1
|
Yang Z, Liang XF, Li GL, Tao YX. Biased signaling in fish melanocortin-4 receptors (MC4Rs): Divergent pharmacology of four ligands on spotted scat (Scatophagus argus) and grass carp (Ctenopharyngodon idella) MC4Rs. Mol Cell Endocrinol 2020; 515:110929. [PMID: 32615281 DOI: 10.1016/j.mce.2020.110929] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 12/24/2022]
Abstract
The melanocortin-4 receptor (MC4R) plays a critical role in the regulation of energy homeostasis in both mammals and fish. Several fish MC4Rs recently characterized have high constitutive activities, potentially associated with food intake and growth rate. In the present study, we systematically investigated the effects of four human MC4R (hMC4R) antagonists, including agouti-related peptide (AgRP), Ipsen 5i, ML00253764, and MCL0020, on the cAMP and ERK1/2 signaling of two fish MC4Rs: spotted scat (Scatophagus argus) MC4R (saMC4R) and grass carp (Ctenopharyngodon idella) MC4R (ciMC4R), with hMC4R as a control. We showed that both saMC4R and ciMC4R were constitutively active with significantly increased basal cAMP levels. AgRP acted as an inverse agonist in cAMP signaling pathway in both fish MC4Rs whereas MCL0020 functioned as an inverse agonist for ciMC4R but a weak neutral antagonist for saMC4R. Ipsen 5i and MCL0020 behaved as neutral allosteric modulators in the cAMP signaling of fish MC4Rs. The saMC4R and ciMC4R had similar basal pERK1/2 levels as hMC4R and the pERK1/2 levels of the two fish MC4Rs were significantly increased upon stimulation with all four ligands. In summary, our studies demonstrated the existence of biased signaling in fish MC4R. We also showed dramatic pharmacological differences of human and fish MC4Rs with synthetic ligands. Our data provided novel insights and led to a better understanding of fish MC4R pharmacology.
Collapse
Affiliation(s)
- Zhao Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, United States
| | - Xu-Fang Liang
- College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Hubei Collaborative Innovation Center for Freshwater Aquaculture, Wuhan, Hubei, 430070, China
| | - Guang-Li Li
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849, United States.
| |
Collapse
|
2
|
Koerperich ZM, Ericson MD, Freeman KT, Speth RC, Pogozheva ID, Mosberg HI, Haskell-Luevano C. Incorporation of Agouti-Related Protein (AgRP) Human Single Nucleotide Polymorphisms (SNPs) in the AgRP-Derived Macrocyclic Scaffold c[Pro-Arg-Phe-Phe-Asn-Ala-Phe-dPro] Decreases Melanocortin-4 Receptor Antagonist Potency and Results in the Discovery of Melanocortin-5 Receptor Antagonists. J Med Chem 2020; 63:2194-2208. [PMID: 31845801 DOI: 10.1021/acs.jmedchem.9b00860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
While the melanocortin receptors (MCRs) are known to be involved in numerous biological pathways, the potential roles of the MC5R have not been clearly elucidated in humans. Agouti-related protein (AgRP), an MC3R/MC4R antagonist and MC4R inverse agonist, contains an exposed β-hairpin loop composed of six residues (Arg-Phe-Phe-Asn-Ala-Phe) that is imperative for binding and function. Within this active loop of AgRP, four human missense polymorphisms were deposited into the NIH Variation Viewer database. These polymorphisms, Arg111Cys, Arg111His, Phe112Tyr, and Ala115Val (AgRP full-length numbering), were incorporated into the peptide macrocycles c[Pro1-Arg2-Phe3-Phe4-Xaa5-Ala6-Phe7-dPro8], where Xaa was Dap5 or Asn5, to explore the functional effects of these naturally occurring substitutions in a simplified AgRP scaffold. All peptides lowered potency at least 10-fold in a cAMP accumulation assay compared to the parent sequences at the MC4Rs. Compounds MDE 6-82-3c, ZMK 2-82, MDE 6-82-1c, ZMK 2-85, and ZMK 2-112 are also the first AgRP-based chemotypes that antagonize the MC5R.
Collapse
Affiliation(s)
- Zoe M Koerperich
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Ericson
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Katie T Freeman
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Robert C Speth
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328-2018, United States.,College of Medicine, Georgetown University, Washington, D.C. 20057, United States
| | - Irina D Pogozheva
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Henry I Mosberg
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carrie Haskell-Luevano
- Department of Medicinal Chemistry and Institute for Translational Neuroscience, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
3
|
Yamada-Goto N, Ochi Y, Katsuura G, Yamashita Y, Ebihara K, Noguchi M, Fujikura J, Taura D, Sone M, Hosoda K, Gottschall PE, Nakao K. Neuronal cells derived from human induced pluripotent stem cells as a functional tool of melanocortin system. Neuropeptides 2017; 65:10-20. [PMID: 28434791 DOI: 10.1016/j.npep.2017.04.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 12/01/2022]
Abstract
BACKGROUND The preparation of human neurons derived from human induced pluripotent stem (iPS) cells can serve as a potential tool for evaluating the physiological and pathophysiological properties of human neurons and for drug development. METHODS In the present study, the functional activity in neuronal cells differentiated from human iPS cells was observed. RESULTS The differentiated cells expressed mRNAs for classical neuronal markers (microtubule-associated protein 2, β-tubulin III, calbindin 1, synaptophysin and postsynaptic density protein 95) and for subunits of various excitatory and inhibitory transmitters (NR1, NR2A, NR2B, GABAA α1). Moreover, the differentiated cells expressed neuropeptides and receptors which are predominantly present in the hypothalamus. The expression of mRNA for preopiomelanocortin, agouti-related protein (AgRP), melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R) increased in culture with a peak on Day 30 which subsequently decreased at Day 45. Immunoreactivities for MC3R and MC4R were also observed in cells differentiated from human iPS cells. Application of a potent agonist for MC3R and MC4R, [Nle4, D-Phe7]-α-melanocyte-stimulating hormone, significantly increased intracellular cAMP levels, but this was suppressed by AgRP (83-132) and SHU9119. CONCLUSIONS These findings offer the possibility for drug developments using neurons differentiated from normal or disease-associated human iPS cells.
Collapse
Affiliation(s)
- Nobuko Yamada-Goto
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Yukari Ochi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Goro Katsuura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yui Yamashita
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ken Ebihara
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Michio Noguchi
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Junji Fujikura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daisuke Taura
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masakatsu Sone
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Human Health Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Paul E Gottschall
- Department of Pharmacology and Toxicology, Slot 611, University of Arkansas for Medical Sciences, AR, USA
| | - Kazuwa Nakao
- Department of Medicine and Clinical Science, Kyoto University Graduate School of Medicine, Kyoto, Japan; Kyoto University Graduate School of Medicine Medical Innovation Center, Kyoto, Japan
| |
Collapse
|
4
|
Chhabra KH, Morgan DA, Tooke BP, Adams JM, Rahmouni K, Low MJ. Reduced renal sympathetic nerve activity contributes to elevated glycosuria and improved glucose tolerance in hypothalamus-specific Pomc knockout mice. Mol Metab 2017; 6:1274-1285. [PMID: 29031726 PMCID: PMC5641634 DOI: 10.1016/j.molmet.2017.07.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/02/2017] [Accepted: 07/10/2017] [Indexed: 11/11/2022] Open
Abstract
Objective Hypothalamic arcuate nucleus-specific pro-opiomelanocortin deficient (ArcPomc−/−) mice exhibit improved glucose tolerance despite massive obesity and insulin resistance. We demonstrated previously that their improved glucose tolerance is due to elevated glycosuria. However, the underlying mechanisms that link glucose reabsorption in the kidney with ArcPomc remain unclear. Given the function of the hypothalamic melanocortin system in controlling sympathetic outflow, we hypothesized that reduced renal sympathetic nerve activity (RSNA) in ArcPomc−/− mice could explain their elevated glycosuria and consequent enhanced glucose tolerance. Methods We measured RSNA by multifiber recording directly from the nerves innervating the kidneys in ArcPomc−/− mice. To further validate the function of RSNA in glucose reabsorption, we denervated the kidneys of WT and diabetic db/db mice before measuring their glucose tolerance and urine glucose levels. Moreover, we performed western blot and immunohistochemistry to determine kidney GLUT2 and SGLT2 levels in either ArcPomc−/− mice or the renal-denervated mice. Results Consistent with our hypothesis, we found that basal RSNA was decreased in ArcPomc−/− mice relative to their wild type (WT) littermates. Remarkably, both WT and db/db mice exhibited elevated glycosuria and improved glucose tolerance after renal denervation. The elevated glycosuria in obese ArcPomc−/−, WT and db/db mice was due to reduced renal GLUT2 levels in the proximal tubules. Overall, we show that renal-denervated WT and diabetic mice recapitulate the phenotype of improved glucose tolerance and elevated glycosuria associated with reduced renal GLUT2 levels observed in obese ArcPomc−/− mice. Conclusion Hence, we conclude that ArcPomc is essential in maintaining basal RSNA and that elevated glycosuria is a possible mechanism to explain improved glucose tolerance after renal denervation in drug resistant hypertensive patients. Hypothalamic POMC is essential in maintaining basal renal sympathetic nerve activity. Renal denervation improves glucose tolerance in wild-type and db/db mice by elevating their glycosuria. Decreased renal GLUT2 is responsible for elevated glycosuria in mice with suppressed renal sympathetic nerve activity.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Donald A Morgan
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Benjamin P Tooke
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Case Western Reserve University, Cleveland, OH, USA
| | - Jessica M Adams
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kamal Rahmouni
- Department of Pharmacology, University of Iowa, Iowa City, IA, USA
| | - Malcolm J Low
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Yang LK, Tao YX. Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2486-2495. [PMID: 28433713 DOI: 10.1016/j.bbadis.2017.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 12/15/2022]
Abstract
The global prevalence of obesity highlights the importance of understanding on regulation of energy homeostasis. The central melanocortin system is an important intersection connecting the neural pathways controlling satiety and energy expenditure to regulate energy homeostasis by sensing and integrating the signals of external stimuli. In this system, neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy homeostasis. Recently, multiple intracellular signaling pathways and biased signaling at neural MCRs have been discovered, providing new insights into neural MCR signaling. This review attempts to summarize biased signaling including biased receptor mutants (both naturally occurring and lab-generated) and biased ligands at neural MCRs, and to provide a better understanding of obesity pathogenesis and new therapeutic implications for obesity treatment.
Collapse
Affiliation(s)
- Li-Kun Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
6
|
Navarro M. The Role of the Melanocortin System in Drug and Alcohol Abuse. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:121-150. [DOI: 10.1016/bs.irn.2017.06.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
7
|
Yang Z, Tao YX. Biased signaling initiated by agouti-related peptide through human melanocortin-3 and -4 receptors. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1485-94. [PMID: 27208795 DOI: 10.1016/j.bbadis.2016.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/09/2016] [Accepted: 05/16/2016] [Indexed: 01/01/2023]
Abstract
The neural melanocortin receptors (MCRs), melanocortin-3 and -4 receptors (MC3R and MC4R), have been increasingly recognized as important regulators of energy homeostasis. The orexigenic agouti-related peptide (AgRP), initially identified as an endogenous antagonist for both neural MCRs, has been suggested to be a biased agonist of MC4R independent of its antagonizing effects. In the present study, we sought to determine the potential of AgRP to regulate the activation of intracellular kinases, including extracellular signal-regulated kinase 1 and 2 (ERK1/2), AKT and AMP-activated protein kinase (AMPK), through neural MCRs. We showed that AgRP acted as a biased agonist in human MC3R (hMC3R), decreasing cAMP activity of constitutively active mutant (F347A) hMC3R but stimulating ERK1/2 activation in both wide type and F347A hMC3Rs. AgRP-stimulated ERK1/2 phosphorylation through MC3R was abolished by protein kinase A (PKA) inhibitor H-89 but not Rp-cAMPS, whereas AgRP-initiated ERK1/2 activation through MC4R was inhibited by phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin and LY294002. Both NDP-MSH and AgRP treatment induced significant AKT phosphorylation in GT1-7 cells but not in MC3R- or MC4R-transfected HEK293T cells. The phosphorylated AMPK levels in both GT1-7 cells and HERK293T cells transfected with neural MCRs were significantly decreased upon stimulation with NDP-MSH but not with AgRP. In summary, we provided novel data for AgRP-initiated multiple intracellular signaling pathways, demonstrating biased agonism of AgRP in both neural MCRs, leading to a better understanding of neural MCR pharmacology.
Collapse
MESH Headings
- AMP-Activated Protein Kinases/metabolism
- Agouti-Related Protein/metabolism
- Amino Acid Substitution
- Central Nervous System/metabolism
- Cyclic AMP/metabolism
- HEK293 Cells
- Humans
- Kinetics
- Ligands
- MAP Kinase Signaling System
- Mutagenesis, Site-Directed
- Peptide Fragments/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Receptor, Melanocortin, Type 3/agonists
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/agonists
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Zhao Yang
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
8
|
Anderson EJP, Çakir I, Carrington SJ, Cone RD, Ghamari-Langroudi M, Gillyard T, Gimenez LE, Litt MJ. 60 YEARS OF POMC: Regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 2016; 56:T157-74. [PMID: 26939593 PMCID: PMC5027135 DOI: 10.1530/jme-16-0014] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 12/20/2022]
Abstract
The melanocortin peptides derived from pro-opiomelanocortin (POMC) were originally understood in terms of the biological actions of α-melanocyte-stimulating hormone (α-MSH) on pigmentation and adrenocorticotrophic hormone on adrenocortical glucocorticoid production. However, the discovery of POMC mRNA and melanocortin peptides in the CNS generated activities directed at understanding the direct biological actions of melanocortins in the brain. Ultimately, discovery of unique melanocortin receptors expressed in the CNS, the melanocortin-3 (MC3R) and melanocortin-4 (MC4R) receptors, led to the development of pharmacological tools and genetic models leading to the demonstration that the central melanocortin system plays a critical role in the regulation of energy homeostasis. Indeed, mutations in MC4R are now known to be the most common cause of early onset syndromic obesity, accounting for 2-5% of all cases. This review discusses the history of these discoveries, as well as the latest work attempting to understand the molecular and cellular basis of regulation of feeding and energy homeostasis by the predominant melanocortin peptide in the CNS, α-MSH.
Collapse
Affiliation(s)
- Erica J P Anderson
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Isin Çakir
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sheridan J Carrington
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Roger D Cone
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Masoud Ghamari-Langroudi
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taneisha Gillyard
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA Meharry Medical CollegeDepartment of Neuroscience and Pharmacology, Nashville, Tennessee, USA
| | - Luis E Gimenez
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Michael J Litt
- Department of Molecular Physiology and BiophysicsVanderbilt University School of Medicine, Nashville, Tennessee, USA
| |
Collapse
|
9
|
Graebner AK, Iyer M, Carter ME. Understanding how discrete populations of hypothalamic neurons orchestrate complicated behavioral states. Front Syst Neurosci 2015; 9:111. [PMID: 26300745 PMCID: PMC4523943 DOI: 10.3389/fnsys.2015.00111] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 07/16/2015] [Indexed: 01/01/2023] Open
Abstract
A major question in systems neuroscience is how a single population of neurons can interact with the rest of the brain to orchestrate complex behavioral states. The hypothalamus contains many such discrete neuronal populations that individually regulate arousal, feeding, and drinking. For example, hypothalamic neurons that express hypocretin (Hcrt) neuropeptides can sense homeostatic and metabolic factors affecting wakefulness and orchestrate organismal arousal. Neurons that express agouti-related protein (AgRP) can sense the metabolic needs of the body and orchestrate a state of hunger. The organum vasculosum of the lamina terminalis (OVLT) can detect the hypertonicity of blood and orchestrate a state of thirst. Each hypothalamic population is sufficient to generate complicated behavioral states through the combined efforts of distinct efferent projections. The principal challenge to understanding these brain systems is therefore to determine the individual roles of each downstream projection for each behavioral state. In recent years, the development and application of temporally precise, genetically encoded tools has greatly improved our understanding of the structure and function of these neural systems. This review will survey recent advances in our understanding of how these individual hypothalamic populations can orchestrate complicated behavioral states due to the combined efforts of individual downstream projections.
Collapse
Affiliation(s)
- Allison K Graebner
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Manasi Iyer
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| | - Matthew E Carter
- Program in Neuroscience, Department of Biology, Williams College Williamstown, MA, USA
| |
Collapse
|
10
|
Tulloch AJ, Murray S, Vaicekonyte R, Avena NM. Neural responses to macronutrients: hedonic and homeostatic mechanisms. Gastroenterology 2015; 148:1205-18. [PMID: 25644095 DOI: 10.1053/j.gastro.2014.12.058] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 01/15/2023]
Abstract
The brain responds to macronutrients via intricate mechanisms. We review how the brain's neural systems implicated in homeostatic control of feeding and hedonic responses are influenced by the ingestion of specific types of food. We discuss how these neural systems are dysregulated in preclinical models of obesity. Findings from these studies can increase our understanding of overeating and, perhaps in some cases, the development of obesity. In addition, a greater understanding of the neural circuits affected by the consumption of specific macronutrients, and by obesity, might lead to new treatments and strategies for preventing unhealthy weight gain.
Collapse
Affiliation(s)
- Alastair J Tulloch
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Susan Murray
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Regina Vaicekonyte
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York
| | - Nicole M Avena
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, New York.
| |
Collapse
|
11
|
Tao YX. Constitutive activity in melanocortin-4 receptor: biased signaling of inverse agonists. ADVANCES IN PHARMACOLOGY 2015; 70:135-54. [PMID: 24931195 DOI: 10.1016/b978-0-12-417197-8.00005-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The melanocortin-4 receptor (MC4R) is a critical regulator of energy homeostasis, including both energy intake and energy expenditure. It mediates the actions of a number of hormones on energy balance. The endogenous ligands for MC4R include peptide agonists derived from processing of proopiomelanocortin and the antagonist Agouti-related peptide (AgRP). Wild-type MC4R has some basal (constitutive) activity. Naturally occurring and laboratory-generated mutations have been identified, which results in either increased or decreased basal activities. Impaired basal signaling has been suggested to be a cause of dysregulated energy homeostasis and early-onset obesity, although several constitutively active mutations have also been identified from obese patients. AgRP and several small-molecule antagonists have been shown to be inverse agonists in the Gs-cAMP pathway. However, in the extracellular signal-regulated kinase (ERK) 1/2 pathway, we showed that these inverse agonists are potent agonists, demonstrating convincingly that they are biased ligands. We also showed that some mutations that do not cause constitutive activation in the Gs-cAMP pathway cause constitutive activation in the ERK1/2 pathway, suggesting that they are biased receptors. The physiological and potential pathophysiological relevance of the biased constitutive signaling in MC4R and therapeutic potential remain to be investigated.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
12
|
Iwasa M, Kawabe K, Sapru HN. Activation of melanocortin receptors in the intermediolateral cell column of the upper thoracic cord elicits tachycardia in the rat. Am J Physiol Heart Circ Physiol 2013; 305:H885-93. [PMID: 23832700 DOI: 10.1152/ajpheart.00443.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Melanocortin receptors (MCRs) are present in the intermediolateral cell column of the spinal cord (IML). We tested the hypothesis that activation of MCRs in the IML elicits cardioacceleratory responses and the source of melanocortins in the IML may be the melanocortin-containing neurons in the hypothalamic arcuate nucleus (ARCN). Experiments were done in urethane-anesthetized, artificially ventilated adult male Wistar rats. Microinjections (50 nl) of α-melanocyte stimulating hormone (α-MSH) (0.4-2 mM) and adrenocorticotropic hormone (ACTH) (0.5-2 mM) into the right IML elicited increases in heart rate (HR). These tachycardic responses were blocked by microinjections of melanocortin receptor 4 (MC4R) antagonists [SHU9119 (0.25 mM) or agouti-related protein (AGRP, 0.1 mM)] into the right IML. Stimulation of right ARCN by microinjections (30 nl) of N-methyl-d-aspartic acid (NMDA, 10 mM) elicited increases in HR. Blockade of MC4Rs in the ipsilateral IML at T1-T3 using SHU9119 (0.25 mM) attenuated the tachycardic responses elicited by subsequent microinjections of NMDA into the ipsilateral ARCN. ARCN neurons retrogradely labeled by microinjections of Fluoro-Gold into the right IML showed immunoreactivity for proopiomelanocortin (POMC), α-MSH, and ACTH. Fibers immunoreactive for POMC, α-MSH, and ACTH were present in the IML at T1-T3. These results indicated that activation of MC4Rs in the right IML elicited tachycardia and one of the sources of melanocortins in the IML is the ARCN. Melanocortin levels are elevated in stress and ARCN neurons are activated during stress. Our results allude to the possibility that cardiac effects of stress may be mediated via melanocortin containing ARCN neurons that project to the IML.
Collapse
Affiliation(s)
- Masamitsu Iwasa
- Department of Neurological Surgery, Rutgers, New Jersey Medical School, Newark, New Jersey
| | | | | |
Collapse
|
13
|
Abstract
When administered into the brain, NPY acts at Y1 and Y5 receptors to increase food intake. The response occurs with a short latency and is quite robust, such that exogenous NPY is generally considered to be the most potent of a growing list of orexigenic compounds that act in the brain. The role of endogenous NPY is not so straightforward, however. Evidence from diverse types of experiments suggests that rather than initiating behavioral eating per se, endogenous NPY elicits autonomic responses that prepare the individual to better cope with consuming a calorically large meal.
Collapse
Affiliation(s)
- Adam P Chambers
- Departments of Medicine, University of Cincinnati, OH 45237, USA
| | | |
Collapse
|
14
|
De Jonghe BC, Hayes MR, Bence KK. Melanocortin control of energy balance: evidence from rodent models. Cell Mol Life Sci 2011; 68:2569-88. [PMID: 21553232 PMCID: PMC3135719 DOI: 10.1007/s00018-011-0707-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 01/18/2023]
Abstract
Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of longterm energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed.
Collapse
Affiliation(s)
- Bart C. De Jonghe
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Matthew R. Hayes
- Department of Psychiatry, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Kendra K. Bence
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
15
|
Both overexpression of agouti-related peptide or neuropeptide Y in the paraventricular nucleus or lateral hypothalamus induce obesity in a neuropeptide- and nucleus specific manner. Eur J Pharmacol 2011; 660:148-55. [DOI: 10.1016/j.ejphar.2010.12.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 11/18/2010] [Accepted: 12/11/2010] [Indexed: 10/18/2022]
|
16
|
Abstract
Obesity has become a serious public health problem and a major risk factor for the development of illnesses, such as insulin resistance and hypertension. Human homeostatic systems have adapted to daily changes in light and dark in a way that the body anticipates the sleep and activity periods. Mammals have developed an endogenous circadian clock located in the suprachiasmatic nuclei of the anterior hypothalamus that responds to the environmental light-dark cycle. Similar clocks have been found in peripheral tissues, such as the liver, intestine, and adipose tissue, regulating cellular and physiological functions. The circadian clock has been reported to regulate metabolism and energy homeostasis in the liver and other peripheral tissues. This is achieved by mediating the expression and/or activity of certain metabolic enzymes and transport systems. In return, key metabolic enzymes and transcription activators interact with and affect the core clock mechanism. In addition, the core clock mechanism has been shown to be linked with lipogenic and adipogenic pathways. Animals with mutations in clock genes that disrupt cellular rhythmicity have provided evidence for the relationship between the circadian clock and metabolic homeostasis. In addition, clinical studies in shift workers and obese patients accentuate the link between the circadian clock and metabolism. This review will focus on the interconnection between the circadian clock and metabolism, with implications for obesity and how the circadian clock is influenced by hormones, nutrients, and timed meals.
Collapse
Affiliation(s)
- Oren Froy
- Institute of Biochemistry, Food Science, and Nutrition, Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
17
|
Horvath TL, Andrews ZB, Diano S. Fuel utilization by hypothalamic neurons: roles for ROS. Trends Endocrinol Metab 2009; 20:78-87. [PMID: 19084428 DOI: 10.1016/j.tem.2008.10.003] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 10/07/2008] [Accepted: 10/07/2008] [Indexed: 02/06/2023]
Abstract
The hypothalamus plays a major part in regulating energy homeostasis by integrating hormonal and nutritional signals. Increasing evidence shows that specific neurons in the hypothalamus respond to changing glucose, lipid and amino acid levels. However, the intracellular substrate for such 'fuel sensing' and its integration into the neuronal doctrine as it relates to energy homeostasis remains elusive. Evidence points to differential fuel utilization in response to nutrient availability and free radical formation as crucial components in regulating neuronal functions. This review places these components in the context of neurobiological aspects of circuit-specific hypothalamic output, focusing on the melanocortin system. The effects of glucose and fatty acids are discussed with emphasis on free radical production in orexigenic and anorexigenic neurons of the arcuate nucleus.
Collapse
Affiliation(s)
- Tamas L Horvath
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | | | | |
Collapse
|
18
|
Abstract
The Agouti-Related Protein (AgRP) is a powerful orexigenic peptide that increases food intake when ubiquitously overexpressed or when administered centrally. AgRP-deficiency, on the other hand, leads to increased metabolic rate and a longer lifespan when mice consume a high fat diet. In humans, AgRP polymorphisms have been consistently associated with resistance to fatness in Blacks and Whites and resistance to the development of type-2 diabetes in African Blacks. Systemically administered AgRP accumulates in the liver, the adrenal gland and fat tissue while recent findings suggest that AgRP may also have inverse agonist effects, both centrally and peripherally. AgRP could thus modulate energy balance via different actions. Its absence or reduced functionality may offer a benefit both in terms of bringing about negative energy balance in obesigenic environments, as well as leading to an increased lifespan.
Collapse
Affiliation(s)
- O. Ilnytska
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| | - G. Argyropoulos
- Pennington Biomedical Research Center, LSU System, Baton Rouge, Louisiana, 70809 USA
| |
Collapse
|
19
|
Abstract
Neuronal control of body energy homeostasis is the key mechanism by which animals and humans regulate their long-term energy balance. Various hypothalamic neuronal circuits (which include the hypothalamic melanocortin, midbrain dopamine reward and caudal brainstem autonomic feeding systems) control energy intake and expenditure to maintain body weight within a narrow range for long periods of a life span. Numerous peripheral metabolic hormones and nutrients target these structures providing feedback signals that modify the default "settings" of neuronal activity to accomplish this balance. A number of molecular genetic tools for manipulating individual components of brain energy homeostatic machineries, in combination with anatomical, electrophysiological, pharmacological and behavioral techniques, have been developed, which provide a means for elucidating the complex molecular and cellular mechanisms of feeding behavior and metabolism. This review will highlight some of these advancements and focus on the neuronal circuitries of energy homeostasis.
Collapse
Affiliation(s)
- Qian Gao
- Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, United States.
| | | |
Collapse
|
20
|
Abstract
The observation that cycles of sleep and wakefulness occur with a periodicity fixed in time to match the rotation of the Earth on its axis provided a key to unlock the first genetic code for a neurobehavioral pathway in flies and ultimately in mice. As a remarkable outcome of this discovery, we have gained an unprecedented view of the conserved genetic program that encodes a sense of time across all kingdoms of life. The tools are now in hand to begin to understand how important processes such as energy homeostasis and fuel utilization are coordinated to anticipate daily changes in environment caused by the rising and setting of the sun. A better understanding of the impact of circadian gene networks on nutrient balance at the molecular, cellular, and system levels promises to shed light on the emerging association between disorders of diabetes, obesity, sleep, and circadian timing.
Collapse
Affiliation(s)
- Kathryn Moynihan Ramsey
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Evanston, IL 60208, USA
| | | | | | | |
Collapse
|
21
|
Jackson PJ, Douglas NR, Chai B, Binkley J, Sidow A, Barsh GS, Millhauser GL. Structural and molecular evolutionary analysis of Agouti and Agouti-related proteins. CHEMISTRY & BIOLOGY 2006; 13:1297-305. [PMID: 17185225 PMCID: PMC2907901 DOI: 10.1016/j.chembiol.2006.10.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/17/2006] [Revised: 09/20/2006] [Accepted: 10/11/2006] [Indexed: 10/23/2022]
Abstract
Agouti (ASIP) and Agouti-related protein (AgRP) are endogenous antagonists of melanocortin receptors that play critical roles in the regulation of pigmentation and energy balance, respectively, and which arose from a common ancestral gene early in vertebrate evolution. The N-terminal domain of ASIP facilitates antagonism by binding to an accessory receptor, but here we show that the N-terminal domain of AgRP has the opposite effect and acts as a prodomain that negatively regulates antagonist function. Computational analysis reveals similar patterns of evolutionary constraint in the ASIP and AgRP C-terminal domains, but fundamental differences between the N-terminal domains. These studies shed light on the relationships between regulation of pigmentation and body weight, and they illustrate how evolutionary structure function analysis can reveal both unique and common mechanisms of action for paralogous gene products.
Collapse
Affiliation(s)
- Pilgrim J. Jackson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Nick R. Douglas
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| | - Biaoxin Chai
- Department of Surgery, University of Michigan Medical Center, Ann Arbor, Michigan 48109-0682
| | - Jonathan Binkley
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305
| | - Arend Sidow
- Department of Genetics, Stanford University Medical Center, Stanford, California 94305
- Department of Pathology, Stanford University Medical Center, Stanford, California 94305
| | - Gregory S. Barsh
- Department of Genetics, Stanford University Medical Center, Stanford, California 94305
- Department of Pediatrics, Stanford University Medical Center, Stanford, California 94305
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064
| |
Collapse
|
22
|
Abstract
The past decade has witnessed dramatic advancements regarding the neuroendocrine control of food intake and energy homeostasis and the effects of peripheral metabolic signals on the brain. The development of molecular and genetic tools to visualize and selectively manipulate components of homeostatic systems, in combination with well-established neuroanatomical, electrophysiological, behavioral, and pharmacological techniques, are beginning to provide a clearer picture of the intricate circuits and mechanisms of these complex processes. In this review, we attempt to provide some highlights of these advancements and pinpoint some of the shortcomings of the current understanding of the brain's involvement in the regulation of daily energy homeostasis.
Collapse
Affiliation(s)
- Alfonso Abizaid
- Department of Obstetrics, Gynecology, and Reproductive Sciences, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
23
|
Brown S, Chitravanshi VC, Sapru HN. Cardiovascular actions of adrenocorticotropin microinjections into the nucleus tractus solitarius of the rat. Neuroscience 2006; 143:863-74. [PMID: 16997487 DOI: 10.1016/j.neuroscience.2006.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 08/11/2006] [Accepted: 08/16/2006] [Indexed: 11/27/2022]
Abstract
The presence of adrenocorticotropin (ACTH) containing cells and melanocortin (MC) receptors has been reported in the nucleus tractus solitarius (NTS) of the rat. The importance of the NTS in the regulation of cardiovascular function is also well established. Based on these reports, it was hypothesized that ACTH acting within the NTS may modulate the central regulation of cardiovascular function. To test this hypothesis, cardiovascular effects of ACTH in the NTS were investigated in intact urethane-anesthetized and unanesthetized decerebrate, artificially ventilated, adult male Wistar rats. Microinjections of ACTH (0, 0.5, 1, 2, and 4 mM) into the medial subnucleus of NTS (mNTS) elicited decreases in mean arterial pressure (MAP; 0+/-0, 24.4+/-3.5, 35.7+/-4.3, 44.5+/-5.8 and 53.7+/-5.6 mm Hg, respectively) and heart rate (HR; 0+/-0, 25.7+/-5.3, 35.5+/-6.4, 47.5+/-12.1 and 55.0+/-5.6 beats/min, respectively). The onset and duration of the responses to microinjections of ACTH (0.5-4 mM) were 5-10 s and 45-120 s, respectively. Control microinjections of artificial cerebrospinal fluid (aCSF) did not elicit any response. The volume of all microinjections was 100 nl. The concentrations of ACTH that elicited depressor and bradycardic responses when microinjected into the mNTS (e.g. 1 or 2 mM, 100 nl), did not elicit a response when injected i.v. (n=5) or i.c.v. (n=2) indicating that there was no leakage of the drug from the injection site in the mNTS. Microinjections of MC3/4 receptor antagonists (acetyl-[Nle(4), Asp(5), d-2-Nal(7), Lys(10)]-cyclo-alpha-MSH amide, fragments 4-10 (SHU9119) and agouti-related protein (83-132) amide) into the mNTS blocked the responses to ACTH. Microinjections of ACTH (2 mM) into the mNTS decreased efferent greater splanchnic nerve activity. Bilateral vagotomy significantly attenuated ACTH-induced bradycardia. These results indicated that: 1) microinjections of ACTH into the mNTS elicited depressor and bradycardic responses, 2) these responses were mediated via MC3/4 receptors, 3) the depressor effects were mediated via a decrease in the activity of the sympathetic nervous system, and 4) the bradycardic responses were vagally mediated.
Collapse
Affiliation(s)
- S Brown
- Department of Neurology and Neurosciences, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | |
Collapse
|
24
|
Kawabe T, Chitravanshi VC, Kawabe K, Sapru HN. Cardiovascular effects of adrenocorticotropin microinjections into the rostral ventrolateral medullary pressor area of the rat. Brain Res 2006; 1102:117-26. [PMID: 16797500 DOI: 10.1016/j.brainres.2006.05.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/13/2006] [Accepted: 05/01/2006] [Indexed: 11/26/2022]
Abstract
The presence of adrenocorticotropic hormone (ACTH)-immunoreactive cells and melanocortin (MC) receptors (MC4 and to a lesser extent MC3) has been demonstrated in the medullary reticular formation in the general area where rostral ventrolateral medullary pressor area (RVLM) is located. The importance of RVLM in the regulation of cardiovascular function is well established. Based on these reports, it was hypothesized that ACTH may play a role in the regulation of cardiovascular function. To test this hypothesis, experiments were carried out on artificially ventilated, adult male, urethane-anesthetized and unanesthetized mid-collicular decerebrate rats. The RVLM was identified by microinjections (100 nl) of L-glutamate (L-Glu). Microinjections (100 nl) of ACTH (0.5, 1 and 2 mmol/l) into the RVLM elicited increases in MAP and HR; tachycardic responses were relatively inconsistent. The effects of ACTH were blocked by SHU9119 and agouti-related protein (AGRP). SHU9119 (a synthetic compound) and AGRP (an endogenous peptide) are antagonists for MC4, and to a lesser extent MC3, receptors. The specificity of these antagonists for MC receptors was indicated by their lack of effect on l-Glu responses. Microinjection of ACTH into the RVLM increased the efferent discharge in the greater splanchnic nerve. It was concluded that (1) ACTH exerts excitatory effects on RVLM neurons resulting in pressor and tachycardic responses, (2) these responses were mediated via MC4 and to a lesser extent MC3 receptors in the RVLM, and (3) the pressor effects of ACTH were mediated via sympathetic activation. This is the first report showing central cardiovascular actions of ACTH.
Collapse
Affiliation(s)
- Tetsuya Kawabe
- Department of Neurological Surgery, MSB H-586, University of Medicine and Dentistry of New Jersey-New Jersey Medical School, Newark, 07103, USA
| | | | | | | |
Collapse
|
25
|
Creemers JWM, Pritchard LE, Gyte A, Le Rouzic P, Meulemans S, Wardlaw SL, Zhu X, Steiner DF, Davies N, Armstrong D, Lawrence CB, Luckman SM, Schmitz CA, Davies RA, Brennand JC, White A. Agouti-related protein is posttranslationally cleaved by proprotein convertase 1 to generate agouti-related protein (AGRP)83-132: interaction between AGRP83-132 and melanocortin receptors cannot be influenced by syndecan-3. Endocrinology 2006; 147:1621-31. [PMID: 16384863 DOI: 10.1210/en.2005-1373] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Agouti-related protein (AGRP) plays a key role in energy homeostasis. The carboxyl-terminal domain of AGRP acts as an endogenous antagonist of the melanocortin-4 receptor (MC4-R). It has been suggested that the amino-terminal domain of AGRP binds to syndecan-3, thereby modulating the effects of carboxyl-terminal AGRP at the MC4-R. This model assumes that AGRP is secreted as a full-length peptide. In this study we found that AGRP is processed intracellularly after Arg(79)-Glu(80)-Pro(81)-Arg(82). The processing site suggests cleavage by proprotein convertases (PCs). RNA interference and overexpression experiments showed that PC1/3 is primarily responsible for cleavage in vitro, although both PC2 and PC5/6A can also process AGRP. Dual in situ hybridization demonstrated that PC1/3 is expressed in AGRP neurons in the rat hypothalamus. Moreover, hypothalamic extracts from PC1-null mice contained 3.3-fold more unprocessed full-length AGRP, compared with wild-type mice, based on combined HPLC and RIA analysis, demonstrating that PC1/3 plays a role in AGRP cleavage in vivo. We also found that AGRP(83-132) is more potent an antagonist than full-length AGRP, based on cAMP reporter assays, suggesting that posttranslational cleavage is required to potentiate the effect of AGRP at the MC4-R. Because AGRP is cleaved into distinct amino-terminal and carboxyl-terminal peptides, we tested whether amino-terminal peptides modulate food intake. However, intracerebroventricular injection of rat AGRP(25-47) and AGRP(50-80) had no effect on body weight, food intake, or core body temperature. Because AGRP is cleaved before secretion, syndecan-3 must influence food intake independently of the MC4-R.
Collapse
Affiliation(s)
- John W M Creemers
- Department of Human Genetics, University of Leuven and Flanders Interuniversity Institute for Biotechnology, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Loos RJF, Rankinen T, Rice T, Rao DC, Leon AS, Skinner JS, Bouchard C, Argyropoulos G. Two ethnic-specific polymorphisms in the human Agouti-related protein gene are associated with macronutrient intake. Am J Clin Nutr 2005; 82:1097-101. [PMID: 16280444 DOI: 10.1093/ajcn/82.5.1097] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The Agouti-related protein (AGRP), an appetite modulator, induces hyperphagia when administered intracerebroventricularly or when overexpressed in transgenic mice. Exogenous administration of AGRP in rodents predisposes to high fat and high sugar intakes. OBJECTIVE The objective was to examine the potential associations of 2 ethnic-specific polymorphisms in the AGRP gene (Ala67Thr in whites and -38C>T in blacks) in the Health, Risk Factors, Exercise Training, and Genetics (HERITAGE) Family Study. DESIGN We examined the effect of the 2 polymorphisms in the AGRP gene on self-reported macronutrient intakes in 478 white and 272 black participants in the HERITAGE Family Study. RESULTS Both AGRP polymorphisms showed a significant association with energy intake. In whites, a smaller proportion of total energy was derived from fat by the Ala67Thr heterozygotes (mean +/- SEM: 29.4 +/- 0.7%) than by the Ala67Ala homozygotes (31.5 +/- 0.5%; P = 0.009), mainly because of a lower intake of saturated (P = 0.06) and monounsaturated (P = 0.01) fats by the Ala67Thr heterozygotes. The percentage of energy from carbohydrates was 2.6% greater in the Ala67Thr heterozygotes (55.1 +/- 1.1%) than in the Ala67Ala homozygotes (52.5 +/- 0.6%; P = 0.03). In blacks, protein intake was associated with the -38C>T promoter polymorphism. T/T homozygotes had a significantly lower protein intake than did the C-allele carriers (C/C: 16.8 +/- 0.4%; C/T: 17.2 +/- 0.2%; T/T: 15.4 +/- 0.7%; P = 0.04). No significant differences in total energy and alcohol intakes existed between genotype groups in blacks or whites. CONCLUSIONS The present study suggests that 2 ethnic-specific AGRP variants, previously shown to be associated with leanness in the HERITAGE Family Study, are also associated with macronutrient intake.
Collapse
Affiliation(s)
- Ruth J F Loos
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Doghman M, Delagrange P, Berthelon MC, Durand P, Naville D, Bégeot M. Sustained inhibitory effect of Agouti Related Protein on the ACTH-induced cortisol production by bovine cultured adrenal cells. ACTA ACUST UNITED AC 2005; 124:215-9. [PMID: 15544862 DOI: 10.1016/j.regpep.2004.07.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Revised: 07/16/2004] [Accepted: 07/16/2004] [Indexed: 11/18/2022]
Abstract
The adrenal gland is the second tissue after hypothalamus exhibiting high expression level of Agouti Related Protein (Agrp) mRNA, which suggests that this peptide may control adrenal cell functions. However, its role in this tissue remained to be determined. In this report, we studied the effects of a long-term treatment (24 h) of cultured bovine adrenal cells by Agrp on the (Nle4, d-Phe7)-alphaMSH (NDP-alphaMSH)- or ACTH-induced cortisol release. We showed that Agrp inhibited, in a dose-dependent manner, the 10(-9) M NDP-alphaMSH-induced cortisol production through its antagonistic properties towards MSH at the level of MC4-R. Surprisingly, we found that Agrp in the same conditions of cell treatment also induced a strong inhibition of the ACTH-induced cortisol release. These effects were stronger using low concentrations of Agrp and disappeared for higher concentrations resulting in U-shaped curve data. There was no effect of SHU9119 in the same conditions of stimulation of the cells. Our data confirmed that Agrp is not an antagonist of ACTH at the level of MC2-R and that its sustained effect on ACTH-induced steroidogenesis did not involve its antagonistic properties at the level of MC4-R. The hypothesis would be that Agrp is acting on adrenal steroidogenesis through an alternate mechanism.
Collapse
Affiliation(s)
- Mabrouka Doghman
- INSERM U418-INRA UMR 1245 and IFR Laënnec, Hôpital Debrousse and Claude Bernard University, Lyon, France
| | | | | | | | | | | |
Collapse
|
28
|
Stütz AM, Morrison CD, Argyropoulos G. The agouti-related protein and its role in energy homeostasis. Peptides 2005; 26:1771-81. [PMID: 15961186 DOI: 10.1016/j.peptides.2004.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Accepted: 12/01/2004] [Indexed: 12/30/2022]
Abstract
The melanocortin system plays an important role in the regulation of energy homeostasis. The Agouti-related protein (AGRP) is a natural antagonist of the action of alpha-melanocyte stimulating hormone (alpha-MSH) at the melanocortin receptors (MCR). AGRP is upregulated by fasting while intracerebroventricular injections of synthetic AGRP lead to increased appetite and food intake. Transgenic mice overexpressing AGRP are also hyperphagic and eventually become obese. AGRP is, therefore, a significant regulator of energy balance and a candidate gene for human fatness. Indeed, humans with common single nucleotide polymorphisms (SNPs) in the promoter or the coding region are leaner and resistant to late-onset obesity than wild-type individuals. AGRP is also expressed in the periphery. Recent studies show that AGRP in the adrenal gland is upregulated by fasting as much as it is in the hypothalamus. These data open up the possibility for a wider role by AGRP not only in food intake but also in the regulation of energy balance through its actions on peripheral tissues. This review summarizes recent advances in the biochemical and physiological properties of AGRP in an effort to enhance our understanding of the role this powerful neuropeptide plays in mammalian energy homeostasis.
Collapse
Affiliation(s)
- Adrian M Stütz
- Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | |
Collapse
|
29
|
Irani BG, Haskell-Luevano C. Feeding effects of melanocortin ligands--a historical perspective. Peptides 2005; 26:1788-99. [PMID: 16046247 DOI: 10.1016/j.peptides.2004.11.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Accepted: 11/18/2004] [Indexed: 11/25/2022]
Abstract
The process of energy homeostasis is a highly regulated process involving interacting signals between a variety of anorexigenic and orexigenic peptides, proteins and signaling molecules. The melanocortin system is an important component of this complex regulatory network. Involvement of the melanocortin pathway in the control of food intake and body weight regulation has been studied extensively in the past two decades. Previous studies that involve central administration of melanocortin molecules and examination of molecules that effect food intake in melanocortin knockout (KO) mice (MC3R, MC4R, POMC, AGRP and NPY) have been examined. In this review, we have summarized feeding studies that have resulted in the recognition of the melanocortin system as a major contributor to the complex neuroendocrine system regulating energy homeostasis.
Collapse
Affiliation(s)
- Boman G Irani
- Department of Medicinal Chemistry, University of Florida, P.O. Box 100485, Gainesville, FL-32610, USA
| | | |
Collapse
|
30
|
Jackson PJ, Yu B, Hunrichs B, Thompson DA, Chai B, Gantz I, Millhauser GL. Chimeras of the agouti-related protein: insights into agonist and antagonist selectivity of melanocortin receptors. Peptides 2005; 26:1978-87. [PMID: 16009463 DOI: 10.1016/j.peptides.2004.12.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Accepted: 12/12/2004] [Indexed: 11/29/2022]
Abstract
The specific melanocortin receptors, MC3R and MC4R, are directly linked to metabolism and body weight control. These receptors are activated by the peptide hormone alpha-MSH and antagonized by the agouti-related protein (AGRP). Whereas alpha-MSH acts broadly on most members of the MCR family (with the exception of MC2R), AGRP is highly specific for only MC3R and MC4R. AGRP is a complex ligand of approximately 100 amino acids. Within AGRP, MCR recognition and antagonism is localized to a 34 residue, cysteine-rich domain that adopts an inhibitor cystine knot (ICK) fold. An oxidatively folded peptide corresponding to this domain, referred to as mini-AGRP, exhibits full antagonist function and selectivity for MC3R and MC4R. Here we investigate a series of chimera proteins based on the mini-AGRP scaffold. Amino acid sequences derived from peptide agonists are grafted into the mini-AGRP active loop, implicated in receptor recognition, with the goal of producing ICK based agonists specific for MC3R and MC4R. Several constructs indeed exhibited potent agonist activity; however, with all chimeras, receptor selectivity is significantly altered. Pharmacologic data indicate that the chimeras do not interact with MC receptors through native AGRP like contacts. A model to explain the data suggest that there is only partial overlap of the agonist versus antagonist binding surfaces within MC receptors. Moreover, accessibility to the binding pocket is highly receptor specific with MC3R being the least tolerant of ligand alterations.
Collapse
Affiliation(s)
- Pilgrim J Jackson
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Pritchard LE, White A. Agouti-related protein: more than a melanocortin-4 receptor antagonist? Peptides 2005; 26:1759-70. [PMID: 15996791 DOI: 10.1016/j.peptides.2004.11.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Accepted: 11/16/2004] [Indexed: 01/08/2023]
Abstract
It is well established that agouti-related protein (AGRP) can act as a competitive antagonist to proopiomelanocortin (POMC)-derived peptides at the melanocortin-4 receptor (MC4R), and that this homeostatic mechanism is important as a means of coordinating appetite with perceived metabolic requirement. However, there are clearly additional facets to the physiological role of AGRP, given that it is active in MC4R knockout mice and it has strikingly long-lasting effects on food intake, compared with MC4R agonists. In this review we focus on: (i) evidence that AGRP is more sensitive to perturbations in energy balance than POMC and is therefore the primary basis of melanocortinergic regulation. (ii) Evidence that the bioactive peptide AGRP83-132, acts by alternate mechanism(s) to elicit its long-term effects on food intake. (iii) Evidence that AGRP is post-translationally cleaved to generate AGRP83-132 and one or more N terminal peptides, which may have an important physiological role(s) that are independent of the melanocortin system. A clear understanding of how proAGRP processing is regulated, and the role of resultant peptides, may define additional therapeutic targets in the treatment of obesity.
Collapse
Affiliation(s)
- Lynn E Pritchard
- School of Biological Sciences, University of Manchester, Stopford Building, Oxford Road, Manchester M13 9PT, UK
| | | |
Collapse
|
32
|
de Rijke CE, Jackson PJ, Garner KM, van Rozen RJ, Douglas NR, Kas MJH, Millhauser GL, Adan RAH. Functional analysis of the Ala67Thr polymorphism in agouti related protein associated with anorexia nervosa and leanness. Biochem Pharmacol 2005; 70:308-16. [PMID: 15927146 DOI: 10.1016/j.bcp.2005.04.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/21/2005] [Accepted: 04/22/2005] [Indexed: 11/19/2022]
Abstract
AgRP is a neuropeptide that stimulates food intake through inhibition of central melanocortin receptors (MCRs). In humans, the non-conservative amino acid substitution Alanine (Ala) 67 Threonine (Thr) has been associated with Anorexia Nervosa and with leanness. In the present study, the cellular distribution, processing and in vitro and in vivo activities of Ala67 and Thr67 AgRP were investigated. Western blots of media and lysates of BHK cells stably transfected with Ala67 or Thr67 expression constructs showed identical AgRP bands. Both Ala67 and Thr67 AgRP colocalised with the Golgi apparatus, but not with the ER or lysosomes when expressed in Att20 D16V cells. Also, no differences were observed between the potencies of bacterially expressed Ala67 and Thr67 AgRP to stimulate MC4R in a reporter gene assay or inhibit food intake in rats. Taken together, no evidence was found for a functional defect of Thr67 AgRP related to MC4R interactions.
Collapse
Affiliation(s)
- Corine E de Rijke
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Navarro M, Cubero I, Chen AS, Chen HY, Knapp DJ, Breese GR, Marsh DJ, Thiele TE. Effects of melanocortin receptor activation and blockade on ethanol intake: a possible role for the melanocortin-4 receptor. Alcohol Clin Exp Res 2005; 29:949-57. [PMID: 15976520 PMCID: PMC1360238 DOI: 10.1097/01.alc.0000167740.19702.8c] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND The melanocortin (MC) system is composed of peptides that are cleaved from the polypeptide precursor pro-opiomelanocortin. A growing body of literature suggests that the MC system modulates neurobiological responses to drugs of abuse. Because ethanol has direct effects on central pro-opiomelanocortin activity, it is possible that MC neuropeptides participate in the control of voluntary ethanol consumption. Here we assessed the possibility that MC receptor (MCR) agonists modulate ethanol intake via the MC3 receptor (MC3R) and/or the MC4 receptor (MC4R) and whether the MCR antagonist AgRP-(83-132) controls ethanol consumption. METHODS Mc3r-deficient (Mc3r) and wild-type (Mc3r) littermate mice were given intraperitoneal (10 mg/kg) and intracerebroventricular (1.0 microg ICV) doses of melanotan II (MTII), a nonselective MCR agonist. To assess the role of MC4R, C57BL/6J mice were given an ICV infusion of the highly selective MC4R agonist cyclo(NH-CH2-CH2-CO-His-d-Phe-Arg-Trp-Glu)-NH2 (1.0 or 3.0 microg). Finally, naïve C57BL/6J mice were given an ICV infusion of AgRP-(83-132) (0.05 and 1.0 microg). RESULTS MTII was similarly effective at reducing ethanol drinking in Mc3r-deficient (Mc3r) and wild-type (Mc3r) littermate mice. Furthermore, ICV infusion of the MC4R agonist significantly reduced ethanol drinking, whereas ICV infusion of AgRP-(83-132) significantly increased ethanol drinking in C57BL/6J mice. Neither MTII nor AgRP-(83-132) altered blood ethanol levels at doses that modulated ethanol drinking. CONCLUSIONS The present results suggest that MC4R, and not MC3R, modulates MCR agonist-induced reduction of ethanol consumption and that ethanol intake is increased by the antagonistic actions of AgRP-(83-132). These findings strengthen the argument that MCR signaling controls ethanol consumption and that compounds directed at MCR may represent promising targets for treating alcohol abuse disorders in addition to obesity.
Collapse
Affiliation(s)
- Montserrat Navarro
- From the Department of Psychology (TET), Bowles Center for Alcohol Studies (MN, DJK, GRB, TET), Department of Psychiatry (DJK, GRB), and Department of Pharmacology (GRB), University of North Carolina, Chapel Hill, North Carolina; Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (ASC, HYC, DJM); and Department of Neurociencia y Ciencias de la Salud, University of Almeria, Spain (MN, IC)
| | - Inmaculada Cubero
- From the Department of Psychology (TET), Bowles Center for Alcohol Studies (MN, DJK, GRB, TET), Department of Psychiatry (DJK, GRB), and Department of Pharmacology (GRB), University of North Carolina, Chapel Hill, North Carolina; Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (ASC, HYC, DJM); and Department of Neurociencia y Ciencias de la Salud, University of Almeria, Spain (MN, IC)
| | - Airu S. Chen
- From the Department of Psychology (TET), Bowles Center for Alcohol Studies (MN, DJK, GRB, TET), Department of Psychiatry (DJK, GRB), and Department of Pharmacology (GRB), University of North Carolina, Chapel Hill, North Carolina; Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (ASC, HYC, DJM); and Department of Neurociencia y Ciencias de la Salud, University of Almeria, Spain (MN, IC)
| | - Howard Y. Chen
- From the Department of Psychology (TET), Bowles Center for Alcohol Studies (MN, DJK, GRB, TET), Department of Psychiatry (DJK, GRB), and Department of Pharmacology (GRB), University of North Carolina, Chapel Hill, North Carolina; Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (ASC, HYC, DJM); and Department of Neurociencia y Ciencias de la Salud, University of Almeria, Spain (MN, IC)
| | - Darin J. Knapp
- From the Department of Psychology (TET), Bowles Center for Alcohol Studies (MN, DJK, GRB, TET), Department of Psychiatry (DJK, GRB), and Department of Pharmacology (GRB), University of North Carolina, Chapel Hill, North Carolina; Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (ASC, HYC, DJM); and Department of Neurociencia y Ciencias de la Salud, University of Almeria, Spain (MN, IC)
| | - George R. Breese
- From the Department of Psychology (TET), Bowles Center for Alcohol Studies (MN, DJK, GRB, TET), Department of Psychiatry (DJK, GRB), and Department of Pharmacology (GRB), University of North Carolina, Chapel Hill, North Carolina; Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (ASC, HYC, DJM); and Department of Neurociencia y Ciencias de la Salud, University of Almeria, Spain (MN, IC)
| | - Donald J. Marsh
- From the Department of Psychology (TET), Bowles Center for Alcohol Studies (MN, DJK, GRB, TET), Department of Psychiatry (DJK, GRB), and Department of Pharmacology (GRB), University of North Carolina, Chapel Hill, North Carolina; Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (ASC, HYC, DJM); and Department of Neurociencia y Ciencias de la Salud, University of Almeria, Spain (MN, IC)
| | - Todd E. Thiele
- From the Department of Psychology (TET), Bowles Center for Alcohol Studies (MN, DJK, GRB, TET), Department of Psychiatry (DJK, GRB), and Department of Pharmacology (GRB), University of North Carolina, Chapel Hill, North Carolina; Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (ASC, HYC, DJM); and Department of Neurociencia y Ciencias de la Salud, University of Almeria, Spain (MN, IC)
| |
Collapse
|
34
|
Chai BX, Pogozheva ID, Lai YM, Li JY, Neubig RR, Mosberg HI, Gantz I. Receptor−Antagonist Interactions in the Complexes of Agouti and Agouti-Related Protein with Human Melanocortin 1 and 4 Receptors,. Biochemistry 2005; 44:3418-31. [PMID: 15736952 DOI: 10.1021/bi0478704] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The molecular interactions between human melanocortin receptor-1 and -4 (hMC1R and hMC4R) and their endogenous antagonists, agouti signaling protein (ASIP) and agouti-related protein (AGRP), were assessed by studying the effects of site-directed mutations on the binding affinity of (125)I-ASIP[90-132(L89Y)] and (125)I-AGRP(86-132). Mutations of homologous residues from transmembrane helices (TMHs) 3 and 6 and extracellular loop (EL) 3 (D121A, T124A, F257A, and F277M in hMC1R and D126A, I129A F261A, and M281F in hMC4R) impaired binding of both antagonists to hMC4R and binding of the ASIP fragment to hMC1R. However, the mutations in TMH2 (E94A in hMC1R and E100A in hMC4R), TMH7 (F280A in hMC1R and F284A in hMC4R), and EL2 (Y183S, H184S, and D184H in hMC1R) only significantly affected binding of the ASIP fragment. The dependence of agonist binding on the dithiothreitol concentration followed a monophasic curve for wild-type hMC4R and its C40A, C271A, and C279A mutants and a biphasic curve for hMC1R, suggesting the presence of at least one structurally and functionally essential disulfide bond in both wild-type receptors and the hMC4R mutants. Models of complexes of both receptors with the ASIP fragment and hMC4R with the AGRP fragment were calculated using constraints from the experimental structures of rhodopsin and AGRP fragments, a set of deduced hydrogen bonds, supplemented by two proposed disulfide bridges and receptor-ligand contacts, derived from our mutagenesis data. In the models of the ASIP fragment complexed with both receptors, the core ligand tripeptide, Arg-Phe-Phe, positioned between TMHs 3 and 6, is shifted toward TMHs 2 and 7 relative to its position in the AGRP-hMC4R model, while the N-terminal loop and two central disulfides of the antagonists interact with EL2 of the receptors.
Collapse
MESH Headings
- Agouti Signaling Protein
- Agouti-Related Protein
- Amino Acid Sequence
- Animals
- Binding Sites/genetics
- Cattle
- Cell Line
- Disulfides/chemistry
- Humans
- Intercellular Signaling Peptides and Proteins/chemistry
- Intercellular Signaling Peptides and Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Peptide Fragments/chemistry
- Peptide Fragments/metabolism
- Protein Binding/genetics
- Proteins/chemistry
- Proteins/metabolism
- Receptor, Melanocortin, Type 1/antagonists & inhibitors
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 1/metabolism
- Receptor, Melanocortin, Type 4/antagonists & inhibitors
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Rhodopsin/chemistry
- Structural Homology, Protein
Collapse
Affiliation(s)
- Biao-Xin Chai
- Department of Surgery, School of Medicine, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Xiang L, Murai A, Muramatsu T. The effects of agouti-related protein gene transfer in vivo by electroporation in mice. Neurosci Lett 2005; 370:108-13. [PMID: 15488304 DOI: 10.1016/j.neulet.2004.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/12/2004] [Accepted: 08/03/2004] [Indexed: 10/26/2022]
Abstract
In the present study, the cDNA encoding agouti-related protein (AGRP) gene known as an orexigenic factor was transferred in vivo to test whether food intake and body weight gain is improved in mice. When the expression plasmid of AGRP gene driven by mouse beta-actin, pActAGRP, was transferred into leg muscle by electroporation, body weight of gene-transferred mice was significantly increased at 14 days and afterwards compared with that of control counterparts (p < 0.05). Likewise, daily food intake was also significantly higher in the AGRP gene-transferred mice than in the control mice at 4 days and afterwards (p < 0.05). A significant increase in serum AGRP concentration of the AGRP gene-transferred group was detected compared with the control group at 1 week (p < 0.01), but the difference quickly disappeared at 3 weeks. However, the hypothalamic NPY mRNA abundance of AGRP gene-transferred mice was significantly higher than that of the control mice at 3 weeks (p < 0.05). These results suggested that instead of hormone administration per se, in vivo AGPR gene transfer into skeletal muscle was found to mimic hormonal effects. The present methodology of in vivo gene transfer by electroporation might be useful to promote growth and food intake in farm livestock as well as experimental animals.
Collapse
Affiliation(s)
- Lan Xiang
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
36
|
Wilczynski AM, Joseph CG, Haskell-Luevano C. Current trends in the structure—activity relationship studies of the endogenous agouti-related protein (AGRP) melanocortin receptor antagonist. Med Res Rev 2005; 25:545-56. [PMID: 16044415 DOI: 10.1002/med.20037] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Agouti-related protein (AGRP) is an endogenous antagonist of the melanocortin-3 and -4 (MC3R and MC4) G-protein coupled receptors. The 87-132 amino acid C-terminal domain of hAGRP possesses five disulfide bridges and a well-defined three-dimensional structure that displays full biological activity as compared to the full-length protein. Based on the NMR structure of the C-terminal AGRP(87-132), a novel mini-protein, referred to as "Mini-AGRP" was designed that exhibited receptor binding affinity and antagonism similar to that of the parent hAGRP(87-132) protein. It was demonstrated that this new-engineered protein autonomously folds to the inhibitor cystine knot (ICK) motif. As this AGRP is a novel mammalian protein involved in energy homeostasis and possibly other physiological functions remaining to be identified, structure-function studies are starting to emerge toward the understanding of how this unique protein putatively interacts with the melanocortin receptors with the objective of designing potential therapeutic agents for in vivo physiological studies. This article summarizes the progress to date of AGRP-based structure-activity relationships and putative ligand-receptor interactions.
Collapse
Affiliation(s)
- Andrzej M Wilczynski
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
37
|
Doghman M, Delagrange P, Blondet A, Berthelon MC, Durand P, Naville D, Bégeot M. Agouti-related protein antagonizes glucocorticoid production induced through melanocortin 4 receptor activation in bovine adrenal cells: a possible autocrine control. Endocrinology 2004; 145:541-7. [PMID: 14592963 DOI: 10.1210/en.2003-0605] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Agouti-related protein (Agrp), primarily expressed in the hypothalamus, is an endogenous antagonist of alphaMSH at the level of melanocortin 3 receptor (MC3-R) and MC4-R, but the adrenal gland represents the second major Agrp-expressing tissue. In adrenal fasciculata cells, the glucocorticoid secretion is under the control of ACTH, which binds specifically MC2-R, the only functional melanocortin receptor described in these cells to date. Nevertheless, using cultured bovine fasciculata adrenal cells, we report that Agrp has no antagonistic properties against ACTH at the level of MC2-R. In our studies, (Nle4, d-Phe7)-alphaMSH (NDP-alphaMSH) stimulated the production of cortisol in a dose-dependent manner, and these effects were abolished by Agrp or SHU9119, a synthetic antagonist of MC3-R and MC4-R. Using a more specific antagonist (JKC-363) and RT-PCR analysis, we can postulate that the effects of NDP-alphaMSH were mediated via MC4-R. These results are suggestive that adrenal glucocorticoid production could be regulated through MC4-R that may have some relevance in the physiology of adrenal cells. Moreover, Agrp might exert an autocrine control on adrenal cells because a protein with biological Agrp-like activity is secreted by these cells. This peptide could then modulate locally the functions of some peripheral tissues such as adrenals.
Collapse
Affiliation(s)
- Mabrouka Doghman
- INSERM Unité 418-Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1245, Hôpital Debrousse, 29 rue Soeur Bouvier, 69322 Lyon Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Thiele TE, Navarro M, Sparta DR, Fee JR, Knapp DJ, Cubero I. Alcoholism and obesity: overlapping neuropeptide pathways? Neuropeptides 2003; 37:321-37. [PMID: 14698675 DOI: 10.1016/j.npep.2003.10.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ethanol is a caloric compound, and ethanol drinking and food intake are both appetitive and consummatory behaviors. Furthermore, both ethanol and food have rewarding properties. It is therefore possible that overlapping central pathways are involved with uncontrolled eating and excessive ethanol consumption. A growing list of peptides has been shown to regulate food intake and/or energy homeostasis. Peptides such as the melanocortins, corticotropin releasing factor, and cholecystokinin promote reductions of food intake while others such as galanin and neuropeptide Y stimulate feeding. The present review highlights research aimed at determining if ingestive peptides also regulate voluntary ethanol intake, with an emphasis on the melanocortins and neuropeptide Y. It is suggested that research directed at ingestive peptides may expand our understanding of the neurobiological mechanisms that drive ethanol self-administration, and may reveal new therapeutic candidates for treating alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, Davie Hall, CB# 3270, Chapel Hill, NC 27599-3270, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Navarro M, Cubero I, Knapp DJ, Thiele TE. MTII-induced reduction of voluntary ethanol drinking is blocked by pretreatment with AgRP-(83-132). Neuropeptides 2003; 37:338-44. [PMID: 14698676 DOI: 10.1016/j.npep.2003.10.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Over the last 30 years, evidence has emerged indicating that the central melanocortin (MC) peptide system is involved with neurobiological responses to drugs of abuse. Recently, rats selectively bred for high ethanol preference were shown to have altered brain levels of MC receptor (MCR) and central infusion of the potent non-selective MCR agonist, melanotan-II (MTII), attenuates their high ethanol drinking. The goal of the present report was to further characterize the effects of MTII on voluntary ethanol consumption. In alcohol preferring C57BL/6 mice with an established history of ethanol drinking, intracerebroventricular (i.c.v.) infusion of a 5.0 microg dose of agouti-related protein (AgRP)-(83-132), a non-selective MCR antagonist, has no effect on 8-h ethanol drinking or food intake. However, pre-treatment with a 5.0 microg dose of (AgRP)-(83-132) significantly blocks MTII-induced (1.0 microg) reduction of 8-h ethanol drinking and food intake, consistent with a competitive antagonist action. I.c.v. infusion of MTII does not cause alteration of blood ethanol levels 2- or 4-h following intraperitoneal (i.p.) injection of a 4.0 g ethanol/kg dose. Finally, when given in an i.p. injection, a 150 microg dose of MTII reduces 8-h ethanol drinking. These data extend recent findings by showing that both central and peripheral administration of MTII reduces ethanol drinking by mice. Additionally, the ability of (AgRP)-(83-132) to block the effects of MTII implies that MTII-induced reduction of ethanol drinking is receptor mediated.
Collapse
Affiliation(s)
- Montserrat Navarro
- Department of Neurociencia y Ciencias de la Salud, University of Almeria, 04120 Almeria, Spain
| | | | | | | |
Collapse
|
40
|
Joseph CG, Wilczynski A, Holder JR, Xiang Z, Bauzo RM, Scott JW, Haskell-Luevano C. Chimeric NDP-MSH and MTII melanocortin peptides with agouti-related protein (AGRP) Arg-Phe-Phe amino acids possess agonist melanocortin receptor activity. Peptides 2003; 24:1899-908. [PMID: 15127941 DOI: 10.1016/j.peptides.2003.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Agouti-related protein (AGRP) is one of only two known endogenous antagonists of G-protein coupled receptors (GPCRs). Specifically, AGRP antagonizes the brain melanocortin-3 and -4 receptors involved in energy homeostasis, regulation of feeding behavior, and obesity. Alpha-melanocyte stimulating hormone (alpha-MSH) is one of the known endogenous agonists for these receptors. It has been hypothesized that the Arg-Phe-Phe (111-113) human AGRP amino acids may be mimicking the melanocortin agonist Phe-Arg-Trp (7-9) residue interactions with the melanocortin receptors that are important for both receptor molecular recognition and stimulation. To test this hypothesis, we generated thirteen chimeric peptide ligands based upon the melanocortin agonist peptides NDP-MSH (Ac-Ser-Tyr-Ser-Nle4-Glu-His-DPhe-Arg-Trp-Gly-Lys-Pro-Val-NH2) and MTII (Ac-Nle-c[Asp-His-DPhe-Arg-Trp-Lys]-NH2). In these chimeric ligands, the agonist DPhe-Arg-Trp amino acids were replaced by the AGRP Arg-Phe-Phe residues, and resulted in agonist activity at the mouse melanocortin receptors (mMC1R and mMC3-5Rs), supporting the hypothesis that the AGRP antagonist ligand Arg-Phe-Phe residues mimic the agonist Phe-Arg-Trp amino acids. Interestingly, the Ac-Ser-Tyr-Ser-Nle4-Glu-His-Arg-DPhe-Phe-Gly-Lys-Pro-Val-NH2 peptide possessed 7 nM mMC1R agonist potency, and is 850-fold selective for the mMC1R versus the mMC3R, 2300-fold selective for the mMC1R versus the mMC4R, and 60-fold selective for the MC1R versus the mMC5R, resulting in the discovery of a new peptide template for the design of melanocortin receptor selective ligands.
Collapse
Affiliation(s)
- Christine G Joseph
- Department of Medicinal Chemistry, University of Florida, PO Box 100485, Gainesville, FL 32610-0485, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Obesity has become one of the most significant public health problems facing the world today. However, the pathogenesis of obesity is multifactorial and involves the interaction of genetic and environmental factors. There is a pressing need to better understand the biochemical pathways that control energy intake and expenditure. In the last few years, a number of important signalling molecules have been identified that play important roles in obesity. One family of these molecules is the melanocortin system, which consists of several components: (1) melanocortin peptides; (2) the five seven-transmembrane G-protein coupled melanocortin receptors (MCRs); (3) the endogenous MCR antagonists, agouti and agouti-related protein; (4) the endogenous melanocortin mediators, mahogany, and syndecan. This system plays a key role in the central nervous system control of feeding behaviour and energy expenditure. This article will provide an overview of the anatomy, physiology, and molecular biology of the melanocortin system, and recent developments in our understanding of this system in obesity.
Collapse
Affiliation(s)
- Y K Yang
- Department of Surgery, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| | | |
Collapse
|
42
|
Rached M, Buronfosse A, Durand P, Begeot M, Penhoat A. Stable expression of human melanocortin 3 receptor fused to EGFP in the HEK293 cells. Biochem Biophys Res Commun 2003; 306:208-12. [PMID: 12788089 DOI: 10.1016/s0006-291x(03)00934-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Among the melanocortins alpha-MSH is known to be involved in feeding behavior. These hormones mediate their effects through G protein-coupled receptors by stimulating adenylate cyclase. In this study, we have developed an in vitro expression model for human melanocortin 3 receptor (hMC3R) tagged at its C terminus with EGFP. The corresponding chimeric cDNA was stably expressed in HEK293 cells. The selected clones expressing the hMC3R-EGFP exhibited cell surface fluorescence and responded to NDP-MSH stimulation by producing cAMP in a dose-dependent manner (EC(50): 0.3 nM). Binding studies revealed a single class of binding sites with a K(D) of 2.24 nM. Moreover, Agouti-related protein was also demonstrated to be an antagonist of the hMC3R-EGFP. Thus, the hMC3R tagged with EGFP stably expressed in HEK293 cells, exhibiting the same characteristics than the wild-type hMC3R, is the only model of expression of this receptor allowing its direct localization inside living cells.
Collapse
Affiliation(s)
- Mohamed Rached
- INSERM U418/INRA UMR1245, IFR Laennec, Hôpital Debrousse, 29 rue soeur Bouvier, 69322 05, Lyon Cédex, France
| | | | | | | | | |
Collapse
|
43
|
Chang JK, Scruggs P, Yang J, Ouyang M, Duetzmann A, Dun NJ. Total synthesis of human and rat coupling factor-6 amide and pressor effects in the rat. REGULATORY PEPTIDES 2003; 113:63-9. [PMID: 12686462 DOI: 10.1016/s0167-0115(02)00303-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Mitochondrial coupling factor-6 (CF-6) is a component of the ATP synthase complex essential for energy transduction. CF-6, which is localized to the surface of endothelial cells (ECs) and released by shear stress, has been implicated as an endogenous vasoconstrictor. Previous methods of obtaining CF-6 through purification and recombinant methods were laborious and inefficient. Here, we describe the chemical synthesis of human CF-6, (33-108)-NH(2), its C-terminal fragment (55-108)-NH(2), which is termed pCF-6; the rat CF-6, (33-108)-NH(2), its C-terminal fragment pCF-6, (55-108)-NH(2); and two N-terminal fragments of the rat pro-coupling factor-6, (24-52)-NH(2) and (33-52)-NH(2). Biological activities of each peptide were initially screened with bioassays and verified by in vivo studies. Accordingly, intravenous administration of CF-6, pCF-6, rat CF-6, and rat pCF-6 produced a modest but statistically significant increase in blood pressure and heart rate in urethane anesthetized rats, whereas the N-terminal rat pro-coupling factor-6, (24-52)-NH(2) and (33-52)-NH(2) caused no significant pressor response. Thus, the biologically active site probably resides at the C-terminal portion of CF-6 peptides.
Collapse
Affiliation(s)
- J K Chang
- Phoenix Pharmaceuticals, Inc, Belmont, CA, USA
| | | | | | | | | | | |
Collapse
|
44
|
Crowley WR, Ramoz G, Hurst B. Evidence for involvement of neuropeptide Y and melanocortin systems in the hyperphagia of lactation in rats. Pharmacol Biochem Behav 2003; 74:417-24. [PMID: 12479963 DOI: 10.1016/s0091-3057(02)01006-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hypothalamic neuropeptide Y (NPY) systems are upregulated during lactation in rats. Because NPY is central to the hypothalamic control of energy balance, the present studies tested the hypothesis that NPY contributes to the marked hyperphagia during lactation. A 4-day infusion of [D-tyr (27,36), D-thr (32)] NPY (27-36) (D-NPY(27-36)), a peptide analogue of NPY that antagonizes NPY-induced feeding, into the third ventricle at 1 microg/h transiently inhibited nocturnal feeding in nonlactating female rats. However, this antagonist had no effect on nocturnal feeding, but did transiently reduce food intake during the light hours, when infused into the third ventricle at the same dose in lactating females. An essentially similar pattern of results was obtained with chronic infusion into the third ventricle of the anorexigenic peptide alpha-melanocyte-stimulating hormone (alpha-MSH, 1 microg/h), in nonlactating and lactating rats. Both D-NPY(27-36) and alpha-MSH transiently reduced nocturnal food intake in lactating rats by approximately 10% when infused at the higher dose of 5 microg/h, and a marked inhibition of approximately 40% of both nocturnal and diurnal feeding was produced by a combined infusion of both at 5 microg/h. These results provide the first pharmacological evidence implicating specific neuromessengers in mediating the hyperphagia of lactation, and suggest that, while an action of NPY may contribute to the increased food intake seen in lactating animals, other systems are also involved. In particular, a reduction in melanocortin signaling during lactation may allow for an increased orexigenic influence of the agouti-related protein (AgRP), which is co-expressed with NPY.
Collapse
Affiliation(s)
- William R Crowley
- Department of Pharmacology and Toxicology, University of Utah College of Pharmacy, 30 South 2000 East, Room 201, Salt Lake City, UT 84112, USA.
| | | | | |
Collapse
|
45
|
Dhillo WS, Small CJ, Stanley SA, Jethwa PH, Seal LJ, Murphy KG, Ghatei MA, Bloom SR. Hypothalamic interactions between neuropeptide Y, agouti-related protein, cocaine- and amphetamine-regulated transcript and alpha-melanocyte-stimulating hormone in vitro in male rats. J Neuroendocrinol 2002; 14:725-30. [PMID: 12213133 DOI: 10.1046/j.1365-2826.2002.00832.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A number of neuropeptides implicated in the hypothalamic regulation of appetite are synthesized in the arcuate nucleus (Arc). Neuropeptide Y (NPY) and agouti-related protein (Agrp) are orexigenic. The pro-opiomelanocortin (POMC) product alpha-melanocyte-stimulating hormone (alpha-MSH) is anorectic. Intracerebroventricular administration of cocaine- and amphetamine-regulated transcript (CART) decreases food intake. However, recent results show that CART is orexigenic when injected into discrete hypothalamic nuclei. There is almost complete coexpression of NPY and Agrp mRNA in Arc neurones, and the majority of CART-containing neurones in the Arc also contain POMC mRNA. We investigated possible interactions between these neuropeptides in vitro using a rat hypothalamic explant system. Administration of 1, 10 and 100 nm of NPY to hypothalamic explants significantly increased release of Agrp(83-132)-immunoreactivity (IR). NPY (10 and 100 nm) significantly increased the release of CART(55-102)-IR and alpha-MSH-IR from hypothalamic explants. Agrp(83-132) (10 nm) administered to hypothalamic explants significantly increased the release of NPY-IR. Agrp(83-132) (10 and 100 nm) significantly decreased the release of CART(55-102)-IR from hypothalamic explants. Administration of 1, 10 and 100 nm CART(55-102) to hypothalamic explants resulted in a significant increase in NPY-IR release. Administration of 10 nm CART(55-102) to hypothalamic explants significantly increased the release of Agrp(83-132)-IR. NDP-MSH (10 nm) administered to hypothalamic explants significantly increased the release of NPY-IR. NDP-MSH (10 and 100 nm) significantly increased the release of Agrp(83-132)-IR from hypothalamic explants. These data suggest that orexigenic neuropeptides in the arcuate nucleus stimulate the release of each other, perhaps reinforcing orexigenic behaviour via a positive-feedback loop. Our results are also in keeping with the possibility that the melanocortin-3 receptor in the arcuate nucleus may influence the release of arcuate neuropeptides.
Collapse
Affiliation(s)
- W S Dhillo
- Department of Metabolic Medicine, Imperial College Faculty of Medicine, Hammersmith Hospital, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Thirumoorthy R, Holder JR, Bauzo RM, Richards NG, Edison AS, Haskell-Luevano C. Novel agouti-related-protein-based melanocortin-1 receptor antagonist. J Med Chem 2001; 44:4114-24. [PMID: 11708914 DOI: 10.1021/jm010215z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The melanocortin receptors are G-protein coupled receptors (GPCRs) that activate the cAMP signal transduction pathway and are stimulated by the melanocortin agonist alpha-melanocyte stimulating hormone (alpha-MSH). Members of these melanocortin receptors are antagonized by agouti (ASP) and agouti-related protein (AGRP), which are the only known endogenous antagonists of GPCRs identified to date. Structure-function studies of the hAGRP(109-118) decapeptide, Tyr-c[Cys-Arg-Phe-Phe-Asn-Ala-Phe-Cys]-Tyr-NH(2), by replacing the 26-membered disulfide Cys(2)-Cys(9) ring with lactam bridges resulted in the identification of a novel peripheral skin melanocortin-1 receptor (MC1R) antagonist. This antagonist, Tyr-c[Glu-Arg-Phe-Phe-Asn-Ala-Phe-Dpr]-Tyr-NH(2), possesses a 27-membered ring with the lactam bridge being formed from the Calpha-carboxyl moiety of Glu (instead of the typical side chain carboxyl moiety) with the amine of the diaminopropionic acid (Dpr) residue. This mouse MC1 receptor antagonist (pA(2) = 5.9) is also an antagonist at the brain melanocortin-4 receptor (pA(2) = 6.9), with no observable pharmacology at the melanocortin-3 or -5 receptors. This MC1R hAGRP(109-118) based decapeptide is novel in that AGRP(83-132) itself does not bind to, agonize, or antagonize the skin MC1R. Structural analysis has been performed using two-dimensional (1)H NMR and computer-assisted molecular modeling (CAMM) techniques in attempts to identify structural features of this Tyr-c[Glu-Arg-Phe-Phe-Asn-Ala-Phe-Dpr]-Tyr-NH(2) (cyclo Glu alphaCOOH-Dpr betaNH) peptide that can differentially result in antagonist versus agonist properties at the mMC1R.
Collapse
Affiliation(s)
- R Thirumoorthy
- Department of Chemistry, University of Florida, Gainesville, Florida 32610, USA
| | | | | | | | | | | |
Collapse
|
47
|
Brown AM, Mayfield DK, Volaufova J, Argyropoulos G. The gene structure and minimal promoter of the human agouti related protein. Gene 2001; 277:231-8. [PMID: 11602360 DOI: 10.1016/s0378-1119(01)00705-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The murine agouti related protein (mAGRP) is upregulated in obese and diabetic mice and stimulates hyperphagia when administered intracerebroventricularly (i.c.v.) or when overexpressed in transgenic mice. The human ortholog, hAGRP, has been isolated and has similar molecular and physiological properties. Here, we report the complete gene structure of the human AGRP gene and upstream regions with differential promoter activity. A polymorphism, A67T, in the third exon was identified but was not associated with obesity- or type 2 diabetes-related phenotypes. Putative binding sites for transcription factors were identified in the promoter of the gene including recognition sites for the signal transducers and activators of transcription (STATs) that may potentially mediate leptin's action in the hypothalamus. The upstream non-coding exon had significant promoter activity in a periphery- but not so in a hypothalamus-derived cell line, suggesting that it might contain the minimal promoter required for expression of the short transcript of hAGRP in the periphery.
Collapse
Affiliation(s)
- A M Brown
- Department of Medicine, Medical University of South Carolina, Strom Thurmond Biomedical Research Center Room 528, 114 Doughty Street, Charleston, SC 29403, USA
| | | | | | | |
Collapse
|
48
|
Mayfield DK, Brown AM, Page GP, Garvey WT, Shriver MD, Argyropoulos G. A role for the Agouti-Related Protein promoter in obesity and type 2 diabetes. Biochem Biophys Res Commun 2001; 287:568-73. [PMID: 11554767 DOI: 10.1006/bbrc.2001.5600] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The murine Agouti-Related Protein (mAGRP) is upregulated in obese and diabetic mice and can stimulate hyperphagia when overexpressed in transgenic models. Here we report upstream nucleotide sequences of the human hAGRP gene with putative recognition sites for transcription factors including a site for the STAT transactivators. A polymorphism (-38C-->T) was identified in the promoter region and the C/C genotype had significantly higher promoter activity and affinity for transcription factors as tested in periphery- and hypothalamus-derived cell lines. The polymorphic site could affect the expression levels of hAGRP and the high expressing C/C genotype was significantly associated with high BMI and type 2 diabetes in Africans.
Collapse
Affiliation(s)
- D K Mayfield
- Department of Medicine, Strom Thurmond Biomedical Research Center, Medical University of South Carolina, 114 Doughty Street, Charleston, South Carolina 29403, USA
| | | | | | | | | | | |
Collapse
|
49
|
Haskell-Luevano C, Cone RD, Monck EK, Wan YP. Structure activity studies of the melanocortin-4 receptor by in vitro mutagenesis: identification of agouti-related protein (AGRP), melanocortin agonist and synthetic peptide antagonist interaction determinants. Biochemistry 2001; 40:6164-79. [PMID: 11352754 DOI: 10.1021/bi010025q] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vitro mutagenesis of the mouse melanocortin-4 receptor (mMC4R) has been performed, based upon homology molecular modeling and previous melanocortin receptor mutagenesis studies that identified putative ligand-receptor interactions. Twenty-three mMC4 receptor mutants were generated and pharmacologically characterized using several melanocortin-based ligands [alpha-MSH, NDP-MSH, MTII, DNal (1')(7)-MTII, Nal(2')(7)-MTII, SHU9119, and SHU9005]. Selected mutant receptors possessing significant differences in the melanocortin-based peptide agonist and/or antagonist pharmacology were further evaluated using the endogenous antagonist agouti-related protein fragment hAGRP(83-132) and hAGRP(109-118) molecules. These studies of the mouse MC4R provide further experimental data suggesting that the conserved melanocortin receptor residues Glu92 (TM2), Asp114 (TM3), and Asp118 (TM3) (mouse MC4R numbering) are important for melanocortin-based peptide molecular recognition. Additionally, the Glu92 and Asp118 mMC4R residues are important for molecular recognition and binding of AGRP(83-132). We have identified the Phe176 (TM4), Tyr179 (TM4), Phe254 (TM6), and Phe259 (TM6) receptor residues as putatively interacting with the melanocortin-based ligand Phe(7) by differences between alpha-MSH and NDP-MSH agonist potencies. The Glu92, Asp118, and Phe253 mMC4R receptor residues appear to be critical for hAGRP(83-132) molecular recognition and binding while Phe176 appears to be important for functional antagonism of AGRP(83-132) and AGRP(109-118) but not molecular recognition. The Phe253 mMC4R residue appears to be important for AGRP(83-132) molecular recognition and general mMC4 receptor stimulation. The Phe254 and Phe259 mMC4R amino acids may participate in the differentiation of agonist versus antagonist activity of the melanocortin-based peptide antagonists SHU9119 and SHU9005, but not AGRP(83-132) or AGRP(109-118). The Met192 side chain when mutated to a Phe results in a constitutively active mMC4R that does not effect agonist ligand binding or potency. Melanocortin-based peptides modified at the 7 position of MTII with DPhe, DNal(1'), Nal(2'), and DNal(2') have been pharmacologically characterized at these mutant mouse MC4Rs. These data suggest a revised hypothesis for the mechanism of SHU9119 antagonism at the MC4R which may be attributed to the presence of a "bulky" naphthyl moiety at the 7 position (original hypothesis), and additionally that both the stereochemistry and naphthyl ring position (2' versus 1') are important for positioning of the ligand Arg(8) residue with the corresponding mMC4R amino acids.
Collapse
MESH Headings
- Agouti-Related Protein
- Amino Acid Sequence
- Animals
- Cell Line
- Humans
- Intercellular Signaling Peptides and Proteins
- Ligands
- Lysine/genetics
- Melanocyte-Stimulating Hormones/pharmacology
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Peptide Fragments/chemical synthesis
- Peptide Fragments/metabolism
- Peptide Fragments/pharmacology
- Peptides/chemical synthesis
- Peptides/metabolism
- Peptides/pharmacology
- Phenylalanine/genetics
- Protein Binding/genetics
- Proteins/chemistry
- Proteins/metabolism
- Proteins/pharmacology
- Receptor, Melanocortin, Type 4
- Receptors, Corticotropin/antagonists & inhibitors
- Receptors, Corticotropin/chemistry
- Receptors, Corticotropin/genetics
- Receptors, Corticotropin/metabolism
- Receptors, Peptide/antagonists & inhibitors
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Serine/genetics
- Structure-Activity Relationship
- Transfection
- alpha-MSH/agonists
- alpha-MSH/analogs & derivatives
- alpha-MSH/antagonists & inhibitors
- alpha-MSH/chemistry
- alpha-MSH/metabolism
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- C Haskell-Luevano
- University of Florida, Department of Medicinal Chemistry, Gainesville, Florida 32610, USA.
| | | | | | | |
Collapse
|
50
|
Lu XY, Nicholson JR, Akil H, Watson SJ. Time course of short-term and long-term orexigenic effects of Agouti-related protein (86-132). Neuroreport 2001; 12:1281-4. [PMID: 11338207 DOI: 10.1097/00001756-200105080-00045] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Agouti-related protein (AGRP) is a newly identified orexigenic peptide that acts as an endogenous antagonist of melanocortin receptors MC3 and MC4. The present study examined the time course of the orexigenic effects of synthetic AGRP (86-132). Intracerebroventricular infusion of 0.1 nmol AGRP (86-132) increased food intake by 450 +/- 81% at 2 h post-injection. A second increase in non-cumulative food intake (512 +/- 135%) was observed at 6 h post-injection. Following a single dose of AGRP (86-132) (0.1 nmol) the increased food intake was sustained for 6 days, occurring in the light cycle of the first 2 days and subsequently switching to the dark cycle of the last 4 days. These time course profiles indicate the complexity of the mechanisms involved in AGRP-induced feeding.
Collapse
Affiliation(s)
- X Y Lu
- University of Michigan School of Medicine, Mental Health Research Institute, 205 Zina Pitcher Place, Ann Arbor, MI 48109-0720, USA
| | | | | | | |
Collapse
|