1
|
Martínez-Martínez MI, Muñoz-Fambuena I, Cauli O. Neurotransmitters and Behavioral Alterations Induced by Nickel Exposure. Endocr Metab Immune Disord Drug Targets 2019; 20:985-991. [PMID: 31789138 DOI: 10.2174/1871530319666191202141209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/06/2019] [Accepted: 03/29/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nickel ions (Ni2+) are a heavy metal with wide industrial uses. Environmental and occupational exposures to Ni are potential risk factors for brain dysfunction and behavioral and neurological symptoms in humans. METHODS We reviewed the current evidence about neurochemical and behavioral alterations associated with Ni exposure in laboratory animals and humans. RESULTS Ni2+ exposure can alter (both inhibition and stimulation) dopamine release and inhibit glutamate NMDA receptors. Few reports claim an effect of Ni2+ at the level of GBA and serotonin neurotransmission. At behavioral levels, exposure to Ni2+ in rodents alters motor activity, learning and memory as well as anxiety and depressive-like symptoms. However, no analysis of the dose-dependent relationship has been carried out regarding these effects and the levels of the Ni2+ in the brain, in blood or urine. CONCLUSION Further research is needed to correlate the concentration of Ni2+ in biological fluids with specific symptoms/deficits. Future studies addressing the impact of Ni2+ under environmental or occupational exposure should consider the administration protocols to find Ni2+ levels similar in the general population or occupationally exposed workers.
Collapse
Affiliation(s)
| | | | - Omar Cauli
- Department of Nursing, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
2
|
Ferris MJ, Calipari ES, Yorgason JT, Jones SR. Examining the complex regulation and drug-induced plasticity of dopamine release and uptake using voltammetry in brain slices. ACS Chem Neurosci 2013; 4:693-703. [PMID: 23581570 DOI: 10.1021/cn400026v] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fast scan cyclic voltammetry in brain slices (slice voltammetry) has been used over the last several decades to increase substantially our understanding of the complex local regulation of dopamine release and uptake in the striatum. This technique is routinely used for the study of changes that occur in the dopamine system associated with various disease states and pharmacological treatments, and to study mechanisms of local circuitry regulation of dopamine terminal function. In the context of this Review, we compare the relative advantages of voltammetry using striatal slice preparations versus in vivo preparations, and highlight recent advances in our understanding of dopamine release and uptake in the striatum specifically from studies that use slice voltammetry in drug-naïve animals and animals with a history of psychostimulant self-administration.
Collapse
Affiliation(s)
- Mark J. Ferris
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Erin S. Calipari
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Jordan T. Yorgason
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| | - Sara R. Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157, United States
| |
Collapse
|
3
|
Effect of pre-ischaemic conditioning on hypoxic depolarization of dopamine efflux in the rat caudate brain slice measured in real-time with fast cyclic voltammetry. Neurochem Int 2011; 59:714-21. [PMID: 21762742 DOI: 10.1016/j.neuint.2011.06.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 06/23/2011] [Accepted: 06/27/2011] [Indexed: 11/20/2022]
Abstract
Fast cyclic voltammetry can be used to measure dopamine release after oxygen and glucose deprivation (OGD) induced anoxic depolarization in vitro. Here we measure dopamine efflux with 1s time resolution, which is appropriate to measure OGD-evoked dopamine efflux accurately. In the present study, we examined whether OGD-evoked dopamine efflux could be used to show pre-ischaemic conditioning in the rat caudate brain slice. Caudate slices were exposed to 0, 2, or 10 min OGD pre-ischaemic conditioning, then 60 min later exposed to a second OGD event of 15 min duration. We measured the OGD-evoked dopamine efflux using fast cyclic voltammetry and in some experiments caudate dopamine and DOPAC tissue levels were measured using HPLC and 20 μm cryostat sections were Nissl stained to indicate neuronal loss. We found that 10 but not 2 min OGD pre-ischaemic conditioning resulted in a longer time to onset of OGD-evoked dopamine efflux on the main OGD event (475 ± 31 and 287 ± 30 s for 10 Vs 0 min pre-ischaemic conditioning respectively). Further, 10 min OGD pre-ischaemic conditioning resulted in less dopamine efflux on the second OGD event (4.23 ± 1.12 and 8.14 ± 0.82 μM for 10 Vs 0 min pre-ischaemic conditioning respectively), despite these slices having similar tissue dopamine content and DOPAC/DA ratio, and the rate of dopamine release was slower in the main OGD event (21 ± 5 and 74 ± 8 nM/s for 10 Vs 0 min pre-ischaemic conditioning respectively). These data suggest that 10 min OGD pre-ischaemic conditioning can evoke tolerance to a second OGD event and that voltammetric recording of OGD-evoked dopamine efflux is a useful model of pre-ischaemic conditioning in neuronal tissue.
Collapse
|
4
|
Abstract
There have been over 2000 publications in the last year addressing the topic of neuroprotection. Novel and emerging therapeutic targets that have been explored include cerebral inflammation, hypothermia, neural transplantation and repair and gene therapy. Unfortunately, with few exceptions, the successes of experimental neuroprotection have not been translated into clinical practice. The possible reasons for the discrepancy between experimental success and clinical benefit are explored.
Collapse
Affiliation(s)
- D K Menon
- Department of Anaesthesiology, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | |
Collapse
|
5
|
Dobrev D, Ravens U. Therapeutically relevant concentrations of neomycin selectively inhibit P-type Ca2+ channels in rat striatum. Eur J Pharmacol 2003; 461:105-11. [PMID: 12586205 DOI: 10.1016/s0014-2999(03)01319-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of neomycin on voltage-activated Ca(2+) channels (VACCs) were studied by Ca(2+)-dependent K(+)- and veratridine-evoked [3H]dopamine release from rat striatal slices. Neomycin (0.01-1 mM) concentration dependently reduced K(+)-evoked [3H]dopamine release (IC(50) approximately 25 microM), producing approximately 98% inhibition at 1 mM. Contribution of N-, P- and Q-type Ca(2+) channels to this neomycin-sensitive [3H]dopamine release was tested by the combined application of 100 microM neomycin and selective Ca(2+) channel blockers. The effects of neomycin combined with 1 microM of omega-conotoxin GVIA (N-type Ca(2+) channels) or with 100 nM of omega-conotoxin MVIIC (Q-type Ca(2+) channels) were additive, excluding involvement of N- and Q-type Ca(2+) channels. However, the combined effects of neomycin with 30 nM of omega-agatoxin-IVA (P-type Ca(2+) channels) were not additive, suggesting involvement of P-type Ca(2+) channels in neomycin-induced inhibition of [3H]dopamine release. On the other hand, veratridine-evoked [3H]dopamine release was shown to be mediated by Q-type Ca(2+) channels only. In addition, neither the inhibitor of sarcoplasmic reticulum Ca(2+)-ATPase thapsigargin (500 nM) nor the blocker of sarcoplasmic reticulum ryanodine Ca(2+) channels ryanodine (30 microM) modulate veratridine-evoked [3H]dopamine release, suggesting no contribution of intracellular Ca(2+) stores. Neomycin (up to 100 microM) did not affect veratridine-evoked [3H]dopamine release, suggesting that intracellular Ca(2+) stores are not a prerequisite for the action of neomycin. Lack of inhibitory effect of neomycin is taken as additional indirect evidence for the involvement of P-type Ca(2+) channels. In conclusion, therapeutically relevant concentrations of neomycin preferentially block P-type Ca(2+) channels which regulate dopamine release in rat striatum. This block could be responsible for aminoglycoside-induced toxicity.
Collapse
Affiliation(s)
- Dobromir Dobrev
- Department of Pharmacology and Toxicology, Carl Gustav Carus Medical School, Dresden University of Technology, Fetscher Str 74, D-01307 Dresden, Germany.
| | | |
Collapse
|
6
|
Toner CC, Milne AJ, Blatchford KL, McLaughlin DP, Stamford JA. An assessment of the cerebroprotective potential of volatile anaesthetics using two independent methods in an in vitro model of cerebral ischaemia. Brain Res 2002; 958:390-8. [PMID: 12470875 DOI: 10.1016/s0006-8993(02)03696-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies using a rat brain slice model of cerebral 'ischaemia' (hypoxia and hypoglycaemia) have suggested that volatile anaesthetics may have cerebroprotective potential. In this study, we tested the cerebroprotective profile of four volatile anaesthetics in this model by two independent means: voltammetric measurement of 'ischaemia'-induced dopamine (DA) release and post-'ischaemic' tissue staining with 2,3,5-triphenyltetrazolium chloride (TTC). 'Ischaemia' caused a characteristic pattern of DA release. Halothane, isoflurane and enflurane did not affect the time from onset of 'ischaemia' to the initiation of DA release. However, all three volatile agents significantly increased (P<0.01, P<0.05, P<0.001, respectively) the time taken for 'ischaemia'-induced DA release to reach maximum and reduced the rate of DA release. Enflurane, unlike halothane or isoflurane, reduced the maximal extracellular DA concentration induced by 'ischaemia' (P<0.01). The effects of sevoflurane were inconsistent. At the higher concentrations used, the volatile anaesthetics frequently changed the character of DA release from monophasic to biphasic, an effect only previously seen in this model with Na(+) channel blockers. 'Ischaemia' also diminished the subsequent level of tissue staining with TTC. When the effects of the volatile agents were analysed by TTC staining, only enflurane showed any cerebroprotective effects and these were limited to the striatum (P<0.01). High concentrations of halothane, isoflurane and enflurane appeared to have some 'toxic' effects, reducing TTC staining in control slices. In summary, we do not find any consistent evidence that volatile anaesthetics are cerebroprotective in this model.
Collapse
Affiliation(s)
- Christopher C Toner
- Neurotransmission Laboratory, Academic Department of Anaesthesia and Intensive Care, Barts and the London School of Medicine and Dentistry, Alexandra Wing, Royal London Hospital, Whitechapel, London E1 1BB, UK
| | | | | | | | | |
Collapse
|
7
|
Khorchid A, Fragoso G, Shore G, Almazan G. Catecholamine-induced oligodendrocyte cell death in culture is developmentally regulated and involves free radical generation and differential activation of caspase-3. Glia 2002; 40:283-99. [PMID: 12420309 DOI: 10.1002/glia.10123] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oligodendrocyte cultures were used to study the toxic effects of catecholamines. Our results showed that catecholamine-induced toxicity was dependent on the dose of dopamine or norepinephrine used and on the developmental stage of the cultures, with oligodendrocyte progenitors being more vulnerable. A role for oxidative stress and apoptosis on the mechanism of action of catecholamines on oligodendrocyte cell death was next assessed. Catecholamines caused a reduction in intracellular glutathione levels, an accumulation in reactive oxygen species and in heme oxygenase-1, the 32 kDa stress-induced protein. All these changes were prevented by N-acetyl-L-cysteine, a thiocompound with antioxidant activity and a precursor of glutathione, and were more pronounced in progenitors than mature cells, which could contribute to their higher susceptibility. Apoptotic cell death, as assessed by activation of caspase-9 and -3 and cleavage of poly(ADP-ribose) polymerase (a substrate of caspase-3), was only observed in oligodendrocyte progenitors. Pretreatment with zVAD, a general caspase inhibitor, prevented activation of caspase-9 and -3, DNA fragmentation, and decreased progenitors cell death. Furthermore, the expression levels of procaspase-3 and the ratio of the proapoptotic protein bax to antiapoptotic protein bcl-xl were several folds higher in immature than mature oligodendrocytes. Taken together, these results strongly suggest that the catecholamine-induced cytotoxicity in oligodendrocytes is developmentally regulated, mediated by oxidative stress, and have characteristics of apoptosis in progenitor cells.
Collapse
Affiliation(s)
- Amani Khorchid
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
8
|
Rogers KL, Fong WF, Redburn J, Griffiths LR. Fluorescence detection of plant extracts that affect neuronal voltage-gated Ca2+ channels. Eur J Pharm Sci 2002; 15:321-30. [PMID: 11988393 DOI: 10.1016/s0928-0987(02)00012-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Structurally novel compounds able to block voltage-gated Ca2+ channels (VGCCs) are currently being sought for the development of new drugs directed at neurological disorders. Fluorescence techniques have recently been developed to facilitate the analysis of VGCC blockers in a multi-well format. By utilising the small cell lung carcinoma cell line, NCI-H146, we were able to detect changes in intracellular Ca2+ concentration ([Ca2+](i)) using a fluorescence microplate reader. NCI-H146 cells have characteristics resembling those of neuronal cells and express multiple VGCC subtypes, including those of the L-, N- and P-type. We found that K+-depolarisation of fluo-3 loaded NCI-H146 cells causes a rapid and transient increase in fluorescence, which was readily detected in a 96-well plate. Extracts of Australian plants, including those used traditionally as headache or pain treatments, were tested in this study to identify those affecting Ca2+ influx following membrane depolarisation of NCI-H146 cells. We found that E. bignoniiflora, A. symphyocarpa and E. vespertilio caused dose-dependent inhibition of K+-depolarised Ca2+ influx, with IC(50) values calculated to be 234, 548 and 209 microg/ml, respectively. This data suggests an effect of these extracts on the function of VGCCs in these cells. Furthermore, we found similar effects using a fluorescence laser imaging plate reader (FLIPR) that allows simultaneous measurement of real-time fluorescence in a multi-well plate. Our results indicate that the dichloromethane extract of E. bignoniiflora and the methanolic extract of E. vespertilio show considerable promise as antagonists of neuronal VGCCs. Further analysis is required to characterise the function of the bioactive constituents in these extracts and determine their selectivity on VGCC subtypes.
Collapse
Affiliation(s)
- K L Rogers
- Genomics Research Centre, School of Health Science, Griffith University, PMB 50, GCMC, Gold Coast, 4217 Qld, Australia
| | | | | | | |
Collapse
|
9
|
Katsura M, Mohri Y, Shuto K, Hai-Du Y, Amano T, Tsujimura A, Sasa M, Ohkuma S. Up-regulation of L-type voltage-dependent calcium channels after long term exposure to nicotine in cerebral cortical neurons. J Biol Chem 2002; 277:7979-88. [PMID: 11756415 DOI: 10.1074/jbc.m109466200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Effects of long term (72-h) exposure to low concentration (0.1 mum) of nicotine on various types of voltage-dependent Ca(2+) channels (VDCCs) and neuronal nicotinic acetylcholine receptors (nnAChRs) were examined using primary cultures of mouse cerebral cortical neurons. High potassium (30 mm KCl)-stimulated (45)Ca(2+) influx into the neurons increased with increasing the duration of nicotine exposure and its concentrations. The maximal increase of the KCl-stimulated (45)Ca(2+) influx was found 24 h after the initiation of exposure and thereafter maintained up to 72 h. This enhancement of KCl-induced (45)Ca(2+) influx after 72-h exposure to 0.1 mum nicotine was completely abolished by concomitant exposure with mecamylamine, an inhibitor for nnAChRs. Only the component of the KCl-induced (45)Ca(2+) influx observed after long term exposure to nicotine, which was sensitive to nifedipine, an inhibitor of L-type VDCCs, was facilitated, while the (45)Ca(2+) influx through P/Q- and N-type VDCCs showed no changes. Moreover, enhanced immunoreactivity against antibody for the alpha(1C) subunit of L-type VDCCs was recognized, whereas no changes in immunoreactivities against antibodies for alpha(1A) and alpha(1B) subunits of other types of VDCCs were noted. In addition, a Western blot analysis showed an increase of immunoreactivities against antibodies for alpha(1D) and alpha(2)/delta(1), and expression of mRNA for L-type VDCC subunit, alpha(1F), was also enhanced, although beta(4) mRNA expression was not changed. Whole cell patch clamp analysis revealed that the increase of the amplitude of Ba(2+) currents was also recognized in the neurons exposed to nicotine, and nicardipine reduced this increased amplitude to the level of the amplitude detected in nontreated neurons with nicardipine. The up-regulation of alpha(4) and beta(2) subunits, but not the alpha(3) subunit of nnAChRs, was also noted after the nicotine exposure when examining by the Western blot analysis. Taken together, these results indicate that the long term exposure of the neurons to a low concentration of nicotine induces both increased (45)Ca(2+) influx through up-regulated L-type VDCCs and nnAChR up-regulation.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Animals
- Barium/metabolism
- Blotting, Western
- Calcium/metabolism
- Calcium Channel Agonists/pharmacology
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Cells, Cultured
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- DNA, Complementary/metabolism
- Dose-Response Relationship, Drug
- Electrophysiology
- Enzyme Inhibitors/pharmacology
- Ganglionic Stimulants/pharmacology
- Immunoblotting
- Kinetics
- Mice
- Neurons/drug effects
- Neurons/metabolism
- Nicotine/pharmacology
- Potassium Chloride/pharmacology
- Protein Binding
- RNA, Messenger/metabolism
- Time Factors
- Up-Regulation
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Masashi Katsura
- Department of Pharmacology, Kawasaki Medical School, Matsushima, Kurashiki 701-0192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Shirotani K, Katsura M, Higo A, Takesue M, Mohri Y, Shuto K, Tarumi C, Ohkuma S. Suppression of Ca2+ influx through L-type voltage-dependent calcium channels by hydroxyl radical in mouse cerebral cortical neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2001; 92:12-8. [PMID: 11483237 DOI: 10.1016/s0169-328x(01)00128-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the present study, we investigated the effect of hydroxyl radical (.OH) produced by the Fenton reaction with FeSO(4) to H(2)O(2) on Ca2+ influx by measuring [(45)Ca2+] influx into mouse cerebral cortical neurons in primary culture.OH formed from 3 microM FeSO(4) and 0.01 microM H(2)O(2) significantly reduced 30 mM KCl-induced [(45)Ca2+] influx and this reduction was abolished by .OH scavengers such as N,N'-dimethylthiourea and mannitol. Nifedipine (1 microM), an inhibitor for L-type voltage-dependent Ca2+ channels (VDCCs) showed no additive effect on the reduction of the 30 mM KCl-induced [(45)Ca2+] influx, while the inhibitors for P/Q- and N-type VDCCs showed further suppression of the KCl-induced [(45)Ca2+] influx even in the presence of .OH. Bay k 8644, an activator of L-type VDCCs, dose-dependently stimulated [(45)Ca2+] influx, and this stimulation disappeared in the presence of nifedipine. Similarly, .OH also suppressed significantly [(45)Ca2+] influx induced by Bay k 8644. These inhibitory actions of .OH on the KCl- and Bay k 8644-induced [(45)Ca2+] influx were completely abolished by .OH scavengers. These results indicate that .OH has the activity to suppress Ca2+ influx through L-type VDCCs.
Collapse
Affiliation(s)
- K Shirotani
- Department of Pharmacology, Kawasaki Medical School, Matsushima, Kurashiki 701-0192, Japan
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Alkan T, Kahveci N, Buyukuysal L, Korfali E, Ozluk K. Neuroprotective effects of MK 801 and hypothermia used alone and in combination in hypoxic-ischemic brain injury in neonatal rats. Arch Physiol Biochem 2001; 109:135-44. [PMID: 11780774 DOI: 10.1076/apab.109.2.135.4271] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Although accumulating evidence suggests that increased extracellular glutamate concentrations may play an important role in hypoxic-ischemic brain injury, dopamine and other catecholamines also seem to be involved. The N-methyl-D-aspartate receptor antagonist MK 801 and moderate hypothermia (32-34 degrees C) are each known to be neuroprotective, but their combined effect on the release and metabolism of neurotransmitters is unknown. Seven-day-old pups (n: 150) underwent right common carotid artery ligation to induce hemispheric ischemia, and were later subjected to 120 minutes of hypoxia with 8% O2 and 92% N2O. Half the rats (Group I, n: 74) were subjected to normothermic conditions throughout the hypoxic period. Moderate hypothermia (30-32 degrees C) was induced in the other pups (Group II, n: 76) immediately after artery occlusion, and was maintained throughout the hypoxic period. Prior to inducing hypoxia, half of the rats in each group (Groups IA and IIA) received vehicle solution (0.9% NaCI) and the other rats (Groups IB and IIB) received MK 801 (0.5 mg/kg) subcutaneously at 45 and 120 minutes after occlusion. Intracerebral temperature was recorded every 15 minutes after occlusion. Infarct area (n: 40) was calculated after staining with 2% 2,3,5 triphenyltetrazolium chloride. Neuronal damage (n: 42) was assessed by quantifying CA1-CA3 neuronal loss at five hippocampal levels. The amount of damage to the monoamine system of the corpus striatum was determined based on the dopamine and 3,4 dihydroxyphenylacetic acid levels in the corpus striatum in both hemispheres (n: 46), as measured by high-pressure liquid chromatography and compared with normal control pups' values (n: 10). The normothermia/saline-treated pups had significantly larger infarct areas than the MK 801 only, hypothermia only, or MK 801/hypothermia combination groups. Neuropathological examination and striatal tissue monoamine data also confirmed marked neuronal damage in this group. Although MK 801 treatment alone resulted in significantly smaller infarct area and less tissue damage than was observed in the normothermia/saline-treated group, the moderate hypothermia and the MK 801/hypothermia combination treatment groups both exhibited better neuronal protection, especially in the corpus striatum. The rats that received combined treatment also had a significantly lower mortality rate.
Collapse
Affiliation(s)
- T Alkan
- Department of Physiology, Uludağ University School of Medicine, Bursa, Turkey
| | | | | | | | | |
Collapse
|
12
|
Toner CC, Connelly K, Whelpton R, Bains S, Michael-Titus AT, McLaughlin DP, Stamford JA. Effects of sevoflurane on dopamine, glutamate and aspartate release in an in vitro model of cerebral ischaemia. Br J Anaesth 2001; 86:550-4. [PMID: 11573631 DOI: 10.1093/bja/86.4.550] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Release of excitatory amino acids and dopamine plays a central role in neuronal damage after cerebral ischaemia. In the present study, we used an in vitro model of ischaemia to investigate the effects of sevoflurane on dopamine, glutamate and aspartate efflux from rat corticostriatal slices. Slices were superfused with artificial cerebrospinal fluid at 34 degrees C and episodes of 'ischaemia' were mimicked by removal of oxygen and reduction in glucose concentration from 4 to 2 mmol litre(-1) for < or = 30 min. Dopamine efflux was monitored in situ by voltammetry while glutamate and aspartate concentrations in samples of the superfusate were measured by HPLC with fluorescence detection. Neurotransmitter outflow from slices was measured in the absence or presence of sevoflurane (4%). After induction of ischaemia in control slices, there was a mean (SEM) delay of 166 (7) s (n = 5) before sudden efflux of dopamine which reached a maximum extracellular concentration of 77.0 (15.2) micromol litre(-1). Sevoflurane (4%) reduced the rate of dopamine efflux during ischaemia (6.90 (1.5) and 4.73 (1.76) micromol litre(-1) s(-1) in controls and sevoflurane-treated slices, respectively; P<0.05), without affecting its onset or magnitude. Excitatory amino acid efflux was much slower. lschaemia-induced glutamate efflux had not reached maximum after 30 min of ischaemia. Basal (pre-ischaemic) glutamate and aspartate efflux per slice was 94.8 (24.8) and 69.3 (31.5) nmol litre(-1) superfusate (n = 4) and was not significantly reduced by 4% sevoflurane. lschaemia greatly increased glutamate and aspartate efflux (to a maximum of 919 (244)% and 974 (489)% of control, respectively). However, ischaemia-induced efflux of both glutamate and aspartate was significantly reduced by 4% sevoflurane (P < 0.001 for glutamate, P < 0.01 for aspartate). In summary, sevoflurane may owe part of its reported neuroprotective effect to a reduction of ischaemia-induced efflux of excitatory amino acids and, to a lesser extent, dopamine.
Collapse
Affiliation(s)
- C C Toner
- Academic Department of Anaesthesia and Intensive Care, The Royal London and St Bartholomew's School of Medicine and Dentistry, Royal London Hospital, Whitechapel, UK
| | | | | | | | | | | | | |
Collapse
|
13
|
Kim DK, Oh EK, Summers BA, Prabhakar NR, Kumar GK. Release of substance P by low oxygen in the rabbit carotid body: evidence for the involvement of calcium channels. Brain Res 2001; 892:359-69. [PMID: 11172784 DOI: 10.1016/s0006-8993(00)03272-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carotid bodies from diverse species contain substance P (SP), an 11-residue peptide that belongs to the tachykinin peptide family. Previous studies indicated that SP is excitatory to the carotid body and is associated with sensory response to hypoxia. However, release of SP from the carotid body during hypoxia has not been documented. In the present study, we determined whether hypoxia releases SP from the carotid body and further characterized the mechanism(s) associated with SP release by low oxygen. The release of SP from superfused rabbit carotid body was determined by an enzyme immunoassay (EIA). SP-like immunoreactivity was localized to many glomus cells and nerve fibers and the concentration of SP in the rabbit carotid body was 1.5+/-0.1 ng/mg protein. For release studies, carotid bodies (n=56) were superfused with a modified Tyrode medium containing Hepes buffer, pH 7.4, saturated with either room air (normoxia) or hypoxic gas mixtures. The basal release of SP during normoxia was 51.0+/-1.5 fmol/min per mg protein. Hypoxia increased SP release from the carotid body and the magnitude of release is dependent on the severity of hypoxic stimulus. Moderate hypoxia (pO2, 79+/-4 mmHg) stimulated SP release by approximately 50%, whereas SP release during severe hypoxia (pO2, 11+/-6 mmHg) was 2-fold higher than the normoxic control. A similar pattern of SP release was also observed when superfusion medium containing CO2-HCO3 buffer, pH 7.4, was used for release studies. To examine the mechanism(s) associated with hypoxia-induced SP release from the carotid body, moderate level of hypoxia (12% O2+N2) was used. Omission of calcium in the superfusion medium markedly attenuated hypoxia-induced SP release (>95%), whereas the basal release of SP was unaffected. Cd2+ (100 microM), a voltage-dependent Ca2+ channel blocker, abolished hypoxia-induced SP release. About 85% of SP release by hypoxia was inhibited by omega-conotoxin GVIA (1 microM), an N-type Ca2+ channel blocker, whereas nitrendipine (1.5 microM), an inhibitor of L-type Ca2+ channel partially attenuated ( approximately 65%) hypoxia-induced SP release. By contrast, omega-agatoxin TK (50 nM), a P/Q-type Ca2+ channel inhibitor, had no significant effect (P>0.05, n=6). These results suggest that SP is released from the rabbit carotid body by hypoxia that depends on the severity of the hypoxic stimulus. Further, SP release by hypoxia is a calcium-dependent process and is primarily mediated by N- and L-type Ca2+ channels.
Collapse
Affiliation(s)
- D K Kim
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
14
|
O'Neill MJ, Hicks CA, Ward MA, Osborne DJ, Wishart G, Mathews KS, McLaughlin DP, Stamford JA, McCarty DR, Patrick KE, Roman C, Fleisch JH, Gilmore J, Boot JR. LY393615, a novel neuronal Ca(2+) and Na(+) channel blocker with neuroprotective effects in models of in vitro and in vivo cerebral ischemia. Brain Res 2001; 888:138-149. [PMID: 11146060 DOI: 10.1016/s0006-8993(00)03043-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the present studies we have examined the effects of a new calcium channel blocker, LY393615 ((N-Butyl-[5,5-bis-(4-fluorophenyl)tetrahydrofuran-2-yl]methylamine hydrochloride, NCC1048) in a model of hypoxia-hypoglycaemia in vitro and in a gerbil model of global and in two rat models of focal cerebral ischaemia in vivo. Results indicated that LY393615 protected against hypoxia-hypoglycaemic insults in brain slices and also provided significant protection against ischaemia-induced hippocampal damage in gerbil global cerebral ischaemia when dosed at 10, 12.5 (P<0.05) or 15 mg/kg i.p. (P<0.01) 30 min before and 2 h 30 min after occlusion. The compound penetrated the brain well after a 15 mg/kg i.p. dose and had a half-life of 2.5 h. In further studies LY393615 was protective 1 h post-occlusion when administered at 15 mg/kg i.p. followed by 2 doses of 5 mg/kg i.p. 2 and 3 h later. LY393615 dosed at 15 mg/kg i.p. followed by 2 further doses of 5 mg/kg i.p. (2 and 3 h later) also produced a significant reduction in the infarct volume following Endothelin-1 (Et-1) middle cerebral artery occlusion in the rat when administration was initiated immediately (P<0.01) or 1 h (P<0.05) after occlusion. The compound was also evaluated in the intraluminal monofilament model of focal ischaemia. The animals had the middle cerebral artery occluded for 2 h, and 15 min after reperfusion LY393615 was administered at 15 mg/kg i.p. followed by 2 mg/kg/h i.v. infusion for 6 h. There was no reduction in infarct volume using this dosing protocol. In conclusion, in the present studies we have reported that a novel calcium channel blocker, LY393615, with good bioavailability protects against neuronal damage caused by hypoxia-hypoglycaemia in vitro and both global and focal cerebral ischaemia in vivo. The compound is neuroprotective when administered post-occlusion and may therefore be a useful anti-ischaemic agent.
Collapse
Affiliation(s)
- M J O'Neill
- Lilly Research Centre Ltd., Erl Wood Manor, Windlesham, GU20 6PH, Surrey, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bogaert L, O'Neill MJ, Moonen J, Sarre S, Smolders I, Ebinger G, Michotte Y. The effects of LY393613, nimodipine and verapamil, in focal cerebral ischaemia. Eur J Pharmacol 2001; 411:71-83. [PMID: 11137861 DOI: 10.1016/s0014-2999(00)00861-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This study evaluates the effects of N-(2-[bis (4-fluorophenyl)methoxy]ethyl)-1-butanamine hydrochloride (LY393613), a novel neuronal (N/P/Q-type) Ca(2+) channel blocker, in ischaemia. For comparison, two commonly used L-type Ca(2+) channel blockers; nimodipine and verapamil were also evaluated. Ischaemia was induced in freely moving rats by micro-injection of endothelin-1 near the middle cerebral artery. In vivo microdialysis, laser Doppler flowmetry and histology were used to monitor ischaemia. Administration of LY393613, before and after the insult, attenuated the ischaemia-induced glutamate release, but not the dopamine release. Both nimodipine and verapamil failed to affect transmitter releases significantly, when administered post-occlusion. None of the compounds tested, produced any significant change in striatal blood flow. Histology showed that ischaemic damage was significantly less in LY393613 pre-treated rats. In conclusion, LY393613, a neuronal N/P/Q-Ca(2+) channel blocker, can attenuate ischaemic brain damage. The protective mechanism appears to be mainly the attenuation of the ischaemia-induced glutamate release, rather than its effect on cerebral hemodynamics.
Collapse
Affiliation(s)
- L Bogaert
- Department of Pharmaceutical Chemistry and Drug Analysis, Pharmaceutical Institute, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium
| | | | | | | | | | | | | |
Collapse
|
16
|
Ohkuma S, Katsura M, Higo A, Shirotani K, Hara A, Tarumi C, Ohgi T. Peroxynitrite affects Ca2+ influx through voltage-dependent calcium channels. J Neurochem 2001; 76:341-50. [PMID: 11208897 DOI: 10.1046/j.1471-4159.2001.00045.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of peroxynitrite (OONO-) on voltage-dependent Ca2+ channels (VDCCs) was examined by measuring [45Ca2+] influx into mouse cerebral cortical neurones. OONO- time- and dose-dependently increased [45Ca2+] influx and this increase was abolished by manganese (III) tetrakis (4-benzoic acid) porphyrin, a scavenger for OONO-. Inhibition of cyclic GMP (cGMP) formation did not alter the OONO(-)-induced [45Ca2+] influx. OONO-, as well as 30 mm KCl, significantly increased fluorescence intensity of cell-associated bis-(1,3-dibutylbarbituric acid) trimethine oxonol (bis-oxonol). Tetrodotoxin and membrane stabilizers such as lidocaine dose-dependently suppressed OONO(-)-induced [45Ca2+] influx. Although each of 1 microM nifedipine and 1 microM omega-agatoxin VIA (omega-ATX) significantly inhibited the OONO(-)-induced [45Ca2+] influx and the concomitant presence of these agents completely abolished the influx, 1 microM omega-conotoxin GVIA (omega-CTX) showed no effect on the influx. On the other hand, OONO- itself reduced 30 mM KCl-induced [45Ca2+] influx to the level of [45Ca2+] influx induced by OONO- alone, and the magnitude of this reduction was as same as that of KCl-induced [45Ca2+] influx by omega-CTX. These results indicate that OONO- increases [45Ca2+] influx into the neurones through opening P/Q- and L-type VDCCs subsequent to depolarization, and inhibits the influx through N-type VDCCs.
Collapse
Affiliation(s)
- S Ohkuma
- Department of Pharmacology, Kawasaki Medical School, Matsushima, Kurashiki, Japan.
| | | | | | | | | | | | | |
Collapse
|
17
|
Mathews KS, McLaughlin DP, Ziabari LH, Toner CC, Street PC, Hisgrove E, Bezzina EL, Stamford JA. Rapid quantification of ischaemic injury and cerebroprotection in brain slices using densitometric assessment of 2,3,5-triphenyltetrazolium chloride staining. J Neurosci Methods 2000; 102:43-51. [PMID: 11000410 DOI: 10.1016/s0165-0270(00)00277-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
2,3,5-Triphenyltetrazolium chloride (TTC), a marker of mitochondrial enzyme activity, is widely used to assess the effects of cerebral ischaemia in vivo. In the present study, we characterised its utility as a simple rapid macrohistological measure of ischaemic damage in brain slices. Coronal rat corticostriatal slices were incubated in oxygenated artificial cerebrospinal fluid (aCSF) until subjected to 'ischaemia' (deoxygenated, hypoglycaemic aCSF) for up to 12 min. After a further 30 min to 16 h of reincubation in oxygenated aCSF, slices were stained with TTC, fixed with formalin and transferred to cover slips. The slices were scanned in 8-bit greyscale using a standard desktop scanner and the staining analysed by densitometry of the acquired images. Control slices stained a rich pink/red. Ischaemia (10 min) reduced both the area and intensity of staining. Both measures of striatal staining were negatively correlated with the duration of ischaemia (0-12 min). Furthermore, staining in the striatum correlated significantly with cortical TTC staining. The effects of TTC concentration (0.063-0.5% w/v) and post-ischaemic interval (30 min to 16 h) were examined upon the intensity of TTC staining. (+)-MK 801 prevented the ischaemia-induced reduction in TTC staining, consistent with cerebroprotection. These data suggest that TTC staining of brain slices may be used to quantify ischaemic injury and cerebroprotection.
Collapse
Affiliation(s)
- K S Mathews
- Neurotransmission Laboratory, Academic Department of Anaesthesia and Intensive Care, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Royal London Hospital, Whitechapel, London E1 1BB, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Saqr HE, Guan Z, Yates AJ, Stokes BT. Mechanisms through which PDGF alters intracellular calcium levels in U-1242 MG human glioma cells. Neurochem Int 1999; 35:411-22. [PMID: 10524708 DOI: 10.1016/s0197-0186(99)00092-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PDGF-BB induces a rapid, sustained increase in intracellular calcium levels in U-1242 MG cells. We used several calcium channel blockers to identify the types of channels involved. L channel blockers (verapamil, nimodipine, nicardipine, nitrendipine and taicatoxin) had no effect on PDGF-BB induced alterations in intracellular calcium. Blockers of P, Q and N channels (omega-agatoxin-IVA, omega-conotoxin MVIIC and omega-conotoxin GVIA) also had no effect. This indicates that these channels play an insignificant role in supplying the Ca2+ necessary for PDGF stimulated events in U-1242 MG cells. However, a T channel blocker (NDGA) and the non-specific (NS) calcium channel blockers (FFA and SK&F 9365) abolished PDGF-induced increases in intracellular calcium. This indicates that PDGF causes calcium influx through both non-specific cationic channels and T channels. To study the participation of intracellular calcium stores in this process, we used thapsigargin, caffeine and ryanodine, all of which cause depletion of intracellular calcium stores. The PDGF effect was abolished using both thapsigargin and caffeine but not ryanodine. Collectively, these data indicate that in these human glioma cells PDGF-BB induces release of intracellular calcium from caffeine- and thapsigargin-sensitive calcium stores which in turn lead to further calcium influx through both NS and T channels.
Collapse
Affiliation(s)
- H E Saqr
- Department of Pathology, The Ohio State University, Columbus 43210, USA
| | | | | | | |
Collapse
|
19
|
Cantuti-Castelvetri I, Joseph JA. Differential effect of dopamine catabolism and uptake inhibition on dopamine-induced calcium dysregulation and viability loss. Free Radic Biol Med 1999; 27:1393-404. [PMID: 10641734 DOI: 10.1016/s0891-5849(99)00188-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present study was aimed at evaluating of the effects of dopamine (DA) toxicity on PC12 cells' calcium homeostasis, cellular viability, and free radical levels. Moreover, the effect of receptor inhibition, and DA metabolism and reuptake antagonism on all parameters was also evaluated. Acute treatment with DA impaired the ability of PC12 cells to buffer excess calcium after K+-depolarization, decreased cellular viability by approximately 35%, and increased free radical levels by about 10% in a dose dependent manner. Pretreatment with both active and inactive pargyl monoamine oxidase inhibitors (MAOi) protected PC12 cells from DA toxicity on cellular viability and free radical levels, regardless of the presence or absence of their target enzymes in PC12 cells. These results suggest a lack of specific involvement of DA metabolism by MAO in dopamine's effects on cellular viability and production of free radicals. However, DA-induced dysregulation of calcium homeostasis seems to be more specifically mediated by DA metabolism by MAO. Results indicate that, in order for toxicity to occur the DA must be taken up into the cells. DA receptors do not mediate dopamine cytoxicity, and the D2 receptor plays a modest role in DA-induced calcium dysregulation and generation of free radicals. Moreover, DA-induced cell viability loss is not mediated by calcium, nor by caspase-3 enzyme, but is prevented by inhibition of mitochondrial permeability transition pores.
Collapse
Affiliation(s)
- I Cantuti-Castelvetri
- Laboratory of Neuroscience, United States Department of Agriculture, Jean Mayer Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | |
Collapse
|
20
|
Kimura M, Katayama K, Nishizawa Y. Role of glutamate receptors and voltage-dependent calcium channels in glutamate toxicity in energy-compromised cortical neurons. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 80:351-8. [PMID: 10496336 DOI: 10.1254/jjp.80.351] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have examined the effect of glutamate receptor antagonists and voltage-dependent calcium channel blockers on the neuronal injury induced by the combination of a low concentration of N-methyl-D-aspartate (NMDA) or kainate and energy compromise resulting from the use of glucose-free incubation buffer. Toxicity induced by NMDA or kainate was enhanced in the glucose-free buffer. NMDA-or non-NMDA-receptor antagonists added to the glucose-free buffer at the same time inhibited the neuronal cell death induced by each agonist. An NMDA-receptor antagonist, MK-801, but not non-NMDA-receptor antagonists, inhibited the toxicity when added to the culture medium after exposure of the cells to the agonists. P/Q-type calcium channel blockers, omega-agatoxin IVA and omega-agatoxin TK, and an N-type calcium channel blocker, omega-conotoxin GVIA, significantly attenuated the neuronal injury, although an L-type calcium channel blocker, nifedipine, showed little neuroprotective effect. A combination of calcium channel blockers of the three subtypes showed the most prominent neuroprotective effect. These observations suggest that the overactivation of NMDA and non-NMDA receptors and consequent activation of the voltage-dependent calcium channels lead to neuronal cell death in energy-compromised cortical neurons.
Collapse
Affiliation(s)
- M Kimura
- Eisai Tsukuba Research Laboratories, Ibaraki, Japan
| | | | | |
Collapse
|
21
|
Stamford JA, Isaac D, Hicks CA, Ward MA, Osborne DJ, O'Neill MJ. Ascorbic acid is neuroprotective against global ischaemia in striatum but not hippocampus: histological and voltammetric data. Brain Res 1999; 835:229-40. [PMID: 10415378 DOI: 10.1016/s0006-8993(99)01587-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Following reports that ascorbic acid (AA) blocks NMDA receptors, we examined its possible neuroprotective properties in vivo (gerbil bilateral carotid artery occlusion model: BCAO) and in vitro (ischaemia-induced dopamine (DA) release in brain slices). Five minutes of BCAO caused substantial cell loss of 90-95% and 40-50% in gerbil CA1 hippocampus and striatum, respectively, measured in haematoxylin and eosin-stained sections, 5 days post-insult. AA (500 mg kg(-1) day(-1) i.p. for 312 days, first dose 1 h before occlusion) significantly (P<0.05) reduced striatal cell loss (from 40 to 13%) while only reducing CA1 cell loss from 95 to 88%. A lower dose (250 mg kg(-1) day(-1) i.p. for 312 days) was ineffective in either region. AA (750 mg kg(-1) day(-1) i.p. for 312 days) caused significant striatal protection (cell loss reduced from 49 to 20%) if treatment was initiated 1 h before occlusion. Initiation of treatment immediately post occlusion did not cause significant protection. Neither treatment regime protected CA1 hippocampus. In separate experiments we examined the effect of AA on DA release, monitored by voltammetry, in an in vitro model of striatal ischaemia. Four DA release variables were measured: T(on)--time from initiation of ischaemia to the onset of DA release, T(pk)--the time from onset of DA release to maximum, deltaDA/deltat--the mean rate of DA release and [DA](max)-- the maximum extracellular DA concentration. Control values in drug-naive slices were: T(on)=193+/-8 s, T(pk) = 24 +/- 4 s, [DA](max) = 69 +/- 6 microM and deltaDA/deltat = 4.2 +/- 0.7 microM s(-1) (means+/-S.E.M., n=15). 212 h pretreatment with AA (0.4 to 10 mM) did not affect T(on) or [DA](max) but increased T(pk) and decreased deltaDA/deltat (P<0.05) with an EC50 of 1.66 mM. NMDA (100 microM) shortened T(on). N-ethylmaleimide (20 microM) had no effect on the response to AA but potentiated the action of NMDA on T(on). AA (2 or 10 mM) had no effect on the response to NMDA. We conclude that AA is neuroprotective against global ischaemia in the striatum and that some of this action may be due to attenuation of ischaemia-induced DA release. This action is mediated neither by blockade of the NMDA receptor nor modulation of its redox status.
Collapse
Affiliation(s)
- J A Stamford
- Neurotransmission Laboratory, Academic Department of Anaesthesia and Intensive Care, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Alexandra Wing, Royal London Hospital, Whitechapel, London, E1 1BB, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Büyükuysal RL, Mete B. Anoxia-induced dopamine release from rat striatal slices: involvement of reverse transport mechanism. J Neurochem 1999; 72:1507-15. [PMID: 10098855 DOI: 10.1046/j.1471-4159.1999.721507.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Incubation of rat striatal slices in the absence of oxygen (anoxia), glucose (aglycemia), or oxygen plus glucose (ischemia) caused significant increases in dopamine (DA) release. Whereas anoxia decreased extracellular 3,4-dihydroxyphenylacetic acid levels by 50%, aglycemia doubled it, and ischemia returned this aglycemia-induced enhancement to its control level. Although nomifensine, a DA uptake blocker, completely protected the slices against anoxia-induced DA depletion, aglycemia- and ischemia-induced increases were not altered. Moreover, hypothermia differentially affected DA release stimulated by anoxia, aglycemia, and ischemia. Involvement of glutamate in DA release induced by each experimental condition was tested by using MK-801 and also by comparing the glutamate-induced DA release with that during anoxia, aglycemia, or ischemia. MK-801 decreased the anoxia-induced DA depletion in a dose-dependent manner. This treatment, however, showed a partial protection in aglycemic conditions but failed to improve ischemia-induced DA depletion. Like anoxia, DA release induced by exogenous glutamate was also sensitive to nomifensine and hypothermia. These results indicate that anoxia enhances DA release by a mechanism involving both the reversed DA transporter and endogenous glutamate. Partial or complete lack of effect of nomifensine, hypothermia, or MK-801 in the absence of glucose or oxygen plus glucose also suggests that experimental conditions, such as the degree of anoxia/ischemia, may alter the mechanism(s) involved in DA depletion.
Collapse
Affiliation(s)
- R L Büyükuysal
- Department of Pharmacology and Clinical Pharmacology, Uludağ University Medical School, Bursa, Turkey
| | | |
Collapse
|
23
|
Oka M, Itoh Y, Ukai Y, Kimura K. Blockade by NS-7, a neuroprotective compound, of both L-type and P/Q-type Ca2+ channels involving depolarization-stimulated nitric oxide synthase activity in primary neuronal culture. J Neurochem 1999; 72:1315-22. [PMID: 10037505 DOI: 10.1046/j.1471-4159.1999.0721315.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The effect of 4-(4-fluorophenyl)-2-methyl-6-(5-piperidinopentyloxy)pyrimidine hydrochloride (NS-7), a neuroprotective compound, on Ca2+ channels involving the activation of nitric oxide synthase (NOS) was investigated in primary neuronal culture. The NOS activity was estimated from the cyclic GMP formation. The KCl (25 mM)-stimulated cyclic GMP formation was totally abolished by a combined treatment with nifedipine and omega-agatoxin IVA (omega-Aga), whereas spontaneous cyclic GMP formation was partially but significantly reduced by nifedipine. In contrast to nifedipine, NS-7 blocked KCl-stimulated cyclic GMP formation without affecting spontaneous cyclic GMP formation. Subsequently, the effects of nifedipine and NS-7 on L-type Ca2+ channels were compared. Nifedipine blocked equally the cyclic GMP formation stimulated by various concentrations of (+/-)-Bay K 8644, whereas NS-7 inhibited the maximal response without affecting the responses induced by low concentrations of (+/-)-Bay K 8644. The effects of NS-7 on L-type and P/Q-type Ca2+ channels involving KCl-stimulated cyclic GMP formation were subsequently examined. NS-7 suppressed the KCl-stimulated cyclic GMP formation measured in the presence of omega-Aga to almost the same extent as that determined in the presence of nifedipine. In contrast, NS-7 had no influence on ionomycin-induced enhancement of cyclic GMP formation. Finally, NS-7 reversed KCl-induced elevation of the intracellular free Ca2+ concentration. These findings suggest that NS-7 inhibits NOS activation in primary neuronal culture by reducing Ca2+ entry through L-type and P/Q-type Ca2+ channels, in which the inhibition is largely dependent on Ca2+ channel activity.
Collapse
Affiliation(s)
- M Oka
- Research Laboratories, Nippon Shinyaku Co., Ltd., Kyoto, Japan
| | | | | | | |
Collapse
|
24
|
Toner CC, Stamford JA. Effects of metabolic alterations on dopamine release in an in vitro model of neostriatal ischaemia. Brain Res Bull 1999; 48:395-9. [PMID: 10357071 DOI: 10.1016/s0361-9230(99)00016-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Release of neurotransmitters, including dopamine (DA), plays a central role in neuronal death during cerebral ischaemia. We investigated the effects of changes in energy demand and supply on DA release in cerebral ischaemia in vitro. Rat striatal slices were superfused (400 ml/h) with an artificial cerebrospinal fluid at 34 degrees C, unless otherwise stated. Ischaemia were mimicked by removal of O2 and reduction in glucose concentration from 4 to 2 mM. DA release was monitored by voltammetry. The profile of ischaemia-induced DA release was temperature-dependent. Hypothermia (to 24 degrees C) delayed, slowed, and reduced ischaemia-induced DA release relative to 34 degrees C. Pretreatment of the slices for 3 h with creatine (25 mM) delayed and slowed ischaemia-induced DA release. Conversely, blockade of Na+/K+ ATPase with ouabain induced an anoxic depolarisation and rapid DA release similar to ischaemia. In summary, the onset of DA release in this model is controlled by the balance between energy supply and utilisation. Strategies that increase availability of energy substrates for the membrane sodium pump (i.e., pre-incubation with creatine) or decrease their utilisation (hypothermia) slow and delay DA release. Hypothermia may owe part of its neuroprotective effect to a delay and slowing of ischaemia-induced release of DA and/or other neurotransmitters.
Collapse
Affiliation(s)
- C C Toner
- Academic Department of Anaesthesia and Intensive Care, St. Bartholomew's and the Royal London School of Medicine and Dentistry, Royal London Hospital, Whitechapel, United Kingdom
| | | |
Collapse
|
25
|
Imaizumi T, Kocsis JD, Waxman SG. The role of voltage-gated Ca2+ channels in anoxic injury of spinal cord white matter. Brain Res 1999; 817:84-92. [PMID: 9889329 DOI: 10.1016/s0006-8993(98)01214-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dorsal column axons of the rat spinal cord are partially protected from anoxic injury following blockade of voltage-sensitive Na+ channels and the Na+/--Ca2+ exchanger. To examine the potential contribution of voltage-gated Ca2+ channels to anoxic injury of spinal cord axons, we studied axonal conduction in rat dorsal columns in vitro following a 60-min period of anoxia. Glass microelectrodes were used to record field potentials from the dorsal columns following distal local surface stimulation. Perfusion solutions containing blockers of voltage-gated Ca2+ channels were introduced 60 min prior to onset of anoxia and continued until 10 min after reoxygenation. Pharmacological blocking agents which are relatively selective for L- (verapamil, diltiazem, nifedipine) and N- (omega-conotoxin GVIA) type calcium channels were significantly protective against anoxia-induced loss of conduction, as was non-specific block using divalent cations. Other Ca2+ channel blockers (neomycin and omega-conotoxin MVIIC) that affect multiple Ca2+ channel types were also neuroprotective. Ni2+, which preferentially blocks R-type Ca2+ channels more than T-type channels, was also protective in a dose-dependent manner. These data suggest that the influx of Ca2+, through L-, N- and possibly R-type voltage-gated Ca2+ channels, participates in the pathophysiology of the Ca2+-mediated injury of spinal cord axons that is triggered by anoxia.
Collapse
Affiliation(s)
- T Imaizumi
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06516, USA
| | | | | |
Collapse
|
26
|
Kumar GK, Overholt JL, Bright GR, Hui KY, Lu H, Gratzl M, Prabhakar NR. Release of dopamine and norepinephrine by hypoxia from PC-12 cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1592-600. [PMID: 9611124 DOI: 10.1152/ajpcell.1998.274.6.c1592] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the effects of hypoxia on the release of dopamine (DA) and norepinephrine (NE) from rat pheochromocytoma 12 (PC-12) cells and assessed the involvement of Ca2+ and protein kinases in stimulus-secretion coupling. Catecholamine release was monitored by microvoltammetry using a carbon fiber electrode as well as by HPLC coupled with electrochemical detection (ECD). Microvoltammetric analysis showed that hypoxia-induced catecholamine secretion (PO2 of medium approximately 40 mmHg) occurred within 1 min after the onset of the stimulus and reached a plateau between 10 and 15 min. HPLC-ECD analysis revealed that, at any level of PO2, the release of NE was greater than the release of DA. In contrast, in response to K+ (80 mM), DA release was approximately 11-fold greater than NE release. The magnitude of hypoxia-induced NE and DA releases depended on the passage, source, and culture conditions of the PC-12 cells. Omission of extracellular Ca2+ or addition of voltage-gated Ca2+ channel blockers attenuated hypoxia-induced release of both DA and NE to a similar extent. Protein kinase inhibitors, staurosporine (200 nM) and bisindolylmaleimide I (2 microM), on the other hand, attenuated hypoxia-induced NE release more than DA release. However, protein kinase inhibitors had no significant effect on K+-induced NE and DA releases. These results demonstrate that hypoxia releases catecholamines from PC-12 cells and that, for a given change in PO2, NE release is greater than DA release. It is suggested that protein kinases are involved in the enhanced release of NE during hypoxia.
Collapse
Affiliation(s)
- G K Kumar
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Ohkuma S, Katsura M, Hibino Y, Xu J, Shirotani K, Kuriyama K. Multiple actions of nitric oxide on voltage-dependent Ca2+ channels in mouse cerebral cortical neurons. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1998; 54:133-40. [PMID: 9526065 DOI: 10.1016/s0169-328x(97)00331-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated the effects of nitric oxide (NO) on voltage-dependent Ca2+ channels (VDCCs) by examining [45Ca2+]influx into mouse cerebral cortical neurons. S-nitroso-N-acetylpenicillamine (SNAP) induced a dose-dependent increase in [45Ca2+]influx, which was completely abolished by hemoglobin, tetrodotoxin and dibucaine. The NO-induced [45Ca2+influx was significantly inhibited by verapamil and omega-agatoxin VIA (omega-AGX), whereas omega-conotoxin GVIA (omega-CTX) had no effects on the NO-induced [45Ca2+]influx. KCl (30 mM) stimulated [45Ca2+]influx, and verapamil, omega-CTX and omega-AGX reduced the KCl-induced [45Ca2+]influx by about 40, 26 and 34%, respectively, indicating that the neurons used here possess L-, N- and P-typed VDCCs. SNAP itself reduced KCl-induced [45Ca2+]influx by about 28.5%. In the presence of both KCl and SNAP, omega-CTX showed no effects on the influx, while verapamil and omega-AGX significantly inhibited the influx and the concomitant presence of verapamil and omega-AGX completely abolished the influx. These results indicate that NO induces [45Ca2+] influx via the opening of L- and P-typed VDCCs subsequent to neuronal membrane depolarization and that NO itself inhibited the function of N-typed VDCC in the cerebral cortical neurons.
Collapse
Affiliation(s)
- S Ohkuma
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Toner CC, Stamford JA. Characteristics of the NMDA receptor modulating hypoxia/hypoglycaemia-induced rat striatal dopamine release in vitro. Eur J Pharmacol 1997; 340:133-43. [PMID: 9537807 DOI: 10.1016/s0014-2999(97)01422-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the functional characteristics of the NMDA receptor that modulates hypoxia/hypoglycaemia-induced striatal dopamine release. Dopamine release was detected by fast cyclic voltammetry in rat neostriatal slices. Four variables were measured: T(on) -- time from initiation of hypoxia/hypoglycaemia to the onset of dopamine release, Tpk -- time from onset to maximum, deltaDA/delta(t) -- rate of dopamine release and DAmax -- maximum extracellular dopamine concentration. In controls, T(on) = 164.9 +/- 1.7 s, Tpk = 20.9 +/- 0.9 s, deltaDA/delta(t) = 5.31 +/- 0.44 microM/s and DAmax = 79.1 +/- 2.5 microM (means +/- S.E.M., n = 203). Cis-4-(phosphonomethyl)piperidine-2-carboxylic acid (CGS 19755, 20 microM) lengthened, while N-methyl-D-aspartate (NMDA) (100 microM) shortened T(on). (5R,10S)-(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,1 0-imine hydrogen maleate (MK 801, 1 and 10 microM) and dextromethorphan (10 and 100 microM) increased Tpk and decreased DAmax. Neither glycine (100 microM), 7-chlorokynurenic acid (50 microM) nor 5-nitro-6,7-dichloro-1,4-dihydroquinoxaline-2,3-dione (ACEA 1021, 100 microM) had any effect although 7-chlorokynurenic acid blocked the effect of NMDA. Increasing [Mg2+] from 1.3 to 3.7 mM, increased Tpk and decreased deltaDA/delta(t). Dithiothreitol (1 mM) accelerated T(on) while 5.5-dithio-bis-(2-nitrobenzoic acid) (1 mM) delayed T(on). Neither drug affected Tpk, DAmax or deltaDA/delta(t). Neither spermidine (100 microM) nor arcaine (100 microM) affected T(on), Tpk or deltaDA/delta(t) although arcaine decreased DAmax. In conclusion, hypoxia/hypoglycaemia-induced dopamine release was influenced by an NMDA receptor although modulation of the glycine recognition site of the receptor was ineffective, as were agents acting at polyamine modulatory zones. These findings highlight differences between recombinant and native NMDA receptors and suggest caution in extrapolating molecular biology to functional studies.
Collapse
Affiliation(s)
- C C Toner
- Neurotransmission Lab, Royal London Hospital, Whitechapel, London, UK
| | | |
Collapse
|
29
|
Toner CC, Stamford JA. Sodium channel blockade unmasks two temporally distinct mechanisms of striatal dopamine release during hypoxia/hypoglycaemia in vitro. Neuroscience 1997; 81:999-1007. [PMID: 9330362 DOI: 10.1016/s0306-4522(97)00259-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Massive striatal dopamine release during cerebral ischaemia has been implicated in the resulting neuronal damage. Sodium influx is an early event in the biochemical cascade during ischaemia and blockade of sodium channels may increase resistance to ischaemia by reducing energy demand involved in compensation for sodium and potassium fluxes. In this study, we have determined the effects of opening and blockade of voltage-gated sodium channels on hypoxia/hypoglycaemia-induced dopamine release. Slices of rat caudate nucleus were maintained in a slice chamber superfused by an oxygenated artificial cerebrospinal fluid containing 4 mM glucose. Ischaemia (hypoxia/hypoglycaemia) was mimicked by a switch to a deoxygenated artificial cerebrospinal fluid containing 2 mM glucose and dopamine release was measured using fast cyclic voltammetry. In drug-free (control) slices, there was a 2-3 min delay after the onset of hypoxia/hypoglycaemia followed by a rapid dopamine release event which was associated with anoxic depolarization. In slices treated with the Na+ channel opener, veratridine (1 microM), the time to onset of dopamine release was shortened (101 +/- 20 s, compared with 171 +/- 8 s in controls, P < 0.05). Conversely, phenytoin (100 microM), lignocaine (200 microM) and the highly selective sodium channel blocker, tetrodotoxin (1 microM) markedly delayed and slowed dopamine release vs paired controls. In the majority of cases, dopamine release was biphasic after sodium channel blockade: a slow phase preceded a more rapid dopamine release event. The latter was associated with anoxic depolarization. Neither the fast nor the slow release events were affected by pretreatment with the selective dopamine uptake blocker GBR 12935 (0.2 microM), suggesting that uptake carrier reversal did not contribute to these events. In conclusion, sodium channel antagonism delays and slows hypoxia/hypoglycaemia-induced dopamine release in vitro. Furthermore, sodium channel blockade delays anoxic depolarization and its associated neurotransmitter release, revealing an earlier dopamine release event that does not result from reversal of the uptake carrier.
Collapse
Affiliation(s)
- C C Toner
- Anaesthetics Unit (Neurotransmission Laboratory), St Bartholomew's and the Royal London School of Medicine and Dentistry, Royal London Hospital, U.K
| | | |
Collapse
|