1
|
Cadosch N, Gil-Cruz C, Perez-Shibayama C, Ludewig B. Cardiac Fibroblastic Niches in Homeostasis and Inflammation. Circ Res 2024; 134:1703-1717. [PMID: 38843287 PMCID: PMC11149942 DOI: 10.1161/circresaha.124.323892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 06/09/2024]
Abstract
Fibroblasts are essential for building and maintaining the structural integrity of all organs. Moreover, fibroblasts can acquire an inflammatory phenotype to accommodate immune cells in specific niches and to provide migration, differentiation, and growth factors. In the heart, balancing of fibroblast activity is critical for cardiac homeostasis and optimal organ function during inflammation. Fibroblasts sustain cardiac homeostasis by generating local niche environments that support housekeeping functions and by actively engaging in intercellular cross talk. During inflammatory perturbations, cardiac fibroblasts rapidly switch to an inflammatory state and actively communicate with infiltrating immune cells to orchestrate immune cell migration and activity. Here, we summarize the current knowledge on the molecular landscape of cardiac fibroblasts, focusing on their dual role in promoting tissue homeostasis and modulating immune cell-cardiomyocyte interaction. In addition, we discuss potential future avenues for manipulating cardiac fibroblast activity during myocardial inflammation.
Collapse
Affiliation(s)
- Nadine Cadosch
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christian Perez-Shibayama
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland (N.C., C.G.-C., C.P.-S., B.L.)
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland (C.G.-C., B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
- Center for Translational and Experimental Cardiology (B.L.), University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Golino M, Harding D, Del Buono MG, Fanti S, Mohiddin S, Toldo S, Smyth J, Sanna T, Marelli-Berg F, Abbate A. Innate and adaptive immunity in acute myocarditis. Int J Cardiol 2024; 404:131901. [PMID: 38403204 PMCID: PMC11450758 DOI: 10.1016/j.ijcard.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Acute myocarditis is an acute inflammatory cardiomyopathy associated with cardiac damage triggered by a virus or a pathological immune activation. It may present with a wide range of clinical presentations, ranging from mild symptoms to severe forms like fulminant myocarditis, characterized by hemodynamic compromise and cardiogenic shock. The immune system plays a central role in the pathogenesis of myocarditis. In fact, while its function is primarily protective, aberrant responses can be detrimental. In this context, both innate and adaptive immunity play pivotal roles; notably, the innate system offers a non-specific and immediate defense, while the adaptive provides specialized protection with immunological memory. However, dysregulation in these systems can misidentify cardiac tissue, triggering autoimmune reactions and possibly leading to significant cardiac tissue damage. This review highlights the importance of innate and adaptive immune responses in the progression and treatment of acute myocarditis.
Collapse
Affiliation(s)
- Michele Golino
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Saidi Mohiddin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Stefano Toldo
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - James Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, United States of America; Virginia Tech Carilion School of Medicine, Roanoke, VA, United States of America; Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
3
|
Fan Z, Wu C, Wang C, Liu C, Fang L, Ma L, Zou W, Yuan B, Ji Z, Cai B, Liu G. Impact of Concurrent Ischaemic Stroke on Unfavourable Outcomes in Men and Women with Dilated Cardiomyopathy. Rev Cardiovasc Med 2024; 25:215. [PMID: 39076319 PMCID: PMC11270057 DOI: 10.31083/j.rcm2506215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 07/31/2024] Open
Abstract
Background Growing evidence suggests that concurrent ischaemic stroke (IS) exacerbates the prognosis of patients with dilated cardiomyopathy (DCM) and that this effect may be further influenced by sex. However, the exact effect of sex remains unclear. This study aimed to explore the effects of the relevant risk factors on the prognosis of patients with DCM and concurrent IS. Considering the sex differences in DCM, this study further investigated the impact of concurrent IS on the prognosis of men and women with DCM. Methods A total of 632 patients with DCM enrolled between 2016 and 2021 were included in this study. Clinical data were obtained from medical records, and all participants were followed up in the outpatient clinic or by telephone for at least 1 year. A Cox proportional hazards model and Kaplan-Meier curves were used to evaluate the effects of concurrent IS on the prognosis of patients with DCM. Results Patients with DCM complicated with IS (DCM-IS) had significantly lower cumulative survival rates than patients with DCM without IS (non-IS) (74.6% vs. 84.2%, χ 2 = 6.85, p = 0.009). Additionally, IS was associated with greater risks of death and heart transplantation (HTx) in men (75.8% vs. 85.1%, χ 2 = 5.02, p = 0.025), but not in women (71.0% vs. 81.5%, χ 2 = 1.91, p = 0.167). Conclusions This large-scale multicentre prospective cohort study demonstrated a poorer prognosis in patients with concurrent DCM and IS, particularly among men. Patients with DCM should not be overlooked in IS screening, emphasis should be placed on the occurrence of IS in patients with DCM. Early and proactive secondary prevention of cerebrovascular diseases might improve the prognosis of DCM patients. More intervention studies focusing on men with DCM complicated with IS should be prioritised.
Collapse
Affiliation(s)
- Zexin Fan
- Department of Neurology, The Second Hospital of Shanxi Medical University, 030001 Taiyuan, Shanxi, China
| | - Chao Wu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Chaobin Wang
- Department of Neurology, Beijing Fangshan District Liangxiang Hospital, 102401 Beijing, China
| | - Chun Liu
- Department of Neurology, Mechinka Hospital, Dnipro State Medical University, 49044 Dnipro, Ukraine
| | - Libo Fang
- Department of Neurology, Beijing Fuxing Hospital, Capital Medical University, 100038 Beijing, China
| | - Lin Ma
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Wenlong Zou
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Boyi Yuan
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Zeyu Ji
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Bin Cai
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| | - Guangzhi Liu
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, 100029 Beijing, China
| |
Collapse
|
4
|
Poto R, Marone G, Galli SJ, Varricchi G. Mast cells: a novel therapeutic avenue for cardiovascular diseases? Cardiovasc Res 2024; 120:681-698. [PMID: 38630620 PMCID: PMC11135650 DOI: 10.1093/cvr/cvae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/28/2023] [Accepted: 01/08/2024] [Indexed: 04/19/2024] Open
Abstract
Mast cells are tissue-resident immune cells strategically located in different compartments of the normal human heart (the myocardium, pericardium, aortic valve, and close to nerves) as well as in atherosclerotic plaques. Cardiac mast cells produce a broad spectrum of vasoactive and proinflammatory mediators, which have potential roles in inflammation, angiogenesis, lymphangiogenesis, tissue remodelling, and fibrosis. Mast cells release preformed mediators (e.g. histamine, tryptase, and chymase) and de novo synthesized mediators (e.g. cysteinyl leukotriene C4 and prostaglandin D2), as well as cytokines and chemokines, which can activate different resident immune cells (e.g. macrophages) and structural cells (e.g. fibroblasts and endothelial cells) in the human heart and aorta. The transcriptional profiles of various mast cell populations highlight their potential heterogeneity and distinct gene and proteome expression. Mast cell plasticity and heterogeneity enable these cells the potential for performing different, even opposite, functions in response to changing tissue contexts. Human cardiac mast cells display significant differences compared with mast cells isolated from other organs. These characteristics make cardiac mast cells intriguing, given their dichotomous potential roles of inducing or protecting against cardiovascular diseases. Identification of cardiac mast cell subpopulations represents a prerequisite for understanding their potential multifaceted roles in health and disease. Several new drugs specifically targeting human mast cell activation are under development or in clinical trials. Mast cells and/or their subpopulations can potentially represent novel therapeutic targets for cardiovascular disorders.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
| | - Gianni Marone
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| | - Stephen J Galli
- Department of Pathology and the Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, 291 Campus Dr, Stanford, CA, USA
| | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- World Allergy Organization (WAO), Center of Excellence (CoE), Via S. Pansini 5, Naples 80131, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Via S. Pansini 5, Naples 80131, Italy
- Institute of Experimental Endocrinology and Oncology ‘G. Salvatore’, National Research Council (CNR), Via S. Pansini 5, Naples 80131, Italy
| |
Collapse
|
5
|
Ma Y, Huang H, Qian H, Wu Y, Gao Z. Association of urinary bisphenol A levels with heart failure risk in U.S. adults from the NHANES (2003-2016). Front Cardiovasc Med 2024; 11:1329586. [PMID: 38766304 PMCID: PMC11099872 DOI: 10.3389/fcvm.2024.1329586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Introduction Although heart failure (HF) has been linked to bisphenol A (BPA), few studies have investigated the cut-off values for the effects of urinary BPA levels on heart failure risk. The association between urinary BPA levels and HF prognosis has not been investigated. Methods This study included 11,849 adults over 20 years old using information from the National Health and Nutrition Examination Survey (NHANES), which was conducted from 2003 to 2016. The relationship between urinary BPA levels and the risk of HF was determined via a multivariable logistic regression model, and restricted cubic spline (RCS) methods were used to determine the cut-off for the effect of BPA levels on HF risk. Based on the available NT-proBNP concentration data from the NHANES (2003-2004), multivariable linear regression was applied to determine the linear association between the NT-proBNP concentration and urinary BPA concentration. Results The results revealed a positive correlation between a urinary BPA concentration in the fourth quartile and the occurrence of heart failure [OR 1.49, 95% CI (1.09, 2.04), p = 0.012]. A one-unit increase (1 ng/mg creatinine) in the ln-transformed BPA concentration was linked to a 15% increase in the incidence of HF [OR 1.15, 95% CI (1.03, 1.29), p = 0.014]. The cut-off urinary BPA concentration for HF risk was 1.51 ng/mg creatinine. There was a positive correlation between urinary BPA and NT-proBNP concentrations [β = 0.093, 95% CI (0.014, 0.171), p = 0.02] in males, but there was no linear association [β = 0.040, 95% CI (-0.033, 0.113), p = 0.283] in females. Discussion Increased urinary BPA levels are linked to an increased risk of heart failure and poor prognosis. There is a significant increase in the risk of heart failure if the urinary concentration of BPA exceeds 1.51 ng/mg creatinine.
Collapse
Affiliation(s)
- Yuanyuan Ma
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Haobin Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Haiyun Qian
- Department of Cardiothoracic Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, China
| | - Yanhu Wu
- Department of Cardiovascular Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhe Gao
- Department of Cardiothoracic Surgery, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Su Y, Liu X, Xie B, Zhang B, Yang Q, Yang MF. Comparison of Cardiac Activated Fibroblast Imaging and Magnetic Resonance Imaging in Patients with COVID-19-Related Myocarditis. Rev Cardiovasc Med 2024; 25:161. [PMID: 39076498 PMCID: PMC11267212 DOI: 10.31083/j.rcm2505161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 07/31/2024] Open
Abstract
Background This study aimed to explore the association between cardiac fibroblast activation and cardiac magnetic resonance (CMR) imaging parameters in patients with myocarditis following infection with coronavirus 2019 (COVID-19). Methods In this prospective study, four patients with COVID-19-related myocarditis underwent 99mTc-labeled-hydrazinonicotinamide-fibroblast activation protein inhibitor-04 (99mTc-HFAPi) single photon emission computed tomography/computed tomography (SPECT/CT) and CMR imaging. Segmental 99mTc-HFAPi activity was quantified as the percentage of average segmental myocardial count × global left ventricular target-to-background ratio. T1/T2 values, extracellular volume (ECV), and late gadolinium enhancement (LGE) were analyzed by CMR. The consistency between myocardial 99mTc-HFAPi activity and CMR parameters was explored. Results In patients with myocarditis, the proportion of segments with abnormal 99mTc-HFAPi activity was significantly higher than in those with abnormal LGE (81.25% vs. 60.93%, p = 0.011), abnormal T2 (81.25% vs. 50.00%, p < 0.001), and abnormal ECV (81.25% vs. 59.38%, p = 0.007); however, they were similar in those with abnormal native T1 (81.25% vs. 73.43%, p = 0.291). Meanwhile, 99mTc-HFAPi imaging exhibited good consistency with native T1 (kappa = 0.69). Conclusions Increased cardiac 99mTc-HFAPi activity is present in COVID-19-related myocarditis, which is correlated with the native T1 values in CMR.
Collapse
Affiliation(s)
- Yao Su
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Xin Liu
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Boqia Xie
- Cardiac Center, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Bowen Zhang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| | - Min-Fu Yang
- Department of Nuclear Medicine, Beijing Chaoyang Hospital, Capital Medical University, 100020 Beijing, China
| |
Collapse
|
7
|
Tran DT, Batchu SN, Advani A. Interferons and interferon-related pathways in heart disease. Front Cardiovasc Med 2024; 11:1357343. [PMID: 38665231 PMCID: PMC11043610 DOI: 10.3389/fcvm.2024.1357343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Interferons (IFNs) and IFN-related pathways play key roles in the defence against microbial infection. However, these processes may also be activated during the pathogenesis of non-infectious diseases, where they may contribute to organ injury, or function in a compensatory manner. In this review, we explore the roles of IFNs and IFN-related pathways in heart disease. We consider the cardiac effects of type I IFNs and IFN-stimulated genes (ISGs); the emerging role of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway; the seemingly paradoxical effects of the type II IFN, IFN-γ; and the varied actions of the interferon regulatory factor (IRF) family of transcription factors. Recombinant IFNs and small molecule inhibitors of mediators of IFN receptor signaling are already employed in the clinic for the treatment of some autoimmune diseases, infections, and cancers. There has also been renewed interest in IFNs and IFN-related pathways because of their involvement in SARS-CoV-2 infection, and because of the relatively recent emergence of cGAS-STING as a pattern recognition receptor-activated pathway. Whether these advances will ultimately result in improvements in the care of those experiencing heart disease remains to be determined.
Collapse
Affiliation(s)
| | | | - Andrew Advani
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON, Canada
| |
Collapse
|
8
|
Thevathasan T, Kenny MA, Gaul AL, Paul J, Krause FJ, Lech S, Stadler G, Meyer A, Schreiber F, Fairweather D, Cooper LT, Tschöpe C, Landmesser U, Skurk C, Balzer F, Heidecker B. Sex and Age Characteristics in Acute or Chronic Myocarditis A Descriptive, Multicenter Cohort Study. JACC. ADVANCES 2024; 3:100857. [PMID: 38770230 PMCID: PMC11105794 DOI: 10.1016/j.jacadv.2024.100857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/13/2023] [Indexed: 05/22/2024]
Abstract
BACKGROUND Understanding the clinical features of myocarditis in various age groups is required to identify age-specific disease patterns. OBJECTIVES The objective of this study was to examine differences in sex distribution and clinical outcomes in patients with myocarditis of various ages. METHODS Patients with acute or chronic myocarditis in 3 centers in Berlin, Germany from 2005 to 2021 and in the United States (National Inpatient Sample) from 2010 to 2019 were included. Age groups examined included "prepubescent" (below 11 years for females and below 13 years for males), adolescents (11 [female] or 13 [male] to 18 years), young adults (18-35 years), "middle-aged adults" (35-54 years), and older adults (age >54 years). In patients admitted to the hospital, hospital mortality, length of stay, and medical complication rates were examined. RESULTS Overall, 6,023 cases in Berlin and 9,079 cases in the U.S. cohort were included. In both cohorts, there were differences in sex distribution among the 5 age categories, and differences in the distribution were most notable in adolescents (69.3% males vs 30.7% females) and in young adults (73.8% males vs 26.3% females). Prepubescent and older adults had the highest rates of in-hospital mortality, hospital length of stay, and medical complications. In the Berlin cohort, prepubescent patients had higher levels of leukocytes (P < 0.001), antistreptolysin antibody (P < 0.001), and NT-proBNP (P < 0.001) when compared to young adults. CONCLUSIONS In this study, we found that sex differences in myocarditis and clinical features of myocarditis were age-dependent.
Collapse
Affiliation(s)
- Tharusan Thevathasan
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Megan A. Kenny
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Anna L. Gaul
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Julia Paul
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Finn J. Krause
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Sonia Lech
- Institute for Medical Sociology and Rehabilitation Science, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Gertraud Stadler
- Institute Gender in Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Meyer
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - Fabian Schreiber
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota, USA
- Department of Immunology, Mayo Clinic, Jacksonville, Florida, USA
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | - Carsten Tschöpe
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH) for Regenerative Therapie (BCRT) at Charité, Campus Virchow, Berlin, Germany
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Virchow Klinikum, Berlin, Germany
| | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Felix Balzer
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Campus Charité Mitte, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
- Berlin Institute of Health at Charité – Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
9
|
Musigk N, Suwalski P, Golpour A, Fairweather D, Klingel K, Martin P, Frustaci A, Cooper LT, Lüscher TF, Landmesser U, Heidecker B. The inflammatory spectrum of cardiomyopathies. Front Cardiovasc Med 2024; 11:1251780. [PMID: 38464847 PMCID: PMC10921946 DOI: 10.3389/fcvm.2024.1251780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Infiltration of the myocardium with various cell types, cytokines and chemokines plays a crucial role in the pathogenesis of cardiomyopathies including inflammatory cardiomyopathies and myocarditis. A more comprehensive understanding of the precise immune mechanisms involved in acute and chronic myocarditis is essential to develop novel therapeutic approaches. This review offers a comprehensive overview of the current knowledge of the immune landscape in cardiomyopathies based on etiology. It identifies gaps in our knowledge about cardiac inflammation and emphasizes the need for new translational approaches to improve our understanding thus enabling development of novel early detection methods and more effective treatments.
Collapse
Affiliation(s)
- Nicolas Musigk
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Phillip Suwalski
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Ainoosh Golpour
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Karin Klingel
- Cardiopathology Institute for Pathology, Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Pilar Martin
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Centro de Investigación Biomédica en Red Cardiovascular (CIBER-CV, ISCIII), Madrid, Spain
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Thomas F. Lüscher
- GZO-Zurich Regional Health Centre, Wetzikon & Cardioimmunology, Centre for Molecular Cardiology, University of Zurich, Zurich, Switzerland
- Royal Brompton & Harefield Hospitals and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Ulf Landmesser
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| | - Bettina Heidecker
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Berlin, Germany
| |
Collapse
|
10
|
Smolgovsky S, Theall B, Wagner N, Alcaide P. Fibroblasts and immune cells: at the crossroad of organ inflammation and fibrosis. Am J Physiol Heart Circ Physiol 2024; 326:H303-H316. [PMID: 38038714 PMCID: PMC11219060 DOI: 10.1152/ajpheart.00545.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/13/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
The immune and fibrotic responses have evolved to work in tandem to respond to pathogen clearance and promote tissue repair. However, excessive immune and fibrotic responses lead to chronic inflammation and fibrosis, respectively, both of which are key pathological drivers of organ pathophysiology. Fibroblasts and immune cells are central to these responses, and evidence of these two cell types communicating through soluble mediators or adopting functions from each other through direct contact is constantly emerging. Here, we review complex junctions of fibroblast-immune cell cross talk, such as immune cell modulation of fibroblast physiology and fibroblast acquisition of immune cell-like functions, as well as how these systems of communication contribute to organ pathophysiology. We review the concept of antigen presentation by fibroblasts among different organs with different regenerative capacities, and then focus on the inflammation-fibrosis axis in the heart in the complex syndrome of heart failure. We discuss the need to develop anti-inflammatory and antifibrotic therapies, so far unsuccessful to date, that target novel mechanisms that sit at the crossroads of the fibrotic and immune responses.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Brandon Theall
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Noah Wagner
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
11
|
Liu K, Han B. Role of immune cells in the pathogenesis of myocarditis. J Leukoc Biol 2024; 115:253-275. [PMID: 37949833 DOI: 10.1093/jleuko/qiad143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/15/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that mostly affects young people. Myocarditis involves a complex immune network; however, its detailed pathogenesis is currently unclear. The diversity and plasticity of immune cells, either in the peripheral blood or in the heart, have been partially revealed in a number of previous studies involving patients and several kinds of animal models with myocarditis. It is the complexity of immune cells, rather than one cell type that is the culprit. Thus, recognizing the individual intricacies within immune cells in the context of myocarditis pathogenesis and finding the key intersection of the immune network may help in the diagnosis and treatment of this condition. With the vast amount of cell data gained on myocarditis and the recent application of single-cell sequencing, we summarize the multiple functions of currently recognized key immune cells in the pathogenesis of myocarditis to provide an immune background for subsequent investigations.
Collapse
Affiliation(s)
- Keyu Liu
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
| | - Bo Han
- Department of Pediatric Cardiology, Shandong Provincial Hospital, Shandong University, Cheeloo Colledge of Medicine, No. 324 Jingwu Road, 250021, Jinan, China
- Department of Pediatric Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324 Jingwu Road, 250021, Jinan, China
- Shandong Provincial Hospital, Shandong Provincial Clinical Research Center for Children' s Health and Disease office, No. 324 Jingwu Road, 250021, Jinan, China
| |
Collapse
|
12
|
Stoffers B, Wolf H, Bacmeister L, Kupsch S, Vico T, Marchini T, Brehm MA, Yan I, Becher PM, Ardeshirdavani A, Escher F, Kim SV, Klingel K, Kirchhof P, Blankenberg S, Zeller T, Wolf D, Hilgendorf I, Westermann D, Lindner D. GPR15-mediated T cell recruitment during acute viral myocarditis facilitated virus elimination and improved outcome. NATURE CARDIOVASCULAR RESEARCH 2024; 3:76-93. [PMID: 39195892 PMCID: PMC11357984 DOI: 10.1038/s44161-023-00401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/27/2023] [Indexed: 08/29/2024]
Abstract
Viral myocarditis is characterized by infiltration of mononuclear cells essential for virus elimination. GPR15 has been identified as a homing receptor for regulatory T cells in inflammatory intestine diseases, but its role in inflammatory heart diseases is still elusive. Here we show that GPR15 deficiency impairs coxsackievirus B3 elimination, leading to adverse cardiac remodeling and dysfunction. Delayed recruitment of regulatory T cells in GPR15-deficient mice was accompanied by prolonged persistence of cytotoxic and regulatory T cells. In addition, RNA sequencing revealed prolonged inflammatory response and altered chemotaxis in knockout mice. In line, we identified GPR15 and its ligand GPR15L as an important chemokine receptor-ligand pair for the recruitment of regulatory and cytotoxic T cells. In summary, the insufficient virus elimination might be caused by a delayed recruitment of T cells as well as delayed interferon-γ expression, resulting in a prolonged inflammatory response and an adverse outcome in GPR15-deficient mice.
Collapse
MESH Headings
- Animals
- Myocarditis/immunology
- Myocarditis/metabolism
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Receptors, G-Protein-Coupled/immunology
- Mice, Knockout
- Coxsackievirus Infections/immunology
- Coxsackievirus Infections/genetics
- Disease Models, Animal
- Enterovirus B, Human/immunology
- Mice, Inbred C57BL
- T-Lymphocytes, Regulatory/immunology
- Acute Disease
- Interferon-gamma/metabolism
- Mice
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Male
- Chemotaxis, Leukocyte/genetics
- Chemotaxis, Leukocyte/immunology
- Myocardium/metabolism
- Myocardium/immunology
- Myocardium/pathology
- Signal Transduction
Collapse
Affiliation(s)
- Bastian Stoffers
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Hanna Wolf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Lucas Bacmeister
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Svenja Kupsch
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tamara Vico
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Timoteo Marchini
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria A Brehm
- Department Digital Health Sciences and Biomedicine, School of Life Sciences, University of Siegen, Siegen, Germany
| | - Isabell Yan
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - P Moritz Becher
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Armin Ardeshirdavani
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Felicitas Escher
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Institute for Cardiac Diagnostics and Therapy, Berlin, Germany
- Deutsches Herzzentrum der Charité, Department of Cardiology, Angiology and Intensive Care Medicine, Campus Virchow Klinikum, Berlin, Germany
| | - Sangwon V Kim
- Department of Microbiology and Immunology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Karin Klingel
- Cardiopathology, Institute of Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Paulus Kirchhof
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Blankenberg
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Tanja Zeller
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
- Department of Cardiology, University Heart & Vascular Centre Hamburg, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Dennis Wolf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Westermann
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany
| | - Diana Lindner
- Department of Cardiology and Angiology, University Heart Center Freiburg-Bad Krozingen, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
13
|
Di Florio D, Gorelov D, McCabe E, Beetler D, Shapiro K, Bruno K, Chekuri I, Jain A, Whelan E, Salomon G, Khatib S, Bonvie-Hill N, Giresi P, Balamurugan V, Weigel G, Fliess J, Darakjian A, Edenfield B, Kocsis C, McLeod C, Cooper L, Audet-Walsh E, Coronado M, Sin J, Fairweather D. Sex differences in mitochondrial gene expression during viral myocarditis. RESEARCH SQUARE 2023:rs.3.rs-3716881. [PMID: 38196574 PMCID: PMC10775395 DOI: 10.21203/rs.3.rs-3716881/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Background Myocarditis is an inflammation of the heart muscle most often caused by an immune response to viral infections. Sex differences in the immune response during myocarditis have been well described but upstream mechanisms in the heart that might influence sex differences in disease are not completely understood. Methods Male and female BALB/c wild type mice received an intraperitoneal injection of heart-passaged coxsackievirus B3 (CVB3) or vehicle control. Bulk-tissue RNA-sequencing was conducted to better understand sex differences in CVB3 myocarditis. We performed enrichment analysis to understand sex differences in the transcriptional landscape of myocarditis and identify candidate transcription factors that might drive sex differences in myocarditis. Results The hearts of male and female mice with myocarditis were significantly enriched for pathways related to an innate and adaptive immune response compared to uninfected controls. When comparing females to males with myocarditis, males were enriched for inflammatory pathways and gene changes that suggested worse mitochondrial transcriptional support (e.g., mitochondrial electron transport genes). In contrast, females were enriched for pathways related to mitochondrial respiration and bioenergetics, which were confirmed by higher transcript levels of master regulators of mitochondrial function including peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1α), nuclear respiratory factor 1 (NRF1) and estrogen-related receptor alpha (ERRα). TRANSFAC analysis identified ERRa as a transcription factor that may mediate sex differences in mitochondrial function during myocarditis. Conclusions Master regulators of mitochondrial function were elevated in females with myocarditis compared to males and may promote sex differences in mitochondrial respiratory transcript expression during viral myocarditis resulting in less severe myocarditis in females following viral infection.
Collapse
|
14
|
Beetler DJ, Bruno KA, Watkins MM, Xu V, Chekuri I, Giresi P, Di Florio DN, Whelan ER, Edenfield BH, Walker SA, Morales-Lara AC, Hill AR, Jain A, Auda ME, Macomb LP, Shapiro KA, Keegan KC, Wolfram J, Behfar A, Stalboerger PG, Terzic A, Farres H, Cooper LT, Fairweather D. Reconstituted Extracellular Vesicles from Human Platelets Decrease Viral Myocarditis in Mice. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303317. [PMID: 37612820 PMCID: PMC10840864 DOI: 10.1002/smll.202303317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/11/2023] [Indexed: 08/25/2023]
Abstract
Patients with viral myocarditis are at risk of sudden death and may progress to dilated cardiomyopathy (DCM). Currently, no disease-specific therapies exist to treat viral myocarditis. Here it is examined whether reconstituted, lyophilized extracellular vesicles (EVs) from platelets from healthy men and women reduce acute or chronic myocarditis in male mice. Human-platelet-derived EVs (PEV) do not cause toxicity, damage, or inflammation in naïve mice. PEV administered during the innate immune response significantly reduces myocarditis with fewer epidermal growth factor (EGF)-like module-containing mucin-like hormone receptor-like 1 (F4/80) macrophages, T cells (cluster of differentiation molecules 4 and 8, CD4 and CD8), and mast cells, and improved cardiac function. Innate immune mediators known to increase myocarditis are decreased by innate PEV treatment including Toll-like receptor (TLR)4 and complement. PEV also significantly reduces perivascular fibrosis and remodeling including interleukin 1 beta (IL-1β), transforming growth factor-beta 1, matrix metalloproteinase, collagen genes, and mast cell degranulation. PEV given at days 7-9 after infection reduces myocarditis and improves cardiac function. MicroRNA (miR) sequencing reveals that PEV contains miRs that decrease viral replication, TLR4 signaling, and T-cell activation. These data show that EVs from the platelets of healthy individuals can significantly reduce myocarditis and improve cardiac function.
Collapse
Affiliation(s)
- Danielle J. Beetler
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA; Division of Cardiovascular Medicine, University of Florida, Gainesville, Florida, 32608
| | - Molly M. Watkins
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Vivian Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Isha Chekuri
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Presley Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Damian N. Di Florio
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Emily R. Whelan
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA; Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55902, USA
| | | | - Sierra A. Walker
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota 55902, USA; Department of Biochemistry and Molecular Biology, Rochester, Minnesota 55902, USA
| | | | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Angita Jain
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Matthew E. Auda
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Kathryn A. Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Kevin C. Keegan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Joy Wolfram
- School of Chemical Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Atta Behfar
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA; Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, USA
| | - Paul G. Stalboerger
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, USA
| | - Andre Terzic
- Van Cleve Cardiac Regenerative Medicine Program, Mayo Clinic Center for Regenerative Medicine, Rochester, MN, USA; Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Houssam Farres
- Department of Vascular Surgery, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA
| | - DeLisa Fairweather
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, Minnesota 55902, USA; Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, Florida 32224, USA; Department of Immunology, Mayo Clinic, Jacksonville, Florida 32224, USA
| |
Collapse
|
15
|
Isidoro CA, Deniset JF. Pericardial Immune Cells and Their Evolving Role in Cardiovascular Pathophysiology. Can J Cardiol 2023; 39:1078-1089. [PMID: 37270165 DOI: 10.1016/j.cjca.2023.05.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
The pericardium plays several homeostatic roles to support and maintain everyday cardiac function. Recent advances in techniques and experimental models have allowed for further exploration into the cellular contents of the pericardium itself. Of particular interest are the various immune cell populations present in the space within the pericardial fluid and fat. In contrast to immune cells of the comparable pleura, peritoneum and heart, pericardial immune cells appear to be distinct in their function and phenotype. Specifically, recent work has suggested these cells play critical roles in an array of pathophysiological conditions including myocardial infarction, pericarditis, and post-cardiac surgery complications. In this review, we spotlight the pericardial immune cells currently identified in mice and humans, the pathophysiological role of these cells, and the clinical significance of the immunocardiology axis in cardiovascular health.
Collapse
Affiliation(s)
- Carmina Albertine Isidoro
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada
| | - Justin F Deniset
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada; Libin Cardiovascular Institute, Cumming School of Medicine, Calgary, Alberta, Canada; Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
16
|
Xu J, Zhou Z, Zheng Y, Yang S, Huang K, Li H. Roles of inflammasomes in viral myocarditis. Front Cell Infect Microbiol 2023; 13:1149911. [PMID: 37256114 PMCID: PMC10225676 DOI: 10.3389/fcimb.2023.1149911] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/28/2023] [Indexed: 06/01/2023] Open
Abstract
Viral myocarditis (VMC), characterized by viral infection-induced inflammation, is a life-threatening disease associated with dilated cardiomyopathy or heart failure. Innate immunity plays a crucial role in the progression of inflammation, in which inflammasomes provide a platform for the secretion of cytokines and mediate pyroptosis. Inflammasomes are rising stars gaining increasing attention. The nucleotide oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the caspase recruitment domain-containing protein 8 (CARD8) inflammasome, and the caspase-11 inflammasome are three inflammasomes that were reported to affect the process and prognosis of VMC. These inflammasomes can be activated by a wide range of cellular events. Accumulating evidence has suggested that inflammasomes are involved in different stages of VMC, including the trigger and progression of myocardial injury and remodeling after infection. In this review, we summarized the pathways involving inflammasomes in VMC and discussed the potential therapies targeting inflammasomes and related pathways.
Collapse
Affiliation(s)
- Jingyu Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zihao Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yidan Zheng
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sai Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Institution of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huili Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Abstract
Viral infections are a leading cause of myocarditis and pericarditis worldwide, conditions that frequently coexist. Myocarditis and pericarditis were some of the early comorbidities associated with SARS-CoV-2 infection and COVID-19. Many epidemiologic studies have been conducted since that time concluding that SARS-CoV-2 increased the incidence of myocarditis/pericarditis at least 15× over pre-COVID levels although the condition remains rare. The incidence of myocarditis pre-COVID was reported at 1 to 10 cases/100 000 individuals and with COVID ranging from 150 to 4000 cases/100 000 individuals. Before COVID-19, some vaccines were reported to cause myocarditis and pericarditis in rare cases, but the use of novel mRNA platforms led to a higher number of reported cases than with previous platforms providing new insight into potential pathogenic mechanisms. The incidence of COVID-19 vaccine-associated myocarditis/pericarditis covers a large range depending on the vaccine platform, age, and sex examined. Importantly, the findings highlight that myocarditis occurs predominantly in male patients aged 12 to 40 years regardless of whether the cause was due to a virus-like SARS-CoV-2 or associated with a vaccine-a demographic that has been reported before COVID-19. This review discusses findings from COVID-19 and COVID-19 vaccine-associated myocarditis and pericarditis considering the known symptoms, diagnosis, management, treatment, and pathogenesis of disease that has been gleaned from clinical research and animal models. Sex differences in the immune response to COVID-19 are discussed, and theories for how mRNA vaccines could lead to myocarditis/pericarditis are proposed. Additionally, gaps in our understanding that need further research are raised.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD (D.F.,)
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
- Mayo Clinic Graduate School of Biomedical Sciences (D.J.B., D.N.D.), Mayo Clinic, Jacksonville, FL
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN (D.F., D.J.B., D.N.D.)
| | - Nicolas Musigk
- Deutsches Herzzentrum der Charité, Berlin, Germany (N.M., B.H.)
| | | | - Leslie T. Cooper
- Department of Cardiovascular Medicine (D.F., D.J.B., D.N.D., L.T.C.), Mayo Clinic, Jacksonville, FL
| |
Collapse
|
18
|
Fairweather D, Beetler DJ, Musigk N, Heidecker B, Lyle MA, Cooper LT, Bruno KA. Sex and gender differences in myocarditis and dilated cardiomyopathy: An update. Front Cardiovasc Med 2023; 10:1129348. [PMID: 36937911 PMCID: PMC10017519 DOI: 10.3389/fcvm.2023.1129348] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
In the past decade there has been a growing interest in understanding sex and gender differences in myocarditis and dilated cardiomyopathy (DCM), and the purpose of this review is to provide an update on this topic including epidemiology, pathogenesis and clinical presentation, diagnosis and management. Recently, many clinical studies have been conducted examining sex differences in myocarditis. Studies consistently report that myocarditis occurs more often in men than women with a sex ratio ranging from 1:2-4 female to male. Studies reveal that DCM also has a sex ratio of around 1:3 women to men and this is also true for familial/genetic forms of DCM. Animal models have demonstrated that DCM develops after myocarditis in susceptible mouse strains and evidence exists for this progress clinically as well. A consistent finding is that myocarditis occurs primarily in men under 50 years of age, but in women after age 50 or post-menopause. In contrast, DCM typically occurs after age 50, although the age that post-myocarditis DCM occurs has not been investigated. In a small study, more men with myocarditis presented with symptoms of chest pain while women presented with dyspnea. Men with myocarditis have been found to have higher levels of heart failure biomarkers soluble ST2, creatine kinase, myoglobin and T helper 17-associated cytokines while women develop a better regulatory immune response. Studies of the pathogenesis of disease have found that Toll-like receptor (TLR)2 and TLR4 signaling pathways play a central role in increasing inflammation during myocarditis and in promoting remodeling and fibrosis that leads to DCM, and all of these pathways are elevated in males. Management of myocarditis follows heart failure guidelines and there are currently no disease-specific therapies. Research on standard heart failure medications reveal important sex differences. Overall, many advances in our understanding of the effect of biologic sex on myocarditis and DCM have occurred over the past decade, but many gaps in our understanding remain. A better understanding of sex and gender effects are needed to develop disease-targeted and individualized medicine approaches in the future.
Collapse
Affiliation(s)
- DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Rochester, MN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Nicolas Musigk
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Melissa A. Lyle
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Leslie T. Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Division of Cardiovascular Medicine, Department of Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
19
|
Comparison of COVID-19 Vaccine-Associated Myocarditis and Viral Myocarditis Pathology. Vaccines (Basel) 2023; 11:vaccines11020362. [PMID: 36851240 PMCID: PMC9967770 DOI: 10.3390/vaccines11020362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
The COVID-19 pandemic has led to significant loss of life and severe disability, justifying the expedited testing and approval of messenger RNA (mRNA) vaccines. While found to be safe and effective, there have been increasing reports of myocarditis after COVID-19 mRNA vaccine administration. The acute events have been severe enough to require admission to the intensive care unit in some, but most patients fully recover with only rare deaths reported. The pathways involved in the development of vaccine-associated myocarditis are highly dependent on the specific vaccine. COVID-19 vaccine-associated myocarditis is believed to be primarily caused by uncontrolled cytokine-mediated inflammation with possible genetic components in the interleukin-6 signaling pathway. There is also a potential autoimmune component via molecular mimicry. Many of these pathways are similar to those seen in viral myocarditis, indicating a common pathophysiology. There is concern for residual cardiac fibrosis and increased risk for the development of cardiomyopathies later in life. This is of particular interest for patients with congenital heart defects who are already at increased risk for fibrotic cardiomyopathies. Though the risk for vaccine-associated myocarditis is important to consider, the risk of viral myocarditis and other injury is far greater with COVID-19 infection. Considering these relative risks, it is still recommended that the general public receive vaccination against COVID-19, and it is particularly important for congenital heart defect patients to receive vaccination for COVID-19.
Collapse
|
20
|
Fanti S, Stephenson E, Rocha-Vieira E, Protonotarios A, Kanoni S, Shahaj E, Longhi MP, Vyas VS, Dyer C, Pontarini E, Asimaki A, Bueno-Beti C, De Gaspari M, Rizzo S, Basso C, Bombardieri M, Coe D, Wang G, Harding D, Gallagher I, Solito E, Elliott P, Heymans S, Sikking M, Savvatis K, Mohiddin SA, Marelli-Berg FM. Circulating c-Met-Expressing Memory T Cells Define Cardiac Autoimmunity. Circulation 2022; 146:1930-1945. [PMID: 36417924 PMCID: PMC9770129 DOI: 10.1161/circulationaha.121.055610] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Autoimmunity is increasingly recognized as a key contributing factor in heart muscle diseases. The functional features of cardiac autoimmunity in humans remain undefined because of the challenge of studying immune responses in situ. We previously described a subset of c-mesenchymal epithelial transition factor (c-Met)-expressing (c-Met+) memory T lymphocytes that preferentially migrate to cardiac tissue in mice and humans. METHODS In-depth phenotyping of peripheral blood T cells, including c-Met+ T cells, was undertaken in groups of patients with inflammatory and noninflammatory cardiomyopathies, patients with noncardiac autoimmunity, and healthy controls. Validation studies were carried out using human cardiac tissue and in an experimental model of cardiac inflammation. RESULTS We show that c-Met+ T cells are selectively increased in the circulation and in the myocardium of patients with inflammatory cardiomyopathies. The phenotype and function of c-Met+ T cells are distinct from those of c-Met-negative (c-Met-) T cells, including preferential proliferation to cardiac myosin and coproduction of multiple cytokines (interleukin-4, interleukin-17, and interleukin-22). Furthermore, circulating c-Met+ T cell subpopulations in different heart muscle diseases identify distinct and overlapping mechanisms of heart inflammation. In experimental autoimmune myocarditis, elevations in autoantigen-specific c-Met+ T cells in peripheral blood mark the loss of immune tolerance to the heart. Disease development can be halted by pharmacologic c-Met inhibition, indicating a causative role for c-Met+ T cells. CONCLUSIONS Our study demonstrates that the detection of circulating c-Met+ T cells may have use in the diagnosis and monitoring of adaptive cardiac inflammation and definition of new targets for therapeutic intervention when cardiac autoimmunity causes or contributes to progressive cardiac injury.
Collapse
Affiliation(s)
- Silvia Fanti
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Edward Stephenson
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Etel Rocha-Vieira
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Federal University of Vales do Jequitinhonha e Mucuri, Diamantina, Minas Gerais, Brazil (E.R.-V.)
| | - Alexandros Protonotarios
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
- Institute of Cardiovascular Science, University College London, UK (A.P., P.E.)
| | - Stavroula Kanoni
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Eriomina Shahaj
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - M. Paula Longhi
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Vishal S. Vyas
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Carlene Dyer
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Elena Pontarini
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Angeliki Asimaki
- Molecular and Clinical Science Institute, St George’s, University of London, UK (A.A., C.B.-B.)
| | - Carlos Bueno-Beti
- Molecular and Clinical Science Institute, St George’s, University of London, UK (A.A., C.B.-B.)
| | - Monica De Gaspari
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Stefania Rizzo
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Cristina Basso
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua Medical School, Italy (M.D.G., S.R., C.B.)
| | - Michele Bombardieri
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - David Coe
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Guosu Wang
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Iain Gallagher
- Faculty of Health Sciences & Sport, University of Stirling, UK (I.G.)
| | - Egle Solito
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Department of Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II,” Italy (E. Solito)
| | - Perry Elliott
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
- Institute of Cardiovascular Science, University College London, UK (A.P., P.E.)
| | - Stephane Heymans
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, the Netherlands (S.H., M.S.)
- Department of Cardiovascular Sciences, Centre for Vascular and Molecular Biology, KU Leuven, Belgium (S.H.)
| | - Maurits Sikking
- Maastricht University Medical Centre, Cardiovascular Research Institute Maastricht, the Netherlands (S.H., M.S.)
| | - Konstantinos Savvatis
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Saidi A. Mohiddin
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Barts Heart Centre, Barts Health NHS Trust, St Bartholomew’s Hospital, West Smithfield, London (E. Stephenson, A.P., V.S.V., D.H., P.E., K.S., S.A.M.)
| | - Federica M. Marelli-Berg
- William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry (S.F., E. Stephenson, E.R.-V., S.K., E. Shahaj, M.P.L., V.S.V., C.D., E.P., M.B., D.C., G.W., D.H., E. Solito, K.S., S.A.M., F.M.M.-B.), Queen Mary University of London, UK
- Centre for Inflammation and Therapeutic Innovation (F.M.M.-B.), Queen Mary University of London, UK
| |
Collapse
|
21
|
Luo Y, Zhang H, Yu J, Wei L, Li M, Xu W. Stem cell factor/mast cell/CCL2/monocyte/macrophage axis promotes Coxsackievirus B3 myocarditis and cardiac fibrosis by increasing Ly6C high monocyte influx and fibrogenic mediators production. Immunology 2022; 167:590-605. [PMID: 36054617 DOI: 10.1111/imm.13556] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 02/10/2022] [Indexed: 06/15/2023] Open
Abstract
Mast cells (MCs), central players in allergy and parasitic infections, play key roles in inflammation and fibrosis. Here, the impact of MCs on the progression of Coxsackievirus B3 (CVB3)-induced viral myocarditis (VMC) and fibrosis was investigated using MC-deficient KitW-sh mice. Viral titres, cellular infiltrates and heart pathologies were evaluated and compared with wild-type (WT) mice during acute CVB3 infection of C57BL/6 mice. CVB3 infection induced an increased accumulation and degranulation of MCs in the hearts of mice during acute infection. MC-deficient KitW-sh mice had slightly higher viral titres, decreased VMC and cardiac fibrosis and improved cardiac dysfunction compared to WT mice via decreasing cardiac influx of Ly6Chigh monocytes/macrophages (Mo/Mφ). While bone marrow-derived MC reconstitution decreased viral titre and worsened improved survival and VMC severity in Wsh mice. MC-fibroblasts co-culture revealed a cardiac MC-fibroblasts crosstalk during early infection: fibroblasts trigger MC degranulation and secretion of CCL2 and tumour necrosis factor alpha (TNF-α) via producing early stem cell factor (SCF); while MCs-fibrogenic mediators (TNF-α) stimulate fibroblasts to increase CCL2, α-smooth muscle actin (SMA), collagen and transforming growth factor beta(TGFβ) expression, thus aggravating cardiac fibrosis. MCs and fibroblast-derived CCL2s are both essential for cardiac Ly6Chigh Mo/Mφ influx. Administration of recombinant mouse SCF to CVB3-infected mice aggravates VMC via accelerating MCs accumulation and cardiac influx of Ly6Chi Mo/Mφ. Collectively, our data highlight an early MC-fibroblast crosstalk and SCF/MC/CCL2/Mo/Mφ axis as important mechanisms required for triggering VMC and myocardial fibrosis. This finding indicates critical roles of MCs in initiating and modulating cardiac innate response to CVB3 and has an implication in developing new and more effective treatments for VMC.
Collapse
Affiliation(s)
- Yuan Luo
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Hongkai Zhang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jie Yu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
22
|
Cardiovascular Factors Associated with COVID-19 from an International Registry of Primarily Japanese Patients. Diagnostics (Basel) 2022; 12:diagnostics12102350. [PMID: 36292038 PMCID: PMC9600010 DOI: 10.3390/diagnostics12102350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
Aims: We developed an international registry to examine cardiovascular complications of COVID-19. Methods: A REDCap form was created in March 2020 at Mayo Clinic in collaboration with the International Society of Cardiomyopathy, Myocarditis and Heart Failure (ISCMF) and data were entered from April 2020 through April 2021. Results: Of the 696 patients in the COVID-19 Registry, 411 (59.2%) were male and 283 (40.8%) were female, with a sex ratio of 1.5:1 male to female. In total, 95.5% of the patients were from Japan. The average age was 52 years with 31.5% being >65 years of age. COVID-19 patients with a history of cardiovascular disease (CVD) had more pre-existing conditions including type II diabetes (p < 0.0001), cancer (p = 0.0003), obesity (p = 0.001), and kidney disease (p = 0.001). They also had a greater mortality of 10.1% compared to 1.7% in those without a history of CVD (p < 0.0001). The most common cardiovascular conditions in patients with a history of CVD were hypertension (33.7%), stroke (5.7%) and arrhythmias (5.1%). We found that troponin T, troponin I, brain natriuretic peptide (BNP), N-terminal pro-BNP (NT-proBNP), C-reactive protein (CRP), IL-6 and lambda immunoglobulin free light chains (Ig FLC) were elevated above reference levels in patients with COVID-19. Myocarditis is known to occur mainly in adults under the age of 50, and when we examined biomarkers in patients that were ≤50 years of age and had no history of CVD we found that a majority of patients had elevated levels of troponin T (71.4%), IL-6 (59.5%), creatine kinase/CK-MB (57.1%), D-dimer (57.8%), kappa Ig FLC (75.0%), and lambda Ig FLC (71.4%) suggesting myocardial injury and possible myocarditis. Conclusions: We report the first findings to our knowledge of cardiovascular complications from COVID-19 in the first year of the pandemic in a predominantly Japanese population. Mortality was increased by a history of CVD and pre-existing conditions including type II diabetes, cancer, obesity, and kidney disease. Our findings indicate that even in cases where no abnormalities are found in ECG or ultrasound cardiography that myocardial damage may occur, and cardiovascular and inflammatory biomarkers may be useful for the diagnosis.
Collapse
|
23
|
Meeting the Challenges of Myocarditis: New Opportunities for Prevention, Detection, and Intervention—A Report from the 2021 National Heart, Lung, and Blood Institute Workshop. J Clin Med 2022; 11:jcm11195721. [PMID: 36233593 PMCID: PMC9571285 DOI: 10.3390/jcm11195721] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022] Open
Abstract
The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of international experts to discuss new research opportunities for the prevention, detection, and intervention of myocarditis in May 2021. These experts reviewed the current state of science and identified key gaps and opportunities in basic, diagnostic, translational, and therapeutic frontiers to guide future research in myocarditis. In addition to addressing community-acquired myocarditis, the workshop also focused on emerging causes of myocarditis including immune checkpoint inhibitors and SARS-CoV-2 related myocardial injuries and considered the use of systems biology and artificial intelligence methodologies to define workflows to identify novel mechanisms of disease and new therapeutic targets. A new priority is the investigation of the relationship between social determinants of health (SDoH), including race and economic status, and inflammatory response and outcomes in myocarditis. The result is a proposal for the reclassification of myocarditis that integrates the latest knowledge of immunological pathogenesis to refine estimates of prognosis and target pathway-specific treatments.
Collapse
|
24
|
Maunier L, Charbel R, Lambert V, Tissières P. Anakinra in pediatric acute fulminant myocarditis. Ann Intensive Care 2022; 12:80. [PMID: 36018450 PMCID: PMC9415255 DOI: 10.1186/s13613-022-01054-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 11/25/2022] Open
Abstract
Background Acute fulminant myocarditis in children is associated with elevated mortality and morbidity with few advances in its medical management. Here we report a preliminary experience of children treated with IL-1 receptor antagonist associated with rapid myocardial function recovery. Methods A retrospective case series of children admitted in the Pediatric Intensive Care Unit of the Bicêtre Hospital (AP–HP Paris Saclay University) between April 2020 and January 2022 with acute myocarditis. Children were treated with subcutaneous anakinra (an IL-1 receptor antagonist). Patients characteristics, and outcome are reported. Results Of 10 children admitted with acute fulminant myocarditis, eight were treated with sub-cutaneous anakinra. Seven children had SARS-CoV-2 post-infective myocarditis associated with multisystem inflammatory syndrome in children (MIS-C) and one child Parvovirus B19 myocarditis. In all patients a rapid (< 24 h) improvement in myocardial function was observed with concomitant decrease in myocardial enzymes. All patients survived with full myocardial recovery. Conclusions In this pilot study, use of IL-1 receptor antagonist in the initial treatment of acute fulminant myocarditis in children seems to be associated with rapid stabilization and recovery. Supplementary Information The online version contains supplementary material available at 10.1186/s13613-022-01054-0.
Collapse
Affiliation(s)
- Louise Maunier
- Pediatric Intensive Care and Neonatal Medicine, AP-HP Paris Saclay University, Bicetre Hospital, 78, Rue du Général Leclerc, 94275, Le Kremlin-Bicêtre, France
| | - Ramy Charbel
- Pediatric Intensive Care and Neonatal Medicine, AP-HP Paris Saclay University, Bicetre Hospital, 78, Rue du Général Leclerc, 94275, Le Kremlin-Bicêtre, France
| | - Virginie Lambert
- Paediatric Radiology, AP-HP Paris Saclay University, Bicetre Hospital, Le Kremlin-Bicêtre, France.,Paediatric Cardiology, Institut Mutualiste Montsouris, Paris, France
| | - Pierre Tissières
- Pediatric Intensive Care and Neonatal Medicine, AP-HP Paris Saclay University, Bicetre Hospital, 78, Rue du Général Leclerc, 94275, Le Kremlin-Bicêtre, France. .,Institute of Integrative Biology of the Cell, Paris Saclay University, CNRS, CEA, Gif sur Yvette, France.
| | | |
Collapse
|
25
|
Lasrado N, Borcherding N, Arumugam R, Starr TK, Reddy J. Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing. iScience 2022; 25:103865. [PMID: 35243228 PMCID: PMC8861636 DOI: 10.1016/j.isci.2022.103865] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Coxsackievirus B3 (CVB3)-induced myocarditis is commonly employed to study viral pathogenesis in mice. Chronically affected mice may develop dilated cardiomyopathy, which may involve the mediation of immune and nonimmune cells. To dissect this complexity, we performed single-cell RNA sequencing on heart cells from healthy and myocarditic mice, leading us to note significant proportions of myeloid cells, T cells, and fibroblasts. Although the transcriptomes of myeloid cells were mainly of M2 phenotype, the Th17 cells, CTLs, and Treg cells had signatures critical for cytotoxic functions. Fibroblasts were heterogeneous expressing genes important in fibrosis and regulation of inflammation and immune responses. The intercellular communication networks revealed unique interactions and signaling pathways in the cardiac cellulome, whereas myeloid cells and T cells had upregulated unique transcription factors modulating cardiac remodeling functions. Together, our data suggest that M2 cells, T cells, and fibroblasts may cooperatively or independently participate in the pathogenesis of viral myocarditis.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Timothy K. Starr
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
26
|
Yu Z, Xiao J, Chen X, Ruan Y, Chen Y, Zheng X, Wang Q. Bioactivities and mechanisms of natural medicines in the management of pulmonary arterial hypertension. Chin Med 2022; 17:13. [PMID: 35033157 PMCID: PMC8760698 DOI: 10.1186/s13020-022-00568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/05/2022] [Indexed: 11/10/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and rare disease without obvious clinical symptoms that shares characteristics with pulmonary vascular remodeling. Right heart failure in the terminal phase of PAH seriously threatens the lives of patients. This review attempts to comprehensively outline the current state of knowledge on PAH its pathology, pathogenesis, natural medicines therapy, mechanisms and clinical studies to provide potential treatment strategies. Although PAH and pulmonary hypertension have similar pathological features, PAH exhibits significantly elevated pulmonary vascular resistance caused by vascular stenosis and occlusion. Currently, the pathogenesis of PAH is thought to involve multiple factors, primarily including genetic/epigenetic factors, vascular cellular dysregulation, metabolic dysfunction, even inflammation and immunization. Yet many issues regarding PAH need to be clarified, such as the "oestrogen paradox". About 25 kinds monomers derived from natural medicine have been verified to protect against to PAH via modulating BMPR2/Smad, HIF-1α, PI3K/Akt/mTOR and eNOS/NO/cGMP signalling pathways. Yet limited and single PAH animal models may not corroborate the efficacy of natural medicines, and those natural compounds how to regulate crucial genes, proteins and even microRNA and lncRNA still need to put great attention. Additionally, pharmacokinetic studies and safety evaluation of natural medicines for the treatment of PAH should be undertaken in future studies. Meanwhile, methods for validating the efficacy of natural drugs in multiple PAH animal models and precise clinical design are also urgently needed to promote advances in PAH.
Collapse
Affiliation(s)
- Zhijie Yu
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Jun Xiao
- Department of Cardiovascular Medicine, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiao Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yi Ruan
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Yang Chen
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China
| | - Xiaoyuan Zheng
- Pharmacy Department, Chongqing Emergency Medical Center, Chongqing University Central Hospital, Chongqing, 400014, China.
| | - Qiang Wang
- Department of Pharmacy, The Second Affiliated Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
27
|
Norton N, Bruno KA, Di Florio DN, Whelan ER, Hill AR, Morales-Lara AC, Mease AA, Sousou JM, Malavet JA, Dorn LE, Salomon GR, Macomb LP, Khatib S, Anastasiadis ZP, Necela BM, McGuire MM, Giresi PG, Kotha A, Beetler DJ, Weil RM, Landolfo CK, Fairweather D. Trpc6 Promotes Doxorubicin-Induced Cardiomyopathy in Male Mice With Pleiotropic Differences Between Males and Females. Front Cardiovasc Med 2022; 8:757784. [PMID: 35096991 PMCID: PMC8792457 DOI: 10.3389/fcvm.2021.757784] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 12/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Doxorubicin is a widely used and effective chemotherapy, but the major limiting side effect is cardiomyopathy which in some patients leads to congestive heart failure. Genetic variants in TRPC6 have been associated with the development of doxorubicin-induced cardiotoxicity, suggesting that TRPC6 may be a therapeutic target for cardioprotection in cancer patients. Methods: Assessment of Trpc6 deficiency to prevent doxorubicin-induced cardiac damage and function was conducted in male and female B6.129 and Trpc6 knock-out mice. Mice were treated with doxorubicin intraperitoneally every other day for a total of 6 injections (4 mg/kg/dose, cumulative dose 24 mg/kg). Cardiac damage was measured in heart sections by quantification of vacuolation and fibrosis, and in heart tissue by gene expression of Tnni3 and Myh7. Cardiac function was determined by echocardiography. Results: When treated with doxorubicin, male Trpc6-deficient mice showed improvement in markers of cardiac damage with significantly reduced vacuolation, fibrosis and Myh7 expression and increased Tnni3 expression in the heart compared to wild-type controls. Similarly, male Trpc6-deficient mice treated with doxorubicin had improved LVEF, fractional shortening, cardiac output and stroke volume. Female mice were less susceptible to doxorubicin-induced cardiac damage and functional changes than males, but Trpc6-deficient females had improved vacuolation with doxorubicin treatment. Sex differences were observed in wild-type and Trpc6-deficient mice in body-weight and expression of Trpc1, Trpc3 and Rcan1 in response to doxorubicin. Conclusions: Trpc6 promotes cardiac damage following treatment with doxorubicin resulting in cardiomyopathy in male mice. Female mice are less susceptible to cardiotoxicity with more robust ability to modulate other Trpc channels and Rcan1 expression.
Collapse
Affiliation(s)
- Nadine Norton
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Katelyn A. Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - Damian N. Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - Emily R. Whelan
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Anneliese R. Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Anna A. Mease
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - John M. Sousou
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Jose A. Malavet
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Lauren E. Dorn
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Gary R. Salomon
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Logan P. Macomb
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Sami Khatib
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Brian M. Necela
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Molly M. McGuire
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Presley G. Giresi
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Archana Kotha
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - Danielle J. Beetler
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - Raegan M. Weil
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, United States
| | - Carolyn K. Landolfo
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center of Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
28
|
Jiang W, Chen G, Pu J. The transcription factor interferon regulatory factor-1 is an endogenous mediator of myocardial ischemia reperfusion injury. Cell Biol Int 2022; 46:63-72. [PMID: 34658101 DOI: 10.1002/cbin.11713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/05/2021] [Accepted: 06/17/2021] [Indexed: 11/10/2022]
Abstract
Myocardial ischemia reperfusion (MIR) injury negatively affects the prognosis of acute myocardial infarction (AMI), while effective suppression of MIR injury remains a largely unmet clinical need. Interferon regulatory factors (IRF) are key players in chronic cardiac disorders such as cardiac remodeling. However, their roles in acute MIR injury remain largely unknown. In the current study, microarray data indicated that IRF1 expression was consistently changed in the human ischemic heart and ischemic reperfused mouse heart. Western blot analysis confirmed the expression alterations of IRF1 in ischemic reperfused mouse heart. Cardiac-specific IRF1 knockdown significantly decreased infarct size, improved cardiac function, and suppressed myocardial apoptosis after MIR injury. Conversely, cardiac-specific IRF1 overexpression significantly promoted MIR injury. Further investigation revealed that IRF1 transcriptionally regulated the expression of inducible nitric oxide synthase (iNOS), and augmented oxidative stress. Taken together, we presented the first direct evidence that IRF1 served as a mediator of MIR injury, and IRF1 may represent a potential therapeutic target for alleviating MIR injury.
Collapse
Affiliation(s)
- Wenlong Jiang
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Guoxiong Chen
- Department of Cardiology, Zhoushan Hospital, Zhejiang, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Division of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
29
|
Sadoughi F, Hallajzadeh J, Mirsafaei L, Asemi Z, Zahedi M, Mansournia MA, Yousefi B. Cardiac fibrosis and curcumin: a novel perspective on this natural medicine. Mol Biol Rep 2021; 48:7597-7608. [PMID: 34648140 DOI: 10.1007/s11033-021-06768-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND According to WHO statistics, cardiovascular disease are the leading causes of death in the world. One of the main factors which is causing heart failure, systolic and diastolic dysfunction, and arrythmias is a condition named cardiac fibrosis. This condition is defined by the accumulation of fibroblast-produced ECM in myocardium layer of the heart. OBJECTIVE Accordingly, the current review aims to depict the role of curcumin in the regulation of different signaling pathways that are involved in cardiac fibrosis. RESULTS A great number of cellular and molecular mechanisms such as oxidative stress, inflammation, and mechanical stress are acknowledged to be involved in cardiac fibrosis. Despite the available therapeutic procedures which are designed to target these mechanisms in order to prevent cardiac fibrosis, still, effective therapeutic methods are needed. Curcumin is a natural Chinese medicine which currently has been declared to have therapeutic properties such as anti-oxidant and immunomodulatory activities. In this review, we have gathered several experimental studies in order to represent diverse impacts of this turmeric derivative on pathogenic factors of cardiac fibrosis. CONCLUSION Curcumin might open new avenues in the field of cardiovascular treatment.
Collapse
Affiliation(s)
- Fatemeh Sadoughi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Medicinal Plants Research Center, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Liaosadat Mirsafaei
- Department of Cardiology, Ramsar Campus, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Islamic Republic of Iran
| | - Mahdi Zahedi
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgān, Iran.
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
30
|
Estrogenic bias in T-Lymphocyte biology: Implications for cardiovascular disease. Pharmacol Res 2021; 170:105606. [PMID: 34119620 DOI: 10.1016/j.phrs.2021.105606] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 11/23/2022]
Abstract
Gender bias in cardiovascular disease has been extensively documented in epidemiological and clinical studies. Despite this, the precise molecular mechanisms underlying these disparities between men and women are poorly understood. It is clear that physiological concentrations of estradiol, such as those present in pre-menopausal women, exert cardioprotective effects that are absent in men or in post-menopausal women. These cardioprotective effects, in part, are due to the estrogen receptor-mediated modulation of the immune system including T-cells. Estrogen receptors (ERs) are widely expressed in different T-cell subsets which are known to play an indispensable role in the progression of cardiovascular disease. Because T-cells can be polarized into several distinct subsets depending on the activation milieu, they can have many different, potentially opposing functions, and it is unclear what roles estrogen receptor signaling may play in mediating these functions. This is further complicated by the discrete and often antagonistic actions of different ERs on T-cell biology which dictate the balance between numerous ER-dependent signaling pathways. While myriad effects of estrogen in T-cells are relevant for many cardiovascular diseases, their widespread effects on several other (patho)physiological systems introduce several obstacles to understanding ER signaling and its precise effects on the immune system. This review aims to provide a more comprehensive summary of the mechanisms of estrogen receptor-mediated modulation of T-cell function, polarization, and cytokine production in the context of cardiovascular disease.
Collapse
|
31
|
Barcena ML, Jeuthe S, Niehues MH, Pozdniakova S, Haritonow N, Kühl AA, Messroghli DR, Regitz-Zagrosek V. Sex-Specific Differences of the Inflammatory State in Experimental Autoimmune Myocarditis. Front Immunol 2021; 12:686384. [PMID: 34122450 PMCID: PMC8195335 DOI: 10.3389/fimmu.2021.686384] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 12/24/2022] Open
Abstract
Increasing evidence suggests male sex as a potential risk factor for a higher incidence of cardiac fibrosis, stronger cardiac inflammation, and dilated cardiomyopathy (DCM) in human myocarditis. Chronic activation of the immune response in myocarditis may trigger autoimmunity. The experimental autoimmune myocarditis (EAM) model has been well established for the study of autoimmune myocarditis, however the role of sex in this pathology has not been fully explored. In this study, we investigated sex differences in the inflammatory response in the EAM model. We analyzed the cardiac function, as well as the inflammatory stage and fibrosis formation in the heart of EAM male and female rats. 21 days after induction of EAM, male EAM rats showed a decreased ejection fraction, stroke volume and cardiac output, while females did not. A significantly elevated number of infiltrates was detected in myocardium in both sexes, indicating the activation of macrophages following EAM induction. The level of anti-inflammatory macrophages (CD68+ ArgI+) was only significantly increased in female hearts. The expression of Col3A1 and fibrosis formation were more prominent in males. Furthermore, prominent pro-inflammatory factors were increased only in male rats. These findings indicate sex-specific alterations in the inflammatory stage of EAM, with a pro-inflammatory phenotype appearing in males and an anti-inflammatory phenotype in females, which both significantly affect cardiac function in autoimmune myocarditis.
Collapse
Affiliation(s)
- Maria Luisa Barcena
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany
| | - Sarah Jeuthe
- DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany.,Department of Internal Medicine - Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany
| | - Maximilian H Niehues
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sofya Pozdniakova
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Climate and Health Program (CLIMA), Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Natalie Haritonow
- Department of Geriatrics and Medical Gerontology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- iPATH Berlin-Immunopathology for Experimental Models, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Daniel R Messroghli
- DZHK (German Centre for Cardiovascular Research), Berlin Partner Site, Berlin, Germany.,Department of Internal Medicine - Cardiology, Deutsches Herzzentrum Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Vera Regitz-Zagrosek
- Institute for Gender in Medicine, Center for Cardiovascular Research, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt - Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Department of Cardiology, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| |
Collapse
|
32
|
Sex Differences, Genetic and Environmental Influences on Dilated Cardiomyopathy. J Clin Med 2021; 10:jcm10112289. [PMID: 34070351 PMCID: PMC8197492 DOI: 10.3390/jcm10112289] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022] Open
Abstract
Dilated cardiomyopathy (DCM) is characterized by dilatation of the left ventricle and impaired systolic function and is the second most common cause of heart failure after coronary heart disease. The etiology of DCM is diverse including genetic pathogenic variants, infection, inflammation, autoimmune diseases, exposure to chemicals/toxins as well as endocrine and neuromuscular causes. DCM is inherited in 20–50% of cases where more than 30 genes have been implicated in the development of DCM with pathogenic variants in TTN (Titin) most frequently associated with disease. Even though male sex is a risk factor for heart failure, few studies have examined sex differences in the pathogenesis of DCM. We searched the literature for studies examining idiopathic or familial/genetic DCM that reported data by sex in order to determine the sex ratio of disease. We found 31 studies that reported data by sex for non-genetic DCM with an average overall sex ratio of 2.5:1 male to female and 7 studies for familial/genetic DCM with an overall average sex ratio of 1.7:1 male to female. No manuscripts that we found had more females than males in their studies. We describe basic and clinical research findings that may explain the increase in DCM in males over females based on sex differences in basic physiology and the immune and fibrotic response to damage caused by mutations, infections, chemotherapy agents and autoimmune responses.
Collapse
|
33
|
An overview of human pericardial space and pericardial fluid. Cardiovasc Pathol 2021; 53:107346. [PMID: 34023529 DOI: 10.1016/j.carpath.2021.107346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 12/24/2022] Open
Abstract
The pericardium is a double-layered fibro-serous sac that envelops the majority of the surface of the heart as well as the great vessels. Pericardial fluid is also contained within the pericardial space. Together, the pericardium and pericardial fluid contribute to a homeostatic environment that facilitates normal cardiac function. Different diseases and procedural interventions may disrupt this homeostatic space causing an imbalance in the composition of immune mediators or by mechanical stress. Inflammatory cells, cytokines, and chemokines are present in the pericardial space. How these specific mediators contribute to different diseases is the subject of debate and research. With the advent of highly specialized assays that can identify and quantify various mediators we can potentially establish specific and sensitive biomarkers that can be used to differentiate pathologies, and aid clinicians in improving clinical outcomes for patients.
Collapse
|
34
|
Smolgovsky S, Ibeh U, Tamayo TP, Alcaide P. Adding insult to injury - Inflammation at the heart of cardiac fibrosis. Cell Signal 2020; 77:109828. [PMID: 33166625 DOI: 10.1016/j.cellsig.2020.109828] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023]
Abstract
The fibrotic response has evolutionary worked in tandem with the inflammatory response to facilitate healing following injury or tissue destruction as a result of pathogen clearance. However, excessive inflammation and fibrosis are key pathological drivers of organ tissue damage. Moreover, fibrosis can occur in several conditions associated with chronic inflammation that are not directly caused by overt tissue injury or infection. In the heart, in particular, fibrotic adverse cardiac remodeling is a key pathological driver of cardiac dysfunction in heart failure. Cardiac fibroblast activation and immune cell activation are two mechanistic domains necessary for fibrotic remodeling in the heart, and, independently, their contributions to cardiac fibrosis and cardiac inflammation have been studied and reviewed thoroughly. The interdependence of these two processes, and how their cellular components modulate each other's actions in response to different cardiac insults, is only recently emerging. Here, we review recent literature in cardiac fibrosis and inflammation and discuss the mechanisms involved in the fibrosis-inflammation axis in the context of specific cardiac stresses, such as myocardial ischemia, and in nonischemic heart conditions. We discuss how the search for anti-inflammatory and anti-fibrotic therapies, so far unsuccessful to date, needs to be based on our understanding of the interdependence of immune cell and fibroblast activities. We highlight that in addition to the extensively reviewed role of immune cells modulating fibroblast function, cardiac fibroblasts are central participants in inflammation that may acquire immune like cell functions. Lastly, we review the gut-heart axis as an example of a novel perspective that may contribute to our understanding of how immune and fibrotic modulation may be indirectly modulated as a potential area for therapeutic research.
Collapse
Affiliation(s)
- Sasha Smolgovsky
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Udoka Ibeh
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America
| | - Tatiana Peña Tamayo
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States of America; Immunology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America; Cell, Molecular, and Developmental Biology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, United States of America.
| |
Collapse
|
35
|
Lasrado N, Reddy J. An overview of the immune mechanisms of viral myocarditis. Rev Med Virol 2020; 30:1-14. [PMID: 32720461 DOI: 10.1002/rmv.2131] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
Viral myocarditis has been identified as a major cause of dilated cardiomyopathy (DCM) that can lead to heart failure. Historically, Coxsackieviruses and adenoviruses have been commonly suspected in myocarditis/DCM patients in North America and Europe. However, this notion is changing as other viruses such as Parvovirus B19 and human herpesvirus-6 are increasingly reported as causes of myocarditis in the United States, with the most recent example being the severe acute respiratory syndrome coronavirus 2, causing the Coronavirus Disease-19. The mouse model of Coxsackievirus B3 (CVB3)-induced myocarditis, which may involve mediation of autoimmunity, is routinely used in the study of immune pathogenesis of viral infections as triggers of DCM. In this review, we discuss the immune mechanisms underlying the development of viral myocarditis with an emphasis on autoimmunity in the development of post-infectious myocarditis induced with CVB3.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
36
|
Lasrado N, Yalaka B, Reddy J. Triggers of Inflammatory Heart Disease. Front Cell Dev Biol 2020; 8:192. [PMID: 32266270 PMCID: PMC7105865 DOI: 10.3389/fcell.2020.00192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 03/06/2020] [Indexed: 12/14/2022] Open
Abstract
Inflammatory heart disease (IHD) is a group of diseases that includes pericarditis, myocarditis, and endocarditis. Although males appear to be more commonly affected than females, IHD can be seen in any age group. While the disease can be self-limiting leading to full recovery, affected individuals can develop chronic disease, suggesting that identification of primary triggers is critical for successful therapies. Adding to this complexity, however, is the fact that IHD can be triggered by a variety of infectious and non-infectious causes that can also occur as secondary events to primary insults. In this review, we discuss the immunological insights into the development of IHD as well as a mechanistic understanding of the disease process in animal models.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Bharathi Yalaka
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, NE, United States
- Bristol-Myers Squibb – Hopewell, Pennington, NJ, United States
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, NE, United States
| |
Collapse
|
37
|
Ye J, Wang Y, Wang Z, Liu L, Yang Z, Wang M, Xu Y, Ye D, Zhang J, Lin Y, Ji Q, Wan J. Roles and Mechanisms of Interleukin-12 Family Members in Cardiovascular Diseases: Opportunities and Challenges. Front Pharmacol 2020; 11:129. [PMID: 32194399 PMCID: PMC7064549 DOI: 10.3389/fphar.2020.00129] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases represent a complex group of clinical syndromes caused by a variety of interacting pathological factors. They include the most extensive disease population and rank first in all-cause mortality worldwide. Accumulating evidence demonstrates that cytokines play critical roles in the presence and development of cardiovascular diseases. Interleukin-12 family members, including IL-12, IL-23, IL-27 and IL-35, are a class of cytokines that regulate a variety of biological effects; they are closely related to the progression of various cardiovascular diseases, including atherosclerosis, hypertension, aortic dissection, cardiac hypertrophy, myocardial infarction, and acute cardiac injury. This paper mainly discusses the role of IL-12 family members in cardiovascular diseases, and the molecular and cellular mechanisms potentially involved in their action in order to identify possible intervention targets for the prevention and clinical treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yuan Wang
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Ling Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zicong Yang
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Menglong Wang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yao Xu
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Di Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jishou Zhang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun Wan
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Guo G, Sun L, Yang L, Xu H. IDO1 depletion induces an anti-inflammatory response in macrophages in mice with chronic viral myocarditis. Cell Cycle 2019; 18:2598-2613. [PMID: 31416389 DOI: 10.1080/15384101.2019.1652471] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Inflammation and myocardial weakness, two major hallmarks of chronic viral myocarditis (VMC), often lead to dilated cardiomyopathy or chronic heart failure. It has been reported that indoleamine 2,3-dioxygenase-1 (IDO1) may play a pathogenic role in the progression of inflammatory diseases. Hence, the study is set out to investigate the potential role of IDO1 in chronic VMC by establishing a mouse model of VMC by intraperitoneally injected with coxsackievirus B3 (CVB3). After model establishment, the expression of IDO1 was determined by RT-qPCR and Western blot analysis. IDO1 was identified as an up-regulated gene in CVB3-induced VMC. Then, in order to elucidate the potential role of IDO1 in VMC, macrophages were isolated and treated with the overexpression plasmid of IDO1 or IDO1 inhibitor (1-MT). After that, these transfected macrophages were co-cultured with normal cardiomyocytes, followed by measurement of inflammatory factors and evaluation of cardiomyocyte injury. The overexpression of IDO1 was observed to significantly enhance the levels of interleukin (IL)-6, IL-1β and tumor necrosis factor-α (TNF-α), as well as lactate dehydrogenase (LDH) activity and malondialdehyde (MDA) content. By contrast, the treatment of 1-MT in macrophages reversed the promoting effects of IDO1 on cardiomyocyte injury. Co-culture experiment showed that overexpressed IDO1 impaired cardiomyocyte, which was alleviated upon treatment of 1-MT. Taken together, the key findings of the present study provide evidence that 1-MT-mediated IDO1 suppression could potentially reduce inflammatory response in macrophages and consequently ameliorate cardiomyocyte injury in mice with VMC.
Collapse
Affiliation(s)
- Gongliang Guo
- Department of Cardiology, China-Japan Union Hospital of Jilin University , Changchun , P.R. China
| | - Liqun Sun
- Department of Pediatric, The First Hospital of Jilin University , Changchun , P.R. China
| | - Lili Yang
- Department of Obstetrics, The First Hospital of Jilin University , Changchun , P.R. China
| | - Haiming Xu
- Department of Cardiology, China-Japan Union Hospital of Jilin University , Changchun , P.R. China
| |
Collapse
|
39
|
Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, Kaur K, Alcaide P. Heart Inflammation: Immune Cell Roles and Roads to the Heart. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1482-1494. [PMID: 31108102 DOI: 10.1016/j.ajpath.2019.04.009] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 03/29/2019] [Accepted: 04/18/2019] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) has been traditionally viewed as a disease of the cardiac muscle associated with systemic inflammation. Burgeoning evidence implicates immune effector mechanisms that include immune cell activation and trafficking to the heart. Immune cell infiltration in the myocardium can have adverse effects in the heart and contribute to the pathogenesis of HF. Both innate and adaptive immunity operate sequentially, and the specificity of these responses depends on the initial trigger sensed by the heart. Although the role of the immune system in the initial inflammatory response to infection and injury is well studied, what sets the trajectory to HF from different etiologies and the role of immunity once HF has been established is less understood. Herein, we review experimental and clinical knowledge of cardiac inflammation induced by different triggers that often result in HF from different etiologies. We focus on the mechanisms of immune cell activation systemically and on the pathways immune cells use to traffic to the heart.
Collapse
Affiliation(s)
| | - Njabulo Ngwenyama
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts
| | - Marina Anastasiou
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Kuljeet Kaur
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts; Sackler School for Graduate Studies Immunology Program, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
40
|
Blanton RM, Carrillo-Salinas FJ, Alcaide P. T-cell recruitment to the heart: friendly guests or unwelcome visitors? Am J Physiol Heart Circ Physiol 2019; 317:H124-H140. [PMID: 31074651 DOI: 10.1152/ajpheart.00028.2019] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myocardial inflammation can lead to lethal acute or chronic heart failure (HF). T lymphocytes (T cells), have been reported in the inflamed heart in different etiologies of HF, and more recent studies support that different T-cell subsets play distinct roles in the heart depending on the inflammation-triggering event. T cells follow sequential steps to extravasate into tissues, but their specific recruitment to the heart is determined by several factors. These include differences in T-cell responsiveness to specific chemokines in the heart environment, as well as differences in the expression of adhesion molecules in response to distinct stimuli, which regulate T-cell recruitment to the heart and have consequences in cardiac remodeling and function. This review focuses on recent advances in our understanding of the role T cells play in the heart, including its critical role for host defense to virus and myocardial healing postischemia, and its pathogenic role in chronic ischemic and nonischemic HF. We discuss a variety of mechanisms that contribute to the inflammatory damage to the heart, as well as regulatory mechanisms that limit the magnitude of T-cell-mediated inflammation. We also highlight areas in which further research is needed to understand the role T cells play in the heart and distinguish the findings reported in experimental animal models and how they may translate to clinical observations in the human heart.
Collapse
Affiliation(s)
- Robert M Blanton
- Molecular Cardiology Research Institute, Tufts Medical Center , Boston, Massachusetts
| | | | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts
| |
Collapse
|
41
|
Co-treatment with interferon-γ and 1-methyl tryptophan ameliorates cardiac fibrosis through cardiac myofibroblasts apoptosis. Mol Cell Biochem 2019; 458:197-205. [PMID: 31006829 PMCID: PMC6616223 DOI: 10.1007/s11010-019-03542-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/23/2019] [Indexed: 01/07/2023]
Abstract
Cardiac remodeling characterized by cardiac fibrosis is a pathologic process occurring after acute myocardial infarction. Fibrosis can be ameliorated by interferon-gamma (IFN-γ), which is a soluble cytokine showing various effects such as anti-fibrosis, apoptosis, anti-proliferation, immunomodulation, and anti-viral activities. However, the role of IFN-γ in cardiac myofibroblasts is not well established. Therefore, we investigated the anti-fibrotic effects of IFN-γ in human cardiac myofibroblasts (hCMs) in vitro and whether indoleamine 2,3-dioxygenase (IDO), induced by IFN-γ and resulting in cell cycle arrest, plays an important role in regulating the biological activity of hCMs. After IFN-γ treatment, cell signaling pathways and DNA contents were analyzed to assess the biological activity of IFN-γ in hCMs. In addition, an IDO inhibitor (1-methyl tryptophan; 1-MT) was used to assess whether IDO plays a key role in regulating hCMs. IFN-γ significantly inhibited hCM proliferation, and IFN-γ-induced IDO expression caused cell cycle arrest in G0/G1 through tryptophan depletion. Moreover, IFN-γ treatment gradually suppressed the expression of α-smooth muscle actin. When IDO activity was inhibited by 1-MT, marked apoptosis was observed in hCMs through the induction of interferon regulatory factor, Fas, and Fas ligand. Our results suggest that IFN-γ plays key roles in anti-proliferative and anti-fibrotic activities in hCMs and further induces apoptosis via IDO inhibition. In conclusion, co-treatment with IFN-γ and 1-MT can ameliorate fibrosis in cardiac myofibroblasts through apoptosis.
Collapse
|
42
|
Legere SA, Haidl ID, Légaré JF, Marshall JS. Mast Cells in Cardiac Fibrosis: New Insights Suggest Opportunities for Intervention. Front Immunol 2019; 10:580. [PMID: 31001246 PMCID: PMC6455071 DOI: 10.3389/fimmu.2019.00580] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
Mast cells (MC) are innate immune cells present in virtually all body tissues with key roles in allergic disease and host defense. MCs recognize damage-associated molecular patterns (DAMPs) through expression of multiple receptors including Toll-like receptors and the IL-33 receptor ST2. MCs can be activated to degranulate and release pre-formed mediators, to synthesize and secrete cytokines and chemokines without degranulation, and/or to produce lipid mediators. MC numbers are generally increased at sites of fibrosis. They are potent, resident, effector cells producing mediators that regulate the fibrotic process. The nature of the secretory products produced by MCs depend on micro-environmental signals and can be both pro- and anti-fibrotic. MCs have been repeatedly implicated in the pathogenesis of cardiac fibrosis and in angiogenic responses in hypoxic tissues, but these findings are controversial. Several rodent studies have indicated a protective role for MCs. MC-deficient mice have been reported to have poorer outcomes after coronary artery ligation and increased cardiac function upon MC reconstitution. In contrast, MCs have also been implicated as key drivers of fibrosis. MC stabilization during a hypertensive rat model and an atrial fibrillation mouse model rescued associated fibrosis. Discrepancies in the literature could be related to problems with mouse models of MC deficiency. To further complicate the issue, mice generally have a much lower density of MCs in their cardiac tissue than humans, and as such comparing MC deficient and MC containing mouse models is not necessarily reflective of the role of MCs in human disease. In this review, we will evaluate the literature regarding the role of MCs in cardiac fibrosis with an emphasis on what is known about MC biology, in this context. MCs have been well-studied in allergic disease and multiple pharmacological tools are available to regulate their function. We will identify potential opportunities to manipulate human MC function and the impact of their mediators with a view to preventing or reducing harmful fibrosis. Important therapeutic opportunities could arise from increased understanding of the impact of such potent, resident immune cells, with the ability to profoundly alter long term fibrotic processes.
Collapse
Affiliation(s)
- Stephanie A. Legere
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Ian D. Haidl
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Jean-François Légaré
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Surgery, Dalhousie Medicine New Brunswick, Saint John, NB, Canada
| | - Jean S. Marshall
- Departments of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
43
|
Abstract
Fibrosis is a medical condition characterized by an excessive deposition of extracellular matrix compounds such as collagen in tissues. Fibrotic lesions are present in many diseases and can affect all organs. The excessive extracellular matrix accumulation in these conditions can often have serious consequences and in many cases be life-threatening. A typical event seen in many fibrotic conditions is a profound accumulation of mast cells (MCs), suggesting that these cells can contribute to the pathology. Indeed, there is now substantialv evidence pointing to an important role of MCs in fibrotic disease. However, investigations from various clinical settings and different animal models have arrived at partly contradictory conclusions as to how MCs affect fibrosis, with many studies suggesting a detrimental role of MCs whereas others suggest that MCs can be protective. Here, we review the current knowledge of how MCs can affect fibrosis.
Collapse
Affiliation(s)
- Peter Bradding
- Department of Infection, Immunity and Inflammation, Institute for Lung Health, University of Leicester, Leicester, UK
| | - Gunnar Pejler
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
44
|
Bruno KA, Mathews JE, Yang AL, Frisancho JA, Scott AJ, Greyner HD, Molina FA, Greenaway MS, Cooper GM, Bucek A, Morales-Lara AC, Hill AR, Mease AA, Di Florio DN, Sousou JM, Coronado AC, Stafford AR, Fairweather D. BPA Alters Estrogen Receptor Expression in the Heart After Viral Infection Activating Cardiac Mast Cells and T Cells Leading to Perimyocarditis and Fibrosis. Front Endocrinol (Lausanne) 2019; 10:598. [PMID: 31551929 PMCID: PMC6737078 DOI: 10.3389/fendo.2019.00598] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/14/2019] [Indexed: 01/17/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that leads to dilated cardiomyopathy (DCM) and heart failure. Sex hormones play an important role in the development of myocarditis with testosterone driving disease in males and estrogen being cardioprotective in females. The human population is widely exposed to the endocrine disruptor bisphenol A (BPA) from plastics such as water bottles, plastic food containers, copy paper, and receipts. Several clinical and numerous animal studies have found an association between elevated BPA levels and cardiovascular disease. A recent report found elevated levels of BPA in the serum of patients with DCM compared to healthy controls. In this study we examined whether exposure to BPA for 2 weeks prior to viral infection and leading up to myocarditis at day 10 altered inflammation in female BALB/c mice housed in standard plastic cages/water bottles with soy-free food and bedding. We found that a human relevant dose of BPA (25 μg/L) in drinking water, with an estimated exposure of 5 μg BPA/kg BW, significantly increased myocarditis and pericarditis compared to control water without altering viral genome levels in the heart. BPA exposure activated ERα and ERβ in the spleen 24 h after infection and phosphorylated ERα and ERβ during myocarditis, but decreased ERα and increased ERβ mRNA in the heart as measured by qRT-PCR. Exposure to BPA significantly increased CD4+ T cells, IFNγ, IL-17A, TLR4, caspase-1, and IL-1β in the heart. BPA exposure also increased cardiac fibrosis compared to controls. Mast cells, which are associated with cardiac remodeling, were found to increase in number and degranulation, particularly along the pericardium. Interestingly, plastic caging/water bottle exposure alone led to increased mast cell numbers, pericardial degranulation and fibrosis in female BALB/c mice compared to animals housed in glass cages/water bottles with soy-free food and bedding. These data suggest that BPA exposure may increase the risk of developing myocarditis after a viral infection in women.
Collapse
Affiliation(s)
- Katelyn Ann Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Alex Lingyun Yang
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - J. Augusto Frisancho
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ashley Jennie Scott
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Henry David Greyner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Frank Anthony Molina
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Merci Shekinah Greenaway
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - George Maxwell Cooper
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Adriana Bucek
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Anneliese Ruth Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Anna Alisa Mease
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Damian Nicolas Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - John Michael Sousou
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Allison Ray Stafford
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- *Correspondence: DeLisa Fairweather
| |
Collapse
|
45
|
Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, Liu PP, Matsumori A, Mazzanti A, McMurray J, Priori SG. Dilated cardiomyopathy. Nat Rev Dis Primers 2019; 5:32. [PMID: 31073128 PMCID: PMC7096917 DOI: 10.1038/s41572-019-0084-1] [Citation(s) in RCA: 351] [Impact Index Per Article: 70.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Dilated cardiomyopathy (DCM) is a clinical diagnosis characterized by left ventricular or biventricular dilation and impaired contraction that is not explained by abnormal loading conditions (for example, hypertension and valvular heart disease) or coronary artery disease. Mutations in several genes can cause DCM, including genes encoding structural components of the sarcomere and desmosome. Nongenetic forms of DCM can result from different aetiologies, including inflammation of the myocardium due to an infection (mostly viral); exposure to drugs, toxins or allergens; and systemic endocrine or autoimmune diseases. The heterogeneous aetiology and clinical presentation of DCM make a correct and timely diagnosis challenging. Echocardiography and other imaging techniques are required to assess ventricular dysfunction and adverse myocardial remodelling, and immunological and histological analyses of an endomyocardial biopsy sample are indicated when inflammation or infection is suspected. As DCM eventually leads to impaired contractility, standard approaches to prevent or treat heart failure are the first-line treatment for patients with DCM. Cardiac resynchronization therapy and implantable cardioverter-defibrillators may be required to prevent life-threatening arrhythmias. In addition, identifying the probable cause of DCM helps tailor specific therapies to improve prognosis. An improved aetiology-driven personalized approach to clinical care will benefit patients with DCM, as will new diagnostic tools, such as serum biomarkers, that enable early diagnosis and treatment.
Collapse
Affiliation(s)
- Heinz-Peter Schultheiss
- Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany. .,Department of Cardiology, Charité-Universitaetsmedizin Berlin, Berlin, Germany.
| | - DeLisa Fairweather
- Mayo Clinic, Department of Cardiovascular Medicine, Jacksonville, FL, USA.
| | - Alida L. P. Caforio
- 0000 0004 1757 3470grid.5608.bDivision of Cardiology, Department of Cardiological Thoracic and Vascular Sciences and Public Health, University of Padua, Padova, Italy
| | - Felicitas Escher
- grid.486773.9Institute for Cardiac Diagnostics and Therapy (IKDT), Berlin, Germany ,0000 0001 2218 4662grid.6363.0Department of Cardiology, Charité–Universitaetsmedizin Berlin, Berlin, Germany ,0000 0004 5937 5237grid.452396.fDZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Ray E. Hershberger
- 0000 0001 2285 7943grid.261331.4Divisions of Human Genetics and Cardiovascular Medicine in the Department of Internal Medicine, The Ohio State University College of Medicine, Columbus, OH USA
| | - Steven E. Lipshultz
- 0000 0004 1936 9887grid.273335.3Department of Pediatrics, University at Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY USA ,0000 0000 9958 7286grid.413993.5Oishei Children’s Hospital, Buffalo, NY USA ,Roswell Park Comprehensive Cancer Center, Buffalo, NY USA
| | - Peter P. Liu
- 0000 0001 2182 2255grid.28046.38University of Ottawa Heart Institute, Ottawa, Ontario Canada
| | - Akira Matsumori
- grid.410835.bClinical Research Center, National Hospital Organization Kyoto Medical Center, Kyoto, Japan
| | - Andrea Mazzanti
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| | - John McMurray
- 0000 0001 2193 314Xgrid.8756.cBritish Heart Foundation (BHF) Cardiovascular Research Centre, University of Glasgow, Glasgow, UK
| | - Silvia G. Priori
- 0000 0004 1762 5736grid.8982.bDepartment of Molecular Medicine, University of Pavia, Pavia, Italy ,Department of Molecular Cardiology, IRCCS ICS Maugeri, Pavia, Italy
| |
Collapse
|
46
|
Ramasamy V, Mayosi BM, Sturrock ED, Ntsekhe M. Established and novel pathophysiological mechanisms of pericardial injury and constrictive pericarditis. World J Cardiol 2018; 10:87-96. [PMID: 30344956 PMCID: PMC6189073 DOI: 10.4330/wjc.v10.i9.87] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/06/2018] [Accepted: 04/22/2018] [Indexed: 02/06/2023] Open
Abstract
This review article aims to: (1) discern from the literature the immune and inflammatory processes occurring in the pericardium following injury; and (2) to delve into the molecular mechanisms which may play a role in the progression to constrictive pericarditis. Pericarditis arises as a result of a wide spectrum of pathologies of both infectious and non-infectious aetiology, which lead to various degrees of fibrogenesis. Current understanding of the sequence of molecular events leading to pathological manifestations of constrictive pericarditis is poor. The identification of key mechanisms and pathways common to most fibrotic events in the pericardium can aid in the design and development of novel interventions for the prevention and management of constriction. We have identified through this review various cellular events and signalling cascades which are likely to contribute to the pathological fibrotic phenotype. An initial classical pattern of inflammation arises as a result of insult to the pericardium and can exacerbate into an exaggerated or prolonged inflammatory state. Whilst the implication of major drivers of inflammation and fibrosis such as tumour necrosis factor and transforming growth factor β were foreseeable, the identification of pericardial deregulation of other mediators (basic fibroblast growth factor, galectin-3 and the tetrapeptide Ac-SDKP) provides important avenues for further research.
Collapse
Affiliation(s)
- Vinasha Ramasamy
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Bongani M Mayosi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Division of Cardiology, University of Cape Town, Observatory 7925, South Africa
| | - Edward D Sturrock
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Department of Integrative Biomedical Sciences, University of Cape Town, Observatory 7925, South Africa
| | - Mpiko Ntsekhe
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Observatory 7925, South Africa
- Division of Cardiology, University of Cape Town, Observatory 7925, South Africa
| |
Collapse
|
47
|
Batton KA, Austin CO, Bruno KA, Burger CD, Shapiro BP, Fairweather D. Sex differences in pulmonary arterial hypertension: role of infection and autoimmunity in the pathogenesis of disease. Biol Sex Differ 2018; 9:15. [PMID: 29669571 PMCID: PMC5907450 DOI: 10.1186/s13293-018-0176-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 04/09/2018] [Indexed: 01/14/2023] Open
Abstract
Registry data worldwide indicate an overall female predominance for pulmonary arterial hypertension (PAH) of 2–4 over men. Genetic predisposition accounts for only 1–5% of PAH cases, while autoimmune diseases and infections are closely linked to PAH. Idiopathic PAH may include patients with undiagnosed autoimmune diseases based on the relatively high presence of autoantibodies in this group. The two largest PAH registries to date report a sex ratio for autoimmune connective tissue disease-associated PAH of 9:1 female to male, highlighting the need for future studies to analyze subgroup data according to sex. Autoimmune diseases that have been associated with PAH include female-dominant systemic sclerosis, systemic lupus erythematosus, rheumatoid arthritis, Sjögren’s syndrome, and thyroiditis as well as male-dominant autoimmune diseases like myocarditis which has been linked to HIV-associated PAH. The sex-specific association of PAH to certain infections and autoimmune diseases suggests that sex hormones and inflammation may play an important role in driving the pathogenesis of disease. However, there is a paucity of data on sex differences in inflammation in PAH, and more research is needed to better understand the pathogenesis underlying PAH in men and women. This review uses data on sex differences in PAH and PAH-associated autoimmune diseases from registries to provide insight into the pathogenesis of disease.
Collapse
Affiliation(s)
- Kyle A Batton
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | | | - Katelyn A Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Charles D Burger
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Brian P Shapiro
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
48
|
Jiménez JA, Peterson CT, Mills PJ. Neuroimmune Mechanisms of Depression in Adults with Heart Failure. Methods Mol Biol 2018; 1781:145-169. [PMID: 29705847 DOI: 10.1007/978-1-4939-7828-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Heart failure (HF) is a major and costly public health concern, and its prognosis is grim-with high hospitalization and mortality rates. HF affects millions of individuals across the world, and this condition is expected to become "the epidemic" of the twenty-first century (Jessup et al., 2016). It is well documented that individuals with HF experience disproportionately high rates of depression and that those who are depressed have worse clinical outcomes than their nondepressed counterparts. The purpose of this chapter is to introduce the reader to the study of depression in HF, and how psychoneuroimmunologic principles have been applied to further elucidate mechanisms (i.e., neurohormonal and cytokine activation) linking these comorbid disorders.
Collapse
Affiliation(s)
- Jessica A Jiménez
- Department of Psychology, College of Letters and Sciences, National University, La Jolla, CA, USA.
| | - Christine Tara Peterson
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Paul J Mills
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
49
|
Abstract
Viral infections of the heart cause serious clinical problems, either as infectious myocarditis, which usually is a consequence of acute infection or as idiopathic dilated cardiomyopathy, resulting rather from a chronic infection. This minireview presents an up-to-date view on pathomechanisms of viral infection of the heart tissues, the role of immune system in controlling infectious process at its various stages and current possibilities of recognizing viral infection of the heart with use of both cardiological and virological methods. Our goal was to present the variety of known viral agents causing heart infection, level of complexity in mutual virus-cell interactions, and consequent clinical scenarios.
Collapse
|
50
|
Murtha LA, Schuliga MJ, Mabotuwana NS, Hardy SA, Waters DW, Burgess JK, Knight DA, Boyle AJ. The Processes and Mechanisms of Cardiac and Pulmonary Fibrosis. Front Physiol 2017; 8:777. [PMID: 29075197 PMCID: PMC5643461 DOI: 10.3389/fphys.2017.00777] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/22/2017] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the formation of fibrous connective tissue in response to injury. It is characterized by the accumulation of extracellular matrix components, particularly collagen, at the site of injury. Fibrosis is an adaptive response that is a vital component of wound healing and tissue repair. However, its continued activation is highly detrimental and a common final pathway of numerous disease states including cardiovascular and respiratory disease. Worldwide, fibrotic diseases cause over 800,000 deaths per year, accounting for ~45% of total deaths. With an aging population, the incidence of fibrotic disease and subsequently the number of fibrosis-related deaths will rise further. Although, fibrosis is a well-recognized cause of morbidity and mortality in a range of disease states, there are currently no viable therapies to reverse the effects of chronic fibrosis. Numerous predisposing factors contribute to the development of fibrosis. Biological aging in particular, interferes with repair of damaged tissue, accelerating the transition to pathological remodeling, rather than a process of resolution and regeneration. When fibrosis progresses in an uncontrolled manner, it results in the irreversible stiffening of the affected tissue, which can lead to organ malfunction and death. Further investigation into the mechanisms of fibrosis is necessary to elucidate novel, much needed, therapeutic targets. Fibrosis of the heart and lung make up a significant proportion of fibrosis-related deaths. It has long been established that the heart and lung are functionally and geographically linked when it comes to health and disease, and thus exploring the processes and mechanisms that contribute to fibrosis of each organ, the focus of this review, may help to highlight potential avenues of therapeutic investigation.
Collapse
Affiliation(s)
- Lucy A Murtha
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Michael J Schuliga
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Nishani S Mabotuwana
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Sean A Hardy
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - David W Waters
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Janette K Burgess
- Department of Pathology and Medical Biology, Groningen Research Institute for Asthma and COPD, W. J. Kolff Research Institute, University of Groningen, University Medical Center Groningen, Groningen, Netherlands.,Respiratory Cellular and Molecular Biology Group, Woolcock Institute of Medical Research, Glebe, NSW, Australia.,Discipline of Pharmacology, University of Sydney, Sydney, NSW, Australia
| | - Darryl A Knight
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia.,Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BS, Canada.,Department of Medicine, University of Western Australia, Perth, WA, Australia.,Research and Innovation Conjoint, Hunter New England Health, Newcastle, NSW, Australia
| | - Andrew J Boyle
- School of Medicine and Public Health, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| |
Collapse
|