1
|
Bærentzen SL, Thomsen JB, Thomsen MB, Jakobsen S, Simonsen MT, Wegener G, Brooks DJ, Landau AM. Subanesthetic S-ketamine does not acutely alter striatal dopamine transporter binding in healthy Sprague Dawley female rats. Synapse 2024; 78:e22294. [PMID: 38813759 DOI: 10.1002/syn.22294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/31/2024]
Abstract
Major depressive disorder is one of the most prevalent mental health disorders, posing a global socioeconomic burden. Conventional antidepressant treatments have a slow onset of action, and 30% of patients show no clinically significant treatment response. The recently approved fast-acting antidepressant S-ketamine, an N-methyl-D-aspartate receptor antagonist, provides a new approach for treatment-resistant patients. However, knowledge of S-ketamine's mechanism of action is still being established. Depressed human subjects have lower striatal dopamine transporter (DAT) availability compared to healthy controls. Rodent studies report increased striatal dopamine concentration in response to acute ketamine administration. In vivo [18F]FE-PE2I ([18F]-(E)-N-(3-iodoprop-2-enyl)-2β-carbofluoroethoxy-3β-(4'-methyl-phenyl) nortropane) positron emission tomography (PET) imaging of the DAT has not previously been applied to assess the effect of acute subanesthetic S-ketamine administration on DAT availability. We applied translational in vivo [18F]FE-PE2I PET imaging of the DAT in healthy female rats to evaluate whether an acute subanesthetic intraperitoneal dose of 15 mg/kg S-ketamine alters DAT availability. We also performed [3H]GBR-12935 autoradiography on postmortem brain sections. We found no effect of acute S-ketamine administration on striatal DAT binding using [18F]FE-PE2I PET or [3H]GBR-12935 autoradiography. This negative result does not support the hypothesis that DAT changes are associated with S-ketamine's rapid antidepressant effects, but additional studies are warranted.
Collapse
Affiliation(s)
- Simone Larsen Bærentzen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jakob Borup Thomsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Centre, Aarhus University and Hospital, Aarhus, Denmark
| | | | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David J Brooks
- Department of Nuclear Medicine and PET Centre, Aarhus University and Hospital, Aarhus, Denmark
- Institute of Translational and Clinical Research, University of Newcastle upon Tyne, Newcastle upon Tyne, UK
| | - Anne M Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
2
|
Torrado Pacheco A, Moghaddam B. Licit use of illicit drugs for treating depression: the pill and the process. J Clin Invest 2024; 134:e180217. [PMID: 40047885 PMCID: PMC11178541 DOI: 10.1172/jci180217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025] Open
Abstract
Psilocybin, MDMA, and ketamine have emerged as potentially effective treatments for rapid amelioration of the symptoms of mood and related psychiatric disorders. All clinical data collected so far with regard to psilocybin or MDMA, which have reported positive outcomes for treating depression, anxiety, posttraumatic stress disorder, and drug or alcohol use disorders, have involved clinician-assisted intervention. While the case for ketamine is assumed to be different, the first report of the successful use of ketamine in psychiatry for treating depression was in combination with psychotherapy, and an emerging literature suggests that the subjective state of individual experiences with ketamine predicts clinical outcome. This Review will focus on (a) a brief review of the literature, showing that the context or the process of drug administration has been an integrative component of published work; (b) the importance of clinical trials to compare the efficacy of the drug ("pill") as a stand-alone treatment versus drug in combination with clinician-assisted psychological support ("process"); and (c) suggestions for future approaches in animal models that take into account the role of systems and behavioral neuroscience in explaining a potential role for context, experience, and expectancy in drug effect.
Collapse
Affiliation(s)
| | - Bita Moghaddam
- Department of Behavioral Neuroscience, and
- Department of Psychiatry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
3
|
Sinha JK, Trisal A, Ghosh S, Gupta S, Singh KK, Han SS, Mahapatra M, Abomughaid MM, Abomughayedh AM, Almutary AG, Iqbal D, Bhaskar R, Mishra PC, Jha SK, Jha NK, Singh AK. Psychedelics for alzheimer's disease-related dementia: Unveiling therapeutic possibilities and pathways. Ageing Res Rev 2024; 96:102211. [PMID: 38307424 DOI: 10.1016/j.arr.2024.102211] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/04/2024]
Abstract
Psychedelics have traditionally been used for spiritual and recreational purposes, but recent developments in psychotherapy have highlighted their potential as therapeutic agents. These compounds, which act as potent 5-hydroxytryptamine (5HT) agonists, have been recognized for their ability to enhance neural plasticity through the activation of the serotoninergic and glutamatergic systems. However, the implications of these findings for the treatment of neurodegenerative disorders, particularly dementia, have not been fully explored. In recent years, studies have revealed the modulatory and beneficial effects of psychedelics in the context of dementia, specifically Alzheimer's disease (AD)-related dementia, which lacks a definitive cure. Psychedelics such as N,N-dimethyltryptamine (DMT), lysergic acid diethylamide (LSD), and Psilocybin have shown potential in mitigating the effects of this debilitating disease. These compounds not only target neurotransmitter imbalances but also act at the molecular level to modulate signalling pathways in AD, including the brain-derived neurotrophic factor signalling pathway and the subsequent activation of mammalian target of rapamycin and other autophagy regulators. Therefore, the controlled and dose-dependent administration of psychedelics represents a novel therapeutic intervention worth exploring and considering for the development of drugs for the treatment of AD-related dementia. In this article, we critically examined the literature that sheds light on the therapeutic possibilities and pathways of psychedelics for AD-related dementia. While this emerging field of research holds great promise, further studies are necessary to elucidate the long-term safety, efficacy, and optimal treatment protocols. Ultimately, the integration of psychedelics into the current treatment paradigm may provide a transformative approach for addressing the unmet needs of individuals living with AD-related dementia and their caregivers.
Collapse
Affiliation(s)
| | - Anchal Trisal
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida 201301, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura, Uttar Pradesh, India
| | - Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Rajiv Gandhi InfoTech Park, Hinjawadi, Pune, Maharashtra 411057, India
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea
| | | | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Ali M Abomughayedh
- Pharmacy Department, Aseer Central Hospital, Ministry of Health, Saudi Arabia
| | - Abdulmajeed G Almutary
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi P.O. Box 59911, United Arab Emirates
| | - Danish Iqbal
- Department of Health Information Management, College of Applied Medical Sciences, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, the Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, the Republic of Korea.
| | - Prabhu Chandra Mishra
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
| | - Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Niraj Kumar Jha
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | - Abhishek Kumar Singh
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
4
|
Daniels S, El Mansari M, Hamoudeh R, Blier P. Ketamine promptly normalizes excess norepinephrine and enhances dopamine neuronal activity in Wistar Kyoto rats. Front Pharmacol 2023; 14:1276309. [PMID: 38026921 PMCID: PMC10644068 DOI: 10.3389/fphar.2023.1276309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Ketamine acts primarily by blocking the N-methyl-D-aspartate (NMDA) receptor at the phencyclidine site. The rapid antidepressant properties of ketamine were demonstrated in the clinic and several behavioral models of depression in rodents. We hypothesized that the normalization of abnormal activity of monoamine neurons in Wistar Kyoto (WKY) rats contributes to the rapid antidepressant effects of ketamine. A single administration of ketamine (10 mg/kg, i. p) or saline was administered to anesthetized WKY rats before in vivo electrophysiological recordings of dorsal raphe nucleus (DRN) serotonin (5-HT), locus coeruleus (LC) norepinephrine (NE) and ventral tegmental area (VTA) dopamine (DA) neuronal activity. Pyramidal neurons from the medial prefrontal cortex (mPFC) were also recorded before and after a ketamine injection. In the VTA, ketamine elicited a significant increase in the population activity of DA neurons. This enhancement was consistent with findings in other depression-like models in which such a decreased population activity was observed. In the LC, ketamine normalized increased NE neuron burst activity found in WKY rats. In the DRN, ketamine did not significantly reverse 5-HT neuronal activity in WKY rats, which is dampened compared to Wistar rats. Ketamine did not significantly alter the neuronal activity of mPFC pyramidal neurons. These findings demonstrate that ketamine normalized NE neuronal activity and enhanced DA neuronal activity in WKY rats, which may contribute to its rapid antidepressant effect.
Collapse
Affiliation(s)
| | - Mostafa El Mansari
- Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | | | | |
Collapse
|
5
|
Riccardi A, Guarino M, Serra S, Spampinato MD, Vanni S, Shiffer D, Voza A, Fabbri A, De Iaco F. Narrative Review: Low-Dose Ketamine for Pain Management. J Clin Med 2023; 12:jcm12093256. [PMID: 37176696 PMCID: PMC10179418 DOI: 10.3390/jcm12093256] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Pain is the leading cause of medical consultations and occurs in 50-70% of emergency department visits. To date, several drugs have been used to manage pain. The clinical use of ketamine began in the 1960s and it immediately emerged as a manageable and safe drug for sedation and anesthesia. The analgesic properties of this drug were first reported shortly after its use; however, its psychomimetic effects have limited its use in emergency departments. Owing to the misuse and abuse of opioids in some countries worldwide, ketamine has become a versatile tool for sedation and analgesia. In this narrative review, ketamine's role as an analgesic is discussed, with both known and new applications in various contexts (acute, chronic, and neuropathic pain), along with its strengths and weaknesses, especially in terms of psychomimetic, cardiovascular, and hepatic effects. Moreover, new scientific evidence has been reviewed on the use of additional drugs with ketamine, such as magnesium infusion for improving analgesia and clonidine for treating psychomimetic symptoms. Finally, this narrative review was refined by the experience of the Pain Group of the Italian Society of Emergency Medicine (SIMEU) in treating acute and chronic pain with acute manifestations in Italian Emergency Departments.
Collapse
Affiliation(s)
| | - Mario Guarino
- Emergency Department, Centro Traumatologico Ortopedico, Azienda Ospedaliera di Rilievo Nazionale dei Colli, 80131 Napoli, Italy
| | - Sossio Serra
- Emergency Department, Maurizio Bufalini Hospital, 47522 Cesena, Italy
| | | | - Simone Vanni
- Dipartimento Emergenza e Area Critica, Azienda USL Toscana Centro Struttura Complessa di Medicina d'Urgenza, 50053 Empoli, Italy
| | - Dana Shiffer
- Emergency Department, Humanitas University, Via Rita Levi Montalcini 4, 20089 Milan, Italy
| | - Antonio Voza
- Emergency Department, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Andrea Fabbri
- Emergency Department, AUSL Romagna, Presidio Ospedaliero Morgagni-Pierantoni, 47121 Forlì, Italy
| | - Fabio De Iaco
- Emergency Department, Ospedale Maria Vittoria, 10144 Turin, Italy
| |
Collapse
|
6
|
Wu SY, Hsu CK, Lim LY, Chen YC, Chang HH, Yang SSD. Ketamine Inhalation Alters Behavior and Lower Urinary Tract Function in Mice. Biomedicines 2022; 11:biomedicines11010075. [PMID: 36672583 PMCID: PMC9855675 DOI: 10.3390/biomedicines11010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 11/26/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
We aimed to evaluate behavioral and lower urinary tract changes in mice using a novel ketamine inhalation model mimicking human ketamine abusers and compare the results to those obtained using a ketamine intraperitoneal injection model. C57BL/6N mice were placed in a transparent acrylic observation cage connected to an ultrasonic nebulizer producing ketamine (KI) or saline (SI) fog. The mice were given KI or SI fog twice a week for three months. In another experiment arm, the mice were given intraperitoneal ketamine injections (KP) or saline injections (SP) twice a week for three months. The presence of urine ketamine (>100 ng/mL) was determined using a quick test kit. Locomotor activity was recorded by video using the open field test. Lower urinary tract function was assessed using urine spots, cystometry and histology. KI and KP mice crossed the center more frequently and traveled farther than SI and SP mice. Only KI mice, however, demonstrated popcorn-like jumping, and frequent center crossing. Detrusor overactivity, reduced cystometric bladder capacity, and denuded mucosa were observed in both KI and KP mice. Ketamine inhalation induces behavioral and lower urinary tract changes in mice that are comparable to intraperitoneal ketamine injections.
Collapse
Affiliation(s)
- Shu-Yu Wu
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chun-Kai Hsu
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Li-Yi Lim
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- Department of Surgery, Hospital Canselor Tuanku Muhriz UKM, Kuala Lumpur 56000, Malaysia
| | - Yi-Chyan Chen
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Department of Psychiatry, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Hsi-Hsien Chang
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
| | - Stephen Shei-Dei Yang
- Department of Urology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 23142, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Correspondence: ; Tel.: +886-266289779
| |
Collapse
|
7
|
The role of serotonin neurotransmission in rapid antidepressant actions. Psychopharmacology (Berl) 2022; 239:1823-1838. [PMID: 35333951 DOI: 10.1007/s00213-022-06098-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/16/2022] [Indexed: 10/18/2022]
Abstract
RATIONALE Ketamine has rapid antidepressant effects that represent a significant advance in treating depression, but its poor safety and tolerability limit its clinical utility. Accreting evidence suggests that serotonergic neurotransmission participates in the rapid antidepressant effects of ketamine and hallucinogens. Thus, understanding how serotonin contributes to these effects may allow identification of novel rapid antidepressant mechanisms with improved tolerability. OBJECTIVE The goal of this paper is to understand how serotonergic mechanisms participate in rapid antidepressant mechanisms. METHODS We review the relevance of serotonergic neurotransmission for rapid antidepressant effects and evaluate the role of 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors in synaptic plasticity, BDNF signaling, and GSK-3β activity. Subsequently, we develop hypotheses on the relationship of these receptor systems to rapid antidepressant effects. RESULTS We found that 5-HT1A and 5-HT1B receptors may participate in ketamine's rapid antidepressant mechanisms, while agonists at 5-HT2A and 5-HT4 receptors may independently behave as rapid antidepressants. 5-HT1A, 5-HT2A, and 5-HT4 receptors increase synaptic plasticity in the cortex or hippocampus but do not consistently increase BDNF signaling. We found that 5-HT1A and 5-HT1B receptors may participate in rapid antidepressant mechanisms as a consequence of increased BDNF signaling, rather than a cause. 5-HT2A and 5-HT4 receptor agonists may increase BDNF signaling, but these relationships are tenuous and need more study. Finally, we found that ketamine and several serotonergic receptor systems may mechanistically converge on reduced GSK-3β activity. CONCLUSIONS We find it plausible that serotonergic neurotransmission participates in rapid antidepressant mechanisms by increasing synaptic plasticity, perhaps through GSK-3β inhibition.
Collapse
|
8
|
Effects of stress on endophenotypes of suicide across species: A role for ketamine in risk mitigation. Neurobiol Stress 2022; 18:100450. [PMID: 35685678 PMCID: PMC9170747 DOI: 10.1016/j.ynstr.2022.100450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 04/15/2022] [Indexed: 12/28/2022] Open
Abstract
Suicide is a leading cause of death and morbidity worldwide, yet few interventions are available to mitigate its risk. Barriers to effective treatments involve a limited understanding of factors that predict the onset of suicidal thoughts and behaviors. In the context of suicide risk, stress is a precipitating factor that is largely overlooked in the literature. Indeed, the pathophysiology of stress and suicide are heavily interconnected, underscoring the need to target the stress system in suicide prevention. In this review, we integrate findings from the preclinical and clinical literature that links stress and suicide. We focus specifically on the effects of stress on underlying biological functions and processes associated with suicide, allowing for the review of research using animal models. Owing to the rapid anti-suicidal effects of (R,S)-ketamine, we discuss its ability to modulate various stress-related endophenotypes of suicide, as well as its potential role in preventing suicide in those with a history of chronic life stress (e.g., early life adversity). We highlight future research directions that could advance our understanding of stress-related effects on suicide risk, advocating a dimensional, endophenotype approach to suicide research. Suicide and chronic stress pathophysiology are interconnected. Chronic stress has profound impacts on several endophenotypes of suicide. Animal and human research points to stress as a precipitating factor in suicide. Ketamine modulates specific biological processes associated with stress and suicide. Suicide research into endophenotypes can help inform risk-mitigation strategies.
Collapse
|
9
|
Vines L, Sotelo D, Johnson A, Dennis E, Manza P, Volkow ND, Wang GJ. Ketamine use disorder: preclinical, clinical, and neuroimaging evidence to support proposed mechanisms of actions. INTELLIGENT MEDICINE 2022; 2:61-68. [PMID: 35783539 PMCID: PMC9249268 DOI: 10.1016/j.imed.2022.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Ketamine, a noncompetitive NMDA receptor antagonist, has been exclusively used as an anesthetic in medicine and has led to new insights into the pathophysiology of neuropsychiatric disorders. Clinical studies have shown that low subanesthetic doses of ketamine produce antidepressant effects for individuals with depression. However, its use as a treatment for psychiatric disorders has been limited due to its reinforcing effects and high potential for diversion and misuse. Preclinical studies have focused on understanding the molecular mechanisms underlying ketamine's antidepressant effects, but a precise mechanism had yet to be elucidated. Here we review different hypotheses for ketamine's mechanism of action including the direct inhibition and disinhibition of NMDA receptors, AMPAR activation, and heightened activation of monoaminergic systems. The proposed mechanisms are not mutually exclusive, and their combined influence may exert the observed structural and functional neural impairments. Long term use of ketamine induces brain structural, functional impairments, and neurodevelopmental effects in both rodents and humans. Its misuse has increased rapidly in the past 20 years and is one of the most common addictive drugs used in Asia. The proposed mechanisms of action and supporting neuroimaging data allow for the development of tools to identify 'biotypes' of ketamine use disorder (KUD) using machine learning approaches, which could inform intervention and treatment.
Collapse
Affiliation(s)
| | | | - Allison Johnson
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Evan Dennis
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Peter Manza
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Nora D. Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| | - Gene-Jack Wang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
10
|
Wang Y, Zhang Y, Wang K, Zhu Z, Wang D, Yang Q, Dong H. Esketamine Increases Neurotransmitter Releases but Simplifies Neurotransmitter Networks in Mouse Prefrontal Cortex. J Neurophysiol 2022; 127:586-595. [PMID: 35080449 DOI: 10.1152/jn.00462.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
General anesthesia induces a profound but reversible unconscious state, which is accompanied by changes in various neurotransmitters in the cortex. Unlike the "brain silencing" effect of γ-aminobutyric acid (GABA) receptor potentiator anesthesia, ketamine anesthesia leads the brain to a paradoxical active state with higher cortical activity, which is manifested as dissociative anesthesia. However, how the overall neurotransmitter network evolves across conscious states after ketamine administration remains unclear. Using in vivo microdialysis, high-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis, and electroencephalogram (EEG) recording technique, we continuously measured the concentrations of six neurotransmitters and the EEG signals during anesthesia with esketamine, an S-enantiomer of ketamine racemate. We found that there was an increase in the release of five cortical neurotransmitters after the administration of esketamine. The correlation of cortical neurotransmitters was dynamically simplified along with behavioral changes until full recovery after anesthesia. The esketamine-increased gamma oscillation power was positively correlated only with the concentration of 5-hydroxytryptamine (5-HT) in the medial prefrontal cortex. This study suggests that the transformation of the neurotransmitter network rather than the concentrations of neurotransmitters could be more indicative of the consciousness shift during esketamine anesthesia.
Collapse
Affiliation(s)
- Ye Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yunyun Zhang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kai Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Zhenghua Zhu
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dan Wang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Qianzi Yang
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Hailong Dong
- Department of Anaesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
11
|
Hashimoto K, Yamawaki Y, Yamaoka K, Yoshida T, Okada K, Tan W, Yamasaki M, Matsumoto-Makidono Y, Kubo R, Nakayama H, Kataoka T, Kanematsu T, Watanabe M, Okamoto Y, Morinobu S, Aizawa H, Yamawaki S. Spike firing attenuation of serotonin neurons in learned helplessness rats is reversed by ketamine. Brain Commun 2021; 3:fcab285. [PMID: 34939032 PMCID: PMC8688795 DOI: 10.1093/braincomms/fcab285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/04/2021] [Accepted: 10/25/2021] [Indexed: 11/14/2022] Open
Abstract
Animals suffering from uncontrollable stress sometimes show low effort to escape stress (learned helplessness). Changes in serotonin (5-hydroxytryptamine) signalling are thought to underlie this behaviour. Although the release of 5-hydroxytryptamine is triggered by the action potential firing of dorsal raphe nuclei 5-hydroxytryptamine neurons, the electrophysiological changes induced by uncontrollable stress are largely unclear. Herein, we examined electrophysiological differences among 5-hydroxytryptamine neurons in naïve rats, learned helplessness rats and rats resistant to inescapable stress (non-learned helplessness). Five-week-old male Sprague Dawley rats were exposed to inescapable foot shocks. After an avoidance test session, rats were classified as learned helplessness or non-learned helplessness. Activity-dependent 5-hydroxytryptamine release induced by the administration of high-potassium solution was slower in free-moving learned helplessness rats. Subthreshold electrophysiological properties of 5-hydroxytryptamine neurons were identical among the three rat groups, but the depolarization-induced spike firing was significantly attenuated in learned helplessness rats. To clarify the underlying mechanisms, potassium (K+) channels regulating the spike firing were initially examined using naïve rats. K+ channels sensitive to 500 μM tetraethylammonium caused rapid repolarization of the action potential and the small conductance calcium-activated K+ channels produced afterhyperpolarization. Additionally, dendrotoxin-I, a blocker of Kv1.1 (encoded by Kcna1), Kv1.2 (encoded by Kcna2) and Kv1.6 (encoded by Kcna6) voltage-dependent K+ channels, weakly enhanced the spike firing frequency during depolarizing current injections without changes in individual spike waveforms in naïve rats. We found that dendrotoxin-I significantly enhanced the spike firing of 5-hydroxytryptamine neurons in learned helplessness rats. Consequently, the difference in spike firing among the three rat groups was abolished in the presence of dendrotoxin-I. These results suggest that the upregulation of dendrotoxin-I-sensitive Kv1 channels underlies the firing attenuation of 5-hydroxytryptamine neurons in learned helplessness rats. We also found that the antidepressant ketamine facilitated the spike firing of 5-hydroxytryptamine neurons and abolished the firing difference between learned helplessness and non-learned helplessness by suppressing dendrotoxin-I-sensitive Kv1 channels. The dendrotoxin-I-sensitive Kv1 channel may be a potential target for developing drugs to control activity of 5-hydroxytryptamine neurons.
Collapse
Affiliation(s)
- Kouichi Hashimoto
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yosuke Yamawaki
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kenji Yamaoka
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takayuki Yoshida
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Kana Okada
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Wanqin Tan
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Miwako Yamasaki
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yoshiko Matsumoto-Makidono
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Reika Kubo
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hisako Nakayama
- Department of Neurophysiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Tsutomu Kataoka
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Takashi Kanematsu
- Department of Cellular and Molecular Pharmacology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Faculty of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Yasumasa Okamoto
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shigeru Morinobu
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Hidenori Aizawa
- Department of Neurobiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shigeto Yamawaki
- Department of Psychiatry and Neurosciences, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan
| |
Collapse
|
12
|
Silva-Cardoso GK, Nobre MJ. Context-Specific Tolerance and Pharmacological Changes in the Infralimbic Cortex-Nucleus Accumbens Shell Pathway Evoked by Ketamine. Neurochem Res 2021; 46:1686-1700. [PMID: 33786719 DOI: 10.1007/s11064-021-03300-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 02/15/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022]
Abstract
Like other drugs, ketamine is abused due to its ability to act as a positive reinforcer in the control of behavior, just as natural reinforcers do. Besides, through Pavlovian conditioning, tolerance to drug effects can become conditioned to specific contextual cues showing that environmental stimuli can act as powerful mediators of craving and relapse. In the present study, we shall investigate the effects of long-term ketamine administration and withdrawal on behavioral measures and emotionality, the drug-context-specific influence on the tolerance to the sedative effects of an anesthetic dose of ketamine, and the neuropharmacological events underlying this phenomenon, in rats conditioned with 10 mg/kg of ketamine and later challenged with a dose of ketamine of 80 mg/kg in a familiar and non-familiar environment. Variations in dopamine and serotonin efflux in the infralimbic cortex-nucleus accumbens shell circuitry (IL-NAcSh) was further recorded in the same conditions. Our results highlight that besides its well-known reinforcing properties, ketamine also shares the ability to induce behavioral and pharmacological conditioned tolerance, associated with increases in cortical (IL), and decreases in striatal (NAcSh) dopamine release. To our knowledge, we are presenting the first set of behavioral and neurochemical data showing that, like other drugs of abuse, ketamine can induce learned context-specific tolerance.
Collapse
Affiliation(s)
- Gleice Kelli Silva-Cardoso
- Laboratório de Psicobiologia, Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brasil
| | - Manoel Jorge Nobre
- Departamento de Psicologia, Uni-FACEF, Franca, SP, 14401-135, Brasil.
- Laboratório de Psicobiologia, Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), Av. Bandeirantes, 3900, Ribeirão Preto, SP, 14040-901, Brasil.
| |
Collapse
|
13
|
Ketamine Rapidly Enhances Glutamate-Evoked Dendritic Spinogenesis in Medial Prefrontal Cortex Through Dopaminergic Mechanisms. Biol Psychiatry 2021; 89:1096-1105. [PMID: 33637303 PMCID: PMC8740507 DOI: 10.1016/j.biopsych.2020.12.022] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/14/2020] [Accepted: 12/28/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND Ketamine elicits rapid onset antidepressant effects in patients with clinical depression through mechanisms hypothesized to involve the genesis of neocortical dendritic spines and synapses. Yet, the observed changes in dendritic spine morphology usually emerge well after ketamine clearance, raising questions about the link between rapid behavioral effects of ketamine and plasticity. METHODS Here, we used two-photon glutamate uncaging/imaging to focally induce spinogenesis in the medial prefrontal cortex, directly interrogating baseline and ketamine-associated plasticity of deep layer pyramidal neurons in C57BL/6 mice. We combined pharmacological, genetic, optogenetic, and chemogenetic manipulations to interrogate dopaminergic mechanisms underlying ketamine-induced rapid enhancement in evoked plasticity and associated behavioral changes. RESULTS We found that ketamine rapidly enhances glutamate-evoked spinogenesis in the medial prefrontal cortex, with timing that matches the onset of its behavioral efficacy and precedes changes in dendritic spine density. Ketamine increases evoked cortical spinogenesis through dopamine Drd1 receptor (Drd1) activation that requires dopamine release, compensating blunted plasticity in a learned helplessness paradigm. The enhancement in evoked spinogenesis after Drd1 activation or ketamine treatment depends on postsynaptic protein kinase A activity. Furthermore, ketamine's behavioral effects are blocked by chemogenetic inhibition of dopamine release and mimicked by activating presynaptic dopaminergic terminals or postsynaptic Gαs-coupled cascades in the medial prefrontal cortex. CONCLUSIONS Our findings highlight dopaminergic mediation of rapid enhancement in activity-dependent dendritic spinogenesis and behavioral effects induced by ketamine.
Collapse
|
14
|
Davis-Reyes BD, Smith AE, Xu J, Cunningham KA, Zhou J, Anastasio NC. Subanesthetic ketamine with an AMPAkine attenuates motor impulsivity in rats. Behav Pharmacol 2021; 32:335-344. [PMID: 33595955 PMCID: PMC8119302 DOI: 10.1097/fbp.0000000000000623] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The concept of 'impulse control' has its roots in early psychiatry and today has progressed into a well-described, although poorly understood, multidimensional endophenotype underlying many neuropsychiatric disorders (e.g., attention deficit hyperactivity disorder, schizophrenia, substance use disorders). There is mounting evidence suggesting that the cognitive and/or behavioral dimensions underlying impulsivity are driven by dysfunctional glutamate (Glu) neurotransmission via targeted ionotropic Glu receptor (GluR) [e.g., N-methyl-D-aspartate receptor (NMDAR), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)] mechanisms and associated synaptic alterations within key brain nodes. Ketamine, a noncompetitive NMDAR antagonist and FDA-approved for treatment-resistant depression, induces a 'glutamate burst' that drives resculpting of the synaptic milieu, which lasts for several days to a week. Thus, we hypothesized that single and repeated treatment with a subanesthetic ketamine dose would normalize motor impulsivity. Next, we hypothesized that AMPAR positive allosteric modulation, alone or in combination with ketamine, would attenuate impulsivity and provide insight into the mechanisms underlying GluR dysfunction relevant to motor impulsivity. To measure motor impulsivity, outbred male Sprague-Dawley rats were trained on the one-choice serial reaction time task. Rats pretreated with single or repeated (3 days) administration of ketamine (10 mg/kg; i.p.; 24-h pretreatment) or with the AMPAkine HJC0122 (1 or 10 mg/kg; i.p.; 30-min pretreatment) exhibited lower levels of motor impulsivity vs. control. Combination of single or repeated ketamine plus HJC0122 also attenuated motor impulsivity vs. control. We conclude that ligands designed to promote GluR signaling represent an effective pharmacological approach to normalize impulsivity and subsequently, neuropsychiatric disorders marked by aberrant impulse control.
Collapse
Affiliation(s)
- Brionna D Davis-Reyes
- Center for Addiction Research and Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | | |
Collapse
|
15
|
Boczek T, Mackiewicz J, Sobolczyk M, Wawrzyniak J, Lisek M, Ferenc B, Guo F, Zylinska L. The Role of G Protein-Coupled Receptors (GPCRs) and Calcium Signaling in Schizophrenia. Focus on GPCRs Activated by Neurotransmitters and Chemokines. Cells 2021; 10:cells10051228. [PMID: 34067760 PMCID: PMC8155952 DOI: 10.3390/cells10051228] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 01/13/2023] Open
Abstract
Schizophrenia is a common debilitating disease characterized by continuous or relapsing episodes of psychosis. Although the molecular mechanisms underlying this psychiatric illness remain incompletely understood, a growing body of clinical, pharmacological, and genetic evidence suggests that G protein-coupled receptors (GPCRs) play a critical role in disease development, progression, and treatment. This pivotal role is further highlighted by the fact that GPCRs are the most common targets for antipsychotic drugs. The GPCRs activation evokes slow synaptic transmission through several downstream pathways, many of them engaging intracellular Ca2+ mobilization. Dysfunctions of the neurotransmitter systems involving the action of GPCRs in the frontal and limbic-related regions are likely to underly the complex picture that includes the whole spectrum of positive and negative schizophrenia symptoms. Therefore, the progress in our understanding of GPCRs function in the control of brain cognitive functions is expected to open new avenues for selective drug development. In this paper, we review and synthesize the recent data regarding the contribution of neurotransmitter-GPCRs signaling to schizophrenia symptomology.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Joanna Mackiewicz
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Marta Sobolczyk
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Julia Wawrzyniak
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China;
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical University of Lodz, 92215 Lodz, Poland; (T.B.); (J.M.); (M.S.); (J.W.); (M.L.); (B.F.)
- Correspondence:
| |
Collapse
|
16
|
Akillioglu K, Karadepe M. Effect Neonatal Ketamine Treatment on Exploratory and Anxiety-like Behaviours in Adulthood. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2021; 19:93-103. [PMID: 33508792 PMCID: PMC7851452 DOI: 10.9758/cpn.2021.19.1.93] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/17/2020] [Accepted: 06/15/2020] [Indexed: 11/18/2022]
Affiliation(s)
- Kübra Akillioglu
- Division of Neurophysiology, Department of Physiology, Medical Faculty, University of Cukurova, Turkey
| | - Mustafa Karadepe
- Department of Internal Medicine, Medical Faculty of Cukurova, Adana, Turkey
| |
Collapse
|
17
|
Inserra A, De Gregorio D, Gobbi G. Psychedelics in Psychiatry: Neuroplastic, Immunomodulatory, and Neurotransmitter Mechanisms. Pharmacol Rev 2021; 73:202-277. [PMID: 33328244 DOI: 10.1124/pharmrev.120.000056] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mounting evidence suggests safety and efficacy of psychedelic compounds as potential novel therapeutics in psychiatry. Ketamine has been approved by the Food and Drug Administration in a new class of antidepressants, and 3,4-methylenedioxymethamphetamine (MDMA) is undergoing phase III clinical trials for post-traumatic stress disorder. Psilocybin and lysergic acid diethylamide (LSD) are being investigated in several phase II and phase I clinical trials. Hence, the concept of psychedelics as therapeutics may be incorporated into modern society. Here, we discuss the main known neurobiological therapeutic mechanisms of psychedelics, which are thought to be mediated by the effects of these compounds on the serotonergic (via 5-HT2A and 5-HT1A receptors) and glutamatergic [via N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors] systems. We focus on 1) neuroplasticity mediated by the modulation of mammalian target of rapamycin-, brain-derived neurotrophic factor-, and early growth response-related pathways; 2) immunomodulation via effects on the hypothalamic-pituitary-adrenal axis, nuclear factor ĸB, and cytokines such as tumor necrosis factor-α and interleukin 1, 6, and 10 production and release; and 3) modulation of serotonergic, dopaminergic, glutamatergic, GABAergic, and norepinephrinergic receptors, transporters, and turnover systems. We discuss arising concerns and ways to assess potential neurobiological changes, dependence, and immunosuppression. Although larger cohorts are required to corroborate preliminary findings, the results obtained so far are promising and represent a critical opportunity for improvement of pharmacotherapies in psychiatry, an area that has seen limited therapeutic advancement in the last 20 years. Studies are underway that are trying to decouple the psychedelic effects from the therapeutic effects of these compounds. SIGNIFICANCE STATEMENT: Psychedelic compounds are emerging as potential novel therapeutics in psychiatry. However, understanding of molecular mechanisms mediating improvement remains limited. This paper reviews the available evidence concerning the effects of psychedelic compounds on pathways that modulate neuroplasticity, immunity, and neurotransmitter systems. This work aims to be a reference for psychiatrists who may soon be faced with the possibility of prescribing psychedelic compounds as medications, helping them assess which compound(s) and regimen could be most useful for decreasing specific psychiatric symptoms.
Collapse
Affiliation(s)
- Antonio Inserra
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gabriella Gobbi
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Neuroprotective effect of agomelatine in rat model of psychosis: Behavioural and histological evidence. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2021. [DOI: 10.1016/j.jadr.2020.100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
19
|
Bowman MA, Vitela M, Clarke KM, Koek W, Daws LC. Serotonin Transporter and Plasma Membrane Monoamine Transporter Are Necessary for the Antidepressant-Like Effects of Ketamine in Mice. Int J Mol Sci 2020; 21:ijms21207581. [PMID: 33066466 PMCID: PMC7589995 DOI: 10.3390/ijms21207581] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/17/2023] Open
Abstract
Major depressive disorder is typically treated with selective serotonin reuptake inhibitors (SSRIs), however, SSRIs take approximately six weeks to produce therapeutic effects, if any. Not surprisingly, there has been great interest in findings that low doses of ketamine, a non-competitive N-methyl-D-aspartate (NMDA) receptor antagonist, produce rapid and long-lasting antidepressant effects. Preclinical studies show that the antidepressant-like effects of ketamine are dependent upon availability of serotonin, and that ketamine increases extracellular serotonin, yet the mechanism by which this occurs is unknown. Here we examined the role of the high-affinity, low-capacity serotonin transporter (SERT), and the plasma membrane monoamine transporter (PMAT), a low-affinity, high-capacity transporter for serotonin, as mechanisms contributing to ketamine’s ability to increase extracellular serotonin and produce antidepressant-like effects. Using high-speed chronoamperometry to measure real-time clearance of serotonin from CA3 region of hippocampus in vivo, we found ketamine robustly inhibited serotonin clearance in wild-type mice, an effect that was lost in mice constitutively lacking SERT or PMAT. As expected, in wild-type mice, ketamine produced antidepressant-like effects in the forced swim test. Mapping onto our neurochemical findings, the antidepressant-like effects of ketamine were lost in mice lacking SERT or PMAT. Future research is needed to understand how constitutive loss of either SERT or PMAT, and compensation that occurs in other systems, is sufficient to void ketamine of its ability to inhibit serotonin clearance and produce antidepressant-like effects. Taken together with existing literature, a critical role for serotonin, and its inhibition of uptake via SERT and PMAT, cannot be ruled out as important contributing factors to ketamine’s antidepressant mechanism of action. Combined with what is already known about ketamine’s action at NMDA receptors, these studies help lead the way to the development of drugs that lack ketamine’s abuse potential but have superior efficacy in treating depression.
Collapse
Affiliation(s)
- Melodi A. Bowman
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
| | - Melissa Vitela
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
| | - Kyra M. Clarke
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
| | - Wouter Koek
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
- Department of Psychiatry at University of Texas Health, San Antonio, TX 78229, USA
| | - Lynette C. Daws
- Department of Cellular and Integrative Physiology at University of Texas Health, San Antonio, TX 78229, USA; (M.A.B.); (M.V.); (K.M.C.)
- Department of Pharmacology at University of Texas Health, San Antonio, TX 78229, USA;
- Correspondence:
| |
Collapse
|
20
|
Ishola AO, Imam A, Ajao MS. Datumetine exposure alters hippocampal neurotransmitters system in C57BL/6 mice. Drug Chem Toxicol 2020; 45:785-798. [PMID: 32847421 DOI: 10.1080/01480545.2020.1776315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Our previous study showed that datumetine modulates NMDAR activity with long term exposure leading to memory deficit and altered NMDAR signaling. We aim to explore the neurotransmitters perturbations of acute datumetine-NMDAR interaction. Fifteen C57/BL6 mice were used for the study, they are divided into three groups of 5 animals each. Animals were administered DMSO (DMSO/Control), 0.25 mg/kg body weight of datumetine (0.25 Datumetine) and 1 mg/kg bodyweight of datumetine (1.0 Datumetine) intraperitoneally for 14 days. At the end of treatment, animals were euthanized in isofluorane chamber, perfused transcardially with 1XPBS followed by PFA. Immunofluorescence procedure was done to check the distribution of neurons, astrocytes, microglia and major neuronal subtypes in the hippocampus. Expansion and electron microscopy techniques were used to assess the condition of the synapses. Quantitative data were expressed as mean ± SEM and analyzed using ANOVA with Tukey post hoc using p < 0.05 as significant. Datumetine increased the expression of CD11b, GFAP, vGlut1, GABA, CHRNA7 and TH while expression of TrPH and NeuN were reduced in the hippocampus compared to control animals. Synaptic loss was evident in datumetine exposed animals with reduced synaptic vesicles accompanied by a thickness of postsynaptic density than that of control animals. This study concludes that acute datumetine exposure alters hippocampal neurotransmitter systems.
Collapse
Affiliation(s)
- Azeez Olakunle Ishola
- Department of Anatomy, University of Ilorin, Ilorin, Nigeria.,Department of Anatomy, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Aminu Imam
- Department of Anatomy, University of Ilorin, Ilorin, Nigeria
| | | |
Collapse
|
21
|
Galvanho JP, Manhães AC, Carvalho-Nogueira ACC, Silva JDM, Filgueiras CC, Abreu-Villaça Y. Profiling of behavioral effects evoked by ketamine and the role of 5HT 2 and D 2 receptors in ketamine-induced locomotor sensitization in mice. Prog Neuropsychopharmacol Biol Psychiatry 2020; 97:109775. [PMID: 31676464 DOI: 10.1016/j.pnpbp.2019.109775] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/27/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Ketamine has addictive potential, a troublesome fact due to its promising use as a therapeutic drug. An important phenomenon associated with drug addiction is behavioral sensitization, usually characterized as augmented locomotion. However, other behaviors may also be susceptible to sensitization, and/or interfere with locomotor activity. Thus, this study drew a comprehensive behavioral 'profiling' in an animal model of repeated administration of ketamine. Adult Swiss mice received single daily ketamine injections (30 or 50 mg/Kg, i.p.), which were followed by open field testing for 7 days (acquisition period, ACQ). A ketamine challenge (sensitization test, ST) was carried out after a 5-day withdrawal. Locomotion, rearing, grooming, rotation and falling were assessed during ACQ and ST. All behaviors were affected from the first ACQ day onwards, with no indication of competition between locomotion and the other behaviors. Only locomotion in response to 30 mg/Kg of ketamine both escalated during ACQ and expressed increased levels at ST, evidencing development and expression of locomotor sensitization. Considering the involvement of serotonin 5HT(2) and dopamine D(2) receptors on addiction mechanisms, we further tested the involvement of these receptors in ketamine-induced sensitization. Ketanserin (5HT2 antagonist, 3 mg/Kg, s.c.) prevented ketamine-evoked development of locomotor sensitization. However, ketanserin pretreatment during ACQ failed to inhibit its expression during ST. Raclopride (D2 antagonist, 0.5 mg/Kg, s.c.) evoked less robust reductions in locomotion but prevented the development of ketamine-evoked sensitization. Pretreatment during ACQ further inhibited the expression of sensitization during ST. These results indicate that a partial overlap in serotonergic and dopaminergic mechanisms underlies ketamine-induced locomotor sensitization.
Collapse
Affiliation(s)
- Jefferson P Galvanho
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Alex C Manhães
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| | - Ana Cristina C Carvalho-Nogueira
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Joyce de M Silva
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Claudio C Filgueiras
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil
| | - Yael Abreu-Villaça
- Laboratório de Neurofisiologia, Departamento de Ciências Fisiológicas, Instituto de Biologia Roberto Alcantara Gomes, Centro Biomédico, Universidade do Estado do Rio de Janeiro (UERJ), Av. Prof. Manuel de Abreu 444, 5 andar - Vila Isabel, Rio de Janeiro, RJ 20550-170, Brazil.
| |
Collapse
|
22
|
Crawford CA, Moran AE, Baum TJ, Apodaca MG, Montejano NR, Park GI, Gomez V, McDougall SA. Effects of monoamine depletion on the ketamine-induced locomotor activity of preweanling, adolescent, and adult rats: Sex and age differences. Behav Brain Res 2019; 379:112267. [PMID: 31593789 DOI: 10.1016/j.bbr.2019.112267] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Abstract
Ketamine significantly increases the locomotor activity of rodents, however this effect varies according to the sex and age of the animal being tested. To determine the role monoamine systems play in ketamine's locomotor activating effects: (a) male and female preweanling, adolescent, and adult rats were pretreated with vehicle or the monoamine depleting agent reserpine (1 or 5 mg/kg), and (b) the behavioral actions of ketamine (20 or 40 mg/kg) were then compared to d-amphetamine (2 mg/kg) and cocaine (10 or 15 mg/kg). The ability of reserpine to deplete dorsal striatal dopamine (DA) and serotonin (5-HT) in male and female rats was determined using HPLC. Ketamine caused substantial increases in the locomotion of preweanling rats and older female rats (adolescents and adults), but had only small stimulatory effects on adolescent and adult male rats. When compared to cocaine and d-amphetamine, ketamine was especially sensitive to the locomotor-inhibiting effects of monoamine depletion. Ketamine-induced locomotion is at least partially mediated by monoamine systems, since depleting DA and 5-HT levels by 87-96% significantly attenuated the locomotor activating effects of ketamine in male and female rats from all three age groups. When administered to reserpine-pretreated rats, ketamine produced a different pattern of behavioral effects than either psychostimulant, suggesting that ketamine does not stimulate locomotor activity via actions at the presynaptic terminal. Instead, our results are consistent with the hypothesis that ketamine increases locomotor activity through a down-stream mechanism, possibly involving ascending DA and/or 5-HT projection neurons.
Collapse
Affiliation(s)
- Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, CA, USA.
| | - Andrea E Moran
- Department of Psychology, California State University, San Bernardino, CA, USA; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Timothy J Baum
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Matthew G Apodaca
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Nazaret R Montejano
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Ginny I Park
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Vanessa Gomez
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, CA, USA
| |
Collapse
|
23
|
Pham TH, Gardier AM. Fast-acting antidepressant activity of ketamine: highlights on brain serotonin, glutamate, and GABA neurotransmission in preclinical studies. Pharmacol Ther 2019; 199:58-90. [DOI: 10.1016/j.pharmthera.2019.02.017] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/25/2019] [Indexed: 12/13/2022]
|
24
|
Torrisi SA, Leggio GM, Drago F, Salomone S. Therapeutic Challenges of Post-traumatic Stress Disorder: Focus on the Dopaminergic System. Front Pharmacol 2019; 10:404. [PMID: 31057408 PMCID: PMC6478703 DOI: 10.3389/fphar.2019.00404] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a mental illness developed by vulnerable individuals exposed to life-threatening events. The pharmacological unresponsiveness displayed by the vast majority of PTSD patients has raised considerable interest in understanding the poorly known pathophysiological mechanisms underlying this disorder. Most studies in the field focused, so far, on noradrenergic mechanisms, because of their well-established role in either tuning arousal or in encoding emotional memories. However, less attention has been paid to other neural systems. Manipulations of the dopaminergic system alter behavioral responses to stressful situations and recent findings suggest that dopaminergic dysfunction might play an overriding role in the pathophysiology of PTSD. In the present review, dopaminergic mechanisms relevant for the pathogenesis of PTSD, as well as potential dopaminergic-based pharmacotherapies are discussed in the context of addressing the unmet medical need for new and effective drugs for treatment of PTSD.
Collapse
Affiliation(s)
| | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
25
|
Ketamine effects on mammalian target of rapamycin signaling in the mouse limbic system depend on functional dopamine D3 receptors. Neuroreport 2019; 29:615-620. [PMID: 29570499 DOI: 10.1097/wnr.0000000000001008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Ketamine is a noncompetitive glutamate N-methyl-D-aspartic acid receptor antagonist. When acutely administered to rodents, it produces a rapid antidepressant effect. There is evidence that N-methyl-D-aspartic acid receptor blockade enhances glutamatergic transmission preferentially engaging α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors leading to mTOR (mammalian target of rapamycin) pathways activation, thus resulting into downstream neuroadaptive changes in limbic structures. Recent in-vitro data on primary neuronal cultures showed that ketamine activates mTOR also in dopaminergic neurons, and this activation depends on the presence of functional dopamine D3 receptors. The aim of this work was to study the in-vivo relevance of viable D3 receptors in mediating the effects of acute ketamine administration on the mTOR downstream substrate p70 ribosomal S6 kinase (p70S6K), an obligatory substrate for mTOR. We compared the effects of single ketamine 5 mg/kg, 10 mg/kg, or vehicle injection in wild-type and D3 receptor knockout mice. Animals were killed after 60 min, and their brains were processed for p-p70S6K immunohistochemistry. Ketamine increased p70S6K phosphorylation in prefrontal cortex, nucleus accumbens core and shell, ventral tegmental area, substantia nigra, hippocampal CA1, CA2, and CA3, and basolateral amygdala of wild-type mice but not in mutant mice. Our study demonstrates that ketamine-induced p70S6K phosphorylation is dependent on viable D3R expressed in most of limbic structures.
Collapse
|
26
|
Comparison of electroencephalogram (EEG) response to MDPV versus the hallucinogenic drugs MK-801 and ketamine in rats. Exp Neurol 2019; 313:26-36. [DOI: 10.1016/j.expneurol.2018.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 11/22/2018] [Accepted: 12/02/2018] [Indexed: 12/20/2022]
|
27
|
Nakao K, Jeevakumar V, Jiang SZ, Fujita Y, Diaz NB, Pretell Annan CA, Eskow Jaunarajs KL, Hashimoto K, Belforte JE, Nakazawa K. Schizophrenia-Like Dopamine Release Abnormalities in a Mouse Model of NMDA Receptor Hypofunction. Schizophr Bull 2019; 45:138-147. [PMID: 29394409 PMCID: PMC6293233 DOI: 10.1093/schbul/sby003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amphetamine-induced augmentation of striatal dopamine and its blunted release in prefrontal cortex (PFC) is a hallmark of schizophrenia pathophysiology. Although N-methyl-D-aspartate receptor (NMDAR) hypofunction is also implicated in schizophrenia, it remains unclear whether NMDAR hypofunction leads to dopamine release abnormalities. We previously demonstrated schizophrenia-like phenotypes in GABAergic neuron-specific NMDAR hypofunctional mutant mice, in which Ppp1r2-Cre dependent deletion of indispensable NMDAR channel subunit Grin1 is induced in corticolimbic GABAergic neurons including parvalbumin (PV)-positive neurons, in postnatal development, but not in adulthood. Here, we report enhanced dopaminomimetic-induced locomotor activity in these mutants, along with bidirectional, site-specific changes in in vivo amphetamine-induced dopamine release: nucleus accumbens (NAc) dopamine release was enhanced by amphetamine in postnatal Ppp1r2-Cre/Grin1 knockout (KO) mice, whereas dopamine release was dramatically reduced in the medial PFC (mPFC) compared to controls. Basal tissue dopamine levels in both the NAc and mPFC were unaffected. Interestingly, the magnitude and distribution of amphetamine-induced c-Fos expression in dopamine neurons was comparable between genotypes across dopaminergic input subregions in the ventral tegmental area (VTA). These effects appear to be both developmentally and cell-type specifically modulated, since PV-specific Grin1 KO mice could induce the same effects as seen in postnatal-onset Ppp1r2-Cre/Grin1 KO mice, but no such abnormalities were observed in somatostatin-Cre/Grin1 KO mice or adult-onset Ppp1r2-Cre/Grin1 KO mice. These results suggest that PV GABAergic neuron-NMDAR hypofunction in postnatal development confers bidirectional NAc hyper- and mPFC hypo-sensitivity to amphetamine-induced dopamine release, similar to that classically observed in schizophrenia pathophysiology.
Collapse
Affiliation(s)
- Kazuhito Nakao
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Vivek Jeevakumar
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - Sunny Zhihong Jiang
- Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD
| | - Yuko Fujita
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Noelia B Diaz
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires and Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carlos A Pretell Annan
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires and Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Kenji Hashimoto
- Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health, Chiba, Japan
| | - Juan E Belforte
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires and Instituto de Fisiología y Biofísica “Bernardo Houssay” (IFIBIO-Houssay), Grupo de Neurociencia de Sistemas, CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kazu Nakazawa
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL,Unit on Genetics of Cognition and Behavior, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, Bethesda, MD,To whom correspondence should be addressed; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, US; tel: 205-996-6877, e-mail:
| |
Collapse
|
28
|
Williams NR, Heifets BD, Blasey C, Sudheimer K, Pannu J, Pankow H, Hawkins J, Birnbaum J, Lyons DM, Rodriguez CI, Schatzberg AF. Attenuation of Antidepressant Effects of Ketamine by Opioid Receptor Antagonism. Am J Psychiatry 2018; 175:1205-1215. [PMID: 30153752 PMCID: PMC6395554 DOI: 10.1176/appi.ajp.2018.18020138] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE In addition to N-methyl-d-aspartate receptor antagonism, ketamine produces opioid system activation. The objective of this study was to determine whether opioid receptor antagonism prior to administration of intravenous ketamine attenuates its acute antidepressant or dissociative effects. METHOD In a proposed double-blind crossover study of 30 adults with treatment-resistant depression, the authors performed a planned interim analysis after studying 14 participants, 12 of whom completed both conditions in randomized order: placebo or 50 mg of naltrexone preceding intravenous infusion of 0.5 mg/kg of ketamine. Response was defined as a reduction ≥50% in score on the 17-item Hamilton Depression Rating Scale (HAM-D) score on postinfusion day 1. RESULTS In the interim analysis, seven of 12 adults with treatment-resistant depression met the response criterion during the ketamine plus placebo condition. Reductions in 6-item and 17-item HAM-D scores among participants in the ketamine plus naltrexone condition were significantly lower than those of participants in the ketamine plus placebo condition on postinfusion days 1 and 3. Secondary analysis of all participants who completed the placebo and naltrexone conditions, regardless of the robustness of response to ketamine, showed similar results. There were no differences in ketamine-induced dissociation between conditions. Because naltrexone dramatically blocked the antidepressant but not the dissociative effects of ketamine, the trial was halted at the interim analysis. CONCLUSIONS The findings suggest that ketamine's acute antidepressant effect requires opioid system activation. The dissociative effects of ketamine are not mediated by the opioid system, and they do not appear sufficient without the opioid effect to produce the acute antidepressant effects of ketamine in adults with treatment-resistant depression.
Collapse
Affiliation(s)
- Nolan R. Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Boris D. Heifets
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University
| | - Christine Blasey
- Department of Psychiatry and Behavioral Sciences, Stanford University
- Palo Alto University
| | - Keith Sudheimer
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Jaspreet Pannu
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Heather Pankow
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Jessica Hawkins
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Justin Birnbaum
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - David M. Lyons
- Department of Psychiatry and Behavioral Sciences, Stanford University
| | - Carolyn I. Rodriguez
- Department of Psychiatry and Behavioral Sciences, Stanford University
- Veterans Affairs Palo Alto Health Care System
| | | |
Collapse
|
29
|
mGluR5 upregulation and the effects of repeated methamphetamine administration and withdrawal on the rewarding efficacy of ketamine and social interaction. Toxicol Appl Pharmacol 2018; 360:58-68. [DOI: 10.1016/j.taap.2018.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 11/17/2022]
|
30
|
Mouse fMRI under ketamine and xylazine anesthesia: Robust contralateral somatosensory cortex activation in response to forepaw stimulation. Neuroimage 2018; 177:30-44. [DOI: 10.1016/j.neuroimage.2018.04.062] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/24/2018] [Accepted: 04/27/2018] [Indexed: 12/22/2022] Open
|
31
|
Effects of Low Doses of Ketamine on Pyramidal Neurons in Rat Prefrontal Cortex. Neuroscience 2018; 384:178-187. [DOI: 10.1016/j.neuroscience.2018.05.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 12/30/2022]
|
32
|
Morin Attenuates Neurochemical Changes and Increased Oxidative/Nitrergic Stress in Brains of Mice Exposed to Ketamine: Prevention and Reversal of Schizophrenia-Like Symptoms. Neurochem Res 2018; 43:1745-1755. [PMID: 29956036 DOI: 10.1007/s11064-018-2590-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/20/2018] [Accepted: 06/24/2018] [Indexed: 12/22/2022]
Abstract
Previous studies have revealed that morin (MOR), a neuroactive bioflavonoid, with proven psychotropic and neuroprotective properties reduced schizophrenic-like behaviors in mice. This study further evaluated the ability of MOR to prevent and reverse ketamine-induced schizophrenic-like behaviors and the underlying neurochemical changes and increased oxidative/nitrergic stress in mice. In the preventive protocol, mice received intraperitoneal injection of MOR (100 mg/kg), reference antipsychotic drugs [haloperidol (1 mg/kg), risperidone (0.5 mg/kg)], or saline daily for 14 consecutive days prior to i.p. injection of ketamine (KET) (20 mg/kg/day) from the 8th to the 14th day. In the reversal protocol, the animals received KET or saline for 14 days prior to MOR, haloperidol, risperidone, or saline treatments. Schizophrenic-like behaviors: positive (open-field test), negative (social-interaction test) and cognitive (Y-maze test) symptoms were evaluated. Thereafter, the brain levels of dopamine, glutamate, 5-hydroxytryptamine and acetyl-cholinesterase, as well as biomarkers of oxidative/nitrergic stress were measured in the striatum, prefrontal-cortex (PFC) and hippocampus (HC). Morin prevented and reversed KET-induced hyperlocomotion, social and cognitive deficits. Also, MOR or risperidone attenuated altered dopaminergic, glutamatergic, 5-hydroxytryptaminergic and cholinergic neurotransmissions in brain region-dependent manner. The increased malondialdehyde and nitrite levels accompanied by decreased glutathione concentrations in the striatum, PFC and HC in KET-treated mice were significantly attenuated by MOR or risperidone. Taken together, these findings suggest that the anti-schizophrenic-like activity of MOR may be mediated via mechanisms related to attenuation of neurochemical changes and oxidative/nitrergic alterations in mice.
Collapse
|
33
|
Cavalleri L, Merlo Pich E, Millan MJ, Chiamulera C, Kunath T, Spano PF, Collo G. Ketamine enhances structural plasticity in mouse mesencephalic and human iPSC-derived dopaminergic neurons via AMPAR-driven BDNF and mTOR signaling. Mol Psychiatry 2018; 23:812-823. [PMID: 29158584 DOI: 10.1038/mp.2017.241] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/06/2017] [Accepted: 08/17/2017] [Indexed: 12/21/2022]
Abstract
Among neurobiological mechanisms underlying antidepressant properties of ketamine, structural remodeling of prefrontal and hippocampal neurons has been proposed as critical. The suggested mechanism involves downstream activation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, which trigger mammalian target of rapamycin (mTOR)-dependent structural plasticity via brain-derived neurotrophic factor (BDNF) and protein neo-synthesis. We evaluated whether ketamine elicits similar molecular events in dopaminergic (DA) neurons, known to be affected in mood disorders, using a novel, translational strategy that involved mouse mesencephalic and human induced pluripotent stem cells-derived DA neurons. Sixty minutes exposure to ketamine elicited concentration-dependent increases of dendritic arborization and soma size in both mouse and human cultures as measured 72 hours after application. These structural effects were blocked by mTOR complex/signaling inhibitors like rapamycin. Direct evidence of mTOR activation by ketamine was revealed by its induction of p70S6 kinase. All effects of ketamine were abolished by AMPA receptor antagonists and mimicked by the AMPA-positive allosteric modulator CX614. Inhibition of BDNF signaling prevented induction of structural plasticity by ketamine or CX614. Furthermore, the actions of ketamine required functionally intact dopamine D3 receptors (D3R), as its effects were abolished by selective D3R antagonists and absent in D3R knockout preparations. Finally, the ketamine metabolite (2R,6R)-hydroxynorketamine mimicked ketamine effects at sub-micromolar concentrations. These data indicate that ketamine elicits structural plasticity by recruitment of AMPAR, mTOR and BDNF signaling in both mouse mesencephalic and human induced pluripotent stem cells-derived DA neurons. These observations are of likely relevance to the influence of ketamine upon mood and its other functional actions in vivo.
Collapse
Affiliation(s)
- L Cavalleri
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - E Merlo Pich
- CNS Therapeutic Area Unit, Takeda Development Center Europe, London, UK
| | - M J Millan
- Centre for Therapeutic Innovation-CNS, Institut de Recherches Servier, Croissy-Sur-Seine, France
| | - C Chiamulera
- Department Public Health & Community Medicine, University of Verona, Verona, Italy
| | - T Kunath
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, University of Edinburgh, Edinburgh, UK
| | - P F Spano
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - G Collo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Department of Biomedicine, University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Uncoupling DAPK1 from NMDA receptor GluN2B subunit exerts rapid antidepressant-like effects. Mol Psychiatry 2018; 23:597-608. [PMID: 28439098 PMCID: PMC5822462 DOI: 10.1038/mp.2017.85] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 02/08/2023]
Abstract
Several preclinical studies have reported the rapid antidepressant effects of N-methyl-D-aspartate receptor (NMDAR) antagonists, although the underlying mechanisms are still unclear. Death-associated protein kinase 1 (DAPK1) couples GluN2B subunits at extrasynaptic sites to regulate NMDAR channel conductance. In the present study, we found that chronic unpredictable stress (CUS) induced extracellular glutamate accumulation, accompanied by an increase in the DAPK1-NMDAR interaction, the high expression of DAPK1 and phosphorylated GluN2B at Ser1303, a decrease in phosphorylated DAPK1 at Ser308 and synaptic protein deficits in the rat medial prefrontal cortex (mPFC). CUS also enhanced GluN2B-mediated NMDA currents and extrasynaptic responses that were induced by bursts of high-frequency stimulation, which may be associated with the loss of astrocytes and low expression of glutamate transporter-1 (GLT-1). The blockade of GLT-1 in the mPFC was sufficient to induce depressive-like behavior and cause similar molecular changes. Selective GluN2B antagonist, DAPK1 knockdown by adeno-associated virus-mediated short-hairpin RNA or a pharmacological inhibitor, and the uncoupling of DAPK1 from the NMDAR GluN2B subunit produced rapid antidepressant-like effects and reversed CUS-induced alterations in the mPFC. The inhibition of DAPK1 and its interaction with GluN2B subunit in the mPFC also rescued CUS-induced depressive-like behavior 7 days after treatment. A selective GluN2B antagonist did not have rewarding effects in the conditioned place preference paradigm. Altogether, our findings suggest that the DAPK1 interaction with the NMDAR GluN2B subunit acts as a critical component in the pathophysiology of depression and is a potential target for new antidepressant treatments.
Collapse
|
35
|
Kokkinou M, Ashok AH, Howes OD. The effects of ketamine on dopaminergic function: meta-analysis and review of the implications for neuropsychiatric disorders. Mol Psychiatry 2018; 23:59-69. [PMID: 28972576 PMCID: PMC5754467 DOI: 10.1038/mp.2017.190] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 05/16/2017] [Accepted: 07/17/2017] [Indexed: 12/23/2022]
Abstract
Ketamine is a non-competitive antagonist at the N-methyl-d-aspartate receptor. It has recently been found to have antidepressant effects and is a drug of abuse, suggesting it may have dopaminergic effects. To examine the effect of ketamine on the dopamine systems, we carried out a systematic review and meta-analysis of dopamine measures in the rodent, human and primate brain following acute and chronic ketamine administration relative to a drug-free baseline or control condition. Systematic search of PubMed and PsychInfo electronic databases yielded 40 original peer-reviewed studies. There were sufficient rodent studies of the acute effects of ketamine at sub-anaesthetic doses for meta-analysis. Acute ketamine administration in rodents is associated with significantly increased dopamine levels in the cortex (Hedge's g= 1.33, P<0.01), striatum (Hedge's g=0.57, P<0.05) and the nucleus accumbens (Hedge's g=1.30, P<0.05) compared to control conditions, and 62-180% increases in dopamine neuron population activity. Sub-analysis indicated elevations were more marked in in vivo (g=1.93) than ex vivo (g=0.50) studies. There were not enough studies for meta-analysis in other brain regions studied (hippocampus, ventral pallidum and cerebellum), or of the effects of chronic ketamine administration, although consistent increases in cortical dopamine levels (from 88 to 180%) were reported in the latter studies. In contrast, no study showed an effect of anaesthetic doses (>100 mg kg-1) of ketamine on dopamine levels ex vivo, although this remains to be tested in vivo. Findings in non-human primates and in human studies using positron emission tomography were not consistent. The studies reviewed here provide evidence that acute ketamine administration leads to dopamine release in the rodent brain. We discuss the inter-species variation in the ketamine induced dopamine release as well as the implications for understanding psychiatric disorders, in particular substance abuse, schizophrenia, and the potential antidepressant properties of ketamine, and comparisons with stimulants and other NMDA antagonists. Finally we identify future research needs.
Collapse
Affiliation(s)
- M Kokkinou
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK
| | - A H Ashok
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK
| | - O D Howes
- Robert Steiner MR Unit, Psychiatric Imaging Group, MRC London Institute of Medical Sciences (LMS), Hammersmith Hospital, London, UK,Psychiatric Imaging Group, Faculty of Medicine, MRC London Institute of Medical Sciences (LMS), Imperial College London, London, UK,Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, Kings College London, London, UK,Psychiatric Imaging Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Imperial College London, Du Cane Road, London W12 0NN, UK. E-mail:
| |
Collapse
|
36
|
McDougall SA, Moran AE, Baum TJ, Apodaca MG, Real V. Effects of ketamine on the unconditioned and conditioned locomotor activity of preadolescent and adolescent rats: impact of age, sex, and drug dose. Psychopharmacology (Berl) 2017; 234:2683-2696. [PMID: 28589265 PMCID: PMC5709166 DOI: 10.1007/s00213-017-4660-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/21/2017] [Indexed: 12/15/2022]
Abstract
RATIONALE Ketamine is used by preadolescent and adolescent humans for licit and illicit purposes. OBJECTIVE The goal of the present study was to determine the effects of acute and repeated ketamine treatment on the unconditioned behaviors and conditioned locomotor activity of preadolescent and adolescent rats. METHODS To assess unconditioned behaviors, female and male rats were injected with ketamine (5-40 mg/kg), and distance traveled was measured on postnatal day (PD) 21-25 or PD 41-45. To assess conditioned activity, male and female rats were injected with saline or ketamine in either a novel test chamber or the home cage on PD 21-24 or PD 41-44. One day later, rats were injected with saline and conditioned activity was assessed. RESULTS Ketamine produced a dose-dependent increase in the locomotor activity of preadolescent and adolescent rats. Preadolescent rats did not exhibit sex differences, but ketamine-induced locomotor activity was substantially stronger in adolescent females than males. Repeated ketamine treatment neither caused a day-dependent increase in locomotor activity nor produced conditioned activity in preadolescent or adolescent rats. CONCLUSIONS The activity-enhancing effects of ketamine are consistent with the actions of an indirect dopamine agonist, while the inability of ketamine to induce conditioned activity is unlike what is observed after repeated cocaine or amphetamine treatment. This dichotomy could be due to ketamine's ability to both enhance DA neurotransmission and antagonize N-methyl-D-aspartate (NMDA) receptors. Additional research will be necessary to parse out the relative contributions of DA and NMDA system functioning when assessing the behavioral effects of ketamine during early ontogeny.
Collapse
|
37
|
Neves G, Borsoi M, Antonio CB, Pranke MA, Betti AH, Rates SMK. Is Forced Swimming Immobility a Good Endpoint for Modeling Negative Symptoms of Schizophrenia? - Study of Sub-Anesthetic Ketamine Repeated Administration Effects. AN ACAD BRAS CIENC 2017; 89:1655-1669. [PMID: 28832723 DOI: 10.1590/0001-3765201720160844] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/16/2017] [Indexed: 11/21/2022] Open
Abstract
Immobility time in the forced swimming has been described as analogous to emotional blunting or apathy and has been used for characterizing schizophrenia animal models. Several clinical studies support the use of NMDA receptor antagonists to model schizophrenia in rodents. Some works describe the effects of ketamine on immobility behavior but there is variability in the experimental design used leading to controversial results. In this study, we evaluated the effects of repeated administration of ketamine sub-anesthetic doses in forced swimming, locomotion in response to novelty and novel object recognition, aiming a broader evaluation of the usefulness of this experimental approach for modeling schizophrenia in mice. Ketamine (30 mg/kg/day i.p. for 14 days) induced a not persistent decrease in immobility time, detected 24h but not 72h after treatment. This same administration protocol induced a deficit in novel object recognition. No change was observed in mice locomotion. Our results confirm that repeated administration of sub-anesthetic doses of ketamine is useful in modeling schizophrenia-related behavioral changes in mice. However, the immobility time during forced swimming does not seem to be a good endpoint to evaluate the modeling of negative symptoms in NMDAR antagonist animal models of schizophrenia.
Collapse
Affiliation(s)
- Gilda Neves
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Milene Borsoi
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Camila B Antonio
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Mariana A Pranke
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Andresa H Betti
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| | - Stela M K Rates
- Laboratório de Psicofarmacologia Experimental, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga, 2752, 90610-000 Porto Alegre, RS, Brazil
| |
Collapse
|
38
|
Dauvermann MR, Lee G, Dawson N. Glutamatergic regulation of cognition and functional brain connectivity: insights from pharmacological, genetic and translational schizophrenia research. Br J Pharmacol 2017. [PMID: 28626937 DOI: 10.1111/bph.13919] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The pharmacological modulation of glutamatergic neurotransmission to improve cognitive function has been a focus of intensive research, particularly in relation to the cognitive deficits seen in schizophrenia. Despite this effort, there has been little success in the clinical use of glutamatergic compounds as procognitive drugs. Here, we review a selection of the drugs used to modulate glutamatergic signalling and how they impact on cognitive function in rodents and humans. We highlight how glutamatergic dysfunction, and NMDA receptor hypofunction in particular, is a key mechanism contributing to the cognitive deficits observed in schizophrenia and outline some of the glutamatergic targets that have been tested as putative procognitive targets for this disorder. Using translational research in this area as a leading exemplar, namely, models of NMDA receptor hypofunction, we discuss how the study of functional brain network connectivity can provide new insight into how the glutamatergic system impacts on cognitive function. Future studies characterizing functional brain network connectivity will increase our understanding of how glutamatergic compounds regulate cognition and could contribute to the future success of glutamatergic drug validation. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Maria R Dauvermann
- School of Psychology, National University of Ireland, Galway, Ireland.,McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Graham Lee
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Neil Dawson
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
39
|
Rao JS, Liu Z, Zhao C, Wei RH, Zhao W, Tian PY, Zhou X, Yang ZY, Li XG. Ketamine changes the local resting-state functional properties of anesthetized-monkey brain. Magn Reson Imaging 2017; 43:144-150. [PMID: 28755862 DOI: 10.1016/j.mri.2017.07.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/27/2017] [Accepted: 07/24/2017] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Ketamine is a well-known anesthetic. 'Recreational' use of ketamine common induces psychosis-like symptoms and cognitive impairments. The acute and chronic effects of ketamine on relevant brain circuits have been studied, but the effects of single-dose ketamine administration on the local resting-state functional properties of the brain remain unknown. In this study, we aimed to assess the effects of single-dose ketamine administration on the brain local intrinsic properties. METHODS We used resting-state functional magnetic resonance imaging (rs-fMRI) to explore the ketamine-induced alterations of brain intrinsic properties. Seven adult rhesus monkeys were imaged with rs-fMRI to examine the fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo) in the brain before and after ketamine injection. Paired comparisons were used to detect the significantly altered regions. RESULTS Results showed that the fALFF of the prefrontal cortex (p=0.046), caudate nucleus (left side, p=0.018; right side, p=0.025), and putamen (p=0.020) in post-injection stage significantly increased compared with those in pre-injection period. The ReHo of nucleus accumbens (p=0.049), caudate nucleus (p=0.037), and hippocampus (p=0.025) increased after ketamine injection, but that of prefrontal cortex decreased (p<0.05). CONCLUSIONS These findings demonstrated that single-dose ketamine administration can change the regional intensity and synchronism of brain activity, thereby providing evidence of ketamine-induced abnormal resting-state functional properties in primates. This evidence may help further elucidate the effects of ketamine on the cerebral resting status.
Collapse
Affiliation(s)
- Jia-Sheng Rao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China.
| | - Zuxiang Liu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Can Zhao
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Rui-Han Wei
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Peng-Yu Tian
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Xia Zhou
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Zhao-Yang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiao-Guang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China; Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
40
|
Lisek M, Ferenc B, Studzian M, Pulaski L, Guo F, Zylinska L, Boczek T. Glutamate Deregulation in Ketamine-Induced Psychosis-A Potential Role of PSD95, NMDA Receptor and PMCA Interaction. Front Cell Neurosci 2017; 11:181. [PMID: 28701926 PMCID: PMC5487377 DOI: 10.3389/fncel.2017.00181] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Ketamine causes psychotic episodes and is often used as pharmacological model of psychotic-like behavior in animals. There is increasing evidence that molecular mechanism of its action is more complicated than just N-methyl-D-aspartic acid (NMDA) receptor antagonism and involves interaction with the components of calcium homeostatic machinery, in particular plasma membrane calcium pump (PMCA). Therefore, in this study we aimed to characterize brain region-specific effects of ketamine on PMCA activity, interaction with NMDA receptor through postsynaptic density protein 95 (PSD95) scaffolding proteins and glutamate release from nerve endings. In our study, ketamine induced behavioral changes in healthy male rats consistent with psychotic effects. In the same animals, we were able to demonstrate significant inhibition of plasma membrane calcium ATPase (PMCA) activity in cerebellum, hippocampus and striatum. The expression level and isoform composition of PMCAs were also affected in some of these brain compartments, with possible compensatory effects of PMCA1 substituting for decreased expression of PMCA3. Expression of the PDZ domain-containing scaffold protein PSD95 was induced and its association with PMCA4 was higher in most brain compartments upon ketamine treatment. Moreover, increased PSD95/NMDA receptor direct interaction was also reported, strongly suggesting the formation of multiprotein complexes potentially mediating the effect of ketamine on calcium signaling. We further support this molecular mechanism by showing brain region-specific changes in PSD95/PMCA4 spatial colocalization. We also show that ketamine significantly increases synaptic glutamate release in cortex and striatum (without affecting total tissue glutamate content), inducing the expression of vesicular glutamate transporters and decreasing the expression of membrane glutamate reuptake pump excitatory amino acid transporters 2 (EAAT2). Thus, ketamine-mediated PMCA inhibition, by decreasing total Ca2+ clearing potency, may locally raise cytosolic Ca2+ promoting excessive glutamate release. Regional alterations in glutamate secretion can be further driven by PSD95-mediated spatial recruitment of signaling complexes including glutamate receptors and calcium pumps, representing a novel mechanism of psychogenic action of ketamine.
Collapse
Affiliation(s)
- Malwina Lisek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland
| | - Maciej Studzian
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland
| | - Lukasz Pulaski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of LodzLodz, Poland.,Laboratory of Transcriptional Regulation, Institute of Medical BiologyLodz, Poland
| | - Feng Guo
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical UniversityShenyang, China
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland
| | - Tomasz Boczek
- Department of Molecular Neurochemistry, Faculty of Health Sciences, Medical UniversityLodz, Poland.,Boston Children's Hospital and Harvard Medical SchoolBoston, MA, United States
| |
Collapse
|
41
|
Effects of co-administration of ketamine and ethanol on the dopamine system via the cortex-striatum circuitry. Life Sci 2017; 179:1-8. [DOI: 10.1016/j.lfs.2017.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 04/24/2017] [Indexed: 12/23/2022]
|
42
|
McAndrew A, Lawn W, Stevens T, Porffy L, Brandner B, Morgan CJA. A proof-of-concept investigation into ketamine as a pharmacological treatment for alcohol dependence: study protocol for a randomised controlled trial. Trials 2017; 18:159. [PMID: 28372596 PMCID: PMC5379743 DOI: 10.1186/s13063-017-1895-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/12/2017] [Indexed: 12/12/2022] Open
Abstract
Background Worldwide, alcohol abuse is a burgeoning problem. Abstinence is key to allow recovery of physical and mental health as well as quality of life, but treatment for alcohol dependence is associated with high relapse rates. Preliminary data have suggested that a combined repeated ketamine and psychological therapy programme may be effective in reducing relapse in severe alcohol use disorder. This non-commercial proof-of-concept trial is aimed at making a preliminary assessment of the effectiveness of this combined treatment in this patient group. Methods/design This is a phase II, randomised, double-blind, placebo-controlled, parallel-group clinical trial taking place in two sites in the UK: the South West of England and London. Ninety-six recently detoxified alcoholics, with comorbid depressive symptoms, will be randomised to one of four treatment arms. Patients will receive either three sessions of ketamine (0.8 mg/kg administered intravenously (IV) over 40 minutes) or placebo (50 ml saline 0.9% IV over 40 minutes) plus either seven sessions of manualised psychological therapy or an alcohol education control. Patients will be assessed at 3 and 6 months on a range of psychological and biological variables. The primary endpoints are (1) relapse rates at 6 months and (2) percentage days abstinent at 6 months. Secondary endpoints include 3 and 6 month percentage days abstinence, tolerability (indicated by dropout), adverse events, depressive symptoms, craving and quality of life. Discussion This study will provide important information on a new combined psychological and pharmacological intervention aimed at reducing relapse rates in alcoholics. The findings would have broad application given the worldwide prevalence of alcoholism and its associated medical, psychological and social problems. Trial registration ClinicalTrials.gov, NCT02649231. Registered on 5 January 2016. Electronic supplementary material The online version of this article (doi:10.1186/s13063-017-1895-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy McAndrew
- Psychopharmacology and Addiction Research Centre (PARC), College of Life and Environmental Science, University of Exeter, Washington Singer Building, Perry Road, Exeter, EX4 4QG, UK.
| | - Will Lawn
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Tobias Stevens
- Psychopharmacology and Addiction Research Centre (PARC), College of Life and Environmental Science, University of Exeter, Washington Singer Building, Perry Road, Exeter, EX4 4QG, UK
| | - Lilla Porffy
- Clinical Psychopharmacology Unit, University College London, 1-19 Torrington Place, London, WC1E 7HB, UK
| | - Brigitta Brandner
- Anaesthetics Department, Podium 3, maple Link corridor, Unviersity College Hospital, 235 Euston Road, London, NW1 2BU, UK
| | - Celia J A Morgan
- Psychopharmacology and Addiction Research Centre (PARC), College of Life and Environmental Science, University of Exeter, Washington Singer Building, Perry Road, Exeter, EX4 4QG, UK
| |
Collapse
|
43
|
Neuroprotection and neurotoxicity in the developing brain: an update on the effects of dexmedetomidine and xenon. Neurotoxicol Teratol 2017; 60:102-116. [PMID: 28065636 DOI: 10.1016/j.ntt.2017.01.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/13/2022]
Abstract
Growing and consistent preclinical evidence, combined with early clinical epidemiological observations, suggest potentially neurotoxic effects of commonly used anesthetic agents in the developing brain. This has prompted the FDA to issue a safety warning for all sedatives and anesthetics approved for use in children under three years of age. Recent studies have identified dexmedetomidine, the potent α2-adrenoceptor agonist, and xenon, the noble gas, as effective anesthetic adjuvants that are both less neurotoxic to the developing brain, and also possess neuroprotective properties in neonatal and other settings of acute ongoing neurologic injury. Dexmedetomidine and xenon are effective anesthetic adjuvants that appear to be less neurotoxic than other existing agents and have the potential to be neuroprotective in the neonatal and pediatric settings. Although results from recent clinical trials and case reports have indicated the neuroprotective potential of xenon and dexmedetomidine, additional randomized clinical trials corroborating these studies are necessary. By reviewing both the existing preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine and xenon, we hope to provide insight into the potential clinical efficacy of these agents in the management of pediatric surgical patients.
Collapse
|
44
|
How much alcohol is in ketamine's antidepressant action? Life Sci 2017; 168:54-57. [DOI: 10.1016/j.lfs.2016.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/22/2016] [Accepted: 11/03/2016] [Indexed: 12/29/2022]
|
45
|
Qi Z, Yu GP, Tretter F, Pogarell O, Grace AA, Voit EO. A heuristic model for working memory deficit in schizophrenia. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1860:2696-705. [PMID: 27177811 PMCID: PMC5018429 DOI: 10.1016/j.bbagen.2016.04.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/26/2016] [Accepted: 04/29/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND The life of schizophrenia patients is severely affected by deficits in working memory. In various brain regions, the reciprocal interactions between excitatory glutamatergic neurons and inhibitory GABAergic neurons are crucial. Other neurotransmitters, in particular dopamine, serotonin, acetylcholine, and norepinephrine, modulate the local balance between glutamate and GABA and therefore regulate the function of brain regions. Persistent alterations in the balances between the neurotransmitters can result in working memory deficits. METHODS Here we present a heuristic computational model that accounts for interactions among neurotransmitters across various brain regions. The model is based on the concept of a neurochemical interaction matrix at the biochemical level and combines this matrix with a mobile model representing physiological dynamic balances among neurotransmitter systems associated with working memory. RESULTS The comparison of clinical and simulation results demonstrates that the model output is qualitatively very consistent with the available data. In addition, the model captured how perturbations migrated through different neurotransmitters and brain regions. Results showed that chronic administration of ketamine can cause a variety of imbalances, and application of an antagonist of the D2 receptor in PFC can also induce imbalances but in a very different manner. CONCLUSIONS The heuristic computational model permits a variety of assessments of genetic, biochemical, and pharmacological perturbations and serves as an intuitive tool for explaining clinical and biological observations. GENERAL SIGNIFICANCE The heuristic model is more intuitive than biophysically detailed models. It can serve as an important tool for interdisciplinary communication and even for psychiatric education of patients and relatives. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Zhen Qi
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA; Integrative BioSystems Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - Gina P Yu
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA
| | - Felix Tretter
- Bertalanffy Center for the Study of Systems Science, 1040 Vienna, Austria
| | | | - Anthony A Grace
- Department of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, 456 Langley Hall, Pittsburgh, PA, USA
| | - Eberhard O Voit
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA; Integrative BioSystems Institute, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
46
|
Can A, Zanos P, Moaddel R, Kang HJ, Dossou KSS, Wainer IW, Cheer JF, Frost DO, Huang XP, Gould TD. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters. J Pharmacol Exp Ther 2016; 359:159-70. [PMID: 27469513 PMCID: PMC5034706 DOI: 10.1124/jpet.116.235838] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine's antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine's side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1-D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine's enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Panos Zanos
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Ruin Moaddel
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Hye Jin Kang
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Katinia S S Dossou
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Irving W Wainer
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Joseph F Cheer
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Douglas O Frost
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Xi-Ping Huang
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Todd D Gould
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| |
Collapse
|
47
|
Rotroff DM, Corum DG, Motsinger-Reif A, Fiehn O, Bottrel N, Drevets WC, Singh J, Salvadore G, Kaddurah-Daouk R. Metabolomic signatures of drug response phenotypes for ketamine and esketamine in subjects with refractory major depressive disorder: new mechanistic insights for rapid acting antidepressants. Transl Psychiatry 2016; 6:e894. [PMID: 27648916 PMCID: PMC5048196 DOI: 10.1038/tp.2016.145] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/01/2016] [Indexed: 12/22/2022] Open
Abstract
Ketamine, at sub-anesthetic doses, is reported to rapidly decrease depression symptoms in patients with treatment-resistant major depressive disorder (MDD). Many patients do not respond to currently available antidepressants, (for example, serotonin reuptake inhibitors), making ketamine and its enantiomer, esketamine, potentially attractive options for treatment-resistant MDD. Although mechanisms by which ketamine/esketamine may produce antidepressant effects have been hypothesized on the basis of preclinical data, the neurobiological correlates of the rapid therapeutic response observed in patients receiving treatment have not been established. Here we use a pharmacometabolomics approach to map global metabolic effects of these compounds in treatment-refractory MDD patients upon 2 h from infusion with ketamine (n=33) or its S-enantiomer, esketamine (n=20). The effects of esketamine on metabolism were retested in the same subjects following a second exposure administered 4 days later. Two complementary metabolomics platforms were used to provide broad biochemical coverage. In addition, we investigated whether changes in particular metabolites correlated with treatment outcome. Both drugs altered metabolites related to tryptophan metabolism (for example, indole-3-acetate and methionine) and/or the urea cycle (for example, citrulline, arginine and ornithine) at 2 h post infusion (q<0.25). In addition, we observed changes in glutamate and circulating phospholipids that were significantly associated with decreases in depression severity. These data provide new insights into the mechanism underlying the rapid antidepressant effects of ketamine and esketamine, and constitute some of the first detailed metabolomics mapping for these promising therapies.
Collapse
Affiliation(s)
- D M Rotroff
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - D G Corum
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - A Motsinger-Reif
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - O Fiehn
- UC Davis Genome Center, University of California Davis, Davis, CA, USA
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - N Bottrel
- Department of Neuroscience, Janssen Research and Development, Titusville, NJ, USA
| | - W C Drevets
- Department of Neuroscience, Janssen Research and Development, Titusville, NJ, USA
| | - J Singh
- Department of Neuroscience, Janssen Research and Development, San Diego CA, USA
| | - G Salvadore
- Department of Neuroscience, Janssen Research and Development, Titusville, NJ, USA
| | - R Kaddurah-Daouk
- Department of Psychiatry, Duke University Medical Center, Durham NC, USA
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
48
|
Ketamine abuse potential and use disorder. Brain Res Bull 2016; 126:68-73. [DOI: 10.1016/j.brainresbull.2016.05.016] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 02/07/2023]
|
49
|
Different dosing regimens of repeated ketamine administration have opposite effects on novelty processing in rats. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:1-10. [PMID: 27064663 DOI: 10.1016/j.pnpbp.2016.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/08/2016] [Accepted: 03/17/2016] [Indexed: 11/22/2022]
Abstract
Repeated exposure to sub-anesthetic doses of ketamine in rats has been shown to induce cognitive deficits, as well as behavioral changes akin to the negative symptoms of schizophrenia, giving much face validity to the use of ketamine administration as a pharmacological model of schizophrenia. This study sought to further characterize the behavioral effects of two different ketamine pre-treatment regimens, focusing primarily on the effects of repeated ketamine administration on novelty processing, a capacity that is disrupted in schizophrenia. Rats received 5 or 14 intra-peritoneal injections of 30mg/kg ketamine or saline across 5 or 7days, respectively. They were then tested in an associative mismatch detection task to examine their ability to detect novel configurations of familiar audio-visual sequences. Furthermore, rats underwent a sequential novel object and novel object location exploration task. Subsequently, rats were also tested on the delayed matching to place T-maze task, sucrose preference task and locomotor tests involving administering a challenge dose of amphetamine (AMPH). The high-dose ketamine pre-treatment regimen elicited impairments in mismatch detection and working memory. In contrast, the low-dose ketamine pre-treatment regimen improved performance of novelty detection. In addition, low-dose ketamine pre-treated rats showed locomotor sensitization following an AMPH challenge, while the high-dose ketamine pre-treated rats showed an attenuated locomotor response to AMPH, compared to control rats. These findings demonstrate that different regimens of repeated ketamine administration induce alterations in novelty processing in opposite directions, and that differential neural adaptations occurring in the mesolimbic dopamine system may underlie these effects.
Collapse
|
50
|
Sassano-Higgins S, Baron D, Juarez G, Esmaili N, Gold M. A REVIEW OF KETAMINE ABUSE AND DIVERSION. Depress Anxiety 2016; 33:718-27. [PMID: 27328618 DOI: 10.1002/da.22536] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 05/16/2016] [Accepted: 05/20/2016] [Indexed: 12/22/2022] Open
Abstract
Ketamine was discovered in the 1960s and released for public use in 1970. Originally developed as a safer alternative to phencyclidine, ketamine is primarily used in clinical settings for analgesia and sedation. In recent years, other uses have been developed, including pain management and treatment of asthma and depression. Clinical use of ketamine causes dissociation and emergence delirium. These effects have led to recreational abuse. Although death from direct pharmacologic effects appears rare, the disinhibition and altered sensory perceptions caused by ketamine puts users at risk of environmental harm. Ketamine has also been implicated in nonconsensual sexual intercourse. Data continue to build that chronic ketamine use may lead to morbidity. Impairment of memory and persistent dissociative, depressive, and delusional thinking has also been reported with long-term use. Lower urinary tract symptoms, including cystitis have been described. Gastric and hepatic pathology have also been noted, including abnormal liver function tests, choledochal cysts and dilations of the common bile duct. S-ketamine, an enantiomer in racemic ketamine, has been shown to be hepatotoxic in vitro. Abstinence from ketamine may reduce the adverse effects of chronic use and is considered the mainstay of treatment. Specialized urine drug testing may be required to detect use, as not all point of care urine drug screens include ketamine.
Collapse
Affiliation(s)
- Sean Sassano-Higgins
- Department of Psychiatry, University of Southern California, Los Angeles, California.,Rivermend Health, Atlanta, Georgia
| | - Dave Baron
- Department of Psychiatry, University of Southern California, Los Angeles, California.,Rivermend Health, Atlanta, Georgia
| | - Grace Juarez
- Department of Psychiatry, University of Southern California, Los Angeles, California.,Rivermend Health, Atlanta, Georgia
| | | | - Mark Gold
- Rivermend Health Scientific Advisory Board, Atlanta, Georgia
| |
Collapse
|