1
|
NODA M, MATSUDA T. Central regulation of body fluid homeostasis. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2022; 98:283-324. [PMID: 35908954 PMCID: PMC9363595 DOI: 10.2183/pjab.98.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Extracellular fluids, including blood, lymphatic fluid, and cerebrospinal fluid, are collectively called body fluids. The Na+ concentration ([Na+]) in body fluids is maintained at 135-145 mM and is broadly conserved among terrestrial animals. Homeostatic osmoregulation by Na+ is vital for life because severe hyper- or hypotonicity elicits irreversible organ damage and lethal neurological trauma. To achieve "body fluid homeostasis" or "Na homeostasis", the brain continuously monitors [Na+] in body fluids and controls water/salt intake and water/salt excretion by the kidneys. These physiological functions are primarily regulated based on information on [Na+] and relevant circulating hormones, such as angiotensin II, aldosterone, and vasopressin. In this review, we discuss sensing mechanisms for [Na+] and hormones in the brain that control water/salt intake behaviors, together with the responsible sensors (receptors) and relevant neural pathways. We also describe mechanisms in the brain by which [Na+] increases in body fluids activate the sympathetic neural activity leading to hypertension.
Collapse
Affiliation(s)
- Masaharu NODA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
- Correspondence should be addressed to: Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan (e-mail: )
| | - Takashi MATSUDA
- Homeostatic Mechanism Research Unit, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Singh P, Song CY, Dutta SR, Gonzalez FJ, Malik KU. Central CYP1B1 (Cytochrome P450 1B1)-Estradiol Metabolite 2-Methoxyestradiol Protects From Hypertension and Neuroinflammation in Female Mice. Hypertension 2020; 75:1054-1062. [PMID: 32148125 PMCID: PMC7098446 DOI: 10.1161/hypertensionaha.119.14548] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Supplemental Digital Content is available in the text. Previously, we showed that peripheral administration of 2-ME (2-methoxyestradiol), a CYP1B1 (cytochrome P450 1B1)-catechol-O-methyltransferase (COMT) generated metabolite of E2 (17β-Estradiol), protects against angiotensin II-induced hypertension in female mice. The demonstration that central E2 inhibits angiotensin II-induced hypertension, together with the expression of CYP1B1 in the brain, led us to hypothesize that E2-CYP1B1 generated metabolite 2-ME in the brain mediates its protective action against angiotensin II-induced hypertension in female mice. To test this hypothesis, we examined the effect of intracerebroventricularly (ICV) administered E2 in ovariectomized (OVX)-wild-type (Cyp1b1+/+) and OVX-Cyp1b1−/− mice on the action of systemic angiotensin II. ICV-E2 attenuated the angiotensin II-induced increase in mean arterial blood pressure, impairment of baroreflex sensitivity, and sympathetic activity in OVX-Cyp1b1+/+ but not in ICV-injected short interfering (si)RNA-COMT or OVX-Cyp1b1−/− mice. ICV-2-ME attenuated the angiotensin II-induced increase in blood pressure in OVX-Cyp1b1−/− mice; this effect was inhibited by ICV-siRNA estrogen receptor-α (ERα) and G protein-coupled estrogen receptor 1 (GPER1). ICV-E2 in OVX-Cyp1b1+/+ but not in OVX-Cyp1b1−/− mice and 2-ME in the OVX-Cyp1b1−/− inhibited angiotensin II-induced increase in reactive oxygen species production in the subfornical organ and paraventricular nucleus, activation of microglia and astrocyte, and neuroinflammation in paraventricular nucleus. Furthermore, central CYP1B1 gene disruption in Cyp1b1+/+ mice by ICV-adenovirus-GFP (green fluorescence protein)-CYP1B1-short hairpin (sh)RNA elevated, while reconstitution by adenovirus-GFP-CYP1B1-DNA in the paraventricular nucleus but not in subfornical organ in Cyp1b1−/− mice attenuated the angiotensin II-induced increase in systolic blood pressure. These data suggest that E2-CYP1B1-COMT generated metabolite 2-ME, most likely in the paraventricular nucleus via estrogen receptor-α and GPER1, protects against angiotensin II-induced hypertension and neuroinflammation in female mice.
Collapse
Affiliation(s)
- Purnima Singh
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Chi Young Song
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Shubha Ranjan Dutta
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD (F.J.G.)
| | - Kafait U Malik
- From the Department of Pharmacology, Addiction Science, and Toxicology, College of Medicine, University of Tennessee Health Science Center, Memphis (P.S., C.Y.S., S.R.D., K.U.M.)
| |
Collapse
|
3
|
Almeida-Pereira G, Vilhena-Franco T, Coletti R, Cognuck SQ, Silva HVP, Elias LLK, Antunes-Rodrigues J. 17β-Estradiol attenuates p38MAPK activity but not PKCα induced by angiotensin II in the brain. J Endocrinol 2019; 240:345-360. [PMID: 30508412 DOI: 10.1530/joe-18-0095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/30/2018] [Indexed: 01/11/2023]
Abstract
17β-Estradiol (E2) has been shown to modulate the renin-angiotensin system in hydromineral and blood pressure homeostasis mainly by attenuating angiotensin II (ANGII) actions. However, the cellular mechanisms of the interaction between E2 and angiotensin II (ANGII) and its physiological role are largely unknown. The present experiments were performed to better understand the interaction between ANGII and E2 in body fluid control in female ovariectomized (OVX) rats. The present results are the first to demonstrate that PKC/p38 MAPK signaling is involved in ANGII-induced water and sodium intake and oxytocin (OT) secretion in OVX rats. In addition, previous data from our group revealed that the ANGII-induced vasopressin (AVP) secretion requires ERK1/2 signaling. Therefore, taken together, the present observations support a novel concept that distinct intracellular ANGII signaling gives rise to distinct neurohypophyseal hormone release. Furthermore, the results show that E2 attenuates p38 MAPK phosphorylation in response to ANGII but not PKC activity in the hypothalamus and the lamina terminalis, suggesting that E2 modulates ANGII effects through the attenuation of the MAPK pathway. In conclusion, this work contributes to the further understanding of the interaction between E2 and ANGII signaling in hydromineral homeostasis, as well as it contributes to further elucidate the physiological relevance of PKC/p38 MAPK signaling on the fluid intake and neurohypophyseal release induced by ANGII.
Collapse
Affiliation(s)
- G Almeida-Pereira
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - T Vilhena-Franco
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - R Coletti
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - S Q Cognuck
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - H V P Silva
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - L L K Elias
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| | - J Antunes-Rodrigues
- Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
4
|
Hardy RN, Simsek ZD, Curry B, Core SL, Beltz T, Xue B, Johnson AK, Thunhorst RL, Curtis KS. Aging affects isoproterenol-induced water drinking, astrocyte density, and central neuronal activation in female Brown Norway rats. Physiol Behav 2018; 192:90-97. [PMID: 29518407 PMCID: PMC6019141 DOI: 10.1016/j.physbeh.2018.03.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/03/2018] [Indexed: 01/22/2023]
Abstract
Age-dependent impairments in the central control of compensatory responses to body fluid challenges have received scant experimental attention, especially in females. In the present study, we found that water drinking in response to β-adrenergic activation with isoproterenol (30 μg/kg, s.c.) was reduced by more than half in aged (25 mo) vs. young (5 mo) ovariectomized female Brown Norway rats. To determine whether this age-related decrease in water intake was accompanied by changes in central nervous system areas associated with fluid balance, we assessed astrocyte density and neuronal activation in the SFO, OVLT, SON, AP and NTS of these rats using immunohistochemical labeling for GFAP and c-fos, respectively. GFAP labeling intensity was increased in the SFO, AP, and NTS of aged females independent of treatment, and was increased in the OVLT of isoproterenol-treated rats independent of age. Fos immunolabeling in response to isoproterenol was reduced in both the SFO and the OVLT of aged females compared to young females, but was increased in the SON of female rats of both ages. Finally, fos labeling in the AP and caudal NTS of aged rats was elevated after vehicle control treatment and did not increase in response to isoproterenol as it did in young females. Thus, age-related declines in water drinking are accompanied by site-specific, age-related changes in astrocyte density and neuronal activation. We suggest that astrocyte density may alter the detection and/or processing of signals related to isoproterenol treatment, and thereby alter neuronal activation in areas associated with fluid balance.
Collapse
Affiliation(s)
- Rachel N Hardy
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Zinar D Simsek
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Brandon Curry
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Sheri L Core
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States
| | - Terry Beltz
- University of Iowa, Iowa City, IA, United States
| | - Baojian Xue
- University of Iowa, Iowa City, IA, United States
| | | | | | - Kathleen S Curtis
- Oklahoma State University - Center of Health Sciences, Tulsa, OK 74107, United States.
| |
Collapse
|
5
|
Abstract
The objective of this review is to provide an in-depth evaluation of how renal nerves regulate renal and cardiovascular function with a focus on long-term control of arterial pressure. We begin by reviewing the anatomy of renal nerves and then briefly discuss how the activity of renal nerves affects renal function. Current methods for measurement and quantification of efferent renal-nerve activity (ERNA) in animals and humans are discussed. Acute regulation of ERNA by classical neural reflexes as well and hormonal inputs to the brain is reviewed. The role of renal nerves in long-term control of arterial pressure in normotensive and hypertensive animals (and humans) is then reviewed with a focus on studies utilizing continuous long-term monitoring of arterial pressure. This includes a review of the effect of renal-nerve ablation on long-term control of arterial pressure in experimental animals as well as humans with drug-resistant hypertension. The extent to which changes in arterial pressure are due to ablation of renal afferent or efferent nerves are reviewed. We conclude by discussing the importance of renal nerves, relative to sympathetic activity to other vascular beds, in long-term control of arterial pressure and hypertension and propose directions for future research in this field. © 2017 American Physiological Society. Compr Physiol 7:263-320, 2017.
Collapse
Affiliation(s)
- John W Osborn
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jason D Foss
- Department of Integrative Biology and Physiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Vilhena-Franco T, Mecawi AS, Elias LLK, Antunes-Rodrigues J. Oestradiol effects on neuroendocrine responses induced by water deprivation in rats. J Endocrinol 2016; 231:167-180. [PMID: 27613338 DOI: 10.1530/joe-16-0311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.
Collapse
Affiliation(s)
- Tatiane Vilhena-Franco
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - André Souza Mecawi
- Department of Physiological SciencesInstitute of Biological and Healthy Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
- Department of PhysiologyFaculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lucila Leico Kagohara Elias
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - José Antunes-Rodrigues
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
7
|
Abstract
The central nervous system (CNS) in concert with the heart and vasculature is essential to maintaining cardiovascular (CV) homeostasis. In recent years, our understanding of CNS control of blood pressure regulation (and dysregulation leading to hypertension) has evolved substantially to include (i) the actions of signaling molecules that are not classically viewed as CV signaling molecules, some of which exert effects at CNS targets in a non-traditional manner, and (ii) CNS locations not traditionally viewed as central autonomic cardiovascular centers. This review summarizes recent work implicating immune signals and reproductive hormones, as well as gasotransmitters and reactive oxygen species in the pathogenesis of hypertension at traditional CV control centers. Additionally, recent work implicating non-conventional CNS structures in CV regulation is discussed.
Collapse
Affiliation(s)
- Pauline M Smith
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada
| | - Alastair V Ferguson
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, K7L3N6, Canada
| |
Collapse
|
8
|
Sex, the brain and hypertension: brain oestrogen receptors and high blood pressure risk factors. Clin Sci (Lond) 2015; 130:9-18. [DOI: 10.1042/cs20150654] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypertension is a major contributor to worldwide morbidity and mortality rates related to cardiovascular disease. There are important sex differences in the onset and rate of hypertension in humans. Compared with age-matched men, premenopausal women are less likely to develop hypertension. However, after age 60, the incidence of hypertension increases in women and even surpasses that seen in older men. It is thought that changes in levels of circulating ovarian hormones as women age may be involved in the increase in hypertension in older women. One of the key mechanisms involved in the development of hypertension in both men and women is an increase in sympathetic nerve activity (SNA). Brain regions important for the regulation of SNA, such as the subfornical organ, the paraventricular nucleus and the rostral ventral lateral medulla, also express specific subtypes of oestrogen receptors. Each of these brain regions has also been implicated in mechanisms underlying risk factors for hypertension such as obesity, stress and inflammation. The present review brings together evidence that links actions of oestrogen at these receptors to modulate some of the common brain mechanisms involved in the ability of hypertensive risk factors to increase SNA and blood pressure. Understanding the mechanisms by which oestrogen acts at key sites in the brain for the regulation of SNA is important for the development of novel, sex-specific therapies for treating hypertension.
Collapse
|
9
|
Santollo J, Daniels D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci 2015; 9:25. [PMID: 25788879 PMCID: PMC4349057 DOI: 10.3389/fnsys.2015.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/13/2015] [Indexed: 01/25/2023] Open
Abstract
Body fluid homeostasis is maintained by a complex network of central and peripheral systems that regulate blood pressure, fluid and electrolyte excretion, and fluid intake. The behavioral components, which include well regulated water and saline intake, are influenced by a number of hormones and neuropeptides. Since the early 1970s, it has been known that the ovarian estrogens play an important role in regulating fluid intake in females by decreasing water and saline intake under a variety of hypovolemic conditions. Behavioral, electrophysiological, gene and protein expression studies have identified nuclei in the hypothalamus, along with nearby forebrain structures such as the subfornical organ (SFO), as sites of action involved in mediating these effects of estrogens and, importantly, all of these brain areas are rich with estrogen receptors (ERs). This review will discuss the multiple ER subtypes, found both in the cell nucleus and associated with the plasma membrane, that provide diversity in the mechanism through which estrogens can induce behavioral changes in fluid intake. We then focus on the relevant brain structures, hypothesized circuits, and various peptides, such as angiotensin, oxytocin, and vasopressin, implicated in the anti-dipsogenic and anti-natriorexigenic actions of the estrogens.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| |
Collapse
|
10
|
Marques-Lopes J, Lynch MK, Van Kempen TA, Waters EM, Wang G, Iadecola C, Pickel VM, Milner TA. Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Synapse 2015; 69:148-65. [PMID: 25559190 PMCID: PMC4355104 DOI: 10.1002/syn.21800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Renin–angiotensin system overactivity, upregulation of postsynaptic NMDA receptor function, and increased reactive oxygen species (ROS) production in the hypothalamic paraventricular nucleus (PVN) are hallmarks of angiotensin II (AngII)-induced hypertension, which is far more common in young males than in young females. We hypothesize that the sex differences in hypertension are related to differential AngII-induced changes in postsynaptic trafficking of the essential NMDA receptor GluN1 subunit and ROS production in PVN cells expressing angiotensin Type 1a receptor (AT1aR). We tested this hypothesis using slow-pressor (14-day) infusion of AngII (600 ng/kg/min) in mice, which elicits hypertension in males but not in young females. Two-month-old male and female transgenic mice expressing enhanced green fluorescent protein (EGFP) in AT1aR-containing cells were used. In males, but not in females, AngII increased blood pressure and ROS production in AT1aR–EGFP PVN cells at baseline and following NMDA treatment. Electron microscopy showed that AngII increased cytoplasmic and total GluN1–silver-intensified immunogold (SIG) densities and induced a trend toward an increase in near plasmalemmal GluN1–SIG density in AT1aR–EGFP dendrites of males and females. Moreover, AngII decreased dendritic area and diameter in males, but increased dendritic area of small (<1 µm) dendrites and decreased diameter of large (>1 µm) dendrites in females. Fluorescence microscopy revealed that AT1aR and estrogen receptor β do not colocalize, suggesting that if estrogen is involved, its effect is indirect. These data suggest that the sexual dimorphism in AngII-induced hypertension is associated with sex differences in ROS production in AT1aR-containing PVN cells but not with postsynaptic NMDA receptor trafficking.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Mary-Katherine Lynch
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Tracey A. Van Kempen
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Gang Wang
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Virginia M. Pickel
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Teresa A. Milner
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|
11
|
Abstract
The role of the brain in hypertension between the sexes is known to be important especially with regards to the effects of circulating sex hormones. A number of different brain regions important for regulation of sympathetic outflow and blood pressure express estrogen receptors (ERα and ERβ). Estradiol, acting predominantly via the ERα, inhibits angiotensin II activation of the area postrema and subfornical organ neurons and inhibits reactive oxygen generation that is required for the development of Angiotensin II-induced neurogenic hypertension. Estradiol activation of ERβ within the paraventricular nucleus and the rostral ventral lateral medulla inhibits these neurons and inhibits angiotensin II, or aldosterone induced increases in sympathetic outflow and hypertension. Understanding the cellular and molecular mechanisms underlying ERα and ERβ actions within key brain regions regulating blood pressure will be essential for the development of "next generation" selective estrogen receptor modulators (SERMS) that can be used clinically for the treatment of neurogenic hypertension.
Collapse
Affiliation(s)
- Meredith Hay
- Department of Physiology, University of Arizona, 1501 N Campbell Rd Bldg 201, Rm 4103, Tucson, AZ, 85724, USA,
| | | | | |
Collapse
|
12
|
Xue B, Zhang Z, Beltz TG, Guo F, Hay M, Johnson AK. Genetic knockdown of estrogen receptor-alpha in the subfornical organ augments ANG II-induced hypertension in female mice. Am J Physiol Regul Integr Comp Physiol 2014; 308:R507-16. [PMID: 25552661 DOI: 10.1152/ajpregu.00406.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The present study tested the hypotheses that 1) ERα in the brain plays a key role in the estrogen-protective effects against ANG II-induced hypertension, and 2) that the subfornical organ (SFO) is a key site where ERα mediates these protective actions. In this study, a "floxed" ERα transgenic mouse line (ERα(flox)) was used to create models in which ERα was knocked down in the brain or just in the SFO. Female mice with ERα ablated in the nervous system (Nestin-ERα(-) mice) showed greater increases in blood pressure (BP) in response to ANG II. Furthermore, females with ERα knockdown specifically in the SFO [SFO adenovirus-Cre (Ad-Cre) injected ERα(flox) mice] also showed an enhanced pressor response to ANG II. Immunohistochemical (IHC), RT-PCR, and Western blot analyses revealed a marked reduction in the expression of ERα in nervous tissues and, in particular, in the SFO. These changes were not present in peripheral tissues in Nestin-ERα(-) mice or Ad-Cre-injected ERα(flox) mice. mRNA expression of components of the renin-angiotensin system in the lamina terminalis were upregulated in Nestin-ERα(-) mice. Moreover, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction of BP in Nestin-ERα(-) mice or SFO Ad-Cre-injected mice, suggesting that knockdown of ERα in the nervous system or the SFO alone augments central ANG II-induced increase in sympathetic tone. The results indicate that interfering with the action of estrogen on SFO ERα is sufficient to abolish the protective effects of estrogen against ANG II-induced hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Henan, China
| | - Terry G Beltz
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and
| | - Fang Guo
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and
| | - Meredith Hay
- Department of Physiology, University of Arizona, Tucson, Arizona; Evelyn F. McKnight Brain Institute, Tucson, Arizona; and
| | - Alan Kim Johnson
- Departments of Psychology, University of Iowa, Iowa City, Iowa; and Department of Pharmacology, University of Iowa, Iowa City, Iowa; François M. Abboud Cardiovascular Research Center, University of Iowa, Iowa City, Iowa
| |
Collapse
|
13
|
Sandberg K, Ji H, Hay M. Sex-specific immune modulation of primary hypertension. Cell Immunol 2014; 294:95-101. [PMID: 25498375 DOI: 10.1016/j.cellimm.2014.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 11/28/2014] [Accepted: 12/01/2014] [Indexed: 01/11/2023]
Abstract
It is well known that the onset of essential hypertension occurs earlier in men than women. Numerous studies have shown sex differences in the vasculature, kidney and sympathetic nervous system contribute to this sex difference in the development of hypertension. The immune system also contributes to the development of hypertension; however, sex differences in immune system modulation of blood pressure (BP) and the development of hypertension has only recently begun to be explored. Here we review findings on the effect of one's sex on the immune system and specifically how these effects impact BP and the development of primary hypertension. We also propose a hypothesis for why mechanisms underlying inflammation-induced hypertension are sex-specific. These studies underscore the value of and need for studying both sexes in the basic science exploration of the pathophysiology of hypertension as well as other diseases.
Collapse
Affiliation(s)
- Kathryn Sandberg
- Department of Medicine and Center for the Study of Sex Differences in Health, Aging and Disease, Suite 232 Bldg D., Georgetown University, Washington D.C. 20057, United States
| | - Hong Ji
- Department of Medicine and Center for the Study of Sex Differences in Health, Aging and Disease, Suite 232 Bldg D., Georgetown University, Washington D.C. 20057, United States
| | - Meredith Hay
- Department of Physiology and the Evelyn F. McKnight Brain Institute, University of Arizona, 1503 N. Campbell Rd, Bldg 201, Room 4103, Tucson, AZ 85724, United States.
| |
Collapse
|
14
|
Pollow DP, Uhrlaub J, Romero-Aleshire M, Sandberg K, Nikolich-Zugich J, Brooks HL, Hay M. Sex differences in T-lymphocyte tissue infiltration and development of angiotensin II hypertension. Hypertension 2014; 64:384-390. [PMID: 24890822 DOI: 10.1161/hypertensionaha.114.03581] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
There is extensive evidence that activation of the immune system is both necessary and required for the development of angiotensin II (Ang II)-induced hypertension in males. The purpose of this study was to determine whether sex differences exist in the ability of the adaptive immune system to induce Ang II-dependent hypertension and whether central and renal T-cell infiltration during Ang II-induced hypertension is sex dependent. Recombinant activating gene-1 (Rag-1)(-/-) mice, lacking both T and B cells, were used. Male and female Rag-1(-/-) mice received adoptive transfer of male CD3(+) T cells 3 weeks before 14-day Ang II infusion (490 ng/kg per minute). Blood pressure was monitored via tail cuff. In the absence of T cells, systolic blood pressure responses to Ang II were similar between sexes (Δ22.1 mm Hg males versus Δ18 mm : Hg females). After adoptive transfer of male T cells, Ang II significantly increased systolic blood pressure in males (Δ37.7 mm : Hg; P<0.05) when compared with females (Δ13.7 mm : Hg). Flow cytometric analysis of total T cells and CD4(+), CD8(+), and regulatory Foxp3(+)-CD4(+) T-cell subsets identified that renal lymphocyte infiltration was significantly increased in males versus females in both control and Ang II-infused animals (P<0.05). Immunohistochemical staining for CD3(+)-positive T cells in the subfornical organ region of the brain was increased in males when compared with that in females. These results suggest that female Rag-1(-/-) mice are protected from male T-cell-mediated increases in Ang II-induced hypertension when compared with their male counterparts, and this protection may involve sex differences in the magnitude of T-cell infiltration of the kidney and brain.
Collapse
Affiliation(s)
- Dennis P Pollow
- Department of Physiology University of Arizona, Tucson, AZ.,Sarver Heart Center University of Arizona, Tucson, AZ
| | | | | | - Kathryn Sandberg
- Department of Medicine and Center for the Study of Sex Differences in Health, Aging and Disease, Georgetown University, Washington, DC
| | | | - Heddwen L Brooks
- Department of Physiology University of Arizona, Tucson, AZ.,Sarver Heart Center University of Arizona, Tucson, AZ
| | - Meredith Hay
- Department of Physiology University of Arizona, Tucson, AZ.,Sarver Heart Center University of Arizona, Tucson, AZ.,Evelyn McKnight Brain Institute, University of Arizona, Tucson, AZ
| |
Collapse
|
15
|
Nesfatin-1 induces Fos expression and elicits dipsogenic responses in subfornical organ. Behav Brain Res 2013; 250:343-50. [DOI: 10.1016/j.bbr.2013.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 05/13/2013] [Accepted: 05/20/2013] [Indexed: 02/01/2023]
|
16
|
17β-Estradiol alters the response of subfornical organ neurons that project to supraoptic nucleus to plasma angiotensin II and hypernatremia. Brain Res 2013; 1526:54-64. [PMID: 23830850 DOI: 10.1016/j.brainres.2013.06.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/21/2013] [Accepted: 06/26/2013] [Indexed: 12/26/2022]
Abstract
This study was done in urethane anesthetized, ovariectomized (OVX) female rats that were either implanted or not implanted with silastic capsules containing17β-estradiol (E2) to investigate the effect of systemic changes in E2 on the discharge rate of subfornical organ (SFO) neurons that projected to supraoptic nucleus (SON) and responded to changes in plasma levels of angiotensin II (ANG II) or hypernatremia. Extracellular single unit recordings were made from 146 histologically verified single units in SFO. Intra-carotid infusions of ANG II excited ~57% of these neurons, whereas ~23% were excited by hypertonic NaCl. Basal discharge rate of neurons excited by ANG II or hypertonic NaCl was significantly lower in OVX+E2 rats compared to OVX only animals. The response of SFO neurons antidromically activated by SON stimulation to intra-carotid injections of ANG II or hypertonic NaCl was greater in the OVX only compared to the OVX+E2 rats. Intra-carotid injections of E2 in either group attenuated not only the basal discharge of these neurons, but also their response to ANG II or hypertonic NaCl. In all cases this inhibitory effect of E2 was blocked by an intra-carotid injection of the E2 receptor antagonist ICI-182780, although ICI-182780 did not alter the neuron's response to ANG II or hypertonic NaCl. Additionally, ICI-182780 in the OVX+E2 animals significantly raised the basal discharge of SFO neurons and their response to ANG II or hypertonic NaCl. These data indicate that E2 alters the response of SFO neurons to ANG II or NaCl that project to SON, and suggest that E2 functions in the female to regulate neurohypophyseal function in response to circulating ANG II and plasma hypernatremia.
Collapse
|
17
|
Graves NS, Hayes H, Fan L, Curtis KS. Time course of behavioral, physiological, and morphological changes after estradiol treatment of ovariectomized rats. Physiol Behav 2011; 103:261-7. [PMID: 21324332 DOI: 10.1016/j.physbeh.2011.02.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 01/25/2023]
Abstract
Previous studies showed that treatment with 17-β-estradiol-3-benzoate (EB) reduces isoproterenol (ISOP) stimulated water intake by ovariectomized rats. This effect was observed 48h after the second of two EB injections, suggesting that the attenuation is attributable to classic EB actions to alter gene expression. However, in addition to classic, slowly-occurring, genomic effects, estrogens have more rapidly-occurring effects that may be nongenomic or 'nonclassical' genomic effects. Thus, it is possible that the EB attenuation of water intake stimulated by ISOP is genomic, nongenomic, or both. Accordingly, we measured ISOP-induced water intake by OVX rats at different times after EB injections, using time points likely to indicate classic genomic effects (48h or 24h) or nonclassical genomic or nongenomic effects (90min). We also examined EB effects on body weight, uterine weight, and plasma volume and Na(+) concentration in the same animals using the same time points and EB dose. EB treatment decreased water intake stimulated by ISOP in both the 24-h and 48-h groups; however, water intake in the 90-min group was not affected by EB. Uterine weight was unchanged 90min after EB, but was increased 24h after the first injection of EB. In contrast, body weight decreased after EB, but not until 48h after the second EB injection. Finally, EB did not alter plasma Na(+) concentration or hematocrit, though plasma protein concentration increased transiently 24h after EB treatment. Taken together, these findings suggest that the behavioral, morphological, and physiological effects of EB likely are attributable to slowly-occurring, classic genomic actions of estrogens. Moreover, the time course of the observed effects varied, suggesting tissue-specific differences in estrogen receptor density or subtype, or in co-activators or co-repressors that, ultimately, determine the timing and direction of EB effects.
Collapse
Affiliation(s)
- Nora S Graves
- Department of Pharmacology and Physiology, Oklahoma State University-Center for Health Sciences, Tulsa, OK 74107, USA
| | | | | | | |
Collapse
|
18
|
Fan L, Smith CE, Curtis KS. Regional differences in estradiol effects on numbers of HSD2-containing neurons in the nucleus of the solitary tract of rats. Brain Res 2010; 1358:89-101. [PMID: 20728435 DOI: 10.1016/j.brainres.2010.08.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 12/15/2022]
Abstract
Estrogens affect body fluid balance, including sodium ingestion. Recent findings of a population of neurons in the hindbrain nucleus of the solitary tract (NTS) of rats that are activated during sodium need suggest a possible central substrate for this effect of estrogens. We used immunohistochemistry to label neurons in the NTS that express 11-β-hydroxysteroid dehydrogenase type 2 (HSD2), an enzyme that promotes aldosterone binding, in male rats, and in ovariectomized (OVX) rats given estradiol benzoate (EB) or oil vehicle (OIL). During baseline conditions, the number of HSD2 immunoreactive neurons in the NTS immediately rostral to the area postrema was greater in EB-treated OVX rats compared to those in OIL-treated OVX and male rats. A small number of HSD2 immunoreactive neurons was also labeled for dopamine-β-hydroxylase (DBH), an enzyme involved in norepinephrine biosynthesis. Double-labeled neurons in the NTS were located primarily in the more lateral portion of the HSD2 population, at the level of the area postrema in all three groups, with no sex or estrogen-mediated differences in the number of double-labeled neurons. These results suggest that two subpopulations of HSD2 neurons are present in the NTS. One subpopulation, which does not colocalize with DBH and is increased during conditions of elevated estradiol, may contribute to the effects of estrogens on sodium ingestion. The role of the other, smaller subpopulation, which colocalizes with DBH and is not affected by estradiol, remains to be determined, but one possibility is that these latter neurons are part of a larger network of catecholaminergic input to neuroendocrine neurons in the hypothalamus.
Collapse
Affiliation(s)
- Liming Fan
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107-1898, USA
| | | | | |
Collapse
|
19
|
Smith PM, Ferguson AV. Circulating signals as critical regulators of autonomic state--central roles for the subfornical organ. Am J Physiol Regul Integr Comp Physiol 2010; 299:R405-15. [PMID: 20463185 DOI: 10.1152/ajpregu.00103.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
To maintain homeostasis autonomic control centers in the hypothalamus and medulla must respond appropriately to both external and internal stimuli. Although protected behind the blood-brain barrier, neurons in these autonomic control centers are known to be influenced by changing levels of important signaling molecules in the systemic circulation (e.g., osmolarity, glucose concentrations, and regulatory peptides). The subfornical organ belongs to a group of specialized central nervous system structures, the circumventricular organs, which are characterized by the lack of the normal blood-brain barrier, such that circulating lipophobic substances may act on neurons within this region and via well-documented efferent neural projections to hypothalamic autonomic control centers, influence autonomic function. This review focuses on the role of the subfornical organ in sensing peripheral signals and transmitting this information to autonomic control centers in the hypothalamus.
Collapse
Affiliation(s)
- Pauline M Smith
- Dept. of Physiology, Queen's Univ., Kingston, Ontario, Canada K7L 3N6
| | | |
Collapse
|
20
|
Xue B, Singh M, Guo F, Hay M, Johnson AK. Protective actions of estrogen on angiotensin II-induced hypertension: role of central nitric oxide. Am J Physiol Heart Circ Physiol 2009; 297:H1638-46. [PMID: 19734362 DOI: 10.1152/ajpheart.00502.2009] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study tested the hypotheses that 1) nitric oxide (NO) is involved in attenuated responses to ANG II in female mice, and 2) there is differential expression of neuronal NO synthase (nNOS) in the subfornical organ (SFO) and paraventricular nucleus (PVN) in response to systemic infusions of ANG II in males vs. females. Aortic blood pressure (BP) was measured in conscious mice with telemetry implants. N(G)-nitro-l-arginine methyl ester (l-NAME; 100 microg x kg(.-1)day(-1)), an inhibitor of NOS, was administrated into the lateral cerebral ventricle for 14 days before and during ANG II pump implantation. Central infusion of l-NAME augmented the pressor effects of systemic ANG II in females (Delta21.5 + or - 2.2 vs. Delta9.2 + or - 1.5 mmHg) but not in males (Delta29.4 + or - 2.5 vs. Delta30.1 + or - 2.5 mmHg). Central administration of N(5)-(1-imino-3-butenyl)-l-ornithine (l-VNIO), a selective nNOS inhibitor, also significantly potentiated the increase in BP induced by ANG II in females (Delta17.5 + or - 3.2 vs. Delta9.2 + or - 1.5 mmHg). In gonadectomized mice, central l-NAME infusion did not affect the pressor response to ANG II in either males or females. Ganglionic blockade after ANG II infusion resulted in a greater reduction in BP in central l-NAME- or l-VNIO-treated females compared with control females. Western blot analysis of nNOS protein expression indicated that levels were approximately 12-fold higher in both the SFO and PVN of intact females compared with those in intact males. Seven days of ANG II treatment resulted in a further increase in nNOS protein expression only in intact females (PVN, to approximately 51-fold). Immunohistochemical studies revealed colocalization of nNOS and estrogen receptors in the SFO and PVN. These results suggest that NO attenuates the increase in BP induced by ANG II through reduced sympathetic outflow in females and that increased nNOS protein expression associated with the presence of female sex hormones plays a protective role against ANG II-induced hypertension in female mice.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychology, University of Iowa, 11 Seashore Hall E, Iowa City, IA 52242, USA.
| | | | | | | | | |
Collapse
|
21
|
Jones AB, Curtis KS. Differential effects of estradiol on drinking by ovariectomized rats in response to hypertonic NaCl or isoproterenol: Implications for hyper- vs. hypo-osmotic stimuli for water intake. Physiol Behav 2009; 98:421-6. [PMID: 19616566 DOI: 10.1016/j.physbeh.2009.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 07/08/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
Abstract
We examined the effects of estradiol on behavioral responses to osmotic challenges in ovariectomized (OVX) rats to test the hypothesis that estradiol enhances sensitivity to gradual changes in plasma osmolality (pOsm) in stimulating water intake. Despite comparably elevated pOsm after a slow infusion of 2 M NaCl, the latency to begin water intake was significantly less in estradiol-treated OVX rats compared to that in oil vehicle-treated rats. Other groups of OVX rats were injected with isoproterenol, which increases circulating angiotensin II. These rats then were given 0.15 M NaCl to drink instead of water, to prevent decreased pOsm associated with water ingestion. Isoproterenol stimulated 0.15 M NaCl intake by both groups; however, estradiol-treated rats consumed less 0.15 M NaCl than did oil-treated rats, findings that are similar to those reported when estradiol-treated rats consumed water. The estradiol enhancement of sensitivity to increased, but not to decreased, pOsm suggests that estradiol has directionally-specific effects on osmoregulatory drinking. Moreover, the estradiol attenuation of 0.15 M NaCl intake after isoproterenol suggests that estradiol effects on osmoregulatory drinking are independent of those on volume regulatory drinking.
Collapse
Affiliation(s)
- Alexis B Jones
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | | |
Collapse
|
22
|
Reed WR, Chadha HK, Hubscher CH. Effects of 17beta-estradiol on responses of viscerosomatic convergent thalamic neurons in the ovariectomized female rat. J Neurophysiol 2009; 102:1062-74. [PMID: 19553492 DOI: 10.1152/jn.00165.2009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ovarian hormones have been shown to exert multiple effects on CNS function and viscerosomatic convergent activity. Ovariectomized (OVX) female rats were used in the present study to examine the long-term effects of proestrus levels of 17beta-estradiol (EB) delivered by a 60-day time-released subcutaneous pellet on the response properties of viscerosomatic convergent thalamic neurons. In addition, avoidance thresholds to mechanical stimulation for one of the convergent somatic territories, the trunk, was assessed using an electro-von Frey anesthesiometer before and at the end of the 6-wk post-OVX/implant period prior to the terminal electrophysiological experiments, which were done under urethane anesthesia. Rats implanted with an EB-containing pellet, relative to placebo controls, demonstrated 1) altered thalamic response frequencies and thresholds for cervix and vaginal but not colon stimulation; 2) some response variations for just the lateral group of thalamic subnuclei; and 3) altered thalamic response frequencies and thresholds for trunk stimulation. Thalamic response thresholds for trunk pressure in EB versus placebo rats were consistent with the avoidance thresholds obtained from the same groups. In addition, EB replacement affected visceral and somatic thresholds in opposite ways (i.e., reproductive-related structures were less sensitive to pressure, whereas somatic regions showed increased sensitivity). These results have obvious reproductive advantages (i.e., decreased reproductive organ sensitivity for copulation and increased trunk sensitivity for lordosis posturing), as well as possible clinical implications in women suffering from chronic pelvic pain syndromes and/or neuropathic pain.
Collapse
Affiliation(s)
- William R Reed
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
23
|
Spary EJ, Maqbool A, Batten TFC. Oestrogen receptors in the central nervous system and evidence for their role in the control of cardiovascular function. J Chem Neuroanat 2009; 38:185-96. [PMID: 19505570 DOI: 10.1016/j.jchemneu.2009.05.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 05/05/2009] [Accepted: 05/27/2009] [Indexed: 02/07/2023]
Abstract
Oestrogen is considered beneficial to cardiovascular health through protective effects not only on the heart and vasculature, but also on the autonomic nervous system via actions on oestrogen receptors. A plethora of evidence supports a role for the hormone within the central nervous system in modulating the pathways regulating cardiovascular function. A complex interaction of several brainstem, spinal and forebrain nuclei is required to receive, integrate and co-ordinate inputs that contribute appropriate autonomic reflex responses to changes in blood pressure and other cardiovascular parameters. Central effects of oestrogen and oestrogen receptors have already been demonstrated in many of these areas. In addition to the classical nuclear oestrogen receptors (ERalpha and ERbeta) a recently discovered G-protein coupled receptor, GPR30, has been shown to be a novel mediator of oestrogenic action. Many anatomical and molecular studies have described a considerable overlap in the regional expression of these receptors; however, the receptors do exhibit specific characteristics and subtype specific expression is found in many autonomic brain areas, for example ERbeta appears to predominate in the hypothalamic paraventricular nucleus, whilst ERalpha is important in the nucleus of the solitary tract. This review provides an overview of the available information on the localisation of oestrogen receptor subtypes and their multitude of possible modulatory actions in different groups of neurochemically and functionally defined neurones in autonomic-related areas of the brain.
Collapse
Affiliation(s)
- Emma J Spary
- Division of Cardiovascular and Neuronal Remodelling, Worsley Building, LIGHT Institute, University of Leeds, Leeds LS2 9JT, UK.
| | | | | |
Collapse
|
24
|
Curtis KS. Estrogen and the central control of body fluid balance. Physiol Behav 2009; 97:180-92. [DOI: 10.1016/j.physbeh.2009.02.027] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/19/2009] [Accepted: 02/20/2009] [Indexed: 10/21/2022]
|
25
|
Hindmarch C, Fry M, Yao ST, Smith PM, Murphy D, Ferguson AV. Microarray analysis of the transcriptome of the subfornical organ in the rat: regulation by fluid and food deprivation. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1914-20. [DOI: 10.1152/ajpregu.90560.2008] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have employed microarray technology using Affymetrix 230 2.0 genome chips to initially catalog the transcriptome of the subfornical organ (SFO) under control conditions and to also evaluate the changes (common and differential) in gene expression induced by the challenges of fluid and food deprivation. We have identified a total of 17,293 genes tagged as present in one of our three experimental conditions, transcripts, which were then used as the basis for further filtering and statistical analysis. In total, the expression of 46 genes was changed in the SFO following dehydration compared with control animals (22 upregulated and 24 downregulated), with the largest change being the greater than fivefold increase in brain-derived neurotrophic factor (BDNF) expression, while significant changes in the expression of the calcium-sensing (upregulated) and apelin (downregulated) receptors were also reported. In contrast, food deprivation caused greater than twofold changes in a total of 687 transcripts (222 upregulated and 465 downregulated), including significant reductions in vasopressin, oxytocin, promelanin concentrating hormone, cocaine amphetamine-related transcript (CART), and the endothelin type B receptor, as well as increases in the expression of the GABAB receptor. Of these regulated transcripts, we identified 37 that are commonly regulated by fasting and dehydration, nine that were uniquely regulated by dehydration, and 650 that are uniquely regulated by fasting. We also found five transcripts that were differentially regulated by fasting and dehydration including BDNF and CART. In these studies we have for the first time described the transcriptome of the rat SFO and have in addition identified genes, the expression of which is significantly modified by either water or food deprivation.
Collapse
|
26
|
Lazartigues E, Sinnayah P, Augoyard G, Gharib C, Johnson AK, Davisson RL. Enhanced water and salt intake in transgenic mice with brain-restricted overexpression of angiotensin (AT1) receptors. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1539-45. [PMID: 18753266 DOI: 10.1152/ajpregu.00751.2007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To address the relative contribution of central and peripheral angiotensin II (ANG II) type 1A receptors (AT(1A)) to blood pressure and volume homeostasis, we generated a transgenic mouse model [neuron-specific enolase (NSE)-AT(1A)] with brain-restricted overexpression of AT(1A) receptors. These mice are normotensive at baseline but have dramatically enhanced pressor and bradycardic responses to intracerebroventricular ANG II or activation of endogenous ANG II production. Here our goal was to examine the water and sodium intake in this model under basal conditions and in response to increased ANG II levels. Baseline water and NaCl (0.3 M) intakes were significantly elevated in NSE-AT(1A) compared with nontransgenic littermates, and bolus intracerebroventricular injections of ANG II (200 ng in 200 nl) caused further enhanced water intake in NSE-AT(1A). Activation of endogenous ANG II production by sodium depletion (10 days low-sodium diet followed by furosemide, 1 mg sc) enhanced NaCl intake in NSE-AT(1A) mice compared with wild types. Fos immunohistochemistry, used to assess neuronal activation, demonstrated sodium depletion-enhanced activity in the anteroventral third ventricle region of the brain in NSE-AT(1A) mice compared with control animals. The results show that brain-selective overexpression of AT(1A) receptors results in enhanced salt appetite and altered water intake. This model provides a new tool for studying the mechanisms of brain AT(1A)-dependent water and salt consumption.
Collapse
Affiliation(s)
- Eric Lazartigues
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, USA
| | | | | | | | | | | |
Collapse
|
27
|
Xue B, Zhao Y, Johnson AK, Hay M. Central estrogen inhibition of angiotensin II-induced hypertension in male mice and the role of reactive oxygen species. Am J Physiol Heart Circ Physiol 2008; 295:H1025-H1032. [PMID: 18599599 DOI: 10.1152/ajpheart.00021.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
It has been shown that reactive oxygen species (ROS) contribute to the central effect of ANG II on blood pressure (BP). Recent studies have implicated an antihypertensive action of estrogen in ANG II-infused female mice. The present study used in vivo telemetry recording and in vitro living mouse brain slices to test the hypothesis that the central activation of estrogen receptors in male mice inhibits ANG II-induced hypertension via the modulation of the central ROS production. In male wild-type mice, the systemic infusion of ANG II induced a significant increase in BP (Delta30.1 +/- 2.5 mmHg). Either central infusion of Tempol or 17beta-estradiol (E2) attenuated the pressor effect of ANG II (Delta10.9 +/- 2.3 and Delta4.5 +/- 1.4 mmHg), and the protective effect of E2 was prevented by the coadministration of an estrogen receptor, antagonist ICI-182780 (Delta23.6 +/- 3.1 mmHg). Moreover, the ganglionic blockade on day 7 after the start of ANG II infusions resulted in a smaller reduction of BP in central Tempol- and in central E2-treated males, suggesting that estrogen inhibits the central ANG II-induced increases in sympathetic outflow. In subfornical organ slices, the application of ANG II resulted in a 21.5 +/- 2.5% increase in ROS production. The coadministration of irbesartan, an ANG II type 1 receptor antagonist, or the preincubation of brain slices with Tempol blocked ANG II-induced increases in ROS production (-1.8 +/- 1.6% and -1.0 +/- 1.8%). The ROS response to ANG II was also blocked by E2 (-3.2 +/- 2.4%). The results suggest that the central actions of E2 are involved in the protection from ANG II-induced hypertension and that estrogen modulation of the ANG II-induced effects may involve interactions with ROS production.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Psychology, University of Iowa, 11 Seashore Hall E, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
28
|
Abstract
With the development of functional neuroimaging tools, the past two decades have witnessed an explosion of work examining functional brain maps, mostly in the adult brain. Against this backdrop of work in adults, developmental research begins to gather a substantial body of knowledge about brain maturation. The purpose of this review is to present some of these findings from the perspective of functional neuroimaging. First, a brief survey of available neuroimaging techniques (i.e., fMRI, MRS, MEG, PET, SPECT, and infrared techniques) is provided. Next, the key cognitive, emotional, and social changes taking place during adolescence are outlined. The third section gives examples of how these behavioral changes can be understood from a neuroscience perspective. The conclusion places this functional neuroimaging research in relation to clinical and molecular work, and shows how answers will ultimately come from the combined efforts of these disciplines.
Collapse
Affiliation(s)
- Monique Ernst
- Emotional Development and Affective Neuroscience Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
29
|
Duan PG, Kawano H, Masuko S. Collateral projections from the subfornical organ to the median preoptic nucleus and paraventricular hypothalamic nucleus in the rat. Brain Res 2008; 1198:68-72. [DOI: 10.1016/j.brainres.2008.01.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 12/21/2007] [Accepted: 01/05/2008] [Indexed: 11/29/2022]
|
30
|
Estrogen receptors: their roles in regulation of vasopressin release for maintenance of fluid and electrolyte homeostasis. Front Neuroendocrinol 2008; 29:114-27. [PMID: 18022678 PMCID: PMC2274006 DOI: 10.1016/j.yfrne.2007.08.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 06/28/2007] [Accepted: 08/14/2007] [Indexed: 11/22/2022]
Abstract
Long standing interest in the impact of gonadal steroid hormones on fluid and electrolyte balance has led to a body of literature filled with conflicting reports about gender differences, the effects of gonadectomy, hormone replacement, and reproductive cycles on plasma vasopressin (VP), VP secretion, and VP gene expression. This reflects the complexity of gonadal steroid hormone actions in the body resulting from multiple sites of action that impact fluid and electrolyte balance (e.g. VP target organs, afferent pathways regulating the VP neurons, and the VP secreting neurons themselves). It also reflects involvement of multiple types of estrogen receptors (ER) in these diverse sites including ERs that act as transcription factors regulating gene expression (i.e. the classic ERalpha as well as the more recently discovered ERbeta) and potentially G-protein coupled, membrane localized ERs that mediate rapid non-genomic actions of estrogen. Furthermore, altered expression of these receptors in physiologically diverse conditions of fluid and electrolyte balance contributes to the difficulty of using simplistic approaches such as gender comparisons, gonadectomy, and hormone replacement to assess the role of gonadal steroids in regulation of VP secretion for maintenance of fluid and electrolyte homeostasis. This review catalogs these inconsistencies and provides a frame work for understanding them by describing: (1) the effect of gonadal steroids on target organ responsiveness to VP; (2) the expression of multiple types of estrogen receptors in the VP neurons and in brain regions monitoring feedback signals from the periphery; and (3) the impact of dehydration and hyponatremia on expression of these receptors.
Collapse
|
31
|
Somponpun SJ. Neuroendocrine regulation of fluid and electrolyte balance by ovarian steroids: contributions from central oestrogen receptors. J Neuroendocrinol 2007; 19:809-18. [PMID: 17850463 DOI: 10.1111/j.1365-2826.2007.01587.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Like other hormonally mediated mechanisms, maintenance of body fluid osmolality requires integrated responses from multiple signals at various tissue locales, a large number of which are open to modulation by circulating endocrine factors including the ovarian steroid, oestrogens (E(2)). However, the precise mechanism and the site of action of E(2) in regulating fluid osmolality are not properly understood. More importantly, the biological significance of this action is not clear and the physiological circumstances in which this modulation is engaged remain incomplete. The demonstration of oestrogen receptors (ER) in neural tissues that bear no direct relation to reproduction led us to examine and characterise the expression of ER in brain nuclei that are critical for the maintenance of fluid osmolality. In the rat, ERbeta is prominently expressed in the vasopressin magnocellular neuroendocrine cells of the hypothalamus, whereas ERalpha is localised extensively in the sensory circumventricular organ neurones in the basal forebrain. These nuclei are the primary brain sites that are engaged in defense of fluid perturbation, thus providing a neuroendocrine basis for oestrogenic influence on body fluid regulation. Plasticity in receptor expression that accompanies fluid disturbances at these central loci suggests the functional importance of the receptors and implicates E(2) as one of the fluid regulating hormones in water homeostasis.
Collapse
Affiliation(s)
- S J Somponpun
- Department of Clinical Investigation, Tripler Army Medical Center, Tripler AMC, HI 96859, USA.
| |
Collapse
|
32
|
Xue B, Pamidimukkala J, Lubahn DB, Hay M. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice. Am J Physiol Heart Circ Physiol 2006; 292:H1770-6. [PMID: 17142339 DOI: 10.1152/ajpheart.01011.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been shown that the female sex hormones have a protective role in the development of angiotensin II (ANG II)-induced hypertension. The present study tested the hypotheses that 1) the estrogen receptor-alpha (ERalpha) is involved in the protective effects of estrogen against ANG II-induced hypertension and 2) central ERs are involved. Blood pressure (BP) was measured in female mice with the use of telemetry implants. ANG II (800 ng.kg(-1).min(-1)) was administered subcutaneously via an osmotic pump. Baseline BP in the intact, ovariectomized (OVX) wild-type (WT) and ERalpha knockout (ERalphaKO) mice was similar; however, the increase in BP induced by ANG II was greater in OVX WT (23.0 +/- 1.0 mmHg) and ERalphaKO mice (23.8 +/- 2.5 mmHg) than in intact WT mice (10.1 +/- 4.5 mmHg). In OVX WT mice, central infusion of 17beta-estradiol (E(2); 30 microg.kg(-1).day(-1)) attenuated the pressor effect of ANG II (7.0 +/- 0.4 mmHg), and this protective effect of E(2) was prevented by coadministration of ICI-182,780 (ICI; 1.5 microg.kg(-1).day(-1), 18.8 +/- 1.5 mmHg), a nonselective ER antagonist. Furthermore, central, but not peripheral, infusions of ICI augmented the pressor effects of ANG II in intact WT mice (17.8 +/- 4.2 mmHg). In contrast, the pressor effect of ANG II was unchanged in either central E(2)-treated OVX ERalphaKO mice (19.0 +/- 1.1 mmHg) or central ICI-treated intact ERalphaKO mice (19.6 +/- 1.6 mmHg). Lastly, ganglionic blockade on day 7 after ANG II infusions resulted in a greater reduction in BP in OVX WT, central ER antagonist-treated intact WT, central E(2) + ICI-treated OVX WT, ERalphaKO, and central E(2)- or ICI-treated ERalphaKO mice compared with that in intact WT mice given just ANG II. Together, these data indicate that ERalpha, especially central expression of the ER, mediates the protective effects of estrogen against ANG II-induced hypertension.
Collapse
Affiliation(s)
- Baojian Xue
- Department of Physiology, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
33
|
Krause EG, Curtis KS, Stincic TL, Markle JP, Contreras RJ. Oestrogen and weight loss decrease isoproterenol-induced Fos immunoreactivity and angiotensin type 1 mRNA in the subfornical organ of female rats. J Physiol 2006; 573:251-62. [PMID: 16543266 PMCID: PMC1779697 DOI: 10.1113/jphysiol.2006.106740] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Studies from our laboratory and others show that oestrogen reduces angiotensin II (Ang II)-induced water intake by ovariectomized rats. Elimination of endogenous oestrogen by ovariectomy causes weight gain that can be reversed or prevented by oestrogen replacement. Changes in body weight modify cardiovascular responses to Ang II but whether such changes have similar effects on central and behavioural responses to Ang II is unknown. The goal of this study was to evaluate the contributions of oestrogen and weight loss to isoproterenol (isoprenaline; Iso)-induced Fos immunoreactivity (IR) and to angiotensin type 1 (AT1) receptor mRNA in forebrain regions implicated in the control of fluid balance. Isoproterenol significantly increased Fos IR in the hypothalamic paraventricular and supraoptic nuclei, the subfornical organ (SFO), and the organum vasculosum of the lamina terminalis, but had no effect on AT1 mRNA expression. However, both Iso-induced Fos IR and the AT1 mRNA were attenuated in the SFO of the oestrogen and weight loss groups compared with that of the control group. Consequently, we examined the effect of weight loss on Iso-induced water intake and plasma renin activity (PRA) and found that weight loss decreased water intake after Iso, but had no effect on PRA. Thus, we propose that weight loss decreases Ang II-elicited water intake in the female rat by down-regulating the expression of the AT1 receptor.
Collapse
Affiliation(s)
- Eric G Krause
- Department of Psychology, Program in Neuroscience, Florida State University, Tallahassee, FL 32303-1270, USA
| | | | | | | | | |
Collapse
|
34
|
Somponpun SJ, Johnson AK, Beltz T, Sladek CD. Estrogen receptor-α expression in osmosensitive elements of the lamina terminalis: regulation by hypertonicity. Am J Physiol Regul Integr Comp Physiol 2004; 287:R661-9. [PMID: 15142833 DOI: 10.1152/ajpregu.00136.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The subfornical organ (SFO), median preoptic nucleus (MnPO), and organum vasculosum lamina terminalis (OVLT), which are associated with the lamina terminalis, are important in the control of body fluid balance. Neurons in these regions express estrogen receptor (ER)-α, but whether the ER-α neurons are activated by hypertonicity and whether hypertonicity regulates ER-α expression are not known. Using fluorescent, double-label immunocytochemistry, we examined the expression of ER-α-immunoreactivity (ir) and Fos-ir in control and water-deprived male rats. In control animals, numerous ER-α-positive neurons were expressed in the periphery of the SFO, in both the dorsal and ventral MnPO, and in the dorsal cap of the OVLT. Fos-positive neurons were sparse in euhydrated rats but were numerous in the SFO, MnPO, and the dorsal cap of the OVLT after 48-h water deprivation. Most ER-α-ir neurons in these areas were positive for Fos, indicating a significant degree of colocalization. To examine the effect of dehydration on ER-α expression, animals with and without lesions surrounding the anterior and ventral portion of the 3rd ventricle (AV3V) were water deprived for 48 h. Water deprivation resulted in a moderate increase in ER-α-ir in the SFO of sham-lesioned rats ( P = 0.03) and a dramatic elevation in AV3V-lesioned animals ( P < 0.05). This was probably induced by the significant increase in plasma osmolality in both dehydrated groups ( P < 0.001) rather than a decrease in blood volume, because hematocrit was significantly increased only in the dehydrated sham-lesioned animals. Thus these studies implicate the osmosensitive regions of the lamina terminalis as possible targets for sex steroid effects on body fluid homeostasis.
Collapse
Affiliation(s)
- Suwit J Somponpun
- Department of Physiology and Biophysics, University of Colorado Health Science Center, 4200 E. Ninth Ave. Box C240, Denver, CO 80262, USA
| | | | | | | |
Collapse
|
35
|
Ando M, Mukuda T, Kozaka T. Water metabolism in the eel acclimated to sea water: from mouth to intestine. Comp Biochem Physiol B Biochem Mol Biol 2003; 136:621-33. [PMID: 14662289 DOI: 10.1016/s1096-4959(03)00179-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Eels seem to be a suitable model system for analysing regulatory mechanisms of drinking behavior in vertebrates, since most dipsogens and antidipsogens in mammals influence the drinking rate in the seawater eels similarly. The drinking behavior in fishes consists of swallowing alone, since they live in water and water is constantly held in the mouth for respiration. Therefore, contraction of the upper esophageal sphincter (UES) muscle limits the drinking rate in fishes. The UES of the eel was innervated by the glossopharyngeal-vagal motor complex (GVC) in the medulla oblongata (MO). The GVC neurons were immunoreactive to an antibody raised against choline acetyltransferase (ChAT), an acetylcholine (ACh) synthesizing enzyme, indicating that the eel UES muscle is controlled cholinergically by the GVC. The neuronal activity of the GVC was inhibited by adrenaline or dopamine, suggesting catecholaminergic innervation to the GVC. The AP and the commissural nucleus of Cajal (NCC) in the MO projected to the GVC and were immunoreactive to an antibody raised against tyrosine hydroxylase (TH), rate limiting enzyme to produce catecholamines from tyrosine. Therefore, it is likely that activation in the AP or the NCC may inhibit the GVC and thus relaxes the UES muscle, which allows for water to enter into the esophagus. During passing through the esophagus, the imbibed sea water (SW) was desalted to approximately 1/2 SW, which was further diluted in the stomach and arrived at the intestine as approximately 1/3 SW, almost isotonic to the plasma. Finally, from the diluted SW, the eel intestine absorbed water following the Na(+)-K(+)-2Cl(-) cotransport (NKCC2) system. The NaCl and water absorption across the intestine was regulated by various factors, especially by peptides such as atrial natriuretic peptide (ANP) and somatostatin (SS-25 II). During desalination in the esophagus, however, excess salt enters into the blood circulation, which is liable to raise the plasma osmolarity. However, the eel heart was constricted powerfully by the hyperosmolarity, suggesting that the hyperosmolarity enhances the stroke volume to the gill, where excess salt was extruded powerfully via Na(+)-K(+)-2Cl(-) cotransport (NKCC1) system.
Collapse
Affiliation(s)
- Masaaki Ando
- Laboratory of Integrative Physiology, Faculty of Integrated Arts and Sciences, Hiroshima University, Kagamiyama 1-7-1, Higashi-Hiroshima 739-8521, Japan.
| | | | | |
Collapse
|
36
|
Pamidimukkala J, Hay M. 17 beta-Estradiol inhibits angiotensin II activation of area postrema neurons. Am J Physiol Heart Circ Physiol 2003; 285:H1515-20. [PMID: 12829428 DOI: 10.1152/ajpheart.00174.2003] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It is well established that the area postrema, as a circumventricular organ, is susceptible to modulation by circulating hormones and peptides. Furthermore, activation of the area postrema has been shown to modulate central neurons involved in the regulation of cardiovascular function and blood pressure. In particular, the vasoactive peptide angiotensin II (ANG II) has been shown to inhibit baroreflex regulation of heart rate and increase sympathetic outflow and blood pressure via activation of area postrema neurons. Estrogen is thought to protect against hypertension in both humans and animal models and has been shown in a number of systems to alter the effects of ANG II. The purpose of the present study was to determine the effects of estrogen on ANG II activation of area postrema neurons. In this study, the effects of ANG II and KCl on fura 2-measured cytosolic Ca2+ concentration ([Ca2+]i) responses in cultured area postrema neurons in the presence and absence of 12-h exposure to 100 nM 17 beta-estradiol (E2) were evaluated. In neurons incubated in control vehicle media, 50 nM ANG II increased [Ca2+]i by 92 +/- 12%. In neurons preincubated with 100 nM E2, ANG II increased [Ca2+]i by only 68 +/- 11%, for a total inhibition of the ANG II-evoked response of 24%. Coapplication of the estrogen receptor antagonist ICI-182,780 did not inhibit the effects of E2. In the same cells in which the effects of E2 on ANG II-evoked responses were tested, the effects of incubation in E on the depolarization-induced increased [Ca2+2]i due to 60 mM KCl were also tested. Incubation of the cells with 100 nM E increased the KCl-evoked [Ca2+2]i response, and this response was blocked by ICI-182,780. These results suggest that in the area postrema, estrogen may utilize multiple pathways to modulate neural activity and responses to ANG II.
Collapse
Affiliation(s)
- Jaya Pamidimukkala
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, 134 Research Park, Columbia, MO 65211, USA.
| | | |
Collapse
|
37
|
Krause EG, Curtis KS, Davis LM, Stowe JR, Contreras RJ. Estrogen influences stimulated water intake by ovariectomized female rats. Physiol Behav 2003; 79:267-74. [PMID: 12834798 DOI: 10.1016/s0031-9384(03)00095-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To further elucidate the influence of estrogen on water consumption, we examined water intake by adult female rats stimulated by water deprivation, injection of hypertonic saline or injection of isoproterenol (ISOP), a beta-adrenergic agonist that activates the renin-angiotensin system (RAS). Rats were ovariectomized (OVX) then injected with estradiol benzoate (EB; 10 microg/0.1 ml oil) or the oil vehicle (OIL; 0.1 ml) for 2 consecutive days. Twenty-four hours after the second injection, rats were deprived of food and water. On the following day, rats were given water and intake was measured after 2 h. EB significantly decreased water intake compared with that by OIL-treated rats following water deprivation. Two additional groups of adult female rats were OVX and treated with EB or OIL. Forty-eight hours after EB or OIL treatment, rats were injected with hypertonic saline (1 ml of 2 M NaCl) or ISOP (30 microg/kg in 0.15 M saline) and water intake was measured after 2 h. EB significantly attenuated water intake following ISOP but not after hypertonic saline. Finally, we examined plasma sodium concentration (pNa) after hypertonic saline and plasma renin activity (PRA) after ISOP in EB- and OIL-treated rats and found no differences in pNa or PRA. These results suggest that the stimuli for water intake after hypertonic saline and ISOP were comparable in EB- and OIL-treated rats. Taken together, these results raise the possibility that EB attenuation of stimulated water intake is specific to water intake elicited by activation of the RAS.
Collapse
Affiliation(s)
- Eric G Krause
- Department of Psychology, Florida State University, Tallahassee, FL 32306-1270, USA
| | | | | | | | | |
Collapse
|
38
|
Pamidimukkala J, Taylor JA, Welshons WV, Lubahn DB, Hay M. Estrogen modulation of baroreflex function in conscious mice. Am J Physiol Regul Integr Comp Physiol 2003; 284:R983-9. [PMID: 12521927 DOI: 10.1152/ajpregu.00761.2001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
It has been suggested that estrogen modulates baroreflex regulation of autonomic function. The present study evaluated the effects of estrogen on baroreflex regulation of heart rate in response to changes in blood pressure with phenylephrine (PE), ANG II, and sodium nitroprusside (SNP) in a conscious mouse model. Males and ovariectomized females with (OvxE+) and without (OvxE-) estradiol replacement chronically implanted with arterial and venous catheters were used in these studies. The slope of the baroreflex bradycardic responses to PE was significantly facilitated in OvxE+ females (-7.65 +/- 1.37) compared with OvxE- females (-4.5 +/- 0.4). Likewise, the slope of the baroreflex bradycardic responses to ANG II was significantly facilitated in OvxE+ females (-7.97 +/- 1.06) compared with OvxE- females (-4.8 +/- 1.6). Reflex tachycardic responses to SNP were comparable in all the groups. Finally, in male mice, the slope of ANG II-induced baroreflex bradycardia (-5.17 +/- 0.95) was significantly less than that induced by PE (-8.50 +/- 0.92), but this ANG II-mediated attenuation of reflex bradycardia was not observed in the female mice. These data support the hypothesis that estrogen facilitates baroreflex function in female mice and suggest that ANG II-mediated acute blunting of baroreflex regulation of heart rate may be sex dependent.
Collapse
Affiliation(s)
- Jaya Pamidimukkala
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri 65211, USA.
| | | | | | | | | |
Collapse
|
39
|
Tanaka J, Miyakubo H, Fujisawa S, Nomura M. Reduced dipsogenic response induced by angiotensin II activation of subfornical organ projections to the median preoptic nucleus in estrogen-treated rats. Exp Neurol 2003; 179:83-9. [PMID: 12504870 DOI: 10.1006/exnr.2002.8054] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study was carried out to investigate whether estrogen modulates the drinking response induced by activation of angiotensinergic neural pathways from the subfornical organ (SFO) to the median preoptic nucleus (MnPO). Microinjection of angiotensin II (ANG II, 10(-10) M, 0.2 microl) into the SFO elicited drinking in ovariectomized (OVX) female rats that were treated with either propylene glycol (PG) vehicle or estrogen benzoate (EB). The amount of water intake induced by the ANG II injection was significantly greater in the PG-treated than in the EB-treated animals. In both groups of female rats, previous injections of saralasin (Sar, 10(-10) M, 0.2 microl), a specific ANG II antagonist, into the MnPO resulted in the significant attenuation of the drinking response to ANG II, showing that the ANG II-induced drinking response may be mediated in part by the angiotensinergic SFO projections to the MnPO. Injections of ANG II (10(-10) M, 0.2 microl) into the MnPO caused drinking in both groups, while no significant difference was found between the groups in the amount of water intake. These results suggest that increases in the circulating level of estrogen may attenuate the drinking response induced by ANG II activation of the SFO projections to the MnPO.
Collapse
Affiliation(s)
- Junichi Tanaka
- Department of Curriculum, Teaching and Memory, Neuroscience Program, Naruto University of Education, Naruto, Tokushima 772-8502, Japan
| | | | | | | |
Collapse
|
40
|
Tanaka J, Kariya K, Miyakubo H, Sakamaki K, Nomura M. Attenuated drinking response induced by angiotensinergic activation of subfornical organ projections to the paraventricular nucleus in estrogen-treated rats. Neurosci Lett 2002; 324:242-6. [PMID: 12009532 DOI: 10.1016/s0304-3940(02)00203-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study was carried out to examine whether estrogen modulates the drinking response caused by activation of neural pathways from the subfornical organ (SFO) to the hypothalamic paraventricular nucleus (PVN) in the female rat. Microinjection of angiotensin II (ANG II) into the SFO elicited drinking in ovariectomized female rats that were treated with either propylene glycol (PG) vehicle or estradiol benzoate (EB). The amount of water intake induced by the ANG II injection was significantly greater in the PG-treated than in the EB-treated animals. In both groups, previous injections of either saralasin, an ANG II antagonist, or phentolamine, an alpha-adrenoceptor antagonist, bilaterally into the PVN resulted in the significant attenuation of the drinking response to ANG II, whereas similar injections of saline vehicle into the PVN were without effect. These results suggest that the circulating estrogen may act to reduce the drinking response that is mediated through angiotensinergic and alpha-adrenergic mechanisms in the PVN in response to angiotensinergic activation of SFO efferent projections.
Collapse
Affiliation(s)
- Junichi Tanaka
- Department of Curriculum, Teaching and Memory, Neuroscience Program, Naruto University of Education, Naruto, Tokushima 772-8502, Japan.
| | | | | | | | | |
Collapse
|
41
|
Hornsby DJ, Wilson BC, Summerlee AJ. Relaxin and drinking in pregnant rats. PROGRESS IN BRAIN RESEARCH 2001; 133:229-40. [PMID: 11589133 DOI: 10.1016/s0079-6123(01)33017-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Work reported in this chapter describes the potential role of relaxin in resetting cardiovascular thresholds in pregnant rats. Relaxin, a polypeptide produced primarily by the ovary in pregnant animals in many species, is also produced in the brain. Exogenous administration of relaxin into the brain causes a profound drinking response which is negated by pretreatment with a specific monoclonal antibody to rat relaxin when the antibody is injected into the brain. Neutralizing the action of endogenous brain relaxin in pregnant rats also blocks the normal increase in drinking that is observed in rats at night during the second half of pregnancy. Relaxin acts through the forebrain angiotensin system at the level of the subfornical organ (an important interface between the blood, the brain and the cerebrospinal fluid) as blockade of the angiotensin II receptor action negates several central actions of relaxin. Expression of angiotensin II AT1 receptors in the subfornical organ increases in parallel with the increase in circulating relaxin seen in the second half of pregnancy. Neutralizing the effects of endogenous brain relaxin, using central injections of the monoclonal antibody, blocks this increase in the expression of angiotensin II AT1 receptors in subfornical organ. These data imply that relaxin in the brain may act to affect central cardiovascular thresholds in rats and this may be important for the normal physiology of pregnancy.
Collapse
Affiliation(s)
- D J Hornsby
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | |
Collapse
|
42
|
Tanaka J, Miyakubo H, Nomura M. Estrogen decreases the responsiveness of subfornical organ neurons to angiotensinergic neural inputs from the lateral hypothalamic area in the female rat. Exp Neurol 2001; 171:301-7. [PMID: 11573982 DOI: 10.1006/exnr.2001.7743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Twenty-eight subfornical organ (SFO) neurons in ovariectomized (OVX) female rats that were treated with propylene glycol (PG) vehicle and 26 SFO neurons in OVX female rats that were treated with estrogen benzoate (EB) were antidromically activated by electrical stimulation of the hypothalamic paraventricular nucleus (PVN) under urethane anesthesia. No significant differences were observed between the PG-treated and EB-treated OVX animals in the latency, conduction velocity, or threshold of antidromic activation. The mean spontaneous discharge rate was significantly lower in the EB-treated than in the PG-treated OVX animals. In both groups, the activity of the majority (86% in the PG-treated animals and 88% in the EB-treated animals) of identified SFO neurons were activated by microiontophoretic application of angiotensin II (ANG II). Electrical stimulation of the lateral hypothalamic area (LHA) increased the excitability of these ANG II-sensitive SFO neurons (58% in the PG-treated animals and 52% in the EB-treated animals). The excitatory response to either ANG II or LHA stimulation was blocked by microiontophoretic application of the ANG II antagonist saralasin (Sar), suggesting that the excitatory response to LHA stimulation may be mediated by angiotensinergic LHA projections to the SFO. The magnitude of excitatory response to either ANG II or the LHA stimulation was much greater in the PG-treated than in the EB-treated animals. These results suggest that estrogen decreases the responsiveness of SFO neurons projecting to the PVN to angiotensinergic inputs from the LHA.
Collapse
Affiliation(s)
- J Tanaka
- Department of Human Development, Naruto University of Education, Naruto, Tokushima, 772-8502, Japan.
| | | | | |
Collapse
|
43
|
Tanaka J, Miyakubo H, Okumura T, Sakamaki K, Hayashi Y. Estrogen decreases the responsiveness of subfornical organ neurons projecting to the hypothalamic paraventricular nucleus to angiotensin II in female rats. Neurosci Lett 2001; 307:155-8. [PMID: 11438387 DOI: 10.1016/s0304-3940(01)01940-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Extracellular single-unit activity was recorded from subfornical organ (SFO) neurons antidromically identified as projecting to the hypothalamic paraventricular nucleus (PVN) in urethane-anesthetized ovariectomized female rats that were treated with either propylene glycol (PG) vehicle or estradiol benzoate (EB). No significant differences were observed between the PG- and EB-treated rats in the latency, conduction velocity, or threshold of antidromic activation. The mean spontaneous firing rate was significantly lower and the refractory period was significantly longer in the EB-treated rats. In the identified units that were activated by angiotensin II (ANG II) applied iontophoretically, the amount of excitatory response to intracarotid administration of ANG II was much greater in the PG-treated than in the EB-treated rats. These results suggest that estrogen may decrease the responsiveness of SFO neurons projecting to the PVN to circulating ANG II.
Collapse
Affiliation(s)
- J Tanaka
- Department of Human Development, Naruto University of Education, Takashima, Naruto-cho, Naruto, 772-8502, Tokushima, Japan.
| | | | | | | | | |
Collapse
|
44
|
Fujisawa S, Tanaka J, Nomura M. Estrogen attenuates the drinking response induced by activation of angiotensinergic pathways from the lateral hypothalamic area to the subfornical organ in female rats. Behav Brain Res 2001; 122:33-41. [PMID: 11287074 DOI: 10.1016/s0166-4328(01)00176-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The present study was carried out to investigate whether estrogen modulates the drinking response induced by activation of angiotensinergic neural pathways from the lateral hypothalamic area (LHA) to the subfornical organ (SFO) in the female rats. Microinjection of ANG II (10(-10) M, 0.2 microl) into the LHA caused drinking in 17 out of 26 ovariectomized (OVX) female rats that were treated with propylene glycol (PG) vehicle and in 18 out of 28 OVX female rats that were treated with estrogen benzoate (EB). In both groups, previous injections of the ANG II antagonist saralasin (Sar, 10(-10) M, 0.2 microl) into the SFO significantly attenuated the water intake caused by the ANG II injection, suggesting that the ANG II-induced drinking response may be mediated by the angiotensinergic LHA projections to the SFO. Injections of ANG II (10(-10) M, 0.2 microl) into the SFO elicited drinking in all the animals that demonstrated the drinking response to ANG II injected into the LHA. The amount of water intake caused by either the injection of ANG II into the LHA or the SFO was significantly greater in the PG-treated than in the EB-treated animals. These results suggest that the circulating estrogen may act to attenuate the dipsogenic response induced by activation of the angiotensinergic pathways from the LHA to the SFO.
Collapse
Affiliation(s)
- S Fujisawa
- Department of Physiology, Saitama Medical School, Iruma-gun, 350-0495, Saitama, Japan
| | | | | |
Collapse
|
45
|
Abstract
The action of angiotensin II on subfornical organ (SFO) neurones was studied using whole-cell current and voltage-clamp recordings in rat slice preparations. In the current-clamp mode, membrane depolarization in response to angiotensin II was accompanied by an increased frequency of action potentials and an increased membrane conductance. In the voltage-clamp mode, angiotensin II elicited inward currents in a dose-dependent manner. The net angiotensin II-induced inward currents were voltage-independent, with a mean reversal potential of -29.8 +/- 6.2 mV. Amplitudes of the angiotensin II-induced inward currents were decreased during perfusion with a low sodium medium. The angiotensin II-induced inward currents were blocked by the AT1 antagonist losartan, and were partially blocked by the AT2 antagonist PD-123319. Neurones which were sensitive to angiotensin II were found in the peripheral region of the SFO, whereas neurones in the central region were less sensitive to angiotensin II. These results suggest that angiotensin II induces inward currents, with opening of nonselective cation channels through mainly AT1 receptors in a subpopulation of SFO neurones of rats.
Collapse
Affiliation(s)
- K Ono
- Department of Physiology, Kyushu Dental College, Manazuru, Kokurakitaku, Kitakyushu 803-8580, Japan
| | | | | |
Collapse
|