and the rest of the brain; and e) decreased connectivity between several ROIs during moral reasoning: the left temporoparietal junction (lTPJ) and dorsomedial prefrontal cortex (DMPFC), the precuneus (PREC) and left amygdala (lAMYG), and the PREC and rAMYG. Clinical and developmental implications of these findings are discussed.
Collapse
Affiliation(s)
- Meagan E Beckerson
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA; Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, USA
| | - Rheanna J Remmel
- The Office of Forensic Mental Health Services, Olympia, Washington, USA
| | - Andrea L Glenn
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA; Center for the Prevention of Youth Behavior Problems, University of Alabama, Tuscaloosa, AL, USA
| | - Rajesh K Kana
- Department of Psychology, University of Alabama, Tuscaloosa, AL, USA; Center for Innovative Research in Autism, University of Alabama, Tuscaloosa, AL, USA.
| |
Collapse
|
17
|
Cotter DL, Campbell CE, Sukumaran K, McConnell R, Berhane K, Schwartz J, Hackman DA, Ahmadi H, Chen JC, Herting MM. Effects of ambient fine particulates, nitrogen dioxide, and ozone on maturation of functional brain networks across early adolescence. ENVIRONMENT INTERNATIONAL 2023; 177:108001. [PMID: 37307604 PMCID: PMC10353545 DOI: 10.1016/j.envint.2023.108001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/14/2023] [Accepted: 05/28/2023] [Indexed: 06/14/2023]
Abstract
BACKGROUND Air pollution is linked to neurodevelopmental delays, but its association with longitudinal changes in brain network development has yet to be investigated. We aimed to characterize the effect of PM2.5, O3, and NO2 exposure at ages 9-10 years on changes in functional connectivity (FC) over a 2-year follow-up period, with a focus on the salience (SN), frontoparietal (FPN), and default-mode (DMN) brain networks as well as the amygdala and hippocampus given their importance in emotional and cognitive functioning. METHODS A sample of children (N = 9,497; with 1-2 scans each for a total of 13,824 scans; 45.6% with two brain scans) from the Adolescent Brain Cognitive Development (ABCD) Study® were included. Annual averages of pollutant concentrations were assigned to the child's primary residential address using an ensemble-based exposure modeling approach. Resting-state functional MRI was collected on 3T MRI scanners. First, developmental linear mixed-effect models were performed to characterize typical FC development within our sample. Next, single- and multi-pollutant linear mixed-effect models were constructed to examine the association between exposure and intra-network, inter-network, and subcortical-to-network FC change over time, adjusting for sex, race/ethnicity, income, parental education, handedness, scanner type, and motion. RESULTS Developmental profiles of FC over the 2-year follow-up included intra-network integration within the DMN and FPN as well as inter-network integration between the SN-FPN; along with intra-network segregation in the SN as well as subcortical-to-network segregation more broadly. Higher PM2.5 exposure resulted in greater inter-network and subcortical-to-network FC over time. In contrast, higher O3 concentrations resulted in greater intra-network, but less subcortical-to-network FC over time. Lastly, higher NO2 exposure led to less inter-network and subcortical-to-network FC over the 2-year follow-up period. CONCLUSION Taken together, PM2.5, O3, and NO2 exposure in childhood relate to distinct changes in patterns of network maturation over time. This is the first study to show outdoor ambient air pollution during childhood is linked to longitudinal changes in brain network connectivity development.
Collapse
Affiliation(s)
- Devyn L Cotter
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Claire E Campbell
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA; Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirthana Sukumaran
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rob McConnell
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jiu-Chiuan Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Children's Hospital Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
18
|
Guoynes CD, Marler CA. Acute intranasal oxytocin dose enhances social preference for parents over peers in male but not female peri-adolescent California mice (Peromyscus californicus). Gen Comp Endocrinol 2023; 335:114230. [PMID: 36781024 DOI: 10.1016/j.ygcen.2023.114230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/10/2022] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
Peri-adolescence is a critical developmental stage marked by profound changes in the valence of social interactions with parents and peers. We hypothesized that the oxytocin (OXT) and vasopressin (AVP) systems, known for influencing social behavior, would be involved in the maintenance and breaking of bonding behavior expressed by very early peri-adolescent males and females. In rodents, OXT is associated with mother-pup bonding and may promote social attachment to members of the natal territory. AVP, on the other hand, can act in contrasting ways to OXT and has been associated with aggression and territoriality. Specifically, we predicted that in peri-adolescent male and female juveniles of the biparental and territorial California mouse (Peromyscus californicus), a) OXT would increase the social preferences for the parents over unfamiliar age-matched peers (one male and one female), and b) AVP would break the parent-offspring bond and either increase time in the neutral chamber and/or approach to their unfamiliar and novel peers. We examined anxiety and exploratory behavior using an elevated plus maze and a novel object task as a control. Peri-adolescent mice were administered an acute intranasal (IN) treatment of 0.5 IU/kg IN AVP, 0.5 IU/kg IN OXT, or saline control; five minutes later, the behavioral tests were conducted. As predicted, we found that IN OXT enhanced social preference for parents; however, this was only in male and not female peri-adolescent mice. IN AVP did not influence social preference in either sex. These effects appear specific to social behavior and not anxiety, as neither IN OXT nor AVP influenced behavior during the elevated plus maze or novel object tasks. To our knowledge, this is the first evidence indicating that OXT may play a role in promoting peri-adolescent social preferences for parents and delaying weaning in males.
Collapse
Affiliation(s)
- Caleigh D Guoynes
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA; Center for Neuroscience Research, Children's National Hospital, Washington, DC, USA.
| | - Catherine A Marler
- Department of Psychology, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
19
|
Chen H, Hong L, Tong S, Li M, Sun S, Xu Y, Liu J, Feng T, Li Y, Lin G, Lu F, Cai Q, Xu D, Zhao K, Zheng T. Cognitive impairment and factors influencing depression in adolescents with suicidal and self-injury behaviors: a cross-sectional study. BMC Psychiatry 2023; 23:247. [PMID: 37046299 PMCID: PMC10099683 DOI: 10.1186/s12888-023-04726-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
BACKGROUND Non-suicidal self-injury (NSSI) and suicide attempts (SAs) by adolescent patients with depression have become serious public health problems. There is still insufficient research evidence on the effects of NSSI and SAs on neurocognitive functioning in adolescents. Cognitive function alterations may be associated with SAs and self-injury. NSSI and SAs have different influencing factors. METHODS Participants were recruited from outpatient clinics and included 142 adolescent patients with depression (12-18 years old). This cohort included the SAs group (n = 52), NSSI group (n = 65), and depression without SAs/NSSI control group (n = 25). All participants underwent a clinical interview and neuropsychological assessment for group comparisons, and post-hoc tests were performed. Finally, partial correlation analysis was used to explore factors related to changes in cognitive function. RESULTS The SAs group performed significantly worse than the control group in executive function and working memory. The depression score was directly proportional to the executive function of the SAs group, whereas cognitive functioning in the NSSI group was associated with borderline traits and rumination. CONCLUSIONS These findings suggest that impairment of executive function and working memory may be a common pattern in adolescent depressed patients with SAs. However, borderline traits and rumination may be indicative of NSSI but not SAs.
Collapse
Affiliation(s)
- Hong Chen
- Department of Psychiatry, First Affiliated Hospital of Wenzhou Medical University, 325035, Wenzhou, China
| | - Lan Hong
- The Third Hospital of QuZhou, 324000, Quzhou, China
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China
| | - Siyu Tong
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China
| | - Mengjia Li
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China
| | - Shiyu Sun
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China
| | - Yao Xu
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China
| | - Jie Liu
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China
| | - Tianqi Feng
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China
| | - Yuting Li
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China
| | - Guangyao Lin
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, 325035, Wenzhou, China
| | - Fanfan Lu
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, 325035, Wenzhou, China
| | - Qiaole Cai
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, 325035, Wenzhou, China
| | - Dongwu Xu
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China.
| | - Ke Zhao
- Lishui Second People's Hospital Afliated to Wenzhou Medical University, 323000, Lishui, China.
- School of Mental Health, Wenzhou Medical University, 325035, Wenzhou, China.
| | - Tiansheng Zheng
- The Affiliated Kangning Hospital of Wenzhou Medical University Zhejiang Provincial Clinical Research Center for Mental Disorder, 325035, Wenzhou, China.
| |
Collapse
|
20
|
Dettweiler U, Gerchen M, Mall C, Simon P, Kirsch P. Choice matters: Pupils' stress regulation, brain development and brain function in an outdoor education project. BRITISH JOURNAL OF EDUCATIONAL PSYCHOLOGY 2023; 93 Suppl 1:152-173. [PMID: 35872620 DOI: 10.1111/bjep.12528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Education outside the classroom (EOtC) is considered beneficial to children's physical and mental health. Especially, stress resilience has been linked to nature experience. AIMS This study experimentally explored the effects of pupils' autonomy support (AUT) and physical activity (PA) on their biological stress responses and brain development in EOtC. SAMPLE The study comprised 48 fifth and sixth graders. METHODS The intervention consisted of one day/week taught in a forest over one school year. Structural magnetic resonance imaging (MRI) was conducted at the beginning and the end of the school year, functional MRI under a stress condition at the end. Regions of interest were amygdala, hippocampus and the anterior cingulate cortex (ACC). All other measures were obtained at the beginning, at mid-term and at the end of the school year. PA was measured using accelerometry. Cortisol levels were obtained three times during the examined school days. AUT was measured with a paper-based survey. Data were analysed using Bayesian multivariate models. RESULTS EOtC students exhibit more efficient regulation of biological stress-reactivity and show a reduction of cortisol over the day associated with light PA in the forest. Cortisol is further associated with amygdala activation in the stress condition. Cerebral structural change is best explained by age; however, AUT has a positive direct effect on the maturation of the ACC, which is stronger in EOtC. CONCLUSIONS Our results support the idea that autonomy supportive teaching fosters cerebral maturation and that EOtC can have a positive effect on biological stress regulation.
Collapse
Affiliation(s)
- Ulrich Dettweiler
- Cognitive and Behavioral Neuroscience Lab, Faculty of Arts and Education, University of Stavanger, Stavanger, Norway
| | - Martin Gerchen
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christoph Mall
- Department of Sports and Health Sciences, Technical University of Munich, Munich, Germany
| | - Perikles Simon
- Faculty of Social Science, Media and Sport, Johannes Gutenberg University, Mainz, Germany
| | - Peter Kirsch
- Department of Clinical Psychology, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
21
|
Kim B, Niu X, Zhang F. Functional connectivity strength and topology differences in social phobia adolescents with and without ADHD comorbidity. Neuropsychologia 2023; 178:108418. [PMID: 36403658 DOI: 10.1016/j.neuropsychologia.2022.108418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022]
Abstract
Social phobia (SP) is associated with changes in functional connectivity strength and topology. However, reported changes have been heterogeneous due to small sample sizes, inconsistent methodologies, and comorbidities, such as attention-deficit/hyperactivity disorder (ADHD), which has a high comorbidity rate with SP. Furthermore, there are few studies looking at SP in an adolescent population, a critical period for the development of the social brain. This project focuses on functional connectivity strength and topological differences in social phobia patients with and without ADHD comorbidity. We examined resting-state functional MRI images from 158 subjects, including 36 SP participants without ADHD comorbidity, 60 SP participants with ADHD comorbidity, and 62 healthy controls, with an overall average age of 14.16. We used a data-driven approach to examine impaired functional connectivity in a whole-brain analysis and higher-order topological differences in functional brain networks. We identified changes in the cerebellum and default mode network in social phobia patients as a whole, with the presence of ADHD comorbidity affecting various subsystems of the default mode network. Social phobia functional connectivity networks resembled random graphs, and local connectivity patterns in the superior occipital gyrus were different due to ADHD comorbidity. These alterations may indicate impairments in self-related processing, imagery, mentalizing, and predictive processes. We then used these changes in a linear support vector machine to distinguish between each pair of groups and achieved prediction accuracy significantly above chance rates. Our study extends prior research by showing that functional connectivity changes exist at adolescence, which are affected by ADHD comorbidity. As such, these results offer a new perspective in examining neurobiological changes in SP patients.
Collapse
Affiliation(s)
- Brian Kim
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA.
| | - Xin Niu
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Fengqing Zhang
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Immature excitatory neurons in the amygdala come of age during puberty. Dev Cogn Neurosci 2022; 56:101133. [PMID: 35841648 PMCID: PMC9289873 DOI: 10.1016/j.dcn.2022.101133] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 11/21/2022] Open
Abstract
The human amygdala is critical for emotional learning, valence coding, and complex social interactions, all of which mature throughout childhood, puberty, and adolescence. Across these ages, the amygdala paralaminar nucleus (PL) undergoes significant structural changes including increased numbers of mature neurons. The PL contains a large population of immature excitatory neurons at birth, some of which may continue to be born from local progenitors. These progenitors disappear rapidly in infancy, but the immature neurons persist throughout childhood and adolescent ages, indicating that they develop on a protracted timeline. Many of these late-maturing neurons settle locally within the PL, though a small subset appear to migrate into neighboring amygdala subnuclei. Despite its prominent growth during postnatal life and possible contributions to multiple amygdala circuits, the function of the PL remains unknown. PL maturation occurs predominately during late childhood and into puberty when sex hormone levels change. Sex hormones can promote developmental processes such as neuron migration, dendritic outgrowth, and synaptic plasticity, which appear to be ongoing in late-maturing PL neurons. Collectively, we describe how the growth of late-maturing neurons occurs in the right time and place to be relevant for amygdala functions and neuropsychiatric conditions.
Collapse
|
23
|
Guily P, Lassalle O, Chavis P, Manzoni OJ. Sex-specific divergent maturational trajectories in the postnatal rat basolateral amygdala. iScience 2022; 25:103815. [PMID: 35198880 PMCID: PMC8841815 DOI: 10.1016/j.isci.2022.103815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/21/2021] [Accepted: 01/20/2022] [Indexed: 01/22/2023] Open
Abstract
In rodents and humans, the basolateral amygdala (BLA), essential for emotional behaviors, is profoundly reorganized during adolescence. We compared in both sexes the morphology, neuronal, and synaptic properties of BLA neurons in rats at puberty and adulthood. BLA neurons were more excitable in males than in females at adulthood. At pubescence, male action potentials were smaller and shorter than females’ while fast afterhyperpolarizations were larger in males. During postnatal maturation, spine length increased and decreased in females and males, respectively, while there was a reduction in spine head size in females. Excitatory synaptic properties, estimated from stimuli-response relationships, spontaneous post-synaptic currents, and AMPA/NMDA ratio also displayed sex-specific maturational differences. Finally, the developmental courses of long-term potentiation and depression were sexually dimorphic. These data reveal divergent maturational trajectories in the BLA of male and female rats and suggest sex-specific substrates to the BLA linked behaviors at adolescence and adulthood. The BLA is immature at puberty and its development toward adulthood is sex-specific At adulthood, neuronal excitability is lower in females than in males The maturation of spine morphology is more pronounced in females The developmental courses of LTP and LTD are sexually divergent
Collapse
Affiliation(s)
- Pauline Guily
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Olivier Lassalle
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Pascale Chavis
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
| | - Olivier J. Manzoni
- INMED, INSERM U1249 Parc Scientifique de Luminy - BP 13 - 13273 Marseille Cedex 09 France
- Cannalab Cannabinoids Neuroscience Research International Associated Laboratory, INSERM-Aix-Marseille University/Indiana University, Bloomington, IN, USA
- Corresponding author
| |
Collapse
|
24
|
Miller JG, Chahal R, Gotlib IH. Early Life Stress and Neurodevelopment in Adolescence: Implications for Risk and Adaptation. Curr Top Behav Neurosci 2022; 54:313-339. [PMID: 35290658 DOI: 10.1007/7854_2022_302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An alarming high proportion of youth experience at least one kind of stressor in childhood and/or adolescence. Exposure to early life stress is associated with increased risk for psychopathology, accelerated biological aging, and poor physical health; however, it is important to recognize that not all youth who experience such stress go on to develop difficulties. In fact, resilience, or positive adaptation in the face of adversity, is relatively common. Individual differences in vulnerability or resilience to the effects of early stress may be represented in the brain as specific patterns, profiles, or signatures of neural activation, structure, and connectivity (i.e., neurophenotypes). Whereas neurophenotypes of risk that reflect the deleterious effects of early stress on the developing brain are likely to exacerbate negative outcomes in youth, neurophenotypes of resilience may reduce the risk of experiencing these negative outcomes and instead promote positive functioning. In this chapter we describe our perspective concerning the neurobiological mechanisms and moderators of risk and resilience in adolescence following early life stress and integrate our own work into this framework. We present findings suggesting that exposure to stress in childhood and adolescence is associated with functional and structural alterations in neurobiological systems that are important for social-affective processing and for cognitive control. While some of these neurobiological alterations increase risk for psychopathology, they may also help to limit adolescents' sensitivity to subsequent negative experiences. We also discuss person-centered strategies that we believe can advance our understanding of risk and resilience to early stress in adolescents. Finally, we describe ways in which the field can broaden its focus to include a consideration of other types of environmental factors, such as environmental pollutants, in affecting both risk and resilience to stress-related health difficulties in youth.
Collapse
Affiliation(s)
- Jonas G Miller
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Rajpreet Chahal
- Department of Psychology, Stanford University, Stanford, CA, USA
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
25
|
OUP accepted manuscript. Cereb Cortex 2022; 32:4619-4639. [DOI: 10.1093/cercor/bhab506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/13/2022] Open
|
26
|
Zhou Q, Liu S, Jiang C, He Y, Zuo XN. Charting the human amygdala development across childhood and adolescence: Manual and automatic segmentation. Dev Cogn Neurosci 2021; 52:101028. [PMID: 34749182 PMCID: PMC8578043 DOI: 10.1016/j.dcn.2021.101028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 08/20/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Abstract
The developmental pattern of the amygdala throughout childhood and adolescence has been inconsistently reported in previous neuroimaging studies. Given the relatively small size of the amygdala on full brain MRI scans, discrepancies may be partly due to methodological differences in amygdalar segmentation. To investigate the impact of volume extraction methods on amygdala volume, we compared FreeSurfer, FSL and volBrain segmentation measurements with those obtained by manual tracing. The manual tracing method, which we used as the 'gold standard', exhibited almost perfect intra- and inter-rater reliability. We observed systematic differences in amygdala volumes between automatic (FreeSurfer and volBrain) and manual methods. Specifically, compared with the manual tracing, FreeSurfer estimated larger amygdalae, and volBrain produced smaller amygdalae while FSL demonstrated a mixed pattern. The tracing bias was not uniform, but higher for smaller amygdalae. We further modeled amygdalar growth curves using accelerated longitudinal cohort data from the Chinese Color Nest Project (http://deepneuro.bnu.edu.cn/?p=163). Trajectory modeling and statistical assessments of the manually traced amygdalae revealed linearly increasing and parallel developmental patterns for both girls and boys, although the amygdalae of boys were larger than those of girls. Compared to these trajectories, the shapes of developmental curves were similar when using the volBrain derived volumes. FreeSurfer derived trajectories had more nonlinearities and appeared flatter. FSL derived trajectories demonstrated an inverted U shape and were significantly different from those derived from manual tracing method. The use of amygdala volumes adjusted for total gray-matter volumes, but not intracranial volumes, resolved the shape discrepancies and led to reproducible growth curves between manual tracing and the automatic methods (except FSL). Our findings revealed steady growth of the human amygdala, mirroring its functional development across the school age. Methodological improvements are warranted for current automatic tools to achieve more accurate amygdala structure at school age, calling for next generation tools.
Collapse
Affiliation(s)
- Quan Zhou
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siman Liu
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao Jiang
- School of Psychology, Capital Normal University, Beijing, 100048, China
| | - Ye He
- School of Artificial Intelligence, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Xi-Nian Zuo
- Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100049, China; State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; National Basic Science Data Center, Beijing, 100190, China; Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
27
|
O’Donoghue J, Egan G, Moss H, Clements-Cortes A. Participation in group music therapy: A preliminary study of the experiences and perceptions of adolescents who stammer. ARTS IN PSYCHOTHERAPY 2021. [DOI: 10.1016/j.aip.2021.101809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Maturation of amygdala inputs regulate shifts in social and fear behaviors: A substrate for developmental effects of stress. Neurosci Biobehav Rev 2021; 125:11-25. [PMID: 33581221 DOI: 10.1016/j.neubiorev.2021.01.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/26/2021] [Accepted: 01/26/2021] [Indexed: 11/21/2022]
Abstract
Stress can negatively impact brain function and behaviors across the lifespan. However, stressors during adolescence have particularly harmful effects on brain maturation, and on fear and social behaviors that extend beyond adolescence. Throughout development, social behaviors are refined and the ability to suppress fear increases, both of which are dependent on amygdala activity. We review rodent literature focusing on developmental changes in social and fear behaviors, cortico-amygdala circuits underlying these changes, and how this circuitry is altered by stress. We first describe changes in fear and social behaviors from adolescence to adulthood and parallel developmental changes in cortico-amygdala circuitry. We propose a framework in which maturation of cortical inputs to the amygdala promote changes in social drive and fear regulation, and the particularly damaging effects of stress during adolescence may occur through lasting changes in this circuit. This framework may explain why anxiety and social pathologies commonly co-occur, adolescents are especially vulnerable to stressors impacting social and fear behaviors, and predisposed towards psychiatric disorders related to abnormal cortico-amygdala circuits.
Collapse
|
29
|
Chen D, Strang JF, Kolbuck VD, Rosenthal SM, Wallen K, Waber DP, Steinberg L, Sisk CL, Ross J, Paus T, Mueller SC, McCarthy MM, Micevych PE, Martin CL, Kreukels BPC, Kenworthy L, Herting MM, Herlitz A, Haraldsen IRJH, Dahl R, Crone EA, Chelune GJ, Burke SM, Berenbaum SA, Beltz AM, Bakker J, Eliot L, Vilain E, Wallace GL, Nelson EE, Garofalo R. Consensus Parameter: Research Methodologies to Evaluate Neurodevelopmental Effects of Pubertal Suppression in Transgender Youth. Transgend Health 2020; 5:246-257. [PMID: 33376803 PMCID: PMC7759272 DOI: 10.1089/trgh.2020.0006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Purpose: Pubertal suppression is standard of care for early pubertal transgender youth to prevent the development of undesired and distressing secondary sex characteristics incongruent with gender identity. Preliminary evidence suggests pubertal suppression improves mental health functioning. Given the widespread changes in brain and cognition that occur during puberty, a critical question is whether this treatment impacts neurodevelopment. Methods: A Delphi consensus procedure engaged 24 international experts in neurodevelopment, gender development, puberty/adolescence, neuroendocrinology, and statistics/psychometrics to identify priority research methodologies to address the empirical question: is pubertal suppression treatment associated with real-world neurocognitive sequelae? Recommended study approaches reaching 80% consensus were included in the consensus parameter. Results: The Delphi procedure identified 160 initial expert recommendations, 44 of which ultimately achieved consensus. Consensus study design elements include the following: a minimum of three measurement time points, pubertal staging at baseline, statistical modeling of sex in analyses, use of analytic approaches that account for heterogeneity, and use of multiple comparison groups to minimize the limitations of any one group. Consensus study comparison groups include untreated transgender youth matched on pubertal stage, cisgender (i.e., gender congruent) youth matched on pubertal stage, and an independent sample from a large-scale youth development database. The consensus domains for assessment includes: mental health, executive function/cognitive control, and social awareness/functioning. Conclusion: An international interdisciplinary team of experts achieved consensus around primary methods and domains for assessing neurodevelopmental effects (i.e., benefits and/or difficulties) of pubertal suppression treatment in transgender youth.
Collapse
Affiliation(s)
- Diane Chen
- Potocsnak Family Division of Adolescent and Young Adult Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Pritzker Department of Psychiatry and Behavioral Health, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Psychiatry & Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - John F Strang
- Division of Neuropsychology, Children's National Medical Center, Washington, District of Columbia, USA.,Center for Neuroscience, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia, USA.,Department of Neurology, George Washington University School of Medicine, Washington, District of Columbia, USA.,Department of Psychiatry, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Victoria D Kolbuck
- Potocsnak Family Division of Adolescent and Young Adult Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA
| | - Stephen M Rosenthal
- Division of Endocrinology, Benioff Children's Hospital, University of California San Francisco, San Francisco, California, USA
| | - Kim Wallen
- Department of Psychology, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Deborah P Waber
- Department of Psychiatry, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Psychiatry, Harvard Medical School, Boston, Massachusetts, USA
| | - Laurence Steinberg
- Department of Psychology, Temple University, Philadelphia, Pennsylvania, USA
| | - Cheryl L Sisk
- Department of Psychology, Michigan State University, East Lansing, Michigan, USA
| | - Judith Ross
- Nemours duPont Hospital for Children, Wilmington, Delaware, USA.,Department of Pediatrics, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Ontario, Canada.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sven C Mueller
- Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium.,Department of Personality, Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| | - Margaret M McCarthy
- Program in Neuroscience, Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Paul E Micevych
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Carol L Martin
- School of Social and Family Dynamics, Arizona State University, Tempe, Arizona, USA
| | - Baudewijntje P C Kreukels
- Amsterdam UMC, Location VUmc, Department of Medical Psychology and Center of Expertise on Gender Dysphoria, Amsterdam, The Netherlands
| | - Lauren Kenworthy
- Division of Neuropsychology, Children's National Medical Center, Washington, District of Columbia, USA.,Center for Neuroscience, Children's Research Institute, Children's National Medical Center, Washington, District of Columbia, USA.,Department of Pediatrics, George Washington University School of Medicine, Washington, District of Columbia, USA.,Department of Neurology, George Washington University School of Medicine, Washington, District of Columbia, USA.,Department of Psychiatry, George Washington University School of Medicine, Washington, District of Columbia, USA
| | - Megan M Herting
- Department of Preventive Medicine, University of Southern California, Los Angeles, California, USA.,Department of Pediatrics, University of Southern California, Los Angeles, California, USA
| | - Agneta Herlitz
- Section of Psychology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | - Ronald Dahl
- School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Eveline A Crone
- Department of Developmental and Educational Psychology, Brain and Development Research Center, Leiden University, Leiden, The Netherlands
| | - Gordon J Chelune
- Department of Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Sarah M Burke
- Department of Developmental and Educational Psychology, Brain and Development Research Center, Leiden University, Leiden, The Netherlands
| | - Sheri A Berenbaum
- Department of Psychology, The Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Pediatrics, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Adriene M Beltz
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Julie Bakker
- GIGA Neurosciences, Liège University, Liège, Belgium
| | - Lise Eliot
- Department of Neuroscience, Rosalind Franklin University of Medicine & Science, Chicago, Illinois, USA
| | - Eric Vilain
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, District of Columbia, USA.,Department of Genomics and Precision Medicine, George Washington University, Washington, District of Columbia, USA.,Epigenetics, Data, & Politics at Centre National de la Recherche Scientifique, Paris, France
| | - Gregory L Wallace
- Department of Speech, Language, and Hearing Science, George Washington University, Washington, District of Columbia, USA
| | - Eric E Nelson
- Center for Biobehavioral Health, The Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA.,Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Robert Garofalo
- Potocsnak Family Division of Adolescent and Young Adult Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA.,Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
30
|
Russell JD, Marsee MA, Weems CF. Developmental Variation in Amygdala Volumes: Modeling Differences Across Time, Age, and Puberty. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:117-125. [PMID: 33067167 DOI: 10.1016/j.bpsc.2020.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 01/01/2023]
Abstract
BACKGROUND There is evidence that the amygdala undergoes extensive development. The exact nature of this change remains less clear, with evidence suggesting linear, curvilinear, and null effects. The aim of this study was the identification of a normative reference of left and right amygdala development by parceling variance into separate effects of age and longitudinal growth. METHODS Data came from the National Institutes of Health MRI Study of Normal Brain Development. Participants in this sample were 54% female and ranged in age from 5 to 18 years (mean = 11.37 years) at study entry. RESULTS As predicted, the age at initial scan moderated the slope of both left and right amygdala volumes, demonstrating that the nature of longitudinal growth varies across age (i.e., steeper slopes observed among those first scanned at an early age). Follow-up analysis showed that the positive longitudinal growth slope becomes nonsignificant at 13.1 years of age for the left amygdala and at 14.5 years for the right amygdala, suggesting that growth of the left amygdala peaks earlier than growth of the right amygdala. CONCLUSIONS Findings suggest that rapid increases in volumes at early ages decline as youths enter adolescence and may turn to minor declines in volume during late adolescence or early adulthood.
Collapse
Affiliation(s)
- Justin D Russell
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.
| | | | - Carl F Weems
- Department of Human Development and Family Studies, Iowa State University, Ames, Iowa.
| |
Collapse
|
31
|
Rhone AE, Kovach CK, Harmata GI, Sullivan AW, Tranel D, Ciliberto MA, Howard MA, Richerson GB, Steinschneider M, Wemmie JA, Dlouhy BJ. A human amygdala site that inhibits respiration and elicits apnea in pediatric epilepsy. JCI Insight 2020; 5:134852. [PMID: 32163374 PMCID: PMC7213805 DOI: 10.1172/jci.insight.134852] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDSeizure-induced inhibition of respiration plays a critical role in sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying seizure-induced central apnea in pediatric epilepsy are unknown.METHODSWe studied 8 pediatric patients with intractable epilepsy undergoing intracranial electroencephalography. We recorded respiration during seizures and during electrical stimulation mapping of 174 forebrain sites. A machine-learning algorithm was used to delineate brain regions that inhibit respiration.RESULTSIn 2 patients, apnea coincided with seizure spread to the amygdala. Supporting a role for the amygdala in breathing inhibition in children, electrically stimulating the amygdala produced apnea in all 8 subjects (3-17 years old). These effects did not depend on epilepsy type and were relatively specific to the amygdala, as no other site affected breathing. Remarkably, patients were unaware that they had stopped breathing, and none reported dyspnea or arousal, findings critical for SUDEP. Finally, a machine-learning algorithm based on 45 stimulation sites and 210 stimulation trials identified a focal subregion in the human amygdala that consistently produced apnea. This site, which we refer to as the amygdala inhibition of respiration (AIR) site includes the medial subregion of the basal nuclei, cortical and medial nuclei, amygdala transition areas, and intercalated neurons.CONCLUSIONSA focal site in the amygdala inhibits respiration and induces apnea (AIR site) when electrically stimulated and during seizures in children with epilepsy. This site may prove valuable for determining those at greatest risk for SUDEP and as a therapeutic target.FUNDINGNational Institute of Neurological Disorders and Stroke - Congress of Neurological Surgeons, National Institute of General Medical Sciences, Roy J. Carver Charitable Trust.
Collapse
Affiliation(s)
| | | | - Gail I.S. Harmata
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Pharmacological Sciences Training Program
- Department of Psychiatry
| | | | - Daniel Tranel
- Iowa Neuroscience Institute
- Department of Psychological and Brain Sciences
- Department of Neurology
| | | | - Matthew A. Howard
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| | - George B. Richerson
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | | - John A. Wemmie
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
- Interdisciplinary Graduate Program in Neuroscience
- Department of Psychiatry
- Department of Neurology
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- Department of Veterans Affairs Medical Center, Iowa City, Iowa, USA
| | - Brian J. Dlouhy
- Department of Neurosurgery
- Iowa Neuroscience Institute
- Pappajohn Biomedical Institute
| |
Collapse
|
32
|
Morningstar M, Hung A, Mattson WI, Gedela S, Ostendorf AP, Nelson EE. Internalizing symptoms in intractable pediatric epilepsy: Structural and functional brain correlates. Epilepsy Behav 2020; 103:106845. [PMID: 31882324 DOI: 10.1016/j.yebeh.2019.106845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 12/03/2019] [Accepted: 12/03/2019] [Indexed: 01/09/2023]
Abstract
Internalizing disorders (i.e., depression and anxiety) are common comorbidities in people with epilepsy. In adults with epilepsy, comorbid depression or anxiety is associated with worse seizure control and reduced quality of life, and may be linked to specific neural biomarkers. Less is known about brain correlates of internalizing symptoms in pediatric populations. In the current study, we performed a retrospective analysis of 45 youth between the ages of 6 and 18 years old with intractable epilepsy. Individuals were evaluated for internalizing symptoms on the Child Behavior Checklist (CBCL) and underwent magnetic resonance (MR) and fluorodeoxyglucose (FDG)-positron emission tomography (PET) imaging as part of the clinical evaluation for surgical treatment of epilepsy. Forty-two percent of patients experienced clinically significant internalizing symptoms based on parent report. Compared with individuals who scored in the normal range, youth with clinical levels of internalizing problems showed overall reductions in cortex volume, as well as widespread reductions in cortical thickness and functional activation in the bilateral occipital/parietal lobe, left temporal regions, and left inferior frontal cortex on MR and PET scans. There were no group differences in amygdala or hippocampus volumes, nor other patient- or illness-related variables such as age, sex, or the type, lateralization, or duration of epilepsy. Results suggest that high rates of internalizing disorders are present in youth with refractory epilepsy. Multifocal reductions in cortical thickness and function may be nonspecific risk factors for clinically meaningful internalizing symptoms in youth with chronic epilepsy. As such, the presence of broad cortical thinning and reduced glucose uptake upon radiological examination may warrant more focused clinical evaluation of psychological symptoms.
Collapse
Affiliation(s)
- Michele Morningstar
- Center for Biobehavioral Health, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America.
| | - Andy Hung
- Center for Biobehavioral Health, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Whitney I Mattson
- Center for Biobehavioral Health, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Satyanarayana Gedela
- Department of Pediatrics and Neurology, Emory University College of Medicine, Atlanta, GA, United States of America
| | - Adam P Ostendorf
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America; Department of Neurology, Nationwide Children's Hospital, Columbus, OH, United States of America
| | - Eric E Nelson
- Center for Biobehavioral Health, The Research Institute at Nationwide Children's Hospital, Columbus, OH, United States of America; Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH, United States of America
| |
Collapse
|
33
|
Beking T, Burke SM, Geuze RH, Staphorsius AS, Bakker J, Groothuis AGG, Kreukels BPC. Testosterone effects on functional amygdala lateralization: A study in adolescent transgender boys and cisgender boys and girls. Psychoneuroendocrinology 2020; 111:104461. [PMID: 31630051 DOI: 10.1016/j.psyneuen.2019.104461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023]
Abstract
The influence of testosterone on the development of human brain lateralization has been subject of debate for a long time, partly because studies investigating this are necessarily mostly correlational. In the present study we used a quasi-experimental approach by assessing functional brain lateralization in trans boys (female sex assigned at birth, diagnosed with Gender Dysphoria, n = 21) before and after testosterone treatment, and compared these results to the functional lateralization of age-matched control groups of cisgender boys (n = 20) and girls (n = 21) around 16 years of age. The lateralization index of the amygdala was determined with functional magnetic resonance imaging (fMRI) during an emotional face matching task with angry and fearful faces, as the literature indicates that boys show more activation in the right amygdala than girls during the perception of emotional faces. As expected, the lateralization index in trans boys shifted towards the right amygdala after testosterone treatment, and the cumulative dose of testosterone treatment correlated significantly with amygdala lateralization after treatment. However, we did not find any significant group differences in lateralization and endogenous testosterone concentrations predicted rightward amygdala lateralization only in the cis boys, but not in cis girls or trans boys. These inconsistencies may be due to sex differences in sensitivity to testosterone or its metabolites, which would be a worthwhile course for future studies.
Collapse
Affiliation(s)
- T Beking
- University of Groningen, Department Clinical & Developmental Neuropsychology. Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands.
| | - S M Burke
- Leiden University, Brain & Development Research Centre, Department of Developmental and Educational Psychology. Wassenaarseweg 52, 2333 AK, Leiden, the Netherlands.
| | - R H Geuze
- University of Groningen, Department Clinical & Developmental Neuropsychology. Grote Kruisstraat 2/1, 9712 TS, Groningen, the Netherlands.
| | - A S Staphorsius
- Amsterdam University Medical Centers, Location VU, Department of Internal Medicine, Center of Expertise on Gender Dysphoria. PO Box 7057, 1007 MB, Amsterdam, the Netherlands.
| | - J Bakker
- Liège University, GIGA Neurosciences, Avenue Hippocrate 15, B36, 4000, Liège, Belgium.
| | - A G G Groothuis
- University of Groningen, Groningen Institute for Evolutionary Life Sciences, Nijenborgh 7, 9747 AG, Groningen, the Netherlands.
| | - B P C Kreukels
- Amsterdam University Medical Centers, Location VU, Department of Medical Psychology, Center of Expertise on Gender Dysphoria, PO Box 7057, 1007 MB, Amsterdam, the Netherlands.
| |
Collapse
|
34
|
Peper JS, Burke SM, Wierenga LM. Sex differences and brain development during puberty and adolescence. HANDBOOK OF CLINICAL NEUROLOGY 2020; 175:25-54. [PMID: 33008529 DOI: 10.1016/b978-0-444-64123-6.00003-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sex differences in behavior, and whether these behavioral differences are related to sex differences in brain development, has been a longstanding topic of debate. Presumably, sex differences can provide critically important leads for explaining the etiology of various illnesses that show (i) large sex differences in prevalence and (ii) have an origin before or during adolescence. The general aim of this chapter is to provide an overview of scientific studies on sex differences in normative brain and behavioral development across puberty and adolescence, including the (sex) hormone-driven transition phase of puberty. Moreover, we describe the literature on brain and behavioral development in gender dysphoria, a severe and persistent incongruence between the self-identified gender and the assigned sex at birth. From the literature it becomes clear there is evidence for a specific link between pubertal maturation and developmental changes in arousal, motivation, and emotion. However, this link is rather similar between boys and girls. Moreover, although there is substantial evidence for sex differences in mean brain structure, these have not always been linked to sex differences in behavior, cognition, or psychopathology. Furthermore, there is little evidence for sex differences in brain development and thus, studies so far have been unable to explain sex differences in cognition. Suggestions for future research and methodologic considerations are provided.
Collapse
Affiliation(s)
- Jiska S Peper
- Department of Psychology, Leiden University, Leiden, The Netherlands.
| | - Sarah M Burke
- Department of Psychology, Leiden University, Leiden, The Netherlands
| | - Lara M Wierenga
- Department of Psychology, Leiden University, Leiden, The Netherlands
| |
Collapse
|
35
|
Rapee RM, Oar EL, Johnco CJ, Forbes MK, Fardouly J, Magson NR, Richardson CE. Adolescent development and risk for the onset of social-emotional disorders: A review and conceptual model. Behav Res Ther 2019; 123:103501. [DOI: 10.1016/j.brat.2019.103501] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/03/2019] [Accepted: 10/21/2019] [Indexed: 12/14/2022]
|
36
|
Feldstein Ewing SW, Hudson KA, Caouette J, Mayer AR, Thayer RE, Ryman SG, Bryan AD. Sexual risk-taking and subcortical brain volume in adolescence. Ann Behav Med 2019; 52:393-405. [PMID: 29659656 DOI: 10.1093/abm/kax027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background The developmental period of adolescence marks the initiation of new socioemotional and physical behaviors, including sexual intercourse. However, little is known about neurodevelopmental influences on adolescent sexual decision-making. Purpose We sought to determine how subcortical brain volume correlated with condom use, and whether those associations differed by gender and pubertal development. Methods We used FreeSurfer to extract subcortical volume among N = 169 sexually experienced youth (mean age 16.07 years; 31.95% female). We conducted multiple linear regressions to examine the relationship between frequency of condom use and subcortical volume, and whether these associations would be moderated by gender and pubertal development. Results We found that the relationship between brain volume and condom use was better accounted for by pubertal development than by gender, and moderated the association between limbic brain volume and condom use. No significant relationships were observed in reward areas (e.g., nucleus accumbens) or prefrontal cortical control areas. Conclusions These data highlight the potential relevance of subcortical socioemotional processing structures in adolescents' sexual decision-making.
Collapse
Affiliation(s)
- Sarah W Feldstein Ewing
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, M/C DC7P, Portland, OR
| | - Karen A Hudson
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, M/C DC7P, Portland, OR
| | - Justin Caouette
- Department of Psychiatry, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, M/C DC7P, Portland, OR
| | | | - Rachel E Thayer
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO
| | | | - Angela D Bryan
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO
| |
Collapse
|
37
|
Spielberg JM, Schwarz JM, Matyi MA. Anxiety in transition: Neuroendocrine mechanisms supporting the development of anxiety pathology in adolescence and young adulthood. Front Neuroendocrinol 2019; 55:100791. [PMID: 31542287 PMCID: PMC8265407 DOI: 10.1016/j.yfrne.2019.100791] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/04/2019] [Accepted: 09/18/2019] [Indexed: 11/29/2022]
Abstract
Adolescence marks a key developmental window during which emotion dysregulation increases, along with risk for the onset of anxiety and other affect-related pathologies. Although emotion dysregulation and related pathologies normatively decline during the transition into adulthood, this does not occur for a sizable minority of individuals. Finally, sex differences in anxiety emerge during adolescence, with females developing a 2-fold increase in risk relative to males. Unfortunately, a neurobiological model of the mechanisms that cause these changes during adolescence has yet to be proposed. In the present work, we first provide brief reviews of relevant literature. Next, we outline a dual-mechanism model focused on (i) the influence of pubertal testosterone on key emotion-regulation circuitry (i.e., orbitofrontal cortex-amygdala coupling) and (ii) myelination of the fiber bundles connecting such circuitry (i.e., uncinate fasciculus). The proposed model offers a set of specific, testable hypotheses that will hopefully spur much needed cross-disciplinary research.
Collapse
Affiliation(s)
- Jeffrey M Spielberg
- Department of Psychological and Brain Sciences, University of Delaware, 105 the Green, Newark, DE 19716, United States.
| | - Jaclyn M Schwarz
- Department of Psychological and Brain Sciences, University of Delaware, 105 the Green, Newark, DE 19716, United States.
| | - Melanie A Matyi
- Department of Psychological and Brain Sciences, University of Delaware, 105 the Green, Newark, DE 19716, United States.
| |
Collapse
|
38
|
Puberty and functional brain development in humans: Convergence in findings? Dev Cogn Neurosci 2019; 39:100690. [PMID: 31450015 PMCID: PMC6969369 DOI: 10.1016/j.dcn.2019.100690] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/28/2019] [Accepted: 08/01/2019] [Indexed: 12/27/2022] Open
Abstract
Although there is a long history of studying the influence of pubertal hormones on brain function/structure in animals, this research in human adolescents is young but burgeoning. Here, we provide a comprehensive review of findings from neuroimaging studies investigating the relation between pubertal and functional brain development in humans. We quantified the findings from this literature in which statistics required for standard meta-analyses are often not provided (i.e., effect size in fMRI studies). To do so, we assessed convergence in findings within content domains (reward, facial emotion, social information, cognitive processing) in terms of the locus and directionality (i.e., positive/negative) of effects. Face processing is the only domain with convergence in the locus of effects in the amygdala. Social information processing is the only domain with convergence of positive effects; however, these effects are not consistently present in any brain region. There is no convergence of effects in either the reward or cognitive processing domains. This limited convergence in findings across domains is not the result of null findings or even due to the variety of experimental paradigms researchers employ. Instead, there are critical theoretical, methodological, and analytical issues that must be addressed in order to move the field forward.
Collapse
|
39
|
Katz DA, Peckins MK, Lyon CC. Adolescent stress reactivity: Examining physiological, psychological and peer relationship measures with a group stress protocol in a school setting. J Adolesc 2019; 74:45-62. [PMID: 31146143 DOI: 10.1016/j.adolescence.2019.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/01/2019] [Accepted: 05/04/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Adolescents experience enhanced social sensitivity and biopsychosocial changes that can be challenging. Much remains unknown about the effect of psychological characteristics and peer relationships on adolescents' physiological responses to stress, due in part to methodological limitations. METHODS To test how adolescents' peer relationships and psychological characteristics are associated with their physiological and psychological response to stress, we administered the Group Public Speaking Task for Adolescents (GPST-A) to 54 adolescents (n = 40 girls; Mage = 16.6 years) in two high schools in the United States. Salivary cortisol and alpha-amylase (sAA), and positive and negative affect were measured six times. Relationships among group members were measured, resulting in whole-network data. State and trait rumination, five factors of coping, and emotional reappraisal and suppression were measured along with symptoms of depression and anxiety. RESULTS Greater levels of negative evaluation and victimization among group members were associated with a steeper increase and decline in the negative affect response, yet not associated with the physiological response to stress. Greater positive affect was associated with decreased cortisol reactivity, whereas negative affect was associated with steeper cortisol and sAA reactivity. Rumination, disengagement coping, and depression symptoms were related to the physiological response to stress. CONCLUSIONS The GPST-A is feasible to administer in a school context with adolescents to collect both physiological and psychological stress responses. Findings from the present study suggest peer relationships are important for understanding adolescents' psychological response to stressors while psychological characteristics are important for adolescents' physiological response to stress.
Collapse
Affiliation(s)
- Deirdre A Katz
- Department of Psychological Sciences, University of Portland, United States.
| | | | - Celena C Lyon
- Department of Psychological Sciences, University of Portland, United States
| |
Collapse
|
40
|
Morningstar M, Grannis C, Mattson WI, Nelson EE. Associations Between Adolescents' Social Re-orientation Toward Peers Over Caregivers and Neural Response to Teenage Faces. Front Behav Neurosci 2019; 13:108. [PMID: 31178704 PMCID: PMC6544008 DOI: 10.3389/fnbeh.2019.00108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022] Open
Abstract
Adolescence is a period of intensive development in body, brain, and behavior. Potentiated by changes in hormones and neural response to social stimuli, teenagers undergo a process of social re-orientation away from their caregivers and toward expanding peer networks. The current study examines how relative relational closeness to peers (compared to parents) during adolescence is linked to neural response to the facial emotional expressions of other teenagers. Self-reported closeness with friends (same- and opposite-sex) and parents (mother and father), and neural response to facial stimuli during fMRI, were assessed in 8- to 19-year-old typically developing youth (n = 40, mean age = 13.90 years old, SD = 3.36; 25 female). Youth who reported greater relative closeness with peers than with parents showed decreased activation in the dorsolateral prefrontal cortex (dlPFC) during stimulus presentation, which may reflect lessened inhibitory control or regulatory response to peer-aged faces. Functional connectivity between the dlPFC and dorsal striatum was greatest in older youth who were closer to peers; in contrast, negative coupling between these regions was noted for both younger participants who were closer to peers and older participants who were closer to their parents. In addition, the association between relative closeness to peers and neural activation in regions of the social brain varied by emotion type and age. Results suggest that the re-orientation toward peers that occurs during adolescence is accompanied by changes in neural response to peer-aged social signals in social cognitive, prefrontal, and subcortical networks.
Collapse
Affiliation(s)
- Michele Morningstar
- Center for Biobehavioral Health, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| | - Connor Grannis
- Center for Biobehavioral Health, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Whitney I. Mattson
- Center for Biobehavioral Health, Nationwide Children’s Hospital, Columbus, OH, United States
| | - Eric E. Nelson
- Center for Biobehavioral Health, Nationwide Children’s Hospital, Columbus, OH, United States
- Department of Pediatrics, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
41
|
van Duijvenvoorde ACK, Westhoff B, de Vos F, Wierenga LM, Crone EA. A three-wave longitudinal study of subcortical-cortical resting-state connectivity in adolescence: Testing age- and puberty-related changes. Hum Brain Mapp 2019; 40:3769-3783. [PMID: 31099959 PMCID: PMC6767490 DOI: 10.1002/hbm.24630] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Adolescence is the transitional period between childhood and adulthood, characterized by substantial changes in reward‐driven behavior. Although reward‐driven behavior is supported by subcortical‐medial prefrontal cortex (PFC) connectivity, the development of these circuits is not well understood. Particularly, while puberty has been hypothesized to accelerate organization and activation of functional neural circuits, the relationship between age, sex, pubertal change, and functional connectivity has hardly been studied. Here, we present an analysis of resting‐state functional connectivity between subcortical structures and the medial PFC, in 661 scans of 273 participants between 8 and 29 years, using a three‐wave longitudinal design. Generalized additive mixed model procedures were used to assess the effects of age, sex, and self‐reported pubertal status on connectivity between subcortical structures (nucleus accumbens, caudate, putamen, hippocampus, and amygdala) and cortical medial structures (dorsal anterior cingulate, ventral anterior cingulate, subcallosal cortex, frontal medial cortex). We observed an age‐related strengthening of subcortico‐subcortical and cortico‐cortical connectivity. Subcortical–cortical connectivity, such as, between the nucleus accumbens—frontal medial cortex, and the caudate—dorsal anterior cingulate cortex, however, weakened across age. Model‐based comparisons revealed that for specific connections pubertal development described developmental change better than chronological age. This was particularly the case for changes in subcortical–cortical connectivity and distinctively for boys and girls. Together, these findings indicate changes in functional network strengthening with pubertal development. These changes in functional connectivity may maximize the neural efficiency of interregional communication and set the stage for further inquiry of biological factors driving adolescent functional connectivity changes.
Collapse
Affiliation(s)
- Anna C K van Duijvenvoorde
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Bianca Westhoff
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Frank de Vos
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Lara M Wierenga
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Eveline A Crone
- Institute of Psychology, Leiden University, Leiden, The Netherlands.,Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
42
|
Suffren S, Chauret M, Nassim M, Lepore F, Maheu FS. On a continuum to anxiety disorders: Adolescents at parental risk for anxiety show smaller rostral anterior cingulate cortex and insula thickness. J Affect Disord 2019; 248:34-41. [PMID: 30711867 DOI: 10.1016/j.jad.2019.01.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/03/2019] [Accepted: 01/19/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Having a parent with an anxiety disorder increases the risk of anxiety symptoms and anxiety disorders during the lifespan. Moreover, childhood and adolescence anxiety disorders and symptoms have been linked to a range of brain structure abnormalities. However, to date, no study has investigated brain anatomy in adolescents at high risk based on parental anxiety disorders and in adolescents with an anxiety disorder but without any treatment or therapy. METHODS Anatomical images from magnetic resonance imaging of 68 adolescents with anxiety disorders without any treatment (N = 20), at risk for anxiety because of their parents' anxiety disorders (N = 21), and comparison youths (N = 27), were analyzed using Freesurfer. RESULTS Compared to comparison group, smaller cortical thickness of the rostral anterior cingulate cortex and of the insula was observed in anxious and at-risk groups; smaller amygdala volume was observed in the anxious group only. LIMITATIONS The age range studied is large (10 to 17 years old). Moreover, this study is cross-sectional. Since adolescence is one of the biggest periods of cerebral reorganization, longitudinal follow-up of these youths would be necessary. CONCLUSIONS Smaller rostral anterior cingulate cortex and insula cortical thickness appear to be cerebral markers of the risk of developing an anxiety disorder in adolescence. The reduction of the amygdala volume seems to be linked to the onset of the disorder.
Collapse
Affiliation(s)
- Sabrina Suffren
- Research Center, Sainte-Justine Hospital, University of Montreal, 3175 Côte Ste-Catherine, Montréal, Québec H3T 1C5, Canada; Research Center in Neuropsychology and Cognition, University of Montreal, Canada; Department of Psychology, University of Montreal, Canada.
| | - Mélissa Chauret
- Research Center, Sainte-Justine Hospital, University of Montreal, 3175 Côte Ste-Catherine, Montréal, Québec H3T 1C5, Canada; Department of Psychology, University of Quebec in Montreal, Canada
| | - Marouane Nassim
- Research Center, Sainte-Justine Hospital, University of Montreal, 3175 Côte Ste-Catherine, Montréal, Québec H3T 1C5, Canada
| | - Franco Lepore
- Research Center, Sainte-Justine Hospital, University of Montreal, 3175 Côte Ste-Catherine, Montréal, Québec H3T 1C5, Canada; Research Center in Neuropsychology and Cognition, University of Montreal, Canada; Department of Psychology, University of Montreal, Canada
| | - Françoise S Maheu
- Research Center, Sainte-Justine Hospital, University of Montreal, 3175 Côte Ste-Catherine, Montréal, Québec H3T 1C5, Canada; Research Center in Neuropsychology and Cognition, University of Montreal, Canada; Department of Psychiatry, University of Montreal, Canada
| |
Collapse
|
43
|
Ewing-Cobbs L, DeMaster D, Watson CG, Prasad MR, Cox CS, Kramer LA, Fischer JT, Duque G, Swank PR. Post-Traumatic Stress Symptoms after Pediatric Injury: Relation to Pre-Frontal Limbic Circuitry. J Neurotrauma 2019; 36:1738-1751. [PMID: 30672379 DOI: 10.1089/neu.2018.6071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pre-frontal limbic circuitry is vulnerable to effects of stress and injury. We examined microstructure of pre-frontal limbic circuitry after traumatic brain injury (TBI) or extracranial injury (EI) and its relation to post-traumatic stress symptoms (PTSS). Participants aged 8 to 15 years who sustained mild to severe TBI (n = 53) or EI (n = 26) in motor vehicle incidents were compared with healthy children (n = 38) in a prospective longitudinal study. At the seven-week follow-up, diffusion tensor imaging was obtained in all groups; injured children completed PTSS ratings using a validated scale. Using probabilistic diffusion tensor tractography, pathways were seeded from bilateral amygdalae and hippocampi to estimate the trajectory of white matter connecting them to each other and to targeted pre-frontal cortical (PFC) regions. Microstructure was estimated using fractional anisotropy (FA) in white matter and mean diffusivity (MD) in gray matter. Pre-frontal limbic microstructure was similar across groups, except for reduced FA in the right hippocampus to orbital PFC pathway in the injured versus healthy group. We examined microstructure of components of pre-frontal limbic circuitry with concurrently obtained PTSS cluster scores in the injured children. Neither microstructure nor PTSS scores differed significantly in the TBI and EI groups. Across PTSS factors, specific symptom clusters were related positively to higher FA and MD. Higher hyperarousal, avoidance, and re-experiencing symptoms were associated with higher FA in amygdala to pre-frontal and hippocampus to amygdala pathways. Higher hippocampal MD had a central role in hyperarousal and emotional numbing symptoms. Age moderated the relation of white and gray matter microstructure with hyperarousal scores. Our findings are consistent with models of traumatic stress that implicate disrupted top-down PFC and hippocampal moderation of overreactive subcortical threat arousal systems. Alterations in limbic pre-frontal circuitry and PTSS place children with either brain or body injuries at elevated risk for both current and future psychological health problems.
Collapse
Affiliation(s)
- Linda Ewing-Cobbs
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dana DeMaster
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Christopher G Watson
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Mary R Prasad
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Charles S Cox
- 2 Department of Pediatric Surgery, University of Texas Health Science Center at Houston, Houston, Texas
| | - Larry A Kramer
- 4 Department of Interventional Radiology, University of Texas Health Science Center at Houston, Houston, Texas
| | - Jesse T Fischer
- 5 Department of Psychology, University of Houston, Houston, Texas
| | - Gerardo Duque
- 1 Children's Learning Institute and Department of Pediatrics, University of Texas Health Science Center at Houston, Houston, Texas
| | - Paul R Swank
- 3 School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
44
|
Aylwin CF, Toro CA, Shirtcliff E, Lomniczi A. Emerging Genetic and Epigenetic Mechanisms Underlying Pubertal Maturation in Adolescence. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2019; 29:54-79. [PMID: 30869843 DOI: 10.1111/jora.12385] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The adolescent transition begins with the onset of puberty which, upstream in the brain, is initiated by the gonadotropin-releasing hormone (GnRH) pulse generator that activates the release of peripheral sex hormones. Substantial research in human and animal models has revealed a myriad of cellular networks and heritable genes that control the GnRH pulse generator allowing the individual to begin the process of reproductive competence and sexual maturation. Here, we review the latest knowledge in neuroendocrine pubertal research with emphasis on genetic and epigenetic mechanisms underlying the pubertal transition.
Collapse
|
45
|
Hein TC, Mattson WI, Dotterer HL, Mitchell C, Lopez-Duran N, Thomason ME, Peltier SJ, Welsh RC, Hyde LW, Monk CS. Amygdala habituation and uncinate fasciculus connectivity in adolescence: A multi-modal approach. Neuroimage 2018; 183:617-626. [PMID: 30172004 PMCID: PMC6197897 DOI: 10.1016/j.neuroimage.2018.08.058] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 11/17/2022] Open
Abstract
Despite prior extensive investigations of the interactions between the amygdala and prefrontal cortex, few studies have simultaneously considered activation and structural connectivity in this circuit, particularly as it pertains to adolescent socioemotional development. The current multi-modal study delineated the correspondence between uncinate fasciculus (UF) connectivity and amygdala habituation in a large adolescent sample that was drawn from a population-based sample. We then examined the influence of demographic variables (age, gender, and pubertal status) on the relation between UF connectivity and amygdala habituation. 106 participants (15-17 years) completed DTI and an fMRI emotional face processing task. Left UF fractional anisotropy was associated with left amygdala habituation to fearful faces, suggesting that increased structural connectivity of the UF may facilitate amygdala regulation. Pubertal status moderated this structure-function relation, such that the association was stronger in those who were less mature. Therefore, UF connectivity may be particularly important for emotion regulation during early puberty. This study is the first to link structural and functional limbic circuitry in a large adolescent sample with substantial representation of ethnic minority participants, providing a more comprehensive understanding of socioemotional development in an understudied population.
Collapse
Affiliation(s)
- Tyler C Hein
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Whitney I Mattson
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Center for Behavioral Health at the Research Institute of Nationwide Children's Hospital, Columbus, OH, USA
| | - Hailey L Dotterer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Colter Mitchell
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Population Studies Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | | | - Moriah E Thomason
- Department of Pediatrics, Wayne State University, Detroit, MI, USA; Merrill Palmer Skillman Institute for Child and Family Development, Wayne State University, Detroit, MI, USA
| | - Scott J Peltier
- Functional MRI Laboratory, University of Michigan, Ann Arbor, MI, USA
| | - Robert C Welsh
- Department of Psychiatry, University of Utah, Salt Lake City, UT, USA
| | - Luke W Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - Christopher S Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA; Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA; Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA; Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA; Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
46
|
Zhang H, Kyzar EJ, Bohnsack JP, Kokare DM, Teppen T, Pandey SC. Adolescent alcohol exposure epigenetically regulates CREB signaling in the adult amygdala. Sci Rep 2018; 8:10376. [PMID: 29991681 PMCID: PMC6039491 DOI: 10.1038/s41598-018-28415-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 06/18/2018] [Indexed: 12/14/2022] Open
Abstract
Binge alcohol drinking in adolescence leads to increased risk for alcohol use and other psychiatric disorders in adulthood. The transcription factor cAMP-response element binding (CREB) protein is involved in the neuronal response to adult ethanol exposure, but its role in the enduring effects of adolescent alcohol exposure in adulthood is unknown. We exposed male rats to adolescent intermittent ethanol (AIE) or saline (AIS) during post-natal days 28-41 and evaluated the epigenetic regulation of CREB dynamics in the adult amygdala. A subset of these adult rats was exposed to an acute ethanol challenge. AIE decreased CREB, phosphorylated CREB, CREB-binding protein (CBP) and p300 protein levels in adult amygdaloid brain structures. AIE exposure also causes deficits in Creb1, Cbp, and p300 mRNA expression in the amygdala of AIE adult rats which are normalized after acute ethanol exposure. Interestingly, occupancy of acetylated histone H3K9/14 proteins at specific locations in the Creb1, Cbp, and p300 gene promoter regions was decreased in the amygdala of AIE adult rats and was normalized by acute ethanol exposure. These results suggest that AIE exposure epigenetically reduces CREB and other related transcriptional activators in the amygdala in adulthood that may be associated with the behavioral effects of adolescent alcohol exposure.
Collapse
Affiliation(s)
- Huaibo Zhang
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA
| | - Evan J Kyzar
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA
| | - John Peyton Bohnsack
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Dadasaheb M Kokare
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | - Tara Teppen
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA
| | - Subhash C Pandey
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois, 60612, USA.
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, 60612, USA.
| |
Collapse
|
47
|
Lee NC, Weeda WD, Insel C, Somerville LH, Krabbendam L, Huizinga M. Neural substrates of the influence of emotional cues on cognitive control in risk-taking adolescents. Dev Cogn Neurosci 2018; 31:20-34. [PMID: 29729493 PMCID: PMC6969196 DOI: 10.1016/j.dcn.2018.04.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/26/2018] [Accepted: 04/18/2018] [Indexed: 11/21/2022] Open
Abstract
Adolescence is a period characterised by increases in risk-taking. This behaviour has been associated with an imbalance in the integration of the networks involved in cognitive control and motivational processes. We examined whether the influence of emotional cues on cognitive control differs between adolescents who show high or low levels of risk-taking behaviour. Participants who scored especially high or low on a risky decision task were subsequently administered an emotional go/no-go fMRI task comprising angry, happy and calm faces. Both groups showed decreased cognitive control when confronted with appetitive and aversive emotional cues. Activation in the inferior frontal gyrus (IFG) increased in line with the cognitive control demands of the task. Though the risk taking groups did not differ in their behavioural performance, functional connectivity analyses revealed the dorsal striatum plays a more central role in the processing of cognitive control in high than low risk-takers. Overall, these findings suggest that variance in fronto-striatal circuitry may underlie individual differences in risk-taking behaviour.
Collapse
Affiliation(s)
- Nikki C Lee
- Department of Clinical, Neuro- and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands; Department of Education and Family Studies, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands.
| | - Wouter D Weeda
- Department of Psychology, Faculty of Social and Behavioural Sciences, Leiden University, The Netherlands
| | - Catherine Insel
- Department of Psychology and Center for Brain Science, Harvard University, USA
| | - Leah H Somerville
- Department of Psychology and Center for Brain Science, Harvard University, USA
| | - Lydia Krabbendam
- Department of Clinical, Neuro- and Developmental Psychology, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands
| | - Mariëtte Huizinga
- Department of Education and Family Studies, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, The Netherlands
| |
Collapse
|
48
|
O'Leary JD, Hoban AE, Cryan JF, O'Leary OF, Nolan YM. Differential effects of adolescent and adult-initiated voluntary exercise on context and cued fear conditioning. Neuropharmacology 2018; 145:49-58. [PMID: 29793890 DOI: 10.1016/j.neuropharm.2018.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 04/19/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Abstract
Adolescence is a critical period for postnatal brain maturation and a time during which there is increased susceptibility to developing emotional and cognitive-related disorders. Exercise during adulthood has been shown to increase hippocampal plasticity and enhance cognition. However, the impact of exercise initiated in adolescence, on brain and behaviour in adulthood is not yet fully explored or understood. The aim of this study was to compare the impact of voluntary exercise that was initiated either during adolescence or early adulthood on cognitive performance in hippocampal and amygdala-dependent fear conditioning tasks in adulthood. Adult (eight weeks old) and adolescent (four weeks old) male Sprague Dawley rats had access to a running wheel (exercise) or were left undisturbed (sedentary control) for seven weeks. Adult-initiated exercise enhanced both contextual and cued fear conditioning, while conversely, exercise that began in adolescence did not affect performance in these tasks. These behaviours were accompanied by differential expression of plasticity-related genes in the hippocampus and amygdala in adulthood. Specifically, adolescent-initiated exercise increased the expression of an array of plasticity related genes in the hippocampus including BDNF, synaptophysin, Creb, PSD-95, Arc, TLX and DCX, while adult-initiated exercise did not affect hippocampal plasticity related genes. Together results show that exercise initiated during adolescence has a differential effect on hippocampal and amygdala-dependent behaviour and neuronal plasticity compared to when exercise was initiated in adulthood. These findings reinforce adolescence as a period during which environmental influences have a distinct impact on neuronal plasticity and cognition. This article is part of the Special Issue entitled "Neurobiology of Environmental Enrichment".
Collapse
Affiliation(s)
- James D O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Alan E Hoban
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Yvonne M Nolan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|
49
|
Albin RL. Tourette syndrome: a disorder of the social decision-making network. Brain 2018; 141:332-347. [PMID: 29053770 PMCID: PMC5837580 DOI: 10.1093/brain/awx204] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/08/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Tourette syndrome is a common neurodevelopmental disorder defined by characteristic involuntary movements, tics, with both motor and phonic components. Tourette syndrome is usually conceptualized as a basal ganglia disorder, with an emphasis on striatal dysfunction. While considerable evidence is consistent with these concepts, imaging data suggest diffuse functional and structural abnormalities in Tourette syndrome brain. Tourette syndrome exhibits features that are difficult to explain solely based on basal ganglia circuit dysfunctions. These features include the natural history of tic expression, with typical onset of tics around ages 5 to 7 years and exacerbation during the peri-pubertal years, marked sex disparity with higher male prevalence, and the characteristic distribution of tics. The latter are usually repetitive, somewhat stereotyped involuntary eye, facial and head movements, and phonations. A major functional role of eye, face, and head movements is social signalling. Prior work in social neuroscience identified a phylogenetically conserved network of sexually dimorphic subcortical nuclei, the Social Behaviour Network, mediating many social behaviours. Social behaviour network function is modulated developmentally by gonadal steroids and social behaviour network outputs are stereotyped sex and species specific behaviours. In 2011 O'Connell and Hofmann proposed that the social behaviour network interdigitates with the basal ganglia to form a greater network, the social decision-making network. The social decision-making network may have two functionally complementary limbs: the basal ganglia component responsible for evaluation of socially relevant stimuli and actions with the social behaviour network component responsible for the performance of social acts. Social decision-making network dysfunction can explain major features of the neurobiology of Tourette syndrome. Tourette syndrome may be a disorder of social communication resulting from developmental abnormalities at several levels of the social decision-making network. The social decision-making network dysfunction hypothesis suggests new avenues for research in Tourette syndrome and new potential therapeutic targets.
Collapse
Affiliation(s)
- Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, 48105, USA
- University of Michigan Morris K. Udall Parkinson’s Disease Research Center, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
50
|
Testosterone during Puberty Shifts Emotional Control from Pulvinar to Anterior Prefrontal Cortex. J Neurosci 2017; 36:6156-64. [PMID: 27277794 DOI: 10.1523/jneurosci.3874-15.2016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 04/03/2016] [Indexed: 01/02/2023] Open
Abstract
UNLABELLED Increased limbic and striatal activation in adolescence has been attributed to a relative delay in the maturation of prefrontal areas, resulting in the increase of impulsive reward-seeking behaviors that are often observed during puberty. However, it remains unclear whether and how this general developmental pattern applies to the control of social emotional actions, a fundamental adult skill refined during adolescence. This domain of control pertains to decisions involving emotional responses. When faced with a social emotional challenge (e.g., an angry face), we can follow automatic response tendencies and avoid the challenge or exert control over those tendencies by selecting an alternative action. Using an fMRI-adapted social approach-avoidance task, this study identifies how the neural regulation of emotional action control changes as a function of human pubertal development in 14-year-old adolescents (n = 47). Pubertal maturation, indexed by testosterone levels, shifted neural regulation of emotional actions from the pulvinar nucleus of the thalamus and the amygdala to the anterior prefrontal cortex (aPFC). Adolescents with more advanced pubertal maturation showed greater aPFC activity when controlling their emotional action tendencies, reproducing the same pattern consistently observed in adults. In contrast, adolescents of the same age, but with less advanced pubertal maturation, showed greater pulvinar and amygdala activity when exerting similarly effective emotional control. These findings qualify how, in the domain of social emotional actions, executive control shifts from subcortical to prefrontal structures during pubertal development. The pulvinar and the amygdala are suggested as the ontogenetic precursors of the mature control system centered on the anterior prefrontal cortex. SIGNIFICANCE STATEMENT Adolescents can show distinct behavioral problems when emotionally aroused. This could be related to later development of frontal regions compared with deeper brain structures. This study found that when the control of emotional actions needs to be exerted, more mature adolescents, similar to adults, recruit the anterior prefrontal cortex (aPFC). Less mature adolescents recruit specific subcortical regions, namely the pulvinar and amygdala. These findings identify the subcortical pulvino-amygdalar pathway as a relevant precursor of a mature aPFC emotional control system, opening the way for a neurobiological understanding of how emotion control-related disorders emerge during puberty.
Collapse
|