1
|
Taylor JH, Elliott Albers H. Are there sex differences in oxytocin and vasopressin V1a receptors ligand binding affinities? Pharmacol Rep 2024; 76:416-423. [PMID: 38480666 DOI: 10.1007/s43440-024-00577-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/07/2024] [Accepted: 02/16/2024] [Indexed: 04/16/2024]
Abstract
BACKGROUND There is substantial evidence for sex differences in the functioning of one of the most common receptor systems; G protein-coupled receptors (GPCRs). There are many points along the GPCR-mediated molecular signaling pathway at which males and females may differ, one of the first of which, chronologically, is in the stability of the interaction between the ligand and the receptor, or its binding affinity. Here we investigate the binding affinities of oxytocin (OT) and vasopressin (AVP) at the oxytocin receptor (OTR) and the vasopressin V1a receptor (V1aR), both of which are present in numerous in brain regions associated with social behavior. METHOD In order to investigate sex- and estrous cycle-dependent differences in ligand-receptor binding affinity, male (n = 6) Syrian hamsters (Mesocricetus auratus), females on the day of estrus (E females, n = 6), and females on the second day of diestrus (D2 females n = 6) were chosen for study. Brains from hamsters were mounted on slides and competition and saturation binding assays were conducted. RESULTS We report a remarkable similarity in the binding affinities of OT and AVP in males and females. Small differences were detected, however, in receptor and ligand specificity in females depending on whether they were in the estrous or diestrous stage of their ovulatory cycle. CONCLUSION These data suggest that sex differences in binding affinity are not a likely source of the many sex differences that have been observed in the effects of OT and AVP in hamsters and other species.
Collapse
Affiliation(s)
- Jack H Taylor
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA
| | - H Elliott Albers
- Neuroscience Institute, Georgia State University, Atlanta, GA, 30303, USA.
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, 30302, USA.
| |
Collapse
|
2
|
A pilot study of the association between maternal mid-pregnancy cholesterol and oxysterol concentrations and labor duration. Lipids Health Dis 2023; 22:37. [PMID: 36906556 PMCID: PMC10007829 DOI: 10.1186/s12944-023-01800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/03/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Previous animal model studies have highlighted a role for cholesterol and its oxidized derivatives (oxysterols) in uterine contractile activity, however, a lipotoxic state associated with hypercholesterolemia may contribute to labor dystocia. Therefore, we investigated if maternal mid-pregnancy cholesterol and oxysterol concentrations were associated with labor duration in a human pregnancy cohort. METHODS We conducted a secondary analysis of serum samples and birth outcome data from healthy pregnant women (N = 25) with mid-pregnancy fasting serum samples collected at 22-28 weeks of gestation. Serum was analyzed for total-C, HDL-C, and LDL-C by direct automated enzymatic assay and oxysterol profile including 7α-hydroxycholesterol (7αOHC), 7β-hydroxycholesterol (7βOHC), 24-hydroxycholesterol (24OHC), 25-hydroxycholesterol (25OHC), 27-hydroxycholesterol (27OHC), and 7-ketocholesterol (7KC) by liquid chromatography-selected ion monitoring-stable isotope dilution-atmospheric pressure chemical ionization-mass spectroscopy. Associations between maternal second trimester lipids and labor duration (minutes) were assessed using multivariable linear regression adjusting for maternal nulliparity and age. RESULTS An increase in labor duration was observed for every 1-unit increment in serum 24OHC (0.96 min [0.36,1.56], p < 0.01), 25OHC (7.02 min [1.92,12.24], p = 0.01), 27OHC (0.54 min [0.06, 1.08], p < 0.05), 7KC (8.04 min [2.7,13.5], p < 0.01), and total oxysterols (0.42 min [0.18,0.06], p < 0.01]. No significant associations between labor duration and serum total-C, LDL-C, or HDL-C were observed. CONCLUSIONS In this cohort, mid-pregnancy concentrations of maternal oxysterols (24OHC, 25OHC, 27OHC, and 7KC) were positively associated with labor duration. Given the small population and use of self-reported labor duration, subsequent studies are required for confirmation.
Collapse
|
3
|
Isu UH, Badiee SA, Khodadadi E, Moradi M. Cholesterol in Class C GPCRs: Role, Relevance, and Localization. MEMBRANES 2023; 13:301. [PMID: 36984688 PMCID: PMC10056374 DOI: 10.3390/membranes13030301] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
G-protein coupled receptors (GPCRs), one of the largest superfamilies of cell-surface receptors, are heptahelical integral membrane proteins that play critical roles in virtually every organ system. G-protein-coupled receptors operate in membranes rich in cholesterol, with an imbalance in cholesterol level within the vicinity of GPCR transmembrane domains affecting the structure and/or function of many GPCRs, a phenomenon that has been linked to several diseases. These effects of cholesterol could result in indirect changes by altering the mechanical properties of the lipid environment or direct changes by binding to specific sites on the protein. There are a number of studies and reviews on how cholesterol modulates class A GPCRs; however, this area of study is yet to be explored for class C GPCRs, which are characterized by a large extracellular region and often form constitutive dimers. This review highlights specific sites of interaction, functions, and structural dynamics involved in the cholesterol recognition of the class C GPCRs. We summarize recent data from some typical family members to explain the effects of membrane cholesterol on the structural features and functions of class C GPCRs and speculate on their corresponding therapeutic potential.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
4
|
Muir R, Khan R, Shmygol A, Quenby S, Elmes M. The impact of maternal obesity on in vivo uterine contractile activity during parturition in the rat. Physiol Rep 2023; 11:e15610. [PMID: 36863718 PMCID: PMC9981334 DOI: 10.14814/phy2.15610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/21/2023] [Indexed: 03/04/2023] Open
Abstract
Maternal obesity is associated with increased risk of prolonged and dysfunctional labor and emergency caesarean section. To elucidate the mechanisms behind the associated uterine dystocia, a translational animal model is required. Our previous work identified that exposure to a high-fat, high-cholesterol (HFHC) diet to induce obesity down-regulates uterine contractile associated protein expression and causes asynchronous contractions ex vivo. This study aims to investigate the impact of maternal obesity on uterine contractile function in vivo using intrauterine telemetry surgery. Virgin female Wistar rats were fed either a control (CON, n = 6) or HFHC (n = 6) diet for 6 weeks prior to conception, and throughout pregnancy. On Day 9 of gestation, a pressure-sensitive catheter was surgically implanted aseptically within the gravid uterus. Following 5 days recovery, intrauterine pressure (IUP) was recorded continuously until delivery of the 5th pup (Day 22). HFHC induced obesity led to a significant 1.5-fold increase in IUP (p = 0.026) and fivefold increase in frequency of contractions (p = 0.013) relative to CON. Determination of the time of labor onset identified that HFHC rats IUP (p = 0.046) increased significantly 8 h prior to 5th pup delivery, which contrasts to CON with no significant increase. Myometrial contractile frequency in HFHC rats significantly increased 12 h prior to delivery of the 5th pup (p = 0.023) compared to only 3 h in CON, providing evidence that labor in HFHC rats was prolonged by 9 h. In conclusion, we have established a translational rat model that will allow us to unravel the mechanism behind uterine dystocia associated with maternal obesity.
Collapse
Affiliation(s)
- Ronan Muir
- Division of Food Nutrition and Dietetics, School of BioscienceUniversity of Nottingham, Sutton Bonington CampusLoughboroughEnglandUK
| | - Raheela Khan
- Graduate School of MedicineUniversity of Nottingham, Royal Derby HospitalDerbyEnglandUK
| | - Anatoly Shmygol
- Department of Physiology, College of Medicine and Health SciencesUnited Arab Emirates UniversityAl AinUAE
| | - Siobhan Quenby
- Biomedical Research Unit in Reproductive HealthUniversity Hospital Coventry and WarwickshireCoventryUK
| | - Matthew Elmes
- Division of Food Nutrition and Dietetics, School of BioscienceUniversity of Nottingham, Sutton Bonington CampusLoughboroughEnglandUK
| |
Collapse
|
5
|
Guo Z, Liu X, Wang N, Mo P, Shen J, Liu M, Zhang H, Wang P, Zhang Z. Membrane component ergosterol builds a platform for promoting effector secretion and virulence in Magnaporthe oryzae. THE NEW PHYTOLOGIST 2023; 237:930-943. [PMID: 36300785 DOI: 10.1111/nph.18575] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
The plasma membrane (PM) functions as a physical border between the extracellular and cytoplasmic environments that contribute to the interaction between host plants and pathogenic fungi. As a specific sterol constituent in the cell membrane, ergosterol plays a significant role in fungal development. However, the role of ergosterol in the infection of the rice blast fungus Magnaporthe oryzae remains unclear. In this study, we found that a sterol reductase, MoErg4, is involved in ergosterol biosynthesis and the regulation of plasma membrane integrity in M. oryzae. We found that defects in ergosterol biosynthesis disrupt lipid raft formation in the PM and cause an abnormal distribution of the t-soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein MoSso1, inhibiting its interaction with the v-SNARE protein MoSnc1. In addition, we found that MoSso1-MoSnc1 interaction is important for biotrophic interface complex development and cytoplasmic effector protein secretion. Our findings suggested that ergosterol-enriched lipid rafts constitute a platform for interactions among various SNARE proteins that are required for the development and pathogenicity of M. oryzae.
Collapse
Affiliation(s)
- Ziqian Guo
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xinyu Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Nian Wang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengcheng Mo
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ju Shen
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Muxing Liu
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haifeng Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Wang
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, 70118, USA
| | - Zhengguang Zhang
- Department of Plant Pathology, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
6
|
Cornut D, Soulié M, Moreno A, Boussambe GNM, Damian M, Igonet S, Guillet P, Banères JL, Durand G. Non-ionic cholesterol-based additives for the stabilization of membrane proteins. Biochimie 2023; 205:27-39. [PMID: 36586567 DOI: 10.1016/j.biochi.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/30/2022]
Abstract
We report herein the synthesis of two non-ionic amphiphiles with a cholesterol hydrophobic moiety that can be used as chemical additives for biochemical studies of membrane proteins. They were designed to show a high similarity with the planar steroid core of cholesterol and small-to-medium polar head groups attached at the C3 position of ring-A on the sterol skeleton. The two Chol-Tris and Chol-DG have a Tris-hydroxymethyl and a branched diglucose polar head group, respectively, which provide them sufficient water solubility when mixed with the "gold standard" detergent n-Dodecyl-β-D-Maltoside (DDM). The colloidal properties of these mixed micelles were investigated by means of surface tension (SFT) measurements and dynamic light scattering (DLS) experiments and showed the formation of globular micelles of about 8 nm in diameter with a critical micellar concentration of 0.20 mM for DDM:Chol-DG and 0.22 mM for DDM:Chol-Tris. We showed that mixed micelles do not alter the extraction potency of a G-protein coupled receptor (GPCR): the human adenosine A2A receptor (A2AR). The thermostabilizing effect of the mixed micelles was confirmed on two GPCRs, A2AR and the growth hormone secretagogue receptor (GHSR). Finally, these two mixed micelles were found suitable for the purification of an active form of A2AR which remained able to bind two ligands of different class i.e. the specific agonist CGS-21680 and the specific inverse agonist ZM-241385. This suggests that Chol-Tris and Chol-DG may be used as a non-ionic alternative to the cholesteryl hemisuccinate (CHS) stabilizing agent.
Collapse
Affiliation(s)
- Damien Cornut
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France
| | - Marine Soulié
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France
| | | | - Gildas Nyame Mendendy Boussambe
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM, 1919 route de Mende, 34293, Montpellier, Cedex 5, France
| | | | - Pierre Guillet
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM, 1919 route de Mende, 34293, Montpellier, Cedex 5, France
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron UMR 5247 UM-CNRS-ENSCM & Avignon Université, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France; CHEM2STAB, 301 rue Baruch de Spinoza, 84916, Avignon, Cedex 9, France.
| |
Collapse
|
7
|
Bous J, Fouillen A, Orcel H, Granier S, Bron P, Mouillac B. Structures of the arginine-vasopressin and oxytocin receptor signaling complexes. VITAMINS AND HORMONES 2023; 123:67-107. [PMID: 37718002 DOI: 10.1016/bs.vh.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Arginine-vasopressin (AVP) and oxytocin (OT) are neurohypophysial hormones which share a high sequence and structure homology. These are two cyclic C-terminally amidated nonapeptides with different residues at position 3 and 8. In mammals, AVP and OT exert their multiple biological functions through a specific G protein-coupled receptor family: four receptors are identified, the V1a, V1b, V2 receptors (V1aR, V1bR and V2R) and the OT receptor (OTR). The chemical structure of AVP and OT was elucidated in the early 1950s. Thanks to X-ray crystallography and cryo-electron microscopy, it took however 70 additional years to determine the three-dimensional structures of the OTR and the V2R in complex with their natural agonist ligands and with different signaling partners, G proteins and β-arrestins. Today, the comparison of the different AVP/OT receptor structures gives structural insights into their orthosteric ligand binding pocket, their molecular mechanisms of activation, and their interfaces with canonical Gs, Gq and β-arrestin proteins. It also paves the way to future rational drug design and therapeutic compound development. Indeed, agonist, antagonist, biased agonist, or pharmacological chaperone analogues of AVP and OT are promising candidates to regulate different physiological functions and treat several pathologies.
Collapse
Affiliation(s)
- Julien Bous
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Aurélien Fouillen
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France; CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Patrick Bron
- CBS (Centre de Biologie Structurale), Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
8
|
Rosenhouse-Dantsker A, Gazgalis D, Logothetis DE. PI(4,5)P 2 and Cholesterol: Synthesis, Regulation, and Functions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1422:3-59. [PMID: 36988876 DOI: 10.1007/978-3-031-21547-6_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is the most abundant membrane phosphoinositide and cholesterol is an essential component of the plasma membrane (PM). Both lipids play key roles in a variety of cellular functions including as signaling molecules and major regulators of protein function. This chapter provides an overview of these two important lipids. Starting from a brief description of their structure, synthesis, and regulation, the chapter continues to describe the primary functions and signaling processes in which PI(4,5)P2 and cholesterol are involved. While PI(4,5)P2 and cholesterol can act independently, they often act in concert or affect each other's impact. The chapters in this volume on "Cholesterol and PI(4,5)P2 in Vital Biological Functions: From Coexistence to Crosstalk" focus on the emerging relationship between cholesterol and PI(4,5)P2 in a variety of biological systems and processes. In this chapter, the next section provides examples from the ion channel field demonstrating that PI(4,5)P2 and cholesterol can act via common mechanisms. The chapter ends with a discussion of future directions.
Collapse
Affiliation(s)
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| |
Collapse
|
9
|
Sarkar P, Bhat A, Chattopadhyay A. Lysine 101 in the CRAC Motif in Transmembrane Helix 2 Confers Cholesterol-Induced Thermal Stability to the Serotonin 1A Receptor. J Membr Biol 2022; 255:739-746. [PMID: 35986776 DOI: 10.1007/s00232-022-00262-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/05/2022] [Indexed: 12/24/2022]
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of membrane proteins that transduce signals across the plasma membrane and orchestrate a multitude of physiological processes within cells. The serotonin1A receptor is a crucial neurotransmitter receptor in the GPCR family involved in a multitude of neurological, behavioral and cognitive functions. We have previously shown, using a combination of experimental and simulation approaches, that membrane cholesterol acts as a key regulator of organization, dynamics, signaling and endocytosis of the serotonin1A receptor. In addition, we showed that membrane cholesterol stabilizes the serotonin1A receptor against thermal deactivation. In the present work, we explored the molecular basis of cholesterol-induced thermal stability of the serotonin1A receptor. For this, we explored the possible role of the K101 residue in a cholesterol recognition/interaction amino acid consensus (CRAC) motif in transmembrane helix 2 in conferring the thermal stability of the serotonin1A receptor. Our results show that a mutation in the K101 residue leads to loss in thermal stability of the serotonin1A receptor imparted by cholesterol, independent of membrane cholesterol content. We envision that our results could have potential implications in structural biological advancements of GPCRs and design of thermally stabilized receptors for drug development.
Collapse
Affiliation(s)
- Parijat Sarkar
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | - Akrati Bhat
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
10
|
Mühle C, Mazza M, Weinland C, von Zimmermann C, Bach P, Kiefer F, Grinevich V, Zoicas I, Kornhuber J, Lenz B. Elevated Oxytocin Receptor Blood Concentrations Predict Higher Risk for, More, and Earlier 24-Month Hospital Readmissions after In-Patient Detoxification in Males with Alcohol Use Disorder. Int J Mol Sci 2022; 23:ijms23179940. [PMID: 36077337 PMCID: PMC9455990 DOI: 10.3390/ijms23179940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Alcohol use disorder (AUD) is a major global mental health challenge. Knowledge concerning mechanisms underlying AUD and predictive biomarkers of AUD progression and relapse are insufficient. Recently, addiction research is focusing attention on the oxytocin system. However, to our knowledge, blood concentrations of the oxytocin receptor (OXTR) have not yet been studied in AUD. Here, in sex-separated analyses, OXTR serum concentrations were compared between early-abstinent in-patients with AUD (113 men, 87 women) and age-matched healthy controls (133 men, 107 women). The OXTR concentrations were correlated with sex hormone and oxytocin concentrations and alcohol-related hospital readmissions during a 24-month follow-up. In male patients with AUD, higher OXTR concentrations were found in those with an alcohol-related readmission than in those without (143%; p = 0.004), and they correlated with more prospective readmissions (ρ = 0.249; p = 0.008) and fewer days to the first readmission (ρ = −0.268; p = 0.004). In men and women, OXTR concentrations did not significantly differ between patients with AUD and controls. We found lower OXTR concentrations in smokers versus non-smokers in female patients (61%; p = 0.001) and controls (51%; p = 0.003). In controls, OXTR concentrations correlated with dihydrotestosterone (men, ρ = 0.189; p = 0.030) and testosterone concentrations (women, ρ = 0.281; p = 0.003). This clinical study provides novel insight into the role of serum OXTR levels in AUD. Future studies are encouraged to add to the available knowledge and investigate clinical implications of OXTR blood concentrations.
Collapse
Affiliation(s)
- Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
- Correspondence: or ; Tel.: +49-9131-85-44738; Fax: +49-9131-85-36381
| | - Massimiliano Mazza
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| | - Christian Weinland
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Claudia von Zimmermann
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Patrick Bach
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| | - Falk Kiefer
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| | - Iulia Zoicas
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Schwabachanlage 6, D-91054 Erlangen, Germany
- Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, J 5, D-68159 Mannheim, Germany
| |
Collapse
|
11
|
Abiko LA, Dias Teixeira R, Engilberge S, Grahl A, Mühlethaler T, Sharpe T, Grzesiek S. Filling of a water-free void explains the allosteric regulation of the β 1-adrenergic receptor by cholesterol. Nat Chem 2022; 14:1133-1141. [PMID: 35953642 DOI: 10.1038/s41557-022-01009-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 06/24/2022] [Indexed: 11/09/2022]
Abstract
Recent high-pressure NMR results indicate that the preactive conformation of the β1-adrenergic receptor (β1AR) harbours completely empty cavities of ~100 Å3 volume, which disappear in the active conformation of the receptor. Here we have localized these cavities using X-ray crystallography of xenon-derivatized β1AR crystals. One of the cavities is in direct contact with the cholesterol-binding pocket. Solution NMR shows that addition of the cholesterol analogue cholesteryl hemisuccinate impedes the formation of the active conformation of detergent-solubilized β1AR by blocking conserved G protein-coupled receptor microswitches, concomitant with an affinity reduction of both isoprenaline and G protein-mimicking nanobody Nb80 for β1AR detected by isothermal titration calorimetry. This wedge-like action explains the function of cholesterol as a negative allosteric modulator of β1AR. A detailed understanding of G protein-coupled receptor regulation by cholesterol by filling of a dry void and the easy scouting for such voids by xenon may provide new routes for the development of allosteric drugs.
Collapse
Affiliation(s)
| | | | - Sylvain Engilberge
- Paul Scherrer Institut, Villigen, Switzerland.,European Synchrotron Radiation Facility, Grenoble, France
| | - Anne Grahl
- Biozentrum, University of Basel, Basel, Switzerland
| | | | | | | |
Collapse
|
12
|
Serdiuk T, Manna M, Zhang C, Mari SA, Kulig W, Pluhackova K, Kobilka BK, Vattulainen I, Müller DJ. A cholesterol analog stabilizes the human β 2-adrenergic receptor nonlinearly with temperature. Sci Signal 2022; 15:eabi7031. [PMID: 35671340 PMCID: PMC10754352 DOI: 10.1126/scisignal.abi7031] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In cell membranes, G protein-coupled receptors (GPCRs) interact with cholesterol, which modulates their assembly, stability, and conformation. Previous studies have shown how cholesterol modulates the structural properties of GPCRs at ambient temperature. Here, we characterized the mechanical, kinetic, and energetic properties of the human β2-adrenergic receptor (β2AR) in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) at room temperature (25°C), at physiological temperature (37°C), and at high temperature (42°C). We found that CHS stabilized various structural regions of β2AR differentially, which changed nonlinearly with temperature. Thereby, the strongest effects were observed for structural regions that are important for receptor signaling. Moreover, at 37°C, but not at 25° or 42°C, CHS caused β2AR to increase and stabilize conformational substates to adopt to basal activity. These findings indicate that the nonlinear, temperature-dependent action of CHS in modulating the structural and functional properties of this GPCR is optimized for 37°C.
Collapse
Affiliation(s)
- Tetiana Serdiuk
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Moutusi Manna
- Applied Phycology and Biotechnology Division, CSIR–Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, gujarat, india
| | - Cheng Zhang
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Stefania A. Mari
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
| | - Kristyna Pluhackova
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
- Cluster of Excellence SimTech, Stuttgart Center for Simulation Science, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Brian K. Kobilka
- Department of Cellular Physiology and Medicine, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, P. O. Box 64, FI-00014 Helsinki, Finland
- Computational Physics Laboratory, Tampere University, P. O. Box 692, FI-33014 Tampere, Finland
| | - Daniel J. Müller
- Department of Biosystems Science and Engineering, ETH Zurich, CH-4058 Basel, Switzerland
| |
Collapse
|
13
|
di Punzio G, Gilberti M, Baruffini E, Lodi T, Donnini C, Dallabona C. A Yeast-Based Repurposing Approach for the Treatment of Mitochondrial DNA Depletion Syndromes Led to the Identification of Molecules Able to Modulate the dNTP Pool. Int J Mol Sci 2021; 22:ijms222212223. [PMID: 34830106 PMCID: PMC8621932 DOI: 10.3390/ijms222212223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Mitochondrial DNA depletion syndromes (MDS) are clinically heterogenous and often severe diseases, characterized by a reduction of the number of copies of mitochondrial DNA (mtDNA) in affected tissues. In the context of MDS, yeast has proved to be both an excellent model for the study of the mechanisms underlying mitochondrial pathologies and for the discovery of new therapies via high-throughput assays. Among the several genes involved in MDS, it has been shown that recessive mutations in MPV17 cause a hepatocerebral form of MDS and Navajo neurohepatopathy. MPV17 encodes a non selective channel in the inner mitochondrial membrane, but its physiological role and the nature of its cargo remains elusive. In this study we identify ten drugs active against MPV17 disorder, modelled in yeast using the homologous gene SYM1. All ten of the identified molecules cause a concomitant increase of both the mitochondrial deoxyribonucleoside triphosphate (mtdNTP) pool and mtDNA stability, which suggests that the reduced availability of DNA synthesis precursors is the cause for the mtDNA deletion and depletion associated with Sym1 deficiency. We finally evaluated the effect of these molecules on mtDNA stability in two other MDS yeast models, extending the potential use of these drugs to a wider range of MDS patients.
Collapse
|
14
|
Oxytocin blood concentrations in alcohol use disorder: A cross-sectional, longitudinal, and sex-separated study. Eur Neuropsychopharmacol 2021; 51:55-67. [PMID: 34077851 DOI: 10.1016/j.euroneuro.2021.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 04/19/2021] [Accepted: 04/21/2021] [Indexed: 12/21/2022]
Abstract
Alcohol use disorder (AUD) is a severe illness, for which we lack sufficient mechanistic understanding. Preliminary evidence associates AUD with the oxytocin (OXT) system. Here we investigated alterations in endogenous OXT blood concentrations in patients with AUD and their association with alcohol drinking and prospective course. In sex-separated analyses, OXT serum concentrations of 200 in-patients with AUD (56.5% male; baseline, 24-72 h of abstinence) were compared with those of 240 age-matched healthy controls (55.4% male), investigated longitudinally (follow-up, 5 days later), and tested for associations with alcohol drinking behavior and prospective 24-month alcohol-related hospital readmissions. At baseline, the patients showed increased OXT concentrations relative to controls (men, 156%, P < 0.001; women, 124%, P = 0.002). The elevations normalized at follow-up. In male patients, baseline OXT concentrations correlated positively with alcohol concentration at admission, the amount of alcohol consumption per drinking year, and the number of previous withdrawal treatments (Rho > 0.195, P < 0.044). In beverage type-specific analysis, baseline OXT concentrations correlated with liquor consumption positively in male and negatively in female patients (|Rho| > 0.277, P < 0.017). Higher baseline OXT concentrations predicted more readmissions and fewer days to the first readmission (|Rho| > 0.185, P < 0.050) in male patients. This study provides novel and sex-separated insights into the role of the OXT system in AUD. We identified a mechanism that might underlie the sex-separated choice of beverage type and established that increased OXT concentrations during early abstinence predict a worse outcome in male patients with AUD.
Collapse
|
15
|
Cecchetti C, Strauss J, Stohrer C, Naylor C, Pryor E, Hobbs J, Tanley S, Goldman A, Byrne B. A novel high-throughput screen for identifying lipids that stabilise membrane proteins in detergent based solution. PLoS One 2021; 16:e0254118. [PMID: 34252116 PMCID: PMC8274869 DOI: 10.1371/journal.pone.0254118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022] Open
Abstract
Membrane proteins have a range of crucial biological functions and are the target of about 60% of all prescribed drugs. For most studies, they need to be extracted out of the lipid-bilayer, e.g. by detergent solubilisation, leading to the loss of native lipids, which may disturb important protein-lipid/bilayer interactions and thus functional and structural integrity. Relipidation of membrane proteins has proven extremely successful for studying challenging targets, but the identification of suitable lipids can be expensive and laborious. Therefore, we developed a screen to aid the high-throughput identification of beneficial lipids. The screen covers a large lipid space and was designed to be suitable for a range of stability assessment methods. Here, we demonstrate its use as a tool for identifying stabilising lipids for three membrane proteins: a bacterial pyrophosphatase (Tm-PPase), a fungal purine transporter (UapA) and a human GPCR (A2AR). A2AR is stabilised by cholesteryl hemisuccinate, a lipid well known to stabilise GPCRs, validating the approach. Additionally, our screen also identified a range of new lipids which stabilised our test proteins, providing a starting point for further investigation and demonstrating its value as a novel tool for membrane protein research. The pre-dispensed screen will be made commercially available to the scientific community in future and has a number of potential applications in the field.
Collapse
Affiliation(s)
- Cristina Cecchetti
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Jannik Strauss
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Claudia Stohrer
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
| | | | - Edward Pryor
- Anatrace, Maumee, Ohio, United States of America
| | | | | | - Adrian Goldman
- Astbury Centre for Structural and Molecular Biology, University of Leeds, Leeds, United Kingdom
- MIBS, Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- * E-mail: (AG); (BB)
| | - Bernadette Byrne
- Department of Life Sciences, Imperial College London, London, United Kingdom
- * E-mail: (AG); (BB)
| |
Collapse
|
16
|
Bharadwaj VN, Porreca F, Cowan RP, Kori S, Silberstein SD, Yeomans DC. A new hypothesis linking oxytocin to menstrual migraine. Headache 2021; 61:1051-1059. [PMID: 34125955 DOI: 10.1111/head.14152] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/05/2021] [Accepted: 04/07/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To highlight the emerging understanding of oxytocin (OT) and oxytocin receptors (OTRs) in modulating menstrual-related migraine (MRM). BACKGROUND MRM is highly debilitating and less responsive to therapy, and attacks are of longer duration than nonmenstrually related migraine. A clear understanding of the mechanisms underlying MRM is lacking. METHODS We present a narrative literature review on the developing understanding of the role of OT and the OTR in MRM. Literature on MRM on PubMed/MEDLINE database including clinical trials and basic science publications was reviewed using specific keywords. RESULTS OT is a cyclically released hypothalamic hormone/neurotransmitter that binds to the OTR resulting in inhibition of trigeminal neuronal excitability that can promote migraine pain including that of MRM. Estrogen regulates OT release as well as expression of the OTR. Coincident with menstruation, levels of both estrogen and OT decrease. Additionally, other serum biochemical factors, including magnesium and cholesterol, which positively modulate the affinity of OT for OTRs, both decrease during menstruation. Thus, during menstruation, multiple menstrually associated factors may lead to decreased circulating OT levels, decreased OT affinity for OTR, and decreased expression of the trigeminal OTR. Consistent with the view of migraine as a threshold disorder, these events may collectively result in decreased inhibition promoting lower thresholds for activation of meningeal trigeminal nociceptors and increasing the likelihood of an MRM attack. CONCLUSION Trigeminal OTR may thus be a novel target for the development of MRM therapeutics.
Collapse
Affiliation(s)
- Vimala N Bharadwaj
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Robert P Cowan
- Department of Neurology, School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - David C Yeomans
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Directed evolution for high functional production and stability of a challenging G protein-coupled receptor. Sci Rep 2021; 11:8630. [PMID: 33883583 PMCID: PMC8060309 DOI: 10.1038/s41598-021-87793-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/05/2021] [Indexed: 12/15/2022] Open
Abstract
Membrane proteins such as G protein-coupled receptors (GPCRs) carry out many fundamental biological functions, are involved in a large number of physiological responses, and are thus important drug targets. To allow detailed biophysical and structural studies, most of these important receptors have to be engineered to overcome their poor intrinsic stability and low expression levels. However, those GPCRs with especially poor properties cannot be successfully optimised even with the current technologies. Here, we present an engineering strategy, based on the combination of three previously developed directed evolution methods, to improve the properties of particularly challenging GPCRs. Application of this novel combination approach enabled the successful selection for improved and crystallisable variants of the human oxytocin receptor, a GPCR with particularly low intrinsic production levels. To analyse the selection results and, in particular, compare the mutations enriched in different hosts, we developed a Next-Generation Sequencing (NGS) strategy that combines long reads, covering the whole receptor, with exceptionally low error rates. This study thus gave insight into the evolution pressure on the same membrane protein in prokaryotes and eukaryotes. Our long-read NGS strategy provides a general methodology for the highly accurate analysis of libraries of point mutants during directed evolution.
Collapse
|
18
|
Lemel L, Nieścierowicz K, García-Fernández MD, Darré L, Durroux T, Busnelli M, Pezet M, Rébeillé F, Jouhet J, Mouillac B, Domene C, Chini B, Cherezov V, Moreau CJ. The ligand-bound state of a G protein-coupled receptor stabilizes the interaction of functional cholesterol molecules. J Lipid Res 2021; 62:100059. [PMID: 33647276 PMCID: PMC8050779 DOI: 10.1016/j.jlr.2021.100059] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Cholesterol is a major component of mammalian plasma membranes that not only affects the physical properties of the lipid bilayer but also is the function of many membrane proteins including G protein-coupled receptors. The oxytocin receptor (OXTR) is involved in parturition and lactation of mammals and in their emotional and social behaviors. Cholesterol acts on OXTR as an allosteric modulator inducing a high-affinity state for orthosteric ligands through a molecular mechanism that has yet to be determined. Using the ion channel-coupled receptor technology, we developed a functional assay of cholesterol modulation of G protein-coupled receptors that is independent of intracellular signaling pathways and operational in living cells. Using this assay, we discovered a stable binding of cholesterol molecules to the receptor when it adopts an orthosteric ligand-bound state. This stable interaction preserves the cholesterol-dependent activity of the receptor in cholesterol-depleted membranes. This mechanism was confirmed using time-resolved FRET experiments on WT OXTR expressed in CHO cells. Consequently, a positive cross-regulation sequentially occurs in OXTR between cholesterol and orthosteric ligands.
Collapse
Affiliation(s)
- Laura Lemel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, Grenoble, France
| | | | | | - Leonardo Darré
- Functional Genomics Laboratory and Biomolecular Simulations Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Marta Busnelli
- CNR, Institute of Neuroscience, U28 and NeuroMI Center for Neuroscience, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Mylène Pezet
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Grenoble Alpes University, Grenoble, France
| | - Fabrice Rébeillé
- Laboratoire de Physiologie Cellulaire Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Univ. Grenoble Alpes, CNRS, CEA, INRAE, Grenoble, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Carmen Domene
- Department of Chemistry, University of Bath, Bath, United Kingdom; Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| | - Bice Chini
- CNR, Institute of Neuroscience, U28 and NeuroMI Center for Neuroscience, University of Milano-Bicocca, Vedano al Lambro (MB), Italy
| | - Vadim Cherezov
- Bridge Institute, Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
19
|
Abiko LA, Rogowski M, Gautier A, Schertler G, Grzesiek S. Efficient production of a functional G protein-coupled receptor in E. coli for structural studies. JOURNAL OF BIOMOLECULAR NMR 2021; 75:25-38. [PMID: 33501610 PMCID: PMC7897205 DOI: 10.1007/s10858-020-00354-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/08/2020] [Indexed: 05/22/2023]
Abstract
G protein-coupled receptors (GPCRs) are transmembrane signal transducers which regulate many key physiological process. Since their discovery, their analysis has been limited by difficulties in obtaining sufficient amounts of the receptors in high-quality, functional form from heterologous expression hosts. Albeit highly attractive because of its simplicity and the ease of isotope labeling for NMR studies, heterologous expression of functional GPCRs in E. coli has proven particularly challenging due to the absence of the more evolved protein expression and folding machinery of higher eukaryotic hosts. Here we first give an overview on the previous strategies for GPCR E. coli expression and then describe the development of an optimized robust protocol for the E. coli expression and purification of two mutants of the turkey β1-adrenergic receptor (β1AR) uniformly or selectively labeled in 15N or 2H,15N. These mutants had been previously optimized for thermal stability using insect cell expression and used successfully in crystallographic and NMR studies. The same sequences were then used for E. coli expression. Optimization of E. coli expression was achieved by a quantitative analysis of losses of receptor material at each step of the solubilization and purification procedure. Final yields are 0.2-0.3 mg receptor per liter culture. Whereas both expressed mutants are well folded and competent for orthosteric ligand binding, the less stable YY-β1AR mutant also comprises the two native tyrosines Y5.58 and Y7.53, which enable G protein binding. High-quality 1H-15N TROSY spectra were obtained for E. coli-expressed YY-β1AR in three different functional states (antagonist, agonist, and agonist + G protein-mimicking nanobody-bound), which are identical to spectra obtained of the same forms of the receptor expressed in insect cells. NdeI and AgeI restriction sites introduced into the expression plasmid allow for the easy replacement of the receptor gene by other GPCR genes of interest, and the provided quantitative workflow analysis may guide the respective adaptation of the purification protocol.
Collapse
Affiliation(s)
- Layara Akemi Abiko
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| | - Marco Rogowski
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
| | - Antoine Gautier
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland
- Paul Scherrer Institute, 5232, Villigen, Switzerland
| | | | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, 4056, Basel, Switzerland.
| |
Collapse
|
20
|
Waltenspühl Y, Schöppe J, Ehrenmann J, Kummer L, Plückthun A. Crystal structure of the human oxytocin receptor. SCIENCE ADVANCES 2020; 6:eabb5419. [PMID: 32832646 PMCID: PMC7439316 DOI: 10.1126/sciadv.abb5419] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/29/2020] [Indexed: 05/24/2023]
Abstract
The peptide hormone oxytocin modulates socioemotional behavior and sexual reproduction via the centrally expressed oxytocin receptor (OTR) across several species. Here, we report the crystal structure of human OTR in complex with retosiban, a nonpeptidic antagonist developed as an oral drug for the prevention of preterm labor. Our structure reveals insights into the detailed interactions between the G protein-coupled receptor (GPCR) and an OTR-selective antagonist. The observation of an extrahelical cholesterol molecule, binding in an unexpected location between helices IV and V, provides a structural rationale for its allosteric effect and critical influence on OTR function. Furthermore, our structure in combination with experimental data allows the identification of a conserved neurohypophyseal receptor-specific coordination site for Mg2+ that acts as potent, positive allosteric modulator for agonist binding. Together, these results further our molecular understanding of the oxytocin/vasopressin receptor family and will facilitate structure-guided development of new therapeutics.
Collapse
|
21
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
22
|
Utilization of Biased G Protein-Coupled ReceptorSignaling towards Development of Safer andPersonalized Therapeutics. Molecules 2019; 24:molecules24112052. [PMID: 31146474 PMCID: PMC6600667 DOI: 10.3390/molecules24112052] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 05/19/2019] [Accepted: 05/24/2019] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are involved in a wide variety of physiological processes. Therefore, approximately 40% of currently prescribed drugs have targeted this receptor family. Discovery of β-arrestin mediated signaling and also separability of G protein and β-arrestin signaling pathways have switched the research focus in the GPCR field towards development of biased ligands, which provide engagement of the receptor with a certain effector, thus enriching a specific signaling pathway. In this review, we summarize possible factors that impact signaling profiles of GPCRs such as oligomerization, drug treatment, disease conditions, genetic background, etc. along with relevant molecules that can be used to modulate signaling properties of GPCRs such as allosteric or bitopic ligands, ions, aptamers and pepducins. Moreover, we also discuss the importance of inclusion of pharmacogenomics and molecular dynamics simulations to achieve a holistic understanding of the relation between genetic background and structure and function of GPCRs and GPCR-related proteins. Consequently, specific downstream signaling pathways can be enriched while those that bring unwanted side effects can be prevented on a patient-specific basis. This will improve studies that centered on development of safer and personalized therapeutics, thus alleviating the burden on economy and public health.
Collapse
|
23
|
Enkavi G, Javanainen M, Kulig W, Róg T, Vattulainen I. Multiscale Simulations of Biological Membranes: The Challenge To Understand Biological Phenomena in a Living Substance. Chem Rev 2019; 119:5607-5774. [PMID: 30859819 PMCID: PMC6727218 DOI: 10.1021/acs.chemrev.8b00538] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Indexed: 12/23/2022]
Abstract
Biological membranes are tricky to investigate. They are complex in terms of molecular composition and structure, functional over a wide range of time scales, and characterized by nonequilibrium conditions. Because of all of these features, simulations are a great technique to study biomembrane behavior. A significant part of the functional processes in biological membranes takes place at the molecular level; thus computer simulations are the method of choice to explore how their properties emerge from specific molecular features and how the interplay among the numerous molecules gives rise to function over spatial and time scales larger than the molecular ones. In this review, we focus on this broad theme. We discuss the current state-of-the-art of biomembrane simulations that, until now, have largely focused on a rather narrow picture of the complexity of the membranes. Given this, we also discuss the challenges that we should unravel in the foreseeable future. Numerous features such as the actin-cytoskeleton network, the glycocalyx network, and nonequilibrium transport under ATP-driven conditions have so far received very little attention; however, the potential of simulations to solve them would be exceptionally high. A major milestone for this research would be that one day we could say that computer simulations genuinely research biological membranes, not just lipid bilayers.
Collapse
Affiliation(s)
- Giray Enkavi
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Matti Javanainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy
of Sciences, Flemingovo naḿesti 542/2, 16610 Prague, Czech Republic
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Waldemar Kulig
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
| | - Tomasz Róg
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Ilpo Vattulainen
- Department
of Physics, University of
Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland
- Computational
Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
- MEMPHYS-Center
for Biomembrane Physics
| |
Collapse
|
24
|
Sokolov SS, Trushina NI, Severin FF, Knorre DA. Ergosterol Turnover in Yeast: An Interplay between Biosynthesis and Transport. BIOCHEMISTRY (MOSCOW) 2019; 84:346-357. [DOI: 10.1134/s0006297919040023] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
25
|
Dixon AM, Roy S. Role of membrane environment and membrane-spanning protein regions in assembly and function of the Class II Major Histocompatibility complex. Hum Immunol 2019; 80:5-14. [PMID: 30102939 DOI: 10.1016/j.humimm.2018.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 06/19/2018] [Accepted: 07/09/2018] [Indexed: 10/28/2022]
Abstract
Class II Major Histocompatibility complex (MHC-II) is a polymorphic heterodimer that binds antigen-derived peptides and presents them on the surface of antigen presenting cells. This mechanism of antigen presentation leads to recognition by CD4 T-cells and T-cell activation, making it a critical element of adaptive immune response. For this reason, the structural determinants of MHC-II function have been of great interest for the past 30 years, resulting in a robust structural understanding of the extracellular regions of the complex. However, the membrane-localized regions have also been strongly implicated in protein-protein and protein-lipid interactions that facilitate Class II assembly, transport and function, and it is these regions that are the focus of this review. Here we describe studies that reveal the strong and selective interactions between the transmembrane domains of the MHC α, and invariant chains which, when altered, have broad reaching impacts on antigen presentation and Class II function. We also summarize work that clearly demonstrates the link between membrane lipid composition (particularly the presence of cholesterol) and MHC-II conformation, subsequent peptide binding, and downstream T-cell activation. We have integrated these studies into a comprehensive view of Class II transmembrane domain biology.
Collapse
Affiliation(s)
- Ann M Dixon
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.
| | - Syamal Roy
- National Institute of Pharmaceutical Education and Research-Kolkata, 4 Raja SC, Mullick Road, Kolkata 700032, India
| |
Collapse
|
26
|
A Critical Analysis of Molecular Mechanisms Underlying Membrane Cholesterol Sensitivity of GPCRs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1115:21-52. [PMID: 30649754 DOI: 10.1007/978-3-030-04278-3_2] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest and a diverse family of proteins involved in signal transduction across biological membranes. GPCRs mediate a wide range of physiological processes and have emerged as major targets for the development of novel drug candidates in all clinical areas. Since GPCRs are integral membrane proteins, regulation of their organization, dynamics, and function by membrane lipids, in particular membrane cholesterol, has emerged as an exciting area of research. Cholesterol sensitivity of GPCRs could be due to direct interaction of cholesterol with the receptor (specific effect). Alternately, GPCR function could be influenced by the effect of cholesterol on membrane physical properties (general effect). In this review, we critically analyze the specific and general mechanisms of the modulation of GPCR function by membrane cholesterol, taking examples from representative GPCRs. While evidence for both the proposed mechanisms exists, there appears to be no clear-cut distinction between these two mechanisms, and a combination of these mechanisms cannot be ruled out in many cases. We conclude that classifying the mechanism underlying cholesterol sensitivity of GPCR function merely into these two mutually exclusive classes could be somewhat arbitrary. A more holistic approach could be suitable for analyzing GPCR-cholesterol interaction.
Collapse
|
27
|
Yue T, Yue C, Liu G, Huang X. Effects of Oxytocin on Facial Expression and Identity Working Memory Are Found in Females but Not Males. Front Neurosci 2018; 12:205. [PMID: 29719496 PMCID: PMC5913342 DOI: 10.3389/fnins.2018.00205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 03/14/2018] [Indexed: 02/04/2023] Open
Abstract
Although oxytocin (OXT) has been shown to increase the ability of face perception and processing, no study has explored whether it could improve the performance of working memory for emotional expression information in males and females. Thus, we performed a double-blind, mixed-design, placebo-controlled study to investigate the effects of OXT on temporary maintenance/manipulation of facial information through a facial expression (EMO) vs. identity (ID) working memory task, both for males (N = 45) and females (N = 46). Our results showed that in female participants, OXT increased the accuracy of the recognition of faces displaying angry and happy emotions, in the EMO tasks, and also reduced the response time to negative emotional faces, in the ID task. However, the above effects were not present in male subjects. These results indicate that OXT may increase the efficiency of working memory in face processing and this trend is reflected in females rather than in males. This study provides novel evidence for the sexually dimorphic effects of OXT on social cognition.
Collapse
Affiliation(s)
- Tong Yue
- Post-doctoral Station of Mathematics, Southwest University, Chongqing, China.,Faculty of Psychology, Southwest University, Chongqing, China
| | - Caizhen Yue
- Department of Education, Chongqing University of Arts and Sciences, Chongqing, China
| | - Guangyuan Liu
- School of Electronic and Information Engineering, Southwest University, Chongqing, China
| | - Xiting Huang
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
28
|
Schiffmann A, Gimpl G. Sodium functions as a negative allosteric modulator of the oxytocin receptor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018. [PMID: 29524392 DOI: 10.1016/j.bbamem.2018.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The oxytocin receptor, a class A G protein coupled receptor (GPCR), is essentially involved in the physiology of reproduction. Two parameters are crucially important to support high-affinity agonist binding of the receptor: Mg2+ and cholesterol, both acting as positive modulators. Using displacement assays with a high-affinity fluorescent antagonist (OTAN-A647), we now show that sodium functions as a negative allosteric modulator of the oxytocin receptor. In membranes from HEK293 cells stably expressing the oxytocin receptor, oxytocin binding occurred with about 15-fold lower affinity when sodium chloride was increased from 0 to 300 mM, whereas antagonist binding remained largely unchanged. The effect was concentration-dependent, sodium-specific, and it was also observed for oxytocin receptors endogenously expressed in Hs578T breast cancer cells. A conserved Asp (Asp 85) is known to stabilize the sodium binding site in other GCPRs. Mutations of this residue into Ala or Asn are known to yield non-functional oxytocin receptors. When Asp 85 was exchanged for Glu, most of the oxytocin receptors were localized in intracellular structures, but a faint plasma membrane labeling with OTAN-A647 and the appearance of oxytocin-induced calcium responses indicated that these receptors were functional. However, a sodium effect was not detectable for the mutant D85E oxytocin receptors. Thus, the oxytocin receptor is allosterically controlled by sodium similar to other GPCRs, but it behaves differently concerning the involvement of the conserved Asp 85. In case of the oxytocin receptor, Asp 85 is obviously essential for proper localization in the plasma membrane.
Collapse
Affiliation(s)
- Andrea Schiffmann
- Johannes-Gutenberg University Mainz, Institute of Biochemistry, Johann-Joachim Becherweg 30, 55128 Mainz, Germany
| | - Gerald Gimpl
- Johannes-Gutenberg University Mainz, Institute of Biochemistry, Johann-Joachim Becherweg 30, 55128 Mainz, Germany.
| |
Collapse
|
29
|
Guidolin D, Marcoli M, Tortorella C, Maura G, Agnati LF. G protein-coupled receptor-receptor interactions give integrative dynamics to intercellular communication. Rev Neurosci 2018; 29:703-726. [DOI: 10.1515/revneuro-2017-0087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/01/2018] [Indexed: 01/14/2023]
Abstract
Abstract
The proposal of receptor-receptor interactions (RRIs) in the early 1980s broadened the view on the role of G protein-coupled receptors (GPCR) in the dynamics of the intercellular communication. RRIs, indeed, allow GPCR to operate not only as monomers but also as receptor complexes, in which the integration of the incoming signals depends on the number, spatial arrangement, and order of activation of the protomers forming the complex. The main biochemical mechanisms controlling the functional interplay of GPCR in the receptor complexes are direct allosteric interactions between protomer domains. The formation of these macromolecular assemblies has several physiologic implications in terms of the modulation of the signaling pathways and interaction with other membrane proteins. It also impacts on the emerging field of connectomics, as it contributes to set and tune the synaptic strength. Furthermore, recent evidence suggests that the transfer of GPCR and GPCR complexes between cells via the exosome pathway could enable the target cells to recognize/decode transmitters and/or modulators for which they did not express the pertinent receptors. Thus, this process may also open the possibility of a new type of redeployment of neural circuits. The fundamental aspects of GPCR complex formation and function are the focus of the present review article.
Collapse
Affiliation(s)
- Diego Guidolin
- Department of Neuroscience , University of Padova, via Gabelli 65 , I-35121 Padova , Italy
| | - Manuela Marcoli
- Department of Pharmacy and Center of Excellence for Biomedical Research , University of Genova , I-16126 Genova , Italy
| | - Cinzia Tortorella
- Department of Neuroscience , University of Padova, via Gabelli 65 , I-35121 Padova , Italy
| | - Guido Maura
- Department of Pharmacy and Center of Excellence for Biomedical Research , University of Genova , I-16126 Genova , Italy
| | - Luigi F. Agnati
- Department of Biomedical Sciences , University of Modena and Reggio Emilia , I-41121 Modena , Italy
- Department of Neuroscience , Karolinska Institutet , S-17177 Stockholm , Sweden
| |
Collapse
|
30
|
Lin SH, Chen PS, Lee LT, Lee SY, Tsai HC, Chen WT, Chen KC, Lee IH, Lu RB, Yang YK. The Association between the Level of Plasma Oxytocin and Craving among Former Heroin Users. Eur Addict Res 2018; 24:71-78. [PMID: 29902803 DOI: 10.1159/000485563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Animal studies have demonstrated that oxytocin can influence addiction behaviors and might interact with the dopaminergic system, which is a key component of addiction behaviors. However, related evidence from clinical studies is scarce. The aim of our study was to explore the relationship between plasma oxytocin level and heroin craving among patients receiving methadone maintenance treatment, and to ascertain whether this relationship is moderated by novelty-seeking. METHODS The study was conducted in a methadone maintenance therapy clinic of a medical center in Taiwan. Seventy-seven patients with heroin addiction were enrolled. Plasma oxytocin was measured using an ELISA kit. Craving was assessed using an established instrument, the Chinese Craving Scale. RESULTS A significant negative association was found between the plasma oxytocin level and craving score, which remained robust after controlling the effects of social support and low-density lipoprotein cholesterol. An interaction between oxytocin and novelty-seeking indicated that this relationship was stronger among patients with a lower level of novelty-seeking. CONCLUSION This finding may be taken into account in future studies and may provide a basis for the development of potential treatment for addiction. The effect of oxytocin for the treatment of opioid dependence might be modulated by some psychological factors.
Collapse
Affiliation(s)
- Shih-Hsien Lin
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Lan-Ting Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Yu Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Hsin Chun Tsai
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| | - Wei Tseng Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I Hui Lee
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Psychiatry, National Cheng Kung University Hospital, Dou-Liou Branch, Yunlin, Taiwan
| |
Collapse
|
31
|
Yue T, Jiang Y, Yue C, Huang X. Differential Effects of Oxytocin on Visual Perspective Taking for Men and Women. Front Behav Neurosci 2017; 11:228. [PMID: 29187816 PMCID: PMC5694773 DOI: 10.3389/fnbeh.2017.00228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/02/2017] [Indexed: 02/03/2023] Open
Abstract
Although oxytocin (OXT) has been shown to lead to reduced self-orientation, no study to date has directly and effectively weakened the egocentric tendencies in perspective taking tasks for both men and women. In this double-blind, placebo-controlled, mixed design study we investigated the effects of OXT on men and women in visual perspective taking tasks. The results showed that OXT shortened the differences in response time between men and women in all experimental conditions. In addition, after OXT administration, the difference in reaction time between judging from one's own perspective and judging from others' perspectives decreased in female participants; however, this effect was not present in males. This may indicate that under OXT treatment, women have a higher tendency to overcome interference from their position and mindset when judging others' perspectives. However, OXT did not affect participants' accuracy, which is possibility because the used task was not suited to detect performance improvements caused by OXT. In summary, the above results may indicate that OXT could increase perspective-taking abilities through reducing self-bias and increasing the perception of others; furthermore, this trend mainly affected women rather than men.
Collapse
Affiliation(s)
- Tong Yue
- Faculty of Psychology, Southwest University, Chongqing, China.,Post-doctoral Station of Mathematics, Southwest University, Chongqing, China
| | - Yuhan Jiang
- School of Humanities, Shandong Management University, Jinan, China
| | - Caizhen Yue
- Department of Education, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xiting Huang
- Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
32
|
Padol AR, Sukumaran SV, Sadam A, Kesavan M, Arunvikram K, Verma AD, Srivastava V, Panigrahi M, Singh TU, Telang AG, Mishra SK, Parida S. Hypercholesterolemia impairs oxytocin-induced uterine contractility in late pregnant mouse. Reproduction 2017; 153:565-576. [DOI: 10.1530/rep-16-0446] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/10/2017] [Accepted: 02/27/2017] [Indexed: 12/14/2022]
Abstract
High cholesterol is known to negatively affect uterine contractility inex vivoconditions. The aim of the present study was to reveal the effect ofin vivohypercholesterolemia on spontaneous and oxytocin-induced uterine contractility in late pregnant mouse uterus. Female Swiss albino mice were fed with high cholesterol (HC) diet (0.5% sodium cholate, 1.25% cholesterol and 15% fat) for 6 weeks and then throughout the gestation period after mating. On day 19 of gestation, serum cholesterol level was increased more than 3-fold while triglycerides level was reduced in HC diet-fed animals as compared to control animals fed with a standard diet. In tension experiments, neither the mean integral tension of spontaneous contractility nor the response to CaCl2in high K+-depolarized tissues was altered, but the oxytocin-induced concentration-dependent contractile response in uterine strips was attenuated in hypercholesterolemic mice as compared to control. Similarly, hypercholesterolemia dampened concentration-dependent uterine contractions elicited by a GNAQ protein activator,Pasteurella multocidatoxin. However, it had no effect on endogenous oxytocin level either in plasma or in uterine tissue. It also did not affect the prostaglandin release in oxytocin-stimulated tissues. Western blot data showed a significant increase in caveolin-1 and GRK6 proteins but decline in oxytocin receptor, GNAQ and RHOA protein expressions in hypercholesterolemic mouse uterus. The results of the present study suggest that hypercholesterolemia may attenuate the uterotonic action of oxytocin in late pregnancy by causing downregulation of oxytocin receptors and suppressing the signaling efficacy through GNAQ and RHOA proteins.
Collapse
|
33
|
Dilipkumar Verma A, Panigrahi M, Bhushan B, Baba NA, Sulabh S, Sadam A, Parida S, Sonwane AA, Narayanan K. Relative expression of oxytocin receptor gene in buffalo endometrium in late luteal phase and pregnancy stages. JOURNAL OF APPLIED ANIMAL RESEARCH 2017. [DOI: 10.1080/09712119.2016.1277531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Naseer Ahmad Baba
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Sourabh Sulabh
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Abdul Sadam
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Subhashree Parida
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Arvind A. Sonwane
- Division of Animal Genetics, Indian Veterinary Research Institute, Bareilly, UP, India
| | - Krisnaswami Narayanan
- Division of Animal Reproduction, Indian Veterinary Research Institute, Bareilly, UP, India
| |
Collapse
|
34
|
Molecular Basis of Oxytocin Receptor Signalling in the Brain: What We Know and What We Need to Know. Curr Top Behav Neurosci 2017; 35:3-29. [PMID: 28812263 DOI: 10.1007/7854_2017_6] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxytocin (OT), a hypothalamic neuropeptide involved in regulating the social behaviour of all vertebrates, has been proposed as a treatment for a number of neuropsychiatric disorders characterised by deficits in the social domain. Over the last few decades, advances focused on understanding the social effects of OT and its role in physiological conditions and brain diseases, but much less has been done to clarify the molecular cascade of events involved in mediating such effects and in particular the cellular and molecular pharmacology of OT and its target receptor (OTR) in neuronal and glial cells.The entity and persistence of OT activity in the brain is closely related to the expression and regulation of the OTR expressed on the cell surface, which transmits the signal intracellularly and permits OT to affect cell function. Understanding the various signalling mechanisms mediating OTR-induced cell responses is crucial to determine the different responses in different cells and brain regions, and the success of OT and OT-derived analogues in the treatment of neurodevelopmental and psychiatric diseases depends on how well we can control such responses. In this review, we will consider the most important aspects of OT/OTR signalling by focusing on the molecular events involved in OT binding and coupling, on the main signalling pathways activated by the OTR in neuronal cells and on intracellular and plasma membrane OTR trafficking, all of which contribute to the quantitative and qualitative features of OT responses in the brain.
Collapse
|
35
|
Jafurulla M, Chattopadhyay A. Structural Stringency of Cholesterol for Membrane Protein Function Utilizing Stereoisomers as Novel Tools: A Review. Methods Mol Biol 2017; 1583:21-39. [PMID: 28205164 DOI: 10.1007/978-1-4939-6875-6_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cholesterol is an important lipid in the context of membrane protein function. The function of a number of membrane proteins, including G protein-coupled receptors (GPCRs) and ion channels, has been shown to be dependent on membrane cholesterol. However, the molecular mechanism underlying such regulation is still being explored. In some cases, specific interaction between cholesterol and the protein has been implicated. In other cases, the effect of cholesterol on the membrane properties has been attributed for the regulation of protein function. In this article, we have provided an overview of experimental approaches that are useful for determining the degree of structural stringency of cholesterol for membrane protein function. In the process, we have highlighted the role of immediate precursors in cholesterol biosynthetic pathway in the function of membrane proteins. Special emphasis has been given to the application of stereoisomers of cholesterol in deciphering the structural stringency required for regulation of membrane protein function. A comprehensive examination of these processes would help in understanding the molecular basis of cholesterol regulation of membrane proteins in subtle details.
Collapse
Affiliation(s)
- Md Jafurulla
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500 007, India
| | | |
Collapse
|
36
|
Marino KA, Prada-Gracia D, Provasi D, Filizola M. Impact of Lipid Composition and Receptor Conformation on the Spatio-temporal Organization of μ-Opioid Receptors in a Multi-component Plasma Membrane Model. PLoS Comput Biol 2016; 12:e1005240. [PMID: 27959924 PMCID: PMC5154498 DOI: 10.1371/journal.pcbi.1005240] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/07/2016] [Indexed: 11/21/2022] Open
Abstract
The lipid composition of cell membranes has increasingly been recognized as playing an important role in the function of various membrane proteins, including G Protein-Coupled Receptors (GPCRs). For instance, experimental and computational evidence has pointed to lipids influencing receptor oligomerization directly, by physically interacting with the receptor, and/or indirectly, by altering the bulk properties of the membrane. While the exact role of oligomerization in the function of class A GPCRs such as the μ-opioid receptor (MOR) is still unclear, insight as to how these receptors oligomerize and the relevance of the lipid environment to this phenomenon is crucial to our understanding of receptor function. To examine the effect of lipids and different MOR conformations on receptor oligomerization we carried out extensive coarse-grained molecular dynamics simulations of crystal structures of inactive and/or activated MOR embedded in an idealized mammalian plasma membrane composed of 63 lipid types asymmetrically distributed across the two leaflets. The results of these simulations point, for the first time, to specific direct and indirect effects of the lipids, as well as the receptor conformation, on the spatio-temporal organization of MOR in the plasma membrane. While sphingomyelin-rich, high-order lipid regions near certain transmembrane (TM) helices of MOR induce an effective long-range attractive force on individual protomers, both long-range lipid order and interface formation are found to be conformation dependent, with a larger number of different interfaces formed by inactive MOR compared to active MOR. The μ-opioid receptor (MOR) is an important pharmaceutical target in the treatment of pain. In order to develop novel pain therapies, devoid of the serious side-effects of present opioid analgesics, we need to understand the fundamentals of how MOR works on the molecular level. While some studies suggest that oligomers of MOR could play a role in signaling, how MOR forms dimers, which interfaces form, and the exact role of oligomers in MOR function remain unclear. While research has shown that the membrane environment can affect membrane protein function, most previous computational work to study oligomerization has been performed in a very simple membrane. Here, we use molecular dynamics simulations of MOR in a heterogeneous plasma membrane model (comprising 63 lipid types) to investigate how the presence of the protein modulates its lipid environment, affecting species distribution and sculpting characteristic order and thickness profiles around the receptors. Such modulations, in turn, induce long-range interactions between the proteins and favor the formation of specific dimeric conformations.
Collapse
Affiliation(s)
- Kristen A. Marino
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Diego Prada-Gracia
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
| | - Marta Filizola
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States of America
- * E-mail:
| |
Collapse
|
37
|
Gahbauer S, Böckmann RA. Membrane-Mediated Oligomerization of G Protein Coupled Receptors and Its Implications for GPCR Function. Front Physiol 2016; 7:494. [PMID: 27826255 PMCID: PMC5078798 DOI: 10.3389/fphys.2016.00494] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 10/11/2016] [Indexed: 12/18/2022] Open
Abstract
The dimerization or even oligomerization of G protein coupled receptors (GPCRs) causes ongoing, controversial debates about its functional role and the coupled biophysical, biochemical or biomedical implications. A continously growing number of studies hints to a relation between oligomerization and function of GPCRs and strengthens the assumption that receptor assembly plays a key role in the regulation of protein function. Additionally, progress in the structural analysis of GPCR-G protein and GPCR-ligand interactions allows to distinguish between actively functional and non-signaling complexes. Recent findings further suggest that the surrounding membrane, i.e., its lipid composition may modulate the preferred dimerization interface and as a result the abundance of distinct dimeric conformations. In this review, the association of GPCRs and the role of the membrane in oligomerization will be discussed. An overview of the different reported oligomeric interfaces is provided and their capability for signaling discussed. The currently available data is summarized with regard to the formation of GPCR oligomers, their structures and dependency on the membrane microenvironment as well as the coupling of oligomerization to receptor function.
Collapse
Affiliation(s)
| | - Rainer A. Böckmann
- Computational Biology, Department of Biology, Friedrich-Alexander University of Erlangen-NürnbergErlangen, Germany
| |
Collapse
|
38
|
Luchetti G, Sircar R, Kong JH, Nachtergaele S, Sagner A, Byrne EFX, Covey DF, Siebold C, Rohatgi R. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling. eLife 2016; 5:e20304. [PMID: 27705744 PMCID: PMC5123864 DOI: 10.7554/elife.20304] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility.
Collapse
Affiliation(s)
- Giovanni Luchetti
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Ria Sircar
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Jennifer H Kong
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Sigrid Nachtergaele
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| | - Andreas Sagner
- Mill Hill Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Eamon FX Byrne
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Douglas F Covey
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Christian Siebold
- Division of Structural Biology, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rajat Rohatgi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
39
|
Brejchova J, Vosahlikova M, Roubalova L, Parenti M, Mauri M, Chernyavskiy O, Svoboda P. Plasma membrane cholesterol level and agonist-induced internalization of δ-opioid receptors; colocalization study with intracellular membrane markers of Rab family. J Bioenerg Biomembr 2016; 48:375-96. [DOI: 10.1007/s10863-016-9667-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 06/02/2016] [Indexed: 10/21/2022]
|
40
|
The role of cholesterol in membrane fusion. Chem Phys Lipids 2016; 199:136-143. [PMID: 27179407 DOI: 10.1016/j.chemphyslip.2016.05.003] [Citation(s) in RCA: 252] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 05/07/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
Cholesterol modulates the bilayer structure of biological membranes in multiple ways. It changes the fluidity, thickness, compressibility, water penetration and intrinsic curvature of lipid bilayers. In multi-component lipid mixtures, cholesterol induces phase separations, partitions selectively between different coexisting lipid phases, and causes integral membrane proteins to respond by changing conformation or redistribution in the membrane. But, which of these often overlapping properties are important for membrane fusion?-Here we review a range of recent experiments that elucidate the multiple roles that cholesterol plays in SNARE-mediated and viral envelope glycoprotein-mediated membrane fusion.
Collapse
|
41
|
Interaction of G protein coupled receptors and cholesterol. Chem Phys Lipids 2016; 199:61-73. [PMID: 27108066 DOI: 10.1016/j.chemphyslip.2016.04.006] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/30/2016] [Accepted: 04/19/2016] [Indexed: 12/20/2022]
Abstract
G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs.
Collapse
|
42
|
Ashok Y, Jaakola VP. Nanodisc-Tm: Rapid functional assessment of nanodisc reconstituted membrane proteins by CPM assay. MethodsX 2016; 3:212-8. [PMID: 27054097 PMCID: PMC4804392 DOI: 10.1016/j.mex.2016.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 11/26/2022] Open
Abstract
Membrane proteins are generally unstable in detergents. Therefore, biochemical and biophysical studies of membrane proteins in lipidic environments provides a near native-like environment suitable for membrane proteins. However, manipulation of proteins embedded in lipid bilayer has remained difficult. Methods such as nanodiscs and lipid cubic phase have been developed for easy manipulation of membrane proteins and have yielded significant insights into membrane proteins. Traditionally functional reconstitution of receptors in nanodiscs has been studied with radioligands. We present a simple and faster method for studying the functionality of reconstituted membrane proteins for routine characterization of protein batches after initial optimization of suitable conditions using radioligands. The benefits of the method are •Faster and generic method to assess functional reconstitution of membrane proteins.•Adaptable in high throughput format (≥96 well format).•Stability measurement in near-native lipid environment and lipid dependent melting temperatures.
Collapse
Affiliation(s)
- Yashwanth Ashok
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu 90014, Finland
| | - Veli-Pekka Jaakola
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu 90014, Finland
| |
Collapse
|
43
|
Allosteric regulation of G protein-coupled receptor activity by phospholipids. Nat Chem Biol 2015; 12:35-9. [PMID: 26571351 DOI: 10.1038/nchembio.1960] [Citation(s) in RCA: 218] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 09/25/2015] [Indexed: 01/29/2023]
Abstract
Lipids are emerging as key regulators of membrane protein structure and activity. These effects can be attributed either to the modification of bilayer properties (thickness, curvature and surface tension) or to the binding of specific lipids to the protein surface. For G protein-coupled receptors (GPCRs), the effects of phospholipids on receptor structure and activity remain poorly understood. Here we reconstituted purified β2-adrenergic receptor (β2R) in high-density lipoparticles to systematically characterize the effect of biologically relevant phospholipids on receptor activity. We observed that the lipid headgroup type affected ligand binding (agonist and antagonist) and receptor activation. Specifically, phosphatidylgycerol markedly favored agonist binding and facilitated receptor activation, whereas phosphatidylethanolamine favored antagonist binding and stabilized the inactive state of the receptor. We then showed that these effects could be recapitulated with detergent-solubilized lipids, demonstrating that the functional modulation occurred in the absence of a bilayer. Our data suggest that phospholipids act as direct allosteric modulators of GPCR activity.
Collapse
|
44
|
Gater DL, Saurel O, Iordanov I, Liu W, Cherezov V, Milon A. Two classes of cholesterol binding sites for the β2AR revealed by thermostability and NMR. Biophys J 2015; 107:2305-12. [PMID: 25418299 DOI: 10.1016/j.bpj.2014.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/19/2014] [Accepted: 10/09/2014] [Indexed: 11/24/2022] Open
Abstract
Cholesterol binding to G protein-coupled receptors (GPCRs) and modulation of their activities in membranes is a fundamental issue for understanding their function. Despite the identification of cholesterol binding sites in high-resolution x-ray structures of the ?2 adrenergic receptor (β2AR) and other GPCRs, the binding affinity of cholesterol for this receptor and exchange rates between the free and bound cholesterol remain unknown. In this study we report the existence of two classes of cholesterol binding sites in β2AR. By analyzing the β2AR unfolding temperature in lipidic cubic phase (LCP) as a function of cholesterol concentration we observed high-affinity cooperative binding of cholesterol with sub-nM affinity constant. In contrast, saturation transfer difference (STD) NMR experiments revealed the existence of a second class of cholesterol binding sites, in fast exchange on the STD NMR timescale. Titration of the STD signal as a function of cholesterol concentration provided a lower limit of 100 mM for their dissociation constant. However, these binding sites are specific for both cholesterol and β2AR, as shown with control experiments using ergosterol and a control membrane protein (KpOmpA). We postulate that this specificity is mediated by the high-affinity bound cholesterol molecules and propose the formation of transient cholesterol clusters around the high-affinity binding sites.
Collapse
Affiliation(s)
- Deborah L Gater
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France; Khalifa University of Science, Technology and Research, P.O. Box 127788, Abu Dhabi, UAE
| | - Olivier Saurel
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Iordan Iordanov
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France
| | - Wei Liu
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California
| | - Vadim Cherezov
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, California.
| | - Alain Milon
- Institute of Pharmacology and Structural Biology - UMR 5089, CNRS and Université de Toulouse - UPS, 205 Route de Narbonne, 31077 Toulouse, France.
| |
Collapse
|
45
|
Arrowsmith S, Wray S. Oxytocin: its mechanism of action and receptor signalling in the myometrium. J Neuroendocrinol 2014; 26:356-69. [PMID: 24888645 DOI: 10.1111/jne.12154] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/14/2014] [Accepted: 03/28/2014] [Indexed: 12/17/2022]
Abstract
Oxytocin is a nonapeptide hormone that has a central role in the regulation of parturition and lactation. In this review, we address oxytocin receptor (OTR) signalling and its role in the myometrium during pregnancy and in labour. The OTR belongs to the rhodopsin-type (Class 1) of the G-protein coupled receptor superfamily and is regulated by changes in receptor expression, receptor desensitisation and local changes in oxytocin concentration. Receptor activation triggers a number of signalling events to stimulate contraction, primarily by elevating intracellular calcium (Ca(2+) ). This includes inositol-tris-phosphate-mediated store calcium release, store-operated Ca(2+) entry and voltage-operated Ca(2+) entry. We discuss each mechanism in turn and also discuss Ca(2+) -independent mechanisms such as Ca(2+) sensitisation. Because oxytocin induces contraction in the myometrium, both the activation and the inhibition of its receptor have long been targets in the management of dysfunctional and preterm labours, respectively. We discuss current and novel OTR agonists and antagonists and their use and potential benefit in obstetric practice. In this regard, we highlight three clinical scenarios: dysfunctional labour, postpartum haemorrhage and preterm birth.
Collapse
Affiliation(s)
- S Arrowsmith
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
46
|
UJČÍKOVÁ H, BREJCHOVÁ J, VOŠAHLÍKOVÁ M, KAGAN D, DLOUHÁ K, SÝKORA J, MERTA L, DRASTICHOVÁ Z, NOVOTNÝ J, OSTAŠOV P, ROUBALOVÁ L, PARENTI M, HOF M, SVOBODA P. Opioid-Receptor (OR) Signaling Cascades in Rat Cerebral Cortex and Model Cell Lines: the Role of Plasma Membrane Structure. Physiol Res 2014; 63:S165-76. [DOI: 10.33549/physiolres.932638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Large number of extracellular signals is received by plasma membrane receptors which, upon activation, transduce information into the target cell interior via trimeric G-proteins (GPCRs) and induce activation or inhibition of adenylyl cyclase enzyme activity (AC). Receptors for opioid drugs such as morphine (μ-OR, δ-OR and κ-OR) belong to rhodopsin family of GPCRs. Our recent results indicated a specific up-regulation of AC I (8-fold) and AC II (2.5-fold) in plasma membranes (PM) isolated from rat brain cortex exposed to increasing doses of morphine (10-50 mg/kg) for 10 days. Increase of ACI and ACII represented the specific effect as the amount of ACIII-ACIX, prototypical PM marker Na, K-ATPase and trimeric G-protein α and β subunits was unchanged. The up-regulation of ACI and ACII faded away after 20 days since the last dose of morphine. Proteomic analysis of these PM indicated that the brain cortex of morphine-treated animals cannot be regarded as being adapted to this drug because significant up-regulation of proteins functionally related to oxidative stress and alteration of brain energy metabolism occurred. The number of δ-OR was increased 2-fold and their sensitivity to monovalent cations was altered. Characterization of δ-OR-G-protein coupling in model HEK293 cell line indicated high ability of lithium to support affinity of δ-OR response to agonist stimulation. Our studies of PM structure and function in context with desensitization of GPCRs action were extended by data indicating participation of cholesterol-enriched membrane domains in agonist-specific internalization of δ-OR. In HEK293 cells stably expressing δ-OR-Gi1α fusion protein, depletion of PM cholesterol was associated with the decrease in affinity of G-protein response to agonist stimulation, whereas maximum response was unchanged. Hydrophobic interior of isolated PM became more “fluid”, chaotically organized and accessible to water molecules. Validity of this conclusion was supported by the analysis of an immediate PM environment of cholesterol molecules in living δ-OR-Gi1α-HEK293 cells by fluorescent probes 22- and 25-NBD-cholesterol. The alteration of plasma membrane structure by cholesterol depletion made the membrane more hydrated. Understanding of the positive and negative feedback regulatory loops among different OR-initiated signaling cascades (µ-, δ-, and κ-OR) is crucial for understanding of the long-term mechanisms of drug addiction as the decrease in functional activity of µ-OR may be compensated by increase of δ-OR and/or κ-OR signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - P. SVOBODA
- Department of Biochemistry of Membrane Receptors, Institute of Physiology Academy of Sciences of the Czech Republic
| |
Collapse
|
47
|
Mondal S, Khelashvili G, Johner N, Weinstein H. How the dynamic properties and functional mechanisms of GPCRs are modulated by their coupling to the membrane environment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 796:55-74. [PMID: 24158801 DOI: 10.1007/978-94-007-7423-0_4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Experimental observations of the dependence of function and organization of G protein-coupled receptors (GPCRs) on their lipid environment have stimulated new quantitative studies of the coupling between the proteins and the membrane. It is important to develop such a quantitative understanding at the molecular level because the effects of the coupling are seen to be physiologically and clinically significant. Here we review findings that offer insight into how membrane-GPCR coupling is connected to the structural characteristics of the GPCR, from sequence to 3D structural detail, and how this coupling is involved in the actions of ligands on the receptor. The application of a recently developed computational approach designed for quantitative evaluation of membrane remodeling and the energetics of membrane-protein interactions brings to light the importance of the radial asymmetry of the membrane-facing surface of GPCRs in their interaction with the surrounding membrane. As the radial asymmetry creates adjacencies of hydrophobic and polar residues at specific sites of the GPCR, the ability of membrane remodeling to achieve complete hydrophobic matching is limited, and the residual mismatch carries a significant energy cost. The adjacencies are shown to be affected by ligand-induced conformational changes. Thus, functionally important organization of GPCRs in the cell membrane can depend both on ligand-determined properties and on the lipid composition of various membrane regions with different remodeling capacities. That this functionally important reorganization can be driven by oligomerization patterns that reduce the energy cost of the residual mismatch, suggests a new perspective on GPCR dimerization and ligand-GPCR interactions. The relation between the modulatory effects on GPCRs from the binding of specific cell-membrane components, e.g., cholesterol, and those produced by the non-local energetics of hydrophobic mismatch are discussed in this context.
Collapse
Affiliation(s)
- Sayan Mondal
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, Room E-509, 1300 York Avenue, 10065, New York City, NY, USA
| | | | | | | |
Collapse
|
48
|
Zeidán-Chuliá F, Salmina AB, Malinovskaya NA, Noda M, Verkhratsky A, Moreira JCF. The glial perspective of autism spectrum disorders. Neurosci Biobehav Rev 2014; 38:160-72. [DOI: 10.1016/j.neubiorev.2013.11.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/03/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023]
|
49
|
Kowalik MK, Rekawiecki R, Kotwica J. The putative roles of nuclear and membrane-bound progesterone receptors in the female reproductive tract. Reprod Biol 2013; 13:279-89. [PMID: 24287036 DOI: 10.1016/j.repbio.2013.09.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 06/21/2013] [Accepted: 09/02/2013] [Indexed: 01/11/2023]
Abstract
Progesterone produced by the corpus luteum (CL) is a key regulator of normal cyclical reproductive functions in the females of mammalian species. The physiological effects of progesterone are mediated by the canonical genomic pathway after binding of progesterone to its specific nuclear progesterone receptor (PGR), which acts as a ligand-activated transcription factor and has two main isoforms, PGRA and PGRB. These PGR isoforms play different roles in the cell; PGRB acts as an activator of progesterone-responsive genes, while PGRA can inhibit the activity of PGRB. The ratio of these isoforms changes during the estrous cycle and pregnancy, and it corresponds to the different levels of progesterone signaling occurring in the reproductive tract. Progesterone exerts its effects on cells also by a non-genomic mechanism by the interaction with the progesterone-binding membrane proteins including the progesterone membrane component (PGRMC) 1 and 2, and the membrane progestin receptors (mPRs). These receptors rapidly activate the appropriate intracellular signal transduction pathways, and subsequently they can initiate specific cell responses or modulate genomic cell responses. The diversity of progesterone receptors and their cellular actions enhances the role of progesterone as a factor regulating the function of the reproductive system and other organs. This paper deals with the possible involvement of nuclear and membrane-bound progesterone receptors in the function of target cells within the female reproductive tract.
Collapse
Affiliation(s)
- Magdalena K Kowalik
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748 Olsztyn, Poland.
| | | | | |
Collapse
|
50
|
Roy K, Ghosh M, Pal TK, Chakrabarti S, Roy S. Cholesterol lowering drug may influence cellular immune response by altering MHC II function. J Lipid Res 2013; 54:3106-15. [PMID: 24038316 DOI: 10.1194/jlr.m041954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Major histocompatibility complex class II (MHC II) expressed on the surface of antigen-presenting cells (APCs) displays peptides to CD4⁺ T cells. Depletion of membrane cholesterol from APCs by methyl β-cyclodextrin treatment compromises peptide-MHC II complex formation coupled with impaired binding of conformational antibody, which binds close to the peptide binding groove of MHC II. Interestingly, the total cell surface of MHC II remains unaltered. These defects can be corrected by restoring membrane cholesterol. In silico docking studies with a three-dimensional model showed the presence of a cholesterol binding site in the transmembrane domain of MHC II (TM-MHC-II). From the binding studies it was clear that cholesterol, indeed, interacts with the TM-MHC-II and alters its conformation. Mutation of cholesterol binding residues (F240, L243, and F246) in the TM-MHC-II decreased the affinity for cholesterol. Furthermore, transfection of CHO cells with full-length mutant MHC II, but not wild-type MHC II, failed to activate antigen-specific T cells coupled with decreased binding of conformation-specific antibodies. Thus, cholesterol-induced conformational change of TM-MHC-II may allosterically modulate the peptide binding groove of MHC II leading to T cell activation.
Collapse
Affiliation(s)
- Koushik Roy
- Infectious Diseases and Immunology and CSIR -Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | | | | | | | | |
Collapse
|