1
|
de Dios N, Riedel R, Schanton M, Balestrini P, Pérez L, Pérez-Pérez A, Etcheverry T, Casale R, Farina M, Sánchez-Margalet V, Maymó J, Varone C. Placental apoptosis increased by hypoxia inducible factor-1 stabilization is counteracted by leptin†. Biol Reprod 2024; 111:708-722. [PMID: 38924703 DOI: 10.1093/biolre/ioae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/16/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
During pregnancy, apoptosis is a physiological event critical in the remodeling and aging of the placenta. Increasing evidence has pointed toward the relevance of hypoxia as modulator of trophoblast cell death. Previous reports have shown that leptin, a placental cytokine, promotes cell survival in both cell culture and placental explant models. The aim of this work is to establish the role of leptin in apoptosis under hypoxic condition in trophoblast cells. In this study, we evaluated the effect of cobalt chloride, a hypoxia mimicking agent that stabilizes the expression of hypoxia-inducible factor-1 alpha, on Swan-71 and human placental explants. Hypoxia chamber was also used to generate 2% oxygen. Apoptosis was determined by the presence of apoptotic nucleus, fragmentation of DNA and Caspase-3 and PARP-1 cleavage. The pro-apoptotic proteins BAX, BID, BAD, and BAK and the anti-apoptotic effectors BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1 were also analyzed. We found that hypoxia-inducible factor-1 alpha stabilization increased the appearance of apoptotic nucleus, fragmentation of DNA, and Caspase-3 and PARP-1 cleavage. Hypoxia mimicking conditions enhanced the expression of pro-apoptotic effectors BAX, BID, BAD, and BAK. Hypoxia-inducible factor-1 alpha stabilization also downregulated the level of BCL-2, B-cell lymphoma-extra-large, and myeloid cell leukemia-1. All these apoptotic parameters changes were reversed with leptin treatment. Moreover, we showed that leptin action on apoptosis modulation involves PI3K and MAPK signaling pathways. Obtained data demonstrate that hypoxia-inducible factor-1 alpha stabilization induces apoptosis in human placenta and leptin counteracts this effect, reinforcing its role as a survival cytokine.
Collapse
Affiliation(s)
- Nataly de Dios
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Rodrigo Riedel
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Malena Schanton
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Paula Balestrini
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Luciano Pérez
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular. Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Tomás Etcheverry
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO, CONICET), Universidad de Buenos Aires. Facultad de Medicina, Buenos Aires, Argentina
| | - Roberto Casale
- Departamento Materno-Infantil, Hospital Nacional Profesor Alejandro Posadas, Buenos Aires, Argentina
| | - Mariana Farina
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO, CONICET), Universidad de Buenos Aires. Facultad de Medicina, Buenos Aires, Argentina
| | - Víctor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular. Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, España
| | - Julieta Maymó
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| | - Cecilia Varone
- Departamento de Química Biológica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
- Universidad de Buenos Aires. CONICET. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Buenos Aires, Argentina
| |
Collapse
|
2
|
Kuliczkowska-Płaksej J, Jawiarczyk-Przybyłowska A, Zembska A, Kolačkov K, Syrycka J, Kałużny M, Polowczyk-Kawałko B, Kubicka E, Bolanowski M. Ghrelin and Leptin Concentrations in Patients after SARS-CoV2 Infection. J Clin Med 2023; 12:jcm12103551. [PMID: 37240656 DOI: 10.3390/jcm12103551] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/01/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV2 infection can lead to severe cytokine storm especially in obese patients. Ghrelin acts not only as an appetite regulator but can also play a key role in the immune reaction. Leptin, secreted mainly by the white adipose tissue, can act as a pro-inflammatory cytokine. The crucial question is whether or not the cytokine storm in COVID-19 patients with obesity is linked to adipokine dysregulation. The aim of this study was to assess ghrelin and leptin concentrations in patients 6 months after SARS-CoV2 infection in comparison to a control group considering the influence of sex. The study group included 53 patients with a history of COVID-19 and 87 healthy subjects in the control group. Leptin and ghrelin concentrations as well as hormonal and biochemical parameters were measured. A significantly higher ghrelin concentration was observed in the COVID-19 group in comparison to the control group, with a statistically significant impact of sex on the relationship between COVID-19 and ghrelin concentration, which was lower in the males. No statistically significant differences in leptin concentration were observed between the groups. A significant negative correlation was observed between ghrelin and testosterone and morning cortisol levels in the COVID-19 group. The current study showed that ghrelin levels were significantly higher in patients 6 months after a mild course of SARS-CoV2 infection. To confirm the hypothetical protective role of ghrelin in the inflammatory process, it would be necessary to compare serum ghrelin levels between patients after mild and severe courses of COVID-19. Due to the small sample size and the lack of patients with a severe course of COVID-19, these observations need further investigation. There were no differences in leptin concentrations between the COVID-19 patients and the control group.
Collapse
Affiliation(s)
- Justyna Kuliczkowska-Płaksej
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Aleksandra Jawiarczyk-Przybyłowska
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Agnieszka Zembska
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Katarzyna Kolačkov
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Joanna Syrycka
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Marcin Kałużny
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Beata Polowczyk-Kawałko
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Eliza Kubicka
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| | - Marek Bolanowski
- Department and Clinic of Endocrinology, Diabetes and Isotope Therapy, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367 Wroclaw, Poland
| |
Collapse
|
3
|
Guglielmi V, Colangeli L, D’Adamo M, Sbraccia P. Susceptibility and Severity of Viral Infections in Obesity: Lessons from Influenza to COVID-19. Does Leptin Play a Role? Int J Mol Sci 2021; 22:ijms22063183. [PMID: 33804765 PMCID: PMC8003928 DOI: 10.3390/ijms22063183] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 12/13/2022] Open
Abstract
The recent pandemic Sars-CoV2 infection and studies on previous influenza epidemic have drawn attention to the association between the obesity and infectious diseases susceptibility and worse outcome. Metabolic complications, nutritional aspects, physical inactivity, and a chronic unbalance in the hormonal and adipocytokine microenvironment are major determinants in the severity of viral infections in obesity. By these pleiotropic mechanisms obesity impairs immune surveillance and the higher leptin concentrations produced by adipose tissue and that characterize obesity substantially contribute to such immune response dysregulation. Indeed, leptin not only controls energy balance and body weight, but also plays a regulatory role in the interplay between energy metabolism and immune system. Since leptin receptor is expressed throughout the immune system, leptin may exert effects on cells of both innate and adaptive immune system. Chronic inflammatory states due to metabolic (i.e., obesity) as well as infectious diseases increase leptin concentrations and consequently lead to leptin resistance further fueling inflammation. Multiple factors, including inflammation and ER stress, contribute to leptin resistance. Thus, if leptin is recognized as one of the adipokines responsible for the low grade inflammation found in obesity, on the other hand, impairments of leptin signaling due to leptin resistance appear to blunt the immunologic effects of leptin and possibly contribute to impaired vaccine-induced immune responses. However, many aspects concerning leptin interactions with inflammation and immune system as well as the therapeutical approaches to overcome leptin resistance and reduced vaccine effectiveness in obesity remain a challenge for future research.
Collapse
|
4
|
Żelechowska P, Brzezińska-Błaszczyk E, Kusowska A, Kozłowska E. The role of adipokines in the modulation of lymphoid lineage cell development and activity: An overview. Obes Rev 2020; 21:e13055. [PMID: 32638520 DOI: 10.1111/obr.13055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/27/2020] [Accepted: 05/12/2020] [Indexed: 12/15/2022]
Abstract
Adipokines are predominantly known to play a vital role in the control of food intake, energy homeostasis and regulation of glucose and lipid metabolism. However, evidence supporting the concept of their extensive involvement in immune system defence mechanisms and inflammatory processes continues to grow. Some of the adipokines, that is, leptin and resistin, have been recognized to exhibit mainly pro-inflammatory properties, whereas others such as visfatin, chemerin, apelin and vaspin have been found to exert regulatory effects. In contrast, adiponectin or omentin are known for their anti-inflammatory activities. Hence, adipokines influence the activity of various cells engaged in innate immune response and inflammatory processes mainly by affecting adhesion molecule expression, chemotaxis, apoptosis and phagocytosis, as well as mediators production and release. However, much less is known about the role of adipokines in processes involving lymphoid lineage cells. This review summarizes the current knowledge regarding the importance of different adipokines in the lymphopoiesis, recirculation, differentiation and polarization of lymphoid lineage cells. It also provides insight into the influence of selected adipokines on the activity of those cells in tissues.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | | - Elżbieta Kozłowska
- Faculty of Health Sciences, Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, Sánchez-Margalet V. Role of Leptin in Inflammation and Vice Versa. Int J Mol Sci 2020; 21:E5887. [PMID: 32824322 PMCID: PMC7460646 DOI: 10.3390/ijms21165887] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/15/2022] Open
Abstract
Inflammation is an essential immune response for the maintenance of tissue homeostasis. In a general sense, acute and chronic inflammation are different types of adaptive response that are called into action when other homeostatic mechanisms are insufficient. Although considerable progress has been made in understanding the cellular and molecular events that are involved in the acute inflammatory response to infection and tissue injury, the causes and mechanisms of systemic chronic inflammation are much less known. The pathogenic capacity of this type of inflammation is puzzling and represents a common link of the multifactorial diseases, such as cardiovascular diseases and type 2 diabetes. In recent years, interest has been raised by the discovery of novel mediators of inflammation, such as microRNAs and adipokines, with different effects on target tissues. In the present review, we discuss the data emerged from research of leptin in obesity as an inflammatory mediator sustaining multifactorial diseases and how this knowledge could be instrumental in the design of leptin-based manipulation strategies to help restoration of abnormal immune responses. On the other direction, chronic inflammation, either from autoimmune or infectious diseases, or impaired microbiota (dysbiosis) may impair the leptin response inducing resistance to the weight control, and therefore it may be a cause of obesity. Thus, we are reviewing the published data regarding the role of leptin in inflammation, and the other way around, the role of inflammation on the development of leptin resistance and obesity.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| | | | | | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology, and Immunology, Virgen Macarena University Hospital, University of Seville, 41009 Seville, Spain; (F.S.-J.); (T.V.-G.)
| |
Collapse
|
6
|
Friston D, Junttila S, Lemes JBP, Laycock H, Torres-Perez JV, Want E, Gyenesei A, Nagy I. Leptin and fractalkine: novel subcutaneous cytokines in burn injury. Dis Model Mech 2020; 13:dmm042713. [PMID: 32127397 PMCID: PMC7197715 DOI: 10.1242/dmm.042713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 02/24/2020] [Indexed: 12/31/2022] Open
Abstract
Burn injury is a pathology underpinned by progressive and aberrant inflammation. It is a major clinical challenge to survival and quality of life. Although the complex local and disseminating pathological processes of a burn injury ultimately stem from local tissue damage, to date relatively few studies have attempted to characterise the local inflammatory mediator profile. Here, cytokine content and associated transcriptional changes were measured in rat skin for three hours immediately following induction of a scald-type (60°C, 2 min) burn injury model. Leptin (P=0.0002) and fractalkine (P=0.0478) concentrations were significantly elevated post-burn above pre-burn and control site values, coinciding with the development of burn site oedema and differential expression of leptin mRNA (P=0.0004). Further, gene sequencing enrichment analysis indicated cytokine-cytokine receptor interaction (P=1.45×10-6). Subsequent behavioural studies demonstrated that, following subcutaneous injection into the dorsum of the paw, both leptin and fractalkine induced mechanical allodynia, heat hyperalgesia and the recruitment of macrophages. This is the first report of leptin elevation specifically at the burn site, and the first report of fractalkine elevation in any tissue post-burn which, together with the functional findings, calls for exploration of the influence of these cytokines on pain, inflammation and burn wound progression. In addition, targeting these signalling molecules represents a therapeutic potential as early formative mediators of these pathological processes.
Collapse
Affiliation(s)
- Dominic Friston
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Sini Junttila
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Julia Borges Paes Lemes
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas, Campinas, Carl Von Linnaeus, Sao Paulo, 13083-864, Brazil
| | - Helen Laycock
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Jose Vicente Torres-Perez
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
| | - Elizabeth Want
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Attila Gyenesei
- Bioinformatics and Scientific Computing, Vienna Biocenter Core Facilities, Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Istvan Nagy
- Nociception Group, Section of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Imperial College London, Chelsea and Westminster Hospital, 369 Fulham Road, London SW10 9NH, UK
- Department of Physiology, University of Debrecen, Debrecen, Nagyerdei krt 98, H-4012, Hungary
| |
Collapse
|
7
|
Żelechowska P, Brzezińska-Błaszczyk E, Wiktorska M, Różalska S, Wawrocki S, Kozłowska E, Agier J. Adipocytokines leptin and adiponectin function as mast cell activity modulators. Immunology 2019; 158:3-18. [PMID: 31220342 DOI: 10.1111/imm.13090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 12/25/2022] Open
Abstract
A growing body of data indicates that adipocytokines, including leptin and adiponectin, are critical components not only of metabolic regulation but also of the immune system, mainly by influencing the activity of cells participating in immunological and inflammatory processes. As mast cells (MCs) are the key players in the course of those mechanisms, this study aimed to evaluate the impact of leptin and adiponectin on some aspects of MC activity. We documented that in vivo differentiated mature tissue MCs from the rat peritoneal cavity express a receptor for leptin (OB-R), as well as receptors for adiponectin (AdipoR1 and AdipoR2). We established that leptin, but not adiponectin, stimulates MCs to release of histamine as well as to generation of cysteinyl leukotrienes (cysLTs) and chemokine CCL2. We also found that both adipocytokines affect mRNA expression of various cytokines/chemokines. Leptin and adiponectin also activate MCs to produce reactive oxygen species. Moreover, we documented that leptin significantly augments the surface expression of receptors for cysLTs, i.e. CYSLTR1, CYSLTR2, and GPR17 on MCs, while adiponectin increases only GPR17 expression, and decreases CYSLTR2. Finally, we showed that both adipocytokines serve as potent chemoattractants for MCs. In intracellular signaling in MCs activated by leptin Janus-activated kinase 2, phospholipase C, phosphatidylinositol 3-kinase (PI3K), extracellular signal-regulated kinase (ERK1/2), and p38 molecules play a part whereas the adiponectin-induced activity of MCs is mediated through PI3K, p38, and ERK1/2 pathways. Our observations that leptin and adiponectin regulate MC activity might indicate that adipocytokines modulate the different processes in which MCs are involved.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Ewa Brzezińska-Błaszczyk
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Magdalena Wiktorska
- Department of Molecular Cell Mechanisms, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Sylwia Różalska
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sebastian Wawrocki
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Cortese L, Terrazzano G, Pelagalli A. Leptin and Immunological Profile in Obesity and Its Associated Diseases in Dogs. Int J Mol Sci 2019; 20:E2392. [PMID: 31091785 PMCID: PMC6566566 DOI: 10.3390/ijms20102392] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Growing scientific evidence has unveiled increased incidences of obesity in domestic animals and its influence on a plethora of associated disorders. Leptin, an adipokine regulating body fat mass, represents a key molecule in obesity, able to modulate immune responses and foster chronic inflammatory response in peripheral tissues. High levels of cytokines and inflammatory markers suggest an association between inflammatory state and obesity in dogs, highlighting the parallelism with humans. Canine obesity is a relevant disease always accompanied with several health conditions such as inflammation, immune-dysregulation, insulin resistance, pancreatitis, orthopaedic disorders, cardiovascular disease, and neoplasia. However, leptin involvement in many disease processes in veterinary medicine is poorly understood. Moreover, hyperleptinemia as well as leptin resistance occur with cardiac dysfunction as a consequence of altered cardiac mitochondrial metabolism in obese dogs. Similarly, leptin dysregulation seems to be involved in the pancreatitis pathophysiology. This review aims to examine literature concerning leptin and immunological status in obese dogs, in particular for the aspects related to obesity-associated diseases.
Collapse
Affiliation(s)
- Laura Cortese
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, 80137 Naples, Italy.
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, 85100 Potenza, Italy.
- Department of Translational Medical Sciences, University of Naples Federico II, 80131 Naples, Italy.
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy.
- Institute of Biostructures and Bioimages (IBB), National Research Council (CNR), 80131 Naples, Italy.
| |
Collapse
|
9
|
Maurya R, Bhattacharya P, Dey R, Nakhasi HL. Leptin Functions in Infectious Diseases. Front Immunol 2018; 9:2741. [PMID: 30534129 PMCID: PMC6275238 DOI: 10.3389/fimmu.2018.02741] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 11/07/2018] [Indexed: 01/26/2023] Open
Abstract
Leptin, a pleiotropic protein has long been recognized to play an important role in the regulation of energy homeostasis, metabolism, neuroendocrine function, and other physiological functions through its effects on the central nervous system (CNS) and peripheral tissues. Leptin is secreted by adipose tissue and encoded by the obese (ob) gene. Leptin acts as a central mediator which regulates immunity as well as nutrition. Importantly, leptin can modulate both innate and adaptive immune responses. Leptin deficiency/resistance is associated with dysregulation of cytokine production, increased susceptibility toward infectious diseases, autoimmune disorders, malnutrition and inflammatory responses. Malnutrition induces a state of immunodeficiency and an inclination to death from communicable diseases. Infectious diseases are the disease of poor who invariably suffer from malnutrition that could result from reduced serum leptin levels. Thus, leptin has been placed at the center of many interrelated functions in various pathogenic conditions, such as bacterial, viruses and parasitic infections. We review herein, the recent advances on the role of leptin in malnutrition in pathogenesis of infectious diseases with a particular emphasis on parasitic diseases such as Leishmaniasis, Trypanosomiasis, Amoebiasis, and Malaria.
Collapse
Affiliation(s)
- Radheshyam Maurya
- Department of Animal Biology, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Parna Bhattacharya
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
10
|
Żelechowska P, Kozłowska E, Pastwińska J, Agier J, Brzezińska-Błaszczyk E. Adipocytokine Involvement in Innate Immune Mechanisms. J Interferon Cytokine Res 2018; 38:527-538. [PMID: 30431386 DOI: 10.1089/jir.2018.0102] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The innate immune response is defined as an immensely complex and sophisticated process aimed at defending the organism against any disturbance in the body homeostasis, including invading pathogens. It requires a close cooperation of a vast amount of different cell types, recognized as inflammatory migrating cells, as well as stationary cells that form tissues. Moreover, innate immune mechanisms require an efficient functioning of various humoral components that exert a significant impact on physiological and pathological processes. Apart from commonly mentioned humoral factors, this group also includes a family of proteins known as adipocytokines that may act as pro- or anti-inflammatory agents or act both ways. Leptin, predominantly characterized as a proinflammatory adipokine, plays a crucial role in endothelium remodeling and regulation, as well as in cell survival and production of numerous cytokines. Adiponectin, similar to leptin, acts on the endothelial cells and the phagocytic properties of immune cells; however, it exerts an anti-inflammatory impact. Resistin has a documented role in the control of angiogenesis and stimulation of proinflammatory mediator generation and release. Furthermore, there are adipokines, ie, visfatin and chemerin, whose participation in the inflammatory processes is ambiguous. This review focuses on the current knowledge on the extensive role of selected adipokines in innate immune response.
Collapse
Affiliation(s)
- Paulina Żelechowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Elżbieta Kozłowska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | - Joanna Pastwińska
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
- Laboratory of Cellular Immunology, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Justyna Agier
- Department of Experimental Immunology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
11
|
Francisco V, Pino J, Campos-Cabaleiro V, Ruiz-Fernández C, Mera A, Gonzalez-Gay MA, Gómez R, Gualillo O. Obesity, Fat Mass and Immune System: Role for Leptin. Front Physiol 2018; 9:640. [PMID: 29910742 PMCID: PMC5992476 DOI: 10.3389/fphys.2018.00640] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/11/2018] [Indexed: 12/13/2022] Open
Abstract
Obesity is an epidemic disease characterized by chronic low-grade inflammation associated with a dysfunctional fat mass. Adipose tissue is now considered an extremely active endocrine organ that secretes cytokine-like hormones, called adipokines, either pro- or anti-inflammatory factors bridging metabolism to the immune system. Leptin is historically one of most relevant adipokines, with important physiological roles in the central control of energy metabolism and in the regulation of metabolism-immune system interplay, being a cornerstone of the emerging field of immunometabolism. Indeed, leptin receptor is expressed throughout the immune system and leptin has been shown to regulate both innate and adaptive immune responses. This review discusses the latest data regarding the role of leptin as a mediator of immune system and metabolism, with particular emphasis on its effects on obesity-associated metabolic disorders and autoimmune and/or inflammatory rheumatic diseases.
Collapse
Affiliation(s)
- Vera Francisco
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Jesús Pino
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Victor Campos-Cabaleiro
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Clara Ruiz-Fernández
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Antonio Mera
- Servizo Galego de Saude, Division of Rheumatology, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Miguel A Gonzalez-Gay
- Epidemiology, Genetics and Atherosclerosis Research Group on Systemic Inflammatory Diseases, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria and IDIVAL, Santander, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Group, Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| | - Oreste Gualillo
- The NEIRID Group (Neuroendocrine Interactions in Rheumatology and Inflammatory Diseases), Servizo Galego de Saude and Instituto de Investigación Sanitaria de Santiago, Santiago University Clinical Hospital, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Alti D, Sambamurthy C, Kalangi SK. Emergence of Leptin in Infection and Immunity: Scope and Challenges in Vaccines Formulation. Front Cell Infect Microbiol 2018; 8:147. [PMID: 29868503 PMCID: PMC5954041 DOI: 10.3389/fcimb.2018.00147] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 04/20/2018] [Indexed: 01/01/2023] Open
Abstract
Deficiency of leptin (ob/ob) and/or desensitization of leptin signaling (db/db) and elevated expression of suppressor of cytokine signaling-3 (SOCS3) reported in obesity are also reported in a variety of pathologies including hypertriglyceridemia, insulin resistance, and malnutrition as the risk factors in host defense system. Viral infections cause the elevated SOCS3 expression, which inhibits leptin signaling. It results in immunosuppression by T-regulatory cells (Tregs). The host immunity becomes incompetent to manage pathogens' attack and invasion, which results in the accelerated infections and diminished vaccine-specific antibody response. Leptin was successfully used as mucosal vaccine adjuvant against Rhodococcus equi. Leptin induced the antibody response to Helicobacter pylori vaccination in mice. An integral leptin signaling in mucosal gut epithelial cells offered resistance against Clostridium difficile and Entameoba histolytica infections. We present in this review, the intervention of leptin in lethal diseases caused by microbial infections and propose the possible scope and challenges of leptin as an adjuvant tool in the development of effective vaccines.
Collapse
Affiliation(s)
- Dayakar Alti
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| | | | - Suresh K Kalangi
- School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
13
|
Pérez‐Pérez A, Toro A, Vilariño‐García T, Maymó J, Guadix P, Dueñas JL, Fernández‐Sánchez M, Varone C, Sánchez‐Margalet V. Leptin action in normal and pathological pregnancies. J Cell Mol Med 2018; 22:716-727. [PMID: 29160594 PMCID: PMC5783877 DOI: 10.1111/jcmm.13369] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Leptin is now considered an important signalling molecule of the reproductive system, as it regulates the production of gonadotrophins, the blastocyst formation and implantation, the normal placentation, as well as the foeto-placental communication. Leptin is a peptide hormone secreted mainly by adipose tissue, and the placenta is the second leptin-producing tissue in humans. Placental leptin is an important cytokine which regulates placental functions in an autocrine or paracrine manner. Leptin seems to play a crucial role during the first stages of pregnancy as it modulates critical processes such as proliferation, protein synthesis, invasion and apoptosis in placental cells. Furthermore, deregulation of leptin levels has been correlated with the pathogenesis of various disorders associated with reproduction and gestation, including polycystic ovary syndrome, recurrent miscarriage, gestational diabetes mellitus, pre-eclampsia and intrauterine growth restriction. Due to the relevant incidence of the mentioned diseases and the importance of leptin, we decided to review the latest information available about leptin action in normal and pathological pregnancies to support the idea of leptin as an important factor and/or predictor of diverse disorders associated with reproduction and pregnancy.
Collapse
Affiliation(s)
- Antonio Pérez‐Pérez
- Department of Medical Biochemistry and Molecular BiologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| | - Ayelén Toro
- Laboratory of Placental Molecular PhysiologyDepartment of Biological ChemistrySchool of SciencesUniversity of Buenos AiresIQUIBICEN‐CONICETBuenos AiresArgentina
| | - Teresa Vilariño‐García
- Department of Medical Biochemistry and Molecular BiologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| | - Julieta Maymó
- Laboratory of Placental Molecular PhysiologyDepartment of Biological ChemistrySchool of SciencesUniversity of Buenos AiresIQUIBICEN‐CONICETBuenos AiresArgentina
| | - Pilar Guadix
- Department of Obstetrics and GynecologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| | - José L. Dueñas
- Department of Obstetrics and GynecologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| | | | - Cecilia Varone
- Laboratory of Placental Molecular PhysiologyDepartment of Biological ChemistrySchool of SciencesUniversity of Buenos AiresIQUIBICEN‐CONICETBuenos AiresArgentina
| | - Víctor Sánchez‐Margalet
- Department of Medical Biochemistry and Molecular BiologyVirgen Macarena University HospitalUniversity of SevilleSevilleSpain
| |
Collapse
|
14
|
Pérez-Pérez A, Vilariño-García T, Fernández-Riejos P, Martín-González J, Segura-Egea JJ, Sánchez-Margalet V. Role of leptin as a link between metabolism and the immune system. Cytokine Growth Factor Rev 2017; 35:71-84. [PMID: 28285098 DOI: 10.1016/j.cytogfr.2017.03.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 12/24/2022]
Abstract
Leptin is an adipocyte-derived hormone not only with an important role in the central control of energy metabolism, but also with many pleiotropic effects in different physiological systems. One of these peripheral functions of leptin is a regulatory role in the interplay between energy metabolism and the immune system, being a cornerstone of the new field of immunometabolism. Leptin receptor is expressed throughout the immune system and the regulatory effects of leptin include cells from both the innate and adaptive immune system. Leptin is one of the adipokines responsible for the inflammatory state found in obesity that predisposes not only to type 2 diabetes, metabolic syndrome and cardiovascular disease, but also to autoimmune and allergic diseases. Leptin is an important mediator of the immunosuppressive state in undernutrition status. Placenta is the second source of leptin and it may play a role in the immunomodulation during pregnancy. Finally, recent work has pointed to the participation of leptin and leptin receptor in the pathophysiology of inflammation in oral biology. Therefore, leptin and leptin receptor should be considered for investigation as a marker of inflammation and immune activation in the frontier of innate-adaptive system, and as possible targets for intervention in the immunometabolic mediated pathophysiology.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain
| | - Teresa Vilariño-García
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain
| | - Patricia Fernández-Riejos
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain
| | - Jenifer Martín-González
- Department of Stomatology (Endodontics Section), School of Dentistry, University of Seville, Seville, Spain
| | - Juan José Segura-Egea
- Department of Stomatology (Endodontics Section), School of Dentistry, University of Seville, Seville, Spain
| | - Víctor Sánchez-Margalet
- Department of Medical Biochemistry and Molecular Biology and Immunology, Medical School and Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Spain.
| |
Collapse
|
15
|
Sam68 Mediates the Activation of Insulin and Leptin Signalling in Breast Cancer Cells. PLoS One 2016; 11:e0158218. [PMID: 27415018 PMCID: PMC4944952 DOI: 10.1371/journal.pone.0158218] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 06/13/2016] [Indexed: 12/23/2022] Open
Abstract
Obesity is a well-known risk factor for breast cancer development in postmenopausal women. High insulin and leptin levels seem to have a role modulating the growth of these tumours. Sam68 is an RNA-binding protein with signalling functions that has been found to be overexpressed in breast cancer. Moreover, Sam68 may be recruited to insulin and leptin signalling pathways, mediating its effects on survival, growth and proliferation in different cellular types. We aimed to study the expression of Sam68 and its phosphorylation level upon insulin and leptin stimulation, and the role of Sam68 in the proliferative effect and signalling pathways that are activated by insulin or leptin in human breast adenocarcinoma cells. In the human breast adenocarcinoma cell lines MCF7, MDA-MB-231 and BT-474, Sam68 protein quantity and gene expression were increased upon leptin or insulin stimulation, as it was checked by qPCR and immunoblot. Moreover, both insulin and leptin stimulation promoted an increase in Sam68 tyrosine phosphorylation and negatively regulated its RNA binding capacity. siRNA was used to downregulate Sam68 expression, which resulted in lower proliferative effects of both insulin and leptin, as well as a lower activation of MAPK and PI3K pathways promoted by both hormones. These effects may be partly explained by the decrease in IRS-1 expression by down-regulation of Sam68. These results suggest the participation of Sam68 in both leptin and insulin receptor signaling in human breast cancer cells, mediating the trophic effects of these hormones in proliferation and cellular growth.
Collapse
|
16
|
Song X, Ding Y, Liu G, Yang X, Zhao R, Zhang Y, Zhao X, Anderson GJ, Nie G. Cancer Cell-derived Exosomes Induce Mitogen-activated Protein Kinase-dependent Monocyte Survival by Transport of Functional Receptor Tyrosine Kinases. J Biol Chem 2016; 291:8453-64. [PMID: 26895960 DOI: 10.1074/jbc.m116.716316] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 12/31/2022] Open
Abstract
Tumor-associated macrophages (TAM) play pivotal roles in cancer initiation and progression. Monocytes, the precursors of TAMs, normally undergo spontaneous apoptosis within 2 days, but can subsist in the inflammatory tumor microenvironment for continuous survival and generation of sufficient TAMs. The mechanisms underlying tumor-driving monocyte survival remain obscure. Here we report that cancer cell-derived exosomes were crucial mediators for monocyte survival in the inflammatory niche. Analysis of the survival-promoting molecules in monocytes revealed that cancer cell-derived exosomes activated Ras and extracellular signal-regulated kinases in the mitogen-activated protein kinase (MAPK) pathway, resulting in the prevention of caspase cleavage. Phosphorylated receptor tyrosine kinases (RTKs), such as phosphorylated epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER-2), were abundantly expressed in cancer cell-derived exosomes. Knock-out of EGFR or/and HER-2, or alternatively, inhibitors against their phosphorylation significantly disturbed the exosome-mediated activation of the MAPK pathway, inhibition of caspase cleavage, and increase in survival rate in monocytes. Moreover, the deprived survival-stimulating activity of exosomes due to null expression of EGFR and HER-2 could be restored by activation of another RTK, insulin receptor. Overall, our study uncovered a mechanism of tumor-associated monocyte survival and demonstrated that cancer cell-derived exosomes can stimulate the MAPK pathway in monocytes through transport of functional RTKs, leading to inactivation of apoptosis-related caspases. This work provides insights into the long sought question on monocyte survival prior to formation of plentiful TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Xiao Song
- From the CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11th Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yanping Ding
- From the CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11th Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Gang Liu
- From the CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11th Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Xiao Yang
- From the CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11th Beiyitiao, Zhongguancun, Beijing 100190, China, the College of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Ruifang Zhao
- From the CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11th Beiyitiao, Zhongguancun, Beijing 100190, China
| | - Yinlong Zhang
- From the CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11th Beiyitiao, Zhongguancun, Beijing 100190, China, the College of Pharmaceutical Science, Jilin University, Changchun 130021, China
| | - Xiao Zhao
- From the CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11th Beiyitiao, Zhongguancun, Beijing 100190, China, the Department of Pancreatic Carcinoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China, and
| | - Gregory J Anderson
- the Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute, Locked Bag 2000, Royal Brisbane Hospital, Brisbane, Queensland 4029, Australia
| | - Guangjun Nie
- From the CAS Key Laboratory of Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, 11th Beiyitiao, Zhongguancun, Beijing 100190, China,
| |
Collapse
|
17
|
Toro AR, Pérez-Pérez A, Corrales Gutiérrez I, Sánchez-Margalet V, Varone CL. Mechanisms involved in p53 downregulation by leptin in trophoblastic cells. Placenta 2015; 36:1266-75. [PMID: 26386653 DOI: 10.1016/j.placenta.2015.08.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/09/2015] [Accepted: 08/30/2015] [Indexed: 11/15/2022]
Abstract
Leptin, a 16-kDa polypeptide hormone, is produced by the adipocyte and can also be synthesized by placenta. We previously demonstrated that leptin promotes proliferation and survival in placenta, in part mediated by the p53 pathway. In this work, we investigated the mechanisms involved in leptin down-regulation of p53 level. The human first trimester cytotrophoblastic Swan-71 cell line and human placental explants at term were used. In order to study the late phase of apoptosis, triggered by serum deprivation, experiments of DNA fragmentation were carried out. Exogenous leptin added to human placental explants, showed a decrease on DNA ladder formation and MAPK pathway is involved in this leptin effect. We also found that under serum deprivation condition, leptin decreases p53 levels and the inhibitory leptin effect is lost when cells were pretreated with 50 μM PD98059 or 10 μM LY29004; or were transfected with dominant negative mutants of intermediates of these pathways, suggesting that MAPK and PI3K signaling pathways are necessaries for leptin action. Additionally, leptin diminished Ser-46 p53 phosphorylation and this effect in placental explants was mediated by the activation of MAPK and PI3K pathways. Finally, in order to assess leptin effect on p53 half-life experiments with cycloheximide were performed and MDM-2 expression was analyzed. Leptin diminished p53 half-life and up-regulated MDM-2 expression. In summary, we provided evidence suggesting that leptin anti-apoptotic effect is mediated by MAPK and PI3K pathways.
Collapse
Affiliation(s)
- Ayelén Rayen Toro
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN, CONICET, Buenos Aires, Argentina
| | - Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Isabel Corrales Gutiérrez
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Víctor Sánchez-Margalet
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - Cecilia Laura Varone
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, IQUIBICEN, CONICET, Buenos Aires, Argentina.
| |
Collapse
|
18
|
Abstract
Inflammation regulates energy metabolism in both physiological and pathological conditions. Pro-inflammatory cytokines involves in energy regulation in several conditions, such as obesity, aging (calorie restriction), sports (exercise), and cancer (cachexia). Here, we introduce a view of integrative physiology to understand pro-inflammatory cytokines in the control of energy expenditure. In obesity, chronic inflammation is derived from energy surplus that induces adipose tissue expansion and adipose tissue hypoxia. In addition to the detrimental effect on insulin sensitivity, pro-inflammatory cytokines also stimulate energy expenditure and facilitate adipose tissue remodeling. In caloric restriction (CR), inflammatory status is decreased by low energy intake that results in less energy supply to immune cells to favor energy saving under caloric restriction. During physical exercise, inflammatory status is elevated due to muscle production of pro-inflammatory cytokines, which promote fatty acid mobilization from adipose tissue to meet the muscle energy demand. In cancer cachexia, chronic inflammation is elevated by the immune response in the fight against cancer. The energy expenditure from chronic inflammation contributes to weight loss. Immune tolerant cancer cells gains more nutrients during the inflammation. In these conditions, inflammation coordinates energy distribution and energy demand between tissues. If the body lacks response to the pro-inflammatory cytokines (Inflammation Resistance), the energy metabolism will be impaired leading to an increased risk for obesity. In contrast, super-induction of the inflammation activity leads to weight loss and malnutrition in cancer cachexia. In summary, inflammation is a critical component in the maintenance of energy balance in the body. Literature is reviewed in above fields to support this view.
Collapse
Affiliation(s)
- Hui Wang
- Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine in Henan Province, Xinxiang Medical University, Xinxiang 453003, P. R. China
| | - Jianping Ye
- Pennington Biomedical Research Center, Louisiana State University System
- Correspondence:
| |
Collapse
|
19
|
Davis C, Mudd J, Hawkins M. Neuroprotective effects of leptin in the context of obesity and metabolic disorders. Neurobiol Dis 2014; 72 Pt A:61-71. [DOI: 10.1016/j.nbd.2014.04.012] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 04/09/2014] [Accepted: 04/21/2014] [Indexed: 12/16/2022] Open
|
20
|
Abstract
The aim of this paper is to explore the effect of intestinal ischemia/reperfusion (I/R) injury on leptin and orexin-A levels in peripheral blood and central secretory tissues, and to examine the roles of leptin and orexin-A in acute inflammatory responses. An intestinal I/R injury model of rats was made; the rats were grouped according to the time of after 60 min ischemia. Radioimmunoassay was employed to detect the levels of leptin in serum and adipose tissue and orexin-A levels in plasma and hypothalamus. Reverse transcriptase-polymerase chain reaction was used to detect mRNA expressions of adipose leptin and hypothalamus orexin-A. Compared with the levels before the injury, serum leptin in 60 min ischemia/30 min reperfusion (I60'R30') group decreased and that of I60'R360' group increased. Compared with sham-operation group (sham group) after injury, serum leptin level of I60'R360' group increased, adipose leptin levels of I60'R30' and I60'R90' decreased, and adipose leptin in I60'R360' group increased. After the injury, adipose leptin mRNA expressions of I60'R30', I60'R240' and I60'R360' increased, whereas that of I60'R150' group decreased as compared with the sham group. There was no significant difference in the protein levels of orexin-A, either between plasma and hypothalamus or between pre-and post-I/R injury. Compared with sham group, hypothalamus orexin-A mRNA expressions of I60'R30' and I60'R90' decreased gradually after the injury, with that of I60'R150' group reaching the lowest, and those of I60'R240' and I60'R360' recovering gradually, although they were still significantly lower than that of sham group. Leptin and orexin-A respond to intestinal I/R injury in a time-dependent manner, with leptin responding more quickly than orexin-A does, and both of them may contribute to the metabolic disorders in acute inflammation.
Collapse
|
21
|
Abstract
Chronic inflammation is a characteristic of obesity and is associated with accompanying insulin resistance, a hallmark of type 2 diabetes mellitus (T2DM). Although proinflammatory cytokines are known for their detrimental effects on adipose tissue function and insulin sensitivity, their beneficial effects in the regulation of metabolism have not drawn sufficient attention. In obesity, inflammation is initiated by a local hypoxia to augment angiogenesis and improve adipose tissue blood supply. A growing body of evidence suggests that macrophages and proinflammatory cytokines are essential for adipose remodeling and adipocyte differentiation. Phenotypes of multiple lines of transgenic mice consistently suggest that proinflammatory cytokines increase energy expenditure and act to prevent obesity. Removal of proinflammatory cytokines by gene knockout decreases energy expenditure and induces adult-onset obesity. In contrast, elevation of proinflammatory cytokines augments energy expenditure and decreases the risk for obesity. Anti-inflammatory therapies have been tested in more than a dozen clinical trials to improve insulin sensitivity and glucose homeostasis in patients with T2DM, and the results are not encouraging. One possible explanation is that anti-inflammatory therapies also attenuate the beneficial effects of inflammation in stimulating energy expenditure, which may have limited the efficacy of the treatment by promoting energy accumulation. Thus, the positive effects of proinflammatory events should be considered in evaluating the impact of inflammation in obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Jianping Ye
- Antioxidant and Gene Regulation Laboratory, Pennington Biomedical Research Center, Louisiana State Univ. System, Baton Rouge, LA 70808, USA.
| | | |
Collapse
|
22
|
Sun Z, Dragon S, Becker A, Gounni AS. Leptin inhibits neutrophil apoptosis in children via ERK/NF-κB-dependent pathways. PLoS One 2013; 8:e55249. [PMID: 23383125 PMCID: PMC3561393 DOI: 10.1371/journal.pone.0055249] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 12/27/2012] [Indexed: 01/23/2023] Open
Abstract
Introduction and Rationale Previous studies have shown that delayed neutrophil apoptosis is associated with chronic airway diseases. Leptin is an adipocyte-derived hormone that acts as a regulator of energy homeostasis and food intake. Emerging evidence suggests that leptin can regulate immune responses including the release of proinflammatory cytokines and protection of inflammatory cells from apoptosis. Serum leptin is increased during allergic reactions in the airways. However, the expression and function of leptin receptor in neutrophils isolated from children is not known. Methods Flow cytometry was used to detect leptin receptor expression in neutrophils isolated from allergic asthmatic (n = 14), allergic non asthmatic (n = 21), non allergic asthmatic (n = 7) and healthy children (n = 23); confocal laser scanning microscopy combined with immunofluorescence was performed to detect intracellular pool of leptin receptor; Annexin-V/PI staining and caspase 3 activity was used to determine neutrophil survival. Pharmacological inhibitors were utilized to understand the role of MAPK and NF-κB pathway in leptin-induced neutrophil survival. Results and Conclusion A heterogeneous leptin receptor expression was observed on neutrophils isolated from children. Neutrophils isolated from healthy children expressed more leptin receptor than those from allergic asthmatic (P<0.05) but not allergic non-asthmatic (P>0.05) or non-allergic asthmatic children (n = 7, P>0.05). Neutrophils isolated from children express an intracellular pool of leptin receptor that was mobilized to the cell surface upon GM-CSF stimulation. Finally, leptin exhibited anti-apoptotic properties on neutrophils via NF-κB and MEK1/2 MAPK pathway. Collectively, our data suggest that leptin may enhance airway inflammation by promoting neutrophil survival.
Collapse
Affiliation(s)
- Zhizhi Sun
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Stéphane Dragon
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Allan Becker
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- GREAT ICE (the Gender Related Evolution of Asthma Team Inter-disciplinary Capacity Enhancement), University of Manitoba, Winnipeg, Manitoba, Canada
| | - Abdelilah S. Gounni
- Department of Immunology, University of Manitoba, Winnipeg, Manitoba, Canada
- GREAT ICE (the Gender Related Evolution of Asthma Team Inter-disciplinary Capacity Enhancement), University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
23
|
Mancuso P, Myers MG, Goel D, Serezani CH, O'Brien E, Goldberg J, Aronoff DM, Peters-Golden M. Ablation of leptin receptor-mediated ERK activation impairs host defense against Gram-negative pneumonia. THE JOURNAL OF IMMUNOLOGY 2012; 189:867-75. [PMID: 22685316 DOI: 10.4049/jimmunol.1200465] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The adipocyte-derived hormone leptin plays an important role in regulation of energy homeostasis and the innate immune response against bacterial infections. Leptin's actions are mediated by signaling events initiated by phosphorylation of tyrosine residues on the long form of the leptin receptor. We recently reported that disruption of leptin receptor-mediated STAT3 activation augmented host defense against pneumococcal pneumonia. In this report, we assessed leptin receptor-mediated ERK activation, a pathway that was ablated in the l/l mouse through a mutation of the tyrosine 985 residue in the leptin receptor, to determine its role in host defense against bacterial pneumonia in vivo and in alveolar macrophage (AM) antibacterial functions in vitro. l/l mice exhibited increased mortality and impaired pulmonary bacterial clearance after intratracheal challenge with Klebsiella pneumoniae. The synthesis of cysteinyl-leukotrienes was reduced and that of PGE(2) enhanced in AMs in vitro and the lungs of l/l mice after infection with K. pneumoniae in vivo. We also observed reduced phagocytosis and killing of K. pneumoniae in AMs from l/l mice that was associated with reduced reactive oxygen intermediate production in vitro. cAMP, known to suppress phagocytosis, bactericidal capacity, and reactive oxygen intermediate production, was also increased 2-fold in AMs from l/l mice. Pharmacologic blockade of PGE(2) synthesis reduced cAMP levels and overcame the defective phagocytosis and killing of bacteria in AMs from l/l mice in vitro. These results demonstrate that leptin receptor-mediated ERK activation plays an essential role in host defense against bacterial pneumonia and in leukocyte antibacterial effector functions.
Collapse
Affiliation(s)
- Peter Mancuso
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Abstract
The hormone leptin has a variety of functions. Originally known for its role in satiety and weight loss, leptin more recently has been shown to augment tumor growth in a variety of cancers. Within gliomas, there is a correlation between tumor grade and tumor expression of leptin and its receptor. This suggests that autocrine signaling within the tumor microenvironment may promote the growth of high-grade gliomas. Leptin does this through stimulation of cellular pathways that are also advantageous for tumor growth and recurrence: antiapoptosis, proliferation, angiogenesis, and migration. Conversely, a loss of leptin expression attenuates tumor growth. In animal models of colon cancer and melanoma, a decline in the expression and secretion of leptin resulted in a reduction of tumor growth. In these models, positive mental stimulation through environmental enrichment decreased leptin secretion and improved tumor outcome. This review explores the link between leptin and glioblastoma.
Collapse
|
25
|
Chen YC, Chen CH, Hsu YH, Chen TH, Sue YM, Cheng CY, Chen TW. Leptin reduces gentamicin-induced apoptosis in rat renal tubular cells via the PI3K-Akt signaling pathway. Eur J Pharmacol 2011; 658:213-8. [DOI: 10.1016/j.ejphar.2011.02.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 01/29/2011] [Accepted: 02/17/2011] [Indexed: 01/08/2023]
|
26
|
Guo X, Roberts MR, Becker SM, Podd B, Zhang Y, Chua SC, Myers MG, Duggal P, Houpt ER, Petri WA. Leptin signaling in intestinal epithelium mediates resistance to enteric infection by Entamoeba histolytica. Mucosal Immunol 2011; 4:294-303. [PMID: 21124310 PMCID: PMC3079783 DOI: 10.1038/mi.2010.76] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Leptin is an adipocytokine that links nutrition to immunity. Previous observation that a genetic polymorphism in the leptin receptor affected susceptibility to Entamoeba histolytica infection led to the hypothesis that leptin signaling has a protective role during intestinal amebic infection. In this study we show that mice lacking the functional leptin receptor developed devastating mucosal destruction after E. histolytica infection. Bone marrow chimera experiments demonstrated that leptin receptor expressed on hematopoietic cells was not sufficient to confer resistance. Similarly, peripheral knockout of the leptin receptor rendered animals susceptible, indicating that central expression of the leptin receptor was not sufficient to confer protection. The site of leptin action was localized to the gut via an intestinal epithelium-specific deletion of the leptin receptor, which rendered mice susceptible to infection and mucosal destruction by the parasite. Mutation of tyrosine 985 or 1138 in the intracellular domain of the leptin receptor, which mediates signaling through the SH2-containing tyrosine phosphatase/extracellular signal-regulated kinase (SHP2/ERK) and signal transducer and activator of transcription 3 (STAT3) pathways, respectively, demonstrated that both were important for mucosal protection. We conclude that leptin-mediated resistance to amebiasis is via its actions on intestinal epithelium rather than hematopoietic cells or the brain, and requires leptin receptor signaling through both the STAT3 and SHP2/ERK pathways.
Collapse
Affiliation(s)
- Xiaoti Guo
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Margo R. Roberts
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Stephen M. Becker
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Bradley Podd
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Yiying Zhang
- Department of Pediatrics, Division of Molecular Genetics & Naomi Berrie Diabetes Center Columbia University Medical Center, New York, New York
| | - Streamson C. Chua
- Departments of Medicine and Neuroscience, Albert Einstein College of Medicine, Bronx, New York
| | - Martin G. Myers
- Departments of Internal Medicine & Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Eric R. Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia.,Corresponding Authors: William A. Petri, Jr., Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, 434 924 5621 (direct), 434 924 0075 (fax) , *Eric R. Houpt, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, 434 243 9326 (direct), 434 924 0075 (fax)
| | - William A. Petri
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
27
|
Sánchez-Jiménez F, Pérez-Pérez A, González-Yanes C, Najib S, Varone CL, Sánchez-Margalet V. Leptin receptor activation increases Sam68 tyrosine phosphorylation and expression in human trophoblastic cells. Mol Cell Endocrinol 2011; 332:221-7. [PMID: 21035519 DOI: 10.1016/j.mce.2010.10.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/27/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
Leptin is produced in placenta where it has been found to be an important autocrine signal for trophoblastic growth during pregnancy, promoting antiapoptotic and trophic effects. Leptin receptor is present in trophoblastic cells and leptin may fully activate signaling. We have previously implicated the RNA-binding protein Sam68 in leptin signal transduction in immune cells. In the present work, we have studied the possible role of Sam68 in leptin receptor signaling in trophoblastic cells (JEG-3 cells). Leptin dose-dependently stimulated Sam68 phosphorylation in JEG-3 cells, as assessed by immunoprecipitation and immunoblot with anti-phosphotyrosine antibodies. As previously observed in other systems, tyrosine phosphorylation of Sam68 in response to leptin inhibits its RNA binding capacity. Besides, leptin stimulation dose-dependently increases Sam68 expression in JEG-3 cells, as assessed by quantitative PCR. Consistently, the amount of Sam68 protein is increased after 24h of leptin stimulation of trophoblastic cells. In order to study the possible role of Sam68 on leptin receptor synthesis, we employed antisense strategy to knockdown the expression of Sam68. We have found that a decrease in Sam68 expression leads to a decrease in leptin receptor amount in JEG-3 cells, as assessed both by quantitative PCR and immunoblot. These results strongly suggest the participation of Sam68 in leptin receptor signaling in human trophoblastic cells, and therefore, Sam68 may mediate some of the leptin effects in placenta.
Collapse
Affiliation(s)
- Flora Sánchez-Jiménez
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, University of Seville, Av Dr Fedriani 3, Seville 41071, Spain
| | | | | | | | | | | |
Collapse
|
28
|
Park YM, Bochner BS. Eosinophil survival and apoptosis in health and disease. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2010; 2:87-101. [PMID: 20358022 PMCID: PMC2846745 DOI: 10.4168/aair.2010.2.2.87] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 02/12/2010] [Indexed: 01/06/2023]
Abstract
Eosinophilia is common feature of many disorders, including allergic diseases. There are many factors that influence the production, migration, survival and death of the eosinophil. Apoptosis is the most common form of physiological cell death and a necessary process to maintain but limit cell numbers in humans and other species. It has been directly demonstrated that eosinophil apoptosis is delayed in allergic inflammatory sites, and that this mechanism contributes to the expansion of eosinophil numbers within tissues. Among the proteins known to influence hematopoiesis and survival, expression of the cytokine interleukin-5 appears to be uniquely important and specific for eosinophils. In contrast, eosinophil death can result from withdrawal of survival factors, but also by activation of pro-apoptotic pathways via death factors. Recent observations suggest a role for cell surface death receptors and mitochondria in facilitating eosinophil apoptosis, although the mechanisms that trigger each of these death pathways remain incompletely delineated. Ultimately, the control of eosinophil apoptosis may someday become another therapeutic strategy for treating allergic diseases and other eosinophil-associated disorders.
Collapse
Affiliation(s)
- Yong Mean Park
- Department of Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
29
|
Role of leptin in the activation of immune cells. Mediators Inflamm 2010; 2010:568343. [PMID: 20368778 PMCID: PMC2846344 DOI: 10.1155/2010/568343] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 01/15/2010] [Accepted: 01/23/2010] [Indexed: 01/29/2023] Open
Abstract
Adipose tissue is an active endocrine organ that secretes various humoral factors (adipokines), and its shift to production of proinflammatory cytokines in obesity likely contributes to the low-level systemic inflammation that may be present in metabolic syndrome-associated chronic pathologies such as atherosclerosis. Leptin is one of the most important hormones secreted by adipocytes, with a variety of physiological roles related to the control of metabolism and energy homeostasis. One of these functions is the connection between nutritional status and immune competence. The adipocyte-derived hormone leptin has been shown to regulate the immune response, innate and adaptive response, both in normal and pathological conditions. The role of leptin in regulating immune response has been assessed in vitro as well as in clinical studies. It has been shown that conditions of reduced leptin production are associated with increased infection susceptibility. Conversely, immune-mediated disorders such as autoimmune diseases are associated with increased secretion of leptin and production of proinflammatory pathogenic cytokines. Thus, leptin is a mediator of the inflammatory response.
Collapse
|
30
|
Gruver AL, Ventevogel MS, Sempowski GD. Leptin receptor is expressed in thymus medulla and leptin protects against thymic remodeling during endotoxemia-induced thymus involution. J Endocrinol 2009; 203:75-85. [PMID: 19587263 PMCID: PMC3747557 DOI: 10.1677/joe-09-0179] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Leptin deficiency in mice results in chronic thymic atrophy, suppressed cell-mediated immunity, and decreased numbers of total lymphocytes, suggesting a key role for the metabolic hormone leptin in regulating thymopoiesis and overall immune homeostasis. Unfortunately, the thymus is highly susceptible to stress-induced acute involution. Prolonged thymus atrophy in stress situations can contribute to peripheral T cell deficiency or inhibit immune reconstitution. Little is known, however, about specific roles for leptin signaling in the thymus or the underlying mechanisms driving thymic involution or thymic recovery after acute stress. We report here that leptin receptor expression is restricted in thymus to medullary epithelial cells. Using a model of endotoxemia-induced acute thymic involution and recovery, we have demonstrated a role for supraphysiologic leptin in protection of thymic epithelial cells (TECs). We also present data in support of our hypothesis that leptin treatment decreases in vivo endotoxemia-induced apoptosis of double positive thymocytes and promotes proliferation of double negative thymocytes through a leptin receptor isoform b-specific mechanism. Furthermore, our studies have revealed that leptin treatment increases thymic expression of interleukin-7, an important soluble thymocyte growth factor produced by medullary TECs. Taken together, these studies support an intrathymic role for the metabolic hormone leptin in maintaining healthy thymic epithelium and promoting thymopoiesis, which is revealed when thymus homeostasis is perturbed by endotoxemia.
Collapse
Affiliation(s)
- Amanda L Gruver
- Department of Medicine, Duke University Medical Center, 102 Research Drive, Global Health Research Building (Room 1033), Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
31
|
Pérez-Pérez A, Maymó J, Gambino Y, Dueñas JL, Goberna R, Varone C, Sánchez-Margalet V. Leptin stimulates protein synthesis-activating translation machinery in human trophoblastic cells. Biol Reprod 2009; 81:826-32. [PMID: 19553602 DOI: 10.1095/biolreprod.109.076513] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Leptin was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it may work as an autocrine hormone, mediating angiogenesis, growth, and immunomodulation. Leptin receptor (LEPR, also known as Ob-R) shows sequence homology to members of the class I cytokine receptor (gp130) superfamily. In fact, leptin may function as a proinflammatory cytokine. We have previously found that leptin is a trophic and mitogenic factor for trophoblastic cells. In order to further investigate the mechanism by which leptin stimulates cell growth in JEG-3 cells and trophoblastic cells, we studied the phosphorylation state of different proteins of the initiation stage of translation and the total protein synthesis by [(3)H]leucine incorporation in JEG-3 cells. We have found that leptin dose-dependently stimulates the phosphorylation and activation of the translation initiation factor EIF4E as well as the phosphorylation of the EIF4E binding protein EIF4EBP1 (PHAS-I), which releases EIF4E to form active complexes. Moreover, leptin dose-dependently stimulates protein synthesis, and this effect can be partially prevented by blocking mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PIK3) pathways. In conclusion, leptin stimulates protein synthesis, at least in part activating the translation machinery, via the activation of MAPK and PIK3 pathways.
Collapse
Affiliation(s)
- Antonio Pérez-Pérez
- Departamento de Bioquímica Médica y Biología Molecular, Hospital Universitario Virgen Macarena, Universidad de Sevilla, Seville, Spain
| | | | | | | | | | | | | |
Collapse
|
32
|
Rahmouni K, Sigmund CD, Haynes WG, Mark AL. Hypothalamic ERK mediates the anorectic and thermogenic sympathetic effects of leptin. Diabetes 2009; 58:536-42. [PMID: 19066310 PMCID: PMC2646051 DOI: 10.2337/db08-0822] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Leptin is an adipocyte hormone that plays a major role in energy balance. Leptin receptors in the hypothalamus are known to signal via distinct mechanisms, including signal transducer and activator of transcription-3 (STAT3) and phosphoinositol-3 kinase (PI 3-kinase). Here, we tested the hypothesis that extracellular signal-regulated kinase (ERK) is mediating leptin action in the hypothalamus. RESEARCH DESIGN AND METHODS Biochemical, pharmacological, and physiological approaches were combined to characterize leptin activation of ERK in the hypothalamus in rats. RESULTS Leptin activates ERK1/2 in a receptor-mediated manner that involves JAK2. Leptin-induced ERK1/2 activation was restricted to the hypothalamic arcuate nucleus. Pharmacological blockade of hypothalamic ERK1/2 reverses the anorectic and weight-reducing effects of leptin. The pharmacological antagonists of ERK1/2 did not attenuate leptin-induced activation of STAT3 or PI 3-kinase. Blockade of ERK1/2 abolishes leptin-induced increases in sympathetic nerve traffic to thermogenic brown adipose tissue (BAT) but does not alter the stimulatory effects of leptin on sympathetic nerve activity to kidney, hindlimb, or adrenal gland. In contrast, blockade of PI 3-kinase prevents leptin-induced sympathetic activation to kidney but not to BAT, hindlimb, or adrenal gland. CONCLUSIONS Our findings indicate that hypothalamic ERK plays a key role in the control of food intake, body weight, and thermogenic sympathetic outflow by leptin but does not participate in the cardiovascular and renal sympathetic actions of leptin.
Collapse
Affiliation(s)
- Kamal Rahmouni
- Center on Functional Genomics of Hypertension, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, USA.
| | | | | | | |
Collapse
|
33
|
Leptin exerts an anti-apoptotic effect on human dendritic cells via the PI3K-Akt signaling pathway. FEBS Lett 2009; 583:1102-6. [DOI: 10.1016/j.febslet.2009.02.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 01/28/2009] [Accepted: 02/22/2009] [Indexed: 02/03/2023]
|
34
|
Pérez-Pérez A, Maymó J, Dueñas JL, Goberna R, Calvo JC, Varone C, Sánchez-Margalet V. Leptin prevents apoptosis of trophoblastic cells by activation of MAPK pathway. Arch Biochem Biophys 2008; 477:390-5. [DOI: 10.1016/j.abb.2008.06.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/13/2008] [Accepted: 06/14/2008] [Indexed: 10/21/2022]
|
35
|
Nath AK, Brown RM, Michaud M, Sierra-Honigmann MR, Snyder M, Madri JA. Leptin affects endocardial cushion formation by modulating EMT and migration via Akt signaling cascades. ACTA ACUST UNITED AC 2008; 181:367-80. [PMID: 18411306 PMCID: PMC2315681 DOI: 10.1083/jcb.200708197] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Blood circulation is dependent on heart valves to direct blood flow through the heart and great vessels. Valve development relies on epithelial to mesenchymal transition (EMT), a central feature of embryonic development and metastatic cancer. Abnormal EMT and remodeling contribute to the etiology of several congenital heart defects. Leptin and its receptor were detected in the mouse embryonic heart. Using an ex vivo model of cardiac EMT, the inhibition of leptin results in a signal transducer and activator of transcription 3 and Snail/vascular endothelial cadherin-independent decrease in EMT and migration. Our data suggest that an Akt signaling pathway underlies the observed phenotype. Furthermore, loss of leptin phenocopied the functional inhibition of alphavbeta3 integrin receptor and resulted in decreased alphavbeta3 integrin and matrix metalloprotease 2, suggesting that the leptin signaling pathway is involved in adhesion and migration processes. This study adds leptin to the repertoire of factors that mediate EMT and, for the first time, demonstrates a role for the interleukin 6 family in embryonic EMT.
Collapse
Affiliation(s)
- Anjali K Nath
- Department of Pathology, School of Medicine, Yale University, New Haven, CT 06510, USA
| | | | | | | | | | | |
Collapse
|
36
|
Fernández-Riejos P, Goberna R, Sánchez-Margalet V. Leptin promotes cell survival and activates Jurkat T lymphocytes by stimulation of mitogen-activated protein kinase. Clin Exp Immunol 2008; 151:505-18. [PMID: 18234059 DOI: 10.1111/j.1365-2249.2007.03563.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Leptin (Ob) is a non-glycosylated peptide hormone that regulates energy homeostasis centrally, but also has systemic effects including the regulation of the immune function. We have reported previously that leptin activates human peripheral blood lymphocytes co-stimulated with phytohaemagglutinin (PHA) (4 microg/ml), which prevented the employment of pharmacological inhibitors of signalling pathways. In the present study, we used Jurkat T cells that responded to leptin with minimal PHA co-stimulation (0.25 microg/ml). The long isoform of leptin receptor is expressed on Jurkat T cells and upon leptin stimulation, the expression of early activation marker CD69 increases in a dose-dependent manner (0.1-10 nM). We have also found that leptin activates receptor-associated kinases of the Janus family-signal transucers and activators of transcription (JAK-STAT), mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3 kinase (PI3K) signalling pathways. Moreover, we sought to study the possible effect of leptin on cell survival and apoptosis of Jurkat T cells by culture in serum-free conditions. We have assayed the early phases of apoptosis by flow cytometric detection of fluorescein isothiocyanate (FITC)-labelled annexin V simultaneously with dye exclusion of propidium iodide (PI). As well, we have assayed the activation level of caspase-3 by inmunoblot with a specific antibody that recognizes active caspase-3. We have found that leptin inhibits the apoptotic process dose-dependently. By using pharmacological inhibitors, we have found that the stimulatory and anti-apoptotic effects of leptin in Jurkat T cells are dependent on MAPK activation, rather than the PI3K pathway, providing new data regarding the mechanism of action of leptin in T cells, which may be useful to understand more clearly the association between nutritional status and the immune function.
Collapse
Affiliation(s)
- P Fernández-Riejos
- Department of Clinical Biochemistry, Virgen Macarena University Hospital, Medical School University of Seville, Seville, Spain
| | | | | |
Collapse
|
37
|
Montecucco F, Burger F, Mach F, Steffens S. CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. Am J Physiol Heart Circ Physiol 2008; 294:H1145-55. [PMID: 18178718 DOI: 10.1152/ajpheart.01328.2007] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recruitment of leukocytes to inflammatory sites is crucial in the pathogenesis of chronic inflammatory diseases. The aim of this study was to investigate if activation of CB2 cannabinoid receptors would modulate the chemotactic response of human monocytes. Human monocytes treated with the CB2 agonist JWH-015 for 12-18 h showed significantly reduced migration to chemokines CCL2 and CCL3, associated with reduced mRNA and surface expression of their receptors CCR2 and CCR1. The induction of ICAM-1 in response to IFN-gamma was inhibited by JWH-015. Moreover, JWH-015 cross-desensitized human monocytes for migration in response to CCL2 and CCL3 by its own chemoattractant properties. The CB2-selective antagonist SR-144528, but not the CB1 antagonist SR-147778, reversed JWH-015-induced actions, whereas the CB2 agonist JWH-133 mimicked the effects of JWH-015. The investigation of underlying pathways revealed the involvement of phosphatidylinositol 3-kinase/Akt and ERK1/2 but not p38 MAPK. In conclusion, selective activation of CB2 receptors modulates chemotaxis of human monocytes, which might have crucial effects in chronic inflammatory disorders such as atherosclerosis or rheumatoid arthritis.
Collapse
Affiliation(s)
- Fabrizio Montecucco
- Division of Cardiology, Foundation for Medical Researches, University Hospital, Geneva, Switzerland
| | | | | | | |
Collapse
|
38
|
Guo Z, Jiang H, Xu X, Duan W, Mattson MP. Leptin-mediated cell survival signaling in hippocampal neurons mediated by JAK STAT3 and mitochondrial stabilization. J Biol Chem 2007; 283:1754-1763. [PMID: 17993459 DOI: 10.1074/jbc.m703753200] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Leptin plays a pivotal role in the regulation of energy homeostasis and metabolism, primarily by acting on neurons in the hypothalamus that control food intake. However, leptin receptors are more widely expressed in the brain suggesting additional, as yet unknown, functions of leptin. Here we show that both embryonic and adult hippocampal neurons express leptin receptors coupled to activation of STAT3 and phosphatidylinositol 3-kinase-Akt signaling pathways. Leptin protects hippocampal neurons against cell death induced by neurotrophic factor withdrawal and excitotoxic and oxidative insults. The neuroprotective effect of leptin is antagonized by the JAK2-STAT3 inhibitor AG-490, STAT3 decoy DNA, and phosphatidylinositol 3-kinase/Akt inhibitors but not by an inhibitor of MAPK. Leptin induces the production of manganese superoxide dismutase and the anti-apoptotic protein Bcl-xL, and stabilizes mitochondrial membrane potential and lessens mitochondrial oxidative stress. Leptin receptor-deficient mice (db/db mice) are more vulnerable to seizure-induced hippocampal damage, and intraventricular administration of leptin protects neurons against seizures. By enhancing mitochondrial resistance to apoptosis and excitotoxicity, our findings suggest that leptin signaling serves a neurotrophic function in the developing and adult hippocampus.
Collapse
Affiliation(s)
- Zhihong Guo
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Haiyang Jiang
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Xiangru Xu
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Wenzhen Duan
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Mark P Mattson
- Laboratory of Neurosciences and National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224; Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.
| |
Collapse
|
39
|
Brown JEP, Dunmore SJ. Leptin decreases apoptosis and alters BCL-2 : Bax ratio in clonal rodent pancreatic beta-cells. Diabetes Metab Res Rev 2007; 23:497-502. [PMID: 17318810 DOI: 10.1002/dmrr.726] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS The adipocyte derived peptide hormone leptin is known to regulate apoptosis and cell viability in several cells and tissues, as well as having several pancreatic islet beta-cell specific effects such as inhibition of glucose-stimulated insulin secretion. This study investigated the effects of leptin upon apoptosis induced by serum depletion and on expression of the apoptotic regulators B-cell leukaemia 2 gene product (BCL-2) and BCL2-associated X protein (Bax) in the glucose-responsive BRIN-BD11 beta-cell line. METHODS BRIN-BD11 cells were cultured in RPMI 1640 and subsequently serum depleted +/- leptin (10 and 50 ng/mL) for 24 h. Cell viability and apoptosis were measured using a modified MTS assay and TUNEL/YO-PRO-1 assays, respectively. BCL-2 and Bax expression were measured by real-time PCR and Western blotting. RESULTS Leptin caused a reduction in serum-depleted apoptosis, although it failed to have any effect on the overall cell viability, causing a 68% shift from apoptosis to necrosis. Leptin significantly increased the level of BCL-2 mRNA expression (150% compared to serum depletion alone), without altering Bax mRNA expression. At the protein level, leptin increased BCL-2 and decreased Bax, altering the BCL-2 : Bax ratio. CONCLUSIONS We conclude that leptin reduces apoptosis in beta-cells at physiological concentrations, possibly via its ability to up-regulate BCL-2 and Bax expression.
Collapse
Affiliation(s)
- James E P Brown
- Diabetes and Metabolic Disorders Research Group, RIHS, University of Wolverhampton, Wulfruna St, Wolverhampton, WV1 1SB, UK
| | | |
Collapse
|
40
|
Wong CK, Cheung PFY, Lam CWK. Leptin-mediated cytokine release and migration of eosinophils: Implications for immunopathophysiology of allergic inflammation. Eur J Immunol 2007; 37:2337-48. [PMID: 17634954 DOI: 10.1002/eji.200636866] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Leptin is a pleiotropic adipocyte-derived cytokine used in hypothalamic regulation of body weight and modulation of immune response by stimulating T cells, macrophages and neutrophils. Leptin has been shown to be an eosinophil survival factor. We examined the immunopathological mechanisms for the activation of human eosinophils from healthy volunteers by leptin in allergic inflammation. Adhesion molecules, cytokines and cell migration were assessed by flow cytometry, ELISA and Boyden chamber assay, respectively. Intracellular signaling molecules were investigated by membrane array and Western blot. Leptin could up-regulate cell surface expression of adhesion molecule ICAM-1 and CD18 but suppress ICAM-3 and L-selectin on eosinophils. Leptin could also stimulate the chemokinesis of eosinophils, and induce the release of inflammatory cytokines IL-1beta and IL-6, and chemokines IL-8, growth-related oncogene-alpha and MCP-1. We found that leptin-mediated induction of adhesion molecules, release of cytokines and chemokines, and chemokinesis were differentially regulated by the activation of ERK, p38 MAPK and NF-kappaB. In view of the above results and elevated production of leptin in patients with allergic diseases such as atopic asthma and atopic dermatitis, leptin could play crucial immunopathophysiological roles in allergic inflammation by activation of eosinophils via differential intracellular signaling cascades.
Collapse
Affiliation(s)
- Chun Kwok Wong
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong
| | | | | |
Collapse
|
41
|
Lin J, Yan GT, Xue H, Hao XH, Zhang K, Wang LH. Leptin protects vital organ functions after sepsis through recovering tissue myeloperoxidase activity: an anti-inflammatory role resonating with indomethacin. Peptides 2007; 28:1553-60. [PMID: 17681405 DOI: 10.1016/j.peptides.2007.06.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Revised: 06/20/2007] [Accepted: 06/20/2007] [Indexed: 12/26/2022]
Abstract
In this research, the role of leptin on sepsis-induced organ dysfunction was evaluated. Making use of a mice sepsis model, changes of alanine transaminase and uric acid in serum, myeloperoxidase activity, leptin levels and histological alterations in heart, lung, liver and kidney were determined. Results showed that sepsis induced significantly higher levels of serum alanine transaminase and uric acid, decreased tissue myeloperoxidase activity and leptin levels, and triggered distinct histological alterations. However, leptin and indomethacin injections reversed those impairments at 6h and/or 12h after injury. These data reveal a protective role of both leptin and indomethacin on vital organ functions after sepsis by recovering tissue myeloperoxidase activity.
Collapse
Affiliation(s)
- Ji Lin
- Research Laboratory of Biochemistry, Basic Medical Institute, General Hospital of P.L.A., 28 Fuxing Road, Beijing 100853, PR China
| | | | | | | | | | | |
Collapse
|
42
|
Ercan S, Ozer C, Taş M, Erdoğan D, Babül A. Effects of leptin on stress-induced changes of caspases in rat gastric mucosa. J Gastroenterol 2007; 42:461-8. [PMID: 17671761 DOI: 10.1007/s00535-007-2032-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 02/22/2007] [Indexed: 02/04/2023]
Abstract
BACKGROUND In this study, we investigated the effect of leptin on caspase-3, caspase-8, and caspase-9 immunoreactivity and lipid peroxidation in the stomachs of rats exposed to cold-restraint stress. METHODS Thirty-two male Wistar Albino rats were used. Rats pretreated with leptin (10 microg/kg per day for 7 days) were restrained in a wire cage for 4 h at 4 degrees C. Spectrophotometric techniques were used for detection of malondialdehyde (MDA) and glutathione (GSH) levels, and immunoreactivity of caspases was investigated by immunohistochemistry. RESULTS While the stomach MDA level of the cold-restraint stress group was increased significantly, the level of GSH was decreased when compared with the control group. Caspase-9 and caspase-3 immunoreactivities of the stress group were not changed, while caspase-8 immunoreactivity was decreased. Leptin administration prevented the increase in the MDA level and the decrease in the GSH content of the gastric mucosa in animals subjected to stress. Leptin administration produced no significant change in caspase-8 immunoreactivity but caused a decrease in caspase-3 immunoreactivity. CONCLUSIONS Cold-restraint stress decreases the antioxidant capacity of stomach tissue while activating oxidants, and induces apoptosis by an increase in caspase immunoreactivity. The presence of leptin reverses these mechanisms and suppresses the apoptosis.
Collapse
Affiliation(s)
- Sevim Ercan
- Vocational School of Health Services, Akdeniz University, Antalya, Turkey
| | | | | | | | | |
Collapse
|
43
|
Drug residues store in the body following cessation of use: impacts on neuroendocrine balance and behavior--use of the Hubbard sauna regimen to remove toxins and restore health. Med Hypotheses 2006; 68:868-79. [PMID: 17045758 DOI: 10.1016/j.mehy.2006.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2006] [Accepted: 08/21/2006] [Indexed: 11/24/2022]
Abstract
For decades, scientists have investigated the environmental and human health effects of synthetic chemicals. A growing body of research has illuminated the spectrum of consequences deriving from our reliance these substances and their proliferation in air, water, soil and the food chain. Of particular concern is the fact that residues of many man-made chemicals are now detectible in virtually every person. A key to a chemical's tendency to persist in tissues once it has entered the body is its lipophilicity. Substances that are poorly soluble in water and quite soluble in fat have relatively free access, via lipid-rich cellular membranes, to the cells of all organs including the ability to cross the blood-brain and placental barriers. Substantial data exist demonstrating that in addition to pollutants, drugs and their metabolites dispose to tissues high in fat content, including brain and adipose. While their characteristic lipophilicity permits drugs and medications to reach target tissues, thereby producing therapeutic effects in the present, current perceptions of risk may be ignoring the possibility that adipose accumulations of illicit drugs and pharmaceuticals may lead to future patterns of ill health similar to those associated with exposure to other categories of xenobiotic chemicals. Empirical data are beginning to characterize the myriad regulatory functions of adipose hormones, including roles in cravings, cognitive function, energy level, and inflammation as well as changes in adipose hormone levels associated with drug use. Included in this data are the observation that a rehabilitative treatment intervention introduced by L. Ron Hubbard in 1978 to aid in the broad elimination of chemicals from body stores improves symptoms common to both chemical exposure and drug addiction. The regimen, which includes exercise, sauna bathing, and vitamin and mineral supplementation, is utilized by nearly 70 drug rehabilitation and medical practices in over 20 countries. At present, much more is unknown than is known regarding long-term drug retention and effects. This subject deserves careful evaluation given its potential implications for health and chronic illnesses of poorly defined etiology (such as chronic fatigue syndrome), as well as drug abuse prevention, drug rehabilitation, forensic and legal areas.
Collapse
|
44
|
Magariños MP, Sánchez-Margalet V, Kotler M, Calvo JC, Varone CL. Leptin promotes cell proliferation and survival of trophoblastic cells. Biol Reprod 2006; 76:203-10. [PMID: 17021346 DOI: 10.1095/biolreprod.106.051391] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Leptin, the 16-kDa protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta. In the present work, we studied a possible effect of leptin on trophoblastic cell proliferation, survival, and apoptosis. Recombinant human leptin added to JEG-3 and BeWo choriocarcinoma cell lines showed a stimulatory effect on cell proliferation up to 3 and 2.4 times, respectively, measured by (3)H-thymidine incorporation and cell counting. These effects were time and dose dependent. Maximal effect was achieved at 250 ng leptin/ml for JEG-3 cells and 50 ng leptin/ml for BeWo cells. Moreover, by inhibiting endogenous leptin expression with 2 microM of an antisense oligonucleotide (AS), cell proliferation was diminished. We analyzed cell population distribution during the different stages of cell cycle by fluorescence-activated cell sorting, and we found that leptin treatment displaced the cells towards a G2/M phase. We also found that leptin upregulated cyclin D1 expression, one of the key cell cycle-signaling proteins. Since proliferation and death processes are intimately related, the effect of leptin on cell apoptosis was investigated. Treatment with 2 microM leptin AS increased the number of apoptotic cells 60 times, as assessed by annexin V-fluorescein isothiocyanate/propidium iodide staining, and the caspase-3 activity was increased more than 2 fold. This effect was prevented by the addition of 100 ng leptin/ml. In conclusion, we provide evidence that suggests that leptin is a trophic and mitogenic factor for trophoblastic cells by virtue of its inhibiting apoptosis and promoting proliferation.
Collapse
Affiliation(s)
- María Paula Magariños
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
45
|
Kim KY, Kim JK, Han SH, Lim JS, Kim KI, Cho DH, Lee MS, Lee JH, Yoon DY, Yoon SR, Chung JW, Choi I, Kim E, Yang Y. Adiponectin is a negative regulator of NK cell cytotoxicity. THE JOURNAL OF IMMUNOLOGY 2006; 176:5958-64. [PMID: 16670304 DOI: 10.4049/jimmunol.176.10.5958] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
NK cells are a key component of innate immune systems, and their activity is regulated by cytokines and hormones. Adiponectin, which is secreted from white adipose tissues, plays important roles in various diseases, including hypertension, cardiovascular diseases, inflammatory disorders, and cancer. In this study the effect of adiponectin on NK cell activity was investigated. Adiponectin was found to suppress the IL-2-enhanced cytotoxic activity of NK cells without affecting basal NK cell cytotoxicity and to inhibit IL-2-induced NF-kappaB activation via activation of the AMP-activated protein kinase, indicating that it suppresses IL-2-enhanced NK cell cytotoxicity through the AMP-activated protein kinase-mediated inhibition of NF-kappaB activation. IFN-gamma enhances NK cell cytotoxicity by causing an increase in the levels of expression of TRAIL and Fas ligand. The production of IFN-gamma, one of the NF-kappaB target genes in NK cells, was also found to be suppressed by adiponectin, accompanied by the subsequent down-regulation of IFN-gamma-inducible TRAIL and Fas ligand expression. These results clearly demonstrate that adiponectin is a potent negative regulator of IL-2-induced NK cell activation and thus may act as an in vivo regulator of anti-inflammatory functions.
Collapse
Affiliation(s)
- Kun-Yong Kim
- Laboratory of Molecular and Cellular Biology, Department of Life Science, Sookmyung Women's University, Seoul 140-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bruno A, Conus S, Schmid I, Simon HU. Apoptotic pathways are inhibited by leptin receptor activation in neutrophils. THE JOURNAL OF IMMUNOLOGY 2005; 174:8090-6. [PMID: 15944317 DOI: 10.4049/jimmunol.174.12.8090] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Leptin regulates food intake as well as metabolic, endocrine, and immune functions. It exerts proliferative and antiapoptotic activities in a variety of cell types, including T cells. Leptin also stimulates macrophages and neutrophils, and its production is increased during inflammation. In this study, we demonstrate that human neutrophils express leptin surface receptors under in vitro and in vivo conditions, and that leptin delays apoptosis of mature neutrophils in vitro. The antiapoptotic effects of leptin were concentration dependent and blocked by an anti-leptin receptor mAb. The efficacy of leptin to block neutrophil apoptosis was similar to G-CSF. Using pharmacological inhibitors, we obtained evidence that leptin initiates a signaling cascade involving PI3K- and MAPK-dependent pathways in neutrophils. Moreover, leptin delayed the cleavage of Bid and Bax, the mitochondrial release of cytochrome c and second mitochondria-derived activator of caspase, as well as the activation of both caspase-8 and caspase-3 in these cells. Taken together, leptin is a survival cytokine for human neutrophils, a finding with potential pathologic relevance in inflammatory diseases.
Collapse
Affiliation(s)
- Andreina Bruno
- Department of Pharmacology, University of Bern, Bern, Switzerland
| | | | | | | |
Collapse
|
47
|
Mattioli B, Straface E, Quaranta MG, Giordani L, Viora M. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. THE JOURNAL OF IMMUNOLOGY 2005; 174:6820-8. [PMID: 15905523 DOI: 10.4049/jimmunol.174.11.6820] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Leptin is an adipocyte-derived hormone/cytokine that links nutrition, metabolism, and immune homeostasis. Leptin is capable of modulating several immune responses. However, the effect of leptin on dendritic cells (DCs) has not yet been recognized. Because DCs are instrumental in the development of immune responses, in this study, we evaluated the impact of leptin on DC activation. We demonstrated the presence of leptin receptor in human immature and mature DCs both at mRNA and protein level and its capacity to transduce leptin signaling leading to STAT-3 phosphorylation. We found no consistent modulation of DC surface molecules known to be critical for their APC function in response to leptin. In contrast, we found that leptin induces rearrangement of actin microfilaments, leading to uropod and ruffle formation. At a functional level, leptin up-regulates the IL-1beta, IL-6, IL-12, TNF-alpha, and MIP-1alpha production. Coincident with this, leptin-treated DCs stimulate stronger heterologous T cell responses. Furthermore, we found that leptin down-regulates IL-10 production by DCs and drives naive T cell polarization toward Th1 phenotype. Finally, we found that leptin partly protects DCs from spontaneous and UVB-induced apoptosis. Consistent with the antiapoptotic effect of leptin, we observed the activation of NF-kappaB and a parallel up-regulation of bcl-2 and bcl-x(L) gene expression. These results provide new insights on the immunoregulatory function of leptin demonstrating its ability to improve DC functions and to promote DC survival. This is of relevance considering a potential application of leptin in immunotherapeutic approaches and its possible use as adjuvant in vaccination protocols.
Collapse
Affiliation(s)
- Benedetta Mattioli
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | |
Collapse
|
48
|
Shirshev SV, Orlova EG. Molecular Mechanisms of Regulation of Functional Activity of Mononuclear Phagocytes by Leptin. BIOCHEMISTRY (MOSCOW) 2005; 70:841-7. [PMID: 16212539 DOI: 10.1007/s10541-005-0193-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Leptin is a peptide hormone synthesized by adipocytes. The main function of leptin is associated with regulation of the body energetic balance and restriction of excess accumulation of fat. This review considers in detail the involvement of leptin in regulation of fundamental effector functions of mononuclear phagocytes, which express receptors for this hormone. Possible molecular mechanisms of modulation by leptin of phagocytic activity, oxygen-dependent microbicidity, and nitric oxide generation by mononuclear phagocytes are analyzed, as well as the role of leptin in the formation of the produced cytokine pattern. The data presented suggest that the regulation of mononuclear phagocytes by leptin is associated with activation of the JAK/STAT signaling pathway, which leads to stimulation of phagocytosis, production of oxygen and nitrogen reactive species, and also to increase in secretion of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- S V Shirshev
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm, 614081, Russia
| | | |
Collapse
|
49
|
Cakir B, Cevik H, Contuk G, Ercan F, Ekşioğlu-Demiralp E, Yeğen BC. Leptin ameliorates burn-induced multiple organ damage and modulates postburn immune response in rats. ACTA ACUST UNITED AC 2005; 125:135-44. [PMID: 15582724 DOI: 10.1016/j.regpep.2004.08.032] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 08/17/2004] [Accepted: 08/19/2004] [Indexed: 12/27/2022]
Abstract
The present study was designed to determine whether exogenous leptin reduces remote organ injury in the rats with thermal burn trauma. Leptin (10 microg/kg) or saline was administered intraperitoneally after burn injury, and the rats were decapitated at either 6 or 24 h. Plasma samples of 24-h burn group were assayed for the determination of monocyte and neutrophil apoptosis. Thermal injury increased tissue-associated myeloperoxidase (MPO) activity and microscopic damage scores in the lung, liver, stomach, colon and kidney of both 6- and 24-h burn groups. In the 6-h burn group, leptin reduced microscopic damage score in the liver and kidney only, while damage scores in the 24-h burn group were reduced in all the tissues except the lung. Also, in both burn groups, leptin reduced elevated MPO activity in all tissues except the lung. The percentage of mononuclear cells was significantly reduced at the 24 h of burn injury, while the granulocyte percentage was increased. Leptin treatment, however, had no significant effect on burn-induced reversal of white blood cell ratios. On the other hand, burn-induced increase in the death of mononuclear cells and granulocytes was significantly reduced in leptin-treated rats. The results of the present study suggest that leptin may provide a therapeutic benefit in diminishing burn-induced inflammation and associated multiple organ failure.
Collapse
Affiliation(s)
- Bariş Cakir
- Department of Physiology, School of Medicine, Marmara University, 34668 Haydarpaşa, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Leptin is an adipokine which conveys information on energy availability. In humans, leptin influences energy homeostasis and regulates neuroendocrine function primarily in states of energy deficiency. As a cytokine, leptin also affects thymic homeostasis and, similar to other proinflammatory cytokines, leptin promotes Th1 cell differentiation and cytokine production. We review herein recent advances on the role of leptin in the pathophysiology of immune responses.
Collapse
Affiliation(s)
- Giuseppe Matarese
- Gruppo di ImmunoEndocrinologia, Istituto di Endocrinologia e Oncologia Sperimenttale, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | | |
Collapse
|