1
|
Li J, Bi Q, Pi Y, Jiang X, Li Y, Li X. Dietary Supplementation with 25-Hydroxyvitamin D 3 on Reproductive Performance and Placental Oxidative Stress in Primiparous Sows during Mid-to-Late Gestation. Antioxidants (Basel) 2024; 13:1090. [PMID: 39334749 PMCID: PMC11428878 DOI: 10.3390/antiox13091090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
The placenta plays a crucial role in nutrient transport and waste exchange between the dam and fetus, sustaining fetal growth. While the positive effects of 25-hydroxyvitamin D3 (25-OH-D3) on animal performance have been reported, its impact on placental function remains largely unknown. Therefore, this study aimed to investigate the effects of supplementing 25-OH-D3 in the diet of primiparous sows on reproductive performance, antioxidant capacity, placental oxidative stress, nutrient transport, and inflammatory response during mid-to-late gestation. A total of 45 healthy Landrace × Yorkshire primiparous sows on day 60 of gestation were selected and randomly allocated to three treatment groups based on body weight and backfat thickness: the control group (corn-soybean meal basal diet), the VD3 group (basal diet + 2000 IU VD3), and the 25-OH-D3 group (basal diet + 50 μg/kg 25-OH-D3). The results demonstrated that supplementation with 25-OH-D3 in the diet enhanced sows' average litter weight and birth weight during mid-to-late gestation. Additionally, plasma malondialdehyde (MDA) concentrations in sows significantly decreased in the VD3 and 25-OH-D3 groups (p < 0.05). Furthermore, lower gene expressions of placental HO-1, GPX2, IL-8, and IL-6 were found in the VD3 or 25-OH-D3 groups (p < 0.05 or p < 0.10), while higher gene expressions of GLUT1 and SNAT2 in the placenta of sows were observed in the VD3 and 25-OH-D3 groups, respectively (p < 0.05). These findings indicate that the supplementation of VD3 and 25-OH-D3 in the diet of sows can improve their plasma oxidative stress status, enhance placental antioxidant capacity and nutrient transport, and reduce placental inflammatory responses, with more pronounced improvements in sow performance observed in sows fed diets supplemented with 25-OH-D3.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qingyue Bi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Agriculture, Yanbian University, Yanji 133000, China
| | - Yu Pi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
2
|
Zhang M, Lu X, Mi L, Song M, Wang L, Wang X. Investigation of amino acid profile alterations in maternal serum for early diagnosis of anembryonic pregnancy with high performance liquid chromatography-mass spectrometry. Eur J Obstet Gynecol Reprod Biol 2024; 294:49-54. [PMID: 38215601 DOI: 10.1016/j.ejogrb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Anembryonic pregnancy affects 12-15 % of clinically recognized pregnancies and a previous anembryonic pregnancy is an independent risk factor for future anembryonic pregnancy. This study aimed to investigate alternations in maternal amino acid profiles and analyze the diagnostic accuracy of amino acid biomarkers for anembryonic pregnancy in the early stage. METHODS Fasting serum from anembryonic pregnancy patients (n = 103) and healthy pregnancies (n = 97) was collected, and amino acid concentrations were determined by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). A receiver operating characteristic (ROC) curve was used to evaluate the diagnostic performance of each of the amino acid biomarkers and the amino acid profile index for anembryonic pregnancy screening. RESULTS The concentrations of 15 amino acids were significantly different between anembryonic pregnancy patients and healthy controls, and most of them were significantly higher at 7 weeks' gestational age in anembryonic pregnancy subjects. The area under the curve (AUC) based on an amino acid profile index combined with alanine, citrulline, aspartic acid, threonine, serine and isoleucine was 0.90 (sensitivity 82.76 %, specificity 83.64 %) for distinguishing early anembryonic pregnancy from healthy controls. CONCLUSION Maternal serum amino acid concentrations were significantly elevated in anembryonic pregnancy patients. The diagnostic potential of amino aicds for anembryonic pregnancy was verified, and the diagnostic efficiency was improved in the use of the amino acid profile index. The amino acid profile is expected to be applied for the risk screening of early-stage of anembryonic pregnancy in the future.
Collapse
Affiliation(s)
- Min Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing 100020, China; Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing 100020, China
| | - XiaoLin Lu
- Department of Biobank, Capital Institute of Pediatrics, Beijing 100020, China
| | - LaLa Mi
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan 030001, China
| | - MeiYan Song
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan 030001, China
| | - Li Wang
- Department of Biobank, Capital Institute of Pediatrics, Beijing 100020, China.
| | - XiaoYan Wang
- Department of Nutrition Center, Capital Institute of Pediatrics, Beijing, China.
| |
Collapse
|
3
|
da Silva ACR, Yadegari A, Tzaneva V, Vasanthan T, Laketic K, Shearer J, Bainbridge SA, Harris C, Adamo KB. Metabolomics to Understand Alterations Induced by Physical Activity during Pregnancy. Metabolites 2023; 13:1178. [PMID: 38132860 PMCID: PMC10745110 DOI: 10.3390/metabo13121178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Physical activity (PA) and exercise have been associated with a reduced risk of cancer, obesity, and diabetes. In the context of pregnancy, maintaining an active lifestyle has been shown to decrease gestational weight gain (GWG) and lower the risk of gestational diabetes mellitus (GDM), hypertension, and macrosomia in offspring. The main pathways activated by PA include BCAAs, lipids, and bile acid metabolism, thereby improving insulin resistance in pregnant individuals. Despite these known benefits, the underlying metabolites and biological mechanisms affected by PA remain poorly understood, highlighting the need for further investigation. Metabolomics, a comprehensive study of metabolite classes, offers valuable insights into the widespread metabolic changes induced by PA. This narrative review focuses on PA metabolomics research using different analytical platforms to analyze pregnant individuals. Existing studies support the hypothesis that exercise behaviour can influence the metabolism of different populations, including pregnant individuals and their offspring. While PA has shown considerable promise in maintaining metabolic health in non-pregnant populations, our comprehension of metabolic changes in the context of a healthy pregnancy remains limited. As a result, further investigation is necessary to clarify the metabolic impact of PA within this unique group, often excluded from physiological research.
Collapse
Affiliation(s)
- Ana Carolina Rosa da Silva
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Anahita Yadegari
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Velislava Tzaneva
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| | - Tarushika Vasanthan
- Department of Chemistry and Biology, Toronto Metropolitan University, Toronto, ON M5G 2A7, Canada
| | - Katarina Laketic
- Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, Cumming School of Medicine and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shannon A. Bainbridge
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, Ottawa, ON K1N 6N5, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cory Harris
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada;
| | - Kristi B. Adamo
- School of Human Kinetics, Faculty of Health Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada; (A.C.R.d.S.)
| |
Collapse
|
4
|
Merrill AK, Sobolewski M, Susiarjo M. Exposure to endocrine disrupting chemicals impacts immunological and metabolic status of women during pregnancy. Mol Cell Endocrinol 2023; 577:112031. [PMID: 37506868 PMCID: PMC10592265 DOI: 10.1016/j.mce.2023.112031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Affiliation(s)
- Alyssa K Merrill
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine, Rochester, NY, USA.
| |
Collapse
|
5
|
India-Aldana S, Yao M, Midya V, Colicino E, Chatzi L, Chu J, Gennings C, Jones DP, Loos RJF, Setiawan VW, Smith MR, Walker RW, Barupal D, Walker DI, Valvi D. PFAS Exposures and the Human Metabolome: A Systematic Review of Epidemiological Studies. CURRENT POLLUTION REPORTS 2023; 9:510-568. [PMID: 37753190 PMCID: PMC10520990 DOI: 10.1007/s40726-023-00269-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 09/28/2023]
Abstract
Purpose of Review There is a growing interest in understanding the health effects of exposure to per- and polyfluoroalkyl substances (PFAS) through the study of the human metabolome. In this systematic review, we aimed to identify consistent findings between PFAS and metabolomic signatures. We conducted a search matching specific keywords that was independently reviewed by two authors on two databases (EMBASE and PubMed) from their inception through July 19, 2022 following PRISMA guidelines. Recent Findings We identified a total of 28 eligible observational studies that evaluated the associations between 31 different PFAS exposures and metabolomics in humans. The most common exposure evaluated was legacy long-chain PFAS. Population sample sizes ranged from 40 to 1,105 participants at different stages across the lifespan. A total of 19 studies used a non-targeted metabolomics approach, 7 used targeted approaches, and 2 included both. The majority of studies were cross-sectional (n = 25), including four with prospective analyses of PFAS measured prior to metabolomics. Summary Most frequently reported associations across studies were observed between PFAS and amino acids, fatty acids, glycerophospholipids, glycerolipids, phosphosphingolipids, bile acids, ceramides, purines, and acylcarnitines. Corresponding metabolic pathways were also altered, including lipid, amino acid, carbohydrate, nucleotide, energy metabolism, glycan biosynthesis and metabolism, and metabolism of cofactors and vitamins. We found consistent evidence across studies indicating PFAS-induced alterations in lipid and amino acid metabolites, which may be involved in energy and cell membrane disruption.
Collapse
Affiliation(s)
- Sandra India-Aldana
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Meizhen Yao
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Vishal Midya
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Leda Chatzi
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaime Chu
- Department of Pediatrics, Icahn School of Medicine at Mount
Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dean P. Jones
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
| | - Ruth J. F. Loos
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
- Charles Bronfman Institute for Personalized Medicine, Icahn
School of Medicine at Mount Sinai, New York, NY, USA
- Faculty of Health and Medical Sciences, Novo Nordisk
Foundation Center for Basic Metabolic Research, University of Copenhagen,
Copenhagen, Denmark
| | - Veronica W. Setiawan
- Department of Population and Public Health Sciences, Keck
School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mathew Ryan Smith
- Clinical Biomarkers Laboratory, Division of Pulmonary,
Allergy, Critical Care and Sleep Medicine, Emory University, Atlanta, GA, USA
- Veterans Affairs Medical Center, Decatur, GA, USA
| | - Ryan W. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Dinesh Barupal
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1057, New
York, NY 10029, USA
| |
Collapse
|
6
|
O'Brien K, Wang Y. The Placenta: A Maternofetal Interface. Annu Rev Nutr 2023; 43:301-325. [PMID: 37603428 DOI: 10.1146/annurev-nutr-061121-085246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
The placenta is the gatekeeper between the mother and the fetus. Over the first trimester of pregnancy, the fetus is nourished by uterine gland secretions in a process known as histiotrophic nutrition. During the second trimester of pregnancy, placentation has evolved to the point at which nutrients are delivered to the placenta via maternal blood (hemotrophic nutrition). Over gestation, the placenta must adapt to these variable nutrient supplies, to alterations in maternal physiology and blood flow, and to dynamic changes in fetal growth rates. Numerous questions remain about the mechanisms used to transport nutrients to the fetus and the maternal and fetal determinants of this process. Growing data highlight the ability of the placenta to regulate this process. As new technologies and omics approaches are utilized to study this maternofetal interface, greater insight into this unique organ and its impact on fetal development and long-term health has been obtained.
Collapse
Affiliation(s)
- Kimberly O'Brien
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| | - Yiqin Wang
- Division of Nutritional Sciences, College of Human Ecology, Cornell University, Ithaca, New York, USA; ,
| |
Collapse
|
7
|
Xing X, Duan Y, Wang Y, Wang J, Yang Z, Shao L, Li L, Lai J. The Association between Macrosomia and Amino Acids' Levels in Maternal and Cord Sera: A Case-Control Study. Nutrients 2023; 15:3440. [PMID: 37571377 PMCID: PMC10421079 DOI: 10.3390/nu15153440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
This study aims to explore the relationship between macrosomia and amino acids in maternal and cord sera. METHODS In the case-control study, 78 pairs of mothers and newborns were recruited from December 2016 to November 2019. Participants were divided into the macrosomia group (BW ≥ 4000 g, n = 39) and the control group (BW between 2500 g and 3999 g, n = 39) according to the birth weight (BW) of newborns. Maternal vein blood samples were collected before delivery and cord vein blood samples were collected after birth. The levels of amino acids in maternal and cord sera were measured by liquid chromatography and mass spectrometry (LC-MS/MS) in the year 2021. The difference in amino acid levels in maternal and cord sera between the two groups was compared, and the contribution of each amino acid to the difference between the two groups was analyzed. Unconditional logistic regression analysis was used to test the relationship between macrosomia and amino acids. RESULTS In maternal serum during the antepartum, the levels of asparagine, glutamine, methionine, alanine, and threonine in the macrosomia group were higher but arginine was lower than that in the control group (p < 0.05). In cord serum, the levels of lysine, histidine, phenylalanine, arginine, tryptophan, valine, isoleucine, glutamate, tyrosine, and total essential amino acid (EAA) in the macrosomia group were lower while glutamine was higher than that in the control group (p < 0.05). The ratios of EAA, valine, threonine, methionine, tryptophan, and alanine in maternal serum to those in cord serum were higher, while the ratio of glutamine was lower in the macrosomia group (p < 0.05). Arginine and threonine in maternal serum and glutamate, glutamine, and histidine in cord serum were associated with macrosomia (p < 0.05). CONCLUSION Most of the amino acid levels in the maternal sera of the macrosomia group are higher than those in the control group, while most of the amino acids' levels in the cord sera of the macrosomia group are lower than those in the control group. The ratios of some amino acids in maternal serum to those in cord serum were different between the two groups. Arginine and threonine in maternal serum and glutamate, glutamine, and histidine in cord serum are closely related to macrosomia.
Collapse
Affiliation(s)
- Xinxin Xing
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Yifan Duan
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Ye Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Jie Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Zhenyu Yang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| | - Lijun Shao
- Beijing Health Bio Technology Co., Ltd., Beijing 102200, China; (L.S.); (L.L.)
| | - Lin Li
- Beijing Health Bio Technology Co., Ltd., Beijing 102200, China; (L.S.); (L.L.)
| | - Jianqiang Lai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China; (X.X.); (Y.D.); (Y.W.); (J.W.); (Z.Y.)
| |
Collapse
|
8
|
Furukawa T, Fukuda A. Maternal taurine as a modulator of Cl - homeostasis as well as of glycine/GABA A receptors for neocortical development. Front Cell Neurosci 2023; 17:1221441. [PMID: 37601283 PMCID: PMC10435090 DOI: 10.3389/fncel.2023.1221441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
During brain and spinal cord development, GABA and glycine, the inhibitory neurotransmitters, cause depolarization instead of hyperpolarization in adults. Since glycine and GABAA receptors (GABAARs) are chloride (Cl-) ion channel receptor, the conversion of GABA/glycine actions during development is influenced by changes in the transmembrane Cl- gradient, which is regulated by Cl- transporters, NKCC1 (absorption) and KCC2 (expulsion). In immature neurons, inhibitory neurotransmitters are released in a non-vesicular/non-synaptic manner, transitioning to vesicular/synaptic release as the neuron matures. In other word, in immature neurons, neurotransmitters generally act tonically. Thus, the glycine/GABA system is a developmentally multimodal system that is required for neurogenesis, differentiation, migration, and synaptogenesis. The endogenous agonists for these receptors are not fully understood, we address taurine. In this review, we will discuss about the properties and function of taurine during development of neocortex. Taurine cannot be synthesized by fetuses or neonates, and is transferred from maternal blood through the placenta or maternal milk ingestion. In developing neocortex, taurine level is higher than GABA level, and taurine tonically activates GABAARs to control radial migration as a stop signal. In the marginal zone (MZ) of the developing neocortex, endogenous taurine modulates the spread of excitatory synaptic transmission, activating glycine receptors (GlyRs) as an endogenous agonist. Thus, taurine affects information processing and crucial developmental processes such as axonal growth, cell migration, and lamination in the developing cerebral cortex. Additionally, we also refer to the possible mechanism of taurine-regulating Cl- homeostasis. External taurine is uptake by taurine transporter (TauT) and regulates NKCC1 and KCC2 mediated by intracellular signaling pathway, with-no-lysine kinase 1 (WNK1) and its subsequent kinases STE20/SPS1-related proline-alanine-rich protein kinase (SPAK) and oxidative stress response kinase-1 (OSR1). Through the regulation of NKCC1 and KCC2, mediated by the WNK-SPAK/OSR1 signaling pathway, taurine plays a role in maintaining Cl- homeostasis during normal brain development.
Collapse
Affiliation(s)
- Tomonori Furukawa
- Department of Neurophysiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Atsuo Fukuda
- Department of Neurophysiology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
9
|
Guadix P, Corrales I, Vilariño-García T, Rodríguez-Chacón C, Sánchez-Jiménez F, Jiménez-Cortegana C, Dueñas JL, Sánchez-Margalet V, Pérez-Pérez A. Expression of nutrient transporters in placentas affected by gestational diabetes: role of leptin. Front Endocrinol (Lausanne) 2023; 14:1172831. [PMID: 37497352 PMCID: PMC10366688 DOI: 10.3389/fendo.2023.1172831] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is the most frequent pathophysiological state of pregnancy, which in many cases produces fetuses with macrosomia, requiring increased nutrient transport in the placenta. Recent studies by our group have demonstrated that leptin is a key hormone in placental physiology, and its expression is increased in placentas affected by GDM. However, the effect of leptin on placental nutrient transport, such as transport of glucose, amino acids, and lipids, is not fully understood. Thus, we aimed to review literature on the leptin effect involved in placental nutrient transport as well as activated leptin signaling pathways involved in the expression of placental transporters, which may contribute to an increase in placental nutrient transport in human pregnancies complicated by GDM. Leptin appears to be a relevant key hormone that regulates placental transport, and this regulation is altered in pathophysiological conditions such as gestational diabetes. Adaptations in the placental capacity to transport glucose, amino acids, and lipids may underlie both under- or overgrowth of the fetus when maternal nutrient and hormone levels are altered due to changes in maternal nutrition or metabolic disease. Implementing new strategies to modulate placental transport may improve maternal health and prove effective in normalizing fetal growth in cases of intrauterine growth restriction and fetal overgrowth. However, further studies are needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Pilar Guadix
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Isabel Corrales
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Teresa Vilariño-García
- Clinical Biochemistry Service, Virgen del Rocio University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Carmen Rodríguez-Chacón
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Flora Sánchez-Jiménez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Carlos Jiménez-Cortegana
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - José L. Dueñas
- Obstetrics and Gynecology Service, Virgen Macarena University Hospital, School of Medicine, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Antonio Pérez-Pérez
- Clinical Biochemistry Service, Virgen Macarena University Hospital and Department of Medical Biochemistry and Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| |
Collapse
|
10
|
Zhu XZ, Deng ZM, Dai FF, Liu H, Cheng YX. The impact of early pregnancy metabolic disorders on pregnancy outcome and the specific mechanism. Eur J Med Res 2023; 28:197. [PMID: 37355665 DOI: 10.1186/s40001-023-01161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 06/08/2023] [Indexed: 06/26/2023] Open
Abstract
Miscarriage is the most common complication of pregnancy. The most common causes of early miscarriage are chromosomal abnormalities of the embryo, maternal endocrine abnormalities, organ malformations, and abnormal immune factors. Late miscarriages are mostly caused by factors such as cervical insufficiency. However, the causes of 50% of miscarriages remain unknown. Recently, increasing attention has been given to the role of metabolic abnormalities in miscarriage. In this review, we mainly discuss the roles of four major metabolic pathways (glucose, lipid, and amino acid metabolism, and oxidation‒reduction balance) in miscarriage and the metabolism-related genes that lead to metabolic disorders in miscarriage. Depending on aetiology, the current treatments for miscarriage include hormonal and immunological drugs, as well as surgery, while there are few therapies for metabolism. Therefore, we also summarize the drugs for metabolism-related targets. The study of altered metabolism underlying miscarriage not only helps us to understand the mechanisms involved in miscarriage but also provides an important basis for clinical research on new therapies.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Zhi-Min Deng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Fang-Fang Dai
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China
| | - Hua Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| | - Yan-Xiang Cheng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, 430060, Hubei, China.
| |
Collapse
|
11
|
Heath H, Rosario R, McMichael LE, Fanter R, Alarcon N, Quintana-Diaz A, Pilolla K, Schaffner A, Jelalian E, Wing RR, Brito A, Phelan S, La Frano MR. Gestational Diabetes Is Characterized by Decreased Medium-Chain Acylcarnitines and Elevated Purine Degradation Metabolites across Pregnancy: A Case-Control Time-Course Analysis. J Proteome Res 2023. [PMID: 37129248 DOI: 10.1021/acs.jproteome.2c00430] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Gestational Diabetes Mellitus (GDM) results in complications affecting both mothers and their offspring. Metabolomic analysis across pregnancy provides an opportunity to better understand GDM pathophysiology. The objective was to conduct a metabolomics analysis of first and third trimester plasma samples to identify metabolic differences associated with GDM development. Forty pregnant women with overweight/obesity from a multisite clinical trial of a lifestyle intervention were included. Participants who developed GDM (n = 20; GDM group) were matched with those who did not develop GDM (n = 20; Non-GDM group). Plasma samples collected at the first (10-16 weeks) and third (28-35 weeks) trimesters were analyzed with ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Cardiometabolic risk markers, dietary recalls, and physical activity metrics were also assessed. Four medium-chain acylcarnitines, lauroyl-, octanoyl-, decanoyl-, and decenoylcarnitine, significantly differed over the course of pregnancy in the GDM vs Non-GDM group in a group-by-time interaction (p < 0.05). Hypoxanthine and inosine monophosphate were elevated in the GDM group (p < 0.04). In both groups over time, bile acids and sorbitol increased while numerous acylcarnitines and α-hydroxybutyrate decreased (p < 0.05). Metabolites involved in fatty acid oxidation and purine degradation were altered across the first and third trimesters of GDM-affected pregnancies, providing insight into metabolites and metabolic pathways altered with GDM development.
Collapse
Affiliation(s)
- Hannah Heath
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Rodrigo Rosario
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Lauren E McMichael
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Rob Fanter
- College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Noemi Alarcon
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Adilene Quintana-Diaz
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Kari Pilolla
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Andrew Schaffner
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Department of Statistics, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Elissa Jelalian
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, Rhode Island 02903, United States
| | - Rena R Wing
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School at Brown University, Providence, Rhode Island 02903, United States
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis. Institute of Translational Medicine and Biotechnology. I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Suzanne Phelan
- Department of Kinesiology and Public Health, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California 93407, United States
| | - Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Cal Poly Metabolomics Service Center, California Polytechnic State University, San Luis Obispo, California 93407, United States
- Center for Health Research, California Polytechnic State University, San Luis Obispo, California 93407, United States
| |
Collapse
|
12
|
Enthoven LF, Shi Y, Fay EE, Moreni S, Mao J, Honeyman EM, Smith CK, Whittington D, Brockerhoff SE, Isoherranen N, Totah RA, Hebert MF. The Effects of Pregnancy on Amino Acid Levels and Nitrogen Disposition. Metabolites 2023; 13:242. [PMID: 36837861 PMCID: PMC9961409 DOI: 10.3390/metabo13020242] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023] Open
Abstract
Limited data are available on the effects of pregnancy on the maternal metabolome. Therefore, the objective of this study was to use metabolomics analysis to determine pathways impacted by pregnancy followed by targeted confirmatory analysis to provide more powerful conclusions about metabolic alterations during pregnancy. Forty-seven pregnant women, 18-50 years of age were included in this study, with each subject serving as their own control. Plasma samples were collected between 25 and 28 weeks gestation and again ≥3 months postpartum for metabolomics analysis utilizing an HILIC/UHPLC/MS/MS assay with confirmatory targeted specific concentration analysis for 10 of the significantly altered amino acids utilizing an LC/MS assay. Principle component analysis (PCA) on metabolomics data clearly separated pregnant and postpartum groups and identified outliers in a preliminary assessment. Of the 980 metabolites recorded, 706 were determined to be significantly different between pregnancy and postpartum. Pathway analysis revealed three significantly impacted pathways, arginine biosynthesis (p = 2 × 10-5 and FDR = 1 × 10-3), valine, leucine, and isoleucine metabolism (p = 2 × 10-5 and FDR = 2 × 10-3), and xanthine metabolism (p = 4 × 10-5 and FDR = 4 × 10-3). Of these we focused analysis on arginine biosynthesis and branched-chain amino acid (BCAA) metabolism due to their clinical importance and interconnected roles in amino acid metabolism. In the confirmational analysis, 7 of 10 metabolites were confirmed as significant and all 10 confirmed the direction of change of concentrations observed in the metabolomics analysis. The data support an alteration in urea nitrogen disposition and amino acid metabolism during pregnancy. These changes could also impact endogenous nitric oxide production and contribute to diseases of pregnancy. This study provides evidence for changes in both the ammonia-urea nitrogen and the BCAA metabolism taking place during pregnancy.
Collapse
Affiliation(s)
- Luke F. Enthoven
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Yuanyuan Shi
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Emily E. Fay
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Sue Moreni
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Jennie Mao
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Emma M. Honeyman
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Chase K. Smith
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Dale Whittington
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | | | - Nina Isoherranen
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Rheem A. Totah
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Mary F. Hebert
- Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
13
|
Zhao J, Stewart ID, Baird D, Mason D, Wright J, Zheng J, Gaunt TR, Evans DM, Freathy RM, Langenberg C, Warrington NM, Lawlor DA, Borges MC. Causal effects of maternal circulating amino acids on offspring birthweight: a Mendelian randomisation study. EBioMedicine 2023; 88:104441. [PMID: 36696816 PMCID: PMC9879767 DOI: 10.1016/j.ebiom.2023.104441] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/28/2022] [Accepted: 01/06/2023] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Amino acids are key to protein synthesis, energy metabolism, cell signaling and gene expression; however, the contribution of specific maternal amino acids to fetal growth is unclear. METHODS We explored the effect of maternal circulating amino acids on fetal growth, proxied by birthweight, using two-sample Mendelian randomisation (MR) and summary data from a genome-wide association study (GWAS) of serum amino acids levels (sample 1, n = 86,507) and a maternal GWAS of offspring birthweight in UK Biobank and Early Growth Genetics Consortium, adjusting for fetal genotype effects (sample 2, n = 406,063 with maternal and/or fetal genotype effect estimates). A total of 106 independent single nucleotide polymorphisms robustly associated with 19 amino acids (p < 4.9 × 10-10) were used as genetic instrumental variables (IV). Wald ratio and inverse variance weighted methods were used in MR main analysis. A series of sensitivity analyses were performed to explore IV assumption violations. FINDINGS Our results provide evidence that maternal circulating glutamine (59 g offspring birthweight increase per standard deviation increase in maternal amino acid level, 95% CI: 7, 110) and serine (27 g, 95% CI: 9, 46) raise, while leucine (-59 g, 95% CI: -106, -11) and phenylalanine (-25 g, 95% CI: -47, -4) lower offspring birthweight. These findings are supported by sensitivity analyses. INTERPRETATION Our findings strengthen evidence for key roles of maternal circulating amino acids during pregnancy in healthy fetal growth. FUNDING A full list of funding bodies that contributed to this study can be found under Acknowledgments.
Collapse
Affiliation(s)
- Jian Zhao
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Bristol NIHR Biomedical Research Centre, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; The Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Maternal and Child Health, School of Public Health, Shanghai Jiao Tong University, Shanghai, China.
| | | | - Denis Baird
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Dan Mason
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, UK
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals National Health Service Foundation Trust, Bradford, UK
| | - Jie Zheng
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Bristol NIHR Biomedical Research Centre, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David M Evans
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Rachel M Freathy
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK; Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, UK; Computational Medicine, Berlin Institute of Health (BIH), Charité University Medicine, Berlin, Germany
| | - Nicole M Warrington
- University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia; Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia; K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Bristol NIHR Biomedical Research Centre, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK; Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
14
|
Syring JG, Crouse MS, Neville TL, Ward AK, Dahlen CR, Reynolds LP, Borowicz PP, McLean KJ, Neville BW, Caton JS. Concentrations of vitamin B12 and folate in maternal serum and fetal fluids, metabolite interrelationships, and hepatic transcript abundance of key folate and methionine cycle genes: the impacts of maternal nutrition during the first 50 d of gestation. J Anim Sci 2023; 101:skad139. [PMID: 37129588 PMCID: PMC10199783 DOI: 10.1093/jas/skad139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023] Open
Abstract
Adequate maternal nutrition is key for proper fetal development and epigenetic programming. One-carbon metabolites (OCM), including vitamin B12, folate, choline, and methionine, play a role in epigenetic mechanisms associated with developmental programming. This study investigated the presence of B12 and folate in maternal serum, allantoic fluid (ALF), and amniotic fluid (AMF), as well as how those concentrations in all three fluids correlate to the concentrations of methionine-folate cycle intermediates in heifers receiving either a control (CON) or restricted (RES) diet for the first 50 d of gestation and fetal hepatic gene expression for methionine-folate cycle enzymes. Angus cross heifers (n = 43) were estrus synchronized, bred via artificial insemination with semen from a single sire, and randomly assigned to one of two nutrition treatments (CON = 20, RES = 23). Heifers were ovariohysterectomized on either day 16 (n = 14), 34 (n = 15), or 50 of gestation (n = 14), where samples of maternal serum (n = 42), ALF (n = 29), and AMF (n = 11) were collected and analyzed for concentrations of folate and B12. Concentrations of B12 and folate in ALF were greater (P < 0.05) in RES compared to CON. For ALF, folate concentrations were also greater (P < 0.01) on day 34 compared to day 50. There was a significant (P = 0.04) nutrition × fluid interaction for B12 concentrations where concentrations were greatest in restricted ALF, intermediate in control ALF, and lowest in CON and RES serum and AMF. Folate concentrations were greatest (P < 0.01) in ALF, intermediate in serum, and lowest in AMF. Additionally, positive correlations (P < 0.05) were found between ALF and AMF folate concentrations and AMF concentrations of methionine, serine, and glycine. Negative correlations (P < 0.05) between AMF folate and serum homocysteine were also observed. Both positive and negative correlations (P < 0.05) depending on the fluid evaluated were found between B12 and methionine, serine, and glycine concentrations. There was a downregulation (P = 0.05) of dihydrofolate reductase and upregulation (P = 0.03) of arginine methyltransferase 7 gene expression in RES fetal liver samples compared with CON fetal liver on day 50. Combined, these data show restricted maternal nutrition results in increased B12 and folate concentrations present in fetal fluids, and increased expression of genes for enzymes within one-carbon metabolism.
Collapse
Affiliation(s)
- Jessica G Syring
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Matthew S Crouse
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Tammi L Neville
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Alison K Ward
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Carl R Dahlen
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Lawrence P Reynolds
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Pawel P Borowicz
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| | - Kyle J McLean
- Department of Animal Science, University of Tennessee, Knoxville, TN 37996, USA
| | - Bryan W Neville
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Joel S Caton
- Center for Nutrition and Pregnancy, North Dakota State University, Fargo, ND 58108, USA
| |
Collapse
|
15
|
Yuan H, Liu C, Wang X, Huang T, Liu D, Huang S, Wu Z, Liu Y, Yin P, Yang B. Association between aberrant amino acid metabolism and nonchromosomal modifications fetal structural anomalies: A cohort study. Front Endocrinol (Lausanne) 2023; 14:1072461. [PMID: 36909308 PMCID: PMC9998993 DOI: 10.3389/fendo.2023.1072461] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/06/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND More than half of the cases of fetal structural anomalies have no known cause with standard investigations like karyotype testing and chromosomal microarray. The differential metabolic profiles of amniotic fluid (AF) and maternal blood may reveal valuable information about the physiological processes of fetal development, which may provide valuable biomarkers for fetal health diagnostics. METHODS This cohort study of singleton-pregnant women had indications for amniocentesis, including structural anomalies and a positive result from maternal serum screening or non-invasive prenatal testing, but did not have any positive abnormal karyotype or chromosomal microarray analysis results. A total of 1580 participants were enrolled between June 2021 and March 2022. Of the 1580 pregnant women who underwent amniocentesis, 294 were included in the analysis. There were 137 pregnant women in the discovery cohort and 157 in the validation cohort. RESULTS High-coverage untargeted metabolomic analysis of AF revealed distinct metabolic signatures with 321 of the 602 metabolites measured (53%) (false discovery rate, q < 0.005), among which amino acids predominantly changed in structural anomalies. Targeted metabolomics identified glutamate and glutamine as novel predictive markers for structural anomalies, their vital role was also confirmed in the validation cohort with great predictive ability, and the area under the receiver operating characteristic curves (AUCs) were 0.862 and 0.894 respectively. And AUCs for glutamine/glutamate were 0.913 and 0.903 among the two cohorts. CONCLUSIONS Our results suggested that the aberrant glutamine/glutamate metabolism in AF is associated with nonchromosomal modificantions fetal structural anomalies. Based on our findings, a novel screening method could be established for the nonchromosomal modificantions fetal structural anomalies. And the results also indicate that monitoring fetal metabolic conditions (especially glutamine and glutamine metabolism) may be helpful for antenatal diagnosis and therapy.
Collapse
Affiliation(s)
- Huizhen Yuan
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Chang Liu
- Chinese Academy of Sciences Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Key Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Xinrong Wang
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Tingting Huang
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Danping Liu
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Shuhui Huang
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Zeming Wu
- iPhenome Biotechnology (Yun Pu Kang) Inc., Dalian, China
| | - Yanqiu Liu
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- *Correspondence: Bicheng Yang, ; Yanqiu Liu, ; Peiyuan Yin,
| | - Peiyuan Yin
- Key Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute of Integrative Medicine, Dalian Medical University, Dalian, China
- *Correspondence: Bicheng Yang, ; Yanqiu Liu, ; Peiyuan Yin,
| | - Bicheng Yang
- Jiangxi Key Laboratory of Birth Defect Prevention and Control, Jiangxi Maternal and Child Health Hospital, Nanchang, China
- *Correspondence: Bicheng Yang, ; Yanqiu Liu, ; Peiyuan Yin,
| |
Collapse
|
16
|
SLC38A4 Amino Acid Transporter Expression Is Significantly Lower in Early Preterm Intrauterine Growth Restriction Complicated Placentas. Int J Mol Sci 2022; 24:ijms24010403. [PMID: 36613847 PMCID: PMC9820794 DOI: 10.3390/ijms24010403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/28/2022] Open
Abstract
Intrauterine growth restriction (IUGR), predominantly caused by placental insufficiency, affects partitioning of nutrients to the fetus. The system A sodium-coupled transporters (SNAT or SLC38), of types A1, A2, and A4, control non-essential amino acid uptake and supply. Here, we aimed to investigate the expression of these transporters across different placental disease cohorts and cells. To determine disease impact, transporter expressions at the gene (qPCR) and protein (western blots) level were assessed in gestationally matched placental tissues. Early (<34 weeks), and late (34−36 weeks) onset IUGR cases with/out preeclampsia were compared to preterm controls. We also investigated level of transporter expression in primary trophoblasts under glucose deprivation (n = 6) and hypoxia conditions (n = 7). SLC38A4 protein was significantly downregulated in early preterm pregnancies complicated with IUGR with/out preeclampsia. There were no differences in late preterm IUGR cohorts. Furthermore, we demonstrate for the first time in primary trophoblast cells, that gene expression of the transporters was sensitive to and induced by glucose starvation. SLC38A4 mRNA expression was also significantly upregulated in response to hypoxia. Thus, SLC38A4 expression was persistently low in early preterm IUGR pregnancies, regardless of disease aetiology. This suggests that gestational age at delivery, and consequently IUGR severity, may influence loss of its expression.
Collapse
|
17
|
Comparison of Diagnostic Values of Maternal Arginine Concentration for Different Pregnancy Complications: A Systematic Review and Meta-Analysis. Biomedicines 2022; 10:biomedicines10010166. [PMID: 35052844 PMCID: PMC8773782 DOI: 10.3390/biomedicines10010166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Abnormal arginine metabolism contributes to the development of intrauterine growth restriction (IUGR), preeclampsia (PE), and gestational diabetes mellitus (GDM), which increase the health burden of mothers and induce adverse birth outcomes. However, associations between maternal arginine concentration and different pregnancy complications have not been systematically compared. The PubMed, ScienceDirect, and Web of Science databases were searched for peer-reviewed publications to evaluate the diagnostic value of plasma arginine concentration in complicated pregnancies. Standardized mean difference (SMD) of the arginine concentration was pooled by a random effects model. The results show that increased maternal arginine concentrations were observed in IUGR (SMD: 0.48; 95% CI: 0.20, 0.76; I2 = 47.0%) and GDM (SMD: 0.46; 95% CI: 0.11, 0.81; I2 = 82.3%) cases but not in PE patients (SMD: 0.21; 95% CI: −0.04, 0.47; I2 = 80.3%) compared with the normal cohorts. Subgroup analyses indicated that the non-fasting circulating arginine concentration in third trimester was increased significantly in GDM and severe IUGR pregnancies, but the change mode was dependent on ethnicity. Additionally, only severe PE persons were accompanied by higher plasma arginine concentrations. These findings suggest that maternal arginine concentration is an important reference for assessing the development of pregnancy complications.
Collapse
|
18
|
Chang CJ, Barr DB, Ryan PB, Panuwet P, Smarr MM, Liu K, Kannan K, Yakimavets V, Tan Y, Ly V, Marsit CJ, Jones DP, Corwin EJ, Dunlop AL, Liang D. Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic perturbation, and fetal growth in African American women: A meet-in-the-middle approach. ENVIRONMENT INTERNATIONAL 2022; 158:106964. [PMID: 34735953 PMCID: PMC8688254 DOI: 10.1016/j.envint.2021.106964] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 05/13/2023]
Abstract
BACKGROUND Prenatal exposures to per- and polyfluoroalkyl substances (PFAS) have been linked to reduced fetal growth. However, the detailed molecular mechanisms remain largely unknown. This study aims to investigate biological pathways and intermediate biomarkers underlying the association between serum PFAS and fetal growth using high-resolution metabolomics in a cohort of pregnant African American women in the Atlanta area, Georgia. METHODS Serum perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), and perfluorononanoic acid (PFNA) measurements and untargeted serum metabolomics profiling were conducted in 313 pregnant African American women at 8-14 weeks gestation. Multiple linear regression models were applied to assess the associations of PFAS with birth weight and small-for-gestational age (SGA) birth. A high-resolution metabolomics workflow including metabolome-wide association study, pathway enrichment analysis, and chemical annotation and confirmation with a meet-in-the-middle approach was performed to characterize the biological pathways and intermediate biomarkers of the PFAS-fetal growth relationship. RESULTS Each log2-unit increase in serum PFNA concentration was significantly associated with higher odds of SGA birth (OR = 1.32, 95% CI 1.07, 1.63); similar but borderline significant associations were found in PFOA (OR = 1.20, 95% CI 0.94, 1.49) with SGA. Among 25,516 metabolic features extracted from the serum samples, we successfully annotated and confirmed 10 overlapping metabolites associated with both PFAS and fetal growth endpoints, including glycine, taurine, uric acid, ferulic acid, 2-hexyl-3-phenyl-2-propenal, unsaturated fatty acid C18:1, androgenic hormone conjugate, parent bile acid, and bile acid-glycine conjugate. Also, we identified 21 overlapping metabolic pathways from pathway enrichment analyses. These overlapping metabolites and pathways were closely related to amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism perturbations. CONCLUSION In this cohort of pregnant African American women, higher serum concentrations of PFOA and PFNA were associated with reduced fetal growth. Perturbations of biological pathways involved in amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism were associated with PFAS exposures and reduced fetal growth, and uric acid was shown to be a potential intermediate biomarker. Our results provide opportunities for future studies to develop early detection and intervention for PFAS-induced fetal growth restriction.
Collapse
Affiliation(s)
- Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Melissa M Smarr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ken Liu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Volha Yakimavets
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - ViLinh Ly
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | | | - Anne L Dunlop
- Woodruff Health Sciences Center, School of Medicine and Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Placenta-specific Slc38a2/SNAT2 knockdown causes fetal growth restriction in mice. Clin Sci (Lond) 2021; 135:2049-2066. [PMID: 34406367 PMCID: PMC8410983 DOI: 10.1042/cs20210575] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022]
Abstract
Fetal growth restriction (FGR) is a complication of pregnancy that reduces birth weight, markedly increases infant mortality and morbidity and is associated with later-life cardiometabolic disease. No specific treatment is available for FGR. Placentas of human FGR infants have low abundance of sodium-coupled neutral amino acid transporter 2 (Slc38a2/SNAT2), which supplies the fetus with amino acids required for growth. We determined the mechanistic role of placental Slc38a2/SNAT2 deficiency in the development of restricted fetal growth, hypothesizing that placenta-specific Slc38a2 knockdown causes FGR in mice. Using lentiviral transduction of blastocysts with a small hairpin RNA (shRNA), we achieved 59% knockdown of placental Slc38a2, without altering fetal Slc38a2 expression. Placenta-specific Slc38a2 knockdown reduced near-term fetal and placental weight, fetal viability, trophoblast plasma membrane (TPM) SNAT2 protein abundance, and both absolute and weight-specific placental uptake of the amino acid transport System A tracer, 14C-methylaminoisobutyric acid (MeAIB). We also measured human placental SLC38A2 gene expression in a well-defined term clinical cohort and found that SLC38A2 expression was decreased in late-onset, but not early-onset FGR, compared with appropriate for gestational age (AGA) control placentas. The results demonstrate that low placental Slc38a2/SNAT2 causes FGR and could be a target for clinical therapies for late-onset FGR.
Collapse
|
20
|
Longitudinal Plasma Metabolomics Profile in Pregnancy-A Study in an Ethnically Diverse U.S. Pregnancy Cohort. Nutrients 2021; 13:nu13093080. [PMID: 34578958 PMCID: PMC8471130 DOI: 10.3390/nu13093080] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/30/2022] Open
Abstract
Amino acids, fatty acids, and acylcarnitine metabolites play a pivotal role in maternal and fetal health, but profiles of these metabolites over pregnancy are not completely established. We described longitudinal trajectories of targeted amino acids, fatty acids, and acylcarnitines in pregnancy. We quantified 102 metabolites and combinations (37 fatty acids, 37 amino acids, and 28 acylcarnitines) in plasma samples from pregnant women in the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) Fetal Growth Studies—Singletons cohort (n = 214 women at 10–14 and 15–26 weeks, 107 at 26–31 weeks, and 103 at 33–39 weeks). We used linear mixed models to estimate metabolite trajectories and examined variation by body mass index (BMI), race/ethnicity, and fetal sex. After excluding largely undetected metabolites, we analyzed 77 metabolites and combinations. Levels of 13 of 15 acylcarnitines, 7 of 25 amino acids, and 18 of 37 fatty acids significantly declined over gestation, while 8 of 25 amino acids and 10 of 37 fatty acids significantly increased. Several trajectories appeared to differ by BMI, race/ethnicity, and fetal sex although no tests for interactions remained significant after multiple testing correction. Future studies merit longitudinal measurements to capture metabolite changes in pregnancy, and larger samples to examine modifying effects of maternal and fetal characteristics.
Collapse
|
21
|
Zhao R, An Z, Sun Y, Xia L, Qiu L, Yao A, Liu Y, Liu L. Metabolic profiling in early pregnancy and associated factors of folate supplementation: A cross-sectional study. Clin Nutr 2021; 40:5053-5061. [PMID: 34455263 DOI: 10.1016/j.clnu.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/10/2020] [Accepted: 01/12/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND Pregnancy generally alters the balance of maternal metabolism, but the molecular profiles in early pregnancy and associated factors of folate supplementation in pregnant women remains incompletely understood. METHODS Untargeted metabonomics based on high-performance liquid chromatography-high-resolution mass spectrometry integrated with multivariate metabolic pathway analysis were applied to characterize metabolite profiles and associated factors of folate supplements in early pregnancy. The metabolic baseline of early pregnancy was determined by metabolic analysis of 510 serum samples from 131 non-pregnant and 379 pregnant healthy Chinese women. The pathophysiology of adaptive reactions and metabolic challenges induced by folate supplementation in early pregnancy was further compared between pregnant women with (n = 168) and without (n = 184) folate supplements. RESULTS Compared with non-pregnant participants, 106 metabolites, majority of which are related to amino acids and lysophosphatidylcholine/phosphatidylcholine, and 13 metabolic pathways were significantly changed in early pregnancy. The supplementation of folate in early pregnancy induced marked changes in N-acyl ethanolamine 22:0, N-acyl taurine 18:2, glycerophosphoserine 44:1 and 8,11,14-eicosatrienoate, proline, and aminoimidazole ribotide levels. CONCLUSIONS During early pregnancy, the metabolism of amino acids significantly changes to meet the physiological requirements of pregnant women. Folate intake may change glucose and lipid metabolism. These findings provide a comprehensive landscape for understanding the basic characteristics and gestational metabolic networks of early pregnancy and folate supplementation. This study provides a basis for further research into the relationship between metabolic markers and pregnancy diseases. TRIAL REGISTRATION This study protocol was registered on www.ClinicalTrials.gov, NCT03651934, on August 29, 2018 (prior to recruitment).
Collapse
Affiliation(s)
- Rui Zhao
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China
| | - Zhuoling An
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China
| | - Yuan Sun
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China
| | - Liangyu Xia
- Department of Clinical Laboratory, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Ling Qiu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, 100730, PR China
| | - Aimin Yao
- Department of Gynaecology and Obstetrics, Shunyi District Maternal and Child Health Hospital, Beijing, China
| | - Yanping Liu
- Department of Clinical Nutrition, Peking Union Medical College Hospital, China Academic Medical Science and Peking Union Medical College, Beijing, 100730, PR China.
| | - Lihong Liu
- Pharmacy Department of Beijing Chao-Yang Hospital Affiliated with Beijing Capital Medical University, Beijing, 100020, PR China.
| |
Collapse
|
22
|
Ramirez-Hincapie S, Giri V, Keller J, Kamp H, Haake V, Richling E, van Ravenzwaay B. Influence of pregnancy and non-fasting conditions on the plasma metabolome in a rat prenatal toxicity study. Arch Toxicol 2021; 95:2941-2959. [PMID: 34327559 DOI: 10.1007/s00204-021-03105-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/17/2021] [Indexed: 11/25/2022]
Abstract
The current parameters for determining maternal toxicity (e.g. clinical signs, food consumption, body weight development) lack specificity and may underestimate the extent of effects of test compounds on the dams. Previous reports have highlighted the use of plasma metabolomics for an improved and mechanism-based identification of maternal toxicity. To establish metabolite profiles of healthy pregnancies and evaluate the influence of food consumption as a confounding factor, metabolite profiling of rat plasma was performed by gas- and liquid-chromatography-tandem mass spectrometry techniques. Metabolite changes in response to pregnancy, food consumption prior to blood sampling (non-fasting) as well as the interaction of both conditions were studied. In dams, both conditions, non-fasting and pregnancy, had a marked influence on the plasma metabolome and resulted in distinct individual patterns of changed metabolites. Non-fasting was characterized by increased plasma concentrations of amino acids and diet related compounds and lower levels of ketone bodies. The metabolic profile of pregnant rats was characterized by lower amino acids and glucose levels and higher concentrations of plasma fatty acids, triglycerides and hormones, capturing the normal biochemical changes undergone during pregnancy. The establishment of metabolic profiles of pregnant non-fasted rats serves as a baseline to create metabolic fingerprints for prenatal and maternal toxicity studies.
Collapse
Affiliation(s)
- S Ramirez-Hincapie
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - V Giri
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - J Keller
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - H Kamp
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - V Haake
- BASF Metabolome Solution GmbH, Berlin, Germany
| | - E Richling
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - B van Ravenzwaay
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany.
| |
Collapse
|
23
|
Orzabal MR, Naik VD, Lee J, Wu G, Ramadoss J. Impact of gestational electronic cigarette vaping on amino acid signature profile in the pregnant mother and the fetus. Metabol Open 2021; 11:100107. [PMID: 34355157 PMCID: PMC8319793 DOI: 10.1016/j.metop.2021.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/10/2021] [Accepted: 07/11/2021] [Indexed: 11/25/2022] Open
Abstract
Background Electronic cigarettes (e-cigs) are a form of tobacco product that has become increasingly popular over the past decade. Despite the known health consequences of tobacco product exposure during pregnancy, a substantial number of daily smokers will continue to smoke during pregnancy. Our current knowledge on the effects of e-cig aerosol exposure during pregnancy is limited to a small number of animal studies, which have identified several e-cig aerosol-induced disruptions to the physiology of normal development. Methods To further assess the impact of prenatal e-cig aerosol exposure on maternal and fetal health, we examined the amino acid signature profiles in maternal and fetal plasma, as well as in the fetal lungs, a sensitive target organ for prenatal tobacco product exposure. Pregnant Sprague Dawley rats were randomly assigned to one of three groups and were exposed to either e-cig aerosols containing nicotine, e-cig aerosols without nicotine, or room air. Dams were exposed utilizing a state-of-the-art custom engineered e-cig vaping system that is compatible with commercially available e-cig atomizers and enables a translational inhalation delivery method comparable to human vaping. Results We determined that gestational exposure to e-cig aerosols results in significant alterations to the amino acid profile in the maternal and fetal compartments, including the fetal lungs. The data shows a targeted disruption to the nitric oxide pathway, branched-chain amino acid metabolism, fetal protein synthesis, and urea cycle. Conclusion The data presented herein provides additional support that gestational e-cig aerosol exposure can impact crucial biological processes and exemplifies the need for extensive research on exposure to e-cig aerosols. First report of e-cig induced alterations to maternal/fetal amino acid profile. Translational vaping paradigm utilizing custom engineered vaping system. Analysis of amino acids show gestational e-cig exposure has significant effects. Fetal lungs may be a sensitive target to gestational e-cig aerosol exposure. Marker of dysregulation in branched-chain amino acid metabolism and urea cycle.
Collapse
Affiliation(s)
- Marcus R Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Vishal D Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Guoyao Wu
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, USA
| |
Collapse
|
24
|
Zhu Q, Xie P, Li H, Blachier F, Yin Y, Kong X. Dynamic Changes of Metabolite Profiles in Maternal Biofluids During Gestation Period in Huanjiang Mini-Pigs. Front Vet Sci 2021; 8:636943. [PMID: 34295931 PMCID: PMC8290061 DOI: 10.3389/fvets.2021.636943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 06/10/2021] [Indexed: 11/23/2022] Open
Abstract
The biochemical parameters related to nitrogenous metabolism in maternal biofluids may be linked and even reflect the fetal metabolism and growth. The present study have measured the concentrations of various parameters related to amino acid (AA) and lipid metabolism, as well as different metabolites including the free AAs in maternal plasma and amniotic and allantoic fluid corresponding to fetuses with different body weight (BW) during different gestation periods, in order to identify the possible relationships between biochemical parameters and fetal growth. A total of 24 primiparous Huanjiang mini-pigs were fed with a standard diet. Data showed that, from day 45 to day 110 of gestation, the maternal plasma levels of alanine aminotransferase (ALT), albumin (ALB), Ile, Orn, Car, α-ABA, and β-AiBA increased (P < 0.05); while the levels of ammonia (AMM), choline esterase (CHE), high density lipoprotein-cholesterol (HDL-C), Leu, Glu, Cys, Asp, and Hypro decreased (P < 0.05). From day 45 to 110 of gestation, the amniotic fluid levels of aspartate transaminase (AST), CHE, total protein (TP), and urea nitrogen (UN) increased (P < 0.05), as well as the level of CHE and TP and concentration of Pro in allantoic fluid; while the amniotic fluid concentrations of Arg, Glu, Orn, Pro, and Tau decreased (P < 0.05), as well as allantoic fluid concentrations of Arg and Glu. At day 45 of gestation, the amniotic fluid concentrations of Arg, Orn, and Tau corresponding to the highest BW (HBW) fetuses were higher (P < 0.05), whereas the allantoic fluid concentrations of His and Pro were lower (P < 0.05) when compared with the lowest BW (LBW) fetuses. At day 110 of gestation, the amniotic fluid concentration of Tau corresponding to the HBW fetuses was higher (P < 0.05) than the LBW fetuses. These findings show that the sows display increased protein utilization and decreased lipid metabolism and deposition from day 75 to 110 of gestation. In addition, our data are indicative of a likely stronger ability of HBW fetuses to metabolize protein; and finally of a possible key role of Arg, Gln, Glu, Pro, Tau, and His for the fetal growth and development.
Collapse
Affiliation(s)
- Qian Zhu
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peifeng Xie
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Huawei Li
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Francois Blachier
- Université Paris-Saclay, AgroParisTech, INRAE, UMR PNCA, Paris, France
| | - Yulong Yin
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Xiangfeng Kong
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China.,Research Center of Mini-Pig, Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Guangxi, China
| |
Collapse
|
25
|
Cilvik SN, Wesolowski SR, Anthony RV, Brown LD, Rozance PJ. Late gestation fetal hyperglucagonaemia impairs placental function and results in diminished fetal protein accretion and decreased fetal growth. J Physiol 2021; 599:3403-3427. [PMID: 33878802 DOI: 10.1113/jp281288] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Fetal glucagon concentrations are elevated in the setting of placental insufficiency, hypoxia and elevated stress hormones. Chronically elevated glucagon concentrations in the adult result in profound decreases in amino acid concentrations and lean body mass. Experimental elevation of fetal glucagon concentrations in a late-gestation pregnant sheep results in lower fetal amino acid concentrations, lower protein accretion and lower fetal weight, in addition to decreased placental function. This study demonstrates a negative effect of glucagon on fetal protein accretion and growth, and also provides the first example of a fetal hormone that negatively regulates placental nutrient transport and blood flow. ABSTRACT Fetal glucagon concentrations are elevated in the setting of placental insufficiency and fetal stress. Postnatal studies have demonstrated the importance of glucagon in amino acid metabolism, and limited fetal studies have suggested that glucagon inhibits umbilical uptake of certain amino acids. We hypothesized that chronic fetal hyperglucagonaemia would decrease amino acid transfer and increase amino acid oxidation by the fetus. Late gestation singleton fetal sheep received a direct intravenous infusion of glucagon (GCG; 5 or 50 ng/kg/min; n = 7 and 5, respectively) or a vehicle control (n = 10) for 8-10 days. Fetal and maternal nutrient concentrations, uterine and umbilical blood flows, fetal leucine flux, nutrient uptake rates, placental secretion of chorionic somatomammotropin (CSH), and targeted placental gene expression were measured. GCG fetuses had 13% lower fetal weight compared to controls (P = 0.0239) and >28% lower concentrations of 16 out of 21 amino acids (P < 0.02). Additionally, protein synthesis was 49% lower (P = 0.0005), and protein accretion was 92% lower in GCG fetuses (P = 0.0006). Uterine blood flow was 33% lower in ewes with GCG fetuses (P = 0.0154), while umbilical blood flow was similar. Fetal hyperglucagonaemia lowered uterine uptake of 10 amino acids by >48% (P < 0.05) and umbilical uptake of seven amino acids by >29% (P < 0.04). Placental secretion of CSH into maternal circulation was reduced by 80% compared to controls (P = 0.0080). This study demonstrates a negative effect of glucagon on fetal protein accretion and growth. It also demonstrates that glucagon, a hormone of fetal origin, negatively regulates maternal placental nutrient transport function, placental CSH production and uterine blood flow.
Collapse
Affiliation(s)
- Sarah N Cilvik
- Wake Forest University Health Sciences, Winston-Salem, NC, 27157, USA
| | | | - Russ V Anthony
- Colorado State University College of Veterinary Medicine, Fort Collins, CO, USA
| | - Laura D Brown
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Rozance
- University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
26
|
Insights into intrauterine growth restriction based on maternal and umbilical cord blood metabolomics. Sci Rep 2021; 11:7824. [PMID: 33837233 PMCID: PMC8035183 DOI: 10.1038/s41598-021-87323-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 03/26/2021] [Indexed: 11/08/2022] Open
Abstract
Intrauterine growth restriction (IUGR) is a fetal adverse condition, ascribed by limited oxygen and nutrient supply from the mother to the fetus. Management of IUGR is an ongoing challenge because of its connection with increased fetal mortality, preterm delivery and postnatal pathologies. Untargeted nuclear magnetic resonance (1H NMR) metabolomics was applied in 84 umbilical cord blood and maternal blood samples obtained from 48 IUGR and 36 appropriate for gestational age (AGA) deliveries. Orthogonal projections to latent structures discriminant analysis (OPLS-DA) followed by pathway and enrichment analysis generated classification models and revealed significant metabolites that were associated with altered pathways. A clear association between maternal and cord blood altered metabolomic profile was evidenced in IUGR pregnancies. Increased levels of the amino acids alanine, leucine, valine, isoleucine and phenylalanine were prominent in IUGR pregnancies indicating a connection with impaired amino acid metabolism and transplacental flux. Tryptophan was individually connected with cord blood discrimination while 3-hydroxybutyrate assisted only maternal blood discrimination. Lower glycerol levels in IUGR samples ascribed to imbalance between gluconeogenesis and glycolysis pathways, suggesting poor glycolysis. The elevated levels of branched chain amino acids (leucine, isoleucine and valine) in intrauterine growth restricted pregnancies were linked with increased insulin resistance.
Collapse
|
27
|
Hussain T, Tan B, Murtaza G, Metwally E, Yang H, Kalhoro MS, Kalhoro DH, Chughtai MI, Yin Y. Role of Dietary Amino Acids and Nutrient Sensing System in Pregnancy Associated Disorders. Front Pharmacol 2020; 11:586979. [PMID: 33414718 PMCID: PMC7783402 DOI: 10.3389/fphar.2020.586979] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Defective implantation is related to pregnancy-associated disorders such as spontaneous miscarriage, intrauterine fetal growth restriction and others. Several factors proclaimed to be involved such as physiological, nutritional, environmental and managemental that leads to cause oxidative stress. Overloading of free radicals promotes oxidative stress, and the internal body system could not combat its ability to encounter the damaging effects and subsequently leading to pregnancy-related disorders. During pregnancy, essential amino acids display important role for optimum fetal growth and other necessary functions for continuing fruitful pregnancy. In this context, dietary amino acids have received much attention regarding the nutritional concerns during pregnancy. Arginine, glutamine, tryptophan and taurine play a crucial role in fetal growth, development and survival while ornithine and proline are important players for the regulation of gene expression, protein synthesis and angiogenesis. Moreover, amino acids also stimulate the mammalian target of rapamycin (mTOR) signaling pathway which plays a central role in the synthesis of proteins in placenta, uterus and fetus. This review article explores the significances of dietary amino acids in pregnancy development, regulation of nutrient-sensing pathways such as mTOR, peroxisome proliferator-activated receptors (PPARs), insulin/insulin-like growth factor signaling pathway (IIS) and 5' adenosine monophosphate-activated protein kinase (AMPK) which exhibit important role in reproduction and its related problems. In addition, the antioxidant function of dietary amino acids against oxidative stress triggering pregnancy disorders and their possible outcomes will also be enlightened. Dietary supplementation of amino acids during pregnancy could help mitigate reproductive disorders and thereby improving fertility in animals as well as humans.
Collapse
Affiliation(s)
- Tarique Hussain
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Bie Tan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Ghulam Murtaza
- Department of Animal Reproduction, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Elsayed Metwally
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Huansheng Yang
- Hunan International Joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Muhammad Saleem Kalhoro
- Department of Animal Products Technology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Dildar Hussain Kalhoro
- Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University, Sindh, Pakistan
| | - Muhammad Ismail Chughtai
- Animal Sciences Division, Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C,PIEAS), Faisalabad, Pakistan
| | - Yulong Yin
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| |
Collapse
|
28
|
Down-regulation of placental Cdc42 and Rac1 links mTORC2 inhibition to decreased trophoblast amino acid transport in human intrauterine growth restriction. Clin Sci (Lond) 2020; 134:53-70. [PMID: 31825077 DOI: 10.1042/cs20190794] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/26/2019] [Accepted: 12/11/2019] [Indexed: 12/31/2022]
Abstract
Intrauterine growth restriction (IUGR) increases the risk for perinatal complications and metabolic and cardiovascular disease later in life. The syncytiotrophoblast (ST) is the transporting epithelium of the human placenta, and decreased expression of amino acid transporter isoforms in the ST plasma membranes is believed to contribute to IUGR. Placental mechanistic target of rapamycin Complex 2 (mTORC2) signaling is inhibited in IUGR and regulates the trafficking of key amino acid transporter (AAT) isoforms to the ST plasma membrane; however, the molecular mechanisms are unknown. Cdc42 and Rac1 are Rho-GTPases that regulate actin-binding proteins, thereby modulating the structure and dynamics of the actin cytoskeleton. We hypothesized that inhibition of mTORC2 decreases AAT expression in the plasma membrane and amino acid uptake in primary human trophoblast (PHT) cells mediated by down-regulation of Cdc42 and Rac1. mTORC2, but not mTORC1, inhibition decreased the Cdc42 and Rac1 expression. Silencing of Cdc42 and Rac1 inhibited the activity of the System L and A transporters and markedly decreased the trafficking of LAT1 (System L isoform) and SNAT2 (System A isoform) to the plasma membrane. mTORC2 inhibition by silencing of rictor failed to decrease AAT following activation of Cdc42/Rac1. Placental Cdc42 and Rac1 protein expression was down-regulated in human IUGR and was positively correlated with placental mTORC2 signaling. In conclusion, mTORC2 regulates AAT trafficking in PHT cells by modulating Cdc42 and Rac1. Placental mTORC2 inhibition in human IUGR may contribute to decreased placental amino acid transfer and reduced fetal growth mediated by down-regulation of Cdc42 and Rac1.
Collapse
|
29
|
Allman BR, Diaz EC, Andres A, Børsheim E. Divergent Changes in Serum Branched-Chain Amino Acid Concentrations and Estimates of Insulin Resistance throughout Gestation in Healthy Women. J Nutr 2020; 150:1757-1764. [PMID: 32275314 PMCID: PMC7330471 DOI: 10.1093/jn/nxaa096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/11/2020] [Accepted: 03/17/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Branched-chain amino acid (BCAA) concentrations in the blood have been correlated with insulin resistance, but this relation throughout gestation (period in which insulin resistance typically increases) is unclear. OBJECTIVE The objective of this study was to determine the associations between changes in BCAA concentrations and estimates of insulin resistance throughout gestation. METHODS Serum BCAA (Leu, Ile, Val) concentrations and insulin resistance/sensitivity [i.e., homeostatic model assessment-2 of insulin resistance (HOMA2-IR), estimated metabolic clearance rate (MCR) of glucose, and estimated first- and second-phase insulin responses] were assessed at early (EP; 8.5 ± 0.2 wk) and/or late (LP; 29.2 ± 0.8 wk) pregnancy in 53 healthy women from the Glowing cohort. Adjusted Spearman correlations were used to evaluate the association between BCAA and insulin resistance/sensitivity measures at EP and LP, adjusted for body fat percentage and gestational weight gain (GWG). A multiple linear regression analysis was used to assess the association between changes in HOMA2-IR and BCAAs throughout gestation. Groups were made post hoc based on the mean percentage change (10% decrease) in Leu throughout gestation, creating a group with a ≥10% decrease in LeuLP-EP (BELOW) and a <10% decrease in LeuLP-EP (ABOVE), and Student's t tests were performed to assess differences between groups. RESULTS Leu and Ile concentrations positively correlated with HOMA2-IR at both time points, but these relations at EP disappeared/weakened when adjusted for body fat percentage. From EP to LP, the change in Leu (LeuLP-EP) was negatively associated with the change in HOMA2-IR (HOMA2-IRLP-EP) (β = -0.037, P = 0.006). MCR was lower in the BELOW group compared with the ABOVE group, whereas there was no difference in HOMA2-IR between groups. CONCLUSIONS In this pregnancy cohort, BCAA concentrations decreased throughout gestation, whereas the mean insulin resistance did not change. These data do not support a connection between changes in blood BCAA concentrations and estimates of insulin resistance in pregnant women. This trial is registered at clinicaltrials.gov as NCT01131117.
Collapse
Affiliation(s)
| | - Eva C Diaz
- Arkansas Children's Nutrition Center, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center, Little Rock, AR, USA,Arkansas Children's Research Institute, Little Rock, AR, USA,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | |
Collapse
|
30
|
Sayama S, Song A, Brown BC, Couturier J, Cai X, Xu P, Chen C, Zheng Y, Iriyama T, Sibai B, Longo M, Kellems RE, D'Alessandro A, Xia Y. Maternal erythrocyte ENT1-mediated AMPK activation counteracts placental hypoxia and supports fetal growth. JCI Insight 2020; 5:130205. [PMID: 32434995 DOI: 10.1172/jci.insight.130205] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 04/15/2020] [Indexed: 02/06/2023] Open
Abstract
Insufficient O2 supply is frequently associated with fetal growth restriction (FGR), a leading cause of perinatal mortality and morbidity. Although the erythrocyte is the most abundant and only cell type to deliver O2 in our body, its function and regulatory mechanism in FGR remain unknown. Here, we report that genetic ablation of mouse erythrocyte equilibrative nucleoside transporter 1 (eENT1) in dams, but not placentas or fetuses, results in FGR. Unbiased high-throughput metabolic profiling coupled with in vitro and in vivo flux analyses with isotopically labeled tracers led us to discover that maternal eENT1-dependent adenosine uptake is critical in activating AMPK by controlling the AMP/ATP ratio and its downstream target, bisphosphoglycerate mutase (BPGM); in turn, BPGM mediates 2,3-BPG production, which enhances O2 delivery to maintain placental oxygenation. Mechanistically and functionally, we revealed that genetic ablation of maternal eENT1 increases placental HIF-1α; preferentially reduces placental large neutral aa transporter 1 (LAT1) expression, activity, and aa supply; and induces FGR. Translationally, we revealed that elevated HIF-1α directly reduces LAT1 gene expression in cultured human trophoblasts. We demonstrate the importance and molecular insight of maternal eENT1 in fetal growth and open up potentially new diagnostic and therapeutic possibilities for FGR.
Collapse
Affiliation(s)
- Seisuke Sayama
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Department of Obstetrics & Gynecology, University of Tokyo, Japan
| | - Anren Song
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Benjamin C Brown
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | | | - Xiaoli Cai
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Ping Xu
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Changhan Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Yangxi Zheng
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Takayuki Iriyama
- Department of Obstetrics & Gynecology, University of Tokyo, Japan
| | - Baha Sibai
- Department of Obstetrics, Gynecology, and Reproductive Sciences, and
| | - Monica Longo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, and
| | - Rodney E Kellems
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, USA.,Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, USA
| |
Collapse
|
31
|
Thayer ZM, Rutherford J, Kuzawa CW. The Maternal Nutritional Buffering Model: an evolutionary framework for pregnancy nutritional intervention. EVOLUTION MEDICINE AND PUBLIC HEALTH 2020; 2020:14-27. [PMID: 32015877 PMCID: PMC6990448 DOI: 10.1093/emph/eoz037] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 01/17/2020] [Indexed: 02/07/2023]
Abstract
Evidence that fetal nutrition influences adult health has heightened interest in nutritional interventions targeting pregnancy. However, as is true for other placental mammals, human females have evolved mechanisms that help buffer the fetus against short-term fluctuations in maternal diet and energy status. In this review, we first discuss the evolution of increasingly elaborate vertebrate strategies of buffering offspring from environmental fluctuations during development, including the important innovation of the eutherian placenta. We then present the Maternal Nutritional Buffering Model, which argues that, in contrast to many micronutrients that must be derived from dietary sources, the effects of short-term changes in maternal macronutrient intake during pregnancy, whether due to a deficit or supplementation, will be minimized by internal buffering mechanisms that work to ensure a stable supply of essential resources. In contrast to the minimal effects of brief macronutrient supplementation, there is growing evidence that sustained improvements in early life and adult pre-pregnancy nutrition could improve birth outcomes in offspring. Building on these and other observations, we propose that strategies to improve fetal macronutrient delivery will be most effective if they modify the pregnancy metabolism of mothers by targeting nutrition prior to conception and even during early development, as a complement to the conventional focus on bolstering macronutrient intake during pregnancy itself. Our model leads to the prediction that birth weight will be more strongly influenced by the mother’s chronic pre-pregnancy nutrition than by pregnancy diet, and highlights the need for policy solutions aimed at optimizing future, intergenerational health outcomes. Lay summary: We propose that strategies to improve fetal macronutrient delivery will be most effective if they modify the pregnancy metabolism of mothers by targeting nutrition prior to conception and even during early development, as a complement to the conventional focus on bolstering macronutrient intake during pregnancy itself.
Collapse
Affiliation(s)
- Zaneta M Thayer
- Department of Anthropology, Dartmouth College, Hinman Box 6047, Hanover, NH 03755, USA
| | - Julienne Rutherford
- Department of Women, Children and Family Health Science, University of Illinois Chicago, 845 S. Damen Ave., MC 802, Chicago, IL 60612, USA
| | - Christopher W Kuzawa
- Department of Anthropology and Institute for Policy Research, Northwestern University, 1810 Hinman Ave, Evanston, IL 60208, USA
| |
Collapse
|
32
|
Xing Y, Zhang W, Zhao H, Shen Z, Liang W, Zhou J, Shi L, Chen J, Zhong X, Tang S. Multi‑organ assessment via a 9.4‑Tesla MRS evaluation of metabolites during the embryonic development of cleft palate induced by dexamethasone. Mol Med Rep 2019; 20:3326-3336. [PMID: 31432193 PMCID: PMC6755240 DOI: 10.3892/mmr.2019.10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 06/19/2019] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to determine the association between maternal metabolism and development of the fetal palate, and to suggest a potential non‑invasive prenatal diagnostic method for fetal cleft palate (CP). Dexamethasone (DXM) was used to create a CP mouse model. A 9.4‑Tesla (T) magnetic resonance spectroscopy (MRS) imager was used to measure an array of metabolites in the maternal serum, placental tissue, amniotic fluid and fetal palates. Multivariate statistical analysis was performed using SIMCA‑P 14.1 software. Following DXM treatment, variations were detected in multiple metabolites in the female mice and their fetuses based on 9.4T MRS. It was indicated that in the experimental group during CP formation, leucine, valine, creatine, acetate and citrate levels in the palatal tissue were lower, whereas lactate, alanine, proline/inositol and glutamate‑containing metabolite levels were higher, compared with the levels in the control group. In placental tissue and amniotic fluid, succinate and choline levels were lower in the experimental group. The relative concentrations of cholesterol and lipids in palatal tissues from mice treated with DXM were higher compared with the concentrations in tissues from mice in the control group, with the exception of (CH2)n lipids. In the placental tissue, the alteration in cholesterol level exhibited the opposite trend. Lipid levels for the different lipid forms varied and most of them were unsaturated lipids.
Collapse
Affiliation(s)
- Yue Xing
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Wancong Zhang
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Hanxing Zhao
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Zhiwei Shen
- Department of Medical Imaging, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Weijie Liang
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jianda Zhou
- Department of Plastic and Reconstructive Surgery, Central South University Third Xiangya Hospital, Changsha, Hunan 410013, P.R. China
| | - Lungang Shi
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Jiasheng Chen
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Xiaoping Zhong
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515041, P.R. China
- Correspondence to: Dr Shijie Tang, Department of Burns and Plastic Surgery, and Cleft Lip and Palate Treatment Center, The Second Affiliated Hospital of Shantou University Medical College, 69 Dongxia Road, Shantou, Guangdong 515041, P.R. China, E-mail: ;
| |
Collapse
|
33
|
Sun L, Zhang H, Wang Z, Fan Y, Guo Y, Wang F. Dietary rumen-protected arginine and N-carbamylglutamate supplementation enhances fetal growth in underfed ewes. Reprod Fertil Dev 2019; 30:1116-1127. [PMID: 31039923 DOI: 10.1071/rd17164] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/29/2017] [Indexed: 01/18/2023] Open
Abstract
The present study was conducted with an ovine intrauterine growth restriction (IUGR) model to test the hypothesis that dietary rumen-protected l-arginine (RP-Arg) or N-carbamylglutamate (NCG) supplementation in underfed ewes is effective in enhancing fetal growth. Between Days 35 and 110 of pregnancy, 32 multiparous ewes carrying two fetuses were randomly assigned to one of four groups: a control (CG) group (n=8; 100% National Research Council (NRC) requirements for pregnant sheep), a nutrient-restricted (RG) group (n=8; fed 50% NRC requirements, and two treatment (ARG and NCG) groups (n=8 in each group; fed 50% NRC requirements supplemented with 20gday-1 RP-Arg or 5gday-1 NCG. All ewes were killed on Day 110 of pregnancy to determine fetal weight and fetal organ weights, and metabolites and hormones in fetal plasma, amino acid concentrations in the fetal liver and longissimus dorsi muscle, and expression of mRNAs in the somatotropic axis. Maternal and fetal bodyweight and the weight of most fetal organs expressed as a percentage of bodyweight increased in response to ARG and NCG compared with values for fetuses from RG ewes. Fetal plasma concentrations of insulin, insulin-like growth factor 1, total amino acids, lactate, thyroxine, and the thyroxine/tri-iodothyronine ratio were lower in fetuses from RG ewes compared with the other treatment groups, but concentrations of growth hormone, non-esterified fatty acids, and total cholesterol were greater in fetuses from RG ewes. Maternal RP-Arg or NCG supplementation increased concentrations of amino acids in fetal tissues and expression of mRNAs for somatotropic axis proteins in fetuses from RG ewes. These findings suggest that maternal RP-Arg and NCG supplementation of underfed ewes decreases fetal IUGR by improving metabolic homeostasis of fetal endocrinology, increasing the availability of amino acids in the fetal liver and longissimus dorsi muscle and affecting the expression of somatotropic axis genes.
Collapse
Affiliation(s)
- Lingwei Sun
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Hao Zhang
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Ziyu Wang
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Yixuan Fan
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Yixuan Guo
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| | - Feng Wang
- Jiangsu Engineering Technology Research Center of Meat Sheep and Goat Industry, Nanjing Agricultural University, #1, Tongwei Road, Nanjing, Jiangsu Province, 210095, PR China
| |
Collapse
|
34
|
|
35
|
Phenylalanine and tyrosine measurements across gestation by tandem mass spectrometer on dried blood spot cards from normal pregnant women. Genet Med 2019; 21:1821-1826. [PMID: 30626901 PMCID: PMC6620164 DOI: 10.1038/s41436-018-0407-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/05/2018] [Indexed: 12/22/2022] Open
Abstract
Purpose: Maternal phenylketonuria (MPKU) requires strict control of phenylalanine (Phe) and supplemental tyrosine (Tyr). Monitoring during pregnancy using dried blood spot (DBS) cards by tandem mass spectrometry (MS/MS) is now standard practice, however there are no Phe and Tyr reference ranges for DBS MS/MS method in healthy pregnant women. Methods: DBS cards (63 −1364 days in storage) from healthy women with singleton pregnancies were analyzed by MS/MS. 390 DBS cards from 170 pregnancies (5/1–39/6 weeks’ gestation), were tested. Results: Both Phe and Tyr levels declined from the first trimester (Phe: 36.2 +/− 10.6; Tyr 25.7 +/−9.7 micromol/L) to the second trimester (Phe 33.4 +/− 9.3; Tyr 21.7 +/− 6.7 micromol/L) and remained stable in the third trimester (Phe 32.3 +/− 8.7; Tyr 21.0 +/− 6.6 micromol/L). Phe and Tyr levels declined over time since collection (Phe: 0.004 micromol/L per day; Tyr 0.002 micromol/L). Nomograms by gestational age were created using raw data and data adjusted for time from sample collection. Reference ranges by trimester are provided. Conclusion: Both Phe and Tyr decline quickly during the first trimester and remain relatively constant over the second and third trimesters. These nomograms will provide a valuable resource for care of MPKU.
Collapse
|
36
|
Cleal JK, Lofthouse EM, Sengers BG, Lewis RM. A systems perspective on placental amino acid transport. J Physiol 2018; 596:5511-5522. [PMID: 29984402 PMCID: PMC6265537 DOI: 10.1113/jp274883] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/29/2018] [Indexed: 12/22/2022] Open
Abstract
Placental amino acid transfer is a complex process that is essential for fetal development. Impaired amino acid transfer causes fetal growth restriction, which may have lifelong health consequences. Transepithelial transfer of amino acids across the placental syncytiotrophoblast requires accumulative, exchange and facilitated transporters on the apical and basal membranes to work in concert. However, transporters alone do not determine amino acid transfer and factors that affect substrate availability, such as blood flow and metabolism, may also become rate-limiting for transfer. In order to determine the rate-limiting processes, it is necessary to take a systems approach which recognises the interdependence of these processes. New technologies have the potential to deliver targeted interventions to the placenta and help poorly growing fetuses. While many factors are necessary for amino acid transfer, novel therapies need to target the rate-limiting factors if they are going to be effective. This review will outline the factors which determine amino acid transfer and describe how they become interdependent. It will also highlight the role of computational modelling as a tool to understand this process.
Collapse
Affiliation(s)
- Jane K. Cleal
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Emma M. Lofthouse
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
| | - Bram G. Sengers
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
- Faculty of Engineering and the EnvironmentUniversity of SouthamptonSouthamptonUK
| | - Rohan M. Lewis
- Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- Institute of Life SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
37
|
Holm MB, Kristiansen O, Holme AM, Bastani NE, Horne H, Blomhoff R, Haugen G, Henriksen T, Michelsen TM. Placental release of taurine to both the maternal and fetal circulations in human term pregnancies. Amino Acids 2018; 50:1205-1214. [PMID: 29858686 DOI: 10.1007/s00726-018-2576-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/23/2018] [Indexed: 10/14/2022]
Abstract
Taurine is regarded as an essential amino acid in utero, and fetal taurine supply is believed to rely solely on placental transfer from maternal plasma. Despite its potential role in intrauterine growth restriction and other developmental disturbances, human in vivo studies of taurine transfer between the maternal, placental, and fetal compartments are scarce. We studied placental transfer of taurine in uncomplicated human term pregnancies in vivo in a cross-sectional study of 179 mother-fetus pairs. During cesarean section, we obtained placental tissue and plasma from incoming and outgoing vessels on the maternal and fetal sides of the placenta. Taurine was measured by liquid chromatography-tandem mass spectrometry. We calculated paired arteriovenous differences, and measured placental expression of the taurine biosynthetic enzyme cysteine sulfinic acid decarboxylase (CSAD) with quantitative real-time polymerase chain reaction and western blot. We observed a fetal uptake (p < 0.001), an uteroplacental release (p < 0.001), and a negative placental consumption of taurine (p = 0.001), demonstrating a bilateral placental release to the maternal and fetal compartments. Increasing umbilical vein concentrations and fetal uptake was associated with the uteroplacental release to the maternal circulation (rs = - 0.19, p = 0.01/rs = - 0.24, p = 0.003), but not with taurine concentrations in placental tissue. CSAD-mRNA was expressed in placental tissue, suggesting a potential for placental taurine synthesis. Our observations show that the placenta has the capacity to a bilateral taurine release, indicating a fundamental role of taurine in the human placental homeostasis beyond the supply to the fetus.
Collapse
Affiliation(s)
- Maia Blomhoff Holm
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway. .,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway.
| | - Oddrun Kristiansen
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Ane Moe Holme
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Nasser Ezzatkhah Bastani
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO BOKS 1046, Blindern, 0316, Oslo, Norway
| | - Hildegunn Horne
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, PO BOKS 1046, Blindern, 0316, Oslo, Norway.,Division of Cancer Medicine, Department of Clinical Service, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway
| | - Guttorm Haugen
- Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway.,Division of Obstetrics and Gynecology, Department of Fetal Medicine, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway
| | - Tore Henriksen
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, PO BOKS 1171, Blindern, 0316, Oslo, Norway
| | - Trond Melbye Michelsen
- Division of Obstetrics and Gynecology, Department of Obstetrics, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway.,Norwegian Advisory Unit on Women's Health, Oslo University Hospital, PO BOKS 4950, 0424, Oslo, Norway
| |
Collapse
|
38
|
Global Metabolomics of the Placenta Reveals Distinct Metabolic Profiles between Maternal and Fetal Placental Tissues Following Delivery in Non-Labored Women. Metabolites 2018; 8:metabo8010010. [PMID: 29360753 PMCID: PMC5876000 DOI: 10.3390/metabo8010010] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/16/2018] [Accepted: 01/19/2018] [Indexed: 01/12/2023] Open
Abstract
We evaluated the metabolic alterations in maternal and fetal placental tissues from non-labored women undergoing cesarean section using samples collected from 5 min to 24 h following delivery. Using 1H-NMR, we identified 14 metabolites that significantly differed between maternal and fetal placental tissues (FDR-corrected p-value < 0.05), with 12 metabolites elevated in the maternal tissue, reflecting the flux of these metabolites from mother to fetus. In the maternal tissue, 4 metabolites were significantly altered at 15 min, 10 metabolites at 30 min, and 16 metabolites at 1 h postdelivery, while 11 metabolites remained stable over 24 h. In contrast, in the fetal placenta tissue, 1 metabolite was significantly altered at 15 min, 2 metabolites at 30 min, and 4 metabolites at 1 h postdelivery, while 22 metabolites remained stable over 24 h. Our study provides information on the metabolic profiles of maternal and fetal placental tissues delivered by cesarean section and reveals that there are different metabolic alterations in the maternal and fetal tissues of the placenta following delivery.
Collapse
|
39
|
Holm MB, Bastani NE, Holme AM, Zucknick M, Jansson T, Refsum H, Mørkrid L, Blomhoff R, Henriksen T, Michelsen TM. Uptake and release of amino acids in the fetal-placental unit in human pregnancies. PLoS One 2017; 12:e0185760. [PMID: 28982184 PMCID: PMC5628923 DOI: 10.1371/journal.pone.0185760] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 09/19/2017] [Indexed: 12/11/2022] Open
Abstract
Objectives The current concepts of human fetal-placental amino acid exchange and metabolism are mainly based on animal-, in vitro- and ex vivo models. We aimed to determine and assess the paired relationships between concentrations and arteriovenous differences of 19 amino acids on the maternal and fetal sides of the human placenta in a large study sample. Methods This cross-sectional in vivo study included 179 healthy women with uncomplicated term pregnancies. During planned cesarean section, we sampled blood from incoming and outgoing vessels on the maternal (radial artery and uterine vein) and fetal (umbilical vein and artery) sides of the placenta. Amino acid concentrations were measured by liquid chromatography—tandem mass spectrometry. We calculated paired arteriovenous differences and performed Wilcoxon signed-rank tests and Spearman’s correlations. Results In the umbilical circulation, we observed a positive venoarterial difference (fetal uptake) for 14 amino acids and a negative venoarterial difference (fetal release) for glutamic acid (p<0.001). In the maternal circulation, we observed a positive arteriovenous difference (uteroplacental uptake) for leucine (p = 0.005), isoleucine (p = 0.01), glutamic acid (p<0.001) and arginine (p = 0.04) and a negative arteriovenous difference (uteroplacental release) for tyrosine (p = 0.002), glycine (p = 0.01) and glutamine (p = 0.02). The concentrations in the maternal artery and umbilical vein were correlated for all amino acids except tryptophan, but we observed no correlations between the uteroplacental uptake and the fetal uptake or the umbilical vein concentration. Two amino acids showed a correlation between the maternal artery concentration and the fetal uptake. Conclusions Our human in vivo study expands the current insight into fetal-placental amino acid exchange, and discloses some differences from what has been previously described in animals. Our findings are consistent with the concept that the fetal supply of amino acids in the human is the result of a dynamic interplay between fetal and placental amino acid metabolism and interconversions.
Collapse
Affiliation(s)
- Maia Blomhoff Holm
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- * E-mail: ,
| | | | - Ane Moe Holme
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Manuela Zucknick
- Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Thomas Jansson
- Division of Reproductive Sciences, Department of OB/GYN University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Helga Refsum
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lars Mørkrid
- Analytic Unit of Metabolic Diseases, Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Tore Henriksen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond Melbye Michelsen
- Department of Obstetrics, Division of Obstetrics and Gynecology, Oslo University Hospital, Oslo, Norway
- Norwegian Advisory Unit on Women’s Health, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
40
|
Rovito R, Korndewal MJ, Schielen PCJI, Kroes ACM, Vossen ACTM. Neonatal screening parameters in infants with congenital Cytomegalovirus infection. Clin Chim Acta 2017; 473:191-197. [PMID: 28847685 DOI: 10.1016/j.cca.2017.08.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 12/30/2022]
Abstract
Congenital Cytomegalovirus infection (cCMV) is the most common cause of congenital infections worldwide that can cause long-term impairment (LTI). The metabolic alterations due to cCMV are largely unknown. This study aims to assess the metabolites included in the neonatal screening in relation to cCMV and cCMV outcome, allowing the identification of prognostic markers for clinical outcome. Essential amino acids, hormones, carnitines and enzymes from Dried Blood Spots (DBS) were analyzed of 102 children with cCMV and 179 children without cCMV, and they were related to symptoms at birth and LTI at 6years of age. In this cohort, the neonatal screening parameters did not change in relation to cCMV, nor to symptoms at birth or LTI. However, metabolic changes were observed in children born preterm, with lower concentrations of essential amino acids in premature infants with cCMV compared to premature controls. Finally, a higher concentration of palmytoilcarnitine (C16) in the group with higher viral load was observed. Though these data demonstrate limitations in the use of neonatal screening data as predictors for long-term cCMV outcome, the metabolism of preterm neonates with cCMV merits further evaluation.
Collapse
Affiliation(s)
- Roberta Rovito
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Marjolein J Korndewal
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands; Centre for Infectious Diseases, Epidemiology and Surveillance, National Institute of Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands.
| | - Peter C J I Schielen
- Centre for Infectious Diseases Research, Diagnostics and Screening, National Institute of Public Health and the Environment (RIVM), Antonie van Leeuwenhoeklaan 9, 3721 MA Bilthoven, The Netherlands..
| | - Aloys C M Kroes
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| | - Ann C T M Vossen
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands.
| |
Collapse
|
41
|
Romero R, Erez O, Maymon E, Chaemsaithong P, Xu Z, Pacora P, Chaiworapongsa T, Done B, Hassan SS, Tarca AL. The maternal plasma proteome changes as a function of gestational age in normal pregnancy: a longitudinal study. Am J Obstet Gynecol 2017; 217:67.e1-67.e21. [PMID: 28263753 PMCID: PMC5813489 DOI: 10.1016/j.ajog.2017.02.037] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 02/10/2017] [Accepted: 02/23/2017] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Pregnancy is accompanied by dramatic physiological changes in maternal plasma proteins. Characterization of the maternal plasma proteome in normal pregnancy is an essential step for understanding changes to predict pregnancy outcome. The objective of this study was to describe maternal plasma proteins that change in abundance with advancing gestational age and determine biological processes that are perturbed in normal pregnancy. STUDY DESIGN A longitudinal study included 43 normal pregnancies that had a term delivery of an infant who was appropriate for gestational age without maternal or neonatal complications. For each pregnancy, 3 to 6 maternal plasma samples (median, 5) were profiled to measure the abundance of 1125 proteins using multiplex assays. Linear mixed-effects models with polynomial splines were used to model protein abundance as a function of gestational age, and the significance of the association was inferred via likelihood ratio tests. Proteins considered to be significantly changed were defined as having the following: (1) >1.5-fold change between 8 and 40 weeks of gestation; and (2) a false discovery rate-adjusted value of P < .1. Gene ontology enrichment analysis was used to identify biological processes overrepresented among the proteins that changed with advancing gestation. RESULTS The following results were found: (1) Ten percent (112 of 1125) of the profiled proteins changed in abundance as a function of gestational age; (2) of the 1125 proteins analyzed, glypican-3, sialic acid-binding immunoglobulin-type lectin-6, placental growth factor, C-C motif-28, carbonic anhydrase 6, prolactin, interleukin-1 receptor 4, dual-specificity mitogen-activated protein kinase 4, and pregnancy-associated plasma protein-A had more than a 5-fold change in abundance across gestation (these 9 proteins are known to be involved in a wide range of both physiological and pathological processes, such as growth regulation, embryogenesis, angiogenesis immunoregulation, inflammation etc); and (3) biological processes associated with protein changes in normal pregnancy included defense response, defense response to bacteria, proteolysis, and leukocyte migration (false discovery rate, 10%). CONCLUSION The plasma proteome of normal pregnancy demonstrates dramatic changes in both the magnitude of changes and the fraction of the proteins involved. Such information is important to understand the physiology of pregnancy and the development of biomarkers to differentiate normal vs abnormal pregnancy and determine the response to interventions.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI.
| | - Offer Erez
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Eli Maymon
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Piya Chaemsaithong
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Zhonghui Xu
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Percy Pacora
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bogdan Done
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Sonia S Hassan
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Adi L Tarca
- Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI.
| |
Collapse
|
42
|
Dean ED, Li M, Prasad N, Wisniewski SN, Von Deylen A, Spaeth J, Maddison L, Botros A, Sedgeman LR, Bozadjieva N, Ilkayeva O, Coldren A, Poffenberger G, Shostak A, Semich MC, Aamodt KI, Phillips N, Yan H, Bernal-Mizrachi E, Corbin JD, Vickers KC, Levy SE, Dai C, Newgard C, Gu W, Stein R, Chen W, Powers AC. Interrupted Glucagon Signaling Reveals Hepatic α Cell Axis and Role for L-Glutamine in α Cell Proliferation. Cell Metab 2017; 25:1362-1373.e5. [PMID: 28591638 PMCID: PMC5572896 DOI: 10.1016/j.cmet.2017.05.011] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 03/15/2017] [Accepted: 05/23/2017] [Indexed: 02/06/2023]
Abstract
Decreasing glucagon action lowers the blood glucose and may be useful therapeutically for diabetes. However, interrupted glucagon signaling leads to α cell proliferation. To identify postulated hepatic-derived circulating factor(s) responsible for α cell proliferation, we used transcriptomics/proteomics/metabolomics in three models of interrupted glucagon signaling and found that proliferation of mouse, zebrafish, and human α cells was mTOR and FoxP transcription factor dependent. Changes in hepatic amino acid (AA) catabolism gene expression predicted the observed increase in circulating AAs. Mimicking these AA levels stimulated α cell proliferation in a newly developed in vitro assay with L-glutamine being a critical AA. α cell expression of the AA transporter Slc38a5 was markedly increased in mice with interrupted glucagon signaling and played a role in α cell proliferation. These results indicate a hepatic α islet cell axis where glucagon regulates serum AA availability and AAs, especially L-glutamine, regulate α cell proliferation and mass via mTOR-dependent nutrient sensing.
Collapse
Affiliation(s)
- E Danielle Dean
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Mingyu Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China
| | - Nripesh Prasad
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Scott N Wisniewski
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alison Von Deylen
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jason Spaeth
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lisette Maddison
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anthony Botros
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Leslie R Sedgeman
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nadejda Bozadjieva
- Division of Metabolism, Endocrinology, and Diabetes, University of Michigan Health System, Ann Arbor, MI 48103, USA
| | - Olga Ilkayeva
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC 27701, USA
| | - Anastasia Coldren
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Greg Poffenberger
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alena Shostak
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Michael C Semich
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kristie I Aamodt
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Neil Phillips
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Hai Yan
- REMD Biotherapeutics, Camarillo, CA 93012, USA
| | - Ernesto Bernal-Mizrachi
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami, Miami, FL 33146, USA
| | - Jackie D Corbin
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Kasey C Vickers
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Division of Cardiovascular Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shawn E Levy
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Chunhua Dai
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Christopher Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC 27701, USA
| | - Wei Gu
- Amgen, Thousand Oaks, CA 91320, USA
| | - Roland Stein
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Wenbiao Chen
- Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alvin C Powers
- Division of Diabetes, Endocrinology, and Metabolism, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, TN 37232, USA; VA Tennessee Valley Healthcare, Nashville, TN 37212, USA.
| |
Collapse
|
43
|
Lipopolysaccharide and double stranded viral RNA mediate insulin resistance and increase system a amino acid transport in human trophoblast cells in vitro. Placenta 2017; 51:18-27. [PMID: 28292465 DOI: 10.1016/j.placenta.2017.01.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/03/2017] [Accepted: 01/19/2017] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Inflammation and underlying low-grade maternal infection can impair insulin signalling and upregulate nutrient transport in the placenta which contribute to fetal overgrowth associated with GDM and/or obese pregnancies. There are, however, no studies on the role of infection on placental nutrient transport in pregnancies complicated by GDM and/or obesity. Thus, the aims of this study were to determine the effect of the bacterial product lipopolysaccharide (LPS) or the viral dsRNA analogue polyinosinic:polycytidylic acid (poly(I:C)) on the insulin signalling pathway and amino acid transport in primary human trophoblast cells. METHODS Human primary villous trophoblast cells were treated with LPS or poly(I:C). Protein expression of insulin signalling pathway proteins, insulin receptor (IR)-β, insulin receptor substrate (IRS)-1 and protein kinase B (also known as Akt), and phosphatidylinositol-4,5-bisphosphate 3-kinase p85α subunit (PI3K-p85α) protein were assessed by Western blotting. Glucose and amino acid uptake were assessed by radiolabelled assay. Western blotting and qRT-PCR were used to determine amino acid transporter protein and mRNA expression, respectively. RESULTS LPS and poly(I:C) significantly decreased phosphorylation of IR-β, IRS-1, Akt, total PI3K-p85α protein expression and glucose uptake. LPS and poly(I:C) also significantly increased expression of System A amino acid transporters SNAT1 and SNAT2, and System A-mediated uptake of amino acids. DISCUSSION LPS and poly(I:C) induces insulin resistance and increases amino acid uptake in human primary trophoblast cells. This suggests that the presence of low-grade maternal infection can contribute to excess placental nutrient availability and promote fetal overgrowth in pregnancies complicated by GDM and/or obesity.
Collapse
|
44
|
Vaughan O, Rosario F, Powell T, Jansson T. Regulation of Placental Amino Acid Transport and Fetal Growth. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:217-251. [DOI: 10.1016/bs.pmbts.2016.12.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Wang Q, Würtz P, Auro K, Mäkinen VP, Kangas AJ, Soininen P, Tiainen M, Tynkkynen T, Jokelainen J, Santalahti K, Salmi M, Blankenberg S, Zeller T, Viikari J, Kähönen M, Lehtimäki T, Salomaa V, Perola M, Jalkanen S, Järvelin MR, Raitakari OT, Kettunen J, Lawlor DA, Ala-Korpela M. Metabolic profiling of pregnancy: cross-sectional and longitudinal evidence. BMC Med 2016; 14:205. [PMID: 27955712 PMCID: PMC5153817 DOI: 10.1186/s12916-016-0733-0] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/31/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Pregnancy triggers well-known alterations in maternal glucose and lipid balance but its overall effects on systemic metabolism remain incompletely understood. METHODS Detailed molecular profiles (87 metabolic measures and 37 cytokines) were measured for up to 4260 women (24-49 years, 322 pregnant) from three population-based cohorts in Finland. Circulating molecular concentrations in pregnant women were compared to those in non-pregnant women. Metabolic profiles were also reassessed for 583 women 6 years later to uncover the longitudinal metabolic changes in response to change in the pregnancy status. RESULTS Compared to non-pregnant women, all lipoprotein subclasses and lipids were markedly increased in pregnant women. The most pronounced differences were observed for the intermediate-density, low-density and high-density lipoprotein triglyceride concentrations. Large differences were also seen for many fatty acids and amino acids. Pregnant women also had higher concentrations of low-grade inflammatory marker glycoprotein acetyls, higher concentrations of interleukin-18 and lower concentrations of interleukin-12p70. The changes in metabolic concentrations for women who were not pregnant at baseline but pregnant 6 years later (or vice versa) matched (or were mirror-images of) the cross-sectional association pattern. Cross-sectional results were consistent across the three cohorts and similar longitudinal changes were seen for 653 women in 4-year and 497 women in 10-year follow-up. For multiple metabolic measures, the changes increased in magnitude across the three trimesters. CONCLUSIONS Pregnancy initiates substantial metabolic and inflammatory changes in the mothers. Comprehensive characterisation of normal pregnancy is important for gaining understanding of the key nutrients for fetal growth and development. These findings also provide a valuable molecular reference in relation to studies of adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Qin Wang
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Peter Würtz
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Kirsi Auro
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital and University of Helsinki, Helsinki, Finland
| | - Ville-Petteri Mäkinen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- Heart Health Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| | - Antti J. Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Mika Tiainen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Tuulia Tynkkynen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Jari Jokelainen
- Center for Life Course Health Research and Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
| | - Kristiina Santalahti
- Department of Medical Microbiology and Immunology, and MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Marko Salmi
- Department of Medical Microbiology and Immunology, and MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Stefan Blankenberg
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK e.V.), partner site Hamburg, Lübeck, Kiel Germany
| | - Tanja Zeller
- Clinic for General and Interventional Cardiology, University Heart Center Hamburg, Hamburg, Germany
- German Center for Cardiovascular Research (DZHK e.V.), partner site Hamburg, Lübeck, Kiel Germany
| | - Jorma Viikari
- Department of Medicine, University of Turku, Turku, Finland
- Division of Medicine, Turku University Hospital, Turku, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, School of Medicine, University of Tampere, Tampere, Finland
| | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
- Institute for Molecular Medicine (FIMM), University of Helsinki, Helsinki, Finland
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Sirpa Jalkanen
- Department of Medical Microbiology and Immunology, and MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Marjo-Riitta Järvelin
- Center for Life Course Health Research and Biocenter Oulu, University of Oulu, Oulu, Finland
- Unit of Primary Care, Oulu University Hospital, Oulu, Finland
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
| | - Johannes Kettunen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- National Institute for Health and Welfare, Helsinki, Finland
| | - Debbie A. Lawlor
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Medical Research Council Integrative Epidemiology Unit at the University of Bristol, Bristol, UK
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| |
Collapse
|
46
|
Hunter DS, Hazel SJ, Kind KL, Owens JA, Pitcher JB, Gatford KL. Programming the brain: Common outcomes and gaps in knowledge from animal studies of IUGR. Physiol Behav 2016; 164:233-48. [DOI: 10.1016/j.physbeh.2016.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|
47
|
Lin G, Wang X, Wu G, Feng C, Zhou H, Li D, Wang J. Improving amino acid nutrition to prevent intrauterine growth restriction in mammals. Amino Acids 2015; 46:1605-23. [PMID: 24658999 DOI: 10.1007/s00726-014-1725-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 03/06/2014] [Indexed: 12/18/2022]
Abstract
Intrauterine growth restriction (IUGR) is one of the most common concerns in human obstetrics and domestic animal production. It is usually caused by placental insufficiency, which decreases fetal uptake of nutrients (especially amino acids) from the placenta. Amino acids are not only building blocks for protein but also key regulators of metabolic pathways in fetoplacental development. The enhanced demands of amino acids by the developing conceptus must be met via active transport systems across the placenta as normal pregnancy advances. Growing evidence indicates that IUGR is associated with a reduction in placental amino acid transport capacity and metabolic pathways within the embryonic/fetal development. The positive relationships between amino acid concentrations in circulating maternal blood and placental amino acid transport into fetus encourage designing new therapies to prevent or treat IUGR by enhancing amino acid availability in maternal diets or maternal circulation. Despite the positive effects of available dietary interventions, nutritional therapy for IUGR is still in its infancy. Based on understanding of the underlying mechanisms whereby amino acids promote fetal growth and of their dietary requirements by IUGR, supplementation with functional amino acids (e.g., arginine and glutamine) hold great promise for preventing fetal growth restriction and improving health and growth of IUGR offspring.
Collapse
|
48
|
Wu X, Xie C, Zhang Y, Fan Z, Yin Y, Blachier F. Glutamate-glutamine cycle and exchange in the placenta-fetus unit during late pregnancy. Amino Acids 2014; 47:45-53. [PMID: 25399054 DOI: 10.1007/s00726-014-1861-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
Abstract
The present review focuses on the physiological functions of glutamate-glutamine exchange involving placental amino acid transport and umbilical amino acid uptake in mammals (particularly in sows), with special emphasis on the associated regulating mechanisms. Glutamate plus glutamine are among the most abundant and the most utilized amino acids in fetus during late gestation. During pregnancy, amino acids, notably as precursors of macromolecules including proteins and nucleotides are involved in fetal development and growth. Amino acid concentrations in fetus are generally higher than in the mother. Among amino acids, the transport and metabolism of glutamate and glutamine during fetal development exhibit characteristics that clearly emphasize the importance of the interaction between the placenta and the fetal liver. Glutamate is quite remarkable among amino acids, which originate from the placenta, and is cleared from fetal plasma. In addition, the flux of glutamate through the placenta from the fetal plasma is highly correlated with the umbilical glutamate delivery rate. Glutamine plays a central role in fetal carbon and nitrogen metabolism and exhibits one of the highest fetal/maternal plasma ratio among all amino acids in human and other mammals. Glutamate is taken up by placenta from the fetal circulation and then converted to glutamine before being released back into the fetal circulation. Works are required on the glutamate-glutamine metabolism during late pregnancy in physiological and pathophysiological situations since such works may help to improve fetal growth and development both in humans and other mammals. Indeed, glutamine supplementation appears to ameliorate fetal growth retardation in sows and reduces preweaning mortality of piglets.
Collapse
Affiliation(s)
- Xin Wu
- Hunan Engineering and Research Center of Animal and Poultry Science, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, 410125, Changsha, China,
| | | | | | | | | | | |
Collapse
|
49
|
Sulek K, Han TL, Villas-Boas SG, Wishart DS, Soh SE, Kwek K, Gluckman PD, Chong YS, Kenny LC, Baker PN. Hair metabolomics: identification of fetal compromise provides proof of concept for biomarker discovery. Am J Cancer Res 2014; 4:953-9. [PMID: 25057319 PMCID: PMC4107295 DOI: 10.7150/thno.9265] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/12/2014] [Indexed: 12/25/2022] Open
Abstract
Analysis of the human metabolome has yielded valuable insights into health, disease and toxicity. However, the metabolic profile of complex biological fluids such as blood is highly dynamic and this has limited the discovery of robust biomarkers. Hair grows relatively slowly, and both endogenous compounds and environmental exposures are incorporated from blood into hair during growth, which reflects the average chemical composition over several months. We used hair samples to study the metabolite profiles of women with pregnancies complicated by fetal growth restriction (FGR) and healthy matched controls. We report the use of GC-MS metabolite profiling of hair samples for biomarker discovery. Unsupervised statistical analysis showed complete discrimination of FGR from controls based on hair composition alone. A predictive model combining 5 metabolites produced an area under the receiver-operating curve of 0.998. This is the first study of the metabolome of human hair and demonstrates that this biological material contains robust biomarkers, which may lead to the development of a sensitive diagnostic tool for FGR, and perhaps more importantly, to stable biomarkers for a range of other diseases.
Collapse
|
50
|
Jones H, Crombleholme T, Habli M. Regulation of amino acid transporters by adenoviral-mediated human insulin-like growth factor-1 in a mouse model of placental insufficiency in vivo and the human trophoblast line BeWo in vitro. Placenta 2013; 35:132-8. [PMID: 24360522 DOI: 10.1016/j.placenta.2013.11.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 12/01/2022]
Abstract
Previous work in our laboratory demonstrated that over-expression of human insulin-like growth factor-11 (hIGF-1) in the placenta corrects fetal weight deficits in mouse, rat, and rabbit models of intrauterine growth restriction without changes in placental weight. The underlying mechanisms of this effect have not been elucidated. To investigate the effect of intra-placental IGF-1 over-expression on placental function we examined amino acid transporter expression and localization in both a mouse model of placental Insufficiency (PI) and a model of human trophoblast, the BeWo Choriocarcinoma cell line. For in vitro human studies, BeWo Choriocarcinoma cells were maintained in F12 complete medium + 10%FBS. Cells were incubated in serum-free control media ± Ad-IGF-1 or Ad-LacZ for 48 h. MOIs of 10:1 and 100:1 were utilized. In BeWo, transfection efficiency was 100% at an MOI of 100:1 and Ad-IGF-1 significantly increased IGF-1 secretion, proliferation and invasion but reduced apoptosis compared to controls. In vitro, amino acid uptake was increased following Ad-IGF-1 treatment and associated with significantly increased RNA expression of SNAT1, 2, LAT1 and 4F2hc. Only SNAT2 protein expression was increased but LAT1 showed relocalization from a perinuclear location to the cytoplasm and cell membrane. For in vivo studies, timed-pregnant animals were divided into four groups on day 18; sham-operated controls, uterine artery branch ligation (UABL), UABL + Ad-hIGF-1 (10(8) PFU), UABL + Ad-LacZ (10(8) PFU). At gestational day 20, pups and placentas were harvested by C-section. Only LAT1 mRNA expression changed, showing that a reduced expression of the transporter levels in the PI model could be partially rectified with Ad-hIGF1 treatment. At the protein level, System L was reduced in PI but remained at control levels following Ad-hIGF1. The System A isoforms were differentially regulated with SNAT2 expression diminished but SNAT1 increased in PI and Ad-hIGF1 groups. Enhanced amino acid isoform transporter expression and relocalization to the membrane may be an important mechanism contributing to Ad-hIGF-1 mediated correction of placental insufficiency.
Collapse
Affiliation(s)
- H Jones
- The Center for Cellular and Molecular Fetal Therapy, Division of Pediatric General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - T Crombleholme
- Colorado Fetal Care Center, Children's Hospital Colorado and The University of Colorado School of Medicine, Aurora, CO, USA
| | - M Habli
- The Center for Cellular and Molecular Fetal Therapy, Division of Pediatric General, Thoracic and Fetal Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| |
Collapse
|