1
|
Hage Z, Madeira MM, Koliatsis D, Tsirka SE. Convergence of endothelial dysfunction, inflammation and glucocorticoid resistance in depression-related cardiovascular diseases. BMC Immunol 2024; 25:61. [PMID: 39333855 PMCID: PMC11428380 DOI: 10.1186/s12865-024-00653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Major Depressive Disorder, or depression, has been extensively linked to dysregulated HPA axis function, chronic inflammation and cardiovascular diseases. While the former two have been studied in depth, the mechanistic connection between depression and cardiovascular disease is unclear. As major mediators of vascular homeostasis, vascular pathology and immune activity, endothelial cells represent an important player connecting the diseases. Exaggerated inflammation and glucocorticoid function are important topics to explore in the endothelial response to MDD. Glucocorticoid resistance in several cell types strongly promotes inflammatory signaling and results in worsened severity in many diseases. However, endothelial health and inflammation in chronic stress and depression are rarely considered from the perspective of glucocorticoid signaling and resistance. In this review, we aim to discuss (1) endothelial dysfunction in depression, (2) inflammation in depression, (3) general glucocorticoid resistance in depression and (4) endothelial glucocorticoid resistance in depression co-morbid inflammatory diseases. We will first describe vascular pathology, inflammation and glucocorticoid resistance separately in depression and then describe their potential interactions with one another in depression-relevant diseases. Lastly, we will hypothesize potential mechanisms by which glucocorticoid resistance in endothelial cells may contribute to vascular disease states in depressed people. Overall, endothelial-glucocorticoid signaling may play an important role in connecting depression and vascular pathology and warrants further study.
Collapse
Affiliation(s)
- Zachary Hage
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Miguel M Madeira
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Dimitris Koliatsis
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Stella E Tsirka
- Program in Molecular and Cellular Pharmacology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Department of Pharmacological Sciences, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
- Scholars in Biomedical Sciences Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
2
|
Rovegno E, Lucon-Xiccato T, Terrin F, Valle LD, Bertolucci C. Knockout in zebrafish reveals the role of the glucocorticoid receptor in shaping behavioral syndromes. Behav Brain Res 2024; 473:115179. [PMID: 39103124 DOI: 10.1016/j.bbr.2024.115179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Glucocorticoids (GCs) have a wide spectrum of effects on animal behavior. A recently suggested effect involves determining the structure of individual differences, that is how the behavioral traits of an individual covary, forming the so-called behavioral syndromes. As GCs can exert their action in multiple ways, e.g., via rapid non-genomic effects or via the activation of two highly homologous members of the steroid receptor family acting as transcription factors, it is unclear how the GC modulation of behavioral syndromes takes place. We exploited a zebrafish line with a frameshift mutation in the gene encoding the GC receptor (Gr), to investigate this question. We found that lack of Gr altered the average score of several behavioral traits in the mutant line, determining reduced boldness, and increased activity and sociability. Critically, the pattern of covariation between these traits was also substantially affected by the loss of Gr. The most evident effect was an association of traits involved in boldness in the gr mutant line. This study reveals that, in zebrafish, Gr is not only involved in the modulation of the average value of behavioral traits, but also in how the behavioral traits of an individual are interrelated and determine the behavioral syndromes.
Collapse
Affiliation(s)
- Eleonora Rovegno
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | | | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
3
|
Sherwani S, Khan MWA, Rajendrasozhan S, Al-Motair K, Husain Q, Khan WA. The vicious cycle of chronic endometriosis and depression-an immunological and physiological perspective. Front Med (Lausanne) 2024; 11:1425691. [PMID: 39309679 PMCID: PMC11412830 DOI: 10.3389/fmed.2024.1425691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
Endometriosis is a chronic, estrogen-dependent, proinflammatory disease that can cause various dysfunctions. The main clinical manifestations of endometriosis include chronic pelvic pain and impaired fertility. The disease is characterized by a spectrum of dysfunctions spanning hormonal signaling, inflammation, immune dysregulation, angiogenesis, neurogenic inflammation, epigenetic alterations, and tissue remodeling. Dysregulated hormonal signaling, particularly involving estrogen and progesterone, drives abnormal growth and survival of endometrial-like tissue outside the uterus. Chronic inflammation, marked by immune cell infiltration and inflammatory mediator secretion, perpetuates tissue damage and pain. Altered immune function, impaired ectopic tissue clearance, and dysregulated cytokine production contribute to immune dysregulation. Enhanced angiogenesis promotes lesion growth and survival. Epigenetic modifications influence gene expression patterns, e.g., HSD11B1 gene, affecting disease pathogenesis. Endometriosis related changes and infertility lead to depression in diagnosed women. Depression changes lifestyle and induces physiological and immunological changes. A higher rate of depression and anxiety has been reported in women diagnosed with endometriosis, unleashing physiological, clinical and immune imbalances which further accelerate chronic endometriosis or vice versa. Thus, both endometriosis and depression are concomitantly part of a vicious cycle that enhance disease complications. A multidimensional treatment strategy is needed which can cater for both endometrial disease and depression and anxiety disorders.
Collapse
Affiliation(s)
- Subuhi Sherwani
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
| | - Mohd Wajid Ali Khan
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Saravanan Rajendrasozhan
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
- Department of Chemistry, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Khalid Al-Motair
- Medical and Diagnostic Research Center, University of Hail, Hail, Saudi Arabia
| | - Qayyum Husain
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Wahid Ali Khan
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
4
|
Luhong L, Zhou HM, Tang XH, Chen J, Zhang AM, Zhou CL, Li SY, Wen Yu C, Liyan H, Xiang YY, Yang X. PERK inhibitor (ISRIB) improves depression-like behavior by inhibitions of HPA-axis over-activation in mice exposed to chronic restraint stress. Behav Brain Res 2024; 471:115122. [PMID: 38942086 DOI: 10.1016/j.bbr.2024.115122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/17/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Stressful life event is closely associated with depression, thus strategies that blunt or prevent the negative effect stress on the brain might benefits for the treatment of depression. Although previous study showed the role of protein kinase R (PKR)-like ER kinase (PERK) in inflammation related depression, its involvement in the neuropathology of chronic stress induced depression is still unknown. We tried to explore whether block the PERK pathway would alleviate the animals' depression-like behavior induced by chronic restraint stress (CRS) and investigate the underlying mechanism. The CRS-exposed mice exhibited depression-like behavior, including anhedonia in the sucrose preference test (SPT), and increased immobility time in tail suspension test (TST) and forced swim test (FST). ISRIB administration for 2 weeks significantly improved the depression-like behavior in male mice exposed to CRS, which was manifested by markedly increasing the sucrose preference and reducing the immobility time in the FST and TST. However, we observed that exposure to the same dose of ISRIB in CRS female mice only showed improved anhedonia-like deficits,leaving unaltered improvement in the FST and TST. Mechanically, we found that ISRIB reversed the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity, indicating decreased levels of serum corticosterone, reduced hippocampal glucocorticoidreceptor (GR) expression and expression of FosB in hypothalamic paraventricularnucleus (PVN), which was accompanied by preserved hippocampal neurogenesis. The present findings further expand the potential role of ER stress in depression and provide important details for a therapeutic path forward for PERK inhibitors in mood disorders.
Collapse
Affiliation(s)
- Long Luhong
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Hua Mao Zhou
- Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Xiao Han Tang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jie Chen
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Ao Mei Zhang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cui Lan Zhou
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Su Yun Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Cao Wen Yu
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - He Liyan
- Nanhua Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421000, China
| | - Yu Yan Xiang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| | - Xu Yang
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
5
|
Duval F, Mokrani MC, Danila V, Weiss T, Lopera FG, Tomsa M. Hypothalamic-pituitary-adrenal axis hyperactivity is normalized after successful intermittent theta-burst stimulation in resistant depressed patients. Psychoneuroendocrinology 2024; 165:107037. [PMID: 38613946 DOI: 10.1016/j.psyneuen.2024.107037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
The present pilot study assessed the effects of multi-session intermittent theta-burst stimulation (iTBS) applied to the left dorsolateral prefrontal cortex in 17 treatment resistant depressed inpatients (TRDs) showing cortisol non-suppression to the overnight dexamethasone suppression test (DST) at baseline (i.e., maximum post-DST cortisol [CORmax] level > 130 nmol/L). After 20 iTBS sessions, the DST was repeated in all TRDs. At baseline, post-DST CORmax levels were higher in TRDs compared to healthy control subjects (HCs; n = 17) (p < 0.0001). After 20 iTBS sessions, post-DST CORmax levels decreased from baseline (p < 0.03) and were comparable to HCs. Decreases in post-DST CORmax levels were related to decreases in 17-item Hamilton Depression Rating Scale (HAMD-17) scores (ρ = 0.53; p < 0.03). At endpoint, 10 TRDs showed DST normalization (among them 7 were responders [i.e., HAMD-17 total score > 50% decrease from baseline]), and 7 did not normalize their DST (among them 6 were non-responders) (p < 0.05). Our results suggest that successful iTBS treatment may restore normal glucocorticoid receptor feedback inhibition at the pituitary level.
Collapse
Affiliation(s)
- Fabrice Duval
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France.
| | | | - Vlad Danila
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France
| | - Thomas Weiss
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France
| | | | - Mihaela Tomsa
- Pôle 8/9 Psychiatry, APF2R, Centre Hospitalier, Rouffach, France
| |
Collapse
|
6
|
Cooney LG, Sammel MD, Lee I, Clapp MA, Goldsammler M, Scott E, Bjorkman S, Fisher BT, Dokras A. The details matter: personalized prediction of live birth after in vitro fertilization in women with polycystic ovary syndrome. Fertil Steril 2024; 121:1010-1019. [PMID: 38307452 DOI: 10.1016/j.fertnstert.2024.01.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
OBJECTIVE To derive and internally validate a clinical prediction model for live birth (LB) in women with polycystic ovary syndrome (PCOS) undergoing in vitro fertilization (IVF). DESIGN Retrospective cohort study. SETTING Four academic reproductive endocrinology clinics. PATIENTS A total of 207 women with PCOS confirmed using Rotterdam criteria undergoing their first fresh IVF cycle. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURE The primary outcome was cumulative LB per IVF cycle start. This included any LB that resulted from either fresh embryo transfer or any subsequent frozen embryo transfer from embryos obtained at the index oocyte retrieval. A prediction model was derived using multivariable logistic regression. Covariates considered for inclusion in the prediction model included demographic characteristics, medical history, and prior fertility treatment. Predicted probabilities for LB were calculated using the prediction model which included the 90% shrinkage factor for each adjusted odds ratio. RESULTS The final model, on the basis of maximization of the area under the receiver operating characteristic curve, included age < 35 years, White race, presence of polycystic ovaries on ultrasound (polycystic ovary morphology), normal body mass index (<25 kg/m2), being metabolically healthy (no metabolic risk factors), and being a nonresponder to ovulation induction agents including letrozole and clomiphene citrate. The area under the receiver operating characteristic curve score for the model was 0.68 (95% confidence interval [CI]: 0.60, 0.77). Predicted probabilities of LB ranged from 8.1% (95% CI: 2.8, 21.5) for a woman who had no favorable predictors to 74.2% (95% CI: 59.5, 84.9) for a woman who had all favorable predictors. CONCLUSION Our study demonstrated that, in addition to anovulation, the underlying pathophysiology and associated comorbidities alter the likelihood of a successful pregnancy in women with PCOS undergoing IVF. Further validation of this model is needed before it can serve as a tool to personalize prediction estimates for the probability of LB in women with PCOS.
Collapse
Affiliation(s)
- Laura G Cooney
- Department of Obstetrics and Gynecology, University of Wisconsin, Middleton, Wisconsin; Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Mary D Sammel
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Biostatistics, Epidemiology and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Iris Lee
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Alexa Clapp
- Department of Obstetrics and Gynecology, Montefiore's Institute for Reproductive Medicine and Health, Hartsdale, New York
| | - Michelle Goldsammler
- Department of Obstetrics and Gynecology, Montefiore's Institute for Reproductive Medicine and Health, Hartsdale, New York
| | - Erin Scott
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, New York
| | - Sarah Bjorkman
- Department of Obstetrics and Gynecology, Yale School of Medicine, New Haven, Connecticut
| | - Brian T Fisher
- Department of Biostatistics, Epidemiology and Informatics, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anuja Dokras
- Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Tang WSW, Lau NXM, Krishnan MN, Chin YC, Ho CSH. Depression and Eye Disease-A Narrative Review of Common Underlying Pathophysiological Mechanisms and their Potential Applications. J Clin Med 2024; 13:3081. [PMID: 38892791 PMCID: PMC11172702 DOI: 10.3390/jcm13113081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Background: Depression has been shown to be associated with eye diseases, including dry eye disease (DED), cataracts, glaucoma, age-related macular degeneration (AMD), and diabetic retinopathy (DR). This narrative review explores potential pathophysiological connections between depression and eye disease, as well as its potential correlations with ocular parameters. Methods: A literature search was conducted in August 2022 in PUBMED, EMBASE, and PsycINFO. Published articles related to the subject were consolidated and classified according to respective eye diseases and pathophysiological mechanisms. Results: The literature reviewed suggests that common pathophysiological states like inflammation and neurodegeneration may contribute to both depression and certain eye diseases, while somatic symptoms and altered physiology, such as disruptions in circadian rhythm due to eye diseases, can also influence patients' mood states. Grounded in the shared embryological, anatomical, and physiological features between the eye and the brain, depression is also correlated to changes observed in non-invasive ophthalmological imaging modalities, such as changes in the retinal nerve fibre layer and retinal microvasculature. Conclusions: There is substantial evidence of a close association between depression and eye diseases. Understanding the underlying concepts can inform further research on treatment options and monitoring of depression based on ocular parameters.
Collapse
Affiliation(s)
- Wymann Shao Wen Tang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Nicole Xer Min Lau
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | | | - You Chuen Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Raffles Medical Group, Singapore 188770, Singapore
| | - Cyrus Su Hui Ho
- Department of Psychological Medicine, National University of Singapore, Singapore 119077, Singapore
- Department of Psychological Medicine, National University Hospital, Singapore 119228, Singapore
| |
Collapse
|
8
|
Wei B, Shi Y, Yu X, Cai Y, Zhao Y, Song Y, Zhao Z, Huo M, Li L, Gao Q, Yu D, Wang B, Sun M. GR/P300 Regulates MKP1 Signaling Pathway and Mediates Depression-like Behavior in Prenatally Stressed Offspring. Mol Neurobiol 2024:10.1007/s12035-024-04244-y. [PMID: 38769227 DOI: 10.1007/s12035-024-04244-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 05/07/2024] [Indexed: 05/22/2024]
Abstract
Accumulating evidence suggests that prenatal stress (PNS) increases offspring susceptibility to depression, but the underlying mechanisms remain unclear. We constructed a mouse model of prenatal stress by spatially restraining pregnant mice from 09:00-11:00 daily on Days 5-20 of gestation. In this study, western blot analysis, quantitative real-time PCR (qRT‒PCR), immunofluorescence, immunoprecipitation, chromatin immunoprecipitation (ChIP), and mifepristone rescue assays were used to investigate alterations in the GR/P300-MKP1 and downstream ERK/CREB/TRKB pathways in the brains of prenatally stressed offspring to determine the pathogenesis of the reduced neurogenesis and depression-like behaviors in offspring induced by PNS. We found that prenatal stress leads to reduced hippocampal neurogenesis and depression-like behavior in offspring. Prenatal stress causes high levels of glucocorticoids to enter the fetus and activate the hypothalamic‒pituitary‒adrenal (HPA) axis, resulting in decreased hippocampal glucocorticoid receptor (GR) levels in offspring. Furthermore, the nuclear translocation of GR and P300 (an acetylation modifying enzyme) complex in the hippocampus of PNS offspring increased significantly. This GR/P300 complex upregulates MKP1, which is a negative regulator of the ERK/CREB/TRKB signaling pathway associated with depression. Interestingly, treatment with a GR antagonist (mifepristone, RU486) increased hippocampal GR levels and decreased MKP1 expression, thereby ameliorating abnormal neurogenesis and depression-like behavior in PNS offspring. In conclusion, our study suggested that the regulation of the MKP1 signaling pathway by GR/P300 is involved in depression-like behavior in prenatal stress-exposed offspring and provides new insights and ideas for the fetal hypothesis of mental health.
Collapse
Affiliation(s)
- Bin Wei
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, Shandong, China
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yajun Shi
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Xi Yu
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yongle Cai
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yan Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Yueyang Song
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Zejun Zhao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Ming Huo
- Reproductive Medicine Center, The First Hospital of Lanzhou University, LanzhouGansu, 730000, China
| | - Lingjun Li
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Qinqin Gao
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China
| | - Dongyi Yu
- Center for Medical Genetics and Prenatal Diagnosis, Key Laboratory of Birth Defect Prevention and Genetic Medicine of Shandong Health Commission, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250000, Shandong, China
| | - Bin Wang
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
| | - Miao Sun
- Institute for Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, 215006, Jiangsu, China.
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory for Complex Severe and Rare Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking, Union Medical College, Beijing, 100005, China.
| |
Collapse
|
9
|
Zhang G, Wang S, Ma P, Li S, Sun X, Zhao Y, Pan J. Increased regional body fat is associated with depressive symptoms: a cross-sectional analysis of NHANES data obtained during 2011-2018. BMC Psychiatry 2024; 24:336. [PMID: 38702637 PMCID: PMC11067210 DOI: 10.1186/s12888-024-05782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS The findings from previous epidemiological studies of the association between regional body fat and depressive symptoms have been unclear. We aimed to determine the association between the body fat in different regions and depressive symptoms based on data from the National Health and Nutrition Examination Survey (NHANES). METHODS This study included 3393 participants aged ≥ 20 years from the NHANES performed during 2011-2018. Depressive symptoms were assessed using the Patient Health Questionnaire-9. The fat mass (FM) was measured in different regions using dual-energy X-ray absorptiometry to determine the total FM, trunk FM, arm FM, and leg FM. The FM index (FMI) was obtained by dividing the FM in kilograms by the square of the body height in meters. Weighted data were calculated in accordance with analytical guidelines. Linear logistic regression models were used to quantify the association between regional FMI and depressive symptoms. Univariate and stratified analyses were also performed. RESULTS The participants in this study comprised 2066 males and 1327 females. There were 404 (11.91%) participants with depressive symptoms, who were aged 40.89 ± 11.74 years and had a body mass index of 30.07 ± 7.82 kg/m². A significant association was found between total FMI and depressive symptoms. In the fully adjusted multivariate regression model, a higher total FMI (odds ratio = 2.18, 95% confidence interval [CI] = 1.08-4.39) was related to a higher risk of depressive symptoms, while increased total FMI (β = 1.55, 95% CI = 0.65-2.44, p = 0.001), trunk FMI (β = 0.57, 95% CI = 0.04-1.10, p = 0.036), and arm FMI (β = 0.96, 95% CI = 0.33-1.59, p = 0.004) were significantly associated with PHQ-9 (Patient Health Questionnaire-9) scores, whereas the leg FMI was not (p = 0.102). The weighted association between total FMI and depressive symptoms did not differ significantly between most of the subpopulations (all p values for interaction > 0.05). The risk of having depression was higher in individuals who were non-Hispanic Whites, smokers, drinkers, obese, and had diabetes and thyroid problems (p < 0.05). CONCLUSION These findings suggest that the population with a higher regional FMI is more likely to have depressive symptoms, especially in those who also have an increased total FMI. The association is more pronounced in individuals who are smokers, drinkers, obese, and have diabetes and thyroid problems.
Collapse
Affiliation(s)
- GuiMei Zhang
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Sisi Wang
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Ping Ma
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Shuna Li
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xizhe Sun
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Yang Zhao
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China.
| |
Collapse
|
10
|
Holanda VAD, de Almeida RN, de Oliveira MC, da Silva Junior ED, Galvão-Coelho NL, Calo' G, Ruzza C, Gavioli EC. Activation of NOP receptor increases vulnerability to stress: role of glucocorticoids and CRF signaling. Psychopharmacology (Berl) 2024; 241:1001-1010. [PMID: 38270614 DOI: 10.1007/s00213-024-06533-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/11/2024] [Indexed: 01/26/2024]
Abstract
RATIONALE Recently, we demonstrated that the activation of the nociceptin/orphanin FQ (N/OFQ) receptor (NOP) signaling facilitates depressive-like behaviors. Additionally, literature findings support the ability of the N/OFQ-NOP system to modulate the hypothalamic-pituitary-adrenal (HPA) axis. OBJECTIVES Considering that dysfunctional HPA axis is strictly related to stress-induced psychopathologies, we aimed to study the role of the HPA axis in the pro-depressant effects of NOP agonists. METHODS Mice were treated prior to stress with the NOP agonist Ro 65-6570, and immobility time in the forced swimming task and corticosterone levels were measured. Additionally, the role of endogenous glucocorticoids and CRF was investigated using the glucocorticoid receptor antagonist mifepristone and the CRF1 antagonist antalarmin in the mediation of the effects of Ro 65-6570. RESULTS The NOP agonist in a dose-dependent manner further increased the immobility of mice in the second swimming session compared to vehicle. By contrast, under the same conditions, the administration of the NOP antagonist SB-612111 before stress reduced immobility, while the antidepressant nortriptyline was inactive. Concerning in-serum corticosterone in mice treated with vehicle, nortriptyline, or SB-612111, a significant decrease was observed after re-exposition to stress, but no differences were detected in Ro 65-6570-treated mice. Administration of mifepristone or antalarmin blocked the Ro 65-6570-induced increase in the immobility time in the second swimming session. CONCLUSIONS Present findings suggest that NOP agonists increase vulnerability to depression by hyperactivating the HPA axis and then increasing stress circulating hormones and CRF1 receptor signaling.
Collapse
Affiliation(s)
- Victor A D Holanda
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal, 59078-900, Brazil
| | - Raissa N de Almeida
- Department of Physiology and Behavior and Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Matheus C de Oliveira
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal, 59078-900, Brazil
| | - Edilson D da Silva Junior
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal, 59078-900, Brazil
| | - Nicole L Galvão-Coelho
- Department of Physiology and Behavior and Postgraduate Program in Psychobiology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Girolamo Calo'
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Padua, Italy
| | - Chiara Ruzza
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- LTTA Laboratory for Advanced Therapies, Technopole of Ferrara, Ferrara, Italy
| | - Elaine C Gavioli
- Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Av. Senador salgado Filho, 3000, Campus Universitário - Lagoa Nova, Natal, 59078-900, Brazil.
| |
Collapse
|
11
|
Barbagallo F, Tiranini L, Placentino C, Mariacci G, Piccinino M, Cucinella L, Calogero AE, Nappi RE. Body Image and Other Mood Vulnerabilities in Adolescents with Polycystic Ovary Syndrome and Metabolic Alterations. CHILDREN (BASEL, SWITZERLAND) 2024; 11:521. [PMID: 38790516 PMCID: PMC11119722 DOI: 10.3390/children11050521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
INTRODUCTION Psychological vulnerability is a relevant component of polycystic ovarian syndrome (PCOS), but it is still under-explored, especially during adolescence. The aim of this study was to describe a selection of psychometric characteristics in a clinical sample of Italian adolescents with PCOS. Moreover, we reported the associations of body image, eating attitudes, and mood with metabolic features. METHODS Our sample included 128 adolescent girls (age range: 14-19 years) with PCOS. Validated psychometric questionnaires were administered: State Anxiety Inventory (STAI), Beck Depression Inventory (BDI), Body Attitude Test (BAT), Bulimia Investigation Test (BITE), Eating Attitudes Test (EAT), and Perceived Stress Scale (PSS). RESULTS Anxiety was the most prevalent mood disorder (63.1% trait anxiety and 57% state anxiety). Our cohort also showed a high prevalence of depression (39.1%), body image dissatisfaction (49.2%), disordered eating (11.7%), and bulimic risk (41.4%). PCOS adolescents with obesity and insulin resistance (IR) had statistically significant higher body image distress compared to those with normal weight and without IR (p < 0.001). The Sobel test for mediation showed that body image dissatisfaction mediates the relationship between state anxiety and bulimic risk (Z = 3.42, p < 0.001) and between depression and bulimic risk (Z = 4.59, p < 0.001). CONCLUSIONS A considerable number of patients with PCOS experience psychological disorders during adolescence. IR and obesity play a role in the distress associated with body image, further contributing to psychological vulnerability, especially in the bulimic domain. A comprehensive biopsychosocial approach in adolescents with PCOS represents the basis for effectively managing and preventing complications arising from both psychological and biological disorders in adulthood.
Collapse
Affiliation(s)
- Federica Barbagallo
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (F.B.); (A.E.C.)
| | - Lara Tiranini
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.T.); (C.P.); (G.M.); (L.C.)
| | - Chiara Placentino
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.T.); (C.P.); (G.M.); (L.C.)
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, 27100 Pavia, Italy;
| | - Giacomo Mariacci
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.T.); (C.P.); (G.M.); (L.C.)
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, 27100 Pavia, Italy;
| | - Manuela Piccinino
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, 27100 Pavia, Italy;
| | - Laura Cucinella
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.T.); (C.P.); (G.M.); (L.C.)
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, 27100 Pavia, Italy;
| | - Aldo E. Calogero
- Department of Clinical and Experimental Medicine, University of Catania, 95124 Catania, Italy; (F.B.); (A.E.C.)
| | - Rossella E. Nappi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy; (L.T.); (C.P.); (G.M.); (L.C.)
- Research Center for Reproductive Medicine, Gynecological Endocrinology and Menopause, IRCCS San Matteo Foundation, 27100 Pavia, Italy;
| |
Collapse
|
12
|
Gallo MT, Dolci B, Fumagalli F, Brivio P, Calabrese F. Prenatal Fluoxetine Exposure Influences Glucocorticoid Receptor-Mediated Activity in the Prefrontal Cortex of Adolescent Rats Exposed to Acute Stress. ACS Chem Neurosci 2024; 15:1560-1569. [PMID: 38507566 DOI: 10.1021/acschemneuro.3c00856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Any deviation from the programmed processes of brain development may modify its formation and functions, thereby precipitating pathological conditions, which often become manifest in adulthood. Exposure to a challenge during crucial periods of vulnerability, such as adolescence, may reveal molecular changes preceding behavioral outcomes. Based on a previous study showing that prenatal fluoxetine (FLX) leads to the development of an anhedonic-like behavior in adult rats, we aimed to assess whether the same treatment regimen (i.e., fluoxetine during gestation; 15 mg/kg/day) influences the ability to respond to acute restraint stress (ARS) during adolescence. We subjected the rats to a battery of behavioral tests evaluating the development of various phenotypes (cognitive deficit, anhedonia, and anxiety). Furthermore, we carried out molecular analyses in the plasma and prefrontal cortex, a brain region involved in stress response, and whose functions are commonly altered in neuropsychiatric conditions. Our findings confirm that prenatal manipulation did not affect behavior in adolescent rats but impaired the capability to respond properly to ARS. Indeed, we observed changes in several molecular key players of the hypothalamic pituitary adrenal axis, particularly influencing genomic effects mediated by the glucocorticoid receptor. This study highlights that prenatal FLX exposure influences the ability of adolescent male rats to respond to an acute challenge, thereby altering the functionality of the hypothalamic-pituitary-adrenal axis, and indicates that the prenatal manipulation may prime the response to challenging events during this critical period of life.
Collapse
Affiliation(s)
- Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Beatrice Dolci
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan 20133, Italy
| |
Collapse
|
13
|
Mosili P, Mkhize BC, Sibiya NH, Ngubane PS, Khathi A. Review of the direct and indirect effects of hyperglycemia on the HPA axis in T2DM and the co-occurrence of depression. BMJ Open Diabetes Res Care 2024; 12:e003218. [PMID: 38413177 PMCID: PMC10900365 DOI: 10.1136/bmjdrc-2022-003218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 03/24/2023] [Indexed: 02/29/2024] Open
Abstract
Type 2 diabetes mellitus (T2DM) is characterized by persistent hyperglycemia which is further associated with hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Several studies have shown that HPA axis hyperactivity is heightened in the chronic hyperglycemic state with severe hyperglycemic events more likely to result in a depressive disorder. The HPA axis is also regulated by the immune system. Upon stress, under homeostatic conditions, the immune system is activated via the sympatho-adrenal-medullary axis resulting in an immune response which secretes proinflammatory cytokines. These cytokines aid in the activation of the HPA axis during stress. However, in T2DM, where there is persistent hyperglycemia, the immune system is dysregulated resulting in the elevated concentrations of these cytokines. The HPA axis, already activated by the hyperglycemia, is further activated by the cytokines which all contribute to a diagnosis of depression in patients with T2DM. However, the onset of T2DM is often preceded by pre-diabetes, a reversible state of moderate hyperglycemia and insulin resistance. Complications often seen in T2DM have been reported to begin in the pre-diabetic state. While the current management strategies have been shown to ameliorate the moderate hyperglycemic state and decrease the risk of developing T2DM, research is necessary for clinical studies to profile these direct effects of moderate hyperglycemia in pre-diabetes on the HPA axis and the indirect effects moderate hyperglycemia may have on the HPA axis by investigating the components of the immune system that play a role in regulating this pathway.
Collapse
Affiliation(s)
- Palesa Mosili
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Bongeka Cassandra Mkhize
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | | | - Phikelelani Sethu Ngubane
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| | - Andile Khathi
- Human Physiology, University of KwaZulu-Natal College of Health Sciences, Durban, KwaZulu-Natal, South Africa
| |
Collapse
|
14
|
Pethő B, Kovács MÁ, Simon D, Tóth T, Hajnal AS, Csulak T, Hebling D, Albert N, Varga E, Herold M, Osváth P, Vörös V, Tényi T, Herold R. Investigation of peripheral inflammatory biomarkers in association with suicide risk in major depressive disorder. Front Psychiatry 2024; 15:1321354. [PMID: 38347880 PMCID: PMC10859515 DOI: 10.3389/fpsyt.2024.1321354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024] Open
Abstract
Suicide is the most severe complication of major depressive disorder (MDD). Novel research assumes the role of immunological dysregulation in the background - several studies have reported alterations in the number of inflammatory cells related to both MDD and suicidality. There are currently no objective, routinely measured parameters to indicate suicidal vulnerability. However, altered inflammatory cell numbers and ratios have been proposed as potential biomarkers of suicide risk (SR). The present research aims to examine changes of these values related to increased SR in MDD as an assumed inflammatory state. We investigated laboratory parameters of psychiatric in-patients diagnosed with MDD (n = 101) retrospectively. Individuals with recent suicide attempt (SA) (n = 22) and with past SA (n = 19) represented the high SR group. MDD patients with no history of SA (n = 60) composed the intermediate SR group. We compared the number of neutrophil granulocytes, monocytes, lymphocytes, platelets, white blood cell count (WBC), neutrophil-to-lymphocyte (NLR), monocyte-to-lymphocyte (MLR), platelet-to-lymphocyte ratio (PLR), mean platelet volume (MPV), red blood cell distribution width (RDW) and erythrocyte sedimentation rate (ESR). Furthermore, we evaluated alterations of these parameters related to antidepressant (AD) and antipsychotic (AP) treatment, which have been proved to have anti-inflammatory effects. We found a significant increase in neutrophil granulocyte count, NLR, monocyte count, MLR, WBC and ESR in patients with recent SA compared to patients with no history of SA. Moreover, there was a significant elevation in monocyte count, MLR, ESR and RDW in patients with high SR compared to patients with intermediate SR. AD treatment resulted in a significant decrease in neutrophil granulocyte count and NLR, however, it did not affect monocyte count and MLR. Assuming immunological mechanisms in the background of MDD and suicidality, our findings support the role of NLR as a biomarker of acute SR, though its alterations may be masked by possible anti-inflammatory effects of AD treatment in the long term. However, MLR, a marker exhibiting changes which are not attenuated by pharmacotherapy, may be a possible indicator of both acute and long-term suicidal vulnerability.
Collapse
Affiliation(s)
- Borbála Pethő
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Márton Áron Kovács
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Diána Simon
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Tünde Tóth
- Department of Anatomy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - András Sándor Hajnal
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Tímea Csulak
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Dóra Hebling
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Noémi Albert
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Eszter Varga
- Department of Pediatrics, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Márton Herold
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Osváth
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Viktor Vörös
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Tényi
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| | - Róbert Herold
- Department of Psychiatry and Psychotherapy, Clinical Center, Medical School, University of Pécs, Pécs, Hungary
| |
Collapse
|
15
|
You Z, Wang C, Lan X, Li W, Shang D, Zhang F, Ye Y, Liu H, Zhou Y, Ning Y. The contribution of polyamine pathway to determinations of diagnosis for treatment-resistant depression: A metabolomic analysis. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110849. [PMID: 37659714 DOI: 10.1016/j.pnpbp.2023.110849] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/04/2023]
Abstract
OBJECTIVES Approximately one-third of major depressive disorder (MDD) patients do not respond to standard antidepressants and develop treatment-resistant depression (TRD). We aimed to reveal metabolic differences and discover promising potential biomarkers in TRD. METHODS Our study recruited 108 participants including healthy controls (n = 40) and patients with TRD (n = 35) and first-episode drug-naive MDD (DN-MDD) (n = 33). Plasma samples were presented to ultra performance liquid chromatography-tandem mass spectrometry. Then, a machine-learning algorithm was conducted to facilitate the selection of potential biomarkers. RESULTS TRD appeared to be a distinct metabolic disorder from DN-MDD and healthy controls (HCs). Compared to HCs, 199 and 176 differentially expressed metabolites were identified in TRD and DN-MDD, respectively. Of all the metabolites that were identified, spermine, spermidine, and carnosine were considered the most promising biomarkers for diagnosing TRD and DN-MDD patients, with the resulting area under the ROC curve of 0.99, 0.99, and 0.93, respectively. Metabolic pathway analysis yielded compelling evidence of marked changes or imbalances in both polyamine metabolism and energy metabolism, which could potentially represent the primary altered pathways associated with MDD. Additionally, L-glutamine, Beta-alanine, and spermine were correlated with HAMD score. CONCLUSIONS A more disordered metabolism structure is found in TRD than in DN-MDD and HCs. Future investigations should prioritize the comprehensive analysis of potential roles played by these differential metabolites and disturbances in polyamine pathways in the pathophysiology of TRD and depression.
Collapse
Affiliation(s)
- Zerui You
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Dewei Shang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanxiang Ye
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Haiyan Liu
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
16
|
Runyan A, Cassani A, Reyna L, Walsh EC, Hoks RM, Birn RM, Abercrombie HC, Philippi CL. Effects of Cortisol Administration on Resting-State Functional Connectivity in Women with Depression. Psychiatry Res Neuroimaging 2024; 337:111760. [PMID: 38039780 PMCID: PMC10843737 DOI: 10.1016/j.pscychresns.2023.111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/01/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023]
Abstract
Previous resting-state functional connectivity (rsFC) research has identified several brain networks impacted by depression and cortisol, including default mode (DMN), frontoparietal (FPN), and salience networks (SN). In the present study, we examined the effects of cortisol administration on rsFC of these networks in individuals varying in depression history and severity. We collected resting-state fMRI scans and self-reported depression symptom severity for 74 women with and without a history of depression after cortisol and placebo administration using a double-blind, crossover design. We conducted seed-based rsFC analyses for DMN, FPN, and SN seeds to examine rsFC changes after cortisol vs. placebo administration in relation to depression history group and severity. Results revealed a main effect of depression group, with lower left amygdala (SN)-middle temporal gyrus connectivity in women with a history of depression. Cortisol administration increased insula (SN)-inferior frontal gyrus and superior temporal gyrus connectivity. We also found that greater depression severity was associated with increased PCC (DMN)-cerebellum connectivity after cortisol. These results did not survive Bonferroni correction for seed ROIs and should be interpreted with caution. Our findings indicate that acute cortisol elevation may normalize aberrant connectivity of DMN and SN regions, which could help inform clinical treatments for depression.
Collapse
Affiliation(s)
- Adam Runyan
- Department of Psychological Sciences, University of Central Missouri, 116 West S. St., Warrensburg, MO 64093, USA
| | - Alexis Cassani
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Leah Reyna
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA
| | - Erin C Walsh
- Department of Psychiatry, University of North Carolina at Chapel Hill School of Medicine, CB# 7167, Chapel Hill, NC 27599, USA
| | - Roxanne M Hoks
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Rasmus M Birn
- Department of Psychiatry, University of Wisconsin-Madison, 6001 Research Park Blvd., Madison, Wisconsin, 53719, USA
| | - Heather C Abercrombie
- Center for Healthy Minds, University of Wisconsin-Madison, 625W. Washington Ave., Madison, WI 53703, USA
| | - Carissa L Philippi
- Department of Psychological Sciences, University of Missouri-St. Louis, 1 University Blvd., St. Louis, Missouri, MO 63121, USA.
| |
Collapse
|
17
|
Arcego DM, Buschdorf JP, O'Toole N, Wang Z, Barth B, Pokhvisneva I, Rayan NA, Patel S, de Mendonça Filho EJ, Lee P, Tan J, Koh MX, Sim CM, Parent C, de Lima RMS, Clappison A, O'Donnell KJ, Dalmaz C, Arloth J, Provençal N, Binder EB, Diorio J, Silveira PP, Meaney MJ. A Glucocorticoid-Sensitive Hippocampal Gene Network Moderates the Impact of Early-Life Adversity on Mental Health Outcomes. Biol Psychiatry 2024; 95:48-61. [PMID: 37406925 DOI: 10.1016/j.biopsych.2023.06.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/15/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Early stress increases the risk for psychiatric disorders. Glucocorticoids are stress mediators that regulate transcriptional activity and morphology in the hippocampus, which is implicated in the pathophysiology of multiple psychiatric conditions. We aimed to establish the relevance of hippocampal glucocorticoid-induced transcriptional activity as a mediator of the effects of early life on later psychopathology in humans. METHODS RNA sequencing was performed with anterior and posterior hippocampal dentate gyrus from adult female macaques (n = 12/group) that were chronically treated with betamethasone (glucocorticoid receptor agonist) or vehicle. Coexpression network analysis identified a preserved gene network in the posterior hippocampal dentate gyrus that was strongly associated with glucocorticoid exposure. The single nucleotide polymorphisms in the genes in this network were used to create an expression-based polygenic score in humans. RESULTS The expression-based polygenic score significantly moderated the association between early adversity and psychotic disorders in adulthood (UK Biobank, women, n = 44,519) and on child peer relations (ALSPAC [Avon Longitudinal Study of Parents and Children], girls, n = 1666 for 9-year-olds and n = 1594 for 11-year-olds), an endophenotype for later psychosis. Analyses revealed that this network was enriched for glucocorticoid-induced epigenetic remodeling in human hippocampal cells. We also found a significant association between single nucleotide polymorphisms from the expression-based polygenic score and adult brain gray matter density. CONCLUSIONS We provide an approach for the use of transcriptomic data from animal models together with human data to study the impact of environmental influences on mental health. The results are consistent with the hypothesis that hippocampal glucocorticoid-related transcriptional activity mediates the effects of early adversity on neural mechanisms implicated in psychiatric disorders.
Collapse
Affiliation(s)
- Danusa Mar Arcego
- Douglas Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada.
| | - Jan-Paul Buschdorf
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Nicholas O'Toole
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Zihan Wang
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Barbara Barth
- Douglas Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | | | - Sachin Patel
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | | | - Patrick Lee
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Jennifer Tan
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Ming Xuan Koh
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Chu Ming Sim
- Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore
| | - Carine Parent
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | | | - Andrew Clappison
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Yale Child Study Center, Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Carla Dalmaz
- Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Janine Arloth
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany; Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nadine Provençal
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada; BC Children's Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Elisabeth B Binder
- Department Genes and Environment, Max Planck Institute of Psychiatry, Munich, Germany
| | - Josie Diorio
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada
| | - Patrícia Pelufo Silveira
- Douglas Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Ludmer Centre for Neuroinformatics and Mental Health, Douglas Research Centre, McGill University, Montreal, Quebec, Canada; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | - Michael J Meaney
- Douglas Research Centre, Department of Psychiatry, Faculty of Medicine, McGill University, Montreal, Quebec, Canada; Translational Neuroscience Program, Singapore Institute for Clinical Sciences, Singapore, Republic of Singapore; Brain Body Initiative, Agency for Science, Technology and Research (A∗STAR), Singapore, Republic of Singapore; Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| |
Collapse
|
18
|
Yoon S, Kim YK. Endocrinological Treatment Targets for Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:3-25. [PMID: 39261421 DOI: 10.1007/978-981-97-4402-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Depressive disorder exhibits heterogeneity in clinical presentation, progression, and treatment outcomes. While conventional antidepressants based on the monoamine hypothesis benefit many patients, a significant proportion remains unresponsive or fails to fully recover. An individualized integrative treatment approach, considering diverse pathophysiologies, holds promise for these individuals. The endocrine system, governing physiological regulation and organ homeostasis, plays a pivotal role in central nervous system functions. Dysregulations in endocrine system are major cause of depressive disorder due to other medical conditions. Subtle endocrine abnormalities, such as subclinical hypothyroidism, are associated with depression. Conversely, depressive disorder correlates with endocrine-related biomarkers. Fluctuations in sex hormone levels related to female reproduction, elevate depression risk in susceptible subjects. Consequently, extensive research has explored treatment strategies involving the endocrine system. Treatment guidelines recommend tri-iodothyronine augmentation for resistant depression, while allopregnanolone analogs have gained approval for postpartum depression, with ongoing investigations for broader depressive disorders. This book chapter will introduce the relationship between the endocrine system and depressive disorders, presenting clinical findings on neuroendocrinological treatments for depression.
Collapse
Affiliation(s)
- Seoyoung Yoon
- Department of Psychiatry, Daegu Catholic University School of Medicine, Daegu, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Mazurka R, Cunningham S, Hassel S, Foster JA, Nogovitsyn N, Fiori LM, Strother SC, Arnott SR, Frey BN, Lam RW, MacQueen GM, Milev RV, Rotzinger S, Turecki G, Kennedy SH, Harkness KL. Relation of hippocampal volume and SGK1 gene expression to treatment remission in major depression is moderated by childhood maltreatment: A CAN-BIND-1 report. Eur Neuropsychopharmacol 2024; 78:71-80. [PMID: 38128154 DOI: 10.1016/j.euroneuro.2023.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Preclinical research implicates stress-induced upregulation of the enzyme, serum- and glucocorticoid-regulated kinase 1 (SGK1), in reduced hippocampal volume. In the current study, we tested the hypothesis that greater SGK1 mRNA expression in humans would be associated with lower hippocampal volume, but only among those with a history of prolonged stress exposure, operationalized as childhood maltreatment (physical, sexual, and/or emotional abuse). Further, we examined whether baseline levels of SGK1 and hippocampal volume, or changes in these markers over the course of antidepressant treatment, would predict treatment outcomes in adults with major depression [MDD]. We assessed SGK1 mRNA expression from peripheral blood, and left and right hippocampal volume at baseline, as well as change in these markers over the first 8 weeks of a 16-week open-label trial of escitalopram as part of the Canadian Biomarker Integration Network in Depression program (MDD [n = 161] and healthy comparison participants [n = 91]). Childhood maltreatment was assessed via contextual interview with standardized ratings. In the full sample at baseline, greater SGK1 expression was associated with lower hippocampal volume, but only among those with more severe childhood maltreatment. In individuals with MDD, decreases in SGK1 expression predicted lower remission rates at week 16, again only among those with more severe maltreatment. Decreases in hippocampal volume predicted lower week 16 remission for those with low childhood maltreatment. These results suggest that both glucocorticoid-related neurobiological mechanisms of the stress response and history of childhood stress exposure may be critical to understanding differential treatment outcomes in MDD. ClinicalTrials.gov: NCT01655706 Canadian Biomarker Integration Network for Depression Study.
Collapse
Affiliation(s)
- Raegan Mazurka
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
| | | | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Jane A Foster
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Nikita Nogovitsyn
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Laura M Fiori
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Stephen C Strother
- Rotman Research Institute, Baycrest, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Canada
| | | | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Mood Disorders Program, St. Joseph's Healthcare Hamilton, ON, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| | - Glenda M MacQueen
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Roumen V Milev
- Departments of Psychiatry and Psychology, And Providence Care Hospital, Queen's University, Kingston, ON, Canada
| | - Susan Rotzinger
- Department of Psychiatry, University of Toronto, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Gustavo Turecki
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Sidney H Kennedy
- Department of Psychiatry, University of Toronto, Canada; Centre for Depression and Suicide Studies, St. Michael's Hospital, Toronto ON, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
20
|
Wang R, Kogler L, Derntl B. Sex differences in cortisol levels in depression: A systematic review and meta-analysis. Front Neuroendocrinol 2024; 72:101118. [PMID: 38176541 DOI: 10.1016/j.yfrne.2023.101118] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/11/2023] [Accepted: 12/31/2023] [Indexed: 01/06/2024]
Abstract
Higher prevalence of depression in females might be associated with sex-specific cortisol levels. Evidence exists that cortisol levels differ between healthy females and males, however a sex-specific association in depression has not been systematically assessed. Thus, the current study quantifies the existing literature on different cortisol parameters, i.e., basal cortisol, hair cortisol, cortisol awakening response (CAR), and cortisol stress reactivity comparing depressed females and males as well as sex-specific comparisons with healthy controls. Following an extensive literature research, fifty original articles were included. Depressed females had significantly higher hair cortisol, higher CAR, and lower cortisol stress reactivity compared to depressed males. In comparison with sex-matched controls, female patients had significantly higher evening basal cortisol, higher CAR and lower cortisol stress reactivity, and male patients had significantly higher general, morning and evening basal cortisol. Overall, sex as a fundamental driver of cortisol levels in depression needs to be taken into account.
Collapse
Affiliation(s)
- Rui Wang
- Department of Psychiatry and Psychotherapy, Women's Mental Health & Brain Function, Tübingen Center for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany.
| | - Lydia Kogler
- Department of Psychiatry and Psychotherapy, Women's Mental Health & Brain Function, Tübingen Center for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, 72076 Tübingen, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, Women's Mental Health & Brain Function, Tübingen Center for Mental Health (TüCMH), Medical Faculty, University of Tübingen, Calwerstraße 14, 72076 Tübingen, Germany; German Center for Mental Health (DZPG), partner site Tübingen, 72076 Tübingen, Germany; LEAD Graduate School and Research Network, University of Tübingen, Germany
| |
Collapse
|
21
|
Réus GZ, Manosso LM, Quevedo J, Carvalho AF. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci Biobehav Rev 2023; 155:105425. [PMID: 37852343 DOI: 10.1016/j.neubiorev.2023.105425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Notwithstanding advances in understanding the pathophysiology of major depressive disorder (MDD), no single mechanism can explain all facets of this disorder. An expanding body of evidence indicates a putative role for the inflammatory response. Several meta-analyses showed an increase in systemic peripheral inflammatory markers in individuals with MDD. Numerous conditions and circumstances in the modern world may promote chronic systemic inflammation through mechanisms, including alterations in the gut microbiota. Peripheral cytokines may reach the brain and contribute to neuroinflammation through cellular, humoral, and neural pathways. On the other hand, antidepressant drugs may decrease peripheral levels of inflammatory markers. Anti-inflammatory drugs and nutritional strategies that reduce inflammation also could improve depressive symptoms. The present study provides a critical review of recent advances in the role of inflammation in the pathophysiology of MDD. Furthermore, this review discusses the role of glial cells and the main drivers of changes associated with neuroinflammation. Finally, we highlight possible novel neurotherapeutic targets for MDD that could exert antidepressant effects by modulating inflammation.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
22
|
Chalermwongkul C, Khamphukdee C, Maneenet J, Daodee S, Monthakantirat O, Boonyarat C, Chotritthirong Y, Awale S, Kijjoa A, Chulikhit Y. Antidepressant-like Effect of Oroxylum indicum Seed Extract in Mice Model of Unpredictable Chronic Mild Stress. Nutrients 2023; 15:4742. [PMID: 38004136 PMCID: PMC10675042 DOI: 10.3390/nu15224742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Major depressive disorder (MDD) is one life-threatening disorder that is prevalent worldwide. The evident etiology of this disease is still poorly understood. Currently, herbal medicine is gaining more interest as an alternative antidepressant. Oroxylum indicum, which is used in traditional medicine and contains a potential antidepressive compound, baicalein, could have an antidepressive property. An in vitro monoamine oxidase-A (MAO-A) inhibitory assay was used to preliminarily screening for the antidepressant effect of O. indicum seed (OIS) extract. Mice were subjected to unpredictable chronic mild stress (UCMS) for 6 weeks, and the daily administration of OIS extract started from week 4. The mechanisms involved in the antidepressive activity were investigated. The OIS extract significantly alleviated anhedonia and despair behaviors in the UCMS-induced mouse model via two possible pathways: (i) it normalized the HPA axis function via the restoration of negative feedback (decreased FKBP5 and increased GR expressions) and the reduction in the glucocorticoid-related negative gene (SGK-1), and (ii) it improved neurogenesis via the escalation of BDNF and CREB expressions in the hippocampus and the frontal cortex. In addition, an HPLC analysis of the OIS extract showed the presence of baicalin, baicalein, and chrysin as major constituents. All of the results obtained from this study emphasize the potential of OIS extract containing baicalin and baicalein as an effective and novel alternative treatment for MDD.
Collapse
Affiliation(s)
- Chorpeth Chalermwongkul
- Graduated School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.C.); (Y.C.)
| | - Charinya Khamphukdee
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.K.); (A.K.)
| | - Juthamart Maneenet
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Supawadee Daodee
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Orawan Monthakantirat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Chantana Boonyarat
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| | - Yutthana Chotritthirong
- Graduated School of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.C.); (Y.C.)
| | - Suresh Awale
- Natural Drug Discovery Laboratory, Institute of Natural Medicine, University of Toyama, 2630 Sugitani, Toyama 930-0154, Japan;
| | - Anake Kijjoa
- Division of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (C.K.); (A.K.)
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar and CIIMAR, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Yaowared Chulikhit
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen 40002, Thailand; (J.M.); (S.D.); (O.M.); (C.B.)
| |
Collapse
|
23
|
Limón-Morales O, Morales-Quintero K, Arteaga-Silva M, Molina-Jiménez T, Cerbón M, Bonilla-Jaime H. Alterations of learning and memory are accompanied by alterations in the expression of 5-HT receptors, glucocorticoid receptor and brain-derived neurotrophic factor in different brain regions of an animal model of depression generated by neonatally male treatment with clomipramine in male rats. Behav Brain Res 2023; 455:114664. [PMID: 37714467 DOI: 10.1016/j.bbr.2023.114664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/02/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Depressive illness has been associated with impaired cognitive processes accompanied by reduced neurotrophin levels, especially brain-derived neurotrophic factor (BDNF), and dysfunctions in the hypothalamic-pituitary-adrenal (HPA) axis. In addition, depression is characterized by a decreased functioning of the serotonergic system due to changes in the activity or expression of its receptors including, most significantly, 5-HT1A, 5-HT2A, and 5-HT3 in brain regions that regulate mood, emotions, and memory, such as the prefrontal cortex, hippocampus, and amygdala. In this regard, rats treated with clomipramine (CMI) in the neonatal stage show depression-like behaviors that persist into adulthood; hence, this constitutes an adequate model of depression for exploring various molecular aspects associated with the etiology of this disorder. This, study, then, was designed to analyze the long-term effects of early postnatal exposure to CMI on the expression of 5-HT1A, 5-HT2A, and 5-HT3 receptors, as well as BDNF and GR in the following brain regions: PFC, amygdala, hippocampus, and hypothalamus, which could be related to alterations in memory and learning, as evaluated using the novel object recognition (NOR) and Morris water maze (MWM). Expression of the 5-HT1A, 5-HT2A, and 5-HT3 receptors, BDNF, and the glucocorticoid receptor (GR) was assessed by RT-qPCR in the four aforementioned brain regions, all of which play important roles in the control of memory and mood. Findings show that neonatal treatment with CMI causes alterations in memory and learning, as indicated by alterations in the results of the MWM and NOR tests. Expression of the 5-HT1A receptor increased in the hippocampus, amygdala, and hypothalamus, but decreased in the PFC, while the 5-HT2A and BDNF receptors decreased their expression in the PFC, amygdala, and hippocampus. There was no change in the expression of the 5-HT3 receptor. In addition, expression of GR in the hippocampus and PFC was low, but increased in the hypothalamus. Taken together, these data show that neonatal CMI treatment produces permanent molecular changes in brain regions related to learning and memory that could contribute to explaining the behavioral alterations observed in this model.
Collapse
Affiliation(s)
- Ofelia Limón-Morales
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico; Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico.
| | - Kenia Morales-Quintero
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Marcela Arteaga-Silva
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| | - Tania Molina-Jiménez
- Facultad de Química Farmacéutica Biológica, Universidad Veracruzana, Circuito Gonzalo Aguirre Beltrán s/n, Zona Universitaria Xalapa, Veracruz, Mexico
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Herlinda Bonilla-Jaime
- Departamento de Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, C.P 09340 CDMX, Mexico
| |
Collapse
|
24
|
Kim KY, Shin KY, Chang KA. Potential Inflammatory Biomarkers for Major Depressive Disorder Related to Suicidal Behaviors: A Systematic Review. Int J Mol Sci 2023; 24:13907. [PMID: 37762207 PMCID: PMC10531013 DOI: 10.3390/ijms241813907] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent psychiatric condition affecting an estimated 280 million individuals globally. Despite the occurrence of suicidal behaviors across various psychiatric conditions, MDD is distinctly associated with the highest risk of suicide attempts and death within this population. In this study, we focused on MDD to identify potential inflammatory biomarkers associated with suicidal risk, given the relationship between depressive states and suicidal ideation. Articles published before June 2023 were searched in PubMed, Embase, Web of Science, and the Cochrane Library to identify all relevant studies reporting blood inflammatory biomarkers in patients with MDD with suicide-related behaviors. Of 571 articles, 24 were included in this study. Overall, 43 significant biomarkers associated with MDD and suicide-related behaviors were identified. Our study provided compelling evidence of significant alterations in peripheral inflammatory factors in MDD patients with suicide-related behaviors, demonstrating the potential roles of interleukin (IL)-1β, IL-6, C-reactive protein, C-C motif chemokine ligand 2, and tumor necrosis factor-α as biomarkers. These findings underscore the intricate relationship between the inflammatory processes of these biomarkers and their interactions in MDD with suicidal risk.
Collapse
Affiliation(s)
- Ka Young Kim
- Department of Nursing, College of Nursing, Gachon University, Incheon 21936, Republic of Korea;
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
| | - Ki Young Shin
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-A Chang
- Neuroscience Research Institute, Gachon University, Incheon 21565, Republic of Korea
- Department of Pharmacology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
| |
Collapse
|
25
|
Lullau APM, Haga EMW, Ronold EH, Dwyer GE. Antidepressant mechanisms of ketamine: a review of actions with relevance to treatment-resistance and neuroprogression. Front Neurosci 2023; 17:1223145. [PMID: 37614344 PMCID: PMC10442706 DOI: 10.3389/fnins.2023.1223145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/12/2023] [Indexed: 08/25/2023] Open
Abstract
Concurrent with recent insights into the neuroprogressive nature of depression, ketamine shows promise in interfering with several neuroprogressive factors, and has been suggested to reverse neuropathological patterns seen in depression. These insights come at a time of great need for novel approaches, as prevalence is rising and current treatment options remain inadequate for a large number of people. The rapidly growing literature on ketamine's antidepressant potential has yielded multiple proposed mechanisms of action, many of which have implications for recently elucidated aspects of depressive pathology. This review aims to provide the reader with an understanding of neuroprogressive aspects of depressive pathology and how ketamine is suggested to act on it. Literature was identified through PubMed and Google Scholar, and the reference lists of retrieved articles. When reviewing the evidence of depressive pathology, a picture emerges of four elements interacting with each other to facilitate progressive worsening, namely stress, inflammation, neurotoxicity and neurodegeneration. Ketamine acts on all of these levels of pathology, with rapid and potent reductions of depressive symptoms. Converging evidence suggests that ketamine works to increase stress resilience and reverse stress-induced dysfunction, modulate systemic inflammation and neuroinflammation, attenuate neurotoxic processes and glial dysfunction, and facilitate synaptogenesis rather than neurodegeneration. Still, much remains to be revealed about ketamine's antidepressant mechanisms of action, and research is lacking on the durability of effect. The findings discussed herein calls for more longitudinal approaches when determining efficacy and its relation to neuroprogressive factors, and could provide relevant considerations for clinical implementation.
Collapse
Affiliation(s)
- August P. M. Lullau
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Emily M. W. Haga
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Eivind H. Ronold
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Gerard E. Dwyer
- Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- NORMENT Centre of Excellence, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
26
|
Gao X, Gong J, Yang B, Liu Y, Xu H, Hao Y, Jing J, Feng Z, Li L. Effect of classical music on growth performance, stress level, antioxidant index, immune function and meat quality in broilers at different stocking densities. Front Vet Sci 2023; 10:1227654. [PMID: 37601747 PMCID: PMC10437118 DOI: 10.3389/fvets.2023.1227654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
High-stocking density is one of the factors that can easily cause oxidative stress and inflammatory reaction of broilers. Currently, music therapy has been proposed to help animals relieve stress to some extent. However, it is still unclear whether classical music can alleviate stress in broilers at high stocking densities. Hence, this study aimed to investigate the effects of classical music on growth performance, stress level, antioxidant index, immune function and meat quality of broilers under different stocking densities. A total of 540 one-day-old broilers with similar body weight were randomly divided into 6 treatment groups, with 6 replicates per group, which included two feeding environments (with/without classical music) and three stocking densities (15.5, 17.9, and 20.3 birds/m2), thereby making a 2 × 3 factorial arrangement. The results showed as follows: increasing stocking density decreased the average daily feed intake and average daily gain (ADG), increased feed-to-gain ratio (F/G) and mortality of broilers. Moreover, increased density resulted in an increase in serum corticosterone (CORT) and adrenocorticotropic hormone (ACTH) levels. Increasing stocking density decreased spleen and bursal indices, serum immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) levels. Increasing stocking density elevated serum malondialdehyde (MDA) and decreased catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities. Increasing stocking density decreased serum total protein (TP) levels and increased total cholesterol (TC) and glucose (GLU) levels. Additionally, increasing stocking density decreased the cooking liss of pectoralis and increased the L*24h value of pectoralis. Meanwhile, playing classical music for broilers increased their ADG and decreased F/G, and decreased serum CORT, ACTH, GLU content. In addition, the bursa of Fabricius index, serum IgA and IgG contents as well as the a*24h value of pectoralis was increased under the music therapy. In conclusion, high-stocking density (20.3 birds/m2) harmed the growth performance and health of broilers, and the classical music stimulus ameliorated the negative effects to some extent.
Collapse
Affiliation(s)
- Xinlei Gao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jiangang Gong
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| | - Bowen Yang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanci Liu
- Baoding Vocational and Technical College, Baoding, China
| | - Hongjian Xu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Yanshuang Hao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Jialin Jing
- Hebei Jiuxing Agriculture and Animal Husbandry Development Co., Ltd., Baoding, China
| | - Zhihua Feng
- College of Animal Science and Technology, Hebei Agricultural University, Baoding, China
| | - Lihua Li
- College of Mechatronical and Electrical Engineering, Hebei Agricultural University, Baoding, China
| |
Collapse
|
27
|
Breton JM, Cort Z, Demaestri C, Critz M, Nevins S, Downend K, Ofray D, Romeo RD, Bath KG. Early life adversity reduces affiliative behavior towards a distressed cagemate and leads to sex-specific alterations in corticosterone responses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.549876. [PMID: 37502995 PMCID: PMC10370200 DOI: 10.1101/2023.07.20.549876] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Experiencing early life adversity (ELA) alters stress physiology and increases the risk for developing psychiatric disorders. The social environment can influence dynamics of stress responding and buffer and/or transfer stress across individuals. Yet, the impact of ELA on sensitivity to the stress of others and social behavior following stress is unknown. Here, to test the impact of ELA on social and physiological responses to stress, circulating blood corticosterone (CORT) and social behaviors were assessed in adult male and female mice reared under limited bedding and nesting (LBN) or control conditions. To induce stress, one cagemate of a pair-housed cage underwent a footshock paradigm and was then returned to their unshocked partner. CORT was measured in both mice 20 or 90 minutes after stress exposure, and social behaviors were recorded and analyzed. ELA rearing influenced the CORT response to stress in a sex-specific manner. In males, both control and ELA-reared mice exhibited similar stress transfer to unshocked cagemates and similar CORT dynamics. In contrast, ELA females showed a heightened stress transfer to unshocked cagemates, and sustained elevation of CORT relative to controls, indicating enhanced stress contagion and a failure to terminate the stress response. Behaviorally, ELA females displayed decreased allogrooming and increased investigative behaviors, while ELA males showed reduced huddling. Together, these findings demonstrate that ELA influenced HPA axis dynamics, social stress contagion and social behavior. Further research is needed to unravel the underlying mechanisms and long-term consequences of ELA on stress systems and their impact on behavioral outcomes.
Collapse
Affiliation(s)
- Jocelyn M Breton
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Zoey Cort
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Camila Demaestri
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Madalyn Critz
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Samuel Nevins
- Brown University, Department of Cognitive, Linguistic and Psychological Sciences, Providence, RI, USA
| | - Kendall Downend
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Dayshalis Ofray
- Columbia University, Department of Psychiatry, New York, NY, USA
| | - Russell D Romeo
- Barnard College of Columbia University, Department of Neuroscience and Behavior, New York, NY, USA
| | - Kevin G Bath
- Columbia University, Department of Psychiatry, New York, NY, USA
| |
Collapse
|
28
|
Robinson DJ, Hanson K, Jain AB, Kichler JC, Mehta G, Melamed OC, Vallis M, Bajaj HS, Barnes T, Gilbert J, Honshorst K, Houlden R, Kim J, Lewis J, MacDonald B, MacKay D, Mansell K, Rabi D, Sherifali D, Senior P. Diabetes and Mental Health. Can J Diabetes 2023; 47:308-344. [PMID: 37321702 DOI: 10.1016/j.jcjd.2023.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
|
29
|
Guo YX, Xia CY, Yan Y, Han Y, Shi R, He J, Wang YM, Wang ZX, Zhang WK, Xu JK. Loganin improves chronic unpredictable mild stress-induced depressive-like behaviors and neurochemical dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2023; 308:116288. [PMID: 36809822 DOI: 10.1016/j.jep.2023.116288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/12/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cornus officinalis Sieb. et Zucc., is a valuable herb commonly used in Chinese medicine clinics. Loganin is a major iridoid glycoside obtained from the traditional Chinese herb Corni Fructus. Loganin, which has been shown to improve depression-like behavior in mice exposed to acute stress, is probably a potential antidepressant candidate. AIM OF THE STUDY Loganin was evaluated for its effect on chronic unpredictable mild stress (CUMS) induced depressive-like mice, and its action mechanisms were explored. MATERIALS AND METHODS ICR mice were subjected to the CUMS stimulation method to induce depression. The therapeutic effect of loganin on depressive-like behavior was evaluated by a series of behavioral tests such as sucrose preference test (SPT), forced swim test (FST), tail suspension test (TST) and open-field test (OFT). In addition, the serum levels of adrenocorticotropic hormone (ACTH) and corticosterone (CORT) were measured using ELISA. The levels of monoamine neurotransmitters were detected by high performance liquid chromatography-electrochemical detection (HPLC-ECD). The levels of brain-derived neurotrophic factor (BDNF) in the hippocampus were measured using western blot analysis. RESULTS The results showed that CUMS induced depressive-like behaviors in mice, as indicated by behavioral tests. Administration of loganin increased the sucrose preference in SPT, as well as decreased the immobility time in FST and TST. Loganin could also improve food intake, and increased crossing times in the OFT. In mechanism, loganin restored the secretion of monoamine neurotransmitters, ACTH and CORT to normal levels. In addition, loganin elevated the expression of BDNF in the hippocampus. In conclusion, loganin exerts antidepressant-like effects in CUMS model mice through modulating monoamine neurotransmitters, ACTH, CORT and BDNF. CONCLUSION Loganin effectively ameliorated depressive-like symptoms in CUMS-exposed mice by increasing 5-hydroxytryptamine (5-HT) and dopamine (DA) levels, alleviating hypothalamic-pituitary-adrenal (HPA) axis dysfunction, and increasing BDNF expression. In conclusion, the findings of the current study extensive evidence for the application of loganin in stress-associated disorders, specifically targeting depression.
Collapse
Affiliation(s)
- Yu-Xuan Guo
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yan Han
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Rui Shi
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Ze-Xing Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, People's Republic of China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, People's Republic of China.
| |
Collapse
|
30
|
Langgartner D, Koenen M, Kupfer S, Glogger L, Kurz L, Perez-Rivas LG, Theodoropoulou M, Noll-Hussong M, Vettorazzi S, Tuckermann J, Reber SO. Intact GR dimerization is critical for restraining plasma ACTH levels during chronic psychosocial stress. Neurobiol Stress 2023; 24:100541. [PMID: 37215522 PMCID: PMC10196852 DOI: 10.1016/j.ynstr.2023.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/13/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Male C57BL/6N mice exposed to the chronic subordinate colony housing (CSC; 19 days) paradigm, a preclinically validated model of chronic psychosocial stress, are characterized by unaffected basal morning plasma corticosterone (CORT) concentrations despite adrenal and pituitary hyperplasia and increased adrenocorticotropic hormone (ACTH) plasma concentrations, compared with single-housed control (SHC) mice. However, as CSC mice are still able to show an increased CORT secretion towards novel heterotypic stressors, these effects might reflect an adaptation rather than a functional breakdown of general hypothalamus-pituitary-adrenal (HPA) axis functionality. In the present study we used male mice of a genetically modified mouse line, to investigate whether genetically-driven ACTH overexpression compromises adaptational processes occurring at the level of the adrenals during CSC exposure. Experimental mice carried a point mutation in the DNA binding domain of the glucocorticoid (GC) receptor (GR), attenuating dimerization of GR (GRdim), resulting in a congenially compromised negative feedback inhibition at the level of the pituitary. In line with previous studies, CSC mice in both the wild type (WT; GR+/+) and GRdim group developed adrenal enlargement. Moreover, compared with respective SHC and WT mice, CSC GRdim mice show increased basal morning plasma ACTH and CORT concentrations. Quantitative polymerase chain reaction (qPCR) analysis revealed neither a genotype effect, nor a CSC effect on pituitary mRNA expression of the ACTH precursor proopiomelanocortin (POMC). Finally, CSC increased anxiety-related behavior, active coping and splenocyte in vitro (re)activity in both WT and GRdim mice, while a CSC-induced increase in adrenal lipid vesicles and splenic GC resistance was detectable only in WT mice. Of note, lipopolysaccharide (LPS)-stimulated splenocytes of GRdim mice were resistant to the inhibitory effects of CORT. Together our findings support the hypothesis that pituitary ACTH protein concentration is negatively controlled by GR dimerization under conditions of chronic psychosocial stress, while POMC gene transcription is not dependent on intact GR dimerization under both basal and chronic stress conditions. Finally, our data suggest that adrenal adaptations during chronic psychosocial stress (i.e., ACTH desensitization), aiming at the prevention of prolonged hypercorticism, are protective only to a certain threshold of plasma ACTH levels.
Collapse
Affiliation(s)
- Dominik Langgartner
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Mascha Koenen
- Institute of Comparative Molecular Endocrinology, University Ulm, Ulm, Germany
| | - Sandra Kupfer
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Lisa Glogger
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Lisa Kurz
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| | - Luis Gustavo Perez-Rivas
- Medical Clinic and Polyclinic IV, LMU Clinic, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Marily Theodoropoulou
- Medical Clinic and Polyclinic IV, LMU Clinic, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Michael Noll-Hussong
- Psychosomatic Medicine and Psychotherapy, Saarland University Medical Centre, Homburg, Germany
| | - Sabine Vettorazzi
- Institute of Comparative Molecular Endocrinology, University Ulm, Ulm, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, University Ulm, Ulm, Germany
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
31
|
Jovanovic F, Jovanovic V, Knezevic NN. Glucocorticoid Hormones as Modulators of the Kynurenine Pathway in Chronic Pain Conditions. Cells 2023; 12:cells12081178. [PMID: 37190087 DOI: 10.3390/cells12081178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/15/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of chronic pain entails a series of complex interactions among the nervous, immune, and endocrine systems. Defined as pain lasting or recurring for more than 3 months, chronic pain is becoming increasingly more prevalent among the US adult population. Pro-inflammatory cytokines from persistent low-grade inflammation not only contribute to the development of chronic pain conditions, but also regulate various aspects of the tryptophan metabolism, especially that of the kynurenine pathway (KP). An elevated level of pro-inflammatory cytokines exerts similar regulatory effects on the hypothalamic-pituitary-adrenal (HPA) axis, an intricate system of neuro-endocrine-immune pathways and a major mechanism of the stress response. As the HPA axis counters inflammation through the secretion of endogenous cortisol, we review the role of cortisol along with that of exogenous glucocorticoids in patients with chronic pain conditions. Considering that different metabolites produced along the KP exhibit neuroprotective, neurotoxic, and pronociceptive properties, we also summarize evidence rendering them as reliable biomarkers in this patient population. While more in vivo studies are needed, we conclude that the interaction between glucocorticoid hormones and the KP poses an attractive venue of diagnostic and therapeutic potential in patients with chronic pain.
Collapse
Affiliation(s)
- Filip Jovanovic
- Department of Internal Medicine, Merit Health Wesley, Hattiesburg, MS 39402, USA
| | - Visnja Jovanovic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
| | - Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, Chicago, IL 60657, USA
- Department of Anesthesiology, University of Illinois, Chicago, IL 60612, USA
- Department of Surgery, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
32
|
Markov DD, Dolotov OV, Grivennikov IA. The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 2023; 24:ijms24076664. [PMID: 37047638 PMCID: PMC10094937 DOI: 10.3390/ijms24076664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Major depression is one of the most prevalent mental disorders, causing significant human suffering and socioeconomic loss. Since conventional antidepressants are not sufficiently effective, there is an urgent need to develop new antidepressant medications. Despite marked advances in the neurobiology of depression, the etiology and pathophysiology of this disease remain poorly understood. Classical and newer hypotheses of depression suggest that an imbalance of brain monoamines, dysregulation of the hypothalamic-pituitary-adrenal axis (HPAA) and immune system, or impaired hippocampal neurogenesis and neurotrophic factors pathways are cause of depression. It is assumed that conventional antidepressants improve these closely related disturbances. The purpose of this review was to discuss the possibility of affecting these disturbances by targeting the melanocortin system, which includes adrenocorticotropic hormone-activated receptors and their peptide ligands (melanocortins). The melanocortin system is involved in the regulation of various processes in the brain and periphery. Melanocortins, including peripherally administered non-corticotropic agonists, regulate HPAA activity, exhibit anti-inflammatory effects, stimulate the levels of neurotrophic factors, and enhance hippocampal neurogenesis and neurotransmission. Therefore, endogenous melanocortins and their analogs are able to complexly affect the functioning of those body’s systems that are closely related to depression and the effects of antidepressants, thereby demonstrating a promising antidepressant potential.
Collapse
Affiliation(s)
- Dmitrii D. Markov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| | - Oleg V. Dolotov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Igor A. Grivennikov
- National Research Center “Kurchatov Institute”, Kurchatov Sq. 2, 123182 Moscow, Russia
| |
Collapse
|
33
|
Zhang Y, Wang J, Ye Y, Zou Y, Chen W, Wang Z, Zou Z. Peripheral cytokine levels across psychiatric disorders: A systematic review and network meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 125:110740. [PMID: 36893912 DOI: 10.1016/j.pnpbp.2023.110740] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/27/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Immune dysregulated cytokine production is involved in mental diseases. However, the results are inconsistent and the pattern of cytokine alterations has not been compared across disorders. We performed a network impact analysis of cytokine levels for different psychiatric disorders including schizophrenia, major depressive disorder, bipolar disorder, panic disorder, post-traumatic stress disorder and obsessive compressive disorder to evaluate their clinical impact across conditions. Studies were identified by searching the electronic databases up to 31/05/2022. A total of eight cytokines, together with (high-sensitivity) C-reactive proteins (hsCRP/CRP) were included in the network meta-analysis. The levels of proinflammatory cytokines, hsCRP/CRP and interleukin 6 (IL-6) were significantly increased in patients with psychiatric disorders when compared to controls. IL-6 showed no significant difference among comparisons between disorders according to the network meta-analysis. Interleukin 10 (IL-10) is significantly increased in patients with bipolar disorder compared to major depressive disorder. Further, the level of interleukin-1 beta (IL-1β) was significantly increased in major depressive disorder as compared to bipolar disorder. The level of interleukin 8 (IL-8) varied among these psychiatric disorders based on the network meta-analysis result. Overall, abnormal cytokine levels were found in psychiatric disorders, and some of the cytokines displayed differential characteristics in these disorders, especially IL-8, pointing to a role as potential biomarkers for general and differential diagnosis.
Collapse
Affiliation(s)
- Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | | | - Yu Ye
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Yazhu Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Wei Chen
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zuxing Wang
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Zhili Zou
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan, China; Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu, Sichuan, China.
| |
Collapse
|
34
|
Intestinal gluconeogenesis: metabolic benefits make sense in the light of evolution. Nat Rev Gastroenterol Hepatol 2023; 20:183-194. [PMID: 36470967 DOI: 10.1038/s41575-022-00707-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 03/02/2023]
Abstract
The intestine, like the liver and kidney, in various vertebrates and humans is able to carry out gluconeogenesis and release glucose into the blood. In the fed post-absorptive state, intestinal glucose is sensed by the gastrointestinal nervous system. The latter initiates a signal to the brain regions controlling energy homeostasis and stress-related behaviour. Intestinal gluconeogenesis (IGN) is activated by several complementary mechanisms, in particular nutritional situations (for example, when food is enriched in protein or fermentable fibre and after gastric bypass surgery in obesity). In these situations, IGN has several metabolic and behavioural benefits. As IGN is activated by nutrients capable of fuelling systemic gluconeogenesis, IGN could be a signal to the brain that food previously ingested is suitable for maintaining plasma glucose for a while. This process might account for the benefits observed. Finally, in this Perspective, we discuss how the benefits of IGN in fasting and fed states could explain why IGN emerged and was maintained in vertebrates by natural selection.
Collapse
|
35
|
Rizavi HS, Khan OS, Zhang H, Bhaumik R, Grayson DR, Pandey GN. Methylation and expression of glucocorticoid receptor exon-1 variants and FKBP5 in teenage suicide-completers. Transl Psychiatry 2023; 13:53. [PMID: 36781843 PMCID: PMC9925759 DOI: 10.1038/s41398-023-02345-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
A dysregulated hypothalamic-pituitary-adrenal (HPA) axis has repeatedly been demonstrated to play a fundamental role in psychiatric disorders and suicide, yet the mechanisms underlying this dysregulation are not clear. Decreased expression of the glucocorticoid receptor (GR) gene, which is also susceptible to epigenetic modulation, is a strong indicator of impaired HPA axis control. In the context of teenage suicide-completers, we have systematically analyzed the 5'UTR of the GR gene to determine the expression levels of all GR exon-1 transcript variants and their epigenetic state. We also measured the expression and the epigenetic state of the FK506-binding protein 51 (FKBP5/FKBP51), an important modulator of GR activity. Furthermore, steady-state DNA methylation levels depend upon the interplay between enzymes that promote DNA methylation and demethylation activities, thus we analyzed DNA methyltransferases (DNMTs), ten-eleven translocation enzymes (TETs), and growth arrest- and DNA-damage-inducible proteins (GADD45). Focusing on both the prefrontal cortex (PFC) and hippocampus, our results show decreased expression in specific GR exon-1 variants and a strong correlation of DNA methylation changes with gene expression in the PFC. FKBP5 expression is also increased in both areas suggesting a decreased GR sensitivity to cortisol binding. We also identified aberrant expression of DNA methylating and demethylating enzymes in both brain regions. These findings enhance our understanding of the complex transcriptional regulation of GR, providing evidence of epigenetically mediated reprogramming of the GR gene, which could lead to possible epigenetic influences that result in lasting modifications underlying an individual's overall HPA axis response and resilience to stress.
Collapse
Affiliation(s)
- Hooriyah S Rizavi
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Omar S Khan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hui Zhang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Runa Bhaumik
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Dennis R Grayson
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| | - Ghanshyam N Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| |
Collapse
|
36
|
Wang C, Zhou Y, Feinstein A. Neuro-immune crosstalk in depressive symptoms of multiple sclerosis. Neurobiol Dis 2023; 177:106005. [PMID: 36680805 DOI: 10.1016/j.nbd.2023.106005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
Depressive disorders can occur in up to 50% of people with multiple sclerosis in their lifetime. If left untreated, comorbid major depressive disorders may not spontaneously remit and is associated with an increased morbidity and mortality. Conversely, epidemiological evidence supports increased psychiatric visit as a significant prodromal event prior to diagnosis of MS. Are there common molecular pathways that contribute to the co-development of MS and psychiatric illnesses? We discuss immune cells that are dysregulated in MS and how such dysregulation can induce or protect against depressive symptoms. This is not meant to be a comprehensive review of all molecular pathways but rather a framework to guide future investigations of immune responses in depressed versus euthymic people with MS. Currently, there is weak evidence supporting the use of antidepressant medication in comorbid MS patients. It is our hope that by better understanding the neuroimmune crosstalk in the context of depression in MS, we can enhance the potential for future therapeutic options.
Collapse
Affiliation(s)
- Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Yulin Zhou
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Anthony Feinstein
- Department of Psychiatry, Sunnybrook Health Sciences Centre and University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Bertram T, Hoffmann Ayala D, Huber M, Brandl F, Starke G, Sorg C, Mulej Bratec S. Human threat circuits: Threats of pain, aggressive conspecific, and predator elicit distinct BOLD activations in the amygdala and hypothalamus. Front Psychiatry 2023; 13:1063238. [PMID: 36733415 PMCID: PMC9887727 DOI: 10.3389/fpsyt.2022.1063238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction Threat processing, enabled by threat circuits, is supported by a remarkably conserved neural architecture across mammals. Threatening stimuli relevant for most species include the threat of being attacked by a predator or an aggressive conspecific and the threat of pain. Extensive studies in rodents have associated the threats of pain, predator attack and aggressive conspecific attack with distinct neural circuits in subregions of the amygdala, the hypothalamus and the periaqueductal gray. Bearing in mind the considerable conservation of both the anatomy of these regions and defensive behaviors across mammalian species, we hypothesized that distinct brain activity corresponding to the threats of pain, predator attack and aggressive conspecific attack would also exist in human subcortical brain regions. Methods Forty healthy female subjects underwent fMRI scanning during aversive classical conditioning. In close analogy to rodent studies, threat stimuli consisted of painful electric shocks, a short video clip of an attacking bear and a short video clip of an attacking man. Threat processing was conceptualized as the expectation of the aversive stimulus during the presentation of the conditioned stimulus. Results Our results demonstrate differential brain activations in the left and right amygdala as well as in the left hypothalamus for the threats of pain, predator attack and aggressive conspecific attack, for the first time showing distinct threat-related brain activity within the human subcortical brain. Specifically, the threat of pain showed an increase of activity in the left and right amygdala and the left hypothalamus compared to the threat of conspecific attack (pain > conspecific), and increased activity in the left amygdala compared to the threat of predator attack (pain > predator). Threat of conspecific attack revealed heightened activity in the right amygdala, both in comparison to threat of pain (conspecific > pain) and threat of predator attack (conspecific > predator). Finally, for the condition threat of predator attack we found increased activity in the bilateral amygdala and the hypothalamus when compared to threat of conspecific attack (predator > conspecific). No significant clusters were found for the contrast predator attack > pain. Conclusion Results suggest that threat type-specific circuits identified in rodents might be conserved in the human brain.
Collapse
Affiliation(s)
- Teresa Bertram
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Daniel Hoffmann Ayala
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurosurgery, Klinikum Großhadern, Ludwig-Maximilians-University, Munich, Germany
| | - Maria Huber
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Felix Brandl
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Georg Starke
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- College of Humanities, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christian Sorg
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Satja Mulej Bratec
- Department of Neuroradiology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Psychology, Faculty of Arts, University of Maribor, Maribor, Slovenia
| |
Collapse
|
38
|
Redei EE, Udell ME, Solberg Woods LC, Chen H. The Wistar Kyoto Rat: A Model of Depression Traits. Curr Neuropharmacol 2023; 21:1884-1905. [PMID: 36453495 PMCID: PMC10514523 DOI: 10.2174/1570159x21666221129120902] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/19/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
There is an ongoing debate about the value of animal research in psychiatry with valid lines of reasoning stating the limits of individual animal models compared to human psychiatric illnesses. Human depression is not a homogenous disorder; therefore, one cannot expect a single animal model to reflect depression heterogeneity. This limited review presents arguments that the Wistar Kyoto (WKY) rats show intrinsic depression traits. The phenotypes of WKY do not completely mirror those of human depression but clearly indicate characteristics that are common with it. WKYs present despair- like behavior, passive coping with stress, comorbid anxiety, and enhanced drug use compared to other routinely used inbred or outbred strains of rats. The commonly used tests identifying these phenotypes reflect exploratory, escape-oriented, and withdrawal-like behaviors. The WKYs consistently choose withdrawal or avoidance in novel environments and freezing behaviors in response to a challenge in these tests. The physiological response to a stressful environment is exaggerated in WKYs. Selective breeding generated two WKY substrains that are nearly isogenic but show clear behavioral differences, including that of depression-like behavior. WKY and its substrains may share characteristics of subgroups of depressed individuals with social withdrawal, low energy, weight loss, sleep disturbances, and specific cognitive dysfunction. The genomes of the WKY and WKY substrains contain variations that impact the function of many genes identified in recent human genetic studies of depression. Thus, these strains of rats share characteristics of human depression at both phenotypic and genetic levels, making them a model of depression traits.
Collapse
Affiliation(s)
- Eva E. Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mallory E. Udell
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Leah C. Solberg Woods
- Section on Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
39
|
Manosso LM, Arent CO, Borba LA, Abelaira HM, Réus GZ. Natural Phytochemicals for the Treatment of Major Depressive Disorder: A Mini-Review of Pre- and Clinical Studies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2023; 22:237-254. [PMID: 35352639 DOI: 10.2174/1570159x20666220329143804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/03/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022]
Abstract
Major Depressive Disorder (MDD) is a common mental illness that causes significant disability and declining quality of life. An overlap of multiple factors can be involved in the pathophysiology of this mood disorder, including increased inflammation and oxidative stress, change in neurotransmitters, decreased brain-derived neurotrophic factor (BDNF), activation of the hypothalamicpituitary- adrenal (HPA) axis, and changes in the microbiota-gut-brain axis. Although the classic treatment for MDD is safe, it is far from ideal, with delay to start the best clinic, side effects, and a large number of non-responses or partial-responses. Therefore, other alternatives are being studied to improve depressive symptoms, and, among them, the role of phytochemicals in food stands out. This mini-review will discuss the main phytochemicals present in foods with clinical and preclinical studies showing benefits for MDD treatment. In addition, the main mechanisms of action that are being proposed for each of these compounds will be addressed.
Collapse
Affiliation(s)
- Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Camila O Arent
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Laura A Borba
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Helena M Abelaira
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| |
Collapse
|
40
|
Halaris A, Cook J. The Glutamatergic System in Treatment-Resistant Depression and Comparative Effectiveness of Ketamine and Esketamine: Role of Inflammation? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:487-512. [PMID: 36949323 DOI: 10.1007/978-981-19-7376-5_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
The glutamatergic system is the primary excitatory pathway within the CNS and is responsible for cognition, memory, learning, emotion, and mood. Because of its significant importance in widespread nervous system function, it is tightly regulated through multiple mechanisms, such as glutamate recycling, microglial interactions, and inflammatory pathways. Imbalance within the glutamatergic system has been implicated in a wide range of pathological conditions including neurodegenerative conditions, neuromuscular conditions, and mood disorders including depression. Major depressive disorder (MDD) is the most common mood disorder worldwide, has a high prevalence rate, and afflicts approximately 280 million people. While there are numerous treatments for the disease, 30-40% of patients are unresponsive to treatment and deemed treatment resistant; approximately another third experience only partial improvement (World Health Organization, Depression fact sheet [Internet], 2020). Esketamine, the S-enantiomer of ketamine, was approved by the Food and Drug Administration for treatment-resistant depression (TRD) in 2019 and has offered new hope to patients. It is the first treatment targeting the glutamatergic system through a complex mechanism. Numerous studies have implicated imbalance in the glutamatergic system in depression and treatment resistance. Esketamine and ketamine principally work through inhibition of the NMDA receptor, though more recent studies have implicated numerous other mechanisms mediating the antidepressant efficacy of these agents. These mechanisms include increase in brain-derived neurotrophic factor (BDNF), activation of mammalian target of the rapamycin complex (mTORC), and reduction in inflammation. Esketamine and ketamine have been shown to decrease inflammation in numerous ways principally through reducing pro-inflammatory cytokines (e.g., TNF-α, IL-6) (Loix et al., Acta Anaesthesiol Belg 62(1):47-58, 2011; Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021). This anti-inflammatory effect has also been shown to be involved in the antidepressive properties of both ketamine and esketamine (Chen et al., Psychiatry Res 269:207-11, 2018; Kopra et al., J Psychopharmacol 35(8):934-45, 2021).
Collapse
Affiliation(s)
- Angelos Halaris
- Department of Psychiatry, Loyola University Stritch School of Medicine, Maywood, IL, USA.
| | - John Cook
- Department of Psychiatry, Loyola University Stritch School of Medicine, Maywood, IL, USA
| |
Collapse
|
41
|
Vetrovoy O, Stratilov V, Lomert E, Tyulkova E. Prenatal Hypoxia-Induced Adverse Reaction to Mild Stress is Associated with Depressive-Like Changes in the Glucocorticoid System of Rats. Neurochem Res 2022; 48:1455-1467. [PMID: 36495386 DOI: 10.1007/s11064-022-03837-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/20/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
The effects of prenatal hypoxia on neurodevelopment are predominantly associated with impaired maternal glucocorticoid stimulation of the fetus, which is "imprinted" in altered sensitivity of glucocorticoid reception in brain structures of offspring and can affect brain plasticity during lifespan. This study aimed to investigate response of the brain glucocorticoid system to mild stress (MS) in adult rats that survived prenatal severe hypoxia (PSH) on embryonic days 14-16. In response to MS the control (but not PSH) rats demonstrate increased corticosterone levels, a decrease in exploratory activity and increased anxiety. In the raphe nuclei of adult PSH rats the expression of glucocorticoid receptors (GR) is increased without changes in serotonin levels in comparison with the control. MS induces a decrease in GR expression accompanied by up-regulation of tryptophan hydroxylase 2 (tph2) and down-regulation of monoamine oxidase A (maoa) transcription in the raphe nuclei of both control and PSH groups. PSH also causes significant deviations in GR expression and GR-dependent transcription in the hippocampus, the medial prefrontal cortex, but not in the amygdala of rats. However, in response to MS, PSH rats demonstrate mild changes in their activity, while in control animals the MS-induced activity of the glucocorticoid system in these brain structures is similar to intact PSH animals. Impaired activity of the glucocorticoid system in the extrahypothalamic brain structures of PSH rats is accompanied by increase in the hypothalamic corticotropin-releasing hormone (CRH) levels in comparison with the control regardless of MS. Synthesis of proopiomelanocortin (POMC) and release of adrenocorticotropic hormone (ACTH) into the blood are decreased in response to MS in the pituitary of control rats, which demonstrates a negative glucocorticoid feedback mechanism. Meanwhile, in the pituitary of PSH rats reduced POMC levels were found regardless of MS. Thus, prenatal hypoxia causes depression-like patterns in the brain glucocorticoid system with adverse reaction to mild stressors.
Collapse
Affiliation(s)
- Oleg Vetrovoy
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034, Saint-Petersburg, Russia.
- Department of Biochemistry, Faculty of Biology, Saint Petersburg State University, Universitetskaya Emb. 7-9, 199034, Saint- Petersburg, Russia.
| | - Viktor Stratilov
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034, Saint-Petersburg, Russia
| | - Ekaterina Lomert
- Group of Molecular Genetics of Tumor Cells, Institute of Cytology, Russian Academy of Sciences, Tihoretsky Pr. 4, 194064, Saint-Petersburg, Russia
| | - Ekaterina Tyulkova
- Laboratory of Regulation of Brain Neuronal Functions, Pavlov Institute of Physiology, Russian Academy of Sciences, Makarova Emb. 6, 199034, Saint-Petersburg, Russia
| |
Collapse
|
42
|
Is depression the missing link between inflammatory mediators and cancer? Pharmacol Ther 2022; 240:108293. [PMID: 36216210 DOI: 10.1016/j.pharmthera.2022.108293] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Patients with cancer are at greater risk of developing depression in comparison to the general population and this is associated with serious adverse effects, such as poorer quality of life, worse prognosis and higher mortality. Although the relationship between depression and cancer is now well established, a common underlying pathophysiological mechanism between the two conditions is yet to be elucidated. Existing theories of depression, based on monoamine neurotransmitter system dysfunction, are insufficient as explanations of the disorder. Recent advances have implicated neuroinflammatory mechanisms in the etiology of depression and it has been demonstrated that inflammation at a peripheral level may be mirrored centrally in astrocytes and microglia serving to promote chronic levels of inflammation in the brain. Three major routes to depression in cancer in which proinflammatory mediators are implicated, seem likely. Activation of the kynurenine pathway involving cytokines, increases tryptophan catabolism, resulting in diminished levels of serotonin which is widely acknowledged as being the hallmark of depression. It also results in neurotoxic effects on brain regions thought to be involved in the evolution of major depression. Proinflammatory mediators also play a crucial role in impairing regulatory glucocorticoid mediated feedback of the hypothalamic-pituitary-adrenal axis, which is activated by stress and considered to be involved in both depression and cancer. The third route is via the glutamatergic pathway, whereby glutamate excitotoxicity may lead to depression associated with cancer. A better understanding of the mechanisms underlying these dysregulated and other newly emerging pathways may provide a rationale for therapeutic targeting, serving to improve the care of cancer patients.
Collapse
|
43
|
Sideromenos S, Nikou M, Czuczu B, Thalheimer N, Gundacker A, Horvath O, Cuenca Rico L, Stöhrmann P, Niello M, Partonen T, Pollak DD. The metabolic regulator USF-1 is involved in the control of affective behaviour in mice. Transl Psychiatry 2022; 12:497. [PMID: 36450713 PMCID: PMC9712601 DOI: 10.1038/s41398-022-02266-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Epidemiological studies indicate a bidirectional association between metabolic disturbances, including obesity and related pathological states, and mood disorders, most prominently major depression. However, the biological mechanisms mediating the comorbid relationship between the deranged metabolic and mood states remain incompletely understood. Here, we tested the hypothesis that the enhanced activation of brown fat tissue (BAT), known to beneficially regulate obesity and accompanying dysfunctional metabolic states, is also paralleled by an alteration of affective behaviour. We used upstream stimulatory factor 1 (USF-1) knock-out (KO) mice as a genetic model of constitutively activated BAT and positive cardiometabolic traits and found a reduction of depression-like and anxiety-like behaviours associated with USF-1 deficiency. Surgical removal of interscapular BAT did not impact the behavioural phenotype of USF-1 KO mice. Further, the absence of USF-1 did not lead to alterations of adult hippocampal neural progenitor cell proliferation, differentiation, or survival. RNA-seq analysis characterised the molecular signature of USF-1 deficiency in the hippocampus and revealed a significant increase in the expression of several members of the X-linked lymphocyte-regulated (xlr) genes, including xlr3b and xlr4b. Xlr genes are the mouse orthologues of the human FAM9 gene family and are implicated in the regulation of dendritic branching, dendritic spine number and morphology. The transcriptional changes were associated with morphological alterations in hippocampal neurons, manifested in reduced dendritic length and complexity in USF-1 KO mice. Collectively these data suggest that the metabolic regulator USF-1 is involved in the control of affective behaviour in mice and that this modulation of mood states is unrelated to USF-1-dependent BAT activation, but reflected in structural changes in the brain.
Collapse
Affiliation(s)
- Spyros Sideromenos
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Maria Nikou
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Barbara Czuczu
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Nikolas Thalheimer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Orsolya Horvath
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Laura Cuenca Rico
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Peter Stöhrmann
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Marco Niello
- Institute for Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria
| | - Timo Partonen
- Mental Health Team, Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090, Vienna, Austria.
| |
Collapse
|
44
|
Maganga-Bakita I, Aiken AA, Puracchio MJ, Kentner AC, Hunter RG. Regulatory Effects of Maternal Immune Activation and Environmental Enrichment on Glucocorticoid Receptor and FKBP5 Expression in Stress-sensitive Regions of the Offspring Brain. Neuroscience 2022; 505:51-58. [PMID: 36116554 PMCID: PMC9888218 DOI: 10.1016/j.neuroscience.2022.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 02/02/2023]
Abstract
A mother's exposure to immune challenge during pregnancy is well known to be a detrimental factor to the development of the offspring's brain and an impetus for neuropsychiatric disorders. Previous studies have shown that these adverse events can dysregulate the stress response machinery. Two crucial components of the stress axis considered to be affected have been targets in these studies: the glucocorticoid receptor (GR), and FKBP5 which regulates GR activity. The implementation of interventions such as Environmental Enrichment (EE) have shown positive results in protecting the brain against the consequences associated with gestational insults. In light of this, we investigated the transcriptional regulation of GR and FKBP5 from six stress-sensitive brain regions of the offspring using a rat model of maternal immune activation (MIA). Furthermore, we analyzed the effect of an enriched environment on their expression. We found an increase in FKBP5 in MIA rats in five brain regions. RT-qPCR analysis of MIA's effect on GR yielded insignificant results. However, we found that EE increased GR expression in the medial preoptic area which could be indicative of a positive regulation by EE. This study provides evidence of the impact of both gestational insult and EE on the regulation of stress responsive genes in the developing brain.
Collapse
Affiliation(s)
| | - Ariel A Aiken
- University of Massachusetts Boston, Department of Psychology, Boston, MA, USA
| | - Madeline J Puracchio
- Massachusetts College of Pharmacy and Health Sciences, Department of Psychology, Boston, MA, USA
| | - Amanda C Kentner
- Massachusetts College of Pharmacy and Health Sciences, Department of Psychology, Boston, MA, USA
| | - Richard G Hunter
- University of Massachusetts Boston, Department of Psychology, Boston, MA, USA.
| |
Collapse
|
45
|
Deng F, Li X, Tang C, Chen J, Fan B, Liang J, Zhen X, Tao R, Zhang S, Cong Z, Du W, Zhao H, Xu L. Mechanisms of Xiong-Pi-Fang in treating coronary heart disease associated with depression: A systematic pharmacology strategy and in vivo pharmacological validation. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115631. [PMID: 35987411 DOI: 10.1016/j.jep.2022.115631] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/18/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Coronary heart disease (CHD) and depression are very common and often co-existing disorders. Xiong-Pi-Fang (XPF), a therapeutic classical traditional Chinese medicine (TCM) formula, has shown satisfactory efficacy in treating CHD associated with depression. However, its mechanism of action is still unknown. PURPOSE To employ a systematic pharmacology approach for identifying the action mechanisms of XPF in treating CHD associated with depression. METHODS We used a systematic pharmacology approach to identify the potential active mechanisms of XPF in treating CHD with depression. Potential active compounds in XPF and the diseases targets were screened using relevant databases to build corresponding pathways, following the experiments that were conducted to confirm whether the presumptive results of systemic pharmacology were correct. RESULTS Network pharmacology predicted 42 key targets and 20 signaling pathways involved in XPF-mediated treatment, with IL-6/JAK2/STAT3/HIF-1α/VEGF-A pathway significantly affected. The common influences were hypothalamic-pituitary-adrenal axis (HPA axis) and glucocorticoid signaling, validated through chronic unexpected mild stress (CUMS) with isoprenaline (ISO) for inducing CHD within the depression model in rats. In addition, XPF intake reduced depressive-like behaviors and improved ECG ischemic changes. Furthermore, XPF exerted some anti-inflammatory effects by inhibiting the interleukin-6 (IL-6) induced phosphorylation of janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3), ultimately downregulating hypoxia-inducible factor 1-α (HIF-1α) and vascular endothelial growth factor-A (VEGF-A) activation. The dysfunctional HPA axis feedback loop was also regulated, which enhanced the glucocorticoid receptor (GR) expression. In contrast, it improved glucocorticoid resistance by reducing the mineralocorticoid receptor expression. CONCLUSIONS Suppressing IL-6 release and maintaining the HPA feedback loop balance could be the primary mechanism of XPF against CHD with depression. The significance of the IL-6 and HPA axis identified indicates their potential as essential targets for CHD therapy with depression.
Collapse
Affiliation(s)
- Fangjuan Deng
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Xiaofeng Li
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, 300150, China
| | - Cheng Tang
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jinhong Chen
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Boya Fan
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Jiayu Liang
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Xin Zhen
- Graduate School, Tianjin University of TCM, Tianjin, 301617, China
| | - Rui Tao
- Department of TCM, Tianjin University of TCM, Tianjin, 301617, China
| | - Shaoqiang Zhang
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, 300150, China
| | - Zidong Cong
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, 300150, China
| | - Wuxun Du
- Department of Cardiology, The Second Affiliated Hospital of Tianjin University of TCM, Tianjin, 300150, China.
| | - Hucheng Zhao
- Department of Aeronautics and Astronautics, Tsinghua University, Beijing, 100084, China.
| | - Liang Xu
- School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China; Tianjin Medical College, Tianjin, 300222, China.
| |
Collapse
|
46
|
Crocin, the main active saffron (Crocus sativus L.) constituent, as a potential candidate to prevent anxiety and depressive-like behaviors induced by unpredictable chronic mild stress. Neurosci Lett 2022; 791:136912. [DOI: 10.1016/j.neulet.2022.136912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/29/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022]
|
47
|
Richardson B, MacPherson A, Bambico F. Neuroinflammation and neuroprogression in depression: Effects of alternative drug treatments. Brain Behav Immun Health 2022; 26:100554. [DOI: 10.1016/j.bbih.2022.100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/29/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022] Open
|
48
|
Ji D, Francesconi M, Flouri E, Papachristou E. The role of inflammatory markers and cortisol in the association between early social cognition abilities and later internalising or externalising problems: Evidence from a UK birth cohort. Brain Behav Immun 2022; 105:225-236. [PMID: 35835432 DOI: 10.1016/j.bbi.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/29/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVE Deficits in social cognition are associated with internalising (emotional and peer problems) and externalising (conduct problems and hyperactivity/inattention) symptoms in youth. It has been suggested that stress may be one of the mechanisms underlying these associations. However, no empirical studies have investigated if physiological stress can explain the prospective associations between social cognition deficits and internalising and externalising symptoms in the general youth population. This study addressed this question and focused on two indicators of physiological stress, dysregulated diurnal cortisol patterns and systemic inflammation. METHOD Participants were 714 individuals from the Avon Longitudinal Study of Parents and Children (ALSPAC), a UK population-based birth cohort. Bayesian structural equation modelling was used to investigate a) the associations of social cognition abilities at ages 8, 11, and 14 years with internalising and externalising problems at age 17 years and b) the potential mediating effects of cortisol parameters at age 15 years and inflammatory markers [interleukin 6 (IL-6) and C-reactive protein (CRP)] at ages 9 and 16 years. RESULTS We found that social cognition difficulties were associated with later internalising and externalising problems. Flattened diurnal cortisol slope was associated with hyperactivity/inattention problems two years later. Lower morning cortisol partially mediated the direct association between social communication deficits at 8 years and hyperactivity/inattention and conduct problems at 17 years, even after adjustments for inflammation and confounders (for hyperactivity/inattention: indirect effect = 0.07, 95% CI [0.00, 0.18], p = .042; for conduct problems: indirect effect = 0.04, 95% CI [0.00, 0.11], p = .040). We did not find a significant association between systemic inflammation and social cognition difficulties, internalising problems, or externalising problems. CONCLUSION Our findings suggest that part of the effect of social communication difficulties in childhood on externalising problems in adolescence was mediated by lower morning cortisol. Hence, our study indicates that the hypoactivity of the hypothalamic-pituitary-adrenal (HPA) axis may be one of the physiological mechanisms linking some social cognition deficits to externalising problems.
Collapse
Affiliation(s)
- Dongying Ji
- Department of Psychology and Human Development, UCL Institute of Education, 25 Woburn Square, London WC1H 0AA, UK.
| | - Marta Francesconi
- Department of Psychology and Human Development, UCL Institute of Education, 25 Woburn Square, London WC1H 0AA, UK.
| | - Eirini Flouri
- Department of Psychology and Human Development, UCL Institute of Education, 25 Woburn Square, London WC1H 0AA, UK.
| | - Efstathios Papachristou
- Department of Psychology and Human Development, UCL Institute of Education, 25 Woburn Square, London WC1H 0AA, UK.
| |
Collapse
|
49
|
Birnie MT, Eapen AV, Kershaw YM, Lodge D, Collingridge GL, Conway‐Campbell BL, Lightman SL. Time of day influences stress hormone response to ketamine. J Neuroendocrinol 2022; 34:e13194. [PMID: 36056546 PMCID: PMC9787621 DOI: 10.1111/jne.13194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 12/31/2022]
Abstract
Over 50% of depressed patients show hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. Conventional therapy takes weeks to months to improve symptoms. Ketamine has rapid onset antidepressant effects. Yet its action on HPA axis activity is poorly understood. Here, we measured the corticosterone (CORT) response to ketamine administered at different times of day in the Wistar-Kyoto (WKY) rat. In male rats, blood was collected every 10 min for 28 h using an automated blood sampling system. Ketamine (5/10/25 mg · kg) was infused through a subcutaneous cannula at two time points-during the active and inactive period. CORT levels in blood were measured in response to ketamine using a radioimmunoassay. WKY rats displayed robust circadian secretion of corticosterone and was not overly different to Sprague Dawley rats. Ketamine (all doses) significantly increased CORT response at both infusion times. However, a dose dependent effect and marked increase over baseline was observed when ketamine was administered during the inactive phase. Ketamine has a robust and rapid effect on HPA axis function. The timing of ketamine injection may prove crucial for glucocorticoid-mediated action in depression.
Collapse
Affiliation(s)
- Matthew T. Birnie
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| | - Alen V. Eapen
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
- School of Physiology, Pharmacology & NeuroscienceUniversity of BristolBristolUK
| | - Yvonne M. Kershaw
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| | - David Lodge
- School of Physiology, Pharmacology & NeuroscienceUniversity of BristolBristolUK
| | - Graham L. Collingridge
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
- School of Physiology, Pharmacology & NeuroscienceUniversity of BristolBristolUK
| | - Becky L. Conway‐Campbell
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| | - Stafford L. Lightman
- Henry Wellcome Laboratories for Integrative Neuroendocrinology, School of MedicineUniversity of BristolBristolUK
| |
Collapse
|
50
|
Severe psychiatric disorders and general medical comorbidities: inflammation-related mechanisms and therapeutic opportunities. Clin Sci (Lond) 2022; 136:1257-1280. [PMID: 36062418 DOI: 10.1042/cs20211106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022]
Abstract
Individuals with severe psychiatric disorders, such as mood disorders and schizophrenia, are at increased risk of developing other medical conditions, especially cardiovascular and metabolic diseases. These medical conditions are underdiagnosed and undertreated in these patients contributing to their increased morbidity and mortality. The basis for this increased comorbidity is not well understood, possibly reflecting shared risks factors (e.g. lifestyle risk factors), shared biological mechanisms and/or reciprocal interactions. Among overlapping pathophysiological mechanisms, inflammation and related factors, such as dysbiosis and insulin resistance, stand out. Besides underlying the association between psychiatric disorders and cardiometabolic diseases, these mechanisms provide several potential therapeutic targets.
Collapse
|