1
|
Hassan HA, Cheng M, Aronson PS. Cholinergic signaling inhibits oxalate transport by human intestinal T84 cells. Am J Physiol Cell Physiol 2011; 302:C46-58. [PMID: 21956166 DOI: 10.1152/ajpcell.00075.2011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Urolithiasis remains a very common disease in Western countries. Seventy to eighty percent of kidney stones are composed of calcium oxalate, and minor changes in urinary oxalate affect stone risk. Intestinal oxalate secretion mediated by anion exchanger SLC26A6 plays a major constitutive role in limiting net absorption of ingested oxalate, thereby preventing hyperoxaluria and calcium oxalate urolithiasis. Using the relatively selective PKC-δ inhibitor rottlerin, we had previously found that PKC-δ activation inhibits Slc26a6 activity in mouse duodenal tissue. To identify a model system to study physiologic agonists upstream of PKC-δ, we characterized the human intestinal cell line T84. Knockdown studies demonstrated that endogenous SLC26A6 mediates most of the oxalate transport by T84 cells. Cholinergic stimulation with carbachol modulates intestinal ion transport through signaling pathways including PKC activation. We therefore examined whether carbachol affects oxalate transport in T84 cells. We found that carbachol significantly inhibited oxalate transport by T84 cells, an effect blocked by rottlerin. Carbachol also led to significant translocation of PKC-δ from the cytosol to the membrane of T84 cells. Using pharmacological inhibitors, we observed that carbachol inhibits oxalate transport through the M(3) muscarinic receptor and phospholipase C. Utilizing the Src inhibitor PP2 and phosphorylation studies, we found that the observed regulation downstream of PKC-δ is partially mediated by c-Src. Biotinylation studies revealed that carbachol inhibits oxalate transport by reducing SLC26A6 surface expression. We conclude that carbachol negatively regulates oxalate transport by reducing SLC26A6 surface expression in T84 cells through signaling pathways including the M(3) muscarinic receptor, phospholipase C, PKC-δ, and c-Src.
Collapse
Affiliation(s)
- Hatim A Hassan
- Section of Nephrology, Dept. of Medicine, The Univ. of Chicago, 5841 S. Maryland Ave., MC5100, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
2
|
Jakab RL, Collaco AM, Ameen NA. Physiological relevance of cell-specific distribution patterns of CFTR, NKCC1, NBCe1, and NHE3 along the crypt-villus axis in the intestine. Am J Physiol Gastrointest Liver Physiol 2011; 300:G82-98. [PMID: 21030607 PMCID: PMC3025502 DOI: 10.1152/ajpgi.00245.2010] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 10/27/2010] [Indexed: 01/31/2023]
Abstract
We examined the cell-specific subcellular expression patterns for sodium- and potassium-coupled chloride (NaK2Cl) cotransporter 1 (NKCC1), Na(+) bicarbonate cotransporter (NBCe1), cystic fibrosis transmembrane conductance regulator (CFTR), and Na(+)/H(+) exchanger 3 (NHE3) to understand the functional plasticity and synchronization of ion transport functions along the crypt-villus axis and its relevance to intestinal disease. In the unstimulated intestine, all small intestinal villus enterocytes coexpressed apical CFTR and NHE3, basolateral NBCe1, and mostly intracellular NKCC1. All (crypt and villus) goblet cells strongly expressed basolateral NKCC1 (at approximately three-fold higher levels than villus enterocytes), but no CFTR, NBCe1, or NHE3. Lower crypt cells coexpressed apical CFTR and basolateral NKCC1, but no NHE3 or NBCe1 (except NBCe1-expressing proximal colonic crypts). CFTR, NBCe1, and NKCC1 colocalized with markers of early and recycling endosomes, implicating endocytic recycling in cell-specific anion transport. Brunner's glands of the proximal duodenum coexpressed high levels of apical/subapical CFTR and basolateral NKCC1, but very low levels of NBCe1, consistent with secretion of Cl(-)-enriched fluid into the crypt. The cholinergic agonist carbachol rapidly (within 10 min) reduced cell volume along the entire crypt/villus axis and promoted NHE3 internalization into early endosomes. In contrast, carbachol induced membrane recruitment of NKCC1 and CFTR in all crypt and villus enterocytes, NKCC1 in all goblet cells, and NBCe1 in all villus enterocytes. These observations support regulated vesicle traffic in Cl(-) secretion by goblet cells and Cl(-) and HCO(3)(-) secretion by villus enterocytes during the transient phase of cholinergic stimulation. Overall, the carbachol-induced membrane trafficking profile of the four ion transporters supports functional plasticity of the small intestinal villus epithelium that enables it to conduct both absorptive and secretory functions.
Collapse
Affiliation(s)
- Robert L Jakab
- Department of Pediatrics/Gastroenterology and Hepatology, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
3
|
Xue H, Tian YM, Yan M, Yang N, Chen X, Xing Y, Zhu JX. Appearance of segmental discrepancy of anion transport in rat distal colon. Biol Pharm Bull 2007; 30:1407-11. [PMID: 17666794 DOI: 10.1248/bpb.30.1407] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study investigated the segmental discrepancy of the rat distal colonic anion transport induced by luminal forskolin and the possible underlying mechanisms using short-circuit current recording technique and comparative quantity real-time PCR analysis. Forskolin-induced I(SC) in the segment next to lymph node (DC(1)) and the segment 4 cm away from lymph node (DC(4)) were 4.09+/-0.66 muA/cm(2) and 18.84+/-3.18 muA/cm(2) (n=13), respectively, which were blocked by luminal Cl(-) channel blocker, glybenclamide (1 mM) (n=5, p<0.01), as well as removal of extracellular Cl(-) and HCO(3)(-) in both DC(1) and DC(4) (n=5, p<0.001). Furthermore luminal pretreatment with K(+) blockers, TEA (5 mM) and glybenclamide (100 muM) didn't affect forskolin and bumetanide-enhanced I(SC). Reducing serosal Cl(-) concentration increased forskolin-induced I(SC) by 90% in DC(1) but decreased forskolin-induced I(SC) in DC(4) by 50%. Furthermore, pretreatment with serosal bumetanide, an inhibitor of Na(+)-K(+)-2Cl(-) cotransporter, enhanced forskolin-induced I(SC) by 87% in DC(1), from 4.09+/-0.66 muA/cm(2) to 7.65+/-0.53 muA/cm(2) (n=6, p<0.01), but inhibited forskolin-induced I(SC) by 50% in DC(4), from 29.19+/-4.51 muA/cm(2) to 15.06+/-4.10 muA/cm(2) (n=6, p<0.05). Pretreatment with luminal amiloride (10 muM), an inhibitor of ENaC, and serosal 4,4'-diisothiocyanatostilbene-2,2'-disulphonic acid (DIDS) (200 muM), an inhibitor of NBC, significantly inhibited the forskolin-induced I(SC) in DC(1) (n=6, p<0.05), but not in DC(4). Real-time PCR analysis did not show the significant differences between the two segments in the expression amounts of CFTR and NKCC mRNAs, however the expression of NBC mRNA in DC(4) was significantly higher than that in DC(1). In conclusion, the rat distal colon manifests a segmental discrepancy in anion transport stimulated by luminal forskolin. HCO(3)(-) might be predominantly involved in the forskolin-induced anion secretion in DC(1), but Cl(-) might be the main component of the anion secretion in DC(4).
Collapse
Affiliation(s)
- Hong Xue
- Department of Physiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | | | | | | | | | | | | |
Collapse
|
4
|
Hirota CL, McKay DM. Cholinergic regulation of epithelial ion transport in the mammalian intestine. Br J Pharmacol 2006; 149:463-79. [PMID: 16981004 PMCID: PMC2014671 DOI: 10.1038/sj.bjp.0706889] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Acetylcholine (ACh) is critical in controlling epithelial ion transport and hence water movements for gut hydration. Here we review the mechanism of cholinergic control of epithelial ion transport across the mammalian intestine. The cholinergic nervous system affects basal ion flux and can evoke increased active ion transport events. Most studies rely on measuring increases in short-circuit current (ISC = active ion transport) evoked by adding ACh or cholinomimetics to intestinal tissue mounted in Ussing chambers. Despite subtle species and gut regional differences, most data indicate that, under normal circumstances, the effect of ACh on intestinal ion transport is mainly an increase in Cl- secretion due to interaction with epithelial M3 muscarinic ACh receptors (mAChRs) and, to a lesser extent, neuronal M1 mAChRs; however, AChR pharmacology has been plagued by a lack of good receptor subtype-selective compounds. Mice lacking M3 mAChRs display intact cholinergically-mediated intestinal ion transport, suggesting a possible compensatory mechanism. Inflamed tissues often display perturbations in the enteric cholinergic system and reduced intestinal ion transport responses to cholinomimetics. The mechanism(s) underlying this hyporesponsiveness are not fully defined. Inflammation-evoked loss of mAChR-mediated control of epithelial ion transport in the mouse reveals a role for neuronal nicotinic AChRs, representing a hitherto unappreciated braking system to limit ACh-evoked Cl- secretion. We suggest that: i) pharmacological analyses should be supported by the use of more selective compounds and supplemented with molecular biology techniques targeting specific ACh receptors and signalling molecules, and ii) assessment of ion transport in normal tissue must be complemented with investigations of tissues from patients or animals with intestinal disease to reveal control mechanisms that may go undetected by focusing on healthy tissue only.
Collapse
Affiliation(s)
- C L Hirota
- Department Physiology & Biophysics, University of Calgary, Calgary, AB, Canada.
| | | |
Collapse
|
5
|
He Q, Zhu JX, Xing Y, Tsang LL, Yang N, Rowlands DK, Chung YW, Chan HC. Tetramethylpyrazine stimulates cystic fibrosis transmembrane conductance regulator-mediated anion secretion in distal colon of rodents. World J Gastroenterol 2005; 11:4173-9. [PMID: 16015685 PMCID: PMC4615438 DOI: 10.3748/wjg.v11.i27.4173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of tetramethylpyrazine (TMP), an active compound from Ligustium Wollichii Franchat, on electrolyte transport across the distal colon of rodents and the mechanism involved
METHODS: The short-circuit current (ISC) technique in conjunction with pharmacological agents and specific inhibitors were used in analyzing the electrolyte transport across the distal colon of rodents. The underlying cellular signaling mechanism was investigated by radioimmunoassay analysis (RIA) and a special mouse model of cystic fibrosis.
RESULTS: TMP stimulated a concentration-dependent rise in ISC, which was dependent on both Cl- and HCO3-, and inhibited by apical application of diphenylamine-2,2’-dicarboxylic acid (DPC) and glibenclamide, but resistant to 4,4’-diisothiocyanatostilbene-2,2’-disulfonic acid disodium salt hydrate (DIDS). Removal of Na+ from basolateral solution almost completely abolished the ISC response to TMP, but it was insensitive to apical Na+ replacement or apical Na+ channel blocker, amiloride. Pretreatment of colonic mucosa with BAPTA-AM, a membrane-permeable selective Ca2+ chelator, did not significantly alter the TMP-induced ISC. No additive effect of forskolin and 3-isobutyl-1-methylxanthine (IBMX) was observed on the TMP-induced ISC, but it was significantly reduced by a protein kinase A inhibitor, H89. RIA results showed that TMP (1 mmol/L) elicited a significant increase in cellular cAMP production, which was similar to that elicited by the adenylate cyclase activator, forskolin (10 µmol/L). The TMP-elicited ISC as well as forskolin- or IBMX-induced ISC were abolished in mice with homozygous mutation of the cystic fibrosis transmembrane conductance regulator (CFTR) presenting defective CFTR functions and secretions.
CONCLUSION: TMP may stimulate cAMP-dependent and CFTR-mediated Cl- and HCO3- secretion. This may have implications in the future development of alternative treatment for constipation.
Collapse
Affiliation(s)
- Qiong He
- Department of Physiology, Zhengzhou University, Henan Province, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Vidyasagar S, Barmeyer C, Geibel J, Binder HJ, Rajendran VM. Role of short-chain fatty acids in colonic HCO(3) secretion. Am J Physiol Gastrointest Liver Physiol 2005; 288:G1217-26. [PMID: 15677553 DOI: 10.1152/ajpgi.00415.2004] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Luminal isobutyrate, a relatively poor metabolized short-chain fatty acid (SCFA), induces HCO(3) secretion via a Cl-independent, DIDS-insensitive, carrier-mediated process as well as inhibiting both Cl-dependent and cAMP-induced HCO(3) secretion. The mechanism(s) responsible for these processes have not been well characterized. HCO(3) secretion was measured in isolated colonic mucosa mounted in Lucite chambers using pH stat technique and during microperfusion of isolated colonic crypts. (14)C-labeled butyrate, (14)C-labeled isobutyrate, and (36)Cl uptake were also determined by apical membrane vesicles (AMV) isolated from surface and/or crypt cells. Butyrate stimulation of Cl-independent, DIDS-insensitive 5-nitro-3-(3-phenylpropyl-amino)benzoic acid-insensitive HCO(3) secretion is greater than that by isobutyrate, suggesting that both SCFA transport and metabolism are critical for HCO(3) secretion. Both lumen and serosal 25 mM butyrate inhibit cAMP-induced HCO(3) secretion to a comparable degree (98 vs. 90%). In contrast, Cl-dependent HCO(3) secretion is downregulated by lumen 25 mM butyrate considerably more than by serosal butyrate (98 vs. 37%). Butyrate did not induce HCO(3) secretion in isolated microperfused crypts, whereas an outward-directed HCO(3) gradient-driven induced (14)C-butyrate uptake by surface but not crypt cell AMV. Both (36)Cl/HCO(3) exchange and potential-dependent (36)Cl movement in AMV were inhibited by 96-98% by 20 mM butyrate. We conclude that 1) SCFA-dependent HCO(3) secretion is the result of SCFA transport across the apical membrane via a SCFA/HCO(3) exchange more than intracellular SCFA metabolism; 2) SCFA-dependent HCO(3) secretion is most likely a result of an apical membrane SCFA/HCO(3) exchange in surface epithelial cells; 3) SCFA downregulates Cl-dependent and cAMP-induced HCO(3) secretion secondary to SCFA inhibition of apical membrane Cl/HCO(3) exchange and anion channel activity, respectively.
Collapse
Affiliation(s)
- Sadasivan Vidyasagar
- Dept. of Internal Medicine, Yale Univ., PO Box 208019, New Haven, CT 06520, USA.
| | | | | | | | | |
Collapse
|
7
|
Abstract
Understanding of the mechanism of colonic electrolyte transport has markedly increased over the past three decades. This article provides a brief summary of the critical features of Na, Cl, and K transport in the large intestine and how these processes may be altered in diarrhea. Less understood is the mechanism of colonic HCO3 secretion. Recent progress in the regulation of HCO3 secretion in the distal colon is summarized with emphasis on the interrelationship between Cl-dependent, short-chain fatty acid (SCFA)-dependent, and cAMP-induced HCO3 secretion. cAMP down-regulates Cl-dependent HCO3 secretion, while SCFA stimulates HCO3 secretion but also inhibits both Cl-dependent and cAMP-induced HCO3 secretion. As SCFAs are the primary anions in stool, it is likely that SCFA-dependent HCO3 secretion is the primary mechanism of HCO3 secretion in the mammalian colon. Future studies will undoubtedly provide increased understanding of the mechanism of HCO3 secretion in health and disease.
Collapse
Affiliation(s)
- Henry J Binder
- Departments of Internal Medicine, Yale University, New Haven, CT 06520-8019, USA.
| | | | | | | |
Collapse
|
8
|
Abstract
The intestines play an important role in the absorption and secretion of nutrients. The colon is the final area for recapturing electrolytes and water prior to excretion, and in order to maintain this electrolyte homeostasis, a complex interaction between secretory and absorptive processes is necessary. Until recently it was thought that secretion and absorption were two distinct processes associated with either crypts or surface cells, respectively. Recently it was demonstrated that both the surface and crypt cells can perform secretory and absorptive functions and that, in fact, these functions can be going on simultaneously. This issue is important in the complexities associated with secretory diarrhea and also in attempting to develop treatment strategies for intestinal disorders. Here, we update the model of colonic secretion and absorption, discuss new issues of transporter activation, and identify some important new receptor pathways that are important modulators of the secretory and absorptive functions of the colon.
Collapse
Affiliation(s)
- John P Geibel
- Department of Surgery, Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
| |
Collapse
|
9
|
Vidyasagar S, Rajendran VM, Binder HJ. Three distinct mechanisms of HCO3- secretion in rat distal colon. Am J Physiol Cell Physiol 2004; 287:C612-21. [PMID: 15308466 DOI: 10.1152/ajpcell.00474.2003] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
HCO(3)(-) secretion has long been recognized in the mammalian colon, but it has not been well characterized. Although most studies of colonic HCO(3)(-) secretion have revealed evidence of lumen Cl(-) dependence, suggesting a role for apical membrane Cl(-)/HCO(3)(-) exchange, direct examination of HCO(3)(-) secretion in isolated crypt from rat distal colon did not identify Cl(-)-dependent HCO(3)(-) secretion but did reveal cAMP-induced, Cl(-)-independent HCO(3)(-) secretion. Studies were therefore initiated to determine the characteristics of HCO(3)(-) secretion in isolated colonic mucosa to identify HCO(3)(-) secretion in both surface and crypt cells. HCO(3)(-) secretion was measured in rat distal colonic mucosa stripped of muscular and serosal layers by using a pH stat technique. Basal HCO(3)(-) secretion (5.6 +/- 0.03 microeq.h(-1).cm(-2)) was abolished by removal of either lumen Cl(-) or bath HCO(3)(-); this Cl(-)-dependent HCO(3)(-) secretion was also inhibited by 100 microM DIDS (0.5 +/- 0.03 microeq.h(-1).cm(-2)) but not by 5-nitro-3-(3-phenylpropyl-amino)benzoic acid (NPPB), a Cl(-) channel blocker. 8-Bromo-cAMP induced Cl(-)-independent HCO(3)(-) secretion (and also inhibited Cl(-)-dependent HCO(3)(-) secretion), which was inhibited by NPPB and by glibenclamide, a CFTR blocker, but not by DIDS. Isobutyrate, a poorly metabolized short-chain fatty acid (SCFA), also induced a Cl(-)-independent, DIDS-insensitive, saturable HCO(3)(-) secretion that was not inhibited by NPPB. Three distinct HCO(3)(-) secretory mechanisms were identified: 1) Cl(-)-dependent secretion associated with apical membrane Cl(-)/HCO(3)(-) exchange, 2) cAMP-induced secretion that was a result of an apical membrane anion channel, and 3) SCFA-dependent secretion associated with an apical membrane SCFA/HCO(3)(-) exchange.
Collapse
Affiliation(s)
- Sadasivan Vidyasagar
- Dept. of Internal Medicine, Yale University, PO Box 208019, New Haven, CT 06520, USA
| | | | | |
Collapse
|
10
|
Cheng SX, Geibel JP, Hebert SC. Extracellular polyamines regulate fluid secretion in rat colonic crypts via the extracellular calcium-sensing receptor. Gastroenterology 2004; 126:148-58. [PMID: 14699496 DOI: 10.1053/j.gastro.2003.10.064] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Polyamines are essential for the normal postnatal development, maintenance, and function of gastrointestinal epithelia. The extracellular Ca(2+) (Ca(2+)(o)/nutrient)-sensing receptor is expressed on both luminal and basolateral membranes of colonocytes, and, in other cell systems, this receptor has been shown to respond to polyamines. Thus, the Ca(2+)-sensing receptor could provide a mechanism for modulation of colonocyte function by dietary and systemic extracellular polyamines. In the present study, we investigated the interaction of polyamines, particularly spermine, and extracellular Ca(2+) on second messenger generation by, and on function of, rat distal colonic crypts. METHODS Calcium-sensing receptor activation was assessed in colonic epithelial cells and intact crypts freshly isolated from distal colon by monitoring intracellular IP(3) and Ca(2+) accumulation using radioimmunoassay and Fluo-3 fluorometry, respectively. Interactions of extracellular Ca(2+) and spermine on regulation of both basal and forskolin-stimulated fluid transport were measured in crypts microperfused in vitro. RESULTS Polyamine (spermine > spermidine > putrescine)-mediated enhancement of intracellular D-myo-inositol 1,4,5-trisphosphate (IP(3)) and Ca(2+) accumulation required extracellular Ca(2+), and the EC(50) for extracellular Ca(2+)-mediated activation of the calcium-sensing receptor was reduced by polyamines. Extracellular spermine modulated both basal and forskolin-stimulated fluid secretion in perfused colonic crypts, and the EC(50) for spermine-induced reduction in forskolin-stimulated fluid secretion was inversely dependent on extracellular Ca(2+) (Ca(2+)(o)). CONCLUSIONS The interactions of extracellular Ca(2+) and polyamines on second messenger accumulation and fluid secretion support a role for the luminal and basolateral calcium-sensing receptors in mediating some of the effects of polyamines on distal colonic epithelial cells.
Collapse
Affiliation(s)
- Sam X Cheng
- Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
11
|
Zhuang L, Peng JB, Tou L, Takanaga H, Adam RM, Hediger MA, Freeman MR. Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies. J Transl Med 2002; 82:1755-64. [PMID: 12480925 DOI: 10.1097/01.lab.0000043910.41414.e7] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
CaT1 is a highly selective calcium entry channel that has been proposed to be responsible for apical calcium entry in the vitamin D-regulated transcellular pathway of Ca(2+) absorption; however, the lack of a CaT1 antibody suitable for immunohistochemistry has prevented the direct testing of this hypothesis by the localization of CaT1 protein in the gastrointestinal tract and other tissues. In this study, we developed two CaT1 antibodies and have used them to establish for the first time that CaT1 localizes to the apical membrane of intestinal absorptive cells, thereby providing the first direct evidence that this protein is in fact an apical entry channel in the gastrointestinal tract. In addition, we found that CaT1 protein is highly expressed in a number of exocrine organs including pancreas, prostate, and mammary gland, suggesting an, as yet, unrecognized role in secretory epithelia. Finally, we found CaT1 protein to be present at elevated levels in comparison with normal tissues in a series of prostate, breast, thyroid, colon, and ovarian carcinomas, consistent with previous reports of up-regulation of CaT1 mRNA in prostate cancer tissues. Our findings indicate that CaT1 is likely to serve as a component of transcellular calcium transport mechanisms in many tissues and epithelial cancers.
Collapse
Affiliation(s)
- Liyan Zhuang
- The Urologic Laboratory, Department of Urology, Children's Hospital Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Cheng SX, Okuda M, Hall AE, Geibel JP, Hebert SC. Expression of calcium-sensing receptor in rat colonic epithelium: evidence for modulation of fluid secretion. Am J Physiol Gastrointest Liver Physiol 2002; 283:G240-50. [PMID: 12065312 DOI: 10.1152/ajpgi.00500.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The calcium-sensing receptor (CaSR) is activated by extracellular calcium (Ca2+(o)) and mediates many of the known effects of extracellular divalent minerals on body cells. Both surface and crypt cells express CaSR transcripts and protein on both apical and basolateral surfaces. Raising Ca2+(o) elicited increases in intracellular calcium (Ca2+(o)) in both surface and crypt cells with an EC50 of 2 mM. The Ca-induced increase in Ca2+(i) was associated with increases in inositol 1,4,5-trisphosphate and eliminated by U-73129, an inhibitor of phosphatidylinositol-phospholipase C, as well as by thapsigargin. Other CaSR agonists, Gd3+ and neomycin, mimicked these Ca2+(o)-induced responses. Both luminal and bath Ca2+(o), Gd3+, and neomycin induced increases in Ca2+(i) in isolated perfused crypts. The stimulatory effect of forskolin on net fluid secretion in perfused crypts was abolished by increasing Ca2+(o) in either luminal or bath perfusates. Thus both apical and basolateral CaSR on crypt cells are functional and provide pathways modulating net intestinal fluid transport that may have important implications for the prevention and treatment of certain diarrheal diseases associated with elevated cAMP.
Collapse
Affiliation(s)
- Sam X Cheng
- Department of Cellular and Molecular Physiology, Yale University, New Haven, Connecticut 06520-8026, USA
| | | | | | | | | |
Collapse
|
13
|
Ko WH, Law VWY, Yip WCY, Yue GGL, Lau CW, Chen ZY, Huang Y. Stimulation of chloride secretion by baicalein in isolated rat distal colon. Am J Physiol Gastrointest Liver Physiol 2002; 282:G508-18. [PMID: 11842001 DOI: 10.1152/ajpgi.00291.2001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effect of baicalein on mucosal ion transport in the rat distal colon was investigated in Ussing chambers. Mucosal addition of baicalein (1-100 microM) elicited a concentration-dependent short-circuit current (I(sc)) response. The increase in I(sc) was mainly due to Cl(-) secretion. The presence of mucosal indomethacin (10 microM) significantly reduced both the basal and subsequent baicalein-evoked I(sc) responses. The baicalein-induced I(sc) were inhibited by mucosal application of diphenylamine-2-carboxylic acid (100 microM) and glibenclamide (500 microM) and basolateral application of chromanol 293B (30 microM), a blocker of K(v)LQT1 channels and Ba(2+) ions (5 mM). Treatment of the colonic mucosa with baicalein elicited a threefold increase in cAMP production. Pretreating the colonic mucosa with carbachol (100 microM, serosal) but not thapsigargin (1 microM, both sides) abolished the baicalein-induced I(sc). Addition of baicalein subsequent to forskolin induced a further increase in I(sc). These results indicate that the baicalein evoked Cl(-) secretion across rat colonic mucosa, possibly via a cAMP-dependent pathway. However, the action of baicalein cannot be solely explained by its cAMP-elevating effect. Baicalein may stimulate Cl(-) secretion via a cAMP-independent pathway or have a direct effect on cystic fibrosis transmembrane conductance regulator.
Collapse
Affiliation(s)
- W H Ko
- Department of Physiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Kunzelmann K, Mall M. Electrolyte transport in the mammalian colon: mechanisms and implications for disease. Physiol Rev 2002; 82:245-89. [PMID: 11773614 DOI: 10.1152/physrev.00026.2001] [Citation(s) in RCA: 453] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The colonic epithelium has both absorptive and secretory functions. The transport is characterized by a net absorption of NaCl, short-chain fatty acids (SCFA), and water, allowing extrusion of a feces with very little water and salt content. In addition, the epithelium does secret mucus, bicarbonate, and KCl. Polarized distribution of transport proteins in both luminal and basolateral membranes enables efficient salt transport in both directions, probably even within an individual cell. Meanwhile, most of the participating transport proteins have been identified, and their function has been studied in detail. Absorption of NaCl is a rather steady process that is controlled by steroid hormones regulating the expression of epithelial Na(+) channels (ENaC), the Na(+)-K(+)-ATPase, and additional modulating factors such as the serum- and glucocorticoid-regulated kinase SGK. Acute regulation of absorption may occur by a Na(+) feedback mechanism and the cystic fibrosis transmembrane conductance regulator (CFTR). Cl(-) secretion in the adult colon relies on luminal CFTR, which is a cAMP-regulated Cl(-) channel and a regulator of other transport proteins. As a consequence, mutations in CFTR result in both impaired Cl(-) secretion and enhanced Na(+) absorption in the colon of cystic fibrosis (CF) patients. Ca(2+)- and cAMP-activated basolateral K(+) channels support both secretion and absorption of electrolytes and work in concert with additional regulatory proteins, which determine their functional and pharmacological profile. Knowledge of the mechanisms of electrolyte transport in the colon enables the development of new strategies for the treatment of CF and secretory diarrhea. It will also lead to a better understanding of the pathophysiological events during inflammatory bowel disease and development of colonic carcinoma.
Collapse
Affiliation(s)
- Karl Kunzelmann
- Department of Physiology and Pharmacology, University of Queensland, St. Lucia, Queensland, Brisbane, Australia.
| | | |
Collapse
|
15
|
Grubb BR, Lee E, Pace AJ, Koller BH, Boucher RC. Intestinal ion transport in NKCC1-deficient mice. Am J Physiol Gastrointest Liver Physiol 2000; 279:G707-18. [PMID: 11005757 DOI: 10.1152/ajpgi.2000.279.4.g707] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Na(+)-K(+)-2Cl(-) cotransporter (NKCC1) located on the basolateral membrane of intestinal epithelia has been postulated to be the major basolateral Cl(-) entry pathway. With targeted mutagenesis, mice deficient in the NKCC1 protein were generated. The basal short-circuit current did not differ between normal and NKCC1 -/- jejuna. In the -/- jejuna, the forskolin response (22 microA/cm(2); bumetanide insensitive) was significantly attenuated compared with the bumetanide-sensitive response (52 microA/cm(2)) in normal tissue. Ion-replacement studies demonstrated that the forskolin response in the NKCC1 -/- jejuna was HCO(3)(-) dependent, whereas in the normal jejuna it was independent of the HCO(3)(-) concentration in the buffer. NKCC1 -/- ceca exhibited a forskolin response that did not differ significantly from that of normal ceca, but unlike that of normal ceca, was bumetanide insensitive. Ion-substitution studies suggested that basolateral HCO(3)(-) as well as Cl(-) entry (via non-NKCC1) paths played a role in the NKCC1 -/- secretory response. In contrast to cystic fibrosis mice, which lack both basal and stimulated Cl(-) secretion and exhibit severe intestinal pathology, the absence of intestinal pathology in NKCC1 -/- mice likely reflects the ability of the intestine to secrete HCO(3)(-) and Cl(-) by basolateral entry mechanisms independent of NKCC1.
Collapse
Affiliation(s)
- B R Grubb
- Cystic Fibrosis/Pulmonary Research and Treatment Center, University of North Carolina, Chapel Hill, North Carolina 27599-7248, USA.
| | | | | | | | | |
Collapse
|
16
|
McNamara B, Winter DC, Harvey BJ, O'Sullivan GC. A significant advance in the understanding of intestinal anion secretion. Gastroenterology 2000; 118:1282-3. [PMID: 10866523 DOI: 10.1016/s0016-5085(00)70397-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Affiliation(s)
- B McNamara
- Department of Clinical Neurophysiology, Addenbrookes Hospital, Cambridge, England
| | | | | | | |
Collapse
|