1
|
Xu X, Mansor M, Li G, Chiu TH, Haderlein SB, Kappler A, Joshi P. Size-Dependent Reduction Kinetics of Iron Oxides in Single and Mixed Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2519-2530. [PMID: 39878302 PMCID: PMC11823449 DOI: 10.1021/acs.est.4c08032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
Iron(III) (oxyhydr)oxide minerals with varying particle sizes commonly coexist in natural environments and are susceptible to both chemical and microbial reduction, affecting the fate and mobility of trace elements, nutrients, and pollutants. The size-dependent reduction behavior of iron (oxyhydr)oxides in single and mixed mineral systems remains poorly understood. In this study, we used microbial and mediated electrochemical reduction approaches to investigate the reduction kinetics and extents of goethite and hematite. We found that small particles were preferentially reduced relative to their large counterparts in single and mixed mineral systems regardless of microbial or electrochemical treatments, which is attributed to the combined effect of higher thermodynamic favorability and greater surface availability. In mixed mineral systems, small particles were reduced slightly faster, whereas large particles were reduced notably slower and less extensively than solely predicted from single mineral systems. Specifically, when reduced alone, small particles showed Fe(III) reduction rate constants that were 1.5- to 3.6-fold higher than large particles, while when reduced together, the reduction rate constants for small particles were 6- to 21-fold higher than the rate constants for large particles. These collective findings provide new insights into the pivotal role of nanoparticulate iron (oxyhydr)oxides in environmental redox reactions.
Collapse
Affiliation(s)
- Xiyang Xu
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Muammar Mansor
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Guoxiang Li
- Environmental
Chemistry and Mineralogy, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Tsz Ho Chiu
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| | - Stefan B. Haderlein
- Environmental
Chemistry and Mineralogy, Department of Geosciences, University of Tübingen, 72076 Tübingen, Germany
| | - Andreas Kappler
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
- Cluster
of Excellence: EXC 2124: Controlling Microbes to Fight Infection, 72076 Tübingen, Germany
| | - Prachi Joshi
- Geomicrobiology,
Department of Geosciences, University of
Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Fujii T, Honda M, Fujii W, Shimada Y, Takeuchi M, Ogawa J. Discovery and characterization of an FAD-dependent glucose 6-dehydrogenase. J Biol Chem 2025; 301:108189. [PMID: 39814229 PMCID: PMC11871447 DOI: 10.1016/j.jbc.2025.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/18/2025] Open
Abstract
Many patients with diabetes use self-measurement devices for blood glucose to understand their blood glucose levels. Most of these devices use FAD-dependent glucose dehydrogenase (FAD-GDH) to determine blood glucose levels. For this purpose, FAD-GDHs specifically oxidizing glucose among the sugars present in blood are required. Many FAD-GDHs with high substrate specificity have been reported previously; however, their substrate specificity is insufficient as they also react with xylose. Therefore, we aimed to identify FAD-GDHs without xylose reactivity. We screened and obtained a new enzyme from Colletotrichum plurivorum (CpGDH). CpGDH showed high activity to glucose in the presence of electron mediators but low activity to xylose. We prepared the glucose oxidation products using CpGDH and subjected to TLC, HPLC, mass spectrometry, and NMR analyses. The results demonstrated that CpGDH is a previously unknown FAD-dependent glucose 6-dehydrogenase (FAD-G6DH) that oxidizes glucose to glucuronic acid. The stoichiometric ratio of the substrate and electron mediator was 1:2, suggesting that CpGDH catalyzes two-step oxidation reactions, including oxidation of primary alcohols to aldehydes and of aldehydes to carboxylic acids. We concluded that CpGDH has the unique substrate-binding manner based on the result of docking simulation of CpGDH with a substrate glucose. We then constructed a phylogenetic tree of carbohydrate-related flavoproteins including FAD-G6DHs, indicating that FAD-G6DHs are different from the known FAD-dependent oxidoreductases. Overall, this study is the first to report FAD-G6DHs. These results will likely contribute to the development of more accurate blood glucose sensors and further research on the metabolisms of glucosides and their metabolites.
Collapse
Affiliation(s)
| | | | - Wataru Fujii
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshimi Shimada
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Michiki Takeuchi
- Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan; Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology, Kyoto, Japan
| | - Jun Ogawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
3
|
Pothanamkandathil V, Neumann A, Thompson A, Gorski CA. Redox Properties of Structural Fe in Clay Minerals: 4. Reinterpreting Redox Curves by Accounting for Electron Transfer and Structural Rearrangement Kinetics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19702-19713. [PMID: 39451190 DOI: 10.1021/acs.est.4c07835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Iron-bearing smectite clay minerals can act as electron sources and sinks in the environment. Previous studies using mediated electrochemical analyses to determine the reduction potential (EH) values of smectites observed that the relationship between the structural Fe2+(s)/FeTotal ratio in the smectite and EH varied based on the redox history of the smectite. We hypothesize that this behavior, referred to as redox hysteresis, results from the smectite particles not equilibrating with the applied EH over the course of the experiment (∼30 min). To test this hypothesis, we developed a model incorporating interfacial electron transfer kinetics and charge redistribution within the particle to simulate the mediated electrochemical experiments from previous studies. The simulated redox curves accurately matched the previously reported experimental redox curves of the smectite SWa-1, demonstrating that longer equilibration periods led to a decrease in redox hysteresis. We validated this experimentally by measuring the redox curve of SWa-1 after an equilibration period of at least 12 h. Furthermore, we extended the simulations to three other smectites (NAu-1, NAu-2, and SWy-2) and extracted their respective thermodynamic and kinetic parameters. This work offers a framework for interpreting and modeling redox reactions on clay surfaces, along with key parameters for four commonly studied smectites.
Collapse
Affiliation(s)
- Vineeth Pothanamkandathil
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| | - Anke Neumann
- Paul Scherrer Institute, 5232 Villigen, Switzerland
| | - Aaron Thompson
- Department of Crop and Soil Sciences, The University of Georgia, Athens, Georgia 30602, United States
| | - Christopher A Gorski
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, State College, Pennsylvania 16802, United States
| |
Collapse
|
4
|
Gemünde A, Rossini E, Lenz O, Frielingsdorf S, Holtmann D. Chemoorganotrophic electrofermentation by Cupriavidus necator using redox mediators. Bioelectrochemistry 2024; 158:108694. [PMID: 38518507 DOI: 10.1016/j.bioelechem.2024.108694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 03/24/2024]
Abstract
The non-pathogenic β-proteobacterium Cupriavidus necator has the ability to switch between chemoorganotrophic, chemolithoautotrophic and electrotrophic growth modes, making this microorganism a widely used host for cellular bioprocesses. Oxygen usually acts as the terminal electron acceptor in all growth modes. However, several challenges are associated with aeration, such as foam formation, oxygen supply costs, and the formation of an explosive gas mixture in chemolithoautotrophic cultivation with H2, CO2 and O2. Bioelectrochemical systems in which O2 is replaced by an electrode as a terminal electron acceptor offer a promising solution to these problems. The aim of this study was to establish a mediated electron transfer between the anode and the metabolism of living cells, i.e. anodic respiration, using fructose as electron and carbon source. Since C. necator is not able to transfer electrons directly to an electrode, redox mediators are required for this process. Based on previous observations on the extracellular electron transfer enabled by a polymeric mediator, we tested 11 common biological and non-biological redox mediators for their functionality and inhibitory effect for anodic electron transfer in a C. necator-based bioelectrochemical system. The use of ferricyanide at a concentration of 15 mM resulted in the highest current density of 260.75µAcm-2 and a coulombic efficiency of 64.1 %.
Collapse
Affiliation(s)
- André Gemünde
- Institute of Bioprocess Engineering and Pharmaceutical Technology and Competence Centre for Sustainable Engineering and Environmental Systems, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany
| | - Elena Rossini
- Institute of Chemistry, Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Oliver Lenz
- Institute of Chemistry, Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Stefan Frielingsdorf
- Institute of Chemistry, Biophysical Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology and Competence Centre for Sustainable Engineering and Environmental Systems, University of Applied Sciences Mittelhessen, 35390 Giessen, Germany; Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Kaiserstraße 12, 76131 Karlsruhe, Germany.
| |
Collapse
|
5
|
Honda Y, Yuki R, Hamakawa R, Fujii H. Photo-Electro-Biochemical H 2 Production Using the Carbon Material-Based Cathode Combined with Genetically Engineered Escherichia coli Whole-Cell Biocatalysis. CHEMSUSCHEM 2024; 17:e202300958. [PMID: 37707171 DOI: 10.1002/cssc.202300958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Abio/bio hybrids, which incorporate biocatalysts that promote efficient and selective material conversions under mild conditions into existing catalytic reactions, have attracted considerable attention for developing new catalytic systems. This study constructed a H2 -forming biocathode based on a carbon material combined with whole-cell biocatalysis of genetically-engineered-hydrogenase-overproducing Escherichia coli for the photoelectrochemical water splitting for clean H2 production. Low-cost and abundant carbon materials are generally not suitable for H2 -forming cathode due to their high overpotential for proton reduction; however, the combination of the reduction of an organic electron mediator on the carbon electrode and the H2 formation with the reduced mediator by the redox enzyme hydrogenase provides a H2 -forming cathodic reaction comparable to that of the noble metal electrode. The present study demonstrates that the recombinant E. coli whole cell can be employed as a part of the H2 -forming biocathode system, and the biocathode system wired with TiO2 photoanode can be a photoelectrochemical water-splitting system without external voltage assistance under natural pH. The findings of this study expand the feasibility of applications of whole-cell biocatalysis and contribute to obtaining solar-to-chemical conversions by abio/bio hybrid systems, especially for low-cost, noble-metal-free, and clean H2 production.
Collapse
Affiliation(s)
- Yuki Honda
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Risa Yuki
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Reina Hamakawa
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University Kitauoyanishi-machi, Nara, 630-8506, Japan
| |
Collapse
|
6
|
Kauffmann PJ, Walker NL, Gupta V, Dick JE. Triple-Barrel Ultramicroelectrodes for Multipurpose, Submilliliter Electroanalysis. Anal Chem 2023; 95:8411-8416. [PMID: 37218147 PMCID: PMC10911394 DOI: 10.1021/acs.analchem.3c00735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Here, we have developed and applied a triple-barrel microelectrode. This device incorporates a platinum disk working electrode, a platinum disk counter electrode, and a low-leakage Ag/AgCl reference electrode into a small probe. We demonstrate that the incorporated low-leakage reference electrode shows similar voltammetry, potentiometry, and drift when compared to a commercial reference electrode in bulk solution. We also demonstrate the versatility of such a small three-channel system via voltammetry in nanoliter droplets and through electroanalysis of captured aerosols. Finally, we demonstrate the probe's potential utility in single-cell electroanalysis by making measurements within salmon eggs.
Collapse
Affiliation(s)
- Philip J Kauffmann
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicole L Walker
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Vanshika Gupta
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jeffrey E Dick
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
7
|
Gemünde A, Lai B, Pause L, Krömer J, Holtmann D. Redox mediators in microbial electrochemical systems. ChemElectroChem 2022. [DOI: 10.1002/celc.202200216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- André Gemünde
- Technische Hochschule Mittelhessen Institute of Bioprocess Engineering and Pharmaceutical Technology Wiesenstraße 14 35390 Gießen GERMANY
| | - Bin Lai
- Helmholtz Centre for Environmental Research UFZ Department of Environmental Microbiology: Helmholtz-Zentrum fur Umweltforschung UFZ Abteilung Umweltmikrobiologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Laura Pause
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Jens Krömer
- Helmholtz Centre for Environmental Research UFZ Environmental Engineering and Biotechnology Research Unit: Helmholtz-Zentrum fur Umweltforschung UFZ Themenbereich Umwelt- und Biotechnologie Systems Biotechnology 04318 Leipzig GERMANY
| | - Dirk Holtmann
- Technische Hochschule Mittelhessen IBPT Wiesenstrasse 14 35390 Giessen GERMANY
| |
Collapse
|
8
|
Virdis B, Hoelzle R, Marchetti A, Boto ST, Rosenbaum MA, Blasco-Gómez R, Puig S, Freguia S, Villano M. Electro-fermentation: Sustainable bioproductions steered by electricity. Biotechnol Adv 2022; 59:107950. [PMID: 35364226 DOI: 10.1016/j.biotechadv.2022.107950] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 02/22/2022] [Accepted: 03/24/2022] [Indexed: 01/06/2023]
Abstract
The market of biobased products obtainable via fermentation processes is steadily increasing over the past few years, driven by the need to create a decarbonized economy. To date, industrial fermentation (IF) employs either pure or mixed microbial cultures (MMC) whereby the type of the microbial catalysts and the used feedstock affect metabolic pathways and, in turn, the type of product(s) generated. In many cases, especially when dealing with MMC, the economic viability of IF is hindered by factors such as the low attained product titer and selectivity, which ultimately challenge the downstream recovery and purification steps. In this context, electro-fermentation (EF) represents an innovative approach, based on the use of a polarized electrode interface to trigger changes in the rate, yield, titer or product distribution deriving from traditional fermentation processes. In principle, the electrode in EF can act as an electron acceptor (i.e., anodic electro-fermentation, AEF) or donor (i.e., cathodic electro-fermentation, CEF), or simply as a mean to control the oxidation-reduction potential of the fermentation broth. However, the molecular and biochemical basis underlying the EF process are still largely unknown. This review paper provides a comprehensive overview of recent literature studies including both AEF and CEF examples with either pure or mixed microbial cultures. A critical analysis of biochemical, microbiological, and engineering aspects which presently hamper the transition of the EF technology from the laboratory to the market is also presented.
Collapse
Affiliation(s)
- Bernardino Virdis
- Australian Centre for Water and Environmental Biotechnology (ACWEB, formerly AWMC), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Robert Hoelzle
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Angela Marchetti
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Santiago T Boto
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Miriam A Rosenbaum
- Bio Pilot Plant, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), 07745 Jena, Germany; Faculty of Biological Sciences, Friedrich Schiller University (FSU), 07743 Jena, Germany
| | - Ramiro Blasco-Gómez
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Sebastià Puig
- LEQUIA, Institute of the Environment, University of Girona, Maria Aurèlia Capmany 69, 17003 Girona, Spain
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Marianna Villano
- Department of Chemistry, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy.
| |
Collapse
|
9
|
Thermodynamic controls on rates of iron oxide reduction by extracellular electron shuttles. Proc Natl Acad Sci U S A 2022; 119:2115629119. [PMID: 35017303 PMCID: PMC8784112 DOI: 10.1073/pnas.2115629119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 11/18/2022] Open
Abstract
Anaerobic microbial respiration in suboxic and anoxic environments often involves particulate ferric iron (oxyhydr-)oxides as terminal electron acceptors. To ensure efficient respiration, a widespread strategy among iron-reducing microorganisms is the use of extracellular electron shuttles (EES) that transfer two electrons from the microbial cell to the iron oxide surface. Yet, a fundamental understanding of how EES-oxide redox thermodynamics affect rates of iron oxide reduction remains elusive. Attempts to rationalize these rates for different EES, solution pH, and iron oxides on the basis of the underlying reaction free energy of the two-electron transfer were unsuccessful. Here, we demonstrate that broadly varying reduction rates determined in this work for different iron oxides and EES at varying solution chemistry as well as previously published data can be reconciled when these rates are instead related to the free energy of the less exergonic (or even endergonic) first of the two electron transfers from the fully, two-electron reduced EES to ferric iron oxide. We show how free energy relationships aid in identifying controls on microbial iron oxide reduction by EES, thereby advancing a more fundamental understanding of anaerobic respiration using iron oxides.
Collapse
|
10
|
Toplak M, Saleem-Batcha R, Piel J, Teufel R. Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis. Angew Chem Int Ed Engl 2021; 60:26960-26970. [PMID: 34652045 PMCID: PMC9299503 DOI: 10.1002/anie.202109384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/07/2021] [Indexed: 12/14/2022]
Abstract
The medically important bacterial aromatic polyketide natural products typically feature a planar, polycyclic core structure. An exception is found for the rubromycins, whose backbones are disrupted by a bisbenzannulated [5,6]‐spiroketal pharmacophore that was recently shown to be assembled by flavin‐dependent enzymes. In particular, a flavoprotein monooxygenase proved critical for the drastic oxidative rearrangement of a pentangular precursor and the installment of an intermediate [6,6]‐spiroketal moiety. Here we provide structural and mechanistic insights into the control of catalysis by this spiroketal synthase, which fulfills several important functions as reductase, monooxygenase, and presumably oxidase. The enzyme hereby tightly controls the redox state of the substrate to counteract shunt product formation, while also steering the cleavage of three carbon‐carbon bonds. Our work illustrates an exceptional strategy for the biosynthesis of stable chroman spiroketals.
Collapse
Affiliation(s)
- Marina Toplak
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| | - Raspudin Saleem-Batcha
- Institute of Pharmaceutical Sciences, University of Freiburg, Albertstr. 25, 79104, Freiburg, Germany
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, 8093, Zürich, Switzerland
| | - Robin Teufel
- Faculty of Biology, University of Freiburg, Schänzlestrasse 1, 79104, Freiburg, Germany
| |
Collapse
|
11
|
Toplak M, Saleem‐Batcha R, Piel J, Teufel R. Catalytic Control of Spiroketal Formation in Rubromycin Polyketide Biosynthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marina Toplak
- Faculty of Biology University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| | - Raspudin Saleem‐Batcha
- Institute of Pharmaceutical Sciences University of Freiburg Albertstr. 25 79104 Freiburg Germany
| | - Jörn Piel
- Institute of Microbiology Eidgenössische Technische Hochschule (ETH) Zürich 8093 Zürich Switzerland
| | - Robin Teufel
- Faculty of Biology University of Freiburg Schänzlestrasse 1 79104 Freiburg Germany
| |
Collapse
|
12
|
Gonzaga de França Lopes L, Gouveia Júnior FS, Karine Medeiros Holanda A, Maria Moreira de Carvalho I, Longhinotti E, Paulo TF, Abreu DS, Bernhardt PV, Gilles-Gonzalez MA, Cirino Nogueira Diógenes I, Henrique Silva Sousa E. Bioinorganic systems responsive to the diatomic gases O2, NO, and CO: From biological sensors to therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
13
|
Shahid S, Ali M, Legaspi-Humiston D, Wilcoxen J, Pacheco AA. A Kinetic Investigation of the Early Steps in Cytochrome c Nitrite Reductase (ccNiR)-Catalyzed Reduction of Nitrite. Biochemistry 2021; 60:2098-2115. [PMID: 34143605 DOI: 10.1021/acs.biochem.1c00172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The decaheme enzyme cytochrome c nitrite reductase (ccNiR) catalyzes reduction of nitrite to ammonium in a six-electron, eight-proton process. With a strong reductant as the electron source, ammonium is the sole product. However, intermediates accumulate when weaker reductants are employed, facilitating study of the ccNiR mechanism. Herein, the early stages of Shewanella oneidensis ccNiR-catalyzed nitrite reduction were investigated by using the weak reductants N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD) and ferrocyanide. In stopped-flow experiments, reduction of nitrite-loaded ccNiR by TMPD generated a transient intermediate, identified as FeH1II(NO2-), where FeH1 represents the ccNiR active site. FeH1II(NO2-) accumulated rapidly and was then more slowly converted to the two-electron-reduced moiety {FeH1NO}7; ccNiR was not reduced beyond the {FeH1NO}7 state. The midpoint potentials for sequential reduction of FeH1III(NO2-) to FeH1II(NO2-) and then to {FeH1NO}7 were estimated to be 130 and 370 mV versus the standard hydrogen electrode, respectively. FeH1II(NO2-) does not accumulate at equilibrium because its reduction to {FeH1NO}7 is so much easier than the reduction of FeH1III(NO2-) to FeH1II(NO2-). With weak reductants, free NO• was released from nitrite-loaded ccNiR. The release of NO• from {FeH1NO}7 is exceedingly slow (k ∼ 0.001 s-1), but it is somewhat faster (k ∼ 0.050 s-1) while FeH1III(NO2-) is being reduced to {FeH1NO}7; then, the release of NO• from the undetectable transient {FeH1NO}6 can compete with reduction of {FeH1NO}6 to {FeH1NO}7. CcNiR appears to be optimized to capture nitrite and minimize the release of free NO•. Nitrite capture is achieved by reducing bound nitrite with even weak electron donors, while NO• release is minimized by stabilizing the substitutionally inert {FeH1NO}7 over the more labile {FeH1NO}6.
Collapse
Affiliation(s)
- Shahid Shahid
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Mahbbat Ali
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Desiree Legaspi-Humiston
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - Jarett Wilcoxen
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| | - A Andrew Pacheco
- Department of Chemistry and Biochemistry, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
14
|
Sakai H, Kobayashi N, Kure T, Okuda C. Translational research of hemoglobin vesicles as a transfusion alternative. Curr Med Chem 2021; 29:591-606. [PMID: 33845721 DOI: 10.2174/0929867328666210412130035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 11/22/2022]
Abstract
Clinical situations arise in which blood for transfusion becomes scarce or unavailable. Considerable demand for a transfusion alternative persists because of various difficulties posed by blood donation and transfusion systems. Hemoglobin-vesicles (HbV) are artificial oxygen carriers being developed for use as a transfusion alternative. Just as biomembranes of red blood cells (RBCs) do, phospholipid vesicles (liposomes) for Hb encapsulation can protect the human body from toxic effects of molecular Hb. The main HbV component, Hb, is obtained from discarded human donated blood. Therefore, HbV can be categorized as a biologic agent targeting oxygen for peripheral tissues. The purification procedure strictly eliminates the possibility of viral contamination. It also removes all concomitant unstable enzymes present in RBC for utmost safety from infection. The deoxygenated HbVs, which are storable for over years at ambient temperature, can function as an alternative to blood transfusion for resuscitation from hemorrhagic shock and O2 therapeutics. Moreover, a recent study clarified beneficial effects for anti-oxidation and anti-inflammation by carbon monoxide (CO)-bound HbVs. Autoxidation of HbV (HbO2 → metHb + O2-.) is unavoidable after intravenous administration. Co-injection of methylene blue can extract the intraerythrocytic glycolytic electron energy effectively and reduce metHb. Other phenothiazine dyes can also function as electron mediators to improve the functional life span of HbV. This review paper summarizes recent progress of the research and development of HbV, aimed at clinical applications.
Collapse
Affiliation(s)
- Hiromi Sakai
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Naoko Kobayashi
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Tomoko Kure
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| | - Chie Okuda
- Department of Chemistry, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521. Japan
| |
Collapse
|
15
|
Abstract
Efficient electrocatalytic energy conversion requires the devices to function reversibly, i.e. deliver a significant current at minimal overpotential. Redox-active films can effectively embed and stabilise molecular electrocatalysts, but mediated electron transfer through the film typically makes the catalytic response irreversible. Here, we describe a redox-active film for bidirectional (oxidation or reduction) and reversible hydrogen conversion, consisting of [FeFe] hydrogenase embedded in a low-potential, 2,2’-viologen modified hydrogel. When this catalytic film served as the anode material in a H2/O2 biofuel cell, an open circuit voltage of 1.16 V was obtained - a benchmark value near the thermodynamic limit. The same film also acted as a highly energy efficient cathode material for H2 evolution. We explained the catalytic properties using a kinetic model, which shows that reversibility can be achieved despite intermolecular electron transfer being slower than catalysis. This understanding of reversibility simplifies the design principles of highly efficient and stable bioelectrocatalytic films, advancing their implementation in energy conversion.
Collapse
|
16
|
Mulder DW, Peters JW, Raugei S. Catalytic bias in oxidation-reduction catalysis. Chem Commun (Camb) 2021; 57:713-720. [PMID: 33367317 DOI: 10.1039/d0cc07062a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Cataytic bias refers to the propensity of a reaction catalyst to effect a different rate acceleration in one direction versus the other in a chemical reaction under non-equilibrium conditions. In biocatalysis, the inherent bias of an enzyme is often advantagous to augment the innate thermodynamics of a reaction to promote efficiency and fidelity in the coordination of catabolic and anabolic pathways. In industrial chemical catalysis a directional cataltyic bias is a sought after property in facilitating the engineering of systems that couple catalysis with harvest and storage of for example fine chemicals or energy compounds. Interestingly, there is little information about catalytic bias in biocatalysis likely in large part due to difficulties in developing tractible assays sensitive enough to study detailed kinetics. For oxidation-reduction reactions, colorimetric redox indicators exist in a range of reduction potentials to provide a mechanism to study both directions of reactions in a fairly facile manner. The current short review attempts to define catalytic bias conceptually and to develop model systems for defining the parameters that control catalytic bias in enzyme catalyzed oxidation-reduction catalysis.
Collapse
Affiliation(s)
- David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | | | | |
Collapse
|
17
|
Honda Y, Shinohara Y, Watanabe M, Ishihara T, Fujii H. Photo-biohydrogen Production by Photosensitization with Biologically Precipitated Cadmium Sulfide in Hydrogen-Forming Recombinant Escherichia coli. Chembiochem 2020; 21:3389-3397. [PMID: 32697401 DOI: 10.1002/cbic.202000383] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/17/2020] [Indexed: 11/10/2022]
Abstract
An inorganic-biological hybrid system that integrates features of both stable and efficient semiconductors and selective and efficient enzymes is attractive for facilitating the conversion of solar energy to hydrogen. In this study, we aimed to develop a new photocatalytic hydrogen-production system based on Escherichia coli whole-cell genetically engineered as a biocatalysis for highly active hydrogen formation. The photocatalysis part was obtained by bacterial precipitation of cadmium sulfide (CdS), which is a visible-light-responsive semiconductor. The recombinant E. coli cells were sequentially subjected to CdS precipitation and heterologous [FeFe]-hydrogenase synthesis to yield a CdS@E. coli hybrid capable of light energy conversion and hydrogen formation in a single cell. The CdS@E. coli hybrid achieved photocatalytic hydrogen production with a sacrificial electron donor, thus demonstrating the feasibility of our system and expanding the current knowledge of photosensitization using a whole-cell biocatalyst with a bacterially precipitated semiconductor.
Collapse
Affiliation(s)
- Yuki Honda
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Yuka Shinohara
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| | - Motonori Watanabe
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tatsumi Ishihara
- International Institute for Carbon-Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan.,Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Hiroshi Fujii
- Department of Chemistry, Biology, and Environmental Science, Faculty of Science, Nara Women's University, Kitauoyanishi-machi, Nara, 630-8506, Japan
| |
Collapse
|
18
|
Shah SS, Aziz MA, Oyama M, Al-Betar ARF. Controlled-Potential-Based Electrochemical Sulfide Sensors: A Review. CHEM REC 2020; 21:204-238. [PMID: 33200874 DOI: 10.1002/tcr.202000115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/29/2022]
Abstract
Due to their potential applications in industry and potent toxicity to the environment, sulfides and their detection have attracted the attention of researchers. To date, a large number of controlled-potential techniques for electrochemical sulfide sensors have been developed, thanks to their simplicity, reasonable limit of detection (LOD), and good selectivity. Different researchers have applied different strategies for developing selective and sensitive sulfide sensors. However, there has been no systematic review on controlled-potential techniques for sulfide sensing. In light of this absence, the main aim of this review article is to summarize various strategies for detecting sulfide in different media. The efficiencies of the developed sulfide sensors for detecting sulfide in its various forms are determined, and the essential parameters, including sensing strategies, working electrodes, detection media, pH, LOD, sensitivity, and linear detection range, are emphasized in particular. Future research in this area is also recommended. It is expected that this review will act as a basis for further research on the fabrication of sulfide sensors for practical applications.
Collapse
Affiliation(s)
- Syed Shaheen Shah
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Md Abdul Aziz
- Center of Research Excellence in Nanotechnology (CENT), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Munetaka Oyama
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8520, Japan
| | - Abdul-Rahman F Al-Betar
- Chemistry Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
19
|
Pauliukaite R, Voitechovič E. Multisensor Systems and Arrays for Medical Applications Employing Naturally-Occurring Compounds and Materials. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3551. [PMID: 32585936 PMCID: PMC7349305 DOI: 10.3390/s20123551] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 06/20/2020] [Indexed: 12/14/2022]
Abstract
The significant improvement of quality of life achieved over the last decades has stimulated the development of new approaches in medicine to take into account the personal needs of each patient. Precision medicine, providing healthcare customization, opens new horizons in the diagnosis, treatment and prevention of numerous diseases. As a consequence, there is a growing demand for novel analytical devices and methods capable of addressing the challenges of precision medicine. For example, various types of sensors or their arrays are highly suitable for simultaneous monitoring of multiple analytes in complex biological media in order to obtain more information about the health status of a patient or to follow the treatment process. Besides, the development of sustainable sensors based on natural chemicals allows reducing their environmental impact. This review is concerned with the application of such analytical platforms in various areas of medicine: analysis of body fluids, wearable sensors, drug manufacturing and screening. The importance and role of naturally-occurring compounds in the development of electrochemical multisensor systems and arrays are discussed.
Collapse
Affiliation(s)
- Rasa Pauliukaite
- Department of Nanoengineering, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania;
| | | |
Collapse
|
20
|
Kurbanoglu S, Erkmen C, Uslu B. Frontiers in electrochemical enzyme based biosensors for food and drug analysis. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115809] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Pavitt AS, Tratnyek PG. Electrochemical characterization of natural organic matter by direct voltammetry in an aprotic solvent. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1664-1683. [PMID: 31576393 DOI: 10.1039/c9em00313d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The complex and indeterminant composition of NOM makes characterization of its redox properties challenging. Approaches that have been taken to address this challenge include chemical probe reactions, potentiometric titrations, chronocoulometry, and voltammetry. In this study, we revisit the use of direct voltammetric methods in aprotic solvents by applying an expanded and refined suite of methods to a large set of NOM samples and model compounds (54 NOM samples from 10 different sources, 7 NOM model compounds, and 2 fresh extracts of plant materials that are high in redox-active quinonoid model compounds dissolved in DMSO). Refinements in the methods of fitting the data obtained by staircase cyclic voltammetry (SCV) provided improved definition of peaks, and square wave voltammetry (SWV), performed under the same conditions as SCV, provided even more reliable identification and quantitation of peaks. Further evidence is provided that DMSO improves the electrode response by unfolding some of the tertiary structure of NOM polymers, thereby allowing greater contact between redox active functional groups and the electrode surface. We averaged experimental peak potentials for all NOM compounds and calculated potentials in water. Average values for Epa1, Epc1, and Ep1 in DMSO were -0.866 ± 0.069, -1.35 ± 0.071, and -0.831 ± 0.051 V vs. Ag/Ag+, and -0.128, -0.613, and -0.0930 V vs. SHE in water. In addition to peak potentials, the breadth of SCV peaks was quantified as a way to characterize the degree to which the redox activity of NOM is due to a continuum of contributing functional groups. The average breadth values were 1.63 ± 0.24, 1.28 ± 0.34, and 0.648 ± 0.15 V for Epa1, Epc1, and Ep1 respectively. Comparative analysis of the overall dataset-from SCV and SWV on all NOMs and model compounds-revealed that NOM redox properties vary over a narrower range than expected based on model compound properties. This lack of diversity in redox properties of NOM is similar to conclusions from other recent work on the molecular structure of NOM, all of which could be the result of selectivity in the common extraction methods used to obtain the materials.
Collapse
Affiliation(s)
- Ania S Pavitt
- OHSU-PSU School of Public Health, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| | | |
Collapse
|
22
|
John CW, Proshlyakov DA. Fourier Transform Infrared Spectrovoltammetry and Quantitative Modeling of Analytes in Kinetically Constrained Redox Mixtures. Anal Chem 2019; 91:9563-9570. [PMID: 31257856 DOI: 10.1021/acs.analchem.9b00859] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Redox-active analytes that do not support direct electron transfer on the electrode, such as proteins with buried redox centers, pose challenges to characterization of their structural and thermodynamic properties. Investigations of indirect transitions in analytes supported by complex redox mixtures require a careful balance between kinetic limitations and spectral interference from the mediators. Using methylene green and thionine acetate as redox mediators and myoglobin as the analyte, we demonstrate that normal pulse spectrovoltammetry (NPSV) with Fourier transform infrared (FT-IR) detection and subsequent global spectral regression analysis can resolve structural and thermodynamic properties simultaneously with little a priori information. Both the E1/2 and unbiased redox difference FT-IR spectra of the Fe(II)/Fe(III) redox couple of myoglobin in reduction and oxidation NPSV modes were in good agreement with those reported earlier by independent techniques. The thermodynamic and kinetic limitations of mediators/analyte interactions were investigated using comprehensive semiempirical kinetic simulation models. This modeling effort yielded a flexible computational tool capable of quantitatively predicting the redox response in mediated electrochemical studies and defining its limitations, thus greatly expanding the range and precision of the formal mediator/analyte concentration ratio rule.
Collapse
Affiliation(s)
- Christopher W John
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Denis A Proshlyakov
- Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
23
|
Lin D, Lai Y, Huang J. Mn‐Catalyzed Electrochemical Synthesis of Quinazolinones from Primary Alcohols/Benzyl Ethers and
o
‐Aminobenzamides. ChemElectroChem 2019. [DOI: 10.1002/celc.201801502] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Dian‐Zhao Lin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P.R. CHINA
| | - Yin‐Long Lai
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P.R. CHINA
| | - Jing‐Mei Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province School of Chemistry and Chemical EngineeringSouth China University of Technology Guangzhou 510640 P.R. CHINA
| |
Collapse
|
24
|
Ray AE, Connon SA, Neal AL, Fujita Y, Cummings DE, Ingram JC, Magnuson TS. Metal Transformation by a Novel Pelosinus Isolate From a Subsurface Environment. Front Microbiol 2018; 9:1689. [PMID: 30174652 PMCID: PMC6107796 DOI: 10.3389/fmicb.2018.01689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/06/2018] [Indexed: 01/11/2023] Open
Abstract
The capability of microorganisms to alter metal speciation offers potential for the development of new strategies for immobilization of toxic metals in the environment. A metal-reducing microbe, "Pelosinus lilae" strain UFO1, was isolated under strictly anaerobic conditions from an Fe(III)-reducing enrichment established with uncontaminated soil from the Department of Energy Oak Ridge Field Research Center, Tennessee. "P. lilae" UFO1 is a rod-shaped, spore-forming, and Gram-variable anaerobe with a fermentative metabolism. It is capable of reducing the humic acid analog anthraquinone-2,6-disulfonate (AQDS) using a variety of fermentable substrates and H2. Reduction of Fe(III)-nitrilotriacetic acid occurred in the presence of lactate as carbon and electron donor. Ferrihydrite was not reduced in the absence of AQDS. Nearly complete reduction of 1, 3, and 5 ppm Cr(VI) occurred within 24 h in suspensions containing 108 cells mL-1 when provided with 10 mM lactate; when 1 mM AQDS was added, 3 and 5 ppm Cr(VI) were reduced to 0.1 ppm within 2 h. Strain UFO1 is a novel species within the bacterial genus Pelosinus, having 98.16% 16S rRNA gene sequence similarity with the most closely related described species, Pelosinus fermentans R7T. The G+C content of the genomic DNA was 38 mol%, and DNA-DNA hybridization of "P. lilae" UFO1 against P. fermentans R7T indicated an average 16.8% DNA-DNA similarity. The unique phylogenetic, physiologic, and metal-transforming characteristics of "P. lilae" UFO1 reveal it is a novel isolate of the described genus Pelosinus.
Collapse
Affiliation(s)
- Allison E. Ray
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- Idaho National Laboratory, Idaho Falls, ID, United States
| | - Stephanie A. Connon
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
- California Institute of Technology, Pasadena, CA, United States
| | - Andrew L. Neal
- Savannah River Ecology Laboratory, University of Georgia, Aiken, SC, United States
| | - Yoshiko Fujita
- Idaho National Laboratory, Idaho Falls, ID, United States
| | - David E. Cummings
- Department of Biology, Point Loma Nazarene University, San Diego, CA, United States
| | - Jani C. Ingram
- Idaho National Laboratory, Idaho Falls, ID, United States
| | - Timothy S. Magnuson
- Department of Biological Sciences, Idaho State University, Pocatello, ID, United States
| |
Collapse
|
25
|
Yano J, Suzuki K, Tsutsumi C, Mabuchi M, Hayase N, Kitani A. Anodic reactions of NADH model compound by utilizing both light irradiation and riboflavin as a redox mediator. Biosci Biotechnol Biochem 2018; 82:1849-1854. [PMID: 30096048 DOI: 10.1080/09168451.2018.1505483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Both light and a redox mediator riboflavin (RF) were utilized to promote the electro-oxidation of an NADH model compound (1-benzyl-1,4-dihydronicotinamide, BNAH), which is a key process for enzymatic biofuel cells to obtain a high performance. At the cathode, H+ ions were simultaneously reduced to produce H2 gas. To elucidate the cell reactions of this photogalvanic cell, which is significant information about the fabrication of enzymatic biofuel cells with a high performance, the effect of the BNAH and RF concentrations on the cell current, the light wavelength dependence on the current, and reduction of the RF concentration were evaluated. The obtained results strongly suggest that the anodic reactions were composed of the following reactions: 1) the photo-excitation of RF, 2) the attack of the excited RF on the BNAH and the generation of the radical species of BNAH and RF, and 3) the chain reactions between the radical species.
Collapse
Affiliation(s)
- Jun Yano
- a Department of Fundamental Science , National Institute of Technology, Niihama College , Niihama , Japan
| | - Kenta Suzuki
- b Department of Applied Chemistry and Biotechnology , National Institute of Technology, Niihama College , Niihama , Japan
| | - Chikara Tsutsumi
- b Department of Applied Chemistry and Biotechnology , National Institute of Technology, Niihama College , Niihama , Japan
| | - Michiaki Mabuchi
- b Department of Applied Chemistry and Biotechnology , National Institute of Technology, Niihama College , Niihama , Japan
| | - Nobuki Hayase
- b Department of Applied Chemistry and Biotechnology , National Institute of Technology, Niihama College , Niihama , Japan
| | - Akira Kitani
- c Faculty of Engineering , Hiroshima University , Higashihiroshima , Japan
| |
Collapse
|
26
|
Ma C, Fang P, Mei TS. Recent Advances in C–H Functionalization Using Electrochemical Transition Metal Catalysis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01697] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Cong Ma
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Ping Fang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Tian-Sheng Mei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
27
|
Structure of the alternative complex III in a supercomplex with cytochrome oxidase. Nature 2018; 557:123-126. [PMID: 29695868 PMCID: PMC6004266 DOI: 10.1038/s41586-018-0061-y] [Citation(s) in RCA: 176] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 03/20/2018] [Indexed: 12/31/2022]
|
28
|
Zouraris D, Zerva A, Topakas E, Karantonis A. Kinetic and amperometric study of the Mt PerII peroxidase isolated from the ascomycete fungus Myceliophthora thermophila. Bioelectrochemistry 2017; 118:19-24. [DOI: 10.1016/j.bioelechem.2017.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 02/08/2023]
|
29
|
Loew N, Tsugawa W, Nagae D, Kojima K, Sode K. Mediator Preference of Two Different FAD-Dependent Glucose Dehydrogenases Employed in Disposable Enzyme Glucose Sensors. SENSORS 2017; 17:s17112636. [PMID: 29144384 PMCID: PMC5712826 DOI: 10.3390/s17112636] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 02/07/2023]
Abstract
Most commercially available electrochemical enzyme sensor strips for the measurement of blood glucose use an artificial electron mediator to transfer electrons from the active side of the enzyme to the electrode. One mediator recently gaining attention for commercial sensor strips is hexaammineruthenium(III) chloride. In this study, we investigate and compare the preference of enzyme electrodes with two different FAD-dependent glucose dehydrogenases (FADGDHs) for the mediators hexaammineruthenium(III) chloride, potassium ferricyanide (the most common mediator in commercial sensor strips), and methoxy phenazine methosulfate (mPMS). One FADGDH is a monomeric fungal enzyme, and the other a hetero-trimeric bacterial enzyme. With the latter, which contains a heme-subunit facilitating the electron transfer, similar response currents are obtained with hexaammineruthenium(III), ferricyanide, and mPMS (6.8 µA, 7.5 µA, and 6.4 µA, respectively, for 10 mM glucose). With the fungal FADGDH, similar response currents are obtained with the negatively charged ferricyanide and the uncharged mPMS (5.9 µA and 6.7 µA, respectively, for 10 mM glucose), however, no response current is obtained with hexaammineruthenium(III), which has a strong positive charge. These results show that access of even very small mediators with strong charges to a buried active center can be almost completely blocked by the protein.
Collapse
Affiliation(s)
- Noya Loew
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan.
| | - Wakako Tsugawa
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan.
| | - Daichi Nagae
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
| | - Katsuhiro Kojima
- Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.
| | - Koji Sode
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo 184-8588, Japan.
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo 183-8538, Japan.
- Ultizyme International Ltd., 1-13-16, Minami, Meguro, Tokyo 152-0013, Japan.
| |
Collapse
|
30
|
Yan M, Kawamata Y, Baran PS. Synthetic Organic Electrochemical Methods Since 2000: On the Verge of a Renaissance. Chem Rev 2017; 117:13230-13319. [PMID: 28991454 PMCID: PMC5786875 DOI: 10.1021/acs.chemrev.7b00397] [Citation(s) in RCA: 2038] [Impact Index Per Article: 254.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Electrochemistry represents one of the most intimate ways of interacting with molecules. This review discusses advances in synthetic organic electrochemistry since 2000. Enabling methods and synthetic applications are analyzed alongside innate advantages as well as future challenges of electroorganic chemistry.
Collapse
Affiliation(s)
| | | | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
31
|
Brietzke T, Dietz T, Kelling A, Schilde U, Bois J, Kelm H, Reh M, Schmitz M, Körzdörfer T, Leimkühler S, Wollenberger U, Krüger HJ, Holdt HJ. The 1,6,7,12-Tetraazaperylene Bridging Ligand as an Electron Reservoir and Its Disulfonato Derivative as Redox Mediator in an Enzyme-Electrode Process. Chemistry 2017; 23:15583-15587. [PMID: 28869692 DOI: 10.1002/chem.201703639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Indexed: 11/10/2022]
Abstract
The homodinuclear ruthenium(II) complex [{Ru(l-N4 Me2 )}2 (μ-tape)](PF6 )4 {[1](PF6 )4 } (l-N4 Me2 =N,N'-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, tape=1,6,7,12-tetraazaperylene) can store one or two electrons in the energetically low-lying π* orbital of the bridging ligand tape. The corresponding singly and doubly reduced complexes [{Ru(l-N4 Me2 )}2 (μ-tape.- )](PF6 )3 {[2](PF6 )3 } and [{Ru(l-N4 Me2 )}2 (μ-tape2- )](PF6 )2 {[3](PF6 )2 }, respectively, were electrochemically generated, successfully isolated and fully characterized by single-crystal X-ray crystallography, spectroscopic methods and magnetic susceptibility measurements. The singly reduced complex [2](PF6 )3 contains the π-radical tape.- and the doubly reduced [3](PF6 )2 the diamagnetic dianion tape2- as bridging ligand, respectively. Nucleophilic aromatic substitution at the bridging tape in [1]4+ by two sulfite units gave the complex [{Ru(l-N4 Me2 )}2 {μ-tape-(SO3 )2 }]2+ ([4]2+ ). Complex dication [4]2+ was exploited as a redox mediator between an anaerobic homogenous reaction solution of an enzyme system (sulfite/sulfite oxidase) and the electrode via participation of the low-energy π*-orbital of the disulfonato-substituted bridging ligand tape-(SO3 )22- (Ered1 =-0.1 V versus Ag/AgCl/1 m KCl in water).
Collapse
Affiliation(s)
- Thomas Brietzke
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Thomas Dietz
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Alexandra Kelling
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Uwe Schilde
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Julianae Bois
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Harald Kelm
- Anorganische Chemie, Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße Geb. 54, 67663, Kaiserslautern, Germany
| | - Manuel Reh
- Anorganische Chemie, Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße Geb. 54, 67663, Kaiserslautern, Germany
| | - Markus Schmitz
- Anorganische Chemie, Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße Geb. 54, 67663, Kaiserslautern, Germany
| | - Thomas Körzdörfer
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Silke Leimkühler
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Ulla Wollenberger
- Institut für Biochemie und Biologie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| | - Hans-Jörg Krüger
- Anorganische Chemie, Fachbereich Chemie, Technische Universität Kaiserslautern, Erwin-Schrödinger-Straße Geb. 54, 67663, Kaiserslautern, Germany
| | - Hans-Jürgen Holdt
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany
| |
Collapse
|
32
|
Vogt S, Wenderhold-Reeb S, Nöll G. Reversible assembly of protein-DNA nanostructures triggered by mediated electron transfer. Electrochim Acta 2017. [DOI: 10.1016/j.electacta.2017.02.075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
33
|
Tanaka K, Kaneko M, Ishikawa M, Kato S, Ito H, Kamachi T, Kamiya K, Nakanishi S. Specific Interaction between Redox Phospholipid Polymers and Plastoquinone in Photosynthetic Electron Transport Chain. Chemphyschem 2017; 18:878-881. [DOI: 10.1002/cphc.201700065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Kenya Tanaka
- Department of Chemistry Graduate School of Engineering Science Osaka University Machikaneyama Toyonaka Osaka 560–8531 Japan
| | - Masahiro Kaneko
- Department of Applied Chemistry The University of Tokyo 7-3-1 Hongo, Bunkyo-ku Tokyo 113–8656 Japan
| | - Masahito Ishikawa
- Department of Biotechnology Graduate School of Engineering Nagoya University Furocho, Chikusa-ku Nagoya 464–8603 Japan
- Research Center for Solar Energy Chemistry Osaka University 1–3, Machikaneyama, Toyonaka Osaka 560–8531 Japan
| | - Souichiro Kato
- Research Center for Solar Energy Chemistry Osaka University 1–3, Machikaneyama, Toyonaka Osaka 560–8531 Japan
- Bioproduction Research Institute National Institute of Advanced Industrial Science and Technology (AIST) Japan
| | - Hidehiro Ito
- Education Academy of Computational Life Sciences Tokyo Institute of Technology 2–12-1 Ookayama, Meguro-ku Tokyo 152–8550 Japan
| | - Toshiaki Kamachi
- Department of Life Science and Technology Graduated School of Bioscience and Biotechnology Tokyo Institute of Technology 2–12-1 Ookayama, Meguro-ku Tokyo 152–8550 Japan
| | - Kazuhide Kamiya
- Department of Chemistry Graduate School of Engineering Science Osaka University Machikaneyama Toyonaka Osaka 560–8531 Japan
- Research Center for Solar Energy Chemistry Osaka University 1–3, Machikaneyama, Toyonaka Osaka 560–8531 Japan
| | - Shuji Nakanishi
- Department of Chemistry Graduate School of Engineering Science Osaka University Machikaneyama Toyonaka Osaka 560–8531 Japan
- Research Center for Solar Energy Chemistry Osaka University 1–3, Machikaneyama, Toyonaka Osaka 560–8531 Japan
| |
Collapse
|
34
|
Korth B, Harnisch F. Modeling Microbial Electrosynthesis. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 167:273-325. [PMID: 29119203 DOI: 10.1007/10_2017_35] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mathematical modeling is an overarching approach for assessing the complexity of microbial electrosynthesis (MES) and for complementing the relevant experimental research. By describing and linking compartments, components, and processes with appropriate mathematical equations, MES and the corresponding bioelectrodes and complete bioelectrochemical systems can be analyzed and predicted across several temporal and local scales. Thereby, insights into fundamental phenomena and mechanisms, in addition to process engineering and design can be obtained. However, a substantial lack of knowledge about extracellular electron transfer mechanisms and electrotrophic microorganisms presumably prevented the development of adequate models of MES, especially of biocathodes, so far. To propel efforts regarding this demanding task, this chapter provides a comprehensive overview of the relevant compartments, components and processes, appropriate model strategies, and a discussion on potential modeling pitfalls. By adapting an established approach to assessing the energetics of microorganism, an instruction for calculating stoichiometry, thermodynamics, and kinetics, with the example of electro-autotrophic growth at cathodes, is presented. Models of bioanodes and fundamental electrochemical equations are described to provided strategies for calculating cathodic electron-uptake reactions and connecting them to the microbial metabolism. Finally, differential equations are detailed for coupling the distinct compartments of a bioelectrochemical system. Although MES comprises anodic and cathodic reactions, the present chapter focuses on biocathodes representing a functional connection between cathode and electron-accepting microorganisms. Graphical Abstract.
Collapse
Affiliation(s)
- Benjamin Korth
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Falk Harnisch
- Department of Environmental Microbiology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
| |
Collapse
|
35
|
Sehanobish E, Dow BA, Davidson VL. Analytical Methods for Assessing the Effects of Site-Directed Mutagenesis on Protein-Cofactor and Protein-Protein Functional Relationships. Methods Mol Biol 2017; 1498:421-438. [PMID: 27709593 DOI: 10.1007/978-1-4939-6472-7_29] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
To completely understand the role of an amino acid residue that is targeted for site-directed mutagenesis a thorough analysis of the impact that the mutation has on the function of the protein is required. General methods for performing site-directed mutagenesis and expressing the recombinant protein variant are described. Protein-cofactor interactions are important because cofactors are often directly involved in facilitating catalysis by enzymes and in electron transfer by redox proteins. Many cofactors also have characteristic spectroscopic properties. As such, general methods are described to analyze the spectroscopic, redox and catalytic properties of protein-bound cofactors. Methods for assessing the effects of a mutation on protein-protein interactions are also described. Lastly, methods for assessing the overall structural integrity of the protein are described, as this is important to ensure that the mutation has not caused a global disruption of protein structure, rather than a specific effect on function.
Collapse
Affiliation(s)
- Esha Sehanobish
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Brian A Dow
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA
| | - Victor L Davidson
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL, 32827, USA.
| |
Collapse
|
36
|
Batabyal D, Lewis-Ballester A, Yeh SR, Poulos TL. A Comparative Analysis of the Effector Role of Redox Partner Binding in Bacterial P450s. Biochemistry 2016; 55:6517-6523. [PMID: 27808504 DOI: 10.1021/acs.biochem.6b00913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The camphor monooxygenase, cytochrome P450cam, exhibits a strict requirement for its own redox partner, putidaredoxin (Pdx), a two-iron-sulfur ferredoxin. The closest homologue to P450cam, CYP101D1, is structurally very similar, uses a similar redox partner, and exhibits nearly identical enzymatic properties in the monooxygenation of camphor to give the same single 5-exo-hydroxy camphor product. However, CYP101D1 does not strictly require its own ferredoxin (Arx) for activity because Pdx can support CYP101D1 catalysis but Arx cannot support P450cam catalysis. We have further examined the differences between these two P450s by determining the effect of spin equilibrium, redox properties, and stability of oxygen complexes. We find that Arx shifts the spin state equilibrium toward high-spin, which is the opposite of the effect of Pdx on P450cam. In both P450s, redox partner binding destabilizes the oxy-P450 complex but this effect is much weaker with CYP101D1. In addition, resonance Raman data show that structural perturbations observed in P450cam upon addition of Pdx are absent in CYP101D1. These data indicate that Arx does not play the same effector role in catalysis as Pdx does with P450cam. The most relevant structural difference between these two P450s centers on a catalytically important Asp residue required for proton-coupled electron transfer. We postulate that with P450cam larger Pdx-assisted motions are required to free this Asp for catalysis while the smaller number of restrictions in CYP101D1 precludes the need for redox partner-assisted structural changes.
Collapse
Affiliation(s)
- Dipanwita Batabyal
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| | - Ariel Lewis-Ballester
- Department of Physiology and Biophysics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Syun-Ru Yeh
- Department of Physiology and Biophysics, Albert Einstein College of Medicine , 1300 Morris Park Avenue, Bronx, New York 10461, United States
| | - Thomas L Poulos
- Departments of Molecular Biology and Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California , Irvine, California 92697, United States
| |
Collapse
|
37
|
Honorio-Felício N, Carepo MS, de F. Paulo T, de França Lopes LG, Sousa EH, Diógenes IC, Bernhardt PV. The Heme-Based Oxygen Sensor Rhizobium etli FixL: Influence of Auxiliary Ligands on Heme Redox Potential and Implications on the Enzyme Activity. J Inorg Biochem 2016; 164:34-41. [DOI: 10.1016/j.jinorgbio.2016.08.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/05/2016] [Accepted: 08/22/2016] [Indexed: 12/09/2022]
|
38
|
Tharali AD, Sain N, Osborne WJ. Microbial fuel cells in bioelectricity production. FRONTIERS IN LIFE SCIENCE 2016. [DOI: 10.1080/21553769.2016.1230787] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Abstract
Electrochemical techniques have great promise for low-cost miniaturised easy-to-use portable devices for a wide range of applications-in particular, medical diagnosis and environmental monitoring. Different techniques can be used for biosensing, with amperometric devices taking the central role due to their widespread application in glucose monitoring. In fact, glucose biosensing takes an approximately 70% share of the biosensor market due to the need for diabetic patients to monitor their sugar levels several times a day, making it an appealing commercial market.In this review, we present the basic principles of electrochemical biosensor devices. A description of the different generations of glucose sensors is used to describe in some detail the operation of amperometric sensors and how the introduction of mediators can enhance the performance of the sensors. Electrochemical impedance spectroscopy is a technique being increasingly used in devices due to its ability to detect variations in resistance and capacitance upon binding events. Novel advances in electrochemical sensors, due to the use of nanomaterials such as carbon nanotubes and graphene, are presented as well as future directions that the field is taking.
Collapse
Affiliation(s)
- Jules L Hammond
- Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Nello Formisano
- Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, U.K
| | - Pedro Estrela
- Department of Electronic and Electrical Engineering, University of Bath, Bath BA2 7AY, U.K.
| | - Sandro Carrara
- Integrated Systems Laboratory, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovakia
| |
Collapse
|
40
|
Gimkiewicz C, Hunger S, Harnisch F. Evaluating the Feasibility of Microbial Electrosynthesis Based onGluconobacter oxydans. ChemElectroChem 2016. [DOI: 10.1002/celc.201600175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Carla Gimkiewicz
- UFZ-Helmholtz Center for Environmental Research; Department of Environmental Microbiology; Permoserstraße 15 04318 Leipzig Germany
| | - Steffi Hunger
- UFZ-Helmholtz Center for Environmental Research; Center for Environmental Biotechnology; Permoserstraße 15 04318 Leipzig Germany
| | - Falk Harnisch
- UFZ-Helmholtz Center for Environmental Research; Department of Environmental Microbiology; Permoserstraße 15 04318 Leipzig Germany
| |
Collapse
|
41
|
Fomina N, Johnson CA, Maruniak A, Bahrampour S, Lang C, Davis RW, Kavusi S, Ahmad H. An electrochemical platform for localized pH control on demand. LAB ON A CHIP 2016; 16:2236-44. [PMID: 27199277 DOI: 10.1039/c6lc00421k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Solution pH is a powerful tool for regulating many kinds of chemical activity, but is generally treated as a static property defined by a pre-selected buffer. Introducing dynamic control of pH in space, time, and magnitude can enable richer and more efficient chemistries, but is not feasible with traditional methods of titration or buffer exchange. Recent reports have featured electrochemical strategies for modifying bulk pH in constrained volumes, but only demonstrate switching between two preset values and omit spatial control entirely. Here, we use a combination of solution-borne quinones and galvanostatic excitation to enable quantitative control of pH environments that are highly localized to an electrode surface. We demonstrate highly reproducible acidification and alkalinization with up to 0.1 pH s(-1) (±0.002 pH s(-1)) rate of change across the dynamic range of our pH sensor (pH 4.5 to 7.5) in buffered solutions. Using dynamic current control, we generate and sustain 3 distinct pH microenvironments simultaneously to within ±0.04 pH for 13 minutes in a single solution, and we leverage these microenvironments to demonstrate spatially-resolved, pH-driven control of enzymatic activity. In addition to straightforward applications of spatio-temporal pH control (e.g. efficiently studying pH-dependencies of chemical interactions), the technique opens completely new avenues for implementing complex systems through dynamic control of enzyme activation, protein binding affinity, chemical reactivity, chemical release, molecular self-assembly, and many more pH-controlled processes.
Collapse
Affiliation(s)
- N Fomina
- Robert Bosch LLC. Bosch Research & Technology Center, 4005 Miranda Ave, Palo Alto, CA 94304, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Scheller S, Yu H, Chadwick GL, McGlynn SE, Orphan VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science 2016; 351:703-7. [DOI: 10.1126/science.aad7154] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
43
|
CHOI W, IM D, PARK MS, RYU YG, HWANG SS, KIM YS, KIM H, DOO SG, CHANG H. Keggin-type Polyoxometalates as Bidirectional Redox Mediators for Rechargeable Batteries. ELECTROCHEMISTRY 2016. [DOI: 10.5796/electrochemistry.84.882] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Wonsung CHOI
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
| | - Dongmin IM
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
| | - Min Sik PARK
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
| | - Young-Gyoon RYU
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
| | - Seung Sik HWANG
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
| | - Yong Su KIM
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
| | - Hyunjin KIM
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
| | - Seok-Gwang DOO
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
| | - Hyuk CHANG
- Samsung Advanced Institute of Technology, Samsung Electronics Co., Ltd
| |
Collapse
|
44
|
Kondaveeti S, Min B. Bioelectrochemical reduction of volatile fatty acids in anaerobic digestion effluent for the production of biofuels. WATER RESEARCH 2015; 87:137-44. [PMID: 26402877 DOI: 10.1016/j.watres.2015.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/30/2015] [Accepted: 09/05/2015] [Indexed: 05/05/2023]
Abstract
This study proves for the first time the feasibility of biofuel production from anaerobic digestion effluent via bioelectrochemical cell operation at various applied cell voltages (1.0, 1.5 and 2.0 V). An increase in cell voltage from 1 to 2 V resulted in more reduction current generation (-0.48 to -0.78 mA) at a lowered cathode potential (-0.45 to -0.84 mV vs Ag/AgCl). Various alcohols were produced depending on applied cell voltages, and the main products were butanol, ethanol, and propanol. Hydrogen and methane production were also observed in the headspace of the cell. A large amount of lactic acid was unexpectedly formed at all conditions, which might be the primary cause of the limited biofuel production. The addition of neutral red (NR) to the system could increase the cathodic reduction current, and thus more biofuels were produced with an enhanced alcohol formation compared to without a mediator.
Collapse
Affiliation(s)
- Sanath Kondaveeti
- Department of Environmental Science and Engineering, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea
| | - Booki Min
- Department of Environmental Science and Engineering, Kyung Hee University, 1 Seocheon-dong, Yongin-si, Gyeonggi-do 446-701, Republic of Korea.
| |
Collapse
|
45
|
He AY, Yin CY, Xu H, Kong XP, Xue JW, Zhu J, Jiang M, Wu H. Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4. Bioprocess Biosyst Eng 2015; 39:245-54. [DOI: 10.1007/s00449-015-1508-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 11/18/2015] [Indexed: 11/28/2022]
|
46
|
Rathee K, Dhull V, Dhull R, Singh S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem Biophys Rep 2015; 5:35-54. [PMID: 28955805 PMCID: PMC5600356 DOI: 10.1016/j.bbrep.2015.11.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 01/19/2023] Open
Abstract
Lactate detection plays a significant role in healthcare, food industries and is specially necessitated in conditions like hemorrhage, respiratory failure, hepatic disease, sepsis and tissue hypoxia. Conventional methods for lactate determination are not accurate and fast so this accelerated the need of sensitive biosensors for high-throughput screening of lactate in different samples. This review focuses on applications and developments of various electrochemical biosensors based on lactate detection as lactate being essential metabolite in anaerobic metabolic pathway. A comparative study to summarize the L-lactate biosensors on the basis of different analytical properties in terms of fabrication, sensitivity, detection limit, linearity, response time and storage stability has been done. It also addresses the merits and demerits of current enzyme based lactate biosensors. Lactate biosensors are of two main types – lactate oxidase (LOD) and lactate dehydrogenase (LDH) based. Different supports tried for manufacturing lactate biosensors include membranes, polymeric matrices-conducting or non-conducting, transparent gel matrix, hydrogel supports, screen printed electrodes and nanoparticles. All the examples in these support categories have been aptly discussed. Finally this review encompasses the conclusion and future emerging prospects of lactate sensors. Different enzymes used in lactate bio sensing have been studied. Support used for fabrication biosensors have been discussed. The linearity range, response time, detection limit, etc. have been studied. Merits and demerits of different supports are also discussed.
Collapse
Affiliation(s)
- Kavita Rathee
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Vikas Dhull
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Rekha Dhull
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
47
|
Rungsawang T, Punrat E, Adkins J, Henry C, Chailapakul O. Development of Electrochemical Paper-based Glucose Sensor Using Cellulose-4-aminophenylboronic Acid-modified Screen-printed Carbon Electrode. ELECTROANAL 2015. [DOI: 10.1002/elan.201500406] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
48
|
Sander M, Hofstetter TB, Gorski CA. Electrochemical analyses of redox-active iron minerals: a review of nonmediated and mediated approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5862-78. [PMID: 25856208 DOI: 10.1021/acs.est.5b00006] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Redox-active minerals are ubiquitous in the environment and are involved in numerous electron transfer reactions that significantly affect biogeochemical processes and cycles as well as pollutant dynamics. As a consequence, research in different scientific disciplines is devoted to elucidating the redox properties and reactivities of minerals. This review focuses on the characterization of mineral redox properties using electrochemical approaches from an applied (bio)geochemical and environmental analytical chemistry perspective. Establishing redox equilibria between the minerals and working electrodes is a major challenge in electrochemical measurements, which we discuss in an overview of traditional electrochemical techniques. These issues can be overcome with mediated electrochemical analyses in which dissolved redox mediators are used to increase the rate of electron transfer and to facilitate redox equilibration between working electrodes and minerals in both amperometric and potentiometric measurements. Using experimental data on an iron-bearing clay mineral, we illustrate how mediated electrochemical analyses can be employed to derive important thermodynamic and kinetic data on electron transfer to and from structural iron. We summarize anticipated methodological advancements that will further contribute to advance an improved understanding of electron transfer to and from minerals in environmentally relevant redox processes.
Collapse
Affiliation(s)
- Michael Sander
- †Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics, Environmental Chemistry, Swiss Federal Institute of Technology (ETH), Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Thomas B Hofstetter
- ‡Environmental Chemistry, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Ueberlandstrasse 133,8600 Duebendorf, Switzerland
| | - Christopher A Gorski
- §Civil and Environmental Engineering, The Pennsylvania State University, 212 Sackett Building, University Park, Pennsylvania 16802-1408, United States
| |
Collapse
|
49
|
Kettisen K, Bülow L, Sakai H. Potential electron mediators to extract electron energies of RBC glycolysis for prolonged in vivo functional lifetime of hemoglobin vesicles. Bioconjug Chem 2015; 26:746-54. [PMID: 25734688 DOI: 10.1021/acs.bioconjchem.5b00076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Developing a functional blood substitute as an alternative to donated blood for clinical use is believed to relieve present and future blood shortages, and to reduce the risks of infection and blood type mismatching. Hemoglobin vesicle (HbV) encapsulates a purified and concentrated human-derived Hb solution in a phospholipid vesicle (liposome). The in vivo safety and efficacy of HbV as a transfusion alternative have been clarified. Auto-oxidation of ferrous Hb in HbV gradually increases the level of ferric methemoglobin (metHb) and impairs the oxygen transport capabilities. The extension of the functional half-life of HbV has recently been proposed using an electron mediator, methylene blue (MB), which acts as a shuttle between red blood cells (RBC) and HbV. MB transfers electron energies of NAD(P)H, produced by RBC glycolysis, to metHb in HbV. Work presented here focuses on screening of 15 potential electron mediators, with appropriate redox potential and water solubility, for electron transfer from RBC to HbV. The results are assessed with regard to the chemical properties of the candidates. The compounds examined in this study were dimethyl methylene blue (DMB), methylene green, azure A, azure B, azure C, toluidine blue (TDB), thionin acetate, phenazine methosulfate, brilliant cresyl blue, cresyl violet, gallocyanine, toluylene blue, indigo carmine, indigotetrasulfonate, and MB. Six candidates were found to be unsuitable because of their insufficient diffusion across membranes, or overly high or nonexistent reactivity with relevant biomolecules. However, 9 displayed favorable metHb reduction. Among the suitable candidates, phenothiazines DMB and TDB exhibited effectiveness like MB did. In comparison to MB, they showed faster reduction by electron-donating NAD(P)H, coupled with showing a lower rate of reoxidation in the presence of molecular oxygen. Ascertaining the best electron mediator can provide a pathway for extending the lifetime and efficiency of potential blood substitutes.
Collapse
Affiliation(s)
- Karin Kettisen
- †Department of Chemistry, Nara Medical University, Kashihara 634-8521, Japan.,‡Department of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
| | - Leif Bülow
- ‡Department of Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden
| | - Hiromi Sakai
- †Department of Chemistry, Nara Medical University, Kashihara 634-8521, Japan
| |
Collapse
|
50
|
Sekar N, Ramasamy RP. Recent advances in photosynthetic energy conversion. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2015. [DOI: 10.1016/j.jphotochemrev.2014.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|