1
|
Iida I, Konno K, Natsume R, Abe M, Watanabe M, Sakimura K, Terunuma M. Behavioral analysis of kainate receptor KO mice and the role of GluK3 subunit in anxiety. Sci Rep 2024; 14:4521. [PMID: 38402313 PMCID: PMC10894277 DOI: 10.1038/s41598-024-55063-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/20/2024] [Indexed: 02/26/2024] Open
Abstract
Kainate receptors (KARs) are one of the ionotropic glutamate receptors in the central nervous system (CNS) comprised of five subunits, GluK1-GluK5. There is a growing interest in the association between KARs and psychiatric disorders, and there have been several studies investigating the behavioral phenotypes of KAR deficient mice, however, the difference in the genetic background has been found to affect phenotype in multiple mouse models of human diseases. Here, we examined GluK1-5 single KO mice in a pure C57BL/6N background and identified that GluK3 KO mice specifically express anxiolytic-like behavior with an alteration in dopamine D2 receptor (D2R)-induced anxiety, and reduced D2R expression in the striatum. Biochemical studies in the mouse cortex confirmed that GluK3 subunits do not assemble with GluK4 and GluK5 subunits, that can be activated by lower concentration of agonists. Overall, we found that GluK3-containing KARs function to express anxiety, which may represent promising anti-anxiety medication targets.
Collapse
Affiliation(s)
- Izumi Iida
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan
- Research Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Tokyo, 153-8902, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo, 060-8638, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan.
| | - Miho Terunuma
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata, 951-8514, Japan.
| |
Collapse
|
2
|
Harrison PJ, Bannerman DM. GRIN2A (NR2A): a gene contributing to glutamatergic involvement in schizophrenia. Mol Psychiatry 2023; 28:3568-3572. [PMID: 37736757 PMCID: PMC10730418 DOI: 10.1038/s41380-023-02265-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023]
Abstract
Involvement of the glutamate system, particularly N-methyl-D-aspartate (NMDA) receptor hypofunction, has long been postulated to be part of the pathophysiology of schizophrenia. An important development is provided by recent data that strongly implicate GRIN2A, the gene encoding the NR2A (GluN2A) NMDA receptor subunit, in the aetiology of the disorder. Rare variants and common variants are both robustly associated with genetic risk for schizophrenia. Some of the rare variants are point mutations likely affecting channel function, but most are predicted to cause protein truncation and thence result, like the common variants, in reduced gene expression. We review the genomic evidence, and the findings from Grin2a mutant mice and other models which give clues as to the likely phenotypic impacts of GRIN2A genetic variation. We suggest that one consequence of NR2A dysfunction is impairment in a form of hippocampal synaptic plasticity, producing deficits in short-term habituation and thence elevated and dysregulated levels of attention, a phenotype of relevance to schizophrenia and its cognitive aspects.
Collapse
Affiliation(s)
- Paul J Harrison
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
| | - David M Bannerman
- Department of Experimental Psychology, University of Oxford, Oxford, OX2 6GG, UK
| |
Collapse
|
3
|
Farmer CB, Roach EL, Bice LR, Falgout ME, Mata KG, Roche JK, Roberts RC. Excitatory and inhibitory imbalances in the trisynaptic pathway in the hippocampus in schizophrenia: a postmortem ultrastructural study. J Neural Transm (Vienna) 2023; 130:949-965. [PMID: 37193867 DOI: 10.1007/s00702-023-02650-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/05/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND A preponderance of evidence suggests that the hippocampus is a key region of dysfunction in schizophrenia. Neuroimaging and other studies indicate a relationship between hippocampal dysfunction and the degree of psychosis. Clinical data indicate hyperactivity in the hippocampus that precedes the onset of psychosis, and is correlated with symptom severity. In this study, we sought to identify circuitry at the electron microscopic level that could contribute to region-specific imbalances in excitation and inhibition in the hippocampus in schizophrenia. We used postmortem tissue from the anterior hippocampus from patients with schizophrenia and matched controls. Using stereological techniques, we counted and measured synapses, postsynaptic densities (PSDs), and evaluated size, number and optical density of mitochondria and parvalbumin-containing interneurons in key nodes of the trisynaptic pathway. Compared to controls, the schizophrenia group had decreased numbers of inhibitory synapses in CA3 and increased numbers of excitatory synapses in CA1; together, this indicates deficits in inhibition and an increase in excitation. The thickness of the PSD was larger in excitatory synapses in CA1, suggesting greater synaptic strength. In the schizophrenia group, there were fewer mitochondria in the dentate gyrus and a decrease in the optical density, a measure of functional integrity, in CA1. The number and optical density of parvalbumin interneurons were lower in CA3. The results suggest region-specific increases in excitatory circuitry, decreases in inhibitory neurotransmission and fewer or damaged mitochondria. These results are consistent with the hyperactivity observed in the hippocampus in schizophrenia in previous studies.
Collapse
Affiliation(s)
- Charlene B Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Erica L Roach
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Lily R Bice
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Madeleine E Falgout
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Kattia G Mata
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 835C, 1720 7th Avenue South, Birmingham, AL, 35294, USA.
| |
Collapse
|
4
|
Gangwar SP, Yen LY, Yelshanskaya MV, Sobolevsky AI. Positive and negative allosteric modulation of GluK2 kainate receptors by BPAM344 and antiepileptic perampanel. Cell Rep 2023; 42:112124. [PMID: 36857176 PMCID: PMC10440371 DOI: 10.1016/j.celrep.2023.112124] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
Kainate receptors (KARs) are a subtype of ionotropic glutamate receptors that control synaptic transmission in the central nervous system and are implicated in neurological, psychiatric, and neurodevelopmental disorders. Understanding the regulation of KAR function by small molecules is essential for exploring these receptors as drug targets. Here, we present cryoelectron microscopy (cryo-EM) structures of KAR GluK2 in complex with the positive allosteric modulator BPAM344, competitive antagonist DNQX, and negative allosteric modulator, antiepileptic drug perampanel. Our structures show that two BPAM344 molecules bind per ligand-binding domain dimer interface. In the absence of an agonist or in the presence of DNQX, BPAM344 stabilizes GluK2 in the closed state. The closed state is also stabilized by perampanel, which binds to the ion channel extracellular collar sites located in two out of four GluK2 subunits. The molecular mechanisms of positive and negative allosteric modulation of KAR provide a guide for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Shanti Pal Gangwar
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Laura Y Yen
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA; Cellular and Molecular Physiology and Biophysics Graduate Program, Columbia University Irving Medical Center, 630 West 168(th) Street, New York, NY 10032, USA
| | - Maria V Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA
| | - Alexander I Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
5
|
Chałupnik P, Vialko A, Pickering DS, Hinkkanen M, Donbosco S, Møller TC, Jensen AA, Nielsen B, Bay Y, Kristensen AS, Johansen TN, Łątka K, Bajda M, Szymańska E. Discovery of the First Highly Selective Antagonist of the GluK3 Kainate Receptor Subtype. Int J Mol Sci 2022; 23:ijms23158797. [PMID: 35955932 PMCID: PMC9369419 DOI: 10.3390/ijms23158797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Kainate receptors belong to the family of glutamate receptors ion channels, which are responsible for the majority of rapid excitatory synaptic transmission in the central nervous system. The therapeutic potential of kainate receptors is still poorly understood, which is also due to the lack of potent and subunit-selective pharmacological tools. In search of selective ligands for the GluK3 kainate receptor subtype, a series of quinoxaline-2,3-dione analogues was synthesized and pharmacologically characterized at selected recombinant ionotropic glutamate receptors. Among them, compound 28 was found to be a competitive GluK3 antagonist with submicromolar affinity and unprecedented high binding selectivity, showing a 400-fold preference for GluK3 over other homomeric receptors GluK1, GluK2, GluK5 and GluA2. Furthermore, in functional assays performed for selected metabotropic glutamate receptor subtypes, 28 did not show agonist or antagonist activity. The molecular determinants underlying the observed affinity profile of 28 were analyzed using molecular docking and molecular dynamics simulations performed for individual GluK1 and GluK3 ligand-binding domains.
Collapse
Affiliation(s)
- Paulina Chałupnik
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, 30-688 Kraków, Poland
| | - Alina Vialko
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, 30-688 Kraków, Poland
| | - Darryl S. Pickering
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Markus Hinkkanen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Stephanie Donbosco
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Thor C. Møller
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anders A. Jensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Birgitte Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Yasmin Bay
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anders S. Kristensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Tommy N. Johansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kamil Łątka
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College in Kraków, 30-688 Kraków, Poland
| | - Marek Bajda
- Department of Physicochemical Drug Analysis, Jagiellonian University Medical College in Kraków, 30-688 Kraków, Poland
| | - Ewa Szymańska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College in Kraków, 30-688 Kraków, Poland
- Correspondence:
| |
Collapse
|
6
|
Hu TM, Wu CL, Hsu SH, Tsai HY, Cheng FY, Cheng MC. Ultrarare Loss-of-Function Mutations in the Genes Encoding the Ionotropic Glutamate Receptors of Kainate Subtypes Associated with Schizophrenia Disrupt the Interaction with PSD95. J Pers Med 2022; 12:783. [PMID: 35629206 PMCID: PMC9144110 DOI: 10.3390/jpm12050783] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 02/01/2023] Open
Abstract
Schizophrenia is a complex mental disorder with a genetic component. The GRIK gene family encodes ionotropic glutamate receptors of the kainate subtype, which are considered candidate genes for schizophrenia. We screened for rare and pathogenic mutations in the protein-coding sequences of the GRIK gene family in 516 unrelated patients with schizophrenia using the ion semiconductor sequencing method. We identified 44 protein-altered variants, and in silico analysis indicated that 36 of these mutations were rare and damaging or pathological based on putative protein function. Notably, we identified four truncating mutations, including two frameshift deletion mutations (GRIK1p.Phe24fs and GRIK1p.Thr882fs) and two nonsense mutations (GRIK2p.Arg300Ter and GRIK4p.Gln342Ter) in four unrelated patients with schizophrenia. They exhibited minor allele frequencies of less than 0.01% and were absent in 1517 healthy controls from Taiwan Biobank. Functional analysis identified these four truncating mutants as loss-of-function (LoF) mutants in HEK-293 cells. We also showed that three mutations (GRIK1p.Phe24fs, GRIK1p.Thr882fs, and GRIK2p.Arg300Ter) weakened the interaction with the PSD95 protein. The results suggest that the GRIK gene family harbors ultrarare LoF mutations in some patients with schizophrenia. The identification of proteins that interact with the kainate receptors will be essential to determine kainate receptor-mediated signaling in the brain.
Collapse
Affiliation(s)
- Tsung-Ming Hu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
- Department of Future Studies and LOHAS Industry, Fo Guang University, Jiaosi, Yilan County 26247, Taiwan
| | - Chia-Liang Wu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Shih-Hsin Hsu
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Hsin-Yao Tsai
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Fu-Yu Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| | - Min-Chih Cheng
- Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; (T.-M.H.); (C.-L.W.); (S.-H.H.); (H.-Y.T.); (F.-Y.C.)
| |
Collapse
|
7
|
Iida I, Konno K, Natsume R, Abe M, Watanabe M, Sakimura K, Terunuma M. A comparative analysis of kainate receptor GluK2 and GluK5 knockout mice in a pure genetic background. Behav Brain Res 2021; 405:113194. [PMID: 33631192 DOI: 10.1016/j.bbr.2021.113194] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/21/2021] [Accepted: 02/15/2021] [Indexed: 11/21/2022]
Abstract
Kainate receptors (KARs) are members of the glutamate receptor family that regulate synaptic function in the brain. Although they are known to be associated with psychiatric disorders, how they are involved in these disorders remains unclear. KARs are tetrameric channels assembled from a combination of GluK1-5 subunits. Among these, GluK2 and GluK5 subunits are the major heteromeric subunits in the brain. To determine the functional similarities and differences between GluK2 and GluK5 subunits, we generated GluK2 KO and GluK5 KO mice on a C57BL/6N background, a well-characterized inbred strain, and compared their behavioral phenotypes. We found that GluK2 KO and GluK5 KO mice exhibited the same phenotypes in many tests, such as reduced locomotor activity, impaired motor function, and enhanced depressive-like behavior. No change was observed in motor learning, anxiety-like behavior, or sociability. Additionally, we identified subunit-specific phenotypes, such as reduced motivation toward their environment in GluK2 KO mice and an enhancement in the contextual memory in GluK5 KO mice. These results revealed that GluK2 and GluK5 subunits not only function in a coordinated manner but also have a subunit-specific role in regulating behavior. To summarize, we demonstrated subunit-specific and common behavioral effects of GluK2 and GluK5 subunits for the first time. Moreover, to the best of our knowledge, this is the first evidence of the involvement of the GluK5 subunit in the expression of depressive-like behavior and contextual memory, which strongly indicates its role in psychiatric disorders.
Collapse
Affiliation(s)
- Izumi Iida
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; Research Center for Advanced Oral Science, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Kohtarou Konno
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Rie Natsume
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan.
| | - Miho Terunuma
- Division of Oral Biochemistry, Faculty of Dentistry & Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan.
| |
Collapse
|
8
|
Mavroudis I, Petrides F, Kazis D, Chatzikonstantinou S, Karantali E, Ciobica A, Iordache AC, Dobrin R, Trus C, Njau S, Costa V, Baloyannis S. Morphological alterations of the pyramidal and stellate cells of the visual cortex in schizophrenia. Exp Ther Med 2021; 22:669. [PMID: 33986834 PMCID: PMC8111868 DOI: 10.3892/etm.2021.10101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 03/19/2021] [Indexed: 11/05/2022] Open
Abstract
Schizophrenia is a severe brain disorder characterized by certain types of delusion, hallucination and thought disorder. Studies have revealed impaired synaptic plasticity and reduced gamma-aminobutyric acid levels of the visual cortex in patients with schizophrenia. While previous work established a critical role for interneurons and cortical connectivity in the generation of hallucinations, the present study set out to examine the morphology of pyramidal cells and interneurons from layers 3 and 4 in the primary visual cortex from schizophrenic brains and to identify any dendritic and spinal alterations in comparison to normal control brains. The morphological and morphometric changes of the pyramidal cells and the interneurons of the visual cortices of 10 brains obtained from patients with schizophrenia, in comparison to 10 age-matched controls, were studied using the Golgi method and 3D neuronal reconstruction techniques. Analysis using the Golgi impregnation technique revealed a significant loss of distal dendritic segments, tortuous branches and varicosities and an overall restriction of the dendritic field in the brains of schizophrenic patients in both pyramidal cells and in aspiny interneurons. The present results may explain certain clinical phenomena associated with the visual cortex usually encountered in schizophrenia.
Collapse
Affiliation(s)
- Ioannis Mavroudis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Department of Neurology, Leeds Teaching Hospitals, Leeds LS1 3EX, UK.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Foivos Petrides
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Dimitrios Kazis
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | | | - Eleni Karantali
- Third Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 57010, Greece
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University, Iasi 700506, Romania.,Academy of Romanian Scientists, Bucuresti 050094, Romania.,Center of Biomedical Research, Romanian Academy, Iasi 700506, Romania
| | - Alin-Constantin Iordache
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Romeo Dobrin
- Faculty of Medicine, 'Grigore T. Popa', University of Medicine and Pharmacy, Iasi 700115, Romania
| | - Constantin Trus
- Department of Morphological and Functional Sciences, Faculty of Medicine, Dunarea de Jos University, Galati 050094, Romania
| | - Samuel Njau
- Department of Forensic Medicine and Toxicology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece
| | - Vasiliki Costa
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| | - Stavros Baloyannis
- Laboratory of Neuropathology and Electron Microscopy First Department of Neurology, Aristotle University of Thessaloniki, Thessaloniki 54634, Greece.,Institute For Research Of Alzheimer's Disease, Other Neurodegenerative Diseases And Normal Aging, Heraklion Langada 57200, Greece
| |
Collapse
|
9
|
Valbuena S, Lerma J. Losing balance: Kainate receptors and psychiatric disorders comorbidities. Neuropharmacology 2021; 191:108558. [PMID: 33862031 DOI: 10.1016/j.neuropharm.2021.108558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 01/28/2023]
Abstract
Cognition and behavior are tightly linked to synaptic function. A growing body of evidence suggests that aberrant neurotransmission, caused by changes in synaptic protein expression levels, may be a major cause underlying different brain disorders. These changes in expression result in abnormal synaptic organization or function, leading to impaired neurotransmission and unbalanced circuit operations. Here, we review the data supporting the involvement of mutations in genes coding for kainate receptor (KAR) subunits in the pathogenesis of psychiatric disorders and Down syndrome (DS). We show that most of these mutations do not affect the biophysical properties or the receptors, but rather alter subunit expression levels. On the basis of reports studying KAR genes mutations in mouse models of autism spectrum disorders and DS, we illustrate how deviations from the physiological regulatory role that these receptors play in neurotransmitter release and plasticity give rise to synaptic alterations that lead to behavioral and cognitive deficits underlying these disorders.
Collapse
Affiliation(s)
- Sergio Valbuena
- Instituto de Neurociencias CSIC-UMH, 03550, San Juan de Alicante, Spain
| | - Juan Lerma
- Instituto de Neurociencias CSIC-UMH, 03550, San Juan de Alicante, Spain.
| |
Collapse
|
10
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
11
|
Regoni M, Cattaneo S, Mercatelli D, Novello S, Passoni A, Bagnati R, Davoli E, Croci L, Consalez GG, Albanese F, Zanetti L, Passafaro M, Serratto GM, Di Fonzo A, Valtorta F, Ciammola A, Taverna S, Morari M, Sassone J. Pharmacological antagonism of kainate receptor rescues dysfunction and loss of dopamine neurons in a mouse model of human parkin-induced toxicity. Cell Death Dis 2020; 11:963. [PMID: 33173027 PMCID: PMC7656261 DOI: 10.1038/s41419-020-03172-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022]
Abstract
Mutations in the PARK2 gene encoding the protein parkin cause autosomal recessive juvenile Parkinsonism (ARJP), a neurodegenerative disease characterized by dysfunction and death of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Since a neuroprotective therapy for ARJP does not exist, research efforts aimed at discovering targets for neuroprotection are critically needed. A previous study demonstrated that loss of parkin function or expression of parkin mutants associated with ARJP causes an accumulation of glutamate kainate receptors (KARs) in human brain tissues and an increase of KAR-mediated currents in neurons in vitro. Based on the hypothesis that such KAR hyperactivation may contribute to the death of nigral DA neurons, we investigated the effect of KAR antagonism on the DA neuron dysfunction and death that occur in the parkinQ311X mouse, a model of human parkin-induced toxicity. We found that early accumulation of KARs occurs in the DA neurons of the parkinQ311X mouse, and that chronic administration of the KAR antagonist UBP310 prevents DA neuron loss. This neuroprotective effect is associated with the rescue of the abnormal firing rate of nigral DA neurons and downregulation of GluK2, the key KAR subunit. This study provides novel evidence of a causal role of glutamate KARs in the DA neuron dysfunction and loss occurring in a mouse model of human parkin-induced toxicity. Our results support KAR as a potential target in the development of neuroprotective therapy for ARJP.
Collapse
Affiliation(s)
- Maria Regoni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Stefano Cattaneo
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Daniela Mercatelli
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Salvatore Novello
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Alice Passoni
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Renzo Bagnati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Enrico Davoli
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156, Milan, Italy
| | - Laura Croci
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Gian Giacomo Consalez
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Federica Albanese
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Letizia Zanetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Maria Passafaro
- CNR, Institute of Neuroscience, Milan, Via Luigi Vanvitelli 32, 20129, Milan, Italy
| | - Giulia Maia Serratto
- CNR, Institute of Neuroscience, Milan, Via Luigi Vanvitelli 32, 20129, Milan, Italy
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy
| | - Alessio Di Fonzo
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurology Unit, Via Francesco Sforza 28, 20122, Milan, Italy
- Dino Ferrari Center, Department of Pathophysiology and Transplantation, University of Milan, Neuroscience Section, Via Francesco Sforza 28, 20122, Milan, Italy
| | - Flavia Valtorta
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Andrea Ciammola
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149, Milan, Italy.
| | - Stefano Taverna
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy
| | - Michele Morari
- Department of Medical Sciences, Section of Pharmacology, University of Ferrara, Via Fossato di Mortara 17-19, 44121, Ferrara, Italy
| | - Jenny Sassone
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
- Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
12
|
Jaremko W, Huang Z, Karl N, Pierce VD, Lynch J, Niu L. A kainate receptor-selective RNA aptamer. J Biol Chem 2020; 295:6280-6288. [PMID: 32161119 PMCID: PMC7212664 DOI: 10.1074/jbc.ra119.011649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 02/21/2020] [Indexed: 11/06/2022] Open
Abstract
Kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors are two major, closely related receptor subtypes in the glutamate ion channel family. Excessive activities of these receptors have been implicated in a number of central nervous system diseases. Designing potent and selective antagonists of these receptors, especially of kainate receptors, is useful for developing potential treatment strategies for these neurological diseases. Here, we report on two RNA aptamers designed to individually inhibit kainate and AMPA receptors. To improve the biostability of these aptamers, we also chemically modified these aptamers by substituting their 2'-OH group with 2'-fluorine. These 2'-fluoro aptamers, FB9s-b and FB9s-r, were markedly resistant to RNase-catalyzed degradation, with a half-life of ∼5 days in rat cerebrospinal fluid or serum-containing medium. Furthermore, FB9s-r blocked AMPA receptor activity. Aptamer FB9s-b selectively inhibited GluK1 and GluK2 kainate receptor subunits, and also GluK1/GluK5 and GluK2/GluK5 heteromeric kainate receptors with equal potency. This inhibitory profile makes FB9s-b a powerful template for developing tool molecules and drug candidates for treatment of neurological diseases involving excessive activities of the GluK1 and GluK2 subunits.
Collapse
Affiliation(s)
- William Jaremko
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Zhen Huang
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Nicholas Karl
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Vincen D Pierce
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Janet Lynch
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Li Niu
- Department of Chemistry, and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| |
Collapse
|
13
|
Bobilev AM, Perez JM, Tamminga CA. Molecular alterations in the medial temporal lobe in schizophrenia. Schizophr Res 2020; 217:71-85. [PMID: 31227207 DOI: 10.1016/j.schres.2019.06.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/29/2019] [Accepted: 06/01/2019] [Indexed: 11/30/2022]
Abstract
The medial temporal lobe (MTL) and its individual structures have been extensively implicated in schizophrenia pathophysiology, with considerable efforts aimed at identifying structural and functional differences in this brain region. The major structures of the MTL for which prominent differences have been revealed include the hippocampus, the amygdala and the superior temporal gyrus (STG). The different functions of each of these regions have been comprehensively characterized, and likely contribute differently to schizophrenia. While neuroimaging studies provide an essential framework for understanding the role of these MTL structures in various aspects of the disease, ongoing efforts have sought to employ molecular measurements in order to elucidate the biology underlying these macroscopic differences. This review provides a summary of the molecular findings in three major MTL structures, and discusses convergent findings in cellular architecture and inter-and intra-cellular networks. The findings of this effort have uncovered cell-type, network and gene-level specificity largely unique to each brain region, indicating distinct molecular origins of disease etiology. Future studies should test the functional implications of these molecular changes at the circuit level, and leverage new advances in sequencing technology to further refine our understanding of the differential contribution of MTL structures to schizophrenia.
Collapse
Affiliation(s)
- Anastasia M Bobilev
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Jessica M Perez
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, United States of America.
| |
Collapse
|
14
|
Segev A, Yanagi M, Scott D, Southcott SA, Lister JM, Tan C, Li W, Birnbaum SG, Kourrich S, Tamminga CA. Reduced GluN1 in mouse dentate gyrus is associated with CA3 hyperactivity and psychosis-like behaviors. Mol Psychiatry 2020; 25:2832-2843. [PMID: 30038231 PMCID: PMC6344327 DOI: 10.1038/s41380-018-0124-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 10/30/2017] [Accepted: 01/15/2018] [Indexed: 01/07/2023]
Abstract
Recent findings from in vivo-imaging and human post-mortem tissue studies in schizophrenic psychosis (SzP), have demonstrated functional and molecular changes in hippocampal subfields that can be associated with hippocampal hyperexcitability. In this study, we used a subfield-specific GluN1 knockout mouse with a disease-like molecular perturbation expressed only in hippocampal dentate gyrus (DG) and assessed its association with hippocampal physiology and psychosis-like behaviors. First, we used whole-cell patch-clamp recordings to measure the physiological changes in hippocampal subfields and cFos immunohistochemistry to examine cellular excitability. DG-GluN1 KO mice show CA3 cellular hyperactivity, detected using two approaches: (1) increased excitatory glutamate transmission at mossy fibers (MF)-CA3 synapses, and (2) an increased number of cFos-activated pyramidal neurons in CA3, an outcome that appears to project downstream to CA1 and basolateral amygdala (BLA). Furthermore, we examined psychosis-like behaviors and pathological memory processing; these show an increase in fear conditioning (FC), a reduction in prepulse inhibition (PPI) in the KO animal, along with a deterioration in memory accuracy with Morris Water Maze (MWM) and reduced social memory (SM). Moreover, with DREADD vectors, we demonstrate a remarkably similar behavioral profile when we induce CA3 hyperactivity. These hippocampal subfield changes could provide the basis for the observed increase in human hippocampal activity in SzP, based on the shared DG-specific GluN1 reduction. With further characterization, these animal model systems may serve as targets to test psychosis mechanisms related to hippocampus and assess potential hippocampus-directed treatments.
Collapse
Affiliation(s)
- Amir Segev
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Masaya Yanagi
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA ,grid.258622.90000 0004 1936 9967Present Address: Department of Neuropsychiatry, Kindai University Faculty of Medicine, Osaka, Japan
| | - Daniel Scott
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Sarah A. Southcott
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Jacob M. Lister
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA ,grid.47100.320000000419368710Yale University, School of Medicine, 333 Cedar Street, New Haven, CT 06510 USA ,grid.47100.320000000419368710Present Address: Yale University, School of Medicine, New Haven, CT USA
| | - Chunfeng Tan
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Wei Li
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Shari G. Birnbaum
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| | - Saïd Kourrich
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX, 75390, USA.
| | - Carol A. Tamminga
- grid.267313.20000 0000 9482 7121Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390 USA
| |
Collapse
|
15
|
Litwin DB, Paudyal N, Carrillo E, Berka V, Jayaraman V. The structural arrangement and dynamics of the heteromeric GluK2/GluK5 kainate receptor as determined by smFRET. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183001. [PMID: 31194959 PMCID: PMC6899175 DOI: 10.1016/j.bbamem.2019.05.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 01/08/2023]
Abstract
Kainate receptors, which are glutamate activated excitatory neurotransmitter receptors, predominantly exist as heteromers of GluK2 and GluK5 subunits in the mammalian central nervous system. There are currently no structures of the full-length heteromeric kainate receptors. Here, we have used single molecule FRET to determine the specific arrangement of the GluK2 and GluK5 subunits within the dimer of dimers configuration in a full-length receptor. Additionally, we have also studied the dynamics and conformational heterogeneity of the amino-terminal and agonist-binding domain interfaces associated with the resting and desensitized states of the full-length heteromeric kainate receptor using FRET-based methods. The smFRET data are compared to similar experiments performed on the homomeric kainate receptor to provide insight into the differences in conformational dynamics that distinguish the two functionally. This article is part of a Special Issue entitled: Molecular biophysics of membranes and membrane proteins.
Collapse
Affiliation(s)
- Douglas B Litwin
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nabina Paudyal
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Elisa Carrillo
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vladimir Berka
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Vasanthi Jayaraman
- Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
16
|
Localization of AMPA, kainate, and NMDA receptor mRNAs in the pigeon cerebellum. J Chem Neuroanat 2019; 98:71-79. [PMID: 30978490 DOI: 10.1016/j.jchemneu.2019.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 01/20/2023]
Abstract
In the present study, we investigated the location of mRNAs for three types of ionotropic glutamate receptors (iGluRs) in the pigeon cerebellum and then compared the results with those of mammals. The following nine iGluRs subunits were analyzed by in situ hybridization: AMPA receptors (GluA1, GluA2, GluA3, and GluA4), kainate receptors (GluK1, GluK2, and GluK4), and NMDA receptors (GluN1 and GluN2A). Subunit hybridization revealed expression in different cell types of the cerebellar cortex: Purkinje cells expressed most subunits, including AMPA receptors (GluA1, GluA2, and GluA3), kainate receptors (GluK1 and GluK4), and NMDA receptors (GluN1); granule cells expressed four subunits of kainate (GluK1 and GluK2) and NMDA receptors (GluN1 and GluN2A); stellate and basket cells expressed GluK1, GluK2, and GluN1; Golgi cells expressed GluA1, GluA3, and GluN1; and Bergmann glial cells expressed only AMPA receptors (GluA2 and GluA4). Cerebellar nuclei showed no AMPA subunit signals, whereas kainate and NMDA receptors were observed in the five cerebellar nuclei divisions (CbL, CbMic, CbMim, CbMin, and CbMvm). The five divisions showed weak expression of GluK1, GluK2, and GluN2A; moderate to intense expression of GluK4; and intense expression of GluN1. These results demonstrate that in pigeons the cerebellar cortex expresses AMPA, kainate, and NMDA receptors, while the cerebellar nuclei express kainate and NMDA receptors. Taken together, these findings provide anatomical data for further analysis of the functions of iGluR-expressing neurons in glutamatergic circuits of the avian cerebellum.
Collapse
|
17
|
Daguer H, Hoff RB, Molognoni L, Kleemann CR, Felizardo LV. Outbreaks, toxicology, and analytical methods of marine toxins in seafood. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.10.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
18
|
Abstract
The study of glutamatergic synapses mainly focuses on the memory-related hippocampus. Recent studies in the cortical areas such as the anterior cingulate cortex (ACC) show that excitatory synapses can undergo long-term plastic changes in adult animals. Long-term potentiation (LTP) of cortical synapses may play important roles in chronic pain and anxiety. In addition to NMDA and AMPA receptors, kainate (KA) receptors have been found to play roles in synaptic transmission, regulation and presynaptic forms of LTP. In this brief review, I will summarize the new progress made on KA receptors, and propose that ACC synapses may provide a good synaptic model for understanding cortical mechanism for behavioral anxiety, and its related emotional disorders.
Collapse
Affiliation(s)
- Min Zhuo
- Center for Neuron and Disease, Frontier Institutes of Science and Technology, Xi'an Jiaotong University, Xi'an, Shanxi, 710049, China. .,Department of Physiology, Faculty of Medicine, University of Toronto, Medical Science Building, Room #3342, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada.
| |
Collapse
|
19
|
Jaremko WJ, Huang Z, Wen W, Wu A, Karl N, Niu L. Identification and characterization of RNA aptamers: A long aptamer blocks the AMPA receptor and a short aptamer blocks both AMPA and kainate receptors. J Biol Chem 2017; 292:7338-7347. [PMID: 28325839 PMCID: PMC5418036 DOI: 10.1074/jbc.m116.774752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/17/2017] [Indexed: 11/06/2022] Open
Abstract
AMPA and kainate receptors, along with NMDA receptors, represent different subtypes of glutamate ion channels. AMPA and kainate receptors share a high degree of sequence and structural similarities, and excessive activity of these receptors has been implicated in neurological diseases such as epilepsy. Therefore, blocking detrimental activity of both receptor types could be therapeutically beneficial. Here, we report the use of an in vitro evolution approach involving systematic evolution of ligands by exponential enrichment with a single AMPA receptor target (i.e. GluA1/2R) to isolate RNA aptamers that can potentially inhibit both AMPA and kainate receptors. A full-length or 101-nucleotide (nt) aptamer selectively inhibited GluA1/2R with a KI of ∼5 μm, along with GluA1 and GluA2 AMPA receptor subunits. Of note, its shorter version (55 nt) inhibited both AMPA and kainate receptors. In particular, this shorter aptamer blocked equally potently the activity of both the GluK1 and GluK2 kainate receptors. Using homologous binding and whole-cell recording assays, we found that an RNA aptamer most likely binds to the receptor's regulatory site and inhibits it noncompetitively. Our results suggest the potential of using a single receptor target to develop RNA aptamers with dual activity for effectively blocking both AMPA and kainate receptors.
Collapse
Affiliation(s)
- William J Jaremko
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Zhen Huang
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Wei Wen
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Andrew Wu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Nicholas Karl
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| | - Li Niu
- From the Department of Chemistry and Center for Neuroscience Research, University at Albany, SUNY, Albany, New York 12222
| |
Collapse
|
20
|
Piyabhan P, Wannasiri S, Naowaboot J. Bacopa monnieri(Brahmi) improved novel object recognition task and increased cerebral vesicular glutamate transporter type 3 in sub-chronic phencyclidine rat model of schizophrenia. Clin Exp Pharmacol Physiol 2016; 43:1234-1242. [DOI: 10.1111/1440-1681.12658] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/01/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Pritsana Piyabhan
- Division of Physiology; Department of Preclinical Science; Faculty of Medicine; Thammasat University; Klongluang Pathumthani Thailand
| | - Supaporn Wannasiri
- Division of Physiology; Department of Preclinical Science; Faculty of Medicine; Thammasat University; Klongluang Pathumthani Thailand
| | - Jarinyaporn Naowaboot
- Division of Pharmacology; Department of Preclinical Science; Faculty of Medicine; Thammasat University; Klongluang Pathumthani Thailand
| |
Collapse
|
21
|
Hadzic M, Jack A, Wahle P. Ionotropic glutamate receptors: Which ones, when, and where in the mammalian neocortex. J Comp Neurol 2016; 525:976-1033. [PMID: 27560295 DOI: 10.1002/cne.24103] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 08/09/2016] [Accepted: 08/15/2016] [Indexed: 12/14/2022]
Abstract
A multitude of 18 iGluR receptor subunits, many of which are diversified by splicing and RNA editing, localize to >20 excitatory and inhibitory neocortical neuron types defined by physiology, morphology, and transcriptome in addition to various types of glial, endothelial, and blood cells. Here we have compiled the published expression of iGluR subunits in the areas and cell types of developing and adult cortex of rat, mouse, carnivore, bovine, monkey, and human as determined with antibody- and mRNA-based techniques. iGluRs are differentially expressed in the cortical areas and in the species, and all have a unique developmental pattern. Differences are quantitative rather than a mere absence/presence of expression. iGluR are too ubiquitously expressed and of limited use as markers for areas or layers. A focus has been the iGluR profile of cortical interneuron types. For instance, GluK1 and GluN3A are enriched in, but not specific for, interneurons; moreover, the interneurons expressing these subunits belong to different types. Adressing the types is still a major hurdle because type-specific markers are lacking, and the frequently used neuropeptide/CaBP signatures are subject to regulation by age and activity and vary as well between species and areas. RNA-seq reveals almost all subunits in the two morphofunctionally characterized interneuron types of adult cortical layer I, suggesting a fairly broad expression at the RNA level. It remains to be determined whether all proteins are synthesized, to which pre- or postsynaptic subdomains in a given neuron type they localize, and whether all are involved in synaptic transmission. J. Comp. Neurol. 525:976-1033, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Minela Hadzic
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alexander Jack
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| | - Petra Wahle
- Developmental Neurobiology, Faculty for Biology and Biotechnology ND 6/72, Ruhr University Bochum, 44801, Bochum, Germany
| |
Collapse
|
22
|
Møllerud S, Kastrup JS, Pickering DS. A pharmacological profile of the high-affinity GluK5 kainate receptor. Eur J Pharmacol 2016; 788:315-320. [PMID: 27373850 DOI: 10.1016/j.ejphar.2016.06.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 11/16/2022]
Abstract
Mouse GluK5 was expressed in Sf9 insect cells and radiolabelled with [(3)H]-kainate in receptor binding assays (Kd=6.9nM). Western immunoblotting indicated an Sf9 GluK5 band doublet corresponding to the glycosylated (128kDa) and deglycosylated (111kDa) protein, which was identical to the band pattern of native rat brain GluK5. A pharmacological profile of the high-affinity kainate receptor GluK5 is described which is distinct from the profiles of other kainate receptors (GluK1-3). The 27 tested ligands generally show a preferential affinity to GluK1 over GluK5, the exceptions being: dihydrokainate, (S)-5-fluorowillardiine, (S)-glutamate and quisqualate, where the affinity is similar at GluK1 and GluK5. In contrast, quisqualate shows 40-fold higher affinity at GluK5 over GluK3 whereas (S)-1-(2'-amino-2'-caboxyethyl)thienol[3,4-d]pyrimidin-2,4-dione (NF1231), (RS)-2-amino-3-(5-tert-butyl-3-hydroxyisoxazol-4-yl)propionate (ATPA), dihydrokainate and (2S,4R)-4-methyl-glutamate (SYM2081) have higher affinity at GluK3 compared to GluK5. Since some studies have indicated that GluK5 is associated with various diseases in the central nervous system (e.g. schizophrenia, temporal lobe epilepsy, bipolar disorder), selective GluK5 ligands could have therapeutic potential. The distinct pharmacological profile of GluK5 suggests that it would be possible to design ligands with selectivity towards GluK5.
Collapse
Key Words
- AMPA, PubChem CID: 1221
- ATPA, PubChem CID: 2253
- Affinity
- CNQX, PubChem CID: 3721046
- Domoic acid, PubChem CID: 5282253
- Glycosylation
- Ionotropic glutamate receptor
- Kainic acid, PubChem CID: 10255
- Kinetics
- L-Glutamic acid, PubChem CID: 33032
- Quisqualic acid, PubChem CID: 40539
- Radioligand binding
- SYM2081, PubChem CID: 21117106
- Sf9
- UBP310, PubChem CID: 6420160
- Willardiine, PubChem CID: 440053
Collapse
Affiliation(s)
- Stine Møllerud
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Jette Sandholm Kastrup
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark
| | - Darryl S Pickering
- Dept. of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Jagtvej 160, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Lladó-Pelfort L, Troyano-Rodriguez E, van den Munkhof HE, Cervera-Ferri A, Jurado N, Núñez-Calvet M, Artigas F, Celada P. Phencyclidine-induced disruption of oscillatory activity in prefrontal cortex: Effects of antipsychotic drugs and receptor ligands. Eur Neuropsychopharmacol 2016; 26:614-25. [PMID: 26781158 DOI: 10.1016/j.euroneuro.2015.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/15/2015] [Accepted: 11/13/2015] [Indexed: 12/23/2022]
Abstract
The non-competitive NMDA receptor (NMDA-R) antagonist phencyclidine (PCP) markedly disrupts thalamocortical activity, increasing excitatory neuron discharge and reducing low frequency oscillations (LFO, <4Hz) that temporarily group neuronal discharge. These actions are mainly driven by PCP interaction with NMDA-R in GABAergic neurons of the thalamic reticular nucleus and likely underlie PCP psychotomimetic activity. Here we report that classical (haloperidol, chlorpromazine, perphenazine) and atypical (clozapine, olanzapine, quetiapine, risperidone, ziprasidone, aripripazole) antipsychotic drugs--but not the antidepressant citalopram--countered PCP-evoked fall of LFO in the medial prefrontal cortex (mPFC) of anesthetized rats. PCP reduces LFO by breaking the physiological balance between excitatory and inhibitory transmission. Next, we examined the role of different neurotransmitter receptors to reverse PCP actions. D2-R and D1-R blockade may account for classical antipsychotic action since raclopride and SCH-23390 partially reversed PCP effects. Atypical antipsychotic reversal may additionally involve 5-HT1A-R activation (but not 5-HT2A-R blockade) since 8-OH-DPAT and BAYx3702 (but not M100907) fully countered PCP effects. Blockade of histamine H1-R (pyrilamine) and α1-adrenoceptors (prazosin) was without effect. However, the enhancement of GABAA-R-mediated neurotransmission (using muscimol, diazepam or valproate) and the reduction of excitatory neurotransmission (using the mGluR2/3 agonist LY379268 and the preferential kainite/AMPA antagonist CNQX--but not the preferential AMPA/kainate antagonist NBQX) partially or totally countered PCP effects. Overall, these results shed new light on the neurobiological mechanisms used by antipsychotic drugs to reverse NMDA-R antagonist actions and suggest that agents restoring the physiological excitatory/inhibitory balance altered by PCP may be new targets in antipsychotic drug development.
Collapse
Affiliation(s)
- L Lladó-Pelfort
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - E Troyano-Rodriguez
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - H E van den Munkhof
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - A Cervera-Ferri
- Departament d׳Anatomia i Embriologia Humana, Facultat de Medicina, Universitat de València, València, Spain
| | - N Jurado
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - M Núñez-Calvet
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - F Artigas
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - P Celada
- Department of Neurochemistry and Neuropharmacology, Institut d'Investigacions Biomèdiques de Barcelona (IIBB-CSIC) (IDIBAPS), Barcelona, Spain; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
24
|
Sparrow S, Manning JR, Cartier J, Anblagan D, Bastin ME, Piyasena C, Pataky R, Moore EJ, Semple SI, Wilkinson AG, Evans M, Drake AJ, Boardman JP. Epigenomic profiling of preterm infants reveals DNA methylation differences at sites associated with neural function. Transl Psychiatry 2016; 6:e716. [PMID: 26784970 PMCID: PMC5068883 DOI: 10.1038/tp.2015.210] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022] Open
Abstract
DNA methylation (DNAm) plays a determining role in neural cell fate and provides a molecular link between early-life stress and neuropsychiatric disease. Preterm birth is a profound environmental stressor that is closely associated with alterations in connectivity of neural systems and long-term neuropsychiatric impairment. The aims of this study were to examine the relationship between preterm birth and DNAm, and to investigate factors that contribute to variance in DNAm. DNA was collected from preterm infants (birth<33 weeks gestation) and healthy controls (birth>37 weeks), and a genome-wide analysis of DNAm was performed; diffusion magnetic resonance imaging (dMRI) data were acquired from the preterm group. The major fasciculi were segmented, and fractional anisotropy, mean diffusivity and tract shape were calculated. Principal components (PC) analysis was used to investigate the contribution of MRI features and clinical variables to variance in DNAm. Differential methylation was found within 25 gene bodies and 58 promoters of protein-coding genes in preterm infants compared with controls; 10 of these have neural functions. Differences detected in the array were validated with pyrosequencing. Ninety-five percent of the variance in DNAm in preterm infants was explained by 23 PCs; corticospinal tract shape associated with 6th PC, and gender and early nutritional exposure associated with the 7th PC. Preterm birth is associated with alterations in the methylome at sites that influence neural development and function. Differential methylation analysis has identified several promising candidate genes for understanding the genetic/epigenetic basis of preterm brain injury.
Collapse
Affiliation(s)
- S Sparrow
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - J R Manning
- MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - J Cartier
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - D Anblagan
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - M E Bastin
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - C Piyasena
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - R Pataky
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - E J Moore
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - S I Semple
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, UK
| | | | - M Evans
- Department of Pathology, NHS Lothian, Edinburgh, UK
| | - A J Drake
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - J P Boardman
- MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK,Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK,MRC Centre for Reproductive Health, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Room W1.26, Edinburgh EH16 4TJ, UK. E-mail:
| |
Collapse
|
25
|
Hu W, MacDonald ML, Elswick DE, Sweet RA. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann N Y Acad Sci 2014; 1338:38-57. [PMID: 25315318 DOI: 10.1111/nyas.12547] [Citation(s) in RCA: 169] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A number of studies have indicated that antagonists of the N-methyl-d-aspartate subtypes of glutamate receptors can cause schizophrenia-like symptoms in healthy individuals and exacerbate symptoms in individuals with schizophrenia. These findings have led to the glutamate hypothesis of schizophrenia. Here we review the evidence for this hypothesis in postmortem studies of brain tissue from individuals affected by schizophrenia, summarizing studies of glutamate neuron morphology, of expression of glutamate receptors and transporters, and of the synthesizing and metabolizing enzymes for glutamate and its co-agonists. We found consistent evidence of morphological alterations of dendrites of glutamatergic neurons in the cerebral cortex of subjects with schizophrenia and of reduced levels of the axon bouton marker synaptophysin. There were no consistent alterations of mRNA expression of glutamate receptors, although there has been limited study of the corresponding proteins. Studies of the glutamate metabolic pathway have been limited, although there is some evidence that excitatory amino acid transporter-2, glutamine synthetase, and glutaminase have altered expression in schizophrenia. Future studies would benefit from additional direct examination of glutamatergic proteins. Further advances, such as selective testing of synaptic microdomains, cortical layers, and neuronal subtypes, may also be required to elucidate the nature of glutamate signaling impairments in schizophrenia.
Collapse
Affiliation(s)
- Wei Hu
- Department of Behavioral Medicine and Psychiatry, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | | | | | | |
Collapse
|
26
|
Rubio MD, Drummond JB, Meador-Woodruff JH. Glutamate receptor abnormalities in schizophrenia: implications for innovative treatments. Biomol Ther (Seoul) 2014; 20:1-18. [PMID: 24116269 PMCID: PMC3792192 DOI: 10.4062/biomolther.2012.20.1.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/25/2011] [Indexed: 01/18/2023] Open
Abstract
Schizophrenia is a devastating psychiatric illness that afflicts 1% of the population worldwide, resulting in substantial impact to patients, their families, and health care delivery systems. For many years, schizophrenia has been felt to be associated with dysregulated dopaminergic neurotransmission as a key feature of the pathophysiology of the illness. Although numerous studies point to dopaminergic abnormalities in schizophrenia, dopamine dysfunction cannot completely account for all of the symptoms seen in schizophrenia, and dopamine-based treatments are often inadequate and can be associated with serious side effects. More recently, converging lines of evidence have suggested that there are abnormalities of glutamate transmission in schizophrenia. Glutamatergic neurotransmission involves numerous molecules that facilitate glutamate release, receptor activation, glutamate reuptake, and other synaptic activities. Evidence for glutamatergic abnormalities in schizophrenia primarily has implicated the NMDA and AMPA subtypes of the glutamate receptor. The expression of these receptors and other molecules associated with glutamate neurotransmission has been systematically studied in the brain in schizophrenia. These studies have generally revealed region- and molecule-specific changes in glutamate receptor transcript and protein expression in this illness. Given that glutamatergic neurotransmission has been implicated in the pathophysiology of schizophrenia, recent drug development efforts have targeted the glutamate system. Much effort to date has focused on modulation of the NMDA receptor, although more recently other glutamate receptors and transporters have been the targets of drug development. These efforts have been promising thus far, and ongoing efforts to develop additional drugs that modulate glutamatergic neurotransmission are underway that may hold the potential for novel classes of more effective treatments for this serious psychiatric illness.
Collapse
Affiliation(s)
- Maria D Rubio
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0021, USA
| | | | | |
Collapse
|
27
|
Abstract
Our understanding of the molecular properties of kainate receptors and their involvement in synaptic physiology has progressed significantly over the last 30 years. A plethora of studies indicate that kainate receptors are important mediators of the pre- and postsynaptic actions of glutamate, although the mechanisms underlying such effects are still often a topic for discussion. Three clear fields related to their behavior have emerged: there are a number of interacting proteins that pace the properties of kainate receptors; their activity is unconventional since they can also signal through G proteins, behaving like metabotropic receptors; they seem to be linked to some devastating brain diseases. Despite the significant progress in their importance in brain function, kainate receptors remain somewhat puzzling. Here we examine discoveries linking these receptors to physiology and their probable implications in disease, in particular mood disorders, and propose some ideas to obtain a deeper understanding of these intriguing proteins.
Collapse
|
28
|
Comparison of frailty of primary neurons, embryonic, and aging mouse cortical layers. Neurobiol Aging 2013; 35:322-30. [PMID: 24011540 DOI: 10.1016/j.neurobiolaging.2013.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 05/02/2013] [Accepted: 08/05/2013] [Indexed: 11/23/2022]
Abstract
Superficial layers I to III of the human cerebral cortex are more vulnerable toward Aβ peptides than deep layers V to VI in aging. Three models of layers were used to investigate this pattern of frailty. First, primary neurons from E14 and E17 embryonic murine cortices, corresponding respectively to future deep and superficial layers, were treated either with Aβ(1-42), okadaic acid, or kainic acid. Second, whole E14 and E17 embryonic cortices, and third, in vitro separated deep and superficial layers of young and old C57BL/6J mice, were treated identically. We observed that E14 and E17 neurons in culture were prone to death after the Aβ and particularly the kainic acid treatment. This was also the case for the superficial layers of the aged cortex, but not for the embryonic, the young cortex, and the deep layers of the aged cortex. Thus, the aged superficial layers appeared to be preferentially vulnerable against Aβ and kainic acid. This pattern of vulnerability corresponds to enhanced accumulation of senile plaques in the superficial cortical layers with aging and Alzheimer's disease.
Collapse
|
29
|
Scarr E, Gibbons AS, Neo J, Udawela M, Dean B. Cholinergic connectivity: it's implications for psychiatric disorders. Front Cell Neurosci 2013; 7:55. [PMID: 23653591 PMCID: PMC3642390 DOI: 10.3389/fncel.2013.00055] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 04/12/2013] [Indexed: 01/01/2023] Open
Abstract
Acetylcholine has been implicated in both the pathophysiology and treatment of a number of psychiatric disorders, with most of the data related to its role and therapeutic potential focusing on schizophrenia. However, there is little thought given to the consequences of the documented changes in the cholinergic system and how they may affect the functioning of the brain. This review looks at the cholinergic system and its interactions with the intrinsic neurotransmitters glutamate and gamma-amino butyric acid as well as those with the projection neurotransmitters most implicated in the pathophysiologies of psychiatric disorders; dopamine and serotonin. In addition, with the recent focus on the role of factors normally associated with inflammation in the pathophysiologies of psychiatric disorders, links between the cholinergic system and these factors will also be examined. These interfaces are put into context, primarily for schizophrenia, by looking at the changes in each of these systems in the disorder and exploring, theoretically, whether the changes are interconnected with those seen in the cholinergic system. Thus, this review will provide a comprehensive overview of the connectivity between the cholinergic system and some of the major areas of research into the pathophysiologies of psychiatric disorders, resulting in a critical appraisal of the potential outcomes of a dysregulated central cholinergic system.
Collapse
Affiliation(s)
- Elizabeth Scarr
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Andrew S. Gibbons
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Jaclyn Neo
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| | - Madhara Udawela
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
- Centre for Neuroscience, The University of MelbourneParkville, VIC, Australia
| | - Brian Dean
- Department of Psychiatry, The University of MelbourneParkville, VIC, Australia
- Molecular Psychiatry Laboratories, Florey Institute of Neuroscience and Mental HealthParkville, VIC, Australia
| |
Collapse
|
30
|
Yadav R, Hillman BG, Gupta SC, Suryavanshi P, Bhatt JM, Pavuluri R, Stairs DJ, Dravid SM. Deletion of glutamate delta-1 receptor in mouse leads to enhanced working memory and deficit in fear conditioning. PLoS One 2013; 8:e60785. [PMID: 23560106 PMCID: PMC3616134 DOI: 10.1371/journal.pone.0060785] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 03/02/2013] [Indexed: 11/18/2022] Open
Abstract
Glutamate delta-1 (GluD1) receptors are expressed throughout the forebrain during development with high levels in the hippocampus during adulthood. We have recently shown that deletion of GluD1 receptor results in aberrant emotional and social behaviors such as hyperaggression and depression-like behaviors and social interaction deficits. Additionally, abnormal expression of synaptic proteins was observed in amygdala and prefrontal cortex of GluD1 knockout mice (GluD1 KO). However the role of GluD1 in learning and memory paradigms remains unknown. In the present study we evaluated GluD1 KO in learning and memory tests. In the eight-arm radial maze GluD1 KO mice committed fewer working memory errors compared to wildtype mice but had normal reference memory. Enhanced working memory in GluD1 KO was also evident by greater percent alternation in the spontaneous Y-maze test. No difference was observed in object recognition memory in the GluD1 KO mice. In the Morris water maze test GluD1 KO mice showed no difference in acquisition but had longer latency to find the platform in the reversal learning task. GluD1 KO mice showed a deficit in contextual and cue fear conditioning but had normal latent inhibition. The deficit in contextual fear conditioning was reversed by D-Cycloserine (DCS) treatment. GluD1 KO mice were also found to be more sensitive to foot-shock compared to wildtype. We further studied molecular changes in the hippocampus, where we found lower levels of GluA1, GluA2 and GluK2 subunits while a contrasting higher level of GluN2B in GluD1 KO. Additionally, we found higher postsynaptic density protein 95 (PSD95) and lower glutamate decarboxylase 67 (GAD67) expression in GluD1 KO. We propose that GluD1 is crucial for normal functioning of synapses and absence of GluD1 leads to specific abnormalities in learning and memory. These findings provide novel insights into the role of GluD1 receptors in the central nervous system.
Collapse
Affiliation(s)
- Roopali Yadav
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Brandon G. Hillman
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Subhash C. Gupta
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Pratyush Suryavanshi
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Jay M. Bhatt
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Ratnamala Pavuluri
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| | - Dustin J. Stairs
- Department of Psychology, Creighton University, Omaha, Nebraska, United States of America
| | - Shashank M. Dravid
- Department of Pharmacology, Creighton University, Omaha, Nebraska, United States of America
| |
Collapse
|
31
|
Lowry ER, Kruyer A, Norris EH, Cederroth CR, Strickland S. The GluK4 kainate receptor subunit regulates memory, mood, and excitotoxic neurodegeneration. Neuroscience 2013; 235:215-25. [PMID: 23357115 DOI: 10.1016/j.neuroscience.2013.01.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 01/28/2023]
Abstract
Though the GluK4 kainate receptor subunit shows limited homology and a restricted expression pattern relative to other kainate receptor subunits, its ablation results in distinct behavioral and molecular phenotypes. GluK4 knockout mice demonstrated impairments in memory acquisition and recall in a Morris water maze test, suggesting a previously unreported role for kainate receptors in spatial memory. GluK4 knockout mice also showed marked hyperactivity and impaired pre-pulse inhibition, thereby mirroring two of the hallmark endophenotypes of patients with schizophrenia and bipolar disorder. Furthermore, we found that GluK4 is a key mediator of excitotoxic neurodegeneration: GluK4 knockout mice showed robust neuroprotection in the CA3 region of the hippocampus following intrahippocampal injection of kainate and widespread neuroprotection throughout the hippocampus following hypoxia-ischemia. Biochemical analysis of kainate- or sham-treated wild-type and GluK4 knockout hippocampal tissue suggests that GluK4 may act through the JNK pathway to regulate the molecular cascades that lead to excitotoxicity. Together, our findings suggest that GluK4 may be relevant to the understanding and treatment of human neuropsychiatric and neurodegenerative disorders.
Collapse
MESH Headings
- Affect/physiology
- Animals
- Blotting, Western
- Brain Ischemia/physiopathology
- Brain Ischemia/psychology
- CA3 Region, Hippocampal/physiology
- Cell Death/drug effects
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Excitatory Amino Acid Agonists/administration & dosage
- Excitatory Amino Acid Agonists/toxicity
- Hippocampus
- Hypoxia, Brain/physiopathology
- Hypoxia, Brain/psychology
- JNK Mitogen-Activated Protein Kinases/genetics
- Kainic Acid/administration & dosage
- Kainic Acid/toxicity
- Maze Learning/drug effects
- Maze Learning/physiology
- Memory/physiology
- Mice
- Mice, Knockout
- Microinjections
- Motor Activity/drug effects
- Neurodegenerative Diseases/chemically induced
- Neurodegenerative Diseases/genetics
- Neurons/drug effects
- Receptors, Kainic Acid/genetics
- Receptors, Kainic Acid/physiology
- Reflex, Startle/drug effects
- Stereotaxic Techniques
- Stroke/genetics
- Stroke/pathology
Collapse
Affiliation(s)
- E R Lowry
- Laboratory of Neurobiology & Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
32
|
Tamminga CA, Southcott S, Sacco C, Wagner AD, Ghose S. Glutamate dysfunction in hippocampus: relevance of dentate gyrus and CA3 signaling. Schizophr Bull 2012; 38:927-35. [PMID: 22532703 PMCID: PMC3446225 DOI: 10.1093/schbul/sbs062] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/15/2012] [Indexed: 01/02/2023]
Abstract
Synaptic glutamate signaling in brain is highly complex and includes multiple interacting receptors, modulating cotransmitters and distinct regional dynamics. Medial temporal lobe (MTL) memory structures receive excitatory inputs from neocortical sensory and associational projections: afferents from neocortex pass to parahippocampal cortex, then to layers II/III of entorhinal cortex, and then onto hippocampal subfields. Principles of Hebbian plasticity govern synaptic encoding of memory signals, and homeostatic plasticity processes influence the activity of the memory system as a whole. Hippocampal imaging studies in schizophrenia have identified 2 alterations in MTL--increases in baseline blood perfusion and decreases in task-related activation. These observations along with converging postsynaptic hippocampal protein changes suggest that homeostatic plasticity mechanisms might be altered in schizophrenia hippocampus. If hippocampal pattern separation is diminished due to partial dentate gyrus failure (resulting in 'spurious associations') and also if pattern completion is accelerated and increasingly inaccurate due to increased CA3 associational activity, then it is conceivable that associations could be false and, especially if driven by anxiety or stress, could generate psychotic content, with the mistaken associations being laid down in memory, despite their psychotic content, especially delusions and thought disorder.
Collapse
Affiliation(s)
- Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA.
| | | | | | | | | |
Collapse
|
33
|
Deletion of glutamate delta-1 receptor in mouse leads to aberrant emotional and social behaviors. PLoS One 2012; 7:e32969. [PMID: 22412961 PMCID: PMC3296759 DOI: 10.1371/journal.pone.0032969] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 02/02/2012] [Indexed: 12/27/2022] Open
Abstract
The delta family of ionotropic glutamate receptors consists of glutamate δ1 (GluD1) and glutamate δ2 (GluD2) receptors. While the role of GluD2 in the regulation of cerebellar physiology is well understood, the function of GluD1 in the central nervous system remains elusive. We demonstrate for the first time that deletion of GluD1 leads to abnormal emotional and social behaviors. We found that GluD1 knockout mice (GluD1 KO) were hyperactive, manifested lower anxiety-like behavior, depression-like behavior in a forced swim test and robust aggression in the resident-intruder test. Chronic lithium rescued the depression-like behavior in GluD1 KO. GluD1 KO mice also manifested deficits in social interaction. In the sociability test, GluD1 KO mice spent more time interacting with an inanimate object compared to a conspecific mouse. D-Cycloserine (DCS) administration was able to rescue social interaction deficits observed in GluD1 KO mice. At a molecular level synaptoneurosome preparations revealed lower GluA1 and GluA2 subunit expression in the prefrontal cortex and higher GluA1, GluK2 and PSD95 expression in the amygdala of GluD1 KO. Moreover, DCS normalized the lower GluA1 expression in prefrontal cortex of GluD1 KO. We propose that deletion of GluD1 leads to aberrant circuitry in prefrontal cortex and amygdala owing to its potential role in presynaptic differentiation and synapse formation. Furthermore, these findings are in agreement with the human genetic studies suggesting a strong association of GRID1 gene with several neuropsychiatric disorders including schizophrenia, bipolar disorder, autism spectrum disorders and major depressive disorder.
Collapse
|
34
|
Knight HM, Walker R, James R, Porteous DJ, Muir WJ, Blackwood DHR, Pickard BS. GRIK4/KA1 protein expression in human brain and correlation with bipolar disorder risk variant status. Am J Med Genet B Neuropsychiatr Genet 2012; 159B:21-9. [PMID: 22052594 DOI: 10.1002/ajmg.b.31248] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/29/2011] [Indexed: 11/10/2022]
Abstract
The kainate class of ionotropic glutamate receptors is involved in the regulation of neuronal transmission and synaptic plasticity. Previously we reported that a deletion variant within the gene GRIK4, which encodes the KA1 kainate receptor subunit, was associated with a reduced risk of bipolar disorder and increased GRIK4 mRNA abundance. Using a high resolution immunohistochemistry technique, we characterized KA1 protein localization in human brain and performed a genotype-protein expression correlation study. KA1 was expressed in specific populations of neuronal cells in the cerebellum and all layers of the frontal and parahippocampal cortices. In the hippocampus, strong KA1 expression was observed in the stratum pyramidale and stratum lucidum of CA3 and CA2, in cell processes in CA1, in the neuropil of the CA4 region, in polymorphic cells including mossy fiber neurons in the hilus, and dentate gyrus (DG) granule cells. Mean counts of KA1 positive DG granule cells, hippocampal CA3 pyramidal cells, and layer 1 of the frontal cortex were significantly increased in subjects with the deletion allele (P = 0.0005, 0.018, and 0.0058, respectively) compared to subjects homozygous for the insertion. Neuronal expression levels in all regions quantified were higher in the deletion group. These results support our hypothesis that the deletion allele affords protection against bipolar disorder through increased KA1 protein abundance in neuronal cells. Biological mechanisms which may contribute to this protective effect include KA1 involvement in adult hippocampal neurogenesis, HPA axis activation, or plasticity processes affecting neuronal circuitry.
Collapse
Affiliation(s)
- Helen M Knight
- Division of Psychiatry, University of Edinburgh, Royal Edinburgh Hospital, Edinburgh, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
Schizophrenia affects approximately 1% of the population and continues to be associated with poor outcome because of the limited efficacy of and noncompliance with existing antipsychotic medications. An alternative hypothesis invoking the excitatory neurotransmitter, glutamate, arose out of clinical observations that NMDA receptor antagonists, the dissociative anesthetics like ketamine, can replicate in normal individuals the full range of symptoms of schizophrenia including psychosis, negative symptoms, and cognitive impairments. Low dose ketamine can also re-create a number of physiologic abnormalities characteristic of schizophrenia. Postmortem studies have revealed abnormalities in endogenous modulators of NMDA receptors in schizophrenia as well as components of a postsynaptic density where NMDA receptors are localized. Gene association studies have revealed several genes that affect NMDA receptor function whose allelic variants are associated with increased risk for schizophrenia including genes encoding D-amino acid oxidase, its modulator G72, dysbindin, and neuregulin. The parvalbumin-positive, fast-firing GABAergic interneurons that provide recurrent inhibition to cortical-limbic pyramidal neurons seem to be most sensitive to NMDA receptor hypofunction. As a consequence, disinhibition of glutamatergic efferents disrupts cortical processing, causing cognitive impairments and negative symptoms, and drives subcortical dopamine release, resulting in psychosis. Drugs designed to correct the cortical-limbic dysregulated glutamatergic neurotransmission show promise for reducing negative and cognitive symptoms of schizophrenia as well as its positive symptoms.
Collapse
|
36
|
Catches JS, Xu J, Contractor A. Genetic ablation of the GluK4 kainate receptor subunit causes anxiolytic and antidepressant-like behavior in mice. Behav Brain Res 2011; 228:406-14. [PMID: 22203159 DOI: 10.1016/j.bbr.2011.12.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 12/12/2011] [Accepted: 12/14/2011] [Indexed: 11/30/2022]
Abstract
There is a clear link between dysregulation of glutamatergic signaling and mood disorders. Genetic variants in the glutamate receptor gene GRIK4, which encodes the kainate receptor subunit GluK4, alter the susceptibility for depression, bipolar disorder and schizophrenia. Here we demonstrate that Grik4(-/-) mice have reduced anxiety and an antidepressant-like phenotype. In the elevated zero-maze, a test for anxiety and risk taking behavior, Grik4(-/-) mice spent significantly more time exploring the open areas of the maze. In anxiogenic tests of marble-burying and novelty-induced suppression of feeding, anxiety-like behavior was consistently reduced in knockout animals. In the forced swim test, a test of learned helplessness that is used to determine depression-like behavior, knockout mice demonstrated significantly less immobility suggesting that Grik4 ablation has an antidepressant-like effect. Finally, in the sucrose preference test, a test for anhedonia in rodents, Grik4(-/-) mice demonstrated increased sucrose preference. Expression of the GluK4 receptor subunit in the forebrain is restricted to the CA3 region of the hippocampus and dentate gyrus regions where KARs are known to modulate synaptic plasticity. We tested whether Grik4 ablation had effects on mossy fiber (MF) plasticity and found there to be a significant impairment in LTP likely through a loss of KAR modulation of excitability of the presynaptic MF axons. These studies demonstrate a clear anxiolytic and antidepressant phenotype associated with ablation of Grik4 and a parallel disruption in hippocampal plasticity, providing support for the importance of this receptor subunit in mood disorders.
Collapse
Affiliation(s)
- Justin S Catches
- Department of Physiology, Northwestern University, Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
37
|
Sestito RS, Trindade LB, de Souza RG, Kerbauy LN, Iyomasa MM, Rosa MLNM. Effect of isolation rearing on the expression of AMPA glutamate receptors in the hippocampal formation. J Psychopharmacol 2011; 25:1720-9. [PMID: 20952455 DOI: 10.1177/0269881110385595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutamatergic signaling may contribute to cognitive dysfunction in schizophrenia. Glutamatergic synapses might be the site of primary abnormalities in this disorder with the dopaminergic changes being secondary to altered glutamatergic transmission. Isolation rearing of rats from weaning has been used as an experimental model for affective disorders like schizophrenia. In this immunohistochemistry study we evaluate the changes in the expression of GluR1 and GluR2 AMPA receptors in the hippocampus, amygdala and entorhinal cortex induced by isolation rearing. Two groups of Wistar rats (grouped and isolated, n = 6/each) were used. Isolation rearing induced a significant decrease in GluR1- and GluR2-immunopositive cells in the hippocampus. For GluR1 the reduction was 31% in the hilus of dentate gyrus (p = 0.02) and 47% in CA3 (p = 0.002). For GluR2 the reduction was 52% in the hilus of dentate gyrus (p < 0.0001) and 29% in CA1 (p = 0.002). Isolation rearing induced a non-significant decrease in GluR1-immunopositive cells in the basolateral amygdala (p = 0.066) while no alteration was found in the lateral nucleus (p = 0.657). For GluR2 no changes were induced by isolation in both nuclei of the amygdala. In the entorhinal cortex no apparent difference was seen in GluR1- or GluR2-immunopositive cells when isolated reared rats were compared to grouped rats. The results suggest that isolation rearing from weaning induces changes on the expression of AMPA glutamate receptors in the hippocampus similar to those reported for postmortem human brains with schizophrenia. These findings also contribute to additional evidence for using isolation rearing of rats from weaning as an animal model for schizophrenia.
Collapse
Affiliation(s)
- Rodrigo S Sestito
- Laboratory of Experimental Neuroscience, Faculty of Medicine of Catanduva, Padre Albino Foundation, Catanduva, Brazil
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Schizophrenia is a common mental illness resulting from a complex interplay of genetic and environmental risk factors. Establishing its primary molecular and cellular aetiopathologies has proved difficult. However, this is a vital step towards the rational development of useful disease biomarkers and new therapeutic strategies. The advent and large-scale application of genomic, transcriptomic, proteomic and metabolomic technologies are generating data sets required to achieve this goal. This discovery phase, typified by its objective and hypothesis-free approach, is described in the first part of the review. The accumulating biological information, when viewed as a whole, reveals a number of biological process and subcellular locations that contribute to schizophrenia causation. The data also show that each technique targets different aspects of central nervous system function in the disease state. In the second part of the review, key schizophrenia candidate genes are discussed more fully. Two higher-order processes - adult neurogenesis and inflammation - that appear to have pathological relevance are also described in detail. Finally, three areas where progress would have a large impact on schizophrenia biology are discussed: deducing the causes of schizophrenia in the individual, explaining the phenomenon of cross-disorder risk factors, and distinguishing causative disease factors from those that are reactive or compensatory.
Collapse
|
39
|
Sampaio AS, Fagerness J, Crane J, Leboyer M, Delorme R, Pauls DL, Stewart SE. Association between polymorphisms in GRIK2 gene and obsessive-compulsive disorder: a family-based study. CNS Neurosci Ther 2011; 17:141-7. [PMID: 20370803 PMCID: PMC6493828 DOI: 10.1111/j.1755-5949.2009.00130.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Several studies support a genetic influence on obsessive-compulsive disorder (OCD) etiology. The role of glutamate as an important neurotransmitter affecting OCD pathophysiology has been supported by neuroimaging, animal model, medication, and initial candidate gene studies. Genes involved in glutamatergic pathways, such as the glutamate receptor, ionotropic, kainate 2 (GRIK2), have been associated with OCD in previous studies. This study examines GRIK2 as a candidate gene for OCD susceptibility in a family-based approach. Probands had full DSM-IV diagnostic criteria for OCD. Forty-seven OCD probands and their parents were recruited from tertiary care OCD specialty clinics from France and USA. Genotypes of single nucleotide polymorphism (SNP) markers and related haplotypes were analyzed using Haploview and FBAT software. The polymorphism at rs1556995 (P= 0.0027; permuted P-value = 0.03) was significantly associated with the presence of OCD. Also, the two marker haplotype rs1556995/rs1417182, was significantly associated with OCD (P= 0.0019, permuted P-value = 0.01). This study supports previously reported findings of association between proximal GRIK2 SNPs and OCD in a comprehensive evaluation of the gene. Further study with independent samples and larger sample sizes is required.
Collapse
Affiliation(s)
- Aline S. Sampaio
- Department and Institute of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Jesen Fagerness
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Harvard University
| | - Jacquelyn Crane
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Harvard University
| | - Marion Leboyer
- INSERM U 513, Faculté de Médecine, 8 rue du Général Sarrail, 94010 Créteil, France
- Service de Psychiatrie, Hôpitaux Henri Mondor et Albert Chenevier, Assistance Publique‐Hôpitaux de Paris, Créteil, France
| | - Richard Delorme
- INSERM U 513, Faculté de Médecine, 8 rue du Général Sarrail, 94010 Créteil, France
- Service de Psychopathologie de l‘Enfant et de l‘Adolescent, Hôpital Robert Debré, Assistance Publique‐Hôpitaux de Paris, Paris, France
| | - David L. Pauls
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Harvard University
| | - S. Evelyn Stewart
- Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Massachusetts General Hospital, Harvard University
| |
Collapse
|
40
|
Ibrahim HM, Tamminga CA. Schizophrenia: treatment targets beyond monoamine systems. Annu Rev Pharmacol Toxicol 2011; 51:189-209. [PMID: 20868275 DOI: 10.1146/annurev.pharmtox.010909.105851] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We develop the proposal in this review that schizophrenia is a syndrome made up of component symptom complexes, each with distinctive clinical correlates, pathophysiology, and selective treatments. Psychosis is the necessary component of the syndrome; it has a young-adult onset and is sensitive to current antipsychotic drugs. Cognitive dysfunction often precedes psychosis onset, does not present an episodic course, and is poorly responsive to antipsychotic drugs. Treatments for cognition are being developed largely on the basis of animal pharmacology. Drugs for component symptom complexes will theoretically be coadministered to independent symptomatic end points. Animal models, some with genetic characteristics, can be more easily and directly developed to match an individual component than to match an illness definition as broad as schizophrenia.
Collapse
Affiliation(s)
- Hisham M Ibrahim
- Department of Psychiatry, University of Texas Southwestern, Dallas, 75390-9086, USA.
| | | |
Collapse
|
41
|
Larsen AM, Bunch L. Medicinal chemistry of competitive kainate receptor antagonists. ACS Chem Neurosci 2011; 2:60-74. [PMID: 22778857 DOI: 10.1021/cn1001039] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/27/2010] [Indexed: 01/06/2023] Open
Abstract
Kainic acid (KA) receptors belong to the group of ionotropic glutamate receptors and are expressed throughout in the central nervous system (CNS). The KA receptors have been shown to be involved in neurophysiological functions such as mossy fiber long-term potentiation (LTP) and synaptic plasticity and are thus potential therapeutic targets in CNS diseases such as schizophrenia, major depression, neuropathic pain and epilepsy. Extensive effort has been made to develop subtype-selective KA receptor antagonists in order to elucidate the physiological function of each of the five subunits known (GluK1-5). However, to date only selective antagonists for the GluK1 subunit have been discovered, which underlines the strong need for continued research in this area. The present review describes the structure-activity relationship and pharmacological profile for 10 chemically distinct classes of KA receptor antagonists comprising, in all, 45 compounds. To the medicinal chemist this information will serve as reference guidance as well as an inspiration for future effort in this field.
Collapse
Affiliation(s)
- Ann M. Larsen
- Department of Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| | - Lennart Bunch
- Department of Medicinal Chemistry, Faculty of Pharmaceutical
Sciences, University of Copenhagen, Universitetsparken 2, DK-2100
Copenhagen, Denmark
| |
Collapse
|
42
|
André JM, Leach PT, Gould TJ. Nicotine ameliorates NMDA receptor antagonist-induced deficits in contextual fear conditioning through high-affinity nicotinic acetylcholine receptors in the hippocampus. Neuropharmacology 2010; 60:617-25. [PMID: 21167848 DOI: 10.1016/j.neuropharm.2010.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/06/2010] [Accepted: 12/08/2010] [Indexed: 01/31/2023]
Abstract
NMDA glutamate receptors (NMDARs) and nicotinic acetylcholine receptors (nAChRs) are both involved in learning and synaptic plasticity. Increasing evidence suggests processes mediated by these receptors may interact to modulate learning; however, little is known about the neural substrates involved in these interactive processes. The present studies investigated the effects of nicotine on MK-801 hydrogen maleate (MK-801) and DL-2-Amino-5-phosphonovaleric acid (APV)-induced disruption of contextual fear conditioning in male C57BL/6J mice, using direct drug infusion and selective nAChR antagonists to define the brain regions and the nAChR subtypes involved. Mice treated with MK-801 showed a deficit in contextual fear conditioning that was ameliorated by nicotine. Direct drug infusion demonstrated that the NMDAR antagonists disrupted hippocampal function and that nicotine acted in the dorsal hippocampus to ameliorate the deficit in learning. The high-affinity nAChR antagonist Dihydro-β-erythroidine hydrobromide (DhβE) blocked the effects of nicotine on MK-801-induced deficits while the α7 nAChR antagonist methyllycaconitine citrate salt hydrate (MLA) did not. These results suggest that NMDARs and nAChRs may mediate similar hippocampal processes involved in contextual fear conditioning. Furthermore, these results may have implications for developing effective therapeutics for the cognitive deficits associated with schizophrenia because a large subset of patients with schizophrenia exhibit cognitive deficits that may be related to NMDAR dysfunction and smoke at much higher rates than the healthy population, which may be an attempt to ameliorate cognitive deficits.
Collapse
Affiliation(s)
- Jessica M André
- Department of Psychology, Temple University, Philadelphia, PA 19122, USA
| | | | | |
Collapse
|
43
|
Li C, Xu B, Wang WW, Yu XJ, Zhu J, Yu HM, Han D, Pei DS, Zhang GY. Coactivation of GABA receptors inhibits the JNK3 apoptotic pathway via disassembly of GluR6-PSD-95-MLK3 signaling module in KA-induced seizure. Epilepsia 2010; 51:391-403. [PMID: 19694794 DOI: 10.1111/j.1528-1167.2009.02270.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
PURPOSE Past work has demonstrated that kainic acid (KA)-induced seizures could cause the enhancement of excitation and lead to neuronal death in rat hippocampus. To counteract such an imbalance between excitation and inhibition, we designed experiments by activating the inhibitory gamma-aminobutyric acid (GABA) receptor to investigate whether such activation suppresses the excitatory glutamate signaling induced by KA and to elucidate the underlying molecular mechanisms. METHODS Muscimol coapplied with baclofen was intraperitoneally administrated to the rats 40 min before KA injection by intracerebroventricular infusion. Subsequently we used a series of methods including immunoprecipitation, immunoblotting, histologic analysis, and immunohistochemistry to analyze the interaction, expression, and phosphorylation of relevant proteins as well as the survival of the CA1/CA3 pyramidal neurons. RESULTS Coadministration of muscimol and baclofen exerted neuroprotection against neuron death induced by KA; inhibited the increased assembly of the GluR6-PSD-95-MLK3 module induced by KA; and suppressed the activation of MLK3, MKK7, and JNK3. DISCUSSION Taken together, we demonstrate that coactivation of the inhibitory GABA receptors can attenuate the excitatory JNK3 apoptotic signaling pathway via inhibiting the increased assembly of the GluR6-PSD-95-MLK3 signaling module induced by KA. This provides a new insight into the therapeutic approach to epileptic seizure.
Collapse
Affiliation(s)
- Chong Li
- Research Center of Biochemistry and Molecular Biology, Provincial Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical College, Xuzhou, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Stewart SE, Jenike EA, Hezel DM, Stack DE, Dodman NH, Shuster L, Jenike MA. A single-blinded case-control study of memantine in severe obsessive-compulsive disorder. J Clin Psychopharmacol 2010; 30:34-9. [PMID: 20075645 DOI: 10.1097/jcp.0b013e3181c856de] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a common debilitating psychiatric illness that typically improves but does not remit with first-line medication and behavioral treatments. Serotonergic agents including selective serotonin reuptake inhibitors and clomipramine have provided the mainstay of OCD medication management for decades. Combined dopamine/serotonergic agents such as atypical antipsychotics are presently the only OCD-augmenting strategies proven effective via randomized controlled trials. Despite increasing evidence for a pathogenic role of glutamate in OCD, no controlled trials of glutamatergic augmenting agents have been reported. METHODS An intent-to-treat sample included 44 subjects receiving standard treatment at the McLean/Massachusetts General Hospital Intensive Residential Treatment (IRT) program, 22 of whom also received memantine augmentation. Admission, monthly and discharge measures of OCD, depression, and psychosocial functioning were collected by raters blinded to augmentation status. Matched controls were selected based on sex, initial OCD severity, psychosocial functioning, and timing of admission. The Clinical Global Improvement Scale captured global clinical change. RESULTS Mean (SD) Yale-Brown Obsessive Compulsive Scale score decreases were 7.2 (6.4) among the cases and 4.6 (5.9) among the matched controls, reflecting mean clinical improvement among the cases (27.0% decrease) but not the controls (16.5% decrease). Mean (SD) depression severity score decreases were 5.8 (9.5) among the cases and 4.7 (9.9) among the controls. Initial intrusive obsessions were significantly more severe among marked responders compared with limited response or nonresponse cases (4.4 vs 2.9; t = 2.15; P = 0.048). CONCLUSIONS This study provides preliminary supportive evidence for the effectiveness of memantine as a glutamatergic augmenting agent in severe OCD. Future randomized double-blind placebo-controlled trials are warranted.
Collapse
Affiliation(s)
- S Evelyn Stewart
- Obsessive-Compulsive Disorder Institute, McLean Hospital, Belmont, MA 02114, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Cherlyn SYT, Woon PS, Liu JJ, Ong WY, Tsai GC, Sim K. Genetic association studies of glutamate, GABA and related genes in schizophrenia and bipolar disorder: a decade of advance. Neurosci Biobehav Rev 2010; 34:958-77. [PMID: 20060416 DOI: 10.1016/j.neubiorev.2010.01.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Revised: 01/01/2010] [Accepted: 01/04/2010] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are debilitating neurobehavioural disorders likely influenced by genetic and non-genetic factors and which can be seen as complex disorders of synaptic neurotransmission. The glutamatergic and GABAergic neurotransmission systems have been implicated in both diseases and we have reviewed extensive literature over a decade for evidence to support the association of glutamate and GABA genes in SZ and BD. Candidate-gene based population and family association studies have implicated some ionotrophic glutamate receptor genes (GRIN1, GRIN2A, GRIN2B and GRIK3), metabotropic glutamate receptor genes (such as GRM3), the G72/G30 locus and GABAergic genes (e.g. GAD1 and GABRB2) in both illnesses to varying degrees, but further replication studies are needed to validate these results. There is at present no consensus on specific single nucleotide polymorphisms or haplotypes associated with the particular candidate gene loci in these illnesses. The genetic architecture of glutamate systems in bipolar disorder need to be better studied in view of recent data suggesting an overlap in the genetic aetiology of SZ and BD. There is a pressing need to integrate research platforms in genomics, epistatic models, proteomics, metabolomics, neuroimaging technology and translational studies in order to allow a more integrated understanding of glutamate and GABAergic signalling processes and aberrations in SZ and BD as well as their relationships with clinical presentations and treatment progress over time.
Collapse
Affiliation(s)
- Suat Ying Tan Cherlyn
- Institute of Mental Health/Woodbridge Hospital, 10 Buangkok View, Singapore 539747, Singapore
| | | | | | | | | | | |
Collapse
|
46
|
Abstract
The hippocampus is abnormal in schizophrenia. Smaller hippocampal volume is the most consistent finding and is present already in the early stages of the illness. The underlying cellular substrate is a subtle, yet functionally significant reduction of hippocampal interneurons. Neuroimaging studies have revealed a pattern of increased hippocampal activity at baseline and decreased recruitment during the performance of memory tasks. Hippocampal lesion models in rodents have replicated some of the pharmacological, anatomical and behavioral phenotype of schizophrenia. Taken together, this pattern of findings points to a disinhibition of hippocampal pyramidal cells and abnormal cortico-hippocampal interactions in schizophrenia.
Collapse
Affiliation(s)
- Stephan Heckers
- Department of Psychiatry, Vanderbilt University, 1601 23rd Avenue South, Room 3060, Nashville, TN 37212, USA.
| | | |
Collapse
|
47
|
Freedman R, Goldowitz D. Studies on the hippocampal formation: From basic development to clinical applications: Studies on schizophrenia. Prog Neurobiol 2009; 90:263-75. [PMID: 19853005 DOI: 10.1016/j.pneurobio.2009.10.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2008] [Revised: 07/31/2009] [Accepted: 10/09/2009] [Indexed: 10/20/2022]
Abstract
The hippocampal formation plays a critical role in cognitive function. The developmental events that shape the hippocampal formation are continuing to be elucidated and their implications for brain function are emerging as well as applying those advances to interventions that have important possibilities for the treatment of brain dysfunction. The story told in this chapter is about the use of the in oculo transplant method to illuminate intrinsic and extrinsic features that underlie the development of the dentate gyrus and adjacent hippocampus and the role of one molecule in the hippocampus and schizophrenia. Schizophrenia, originally conceptualized as a dysfunction in dopaminergic neurotransmission, is now known to involve multiple neuronal systems. Dysfunction of hippocampal neurons is emerging as one of its signature pathological features. Basic insights into the development and function of hippocampal interneurons form the basis of a new treatment initiative for this illness. Evidence for the role of the alpha 7-nicotinic acetylcholine receptor in the development and function of these neurons in rodents has led to human trials of nicotinic agonists for cognitive dysfunction in schizophrenia and the possibility of improving hippocampal development in children at risk for schizophrenia by perinatal supplementation with choline, which can act as an alpha 7-nicotinic acetylcholine receptor agonist.
Collapse
Affiliation(s)
- Robert Freedman
- Dept Psychiatry, University of Colorado at Denver and Health Sciences Center, 13001 E. 17th Pl., Campus Box F546, Aurora, CO 800045, USA
| | | |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Cytoarchitectonical brain mapping is of growing interest as a powerful tool for localization of activated brain regions in functional neuroimaging. Mapping of neurotransmitter receptors can provide novel molecular and functionally relevant information to the available cytoarchitectonical brain maps, because receptors are key molecules of neurotransmission. This review highlights the relation between cytoarchitectonical parcellations and the regionally inhomogeneous distribution of receptors. It will demonstrate the potential of receptor mapping for novel and functionally relevant insights into the regional organization of the human cortex. RECENT FINDINGS Mapping of a single receptor type can already reveal borders of functionally and cytoarchitectonically distinct cortical regions. The combined mapping of various receptors in each cortical area (receptor fingerprint) represents the balance between different neurotransmitter systems and often reveals hitherto unknown parcellations. Different brain regions are identified as parts of distinct functional systems. SUMMARY Receptor mapping of the human brain, particularly multireceptor mapping, provides a novel and multimodal view of its anatomical, functional and molecular organization. It reveals organizational principles of the segregation of cortical and subcortical structures. It improves our understanding of the brain's architecture beyond the limits of cytoarchitectonics and serves as a basis for clinical and pharmacological studies of brain diseases.
Collapse
|
49
|
Bullock WM, Bolognani F, Botta P, Valenzuela CF, Perrone-Bizzozero NI. Schizophrenia-like GABAergic gene expression deficits in cerebellar Golgi cells from rats chronically exposed to low-dose phencyclidine. Neurochem Int 2009; 55:775-82. [PMID: 19651169 DOI: 10.1016/j.neuint.2009.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 07/22/2009] [Accepted: 07/27/2009] [Indexed: 12/21/2022]
Abstract
One of the most consistent findings in schizophrenia is the decreased expression of the GABA synthesizing enzymes GAD(67) and GAD(65) in specific interneuron populations. This dysfunction is observed in distributed brain regions including the prefrontal cortex, hippocampus, and cerebellum. In an effort to understand the mechanisms for this GABA deficit, we investigated the effect of the N-methyl-D-aspartate receptor (NMDAR) antagonist phencyclidine (PCP), which elicits schizophrenia-like symptoms in both humans and animal models, in a chronic, low-dose exposure paradigm. Adult rats were given PCP at a dose of 2.58 mg/kg/day i.p. for a month, after which levels of various GABAergic cell mRNAs and other neuromodulators were examined in the cerebellum by qRT-PCR. Administration of PCP decreased the expression of GAD(67), GAD(65), and the presynaptic GABA transporter GAT-1, and increased GABA(A) receptor subunits similar to those seen in patients with schizophrenia. Additionally, we found that the mRNA levels of two Golgi cell selective NMDAR subunits, NR2B and NR2D, were decreased in PCP-treated rats. Furthermore, we localized the deficits in GAD(67) expression solely to these interneurons. Slice electrophysiological studies showed that spontaneous firing of Golgi cells was reduced by acute exposure to low-dose PCP, suggesting that these neurons are particularly vulnerable to NMDA receptor antagonism. In conclusion, our results demonstrate that chronic exposure to low levels of PCP in rats mimics the GABAergic alterations reported in the cerebellum of patients with schizophrenia (Bullock et al., 2008. Am. J. Psychiatry 165, 1594-1603), further supporting the validity of this animal model.
Collapse
Affiliation(s)
- W Michael Bullock
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | |
Collapse
|
50
|
Stober G, Ben-Shachar D, Cardon M, Falkai P, Fonteh AN, Gawlik M, Glenthoj BY, Grunblatt E, Jablensky A, Kim YK, Kornhuber J, McNeil TF, Muller N, Oranje B, Saito T, Saoud M, Schmitt A, Schwartz M, Thome J, Uzbekov M, Durany N, Riederer P. Schizophrenia: from the brain to peripheral markers. A consensus paper of the WFSBP task force on biological markers. World J Biol Psychiatry 2009; 10:127-55. [PMID: 19396704 DOI: 10.1080/15622970902898980] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective. The phenotypic complexity, together with the multifarious nature of the so-called "schizophrenic psychoses", limits our ability to form a simple and logical biologically based hypothesis for the disease group. Biological markers are defined as biochemical, physiological or anatomical traits that are specific to particular conditions. An important aim of biomarker discovery is the detection of disease correlates that can be used as diagnostic tools. Method. A selective review of the WFSBP Task Force on Biological Markers in schizophrenia is provided from the central nervous system to phenotypes, functional brain systems, chromosomal loci with potential genetic markers to the peripheral systems. Results. A number of biological measures have been proposed to be correlated with schizophrenia. At present, not a single biological trait in schizophrenia is available which achieves sufficient specificity, selectivity and is based on causal pathology and predictive validity to be recommended as diagnostic marker. Conclusions. With the emergence of new technologies and rigorous phenotypic subclassification the identification of genetic bases and assessment of dynamic disease related alterations will hopefully come to a new stage in the complex field of psychiatric research.
Collapse
Affiliation(s)
- Gerald Stober
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wurzburg, Wurzburg, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|