1
|
Ziu T, Sambur E, Ruzsics Z, Hengel H, Grabherr R, Höfinger S, Harant H. In Vitro Profiling of the Antiviral Peptide TAT-I24. Int J Mol Sci 2024; 25:10463. [PMID: 39408791 PMCID: PMC11477294 DOI: 10.3390/ijms251910463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
The synthetic peptide TAT-I24 (GRKKRRQRRRPPQCLAFYACFC) exerts antiviral activity against several double-stranded (ds) DNA viruses, including herpes simplex viruses, cytomegalovirus, some adenoviruses, vaccinia virus and SV40 polyomavirus. In the present study, in vitro profiling of this peptide was performed with the aim of characterizing and improving its properties for further development. As TAT-I24 contains three free cysteine residues, a potential disadvantageous feature, peptide variants with replacements or deletions of specific residues were generated and tested in various cell systems and by biochemical analyses. Some cysteine replacements had no impact on the antiviral activity, such as the deletion of cysteine 14, which also showed improved biochemical properties, while the cyclization of cysteines 14 and 20 had the most detrimental effect on antiviral activity. At concentrations below 20 µM, TAT-I24 and selected variants did not induce hemolysis in red blood cells (RBCs) nor modulated lipopolysaccharide (LPS)-induced release of cytokines, such as interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), in human peripheral blood mononuclear cells (PBMCs). These data indicate that TAT-I24 or its peptide variants are not expected to cause unwanted effects on blood cells.
Collapse
Affiliation(s)
- Theodhora Ziu
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| | - Ezgi Sambur
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
| | - Zsolt Ruzsics
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Hartmut Hengel
- Institute of Virology, Medical Center and Faculty of Medicine, University of Freiburg, Hermann-Herder-Str.11, 79104 Freiburg, Germany; (Z.R.); (H.H.)
| | - Reingard Grabherr
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria;
| | - Siegfried Höfinger
- VSC Research Center, Technical University of Vienna, Operngasse 11/E057-09, 1040 Vienna, Austria; (E.S.); or (S.H.)
- Department of Physics, Michigan Technological University, Houghton, MI 49931, USA
| | - Hanna Harant
- Pivaris BioScience GmbH, Media Quarter Marx 3.4, Maria-Jacobi-Gasse 1, 1030 Vienna, Austria;
| |
Collapse
|
2
|
Pérez-Rubio P, Vendrell-Flotats M, Romero EL, Enemark-Rasmussen K, Cervera L, Gòdia F, Lavado-García J. Internalization of PEI-based complexes in transient transfection of HEK293 cells is triggered by coalescence of membrane heparan sulfate proteoglycans like Glypican-4. Biomed Pharmacother 2024; 176:116893. [PMID: 38850653 DOI: 10.1016/j.biopha.2024.116893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024] Open
Abstract
Polymer-cationic mediated gene delivery is a well-stablished strategy of transient gene expression (TGE) in mammalian cell cultures. Nonetheless, its industrial implementation is hindered by the phenomenon known as cell density effect (CDE) that limits the cell density at which cultures can be efficiently transfected. The rise in personalized medicine and multiple cell and gene therapy approaches based on TGE, make more relevant to understand how to circumvent the CDE. A rational study upon DNA/PEI complex formation, stability and delivery during transfection of HEK293 cell cultures has been conducted, providing insights on the mechanisms for polyplexes uptake at low cell density and disruption at high cell density. DNA/PEI polyplexes were physiochemically characterized by coupling X-ray spectroscopy, confocal microscopy, cryo-transmission electron microscopy (TEM) and nuclear magnetic resonance (NMR). Our results showed that the ionic strength of polyplexes significantly increased upon their addition to exhausted media. This was reverted by depleting extracellular vesicles (EVs) from the media. The increase in ionic strength led to polyplex aggregation and prevented efficient cell transfection which could be counterbalanced by implementing a simple media replacement (MR) step before transfection. Inhibiting and labeling specific cell-surface proteoglycans (PGs) species revealed different roles of PGs in polyplexes uptake. Importantly, the polyplexes uptake process seemed to be triggered by a coalescence phenomenon of HSPG like glypican-4 around polyplex entry points. Ultimately, this study provides new insights into PEI-based cell transfection methodologies, enabling to enhance transient transfection and mitigate the cell density effect (CDE).
Collapse
Affiliation(s)
- Pol Pérez-Rubio
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Meritxell Vendrell-Flotats
- Servei de Microscòpia, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Elianet Lorenzo Romero
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | | | - Laura Cervera
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain; Serra Hunter Lecturer Professor.
| | - Francesc Gòdia
- Grup d'Enginyeria de Bioprocessos i Biocatàlisi Aplicada, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Campus de Bellaterra, Cerdanyola del Vallès, Barcelona 08193, Spain
| | - Jesús Lavado-García
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby Kgs 2800, Denmark.
| |
Collapse
|
3
|
Ghaemi B, Tanwar S, Singh A, Arifin DR, McMahon MT, Barman I, Bulte JWM. Cell-Penetrating and Enzyme-Responsive Peptides for Targeted Cancer Therapy: Role of Arginine Residue Length on Cell Penetration and In Vivo Systemic Toxicity. ACS APPLIED MATERIALS & INTERFACES 2024; 16:11159-11171. [PMID: 38385360 PMCID: PMC11362383 DOI: 10.1021/acsami.3c14908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
For the improved delivery of cancer therapeutics and imaging agents, the conjugation of cell-penetrating peptides (CPPs) increases the cellular uptake and water solubility of agents. Among the various CPPs, arginine-rich peptides have been the most widely used. Combining CPPs with enzyme-responsive peptides presents an innovative strategy to target specific intracellular enzymes in cancer cells and when combined with the appropriate click chemistry can enhance theranostic drug delivery through the formation of intracellular self-assembled nanostructures. However, one drawback of CPPs is their high positive charge which can cause nonspecific binding, leading to off-target accumulation and potential toxicity. Hence, balancing cell-specific penetration, toxicity, and biocompatibility is essential for future clinical efficacy. We synthesized six cancer-specific, legumain-responsive RnAANCK peptides containing one to six arginine residues, with legumain being an asparaginyl endopeptidase that is overexpressed in aggressive prostate tumors. When conjugated to Alexa Fluor 488, R1-R6AANCK peptides exhibited a concentration- and time-dependent cell penetration in prostate cancer cells, which was higher for peptides with higher R values, reaching a plateau after approximately 120 min. Highly aggressive DU145 prostate tumor cells, but not less aggressive LNCaP cells, self-assembled nanoparticles in the cytosol after the cleavage of the legumain-specific peptide. The in vivo biocompatibility was assessed in mice after the intravenous injection of R1-R6AANCK peptides, with concentrations ranging from 0.0125 to 0.4 mmol/kg. The higher arginine content in R4-6 peptides showed blood and urine indicators for the impairment of bone marrow, liver, and kidney function in a dose-dependent manner, with instant hemolysis and morbidity in extreme cases. These findings underscore the importance of designing peptides with the optimal arginine residue length for a proper balance of cell-specific penetration, toxicity, and in vivo biocompatibility.
Collapse
Affiliation(s)
- Behnaz Ghaemi
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Swati Tanwar
- Department of Mechanical Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland 21218, United States
| | - Aruna Singh
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, Maryland 21205, United States
| | - Dian R Arifin
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Michael T McMahon
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, Maryland 21205, United States
| | - Ishan Barman
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Mechanical Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland 21218, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Jeff W M Bulte
- Russell H. Morgan Department of Radiology and Radiological Science, Division of MR Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Inc., Baltimore, Maryland 21205, United States
- Department of Biomedical Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University Whiting School of Engineering, Baltimore, Maryland 21218, United States
| |
Collapse
|
4
|
Gu Y, Wu L, Hameed Y, Nabi-Afjadi M. Overcoming the challenge: cell-penetrating peptides and membrane permeability. BIOMATERIALS AND BIOSENSORS 2023; 2. [DOI: 10.58567/bab02010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
<p>Cell-penetrating peptides (CPPs) have emerged as a promising strategy for enhancing the membrane permeability of bioactive molecules, particularly in the treatment of central nervous system diseases. CPPs possess the ability to deliver a diverse array of bioactive molecules into cells using either covalent or non-covalent approaches, with a preference for non-covalent methods to preserve the biological activity of the transported molecules. By effectively traversing various physiological barriers, CPPs have exhibited significant potential in preclinical and clinical drug development. The discovery of CPPs represents a valuable solution to the challenge of limited membrane permeability of bioactive molecules and will continue to exert a crucial influence on the field of biomedical science.</p>
Collapse
Affiliation(s)
- Yuan Gu
- The Statistics Department, The George Washington University, Washington, United States
| | - Long Wu
- Department of Surgery, University of Maryland, Baltimore, United States
| | - Yasir Hameed
- Department of Applied Biological Sciences, Tokyo University of Science, Tokyo, Japan
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
Dong S, Wang X, Yang S, Guo F, Zhang J, Ji C, Shi L, Cheng Y, Hu Y, Li Z, Peng L, Guo L, Zhu W, Ren X, Yang JM, Zhang Y. Mechanistic Insights of NAC1 Nuclear Export and Its Role in Ovarian Cancer Resistance to Docetaxel. Biochem Pharmacol 2023; 211:115533. [PMID: 37019189 DOI: 10.1016/j.bcp.2023.115533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
In this study, we uncovered the nuclear export of nucleus accumbens-associated protein-1 (NAC1) as a novel mechanism involved in ovarian cancer resistance to taxanes, the chemotherapeutic drugs commonly used in treatment of this malignancy. We showed that NAC1, a nuclear factor of the BTB/POZ gene family, has a nuclear export signal (NES) at the N terminus (aa 17-28), and this NES critically contributes to the NAC1 nuclear-cytoplasmic shuttling when tumor cells were treated with docetaxel. Mechanistically, the nuclear-exported NAC1 bound to cullin3 (Cul3) and Cyclin B1 via its BTB and BOZ domains respectively, and the cyto-NAC1-Cul3 E3 ubiquitin ligase complex promotes the ubiquitination and degradation of Cyclin B1, thereby facilitating mitotic exit and leading to cellular resistance to docetaxel. We also showed in in vitro and in vivo experiments that TP-CH-1178, a membrane-permeable polypeptide against the NAC1 NES motif, blocked the nuclear export of NAC1, interfered with the degradation of Cyclin B1 and sensitized ovarian cancer cells to docetaxel. This study not only reveals a novel mechanism by which the NAC1 nuclear export is regulated and Cyclin B1 degradation and mitotic exit are impacted by the NAC1-Cul3 complex, but also provides the nuclear-export pathway of NAC1 as a potential target for modulating taxanes resistance in ovarian cancer and other malignancies.
Collapse
|
6
|
Yao J, Yin W, Chen Y, Chen X, Jiang Y, Wang T, Ma C, Zhou M, Chen T, Shaw C, Wang L. Conjugation of a Cationic Cell-Penetrating Peptide with a Novel Kunitzin-like Trypsin Inhibitor: New Insights for Enhancement of Peptide Bioactivities. Pharmaceutics 2022; 14:pharmaceutics14091805. [PMID: 36145553 PMCID: PMC9501525 DOI: 10.3390/pharmaceutics14091805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Cationic cell-penetrating peptides (CPPs), such as transactivator of transcription (TAT) peptide, have been proposed as effective drug carriers to improve intracellular delivery of biological macromolecules. Amphibian skin-derived Kunitz-type trypsin inhibitors (KTIs), short counterparts of KTIs from plant sources, were found to possess potent serine protease inhibitory activity. However, poor transmembrane permeability of these molecules has largely hindered the study of the full spectrum of their biological actions. As a result, this study aimed to extend the biological activities of amphibian KTIs by their conjugation to cationic CPPs. Herein, a novel peptide (kunitzin-OV2) and its phenylalanine-substituted analogue F9-kunitzin-OV2 (F9-KOV2) were evaluated for inhibition of trypsin/chymotrypsin and showed weak antibacterial activity against Escherichia coli (E. coli). As expected, the conjugation to TAT peptide did not increase membrane lysis compared with the original kunitzin-OV2, but effectively assisted this complex to enter cells. TAT-kunitzin-OV2 (TAT-KOV2) exhibited a 32-fold increase in antibacterial activity and an enhanced bactericidal rate against E. coli. In addition, the conjugation enabled the parent peptides to exhibit antiproliferative activity against cancer cells. Interestingly, TAT-F9-kunitzin-OV2 (TAT-F9-KOV2) showed stronger antiproliferative activity against human breast cancer (MCF-7) and human glioblastoma (U251MG) cell lines, which TAT-KOV2 did not possess. Moreover, TAT-F9-KOV2 showed a 20–25-fold increase in antiproliferative capacity against human lung cancer (H157, H460) cell lines compared with TAT-KOV2. Therefore, the conjugation of CPPs effectively solves the problem of cell penetration that short KTIs lack and provides evidence for new potential applications for their subsequent development as new antibacterial and anticancer agents.
Collapse
Affiliation(s)
- Junting Yao
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Weining Yin
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yuqing Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Department of Pharmacy, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Xiaoling Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (X.C.); (L.W.)
| | - Yangyang Jiang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tao Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chengbang Ma
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mei Zhou
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Tianbao Chen
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Chris Shaw
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Lei Wang
- School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Correspondence: (X.C.); (L.W.)
| |
Collapse
|
7
|
Tasset A, Bellamkonda A, Wang W, Pyatnitskiy I, Ward D, Peppas N, Wang H. Overcoming barriers in non-viral gene delivery for neurological applications. NANOSCALE 2022; 14:3698-3719. [PMID: 35195645 PMCID: PMC9036591 DOI: 10.1039/d1nr06939j] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Gene therapy for neurological disorders has attracted significant interest as a way to reverse or stop various disease pathologies. Typical gene therapies involving the central and peripheral nervous system make use of adeno-associated viral vectors whose questionable safety and limitations in manufacturing has given rise to extensive research into non-viral vectors. While early research studies have demonstrated limited efficacy with these non-viral vectors, investigation into various vector materials and functionalization methods has provided insight into ways to optimize these non-viral vectors to improve desired characteristics such as improved blood-brain barrier transcytosis, improved perfusion in brain region, enhanced cellular uptake and endosomal escape in neural cells, and nuclear transport of genetic material post- intracellular delivery. Using a combination of various strategies to enhance non-viral vectors, research groups have designed multi-functional vectors that have been successfully used in a variety of pre-clinical applications for the treatment of Parkinson's disease, brain cancers, and cellular reprogramming for neuron replacement. While more work is needed in the design of these multi-functional non-viral vectors for neural applications, much of the groundwork has been done and is reviewed here.
Collapse
Affiliation(s)
- Aaron Tasset
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Arjun Bellamkonda
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Wenliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Ilya Pyatnitskiy
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Deidra Ward
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Nicholas Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, The University of Texas at Austin, Austin, TX, USA
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX, USA
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
8
|
Amin M, Mansourian M, Burgers PC, Amin B, Jaafari MR, ten Hagen TLM. Increased Targeting Area in Tumors by Dual-Ligand Modification of Liposomes with RGD and TAT Peptides. Pharmaceutics 2022; 14:pharmaceutics14020458. [PMID: 35214190 PMCID: PMC8878433 DOI: 10.3390/pharmaceutics14020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Modification with polyethylene glycol (PEGylation) and the use of rigid phospholipids drastically improve the pharmacokinetics of chemotherapeutics and result in more manageable or reduced side-effects. A major drawback is retarded cellular delivery of content, which, along with tumor heterogeneity, are the two main obstacles against tumor targeting. To enhance cellular delivery and reach a bigger area of a tumor, we designed liposomes decorated with two ligands: one for targeting tumor vasculature via a cyclic-pentapeptide containing arginine-glycine-aspartic acid (RGD), which impacts tumor independent of passive accumulation inside tumors, and one for extravascular targeting of tumor cells via a cell-penetrating peptide derived from human immunodeficiency virus type 1 transactivator of transcription (TAT). Liposomes with different ligand combinations were prepared and compared with respect to performance in targeting. Intravital imaging illustrates the heterogeneous behavior of RGD-liposomes in both intravascular and extravascular distribution, whereas TAT-liposomes exhibit a predictable extravascular localization but no intravascular targeting. Dual-ligand modification results in enhanced vascular targeting and a predictable extravascular behavior that improves the therapeutic efficacy of doxorubicin-loaded liposomes but also an augmented clearance rate of liposomes. However, the dual-modified liposome could be a great candidate for targeted delivery of non-toxic payloads or contrast agents for therapeutic or diagnostic purposes. Here we show that the combination of vascular-specific and tumor cell-specific ligands in a liposomal system is beneficial in bypassing the heterogeneous expression of tumor-specific markers.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
- Correspondence:
| | - Mercedeh Mansourian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9196773117, Iran; (M.M.); (M.R.J.)
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Peter C. Burgers
- Laboratory of Neuro-Oncology, Department of Neurology, Erasmus MC University Medical Center Rotterdam, 3015 CN Rotterdam, The Netherlands;
| | - Bahareh Amin
- Cellular and Molecular Research Center, Department of Physiology and Pharmacology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar 9613873136, Iran;
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9196773117, Iran; (M.M.); (M.R.J.)
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Timo L. M. ten Hagen
- Laboratory Experimental Oncology, Department of Pathology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
9
|
Kuznetsova AI, Gromov KB, Kireev DE, Shlykova AV, Lopatukhin AE, Kazennova EV, Lebedev AV, Tumanov AS, Kim KV, Bobkova MR. [Analysis of Tat protein characteristics in human immunodeficiency virus type 1 sub-subtype A6 (Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1)]. Vopr Virusol 2022; 66:452-464. [PMID: 35019252 DOI: 10.36233/0507-4088-83] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tat protein is a major factor of HIV (human immunodeficiency virus) transcription regulation and has other activities. Tat is characterized by high variability, with some amino acid substitutions, including subtypespecific ones, being able to influence on its functionality. HIV type 1 (HIV-1) sub-subtype A6 is the most widespread in Russia. Previous studies of the polymorphisms in structural regions of the A6 variant have shown numerous characteristic features; however, Tat polymorphism in A6 has not been studied.Goals and tasks. The main goal of the work was to analyze the characteristics of Tat protein in HIV-1 A6 variant, that is, to identify substitutions characteristic for A6 and A1 variants, as well as to compare the frequency of mutations in functionally significant domains in sub-subtype A6 and subtype B. MATERIAL AND METHODS The nucleotide sequences of HIV-1 sub-subtypes A6, A1, A2, A3, A4, subtype B and the reference nucleotide sequence were obtained from the Los Alamos international database. RESULTS AND DISCUSSION Q54H and Q60H were identified as characteristic substitutions. Essential differences in natural polymorphisms between sub-subtypes A6 and A1 have been demonstrated. In the CPP-region, there were detected mutations (R53K, Q54H, Q54P, R57G) which were more common in sub-subtype A6 than in subtype B. CONCLUSION Tat protein of sub-subtype A6 have some characteristics that make it possible to reliably distinguish it from other HIV-1 variants. Mutations identified in the CPP region could potentially alter the activity of Tat. The data obtained could form the basis for the drugs and vaccines development.
Collapse
Affiliation(s)
- A I Kuznetsova
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - K B Gromov
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia; FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - D E Kireev
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A V Shlykova
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - A E Lopatukhin
- FSBI «Central Research Institute for Epidemiology» of the Federal Service for Supervision of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - E V Kazennova
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - A V Lebedev
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - A S Tumanov
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - K V Kim
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| | - M R Bobkova
- D.I. Ivanovsky Institute of Virology FSBI «National Research Centre for Epidemiology and Microbiology named after the honorary academician N.F. Gamaleya» of the Ministry of Health of Russia
| |
Collapse
|
10
|
Karoon Kiani F, Izadi S, Ansari Dezfouli E, Ebrahimi F, Mohammadi M, Chalajour H, Mortazavi Bulus M, Nasr Esfahani M, Karpisheh V, Mahmoud Salehi Khesht A, Abbaszadeh-Goudarzi K, Soleimani A, Gholizadeh Navashenaq J, Ahmadi M, Hassannia H, Hojjat-Farsangi M, Shahmohammadi Farid S, Hashemi V, Jadidi-Niaragh F. Simultaneous silencing of the A2aR and PD-1 immune checkpoints by siRNA-loaded nanoparticles enhances the immunotherapeutic potential of dendritic cell vaccine in tumor experimental models. Life Sci 2022; 288:120166. [PMID: 34813798 DOI: 10.1016/j.lfs.2021.120166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/10/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
Following various immunotherapies, lack of proper anti-tumor immune responses is considered a significant problem in novel cancer therapeutic approaches. The expression of inhibitory checkpoint molecules on tumor-infiltrating T cells is one of the main reasons for the ineffectiveness of various immunotherapies. Therefore, we decided to inhibit two of the most important immune checkpoints expressed on tumor-associated T cells, PD-1 and A2aR. Ligation of PD-1 with PD-L1 and A2aR with adenosine significantly suppress T cell responses against tumor cells. Whitin tumors, specific inhibition of these molecules on T cells is of particular importance for successful immunotherapy as well as the elimination of treatment-associated side-effects. Thus, in this study, superparamagnetic iron oxide (SPION) nanoparticles (NPs) were covered by chitosan lactate (CL), functionalized with TAT peptide, and loaded with siRNA molecules against PD-1 and A2aR. Appropriate physicochemical properties of the prepared NPs resulted in efficient delivery of siRNA to tumor-derived T cells and suppressed the expression of A2aR and PD-1, ex vivo. T cell functions such as cytokine secretion and proliferation were considerably enhanced by the downregulation of these molecules which led to an increase in their survival time. Interestingly, treatment of CT26 and 4T1 mouse tumors with siRNA-loaded NPs not only inhibited tumor growth but also markedly increased anti-tumor immune responses and survival time. The results strongly support the efficacy of SPION-CL-TAT NPs loaded with anti-PD-1/A2aR siRNAs in cancer therapy and their further development for cancer patients in the near future.
Collapse
Affiliation(s)
- Fariba Karoon Kiani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Izadi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ansari Dezfouli
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farbod Ebrahimi
- Nanoparticle Process Technology, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany
| | - Mohammad Mohammadi
- Department of Cell and Molecular Biology, School of Advanced Sciences, Islamic Azad University, Tehran, Medical Branch, Iran
| | - Hengameh Chalajour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Vahid Karpisheh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Mahmoud Salehi Khesht
- Department of Biochemistry, Faculty of Materials Engineering, Islamic Azad University, Najafabad Branch, Najafabad, Iran
| | | | - Ali Soleimani
- Department of Public Health, Maragheh University of Medical Sciences, Maragheh, Iran
| | | | - Majid Ahmadi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Hassannia
- Immunogenetic Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Hojjat-Farsangi
- Bioclinicum, Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden; Department of Immunology, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Vida Hashemi
- Department of Basic Science, Faculty of Medicine, Maragheh University of Medical Sciences, Maragheh, Iran.
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Vuillemin ME, Michaux F, Seiler A, Linder M, Muniglia L, Jasniewski J. Polysaccharides enzymatic modification to control the coacervation or the aggregation behavior: A thermodynamic study. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
A. Tindall C, Erkner E, Stichel J, G. Beck-Sickinger A, Hoffmann A, Weiner J, T. Heiker J. Cleavage of the vaspin N-terminus releases cell-penetrating peptides that affect early stages of adipogenesis and inhibit lipolysis in mature adipocytes. Adipocyte 2021; 10:216-231. [PMID: 33866927 PMCID: PMC8078822 DOI: 10.1080/21623945.2021.1910154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vaspin expression and function is related to metabolic disorders and comorbidities of obesity. In various cellular and animal models of obesity, diabetes and atherosclerosis vaspin has shown beneficial, protective and/or compensatory action. While testing proteases for inhibition by vaspin, we noticed specific cleavage within the vaspin N-terminus and sequence analysis predicted cell-penetrating activity for the released peptides. These findings raised the question whether these proteolytic peptides exhibit biological activity. We synthesized various N-terminal vaspin peptides to investigate cell-penetrating activity and analyse uptake mechanisms. Focusing on adipocytes, we performed microarray analysis and functional assays to elucidate biological activities of the vaspin–derived peptide, which is released by KLK7 cleavage (vaspin residues 21-30; VaspinN). Our study provides first evidence that proteolytic processing of the vaspin N-terminus releases cell-penetrating and bioactive peptides with effects on adipocyte biology. The VaspinN peptide increased preadipocyte proliferation, interfered with clonal expansion during the early stage of adipogenesis and blunted adrenergic cAMP-signalling, downstream lipolysis as well as insulin signalling in mature adipocytes. Protease-mediated release of functional N-terminal peptides presents an additional facet of vaspin action. Future studies will address the mechanisms underlying the biological activities and clarify, if vaspin-derived peptides may have potential as therapeutic agents for the treatment of metabolic diseases.
Collapse
Affiliation(s)
- Catherine A. Tindall
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Estelle Erkner
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | - Jan Stichel
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
| | | | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Juliane Weiner
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - John T. Heiker
- Institute of Biochemistry, Faculty of Life Sciences, Leipzig University, Leipzig, Germany
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| |
Collapse
|
13
|
Trofimenko E, Grasso G, Heulot M, Chevalier N, Deriu MA, Dubuis G, Arribat Y, Serulla M, Michel S, Vantomme G, Ory F, Dam LC, Puyal J, Amati F, Lüthi A, Danani A, Widmann C. Genetic, cellular, and structural characterization of the membrane potential-dependent cell-penetrating peptide translocation pore. eLife 2021; 10:69832. [PMID: 34713805 PMCID: PMC8639150 DOI: 10.7554/elife.69832] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Cell-penetrating peptides (CPPs) allow intracellular delivery of bioactive cargo molecules. The mechanisms allowing CPPs to enter cells are ill-defined. Using a CRISPR/Cas9-based screening, we discovered that KCNQ5, KCNN4, and KCNK5 potassium channels positively modulate cationic CPP direct translocation into cells by decreasing the transmembrane potential (Vm). These findings provide the first unbiased genetic validation of the role of Vm in CPP translocation in cells. In silico modeling and live cell experiments indicate that CPPs, by bringing positive charges on the outer surface of the plasma membrane, decrease the Vm to very low values (–150 mV or less), a situation we have coined megapolarization that then triggers formation of water pores used by CPPs to enter cells. Megapolarization lowers the free energy barrier associated with CPP membrane translocation. Using dyes of varying dimensions in CPP co-entry experiments, the diameter of the water pores in living cells was estimated to be 2 (–5) nm, in accordance with the structural characteristics of the pores predicted by in silico modeling. Pharmacological manipulation to lower transmembrane potential boosted CPP cellular internalization in zebrafish and mouse models. Besides identifying the first proteins that regulate CPP translocation, this work characterized key mechanistic steps used by CPPs to cross cellular membranes. This opens the ground for strategies aimed at improving the ability of cells to capture CPP-linked cargos in vitro and in vivo. Before a drug can have its desired effect, it must reach its target tissue or organ, and enter its cells. This is not easy because cells are surrounded by the plasma membrane, a fat-based barrier that separates the cell from its external environment. The plasma membrane contains proteins that act as channels, shuttling specific molecules in and out of the cell, and it also holds charge, with its inside surface being more negatively charged than its outside surface. Cell-penetrating peptides are short sequences of amino acids (the building blocks that form proteins) that carry positive charges. These positive charges allow them to cross the membrane easily, but it is not well understood how. To find out how cell-penetrating peptides cross the membrane, Trofimenko et al. attached them to dyes of different sizes. This revealed that the cell-penetrating peptides enter the cell through temporary holes called water pores, which measure about two nanometres across. The water pores form when the membrane becomes ‘megapolarized’, this is, when the difference in charge between the inside and the outside of the membrane becomes greater than normal. This can happen when the negative charge on the inside surface or the positive charge on the outer surface of the membrane increase. Megapolarization depends on potassium channels, which transport positive potassium ions outside the cell, making the outside of the membrane positive. When cell-penetrating peptides arrive at the outer surface of the cell near potassium channels, they make it even more positive. This increases the charge difference between the inside and the outside of the cell, allowing water pores to form. Once the peptides pass through the pores, the charge difference between the inside and the outside of the cell membrane dissipates, and the pores collapse. Drug developers are experimenting with attaching cell-penetrating peptides to drugs to help them get inside their target cells. Currently there are several experimental medications of this kind in clinical trials. Understanding how these peptides gain entry, and what size of molecule they could carry with them, provides solid ground for further drug development.
Collapse
Affiliation(s)
- Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Mathieu Heulot
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Nadja Chevalier
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marco A Deriu
- PolitoBIOMed Lab Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Torino, Italy
| | - Gilles Dubuis
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Yoan Arribat
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sebastien Michel
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gil Vantomme
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Florine Ory
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Linh Chi Dam
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Julien Puyal
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland.,CURML (University Center of Legal Medicine), Lausanne University Hospital, Lausanne, Switzerland
| | - Francesca Amati
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Anita Lüthi
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence Research, Università della Svizzera italiana, Scuola Universitaria Professionale della Svizzera Italiana, Lugano, Switzerland
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
14
|
Morbioli I, Casnati A, Esko JD, Tor Y, Sansone F. Calixarene-decorated liposomes for intracellular cargo delivery. Org Biomol Chem 2021; 19:6598-6602. [PMID: 34268550 DOI: 10.1039/d1ob01055g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Amphiphilic calix[4]arenes, functionalized with guanidinium groups, are used to decorate the outer surface of liposomes and significantly improve the cellular uptake of a cargo compared to plain liposomes. The improved uptake is elicited and mediated by the interaction between the cationic polar heads of the macrocycle units embedded in the liposome bilayer and anionic heparan-sulfate proteoglycans surrounding the exterior of cells.
Collapse
Affiliation(s)
- Ilaria Morbioli
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Alessandro Casnati
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA.
| | - Francesco Sansone
- Department of Chemistry, Life Sciences and Environmental Sustainability, Università degli Studi di Parma, Parco Area delle Scienze 17/A, 43124 Parma, Italy.
| |
Collapse
|
15
|
Red Algal Sulfated Galactan Binds and Protects Neural Cells from HIV-1 gp120 and Tat. Pharmaceuticals (Basel) 2021; 14:ph14080714. [PMID: 34451811 PMCID: PMC8398392 DOI: 10.3390/ph14080714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 01/31/2023] Open
Abstract
The potential neuroprotective capacity of four different sulfated glycans: Botryocladia occidentalis-derived sulfated galactan (BoSG) (MW > 100 kDa), Lytechinus variegatus-derived sulfated fucan (LvSF) (MW~90 kDa), high-molecular weight dextran sulfate (DxS) (MW 100 kDa), and unfractionated heparin (UFH) (MW~15 kDa), was assessed in response to the HIV-1 proteins, R5-tropic glycoprotein 120 (gp120) and/or trans-activator of transcription (Tat), using primary murine neurons co-cultured with mixed glia. Compared to control-treated cells in which HIV-1 proteins alone or combined were neurotoxic, BoSG was, among the four tested sulfated glycans, the only one capable of showing significant concentration-dependent neuroprotection against Tat and/or gp120, alone or combined. Surface plasmon resonance-based data indicate that BoSG can bind both HIV-1 proteins at nM concentrations with preference for Tat (7.5 × 10−8 M) over gp120 (3.2 × 10−7 M) as compared to UFH, which bound gp120 (8.7 × 10−7 M) over Tat (5.7 × 10−6 M). Overall, these data support the notion that sulfated glycan extracted from the red alga B. occidentalis, BoSG, can exert neuroprotection against HIV-1 Tat and gp120, potentially via direct molecular interactions.
Collapse
|
16
|
Mazuryk J, Puchalska I, Koziński K, Ślusarz MJ, Ruczyński J, Rekowski P, Rogujski P, Płatek R, Wiśniewska MB, Piotrowski A, Janus Ł, Skowron PM, Pikuła M, Sachadyn P, Rodziewicz-Motowidło S, Czupryn A, Mucha P. PTD4 Peptide Increases Neural Viability in an In Vitro Model of Acute Ischemic Stroke. Int J Mol Sci 2021; 22:ijms22116086. [PMID: 34200045 PMCID: PMC8200211 DOI: 10.3390/ijms22116086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/23/2021] [Accepted: 05/30/2021] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke is a disturbance in cerebral blood flow caused by brain tissue ischemia and hypoxia. We optimized a multifactorial in vitro model of acute ischemic stroke using rat primary neural cultures. This model was exploited to investigate the pro-viable activity of cell-penetrating peptides: arginine-rich Tat(49–57)-NH2 (R49KKRRQRRR57-amide) and its less basic analogue, PTD4 (Y47ARAAARQARA57-amide). Our model included glucose deprivation, oxidative stress, lactic acidosis, and excitotoxicity. Neurotoxicity of these peptides was excluded below a concentration of 50 μm, and PTD4-induced pro-survival was more pronounced. Circular dichroism spectroscopy and molecular dynamics (MD) calculations proved potential contribution of the peptide conformational properties to neuroprotection: in MD, Tat(49–57)-NH2 adopted a random coil and polyproline type II helical structure, whereas PTD4 adopted a helical structure. In an aqueous environment, the peptides mostly adopted a random coil conformation (PTD4) or a polyproline type II helical (Tat(49–57)-NH2) structure. In 30% TFE, PTD4 showed a tendency to adopt a helical structure. Overall, the pro-viable activity of PTD4 was not correlated with the arginine content but rather with the peptide’s ability to adopt a helical structure in the membrane-mimicking environment, which enhances its cell membrane permeability. PTD4 may act as a leader sequence in novel drugs for the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Jarosław Mazuryk
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland; (P.R.); (R.P.); (A.C.)
- Department of Electrode Processes, Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Correspondence: (J.M.); (P.M.); Tel.: +48-22-343-2094 (J.M.); +48-58-523-5432 (P.M.)
| | - Izabela Puchalska
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
- Institute of Biotechnology and Molecular Medicine, 80-172 Gdańsk, Poland
| | - Kamil Koziński
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (K.K.); (M.B.W.)
| | - Magdalena J. Ślusarz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Jarosław Ruczyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Piotr Rekowski
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Piotr Rogujski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland; (P.R.); (R.P.); (A.C.)
- NeuroRepair Department, Mossakowski Medical Research Institute PAS, 02-106 Warsaw, Poland
| | - Rafał Płatek
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland; (P.R.); (R.P.); (A.C.)
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Marta Barbara Wiśniewska
- Laboratory of Molecular Neurobiology, Centre of New Technologies, University of Warsaw, 02-097 Warsaw, Poland; (K.K.); (M.B.W.)
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | | | - Piotr M. Skowron
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland;
| | - Sylwia Rodziewicz-Motowidło
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland; (P.R.); (R.P.); (A.C.)
| | - Piotr Mucha
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland; (I.P.); (M.J.Ś.); (J.R.); (P.R.); (P.M.S.); (S.R.-M.)
- Correspondence: (J.M.); (P.M.); Tel.: +48-22-343-2094 (J.M.); +48-58-523-5432 (P.M.)
| |
Collapse
|
17
|
Koo JH, Kim SH, Jeon SH, Kang MJ, Choi JM. Macrophage-preferable delivery of the leucine-rich repeat domain of NLRX1 ameliorates lethal sepsis by regulating NF-κB and inflammasome signaling activation. Biomaterials 2021; 274:120845. [PMID: 33971559 DOI: 10.1016/j.biomaterials.2021.120845] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/27/2022]
Abstract
Sepsis is an acute systemic inflammatory disease triggered by bacterial infection leading organ dysfunctions that macrophages are responsible for major triggering of systemic inflammation. Treatment options are limited to antibiotics and drugs to manage the symptoms of sepsis, but there are currently no molecular-targeted therapies. Here, we identified a novel macrophage-preferable delivery peptide, C10, which we conjugated to truncated domains of NLRX1 (leucine-rich repeat region (LRR), and nucleotide binding domain (NBD)) to obtain C10-LRR and C10-NBD. Leucine rich amino acid of C10 enables macrophage preferable moieties that efficiently deliver a cargo protein into macrophages in vitro and in vivo. C10-LRR but not C10-NBD significantly improved survival in an LPS-mediated lethal endotoxemia sepsis model. C10-LRR efficiently inhibited IL-6 production in peritoneal macrophages via prevention of IκB degradation and p65 phosphorylation. In addition, C10-LRR negatively regulated IL-1β production by preventing caspase-1 activation with a sustained mitochondrial MAVS level. Finally, co-treatment with anti-TNFα antibody and C10-LRR had a synergistic effect in an LPS-induced sepsis model. Collectively, these findings indicate that C10-LRR could be an effective therapeutic agent to treat systemic inflammation in sepsis by regulating both NF-κB and inflammasome signaling activation.
Collapse
Affiliation(s)
- Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Soung-Hoo Jeon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
18
|
Becker B, Englert S, Schneider H, Yanakieva D, Hofmann S, Dombrowsky C, Macarrón Palacios A, Bitsch S, Elter A, Meckel T, Kugler B, Schirmacher A, Avrutina O, Diederichsen U, Kolmar H. Multivalent dextran hybrids for efficient cytosolic delivery of biomolecular cargoes. J Pept Sci 2021; 27:e3298. [PMID: 33458922 DOI: 10.1002/psc.3298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/23/2022]
Abstract
The development of novel biotherapeutics based on peptides and proteins is often limited to extracellular targets, because these molecules are not able to reach the cytosol. In recent years, several approaches were proposed to overcome this limitation. A plethora of cell-penetrating peptides (CPPs) was developed for cytoplasmic delivery of cell-impermeable cargo molecules. For many CPPs, multimerization or multicopy arrangement on a scaffold resulted in improved delivery but also higher cytotoxicity. Recently, we introduced dextran as multivalent, hydrophilic polysaccharide scaffold for multimerization of cell-targeting cargoes. Here, we investigated covalent conjugation of a CPP to dextran in multiple copies and assessed the ability of resulted molecular hybrid to enter the cytoplasm of mammalian cells without largely compromising cell viability. As a CPP, we used a novel, low-toxic cationic amphiphilic peptide L17E derived from M-lycotoxin. Here, we show that cell-penetrating properties of L17E are retained upon multivalent covalent linkage to dextran. Dextran-L17E efficiently mediated cytoplasmic translocation of an attached functional peptide and a peptide nucleic acid (PNA). Moreover, a synthetic route was established to mask the lysine side chains of L17E with a photolabile protecting group thus opening avenues for light-triggered activation of cellular uptake.
Collapse
Affiliation(s)
- Bastian Becker
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Simon Englert
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Hendrik Schneider
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Desislava Yanakieva
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Sarah Hofmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Carolin Dombrowsky
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Arturo Macarrón Palacios
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Sebastian Bitsch
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Adrian Elter
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany.,Merck Lab, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, Darmstadt, 64287, Germany
| | - Tobias Meckel
- Merck Lab, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, Darmstadt, 64287, Germany
| | - Benedikt Kugler
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Anastasyia Schirmacher
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Olga Avrutina
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, Göttingen, 37077, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Straße 4, Darmstadt, 64287, Germany
| |
Collapse
|
19
|
Zhang Y, Wang Y, Meng L, Huang Q, Zhu Y, Cui W, Cheng Y, Liu R. Targeted micelles with chemotherapeutics and gene drugs to inhibit the G1/S and G2/M mitotic cycle of prostate cancer. J Nanobiotechnology 2021; 19:17. [PMID: 33422073 PMCID: PMC7796562 DOI: 10.1186/s12951-020-00756-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/15/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Chemotherapy and gene therapy are used in clinical practice for the treatment of castration-resistant prostate cancer. However, the poor efficiency of drug delivery and serious systemic side effects remain an obstacle to wider application of these drugs. Herein, we report newly designed PEO-PCL micelles that were self-assembled and modified by spermine ligand, DCL ligand and TAT peptide to carry docetaxel and anti-nucleostemin siRNA. RESULTS The particle size of the micelles was 42 nm, the zeta potential increased from - 12.8 to 15 mV after grafting with spermine, and the optimal N/P ratio was 25:1. Cellular MTT experiments suggested that introduction of the DCL ligand resulted in high toxicity toward PSMA-positive cells and that the TAT peptide enhanced the effect. The expression of nucleostemin was significantly suppressed in vitro and in vivo, and the tumour-inhibition experiment showed that the dual-drug delivery system suppressed CRPC tumour proliferation. CONCLUSIONS This targeted drug delivery system inhibited the G1/S and G2/M mitotic cycle via synergistic interaction of chemotherapeutics and gene drugs.
Collapse
Affiliation(s)
- Yiran Zhang
- Tianjin Institute of Urology & Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.,Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China.,Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China
| | - Yanming Wang
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Li Meng
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Qingqing Huang
- Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University College of Pharmacy, Nankai University, Haihe Education Park, 38 Tongyan Road, Tianjin, 300353, People's Republic of China
| | - Yueqi Zhu
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China
| | - Wenguo Cui
- Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, People's Republic of China.
| | - Yingsheng Cheng
- Department of Interventional Radiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600, Yishan Road, Shanghai, 200233, People's Republic of China.
| | - Ranlu Liu
- Tianjin Institute of Urology & Department of Urology, The Second Hospital of Tianjin Medical University, 23 Pingjiang Road, Hexi District, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
20
|
Ruzsics Z, Hoffmann K, Riedl A, Krawczyk A, Widera M, Sertznig H, Schipper L, Kapper-Falcone V, Debreczeny M, Ernst W, Grabherr R, Hengel H, Harant H. A Novel, Broad-Acting Peptide Inhibitor of Double-Stranded DNA Virus Gene Expression and Replication. Front Microbiol 2020; 11:601555. [PMID: 33281801 PMCID: PMC7705112 DOI: 10.3389/fmicb.2020.601555] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Viral infections are a global disease burden with only a limited number of antiviral agents available. Due to newly emerging viral pathogens and increasing occurrence of drug resistance, there is a continuous need for additional therapeutic options, preferably with extended target range. In the present study, we describe a novel antiviral peptide with broad activity against several double-stranded DNA viruses. The 22-mer peptide TAT-I24 potently neutralized viruses such as herpes simplex viruses, adenovirus type 5, cytomegalovirus, vaccinia virus, and simian virus 40 in cell culture models, while being less active against RNA viruses. The peptide TAT-I24 therefore represents a novel and promising drug candidate for use against double-stranded DNA viruses.
Collapse
Affiliation(s)
- Zsolt Ruzsics
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consulting Laboratory for HSV and VZV, Medical Center-University of Freiburg, Freiburg, Germany
| | - Katja Hoffmann
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - André Riedl
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Adalbert Krawczyk
- Department of Infectious Diseases, West German Centre of Infectious Diseases, Universitätsmedizin Essen, University Duisburg-Essen, Essen, Germany.,Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Institute of Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Helene Sertznig
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Leonie Schipper
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Valeria Kapper-Falcone
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consulting Laboratory for HSV and VZV, Medical Center-University of Freiburg, Freiburg, Germany
| | - Monika Debreczeny
- VIBT Imaging Center, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Ernst
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Hartmut Hengel
- Institute of Virology, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,German Consulting Laboratory for HSV and VZV, Medical Center-University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
21
|
Zandonadi FS, Castañeda Santa Cruz E, Korvala J. New SDC function prediction based on protein-protein interaction using bioinformatics tools. Comput Biol Chem 2019; 83:107087. [PMID: 31351242 DOI: 10.1016/j.compbiolchem.2019.107087] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/13/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
The precise roles for SDC have been complex to specify. Assigning and reanalyzing protein and peptide identification to novel protein functions is one of the most important challenges in postgenomic era. Here, we provide SDC molecular description to support, contextualize and reanalyze the corresponding protein-protein interaction (PPI). From SDC-1 data mining, we discuss the potential of bioinformatics tools to predict new biological rules of SDC. Using these methods, we have assembled new possibilities for SDC biology from PPI data, once, the understanding of biology complexity cannot be capture from one simple question.
Collapse
Affiliation(s)
- Flávia S Zandonadi
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil.
| | - Elisa Castañeda Santa Cruz
- Laboratory of Bioanalytics and Integrated Omics (LaBIOmics), Departamento de Química Analítica, Universidade de Campinas, UNICAMP, Campinas, SP, Brazil
| | - Johanna Korvala
- Cancer and Translational Medicine Research Unit, Biocenter Oulu and Faculty of Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
22
|
Okuda A, Tahara S, Hirose H, Takeuchi T, Nakase I, Ono A, Takehashi M, Tanaka S, Futaki S. Oligoarginine-Bearing Tandem Repeat Penetration-Accelerating Sequence Delivers Protein to Cytosol via Caveolae-Mediated Endocytosis. Biomacromolecules 2019; 20:1849-1859. [PMID: 30893557 DOI: 10.1021/acs.biomac.8b01299] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
To facilitate the cytosolic delivery of larger molecules such as proteins, we developed a new cell-penetrating peptide sequence, named Pas2r12, consisting of a repeated Pas sequence (FFLIG-FFLIG) and d-dodeca-arginine (r12). This peptide significantly enhanced the cellular uptake and cytosolic release of enhanced green fluorescent protein and immunoglobulin G as cargos. We found that simply mixing Pas2r12 with cargos could generate cytosolic introducible forms. The cytosolic delivery of cargos by Pas2r12 was found to be an energy-requiring process, to rely on actin polymerization, and to be suppressed by caveolae-mediated endocytosis inhibitors (genistein and methyl-β-cyclodextrin) and small interfering RNA against caveolin-1. These results suggest that Pas2r12 enhances membrane penetration of cargos without the need for cross-linking and that caveolae-mediated endocytosis may be the route by which cytosolic delivery is enhanced.
Collapse
Affiliation(s)
- Akiko Okuda
- Department of Medical Technology, Graduate School of Health Sciences , Niigata University , 746 Asahimachidori-2 , Chuo-ku, Niigata , Niigata 951-8518 , Japan
| | - Shinya Tahara
- Department of Medical Technology, Graduate School of Health Sciences , Niigata University , 746 Asahimachidori-2 , Chuo-ku, Niigata , Niigata 951-8518 , Japan
| | - Hisaaki Hirose
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Toshihide Takeuchi
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| | - Ikuhiko Nakase
- Graduate School of Science , Osaka Prefecture University , Naka-ku, Sakai , Osaka 599-8570 , Japan
| | - Atsushi Ono
- Department of Medical Technology, Graduate School of Health Sciences , Niigata University , 746 Asahimachidori-2 , Chuo-ku, Niigata , Niigata 951-8518 , Japan
| | - Masanori Takehashi
- Laboratory of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy , Osaka Ohtani University , Tondabayashi , Osaka 584-8540 , Japan
| | - Seigo Tanaka
- Laboratory of Pathophysiology and Pharmacotherapeutics, Faculty of Pharmacy , Osaka Ohtani University , Tondabayashi , Osaka 584-8540 , Japan
| | - Shiroh Futaki
- Institute for Chemical Research , Kyoto University , Uji , Kyoto 611-0011 , Japan
| |
Collapse
|
23
|
The polyanions heparin and suramin impede binding of free adenine to a DNA glycosylase from C. pseudotuberculosis. Int J Biol Macromol 2019; 125:459-468. [DOI: 10.1016/j.ijbiomac.2018.12.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022]
|
24
|
A Naturally Occurring Polymorphism in the HIV-1 Tat Basic Domain Inhibits Uptake by Bystander Cells and Leads to Reduced Neuroinflammation. Sci Rep 2019; 9:3308. [PMID: 30824746 PMCID: PMC6397180 DOI: 10.1038/s41598-019-39531-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023] Open
Abstract
HIV-1 Tat protein contributes to HIV-neuropathogenesis in several ways including its ability to be taken up by uninfected bystander CNS cells and to activate inflammatory host genes causing synaptic injury. Here, we report that in the globally dominant HIV-1 clade C, Tat displays a naturally occurring polymorphism, R57S, in its basic domain, which mediates cellular uptake. We examined the effect of this polymorphism on Tat uptake and its consequences for cellular gene transactivation. In decapeptides corresponding to the basic domain, a R57S substitution caused up to a 70% reduction in uptake. We also used a transcellular Tat transactivation assay, where we expressed Tat proteins of HIV-1 clade B (Tat-B) or C (Tat-C) or their position 57 variants in HeLa cells. We quantified the secreted Tat proteins and measured their uptake by TZM-bl cells, which provide readout via an HIV-1 Tat-responsive luciferase gene. Transactivation by Tat-B was significantly reduced by R57S substitution, while that of Tat-C was enhanced by the reciprocal S57R substitution. Finally, we exposed microglia to Tat variants and found that R57 is required for maximal neuroinflammation. The R57S substitution dampened this response. Thus, genetic variations can modulate the ability of HIV-1 Tat to systemically disseminate neuroinflammation.
Collapse
|
25
|
Cell–Membrane Penetration of Tat‐Conjugated Polymeric Micelles: Effect of Tat Coating Density. Macromol Biosci 2019; 19:e1800364. [DOI: 10.1002/mabi.201800364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/16/2018] [Indexed: 12/16/2022]
|
26
|
Kurnaeva MA, Sheval EV, Musinova YR, Vassetzky YS. Tat basic domain: A "Swiss army knife" of HIV-1 Tat? Rev Med Virol 2019; 29:e2031. [PMID: 30609200 DOI: 10.1002/rmv.2031] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Tat (transactivator of transcription) regulates transcription from the HIV provirus. It plays a crucial role in disease progression, supporting efficient replication of the viral genome. Tat also modulates many functions in the host genome via its interaction with chromatin and proteins. Many of the functions of Tat are associated with its basic domain rich in arginine and lysine residues. It is still unknown why the basic domain exhibits so many diverse functions. However, the highly charged basic domain, coupled with the overall structural flexibility of Tat protein itself, makes the basic domain a key player in binding to or associating with cellular and viral components. In addition, the basic domain undergoes diverse posttranslational modifications, which further expand and modulate its functions. Here, we review the current knowledge of Tat basic domain and its versatile role in the interaction between the virus and the host cell.
Collapse
Affiliation(s)
- Margarita A Kurnaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Nuclear Organization and Pathologies, CNRS, UMR8126, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
27
|
Lin CC, Bachmann M, Bachler S, Venkatesan K, Dittrich PS. Tunable Membrane Potential Reconstituted in Giant Vesicles Promotes Permeation of Cationic Peptides at Nanomolar Concentrations. ACS APPLIED MATERIALS & INTERFACES 2018; 10:41909-41916. [PMID: 30450894 PMCID: PMC6420060 DOI: 10.1021/acsami.8b12217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We investigate the influence of membrane potential on the permeation of cationic peptides. Therefore, we employ a microfluidic chip capable of capturing giant unilamellar vesicles (GUVs) in physical traps and fast exchange of chemical compounds. Control experiments with calcein proved that the vesicle membranes' integrity is not affected by the physical traps and applied shear forces. Combined with fluorescence correlation spectroscopy, permeation of fluorescently labeled peptides across vesicle membranes can be measured down to the nanomolar level. With the addition of a lipophilic ruthenium(II) complex Ru(C17)22+, GUVs consisting of mixed acyl phospholipids are prepared with a negative membrane potential, resembling the membrane asymmetry in cells. The membrane potential serves as a driving force for the permeation of cationic cell-penetrating peptides (CPPs) nonaarginine (Arg9) and the human immunodeficiency virus trans-activator of transcription (TAT) peptide already at nanomolar doses. Hyperpolarization of the membrane by photo-oxidation of Ru(C17)22+ enhances permeation significantly from 55 to 78% for Arg9. This specific enhancement for Arg9 (cf. TAT) is ascribed to the higher affinity of the arginines to the phosphoserine head groups. On the other hand, permeation is decreased by introducing an additional negative charge in close proximity to the N-terminal arginine residue when changing the fluorophore. In short, with the capability to reconstitute membrane potential as well as shear stress, our system is a suitable platform for modeling the membrane permeability of pharmaceutics candidates. The results also highlight the membrane potential as a major cause of discrepancies between vesicular and cellular studies on CPP permeation.
Collapse
Affiliation(s)
- Chao-Chen Lin
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michael Bachmann
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | - Simon Bachler
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Koushik Venkatesan
- Department of Chemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Petra S. Dittrich
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, 4058 Basel, Switzerland
| |
Collapse
|
28
|
Gonzalez D, Ragusa J, Angeletti PC, Larsen G. Preparation and characterization of functionalized heparin-loaded poly-Ɛ-caprolactone fibrous mats to prevent infection with human papillomaviruses. PLoS One 2018; 13:e0199925. [PMID: 29966006 PMCID: PMC6028096 DOI: 10.1371/journal.pone.0199925] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/15/2018] [Indexed: 12/18/2022] Open
Abstract
In this study, heparin-loaded poly-ɛ-caprolactone (PCL) fibrous mats were prepared and characterized based on their physical, cytotoxic, thermal, and biological properties. The main objective of the work described here was to test the hypothesis that incorporation of heparin into a PCL carrier could serve as bio-compatible material capable of inhibiting Human Papillomavirus (HPV) infection. The idea of firmly anchoring heparin to capture soluble virus, vs. a slow heparin release to inhibit a virus in solution was tested. Thus, one material was produced via conventional heparin matrix encapsulation and electrohydrodynamic fiber processing in one step. A second type of material was obtained via heparin crosslinking. This was achieved by running a carbodiimide/N-hydroxysuccinimide (EDC/NHS) coupling reaction on preformed PCL fibers. In vitro HPV16 L1 protein binding capacity studies were performed. Infectivity assays were done using HPV16 pseudoviruses (PsVs) carrying a GFP plasmid to directly test the ability of the fibrous mats to prevent internalization of HPV PsVs. The crosslinked heparin material presented a dissociation constant (Kd) value comparable to those found in the literature for different heparin-protein L1 peptide interactions. Both materials significantly reduced internalization of HPV PsVs, with a reduction of 94% of PsVs internalization when matrix encapsulated heparin-loaded material was present. Differences in performance between the two proposed structures are discussed.
Collapse
Affiliation(s)
- Daniela Gonzalez
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Jorge Ragusa
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Peter C. Angeletti
- Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (PCA); (GL)
| | - Gustavo Larsen
- Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail: (PCA); (GL)
| |
Collapse
|
29
|
Stereochemistry as a determining factor for the effect of a cell-penetrating peptide on cellular viability and epithelial integrity. Biochem J 2018; 475:1773-1788. [PMID: 29686042 DOI: 10.1042/bcj20180155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 01/07/2023]
Abstract
Cell-penetrating peptides (CPPs) comprise efficient peptide-based delivery vectors. Owing to the inherent poor enzymatic stability of peptides, CPPs displaying partial or full replacement of l-amino acids with the corresponding d-amino acids might possess advantages as delivery vectors. Thus, the present study aims to elucidate the membrane- and metabolism-associated effects of l-Penetratin (l-PEN) and its corresponding all-d analog (d-PEN). These effects were investigated when exerted on hepatocellular (HepG2) or intestinal (Caco-2 and IEC-6) cell culture models. The head-to-head comparison of these enantiomeric CPPs included evaluation of their effects on cell viability and morphology, epithelial membrane integrity, and cellular ultrastructure. In all investigated cell models, a rapid decrease in cell viability, pronounced membrane perturbation and an altered ultrastructure were detected upon exposure to d-PEN. At equimolar concentrations, these observations were less pronounced or even absent for cells exposed to l-PEN. Both CPPs remained stable for at least 2 h during exposure to proliferating cells (cultured for 24 h), although d-PEN exhibited a longer half-life when compared with that of l-PEN when exposed to well-differentiated cell monolayers (cultured for 18-20 days). Thus, the stereochemistry of the CPP penetratin significantly influences its effects on cell viability and epithelial integrity when profiled against a panel of mammalian cells.
Collapse
|
30
|
Mele AR, Marino J, Chen K, Pirrone V, Janetopoulos C, Wigdahl B, Klase Z, Nonnemacher MR. Defining the molecular mechanisms of HIV-1 Tat secretion: PtdIns(4,5)P 2 at the epicenter. Traffic 2018; 19:10.1111/tra.12578. [PMID: 29708629 PMCID: PMC6207469 DOI: 10.1111/tra.12578] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 12/18/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) transactivator of transcription (Tat) protein functions both intracellularly and extracellularly. Intracellularly, the main function is to enhance transcription of the viral promoter. However, this process only requires a small amount of intracellular Tat. The majority of Tat is secreted through an unconventional mechanism by binding to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2 ), a phospholipid in the inner leaflet of the plasma membrane that is required for secretion. This interaction is mediated by the basic domain of Tat (residues 48-57) and a conserved tryptophan (residue 11). After binding to PtdIns(4,5)P2 , Tat secretion diverges into multiple pathways, which we categorized as oligomerization-mediated pore formation, spontaneous translocation and incorporation into exosomes. Extracellular Tat has been shown to be neurotoxic and toxic to other cells of the central nervous system (CNS) and periphery, able to recruit immune cells to the CNS and cerebrospinal fluid, and alter the gene expression and morphology of uninfected cells. The effects of extracellular Tat have been examined in HIV-1-associated neurocognitive disorders (HAND); however, only a small number of studies have focused on the mechanisms underlying Tat secretion. In this review, the molecular mechanisms of Tat secretion will be examined in a variety of biologically relevant cell types.
Collapse
Affiliation(s)
- Anthony R Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Jamie Marino
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Kenneth Chen
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Vanessa Pirrone
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Chris Janetopoulos
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Zachary Klase
- Department of Biology, University of the Sciences, Philadelphia, Pennsylvania
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania
- Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
31
|
Abdel Aziz MH, Desai UR. Novel heparin mimetics reveal cooperativity between exosite 2 and sodium-binding site of thrombin. Thromb Res 2018; 165:61-67. [PMID: 29573721 DOI: 10.1016/j.thromres.2018.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 02/28/2018] [Accepted: 03/16/2018] [Indexed: 01/23/2023]
Abstract
INTRODUCTION Thrombin is a primary target of most anticoagulants. Yet, thrombin's dual and opposing role in pro- as well as anti- coagulant processes imposes considerable challenges in discovering finely tuned regulators that maintain homeostasis, rather than disproportionately changing the equilibrium to one side. In this connection, we have been studying exosite 2-mediated allosteric modulation of thrombin activity using synthetic agents called low molecular weight lignins (LMWLs). Although the aromatic scaffold of LMWLs is completely different from the polysaccharidic scaffold of heparin, the presence of multiple negatively charged groups on both ligands induces binding to exosite 2 of thrombin. This work characterizes the nature of interactions between LMWLs and thrombin to understand the energetic cooperativity between exosite 2 and active site of thrombin. MATERIALS AND METHODS The thermodynamics of thrombin-LMWL complexes was studied using spectrofluorimetric titrations as a function of ionic strength and temperature of the buffer. The contributions of enthalpy and entropy to binding were evaluated using classic thermodynamic equations. Label-free surface plasmon resonance was used to assess the role of sodium ion in LMWL binding to thrombin at a fixed ionic strength. RESULTS AND CONCLUSIONS Exosite 2-induced conformational change in thrombin's active site is strongly dependent on the structure of the ligand, which has consequences with respect to regulation of thrombin. The ionic and non-ionic contributions to binding affinity and the thermodynamic signature were highly ligand specific. Interestingly, LMWLs display preference for the sodium-bound form of thrombin, which supports the existence of an energetic coupling between exosite 2 and sodium-binding site of thrombin.
Collapse
Affiliation(s)
- May H Abdel Aziz
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States
| | - Umesh R Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23219, United States; Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, VA 23219, United States.
| |
Collapse
|
32
|
Tiwari N, Srivastava A, Kundu B, Munde M. Biophysical insight into the heparin-peptide interaction and its modulation by a small molecule. J Mol Recognit 2017; 31. [DOI: 10.1002/jmr.2674] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/28/2017] [Accepted: 09/03/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Neha Tiwari
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| | - Ankit Srivastava
- School of Biological Sciences; Indian Institute of Technology; New Delhi India
| | - Bishwajit Kundu
- School of Biological Sciences; Indian Institute of Technology; New Delhi India
| | - Manoj Munde
- School of Physical Sciences; Jawaharlal Nehru University; New Delhi India
| |
Collapse
|
33
|
Sabouri-Rad S, Oskuee RK, Mahmoodi A, Gholami L, Malaekeh-Nikouei B. The effect of cell penetrating peptides on transfection activity and cytotoxicity of polyallylamine. ACTA ACUST UNITED AC 2017; 7:139-145. [PMID: 29159141 PMCID: PMC5684505 DOI: 10.15171/bi.2017.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 06/22/2017] [Accepted: 07/05/2017] [Indexed: 11/09/2022]
Abstract
![]()
Introduction: Cationic polymers have the potential to be modified to achieve an ideal gene vector lacking viral vector defects. The aim of the present study was to improve polyallylamine (PAA) transfection efficiency and to reduce cytotoxicity by incorporating of cell-penetrating peptides (CPPs).
Methods: To prepare the peptide-based polyplexes, PAA (15 kDa) was modified with 2 peptides (TAT and CyLoP-1) by covering the 0.5% and 1% of amines. Buffer capacity and DNA condensation ability of modified polymer, particle size and zeta potential of nanoparticles, cell viability, and transfection activity of vectors were evaluated.
Results: In low carrier to plasmid (C/P) weight ratios such as 0.5 and 1, the unmodified polymer was more capable to condense the DNA compared to the synthesized vectors. In C/P ratio of 2, the plasmid was fully condensed in all vectors. The size of polyplexes ranged from 195 to 240 nm. The zeta potential was almost as the same as PAA and varied from 25 to 27 mV. All polyplexes increased the buffer capacity compared to PAA. The transfection efficiency was improved compared to unmodified polymer especially in the vectors modified with 1% of TAT or CyLoP-1 peptides in C/P ratio of 2. The cytotoxicity of prepared vectors was less than PAA. In most ratios, the cytotoxicity of the CyLoP-1 modified samples was less than the TAT modified ones.
Conclusion: Modification of PAA with CPPs improved the transfection activity of vector.
Collapse
Affiliation(s)
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Asma Mahmoodi
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Gholami
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
34
|
Takechi-Haraya Y, Aki K, Tohyama Y, Harano Y, Kawakami T, Saito H, Okamura E. Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy. Pharmaceuticals (Basel) 2017; 10:ph10020042. [PMID: 28420127 PMCID: PMC5490399 DOI: 10.3390/ph10020042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/13/2022] Open
Abstract
Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells. By introducing 4-trifluoromethyl-l-phenylalanine to the N terminus of R8, the non-endocytic membrane translocation of 19F-labeled R8 (19F-R8) into a human myeloid leukemia cell line was observed at 4 °C with a time resolution in the order of minutes. 19F NMR successfully detected real-time R8 translocation: the binding to anionic GAGs at the cell surface, followed by the penetration into the cell membrane, and the entry into cytosol across the membrane. The NMR concentration analysis enabled quantification of how much of R8 was staying in the respective translocation processes with time in situ. Taken together, our in-cell NMR results provide the physicochemical rationale for spontaneous penetration of CPPs in cell membranes.
Collapse
Affiliation(s)
- Yuki Takechi-Haraya
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Kenzo Aki
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yumi Tohyama
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Yuichi Harano
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| | - Toru Kawakami
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hiroyuki Saito
- Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan.
| | - Emiko Okamura
- Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan.
| |
Collapse
|
35
|
Wang H, Moon C, Shin MC, Wang Y, He H, Yang VC, Huang Y. Heparin-Regulated Prodrug-Type Macromolecular Theranostic Systems for Cancer Therapy. Nanotheranostics 2017; 1:114-130. [PMID: 29071181 PMCID: PMC5646728 DOI: 10.7150/ntno.18292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/13/2017] [Indexed: 01/09/2023] Open
Abstract
Heparin is a kind of naturally occurring polymer with excellent biocompatibility and solubility. It is characterized by dense of negative charge, higher than any endogenous components. Heparin can bind with various cationic peptides and proteins, thereby providing a useful noncovalent linkage for building a drug delivery system. As a case in point, heparin/cell-penetrating peptides (CPP) interaction is strong, and remains stable in vivo. They can be used to modify different proteins, respectively, and subsequently, by simply mixing the modified proteins, a protein-protein conjugate can be form via the stable heparin/CPP linkage. This linkage could not be broken unless addition of protamine that bears higher cationic charge density than CPP, and CPP thus can be substituted and released. Of note, heparin is a potent antagonist of CPP, and their binding naturally inhibits CPP-mediated drug cell penetration. Based on this method, we developed a heparin-regulated macromolecular prodrug-type system, termed ATTEMPTS, for drug targeting delivery. In this review article, we mainly summary the application of ATTEMPTS in delivery of various macromolecular drugs for cancer therapy, and also introduce the heparin-regulated nanoprobes for tumor imaging.
Collapse
Affiliation(s)
- Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Cheol Moon
- College of Pharmacy, Sunchon National University, Republic of Korea
| | - Meong Cheol Shin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Gyeongnam, Republic of Korea
| | - Yaping Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.,Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University Tianjin 300070, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University Tianjin 300070, China
| | - Victor C Yang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnosis, School of Pharmacy, Tianjin Medical University Tianjin 300070, China.,University of Michigan, College of Pharmacy, MI 48109-1065, USA
| | - Yongzhuo Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
36
|
Mahmood A, Prüfert F, Efiana NA, Ashraf MI, Hermann M, Hussain S, Bernkop-Schnürch A. Cell-penetrating self-nanoemulsifying drug delivery systems (SNEDDS) for oral gene delivery. Expert Opin Drug Deliv 2016; 13:1503-1512. [PMID: 27458781 DOI: 10.1080/17425247.2016.1213236] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE The aim of study was to investigate whether cell-penetrating peptides could amplify cellular uptake of plasmid DNA (pDNA) loaded self-nanoemulsifying drug delivery systems (SNEDDS) by mucosal epithelial cells, thereby enhancing transfection efficiency. METHODS HIV-1 Tat peptide-oleoyl conjugate (TAT-OL) was synthesized through amide bond formation between HIV-1 Tat-protein 49-57 (TAT) and oleoyl-chloride (OL). SNEDDS formulation contained 29.7% each of Cremophor EL, Capmul MCM and Crodamol, 9.9% propylene glycol and 1% TAT-OL. SNEDDS with OL instead of TAT-OL served as control. RESULTS Fluorescent-microscopy demonstrated 0.5% (m/v) nanoemulsions were suitable for subsequent studies. Mucus diffusion of nanoemulsion loaded with fluorescein diacetate (FDA) was 1.5-fold increased by incorporation of TAT-OL. Confocal microscopy confirmed that droplets of nanoemulsions were successfully internalized. Furthermore, quantitative analysis showed that addition of TAT-OL increases uptake of nanoemulsions by 2.3- and 2.6-folds after 2 and 4 hours of incubation, respectively. Cellular internalization pathways were found with substantial decrease in uptake in presence of indomethacin and chlorpromazine. Transfection efficiency investigated on HEK-293-cells was found to be 1.7- and 1.8-fold higher for SNEDDS loaded with TAT-OL compared to Lipofectin and control, respectively. CONCLUSION In comparison to prevailing lipid and polymer-based delivery systems, these novel cell-penetrating SNEDDS likely represent most effective, simplistic and expedite dosage form for mucosal gene delivery.
Collapse
Affiliation(s)
- Arshad Mahmood
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| | - Felix Prüfert
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| | - Nuri Ari Efiana
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| | - Muhammad Imtiaz Ashraf
- b Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery , Medical University Innsbruck , Innsbruck , Austria.,c Department for General, Visceral and Transplantation Surgery , Campus Virchow-Klinikum, Charité Universitätsmedizin , Berlin , Germany
| | - Martin Hermann
- d Department of Anesthesiology and Critical Care Medicine , Medical University Innsbruck , Innsbruck , Austria
| | - Shah Hussain
- e Institute of Analytical Chemistry and Radiochemistry , University of Innsbruck , Innsbruck , Austria
| | - Andreas Bernkop-Schnürch
- a Center for Chemistry and Biomedicine, Department of Pharmaceutical Technology, Institute of Pharmacy , University of Innsbruck , Innsbruck , Austria
| |
Collapse
|
37
|
Kawaguchi Y, Takeuchi T, Kuwata K, Chiba J, Hatanaka Y, Nakase I, Futaki S. Syndecan-4 Is a Receptor for Clathrin-Mediated Endocytosis of Arginine-Rich Cell-Penetrating Peptides. Bioconjug Chem 2016; 27:1119-30. [PMID: 27019270 DOI: 10.1021/acs.bioconjchem.6b00082] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Arginine-rich cell-penetrating peptides (CPPs) such as Tat and oligoarginine peptides have been widely used as carriers for intracellular delivery of bioactive molecules. Despite accumulating evidence for involvement of endocytosis in the cellular uptake of arginine-rich CPPs, the primary cell-surface receptors for these peptide carriers that would initiate endocytic processes leading to intracellular delivery of bioactive cargoes have remained poorly understood. Our previous attempt to identify membrane receptors for octa-arginine (R8) peptide, one of the representative arginine-rich CPPs, using the photo-cross-linking probe bearing a photoreactive diazirine was not successful due to considerable amounts of cellular proteins nonspecifically bound to the affinity beads. To address this issue, here we developed a photo-cross-linking probe in which a cleavable linker of a diazobenzene moiety was employed to allow selective elution of cross-linked proteins by reducing agent-mediated cleavage. We demonstrated that introduction of the diazobenzene moiety into the photoaffinity probe enables efficient purification of cross-linked proteins with significant reduction of nonspecific binding proteins, leading to successful identification of 17 membrane-associated proteins that would interact with R8 peptide. RNAi-mediated knockdown experiments in combination with the pharmacological inhibitors revealed that, among the proteins identified, syndecan-4, one of the heparan sulfate proteoglycans, is an endogenous membrane-associated receptor for the cellular uptake of R8 peptide via clathrin-mediated endocytosis. This syndecan-4-dependent pathway was also involved in the intracellular delivery of bioactive proteins mediated by R8 peptide. These results reveal that syndecan-4 is a primary cell-surface target for R8 peptide that allows intracellular delivery of bioactive cargo molecules via clathrin-mediated endocytosis.
Collapse
Affiliation(s)
- Yoshimasa Kawaguchi
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Toshihide Takeuchi
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University , Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Junya Chiba
- Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama , Sugitani, Toyama 930-0194, Japan
| | - Yasumaru Hatanaka
- University Office, University of Toyama , Gofuku 3190, Toyama 930-8555, Japan
| | - Ikuhiko Nakase
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University , Naka-ku, Sakai, Osaka 599-8570, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University , Uji, Kyoto 611-0011, Japan
| |
Collapse
|
38
|
Cell-penetrating compounds preferentially bind glycosaminoglycans over plasma membrane lipids in a charge density- and stereochemistry-dependent manner. Biophys Chem 2015; 207:40-50. [DOI: 10.1016/j.bpc.2015.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 11/19/2022]
|
39
|
Fatin MF, Ruslinda AR, Md Arshad MK, Tee KK, Ayub RM, Hashim U, Kamarulzaman A, Gopinath SCB. HIV-1 Tat biosensor: Current development and trends for early detection strategies. Biosens Bioelectron 2015; 78:358-366. [PMID: 26655174 DOI: 10.1016/j.bios.2015.11.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus (HIV) has infected almost 35 million people worldwide. Various tests have been developed to detect the presence of HIV during the early stages of the disease in order to reduce the risk of transmission to other humans. The HIV-1 Tat protein is one of the proteins present in HIV that are released abundantly approximately 2-4 weeks after infection. In this review, we have outlined various strategies for detecting the Tat protein, which helps transcribe the virus and enhances replication. Detection strategies presented include immunoassays, biosensors and gene expression, which utilize antibodies or aptamers as common probes to sense the presence of Tat. Alternatively, measuring the levels of gene transcription is a direct method of analysing the HIV gene to confirm the presence of Tat. By detection of the Tat protein, virus transmission can be detected in high-risk individuals in the early stages of the disease to reduce the risk of an HIV pandemic.
Collapse
Affiliation(s)
- M F Fatin
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - A R Ruslinda
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia.
| | - M K Md Arshad
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - K K Tee
- Center of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - R M Ayub
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - U Hashim
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| | - A Kamarulzaman
- Center of Excellence for Research in AIDS (CERiA), Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering (INEE), Universiti Malaysia Perlis, Kangar, 01000 Perlis, Malaysia
| |
Collapse
|
40
|
Yang J, Tsutsumi H, Furuta T, Sakurai M, Mihara H. Interaction of amphiphilic α-helical cell-penetrating peptides with heparan sulfate. Org Biomol Chem 2015; 12:4673-81. [PMID: 24867193 DOI: 10.1039/c4ob00673a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cell-penetrating peptides (CPPs) are able to be taken up by cells and can deliver macromolecular cargos. However, the mechanism of this internalization is not yet fully understood. Recent theories suggest that the binding of cationic CPPs to negatively charged extracellular glycosaminoglycans, such as heparan sulfate (HS), is a possible mechanism of cellular uptake (CU). Our group has screened the CU activities of 54 systematically designed amphiphilic α-helical peptides in HeLa cells. Notably, a mutation in even a single residue significantly alters the CU ability of a peptide. To determine the structure-CU activity relationship of CPPs, four peptides, which contain a difference in one or two amino acids (i.e., Arg/Glu and Ala/Phe), were chosen from our CPP library to examine their interactions with HS. Fluorescence spectroscopy, isothermal titration calorimetry (ITC) and dynamic light scattering analysis indicated that the HS-binding affinities and HS-clustering abilities of the four CPPs correlated well with their CU activities in HeLa and A549 cells. The heat capacities of the CPPs, determined using ITC and binding free energy decomposition analyses in molecular dynamics simulations, revealed that electrostatic interactions were more dominant in the HS-binding processes of Arg-containing peptides in comparison to Glu-containing peptides, whereas hydrophobic contributions were the primary mode of interaction of Phe-containing peptides in comparison to Ala-containing peptides. Furthermore, it was implied that hydrophobic interactions may be more favourable than electrostatic interactions during the CU process.
Collapse
Affiliation(s)
- Ji Yang
- Department of Bioengineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho 4259 B-40, Midori-ku, Yokohama 226-8501, Japan.
| | | | | | | | | |
Collapse
|
41
|
Swiecicki JM, Di Pisa M, Burlina F, Lécorché P, Mansuy C, Chassaing G, Lavielle S. Accumulation of cell-penetrating peptides in large unilamellar vesicles: A straightforward screening assay for investigating the internalization mechanism. Biopolymers 2015; 104:533-43. [DOI: 10.1002/bip.22652] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Jean-Marie Swiecicki
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Margherita Di Pisa
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Fabienne Burlina
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Pascaline Lécorché
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Christelle Mansuy
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Gérard Chassaing
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| | - Solange Lavielle
- Sorbonne Universités; UPMC Univ Paris 06; LBM, 4, Place Jussieu 75005 Paris France
- Département de Chimie; Ecole Normale Supérieure-PSL Research University; 24, Rue Lhomond 75005 Paris France
- CNRS; UMR 7203, LBM 75005 Paris France
| |
Collapse
|
42
|
Lim S, Kim WJ, Kim YH, Lee S, Koo JH, Lee JA, Yoon H, Kim DH, Park HJ, Kim HM, Lee HG, Yun Kim J, Lee JU, Hun Shin J, Kyun Kim L, Doh J, Kim H, Lee SK, Bothwell ALM, Suh M, Choi JM. dNP2 is a blood-brain barrier-permeable peptide enabling ctCTLA-4 protein delivery to ameliorate experimental autoimmune encephalomyelitis. Nat Commun 2015; 6:8244. [PMID: 26372309 PMCID: PMC4579786 DOI: 10.1038/ncomms9244] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 07/31/2015] [Indexed: 01/06/2023] Open
Abstract
Central nervous system (CNS)-infiltrating effector T cells play critical roles in the development and progression of multiple sclerosis (MS). However, current drugs for MS are very limited due to the difficulty of delivering drugs into the CNS. Here we identify a cell-permeable peptide, dNP2, which efficiently delivers proteins into mouse and human T cells, as well as various tissues. Moreover, it enters the brain tissue and resident cells through blood vessels by penetrating the tightly organized blood-brain barrier. The dNP2-conjugated cytoplasmic domain of cytotoxic T-lymphocyte antigen 4 (dNP2-ctCTLA-4) negatively regulates activated T cells and shows inhibitory effects on experimental autoimmune encephalomyelitis in both preventive and therapeutic mouse models, resulting in the reduction of demyelination and CNS-infiltrating T helper 1 and T helper 17 cells. Thus, this study demonstrates that dNP2 is a blood-brain barrier-permeable peptide and dNP2-ctCTLA-4 could be an effective agent for treating CNS inflammatory diseases such as MS.
Collapse
Affiliation(s)
- Sangho Lim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Won-Ju Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Yeon-Ho Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Sohee Lee
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 440-746, Republic of Korea.,Samsung Advanced Institute for Health Sciences &Technology (SAIHST), Seoul 135-710, Republic of Korea
| | - Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jung-Ah Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Heeseok Yoon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Do-Hyun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hong-Jai Park
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Hye-Mi Kim
- Division of Integrative Bioscience and Biotechnology, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hong-Gyun Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Ji Yun Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jae-Ung Lee
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea
| | - Jae Hun Shin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Lark Kyun Kim
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Junsang Doh
- Department of Mechanical Engineering, School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, Pohang 790-784, Republic of Korea
| | - Hongtae Kim
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 440-746, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Sang-Kyou Lee
- Department of Biotechnology, Yonsei University, Seoul 120-749, Republic of Korea
| | - Alfred L M Bothwell
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | - Minah Suh
- Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 440-746, Republic of Korea.,Samsung Advanced Institute for Health Sciences &Technology (SAIHST), Seoul 135-710, Republic of Korea.,Department of Biological Science, Sungkyunkwan University, Suwon 440-746, Republic of Korea.,Department of Biomedical Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Republic of Korea.,Center for Neuroscience Imaging Research (CNIR), Institute for Basic Science (IBS), Suwon 440-746, Republic of Korea
| |
Collapse
|
43
|
Heparin/heparan sulfates bind to and modulate neuronal L-type (Cav1.2) voltage-dependent Ca(2+) channels. Exp Neurol 2015; 274:156-65. [PMID: 26272754 DOI: 10.1016/j.expneurol.2015.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/23/2015] [Accepted: 08/06/2015] [Indexed: 11/20/2022]
Abstract
Our previous studies revealed that L-type voltage-dependent Ca(2+) channels (Cav1.2 L-VDCCs) are modulated by the neural extracellular matrix backbone, polyanionic glycan hyaluronic acid. Here we used isothermal titration calorimetry and screened a set of peptides derived from the extracellular domains of Cav1.2α1 to identify putative binding sites between the channel and hyaluronic acid or another class of polyanionic glycans, such as heparin/heparan sulfates. None of the tested peptides showed detectable interaction with hyaluronic acid, but two peptides derived from the first pore-forming domain of Cav1.2α1 subunit bound to heparin. At 25 °C the binding of the peptide P7 (MGKMHKTCYN) was at ~50 μM, and that of the peptide P8 (GHGRQCQNGTVCKPGWDGPKHG) was at ~21 μM. The Cav1.2α1 first pore forming segment that contained both peptides maintained a high affinity for heparin (~23 μM), integrating their enthalpic and entropic binding contributions. Interaction between heparin and recombinant as well as native full-length neuronal Cav1.2α1 channels was confirmed using the heparin-agarose pull down assay. Whole cell patch clamp recordings in HEK293 cells transfected with neuronal Cav1.2 channels revealed that enzymatic digestion of highly sulfated heparan sulfates with heparinase 1 affects neither voltage-dependence of channel activation nor the level of steady state inactivation, but did speed up channel inactivation. Treatment of hippocampal cultures with heparinase 1 reduced the firing rate and led to appearance of long-lasting bursts in the same manner as treatment with the inhibitor of L-VDCC diltiazem. Thus, heparan sulfate proteoglycans may bind to and regulate L-VDCC inactivation and network activity.
Collapse
|
44
|
The J-domain of heat shock protein 40 can enhance the transduction efficiency of arginine-rich cell-penetrating peptides. BIOMED RESEARCH INTERNATIONAL 2015; 2015:698067. [PMID: 26075258 PMCID: PMC4449882 DOI: 10.1155/2015/698067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/28/2014] [Accepted: 12/16/2014] [Indexed: 11/20/2022]
Abstract
Sense and antisense oligonucleotide pairs encoding cell-penetrating peptides PTD (Tat47–57), DPV3A, E162, pVEC, R11, and TP13 were used to construct two sets of pET22b-CPP-DsRed and pET22b-CPP-J-DsRed vectors for CPP-DsRed and CPP-J-DsRed recombinant proteins expression. PTD-DsRed, DPV3A-DsRed, PTD-J-DsRed, and DPV3A-J-DsRed recombinant proteins were expressed in a soluble form. PTD-J-DsRed and DPV3A-J-DsRed recombinant proteins were able to escape from E. coli host cells into the culture medium. The membrane-penetrating activity of PTD-J-DsRed and DPV3A-J-DsRed recombinant proteins to mammalian cells was more effective than that of PTD-DsRed and DPV3A-DsRed. The route of the cellular membrane translocation of these recombinant proteins is suggested via macropinocytosis followed by an endosomal escape pathway.
Collapse
|
45
|
Li JH, Chiu WC, Yao YC, Cheng RP. Effect of arginine methylation on the RNA recognition and cellular uptake of Tat-derived peptides. Bioorg Med Chem 2015; 23:2281-6. [DOI: 10.1016/j.bmc.2015.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/22/2015] [Accepted: 01/28/2015] [Indexed: 12/16/2022]
|
46
|
Roy CN, Khandaker I, Furuse Y, Oshitani H. Molecular characterization of full-length Tat in HIV-1 subtypes B and C. Bioinformation 2015; 11:151-60. [PMID: 25914449 PMCID: PMC4403036 DOI: 10.6026/97320630011151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/02/2015] [Indexed: 12/13/2022] Open
Abstract
HIV-1Tat (trans-acting activator of transcription) plays essential roles in the replication through viral mRNA and genome transcription from the HIV-1 LTR promoter. However, Tat undergoes continuous amino acid substitutions. As a consequence, the virus escapes from host immunity indicating that genetic diversity of Tat protein in major HIV-1 subtypes is required to be continuously monitored. We analyzed available full-length HIV-1 sequences of subtypes B (n=493) and C (n=280) strains circulating worldwide. We observed 81% and 84% nucleotide sequence identities of HIV-1 Tat for subtypes B and C, respectively. Based on phylogenetic and mutation analyses, global diversity of subtype B was apparently higher compared to that of subtype C. Positively selected sites, such as positions Ser68 and Ser70 in both subtypes, were located in the Tat-transactivation responsive RNA (TAR) interaction domain. We also found positively selected sites in exon 2, such as positions Ser75, Pro77, Asp80, Pro81 and Ser87 for both subtypes. Our study provides useful information on the full-length HIV-1 Tat sequences in globally circulating strains.
Collapse
Affiliation(s)
- Chandra Nath Roy
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai city, Miyagi, Japan-9808575
| | - Irona Khandaker
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai city, Miyagi, Japan-9808575
| | - Yuki Furuse
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai city, Miyagi, Japan-9808575
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, 2-1 Seiryomachi, Aoba-ku, Sendai city, Miyagi, Japan-9808575
| |
Collapse
|
47
|
Nakase I, Kawaguchi Y, Nomizu M, Futaki S. Cellular Uptake of Arginine-Rich Cell-Penetrating Peptides and the Contribution of Membrane-Associated Proteoglycans. TRENDS GLYCOSCI GLYC 2015. [DOI: 10.4052/tigg.1420.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Ikuhiko Nakase
- Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University
| | | | - Motoyoshi Nomizu
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences
| | | |
Collapse
|
48
|
Tchoumi Neree A, Nguyen PT, Chatenet D, Fournier A, Bourgault S. Secondary conformational conversion is involved in glycosaminoglycans-mediated cellular uptake of the cationic cell-penetrating peptide PACAP. FEBS Lett 2014; 588:4590-6. [PMID: 25447531 DOI: 10.1016/j.febslet.2014.10.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 01/13/2023]
Abstract
Glycosaminoglycans (GAGs) contribute to the cellular uptake of cationic cell-penetrating peptides (CPPs). However, molecular details about the contributions of GAGs in CPP internalization remain unclear. In this study, we examined the cellular uptake mechanism of the arginine-rich CPP pituitary adenylate-cyclase-activating polypeptide (PACAP). We observed that the uptake efficacy of PACAP is dependent on the expression of cell surface GAGs. As the binding of PACAP to sulfated GAGs induced a random coil-to-α-helix conformational conversion, we investigated the role of the helical formation in PACAP internalization. Whereas this secondary structure was not crucial for efficient internalization in GAGs-deficient cells, PACAP α-helix was essential for GAGs-dependent uptake.
Collapse
Affiliation(s)
- Armelle Tchoumi Neree
- Department of Chemistry, Pharmaqam, University of Québec in Montreal, Montreal, QC H3C 3P8, Canada; Quebec Network for Research on Protein Function, Structure, and Engineering, PROTEO, Canada
| | - Phuong Trang Nguyen
- Department of Chemistry, Pharmaqam, University of Québec in Montreal, Montreal, QC H3C 3P8, Canada; Quebec Network for Research on Protein Function, Structure, and Engineering, PROTEO, Canada
| | - David Chatenet
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Alain Fournier
- INRS-Institut Armand-Frappier, 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Steve Bourgault
- Department of Chemistry, Pharmaqam, University of Québec in Montreal, Montreal, QC H3C 3P8, Canada; Quebec Network for Research on Protein Function, Structure, and Engineering, PROTEO, Canada.
| |
Collapse
|
49
|
Cell membrane penetrating function of the nuclear localization sequence in human cytokine IL-1α. Mol Biol Rep 2014; 41:8117-26. [PMID: 25205122 DOI: 10.1007/s11033-014-3711-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Cytokines are released from the cell, bind to their receptors, and affect cellular responses. The precursor form of interleukin 1 alpha (pIL-1α) has a nuclear localization sequence (NLS) that causes it to be localized to the nucleus and regulate specific gene expression. The amino acids of the NLS are basic amino acid-rich sequences, as is the cell penetrating peptide (CPP), which has been widely studied as a way to deliver macromolecules into cells. Here, we hypothesized that the NLS in pIL-1α (pIL-1αNLS) can penetrate the cell membrane and it could deliver macromolecules such as protein in vivo. We characterized cell membrane penetration ability of pIL-1αNLS or its tandem repeated form (2pIL-1αNLS) to enhance its intracellular delivery efficiency. 2pIL-1αNLS showed comparable protein delivery efficiency to TAT-CPP and it mediates endocytosis following heparan sulfate interaction. 2pIL-1αNLS conjugated enhanced green fluorescence protein was localized to the nucleus and the cytoplasm. Intra-peritoneal administration of 2pIL-1αNLS conjugated dTomato protein showed remarkable in vivo intracellular delivery efficiency in various tissues including spleen, liver, and intestine in mice. Moreover, cytotoxicity of 2pIL-1αNLS was not observed even at 100 μM. Our results demonstrate cell membrane-penetrating function of NLS in pIL-1α, which can be used as a safe therapeutic macromolecular delivery peptide.
Collapse
|
50
|
A survey on "Trojan Horse" peptides: opportunities, issues and controlled entry to "Troy". J Control Release 2014; 194:53-70. [PMID: 25151981 DOI: 10.1016/j.jconrel.2014.08.014] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/08/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022]
Abstract
Cell-penetrating peptides (CPPs), often vividly termed as the "Trojan Horse" peptides, have attracted considerable interest for the intracellular delivery of a wide range of cargoes, such as small molecules, peptides, proteins, nucleic acids, contrast agents, nanocarriers and so on. Some preclinical and clinical developments of CPP conjugates demonstrate their promise as therapeutic agents for drug discovery. There is increasing evidence to suggest that CPPs have the potential to cross several bio-barriers (e.g., blood-brain barriers, intestinal mucosa, nasal mucosa and skin barriers). Despite revolutionary process in many aspects, there are a lot of basic issues unclear for these entities, such as internalization mechanisms, translocation efficiency, translocation kinetics, metabolic degradation, toxicity, side effect, distribution and non-specificity. Among them, non-specificity remains a major drawback for the in vivo application of CPPs in the targeted delivery of cargoes. So far, diverse organelle-specific CPPs or controlled delivery strategies have emerged and improved their specificity. In this review, we will look at the opportunities of CPPs in clinical development, bio-barriers penetration and nanocarriers delivery. Then, a series of basic problems of CPPs will be discussed. Finally, this paper will highlight the use of various controlled strategies in the organelle-specific delivery and targeted delivery of CPPs. The purpose of this review will be to emphasize most influential advance in this field and present a fundamental understanding for challenges and utilizations of CPPs. This will accelerate their translation as efficient vectors from the in vitro setting into the clinic arena, and retrieve the entry art to "Troy".
Collapse
|