1
|
Kato H, Salgado M, Mendez D, Gonzalez N, Rawson J, Ligot D, Balandran B, Orr C, Quijano JC, Omori K, Qi M, Al-Abdullah IH, Mullen Y, Ku HT, Kandeel F, Komatsu H. Biological hypoxia in pre-transplant human pancreatic islets induces transplant failure in diabetic mice. Sci Rep 2024; 14:12402. [PMID: 38811610 PMCID: PMC11137081 DOI: 10.1038/s41598-024-61604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Evaluating the quality of isolated human islets before transplantation is crucial for predicting the success in treating Type 1 diabetes. The current gold standard involves time-intensive in vivo transplantation into diabetic immunodeficient mice. Given the susceptibility of isolated islets to hypoxia, we hypothesized that hypoxia present in islets before transplantation could indicate compromised islet quality, potentially leading to unfavorable outcomes. To test this hypothesis, we analyzed expression of 39 hypoxia-related genes in human islets from 85 deceased donors. We correlated gene expression profiles with transplantation outcomes in 327 diabetic mice, each receiving 1200 islet equivalents grafted into the kidney capsule. Transplantation outcome was post-transplant glycemic control based on area under the curve of blood glucose over 4 weeks. In linear regression analysis, DDIT4 (R = 0.4971, P < 0.0001), SLC2A8 (R = 0.3531, P = 0.0009) and HK1 (R = 0.3444, P = 0.0012) had the highest correlation with transplantation outcome. A multiple regression model of 11 genes increased the correlation (R = 0.6117, P < 0.0001). We conclude that assessing pre-transplant hypoxia in human islets via gene expression analysis is a rapid, viable alternative to conventional in vivo assessments. This approach also underscores the importance of mitigating pre-transplant hypoxia in isolated islets to improve the success rate of islet transplantation.
Collapse
Affiliation(s)
- Hiroyuki Kato
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA, 94143, USA
| | - Mayra Salgado
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Daniel Mendez
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Nelson Gonzalez
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Jeffrey Rawson
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Doreen Ligot
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Bennie Balandran
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Chris Orr
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Janine C Quijano
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Keiko Omori
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Meirigeng Qi
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Ismail H Al-Abdullah
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Yoko Mullen
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Hsun Teresa Ku
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA
| | - Hirotake Komatsu
- Department of Translational Research and Cellular Therapeutics, Arthur Riggs Diabetes AND Metabolism Research Institute of City of Hope, 1500 E. Duarte Rd., Duarte, CA, 91010, USA.
- Department of Surgery, University of California, San Francisco, 513 Parnassus Ave., San Francisco, CA, 94143, USA.
| |
Collapse
|
2
|
Saxena G, Gallagher S, Law TD, Maschari D, Walsh E, Dudley C, Brault JJ, Consitt LA. Sex-specific increases in myostatin and SMAD3 contribute to obesity-related insulin resistance in human skeletal muscle and primary human myotubes. Am J Physiol Endocrinol Metab 2024; 326:E352-E365. [PMID: 38088865 PMCID: PMC11193514 DOI: 10.1152/ajpendo.00199.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
The purpose of the present study was to determine the effects of obesity and biological sex on myostatin expression in humans and to examine the direct effects of myostatin, SMAD2, and SMAD3 on insulin signaling in primary human skeletal muscle cells (HSkMCs). For cohort 1, 15 lean [body mass index (BMI): 22.1 ± 0.5 kg/m2; n = 8 males; n = 7 females] and 14 obese (BMI: 40.6 ± 1.4 kg/m2; n = 7 males; n = 7 females) individuals underwent skeletal muscle biopsies and an oral glucose tolerance test. For cohort 2, 14 young lean (BMI: 22.4 ± 1.9 kg/m2; n = 6 males; n = 8 females) and 14 obese (BMI: 39.3 ± 7.9 kg/m2; n = 6 males; n = 8 females) individuals underwent muscle biopsies for primary HSkMC experiments. Plasma mature myostatin (P = 0.041), skeletal muscle precursor myostatin (P = 0.048), and skeletal muscle SMAD3 (P = 0.029) were elevated in obese females compared to lean females, and plasma mature myostatin (r = 0.58, P = 0.029) and skeletal muscle SMAD3 (r = 0.56, P = 0.037) were associated with insulin resistance in females but not males. Twenty-four hours of myostatin treatment impaired insulin signaling in primary HSkMCs derived from females (P < 0.024) but not males. Overexpression of SMAD3, but not SMAD2, impaired insulin-stimulated AS160 phosphorylation in HSkMCs derived from lean females (-27%, P = 0.040), whereas silencing SMAD3 improved insulin-stimulated AS160 phosphorylation and insulin-stimulated glucose uptake (25%, P < 0.014) in HSkMCs derived from obese females. These results suggest for the first time that myostatin-induced impairments in skeletal muscle insulin signaling are sex specific and that increased body fat in females is associated with detrimental elevations in myostatin and SMAD3, which contribute to obesity-related insulin resistance.NEW & NOTEWORTHY Obesity is considered a main risk factor for the development of insulin resistance and type 2 diabetes. The present study utilizes in vivo and in vitro experiments in human skeletal muscle to demonstrate for the first time that females are inherently more susceptible to myostatin-induced insulin resistance, which is further enhanced with obesity due to increased myostatin and SMAD3 expression.
Collapse
Affiliation(s)
- Gunjan Saxena
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
| | - Sean Gallagher
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
| | - Timothy D Law
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States
| | - Dominic Maschari
- College of Health Sciences and Professions, Ohio University, Athens, Ohio, United States
| | - Erin Walsh
- Biological Sciences Department, Ohio University, Athens, Ohio, United States
| | - Courtney Dudley
- Biological Sciences Department, Ohio University, Athens, Ohio, United States
| | - Jeffrey J Brault
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, United States
- Indiana Center for Musculoskeletal Health, Indianapolis, Indiana, United States
| | - Leslie A Consitt
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
- Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio, United States
- Ohio Musculoskeletal and Neurological Institute, Ohio University, Athens, Ohio, United States
- Diabetes Institute, Ohio University, Athens, Ohio, United States
| |
Collapse
|
3
|
Wakeling MN, Owens NDL, Hopkinson JR, Johnson MB, Houghton JAL, Dastamani A, Flaxman CS, Wyatt RC, Hewat TI, Hopkins JJ, Laver TW, van Heugten R, Weedon MN, De Franco E, Patel KA, Ellard S, Morgan NG, Cheesman E, Banerjee I, Hattersley AT, Dunne MJ, Richardson SJ, Flanagan SE. Non-coding variants disrupting a tissue-specific regulatory element in HK1 cause congenital hyperinsulinism. Nat Genet 2022; 54:1615-1620. [PMID: 36333503 PMCID: PMC7614032 DOI: 10.1038/s41588-022-01204-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 09/16/2022] [Indexed: 11/06/2022]
Abstract
Gene expression is tightly regulated, with many genes exhibiting cell-specific silencing when their protein product would disrupt normal cellular function1. This silencing is largely controlled by non-coding elements, and their disruption might cause human disease2. We performed gene-agnostic screening of the non-coding regions to discover new molecular causes of congenital hyperinsulinism. This identified 14 non-coding de novo variants affecting a 42-bp conserved region encompassed by a regulatory element in intron 2 of the hexokinase 1 gene (HK1). HK1 is widely expressed across all tissues except in the liver and pancreatic beta cells and is thus termed a 'disallowed gene' in these specific tissues. We demonstrated that the variants result in a loss of repression of HK1 in pancreatic beta cells, thereby causing insulin secretion and congenital hyperinsulinism. Using epigenomic data accessed from public repositories, we demonstrated that these variants reside within a regulatory region that we determine to be critical for cell-specific silencing. Importantly, this has revealed a disease mechanism for non-coding variants that cause inappropriate expression of a disallowed gene.
Collapse
Affiliation(s)
- Matthew N Wakeling
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Nick D L Owens
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jessica R Hopkinson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Matthew B Johnson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jayne A L Houghton
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Antonia Dastamani
- Endocrinology Department, Great Ormond Street Hospital for Children, London, UK
| | - Christine S Flaxman
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Rebecca C Wyatt
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Thomas I Hewat
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Jasmin J Hopkins
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Thomas W Laver
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Rachel van Heugten
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Michael N Weedon
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Elisa De Franco
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Kashyap A Patel
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sian Ellard
- Exeter Genomics Laboratory, Royal Devon and Exeter NHS Foundation Trust, Exeter, UK
| | - Noel G Morgan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Edmund Cheesman
- Department of Paediatric Pathology, Royal Manchester Children's Hospital, Manchester, UK
| | - Indraneel Banerjee
- Department of Paediatric Endocrinology, Royal Manchester Children's Hospital, Manchester, UK
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, UK
| | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Mark J Dunne
- Faculty of Biology, Medicine and Health, the University of Manchester, Manchester, UK
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK
| | - Sarah E Flanagan
- Institute of Biomedical and Clinical Science, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
4
|
Mostafa D, Yanagiya A, Georgiadou E, Wu Y, Stylianides T, Rutter GA, Suzuki T, Yamamoto T. Loss of β-cell identity and diabetic phenotype in mice caused by disruption of CNOT3-dependent mRNA deadenylation. Commun Biol 2020; 3:476. [PMID: 32859966 PMCID: PMC7455721 DOI: 10.1038/s42003-020-01201-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic β-cells are responsible for production and secretion of insulin in response to increasing blood glucose levels. Defects in β-cell function lead to hyperglycemia and diabetes mellitus. Here, we show that CNOT3, a CCR4-NOT deadenylase complex subunit, is dysregulated in islets in diabetic db/db mice, and that it is essential for murine β cell maturation and identity. Mice with β cell-specific Cnot3 deletion (Cnot3βKO) exhibit impaired glucose tolerance, decreased β cell mass, and they gradually develop diabetes. Cnot3βKO islets display decreased expression of key regulators of β cell maturation and function. Moreover, they show an increase of progenitor cell markers, β cell-disallowed genes, and genes relevant to altered β cell function. Cnot3βKO islets exhibit altered deadenylation and increased mRNA stability, partly accounting for the increased expression of those genes. Together, these data reveal that CNOT3-mediated mRNA deadenylation and decay constitute previously unsuspected post-transcriptional mechanisms essential for β cell identity.
Collapse
Affiliation(s)
- Dina Mostafa
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Akiko Yanagiya
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Eleni Georgiadou
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Yibo Wu
- Laboratory for Next-Generation Proteomics, Riken Center of Integrative Medical Sciences, Yokohama, Japan
| | - Theodoros Stylianides
- Centre of Innovative and Collaborative Construction Engineering, Loughborough University, Leicestershire, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital, London, UK
| | - Toru Suzuki
- Laboratory for Immunogenetics, Riken Center of Integrative Medical Sciences, Yokohama, Japan.
| | - Tadashi Yamamoto
- Cell Signal Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
5
|
Yin Q, Ni Q, Wang Y, Zhang H, Li W, Nie A, Wang S, Gu Y, Wang Q, Ning G. Raptor determines β-cell identity and plasticity independent of hyperglycemia in mice. Nat Commun 2020; 11:2538. [PMID: 32439909 PMCID: PMC7242325 DOI: 10.1038/s41467-020-15935-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Compromised β-cell identity is emerging as an important contributor to β-cell failure in diabetes; however, the precise mechanism independent of hyperglycemia is under investigation. We have previously reported that mTORC1/Raptor regulates functional maturation in β-cells. In the present study, we find that diabetic β-cell specific Raptor-deficient mice (βRapKOGFP) show reduced β-cell mass, loss of β-cell identity and acquisition of α-cell features; which are not reversible upon glucose normalization. Deletion of Raptor directly impairs β-cell identity, mitochondrial metabolic coupling and protein synthetic activity, leading to β-cell failure. Moreover, loss of Raptor activates α-cell transcription factor MafB (via modulating C/EBPβ isoform ratio) and several α-cell enriched genes i.e. Etv1 and Tspan12, thus initiates β- to α-cell reprograming. The present findings highlight mTORC1 as a metabolic rheostat for stabilizing β-cell identity and repressing α-cell program at normoglycemic level, which might present therapeutic opportunities for treatment of diabetes.
Collapse
Affiliation(s)
- Qinglei Yin
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Qicheng Ni
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yichen Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Hongli Zhang
- Department of Endocrinology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 200137, Shanghai, China
| | - Wenyi Li
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Aifang Nie
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shu Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yanyun Gu
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Qidi Wang
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Guang Ning
- Shanghai National Clinical Research Center for Endocrine and Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
6
|
Abstract
PURPOSE OF REVIEW This review summarizes the alterations in the β-cell observed in type 2 diabetes (T2D), focusing on changes in β-cell identity and mass and changes associated with metabolism and intracellular signaling. RECENT FINDINGS In the setting of T2D, β-cells undergo changes in gene expression, reverting to a more immature state and in some cases transdifferentiating into other islet cell types. Alleviation of metabolic stress, ER stress, and maladaptive prostaglandin signaling could improve β-cell function and survival. The β-cell defects leading to T2D likely differ in different individuals and include variations in β-cell mass, development, β-cell expansion, responses to ER and oxidative stress, insulin production and secretion, and intracellular signaling pathways. The recent recognition that some β-cells undergo dedifferentiation without dying in T2D suggests strategies to revive these cells and rejuvenate their functionality.
Collapse
Affiliation(s)
- Ashley A Christensen
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, 37232, USA.
- Department of Medicine, Vanderbilt University Medical Center, 2213 Garland Ave, MRB IV 7465, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN, 37232, USA.
- Department of Cell & Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
| |
Collapse
|
7
|
Becker MW, Simonovich JA, Phelps EA. Engineered microenvironments and microdevices for modeling the pathophysiology of type 1 diabetes. Biomaterials 2019; 198:49-62. [DOI: 10.1016/j.biomaterials.2018.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 06/21/2018] [Accepted: 07/01/2018] [Indexed: 01/09/2023]
|
8
|
Haldeman JM, Conway AE, Arlotto ME, Slentz DH, Muoio DM, Becker TC, Newgard CB. Creation of versatile cloning platforms for transgene expression and dCas9-based epigenome editing. Nucleic Acids Res 2019; 47:e23. [PMID: 30590691 PMCID: PMC6393299 DOI: 10.1093/nar/gky1286] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 01/09/2023] Open
Abstract
Genetic manipulation via transgene overexpression, RNAi, or Cas9-based methods is central to biomedical research. Unfortunately, use of these tools is often limited by vector options. We have created a modular platform (pMVP) that allows a gene of interest to be studied in the context of an array of promoters, epitope tags, conditional expression modalities, and fluorescent reporters, packaged in 35 custom destination vectors, including adenovirus, lentivirus, PiggyBac transposon, and Sleeping Beauty transposon, in aggregate >108,000 vector permutations. We also used pMVP to build an epigenetic engineering platform, pMAGIC, that packages multiple gRNAs and either Sa-dCas9 or x-dCas9(3.7) fused to one of five epigenetic modifiers. Importantly, via its compatibility with adenoviral vectors, pMAGIC uniquely enables use of dCas9/LSD1 fusions to interrogate enhancers within primary cells. To demonstrate this, we used pMAGIC to target Sa-dCas9/LSD1 and modify the epigenetic status of a conserved enhancer, resulting in altered expression of the homeobox transcription factor PDX1 and its target genes in pancreatic islets and insulinoma cells. In sum, the pMVP and pMAGIC systems empower researchers to rapidly generate purpose-built, customized vectors for manipulation of gene expression, including via targeted epigenetic modification of regulatory elements in a broad range of disease-relevant cell types.
Collapse
Affiliation(s)
- Jonathan M Haldeman
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA
| | - Amanda E Conway
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Michelle E Arlotto
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Dorothy H Slentz
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
| | - Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Thomas C Becker
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27701, USA
| | - Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC 27701, USA
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27701, USA
- Department of Medicine, Duke University Medical Center, Durham, NC 27701, USA
| |
Collapse
|
9
|
Pusec CM, De Jesus A, Khan MW, Terry AR, Ludvik AE, Xu K, Giancola N, Pervaiz H, Daviau Smith E, Ding X, Harrison S, Chandel NS, Becker TC, Hay N, Ardehali H, Cordoba-Chacon J, Layden BT. Hepatic HKDC1 Expression Contributes to Liver Metabolism. Endocrinology 2019; 160:313-330. [PMID: 30517626 PMCID: PMC6334269 DOI: 10.1210/en.2018-00887] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/16/2018] [Indexed: 12/15/2022]
Abstract
Glucokinase (GCK) is the principal hexokinase (HK) in the liver, operating as a glucose sensor to regulate glucose metabolism and lipid homeostasis. Recently, we proposed HK domain-containing 1 (HKDC1) to be a fifth HK with expression in the liver. Here, we reveal HKDC1 to have low glucose-phosphorylating ability and demonstrate its association with the mitochondria in hepatocytes. As we have shown previously that genetic deletion of HKDC1 leads to altered hepatic triglyceride levels, we also explored the influence of overexpression of HKDC1 in hepatocytes on cellular metabolism, observing reduced glycolytic capacity and maximal mitochondrial respiration with concurrent reductions in glucose oxidation and mitochondrial membrane potential. Furthermore, we found that acute in vivo overexpression of HKDC1 in the liver induced substantial changes in mitochondrial dynamics. Altogether, these findings suggest that overexpression of HKDC1 causes mitochondrial dysfunction in hepatocytes. However, its overexpression was not enough to alter energy storage in the liver but led to mild improvement in glucose tolerance. We next investigated the conditions necessary to induce HKDC1 expression, observing HKDC1 expression to be elevated in human patients whose livers were at more advanced stages of nonalcoholic fatty liver disease (NAFLD) and similarly, found high liver expression in mice on diets causing high levels of liver inflammation and fibrosis. Overall, our data suggest that HKDC1 expression in hepatocytes results in defective mitochondrial function and altered hepatocellular metabolism and speculate that its expression in the liver may play a role in the development of NAFLD.
Collapse
Affiliation(s)
- Carolina M Pusec
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Adam De Jesus
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Md Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Alexander R Terry
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Anton E Ludvik
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kai Xu
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Nicholas Giancola
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Haaris Pervaiz
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Xianzhong Ding
- Department of Pathology, Loyola University Chicago, Maywood, Illinois
| | | | - Navdeep S Chandel
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Thomas C Becker
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke University Medical Center, Durham, North Carolina
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina
| | - Nissim Hay
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Hossein Ardehali
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jose Cordoba-Chacon
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Brian T Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois
- Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Jesse Brown VA Medical Center, Chicago, Illinois
| |
Collapse
|
10
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Lu M, Li C. Nutrient sensing in pancreatic islets: lessons from congenital hyperinsulinism and monogenic diabetes. Ann N Y Acad Sci 2017; 1411:65-82. [PMID: 29044608 DOI: 10.1111/nyas.13448] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/05/2017] [Accepted: 07/14/2017] [Indexed: 12/14/2022]
Abstract
Pancreatic beta cells sense changes in nutrients during the cycles of fasting and feeding and release insulin accordingly to maintain glucose homeostasis. Abnormal beta cell nutrient sensing resulting from gene mutations leads to hypoglycemia or diabetes. Glucokinase (GCK) plays a key role in beta cell glucose sensing. As one form of congenital hyperinsulinism (CHI), activating mutations of GCK result in a decreased threshold for glucose-stimulated insulin secretion and hypoglycemia. In contrast, inactivating mutations of GCK result in diabetes, including a mild form (MODY2) and a severe form (permanent neonatal diabetes mellitus (PNDM)). Mutations of beta cell ion channels involved in insulin secretion regulation also alter glucose sensing. Activating or inactivating mutations of ATP-dependent potassium (KATP ) channel genes result in severe but completely opposite clinical phenotypes, including PNDM and CHI. Mutations of the other ion channels, including voltage-gated potassium channels (Kv 7.1) and voltage-gated calcium channels, also lead to abnormal glucose sensing and CHI. Furthermore, amino acids can stimulate insulin secretion in a glucose-independent manner in some forms of CHI, including activating mutations of the glutamate dehydrogenase gene, HDAH deficiency, and inactivating mutations of KATP channel genes. These genetic defects have provided insight into a better understanding of the complicated nature of beta cell fuel-sensing mechanisms.
Collapse
Affiliation(s)
- Ming Lu
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Endocrinology, Shandong Provincial Hospital affiliated to Shandong University, Jinan, Shandong, China
| | - Changhong Li
- Division of Endocrinology and Diabetes, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics & Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
12
|
Raptor regulates functional maturation of murine beta cells. Nat Commun 2017; 8:15755. [PMID: 28598424 PMCID: PMC5472774 DOI: 10.1038/ncomms15755] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 04/26/2017] [Indexed: 02/08/2023] Open
Abstract
Diabetes is associated with beta cell mass loss and islet dysfunctions. mTORC1 regulates beta cell survival, proliferation and function in physiological and pathological conditions, such as pregnancy and pancreatectomy. Here we show that deletion of Raptor, which is an essential component of mTORC1, in insulin-expressing cells promotes hypoinsulinemia and glucose intolerance. Raptor-deficient beta cells display reduced glucose responsiveness and exhibit a glucose metabolic profile resembling fetal beta cells. Knockout islets have decreased expression of key factors of functional maturation and upregulation of neonatal markers and beta cell disallowed genes, resulting in loss of functional maturity. Mechanistically, Raptor-deficient beta cells show reduced expression of DNA-methyltransferase 3a and altered patterns of DNA methylation at loci that are involved in the repression of disallowed genes. The present findings highlight a novel role of mTORC1 as a core mechanism governing postnatal beta cell maturation and physiologic beta cell mass during adulthood. mTORC1 regulates beta cell survival, function and adaptation to physiologic and pathological stimuli. Here Ni et al. demonstrate that that deficiency of Raptor, a component of mTORC1 complex, impairs insulin secretion and glucose tolerance in mice by affecting maturation of beta cells during the postnatal period.
Collapse
|
13
|
Affiliation(s)
- Charles V Mobbs
- Departments of Neuroscience; Endocrinology, Diabetes and Bone Disease; and Geriatrics and Palliative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
14
|
Rosario W, Singh I, Wautlet A, Patterson C, Flak J, Becker TC, Ali A, Tamarina N, Philipson LH, Enquist LW, Myers MG, Rhodes CJ. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions. Diabetes 2016; 65:2711-23. [PMID: 27207534 PMCID: PMC5001176 DOI: 10.2337/db15-0629] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 04/06/2016] [Indexed: 12/24/2022]
Abstract
The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia.
Collapse
Affiliation(s)
- Wilfredo Rosario
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Inderroop Singh
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Arnaud Wautlet
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Christa Patterson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Jonathan Flak
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Thomas C Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC
| | - Almas Ali
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Natalia Tamarina
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Louis H Philipson
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| |
Collapse
|
15
|
Abstract
Pancreatic β cells support glucose homeostasis with great precision by matching insulin release to the metabolic needs of the moment. Previous gene-expression analysis indicates that adult β cells not only produce cell-specific proteins, but also repress a small set of housekeeping genes - such as those encoding lactate dehydrogenase A (LDHA), solute transporter MCT1, and hexokinase 1 (HK1) - that would otherwise interfere with normal β cell function. In this issue of the JCI, Dhawan et al. elucidate a molecular mechanism involved in β cell-specific repression of Ldha and Hk1 that is mediated by induction of the de novo DNA methyltransferase DNMT3A during the first weeks after birth. Failure to induce DNMT3A-dependent methylation disrupts normal glucose-induced insulin release in adult life. The results of this study reinforce the idea that the phenotype of adult β cells has two faces and that failure to achieve selective gene repression undermines β cell support of normal glucose homeostasis.
Collapse
|
16
|
Dhawan S, Tschen SI, Zeng C, Guo T, Hebrok M, Matveyenko A, Bhushan A. DNA methylation directs functional maturation of pancreatic β cells. J Clin Invest 2015; 125:2851-60. [PMID: 26098213 DOI: 10.1172/jci79956] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 04/23/2015] [Indexed: 12/24/2022] Open
Abstract
Pancreatic β cells secrete insulin in response to postprandial increases in glucose levels to prevent hyperglycemia and inhibit insulin secretion under fasting conditions to protect against hypoglycemia. β cells lack this functional capability at birth and acquire glucose-stimulated insulin secretion (GSIS) during neonatal life. Here, we have shown that during postnatal life, the de novo DNA methyltransferase DNMT3A initiates a metabolic program by repressing key genes, thereby enabling the coupling of insulin secretion to glucose levels. In a murine model, β cell-specific deletion of Dnmt3a prevented the metabolic switch, resulting in loss of GSIS. DNMT3A bound to the promoters of the genes encoding hexokinase 1 (HK1) and lactate dehydrogenase A (LDHA) - both of which regulate the metabolic switch - and knockdown of these two key DNMT3A targets restored the GSIS response in islets from animals with β cell-specific Dnmt3a deletion. Furthermore, DNA methylation-mediated repression of glucose-secretion decoupling genes to modulate GSIS was conserved in human β cells. Together, our results reveal a role for DNA methylation to direct the acquisition of pancreatic β cell function.
Collapse
|
17
|
Zheng H, Fu J, Xue P, Zhao R, Dong J, Liu D, Yamamoto M, Tong Q, Teng W, Qu W, Zhang Q, Andersen ME, Pi J. CNC-bZIP protein Nrf1-dependent regulation of glucose-stimulated insulin secretion. Antioxid Redox Signal 2015; 22:819-31. [PMID: 25556857 PMCID: PMC4367236 DOI: 10.1089/ars.2014.6017] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AIMS The inability of pancreatic β-cells to secrete sufficient insulin in response to glucose stimulation is a major contributing factor to the development of type 2 diabetes (T2D). We investigated both the in vitro and in vivo effects of deficiency of nuclear factor-erythroid 2-related factor 1 (Nrf1) in β-cells on β-cell function and glucose homeostasis. RESULTS Silencing of Nrf1 in β-cells leads to a pre-T2D phenotype with disrupted glucose metabolism and impaired insulin secretion. Specifically, MIN6 β-cells with stable knockdown of Nrf1 (Nrf1-KD) and isolated islets from β-cell-specific Nrf1-knockout [Nrf1(b)-KO] mice displayed impaired glucose responsiveness, including elevated basal insulin release and decreased glucose-stimulated insulin secretion (GSIS). Nrf1(b)-KO mice exhibited severe fasting hyperinsulinemia, reduced GSIS, and glucose intolerance. Silencing of Nrf1 in MIN6 cells resulted in oxidative stress and altered glucose metabolism, with increases in both glucose uptake and aerobic glycolysis, which is associated with the elevated basal insulin release and reduced glucose responsiveness. The elevated glycolysis and reduced glucose responsiveness due to Nrf1 silencing likely result from altered expression of glucose metabolic enzymes, with induction of high-affinity hexokinase 1 and suppression of low-affinity glucokinase. INNOVATION Our study demonstrated a novel role of Nrf1 in regulating glucose metabolism and insulin secretion in β-cells and characterized Nrf1 as a key transcription factor that regulates the coupling of glycolysis and mitochondrial metabolism and GSIS. CONCLUSION Nrf1 plays critical roles in regulating glucose metabolism, mitochondrial function, and insulin secretion, suggesting that Nrf1 may be a novel target to improve the function of insulin-secreting β-cells.
Collapse
Affiliation(s)
- Hongzhi Zheng
- 1 The First Affiliated Hospital, China Medical University , Shenyang, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jia S, Ivanov A, Blasevic D, Müller T, Purfürst B, Sun W, Chen W, Poy MN, Rajewsky N, Birchmeier C. Insm1 cooperates with Neurod1 and Foxa2 to maintain mature pancreatic β-cell function. EMBO J 2015; 34:1417-33. [PMID: 25828096 PMCID: PMC4492000 DOI: 10.15252/embj.201490819] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/10/2015] [Indexed: 12/25/2022] Open
Abstract
Key transcription factors control the gene expression program in mature pancreatic β-cells, but their integration into regulatory networks is little understood. Here, we show that Insm1, Neurod1 and Foxa2 directly interact and together bind regulatory sequences in the genome of mature pancreatic β-cells. We used Insm1 ablation in mature β-cells in mice and found pronounced deficits in insulin secretion and gene expression. Insm1-dependent genes identified previously in developing β-cells markedly differ from the ones identified in the adult. In particular, adult mutant β-cells resemble immature β-cells of newborn mice in gene expression and functional properties. We defined Insm1, Neurod1 and Foxa2 binding sites associated with genes deregulated in Insm1 mutant β-cells. Remarkably, combinatorial binding of Insm1, Neurod1 and Foxa2 but not binding of Insm1 alone explained a significant fraction of gene expression changes. Human genomic sequences corresponding to the murine sites occupied by Insm1/Neurod1/Foxa2 were enriched in single nucleotide polymorphisms associated with glycolytic traits. Thus, our data explain part of the mechanisms by which β-cells maintain maturity: Combinatorial Insm1/Neurod1/Foxa2 binding identifies regulatory sequences that maintain the mature gene expression program in β-cells, and disruption of this network results in functional failure.
Collapse
Affiliation(s)
- Shiqi Jia
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Andranik Ivanov
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Dinko Blasevic
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Thomas Müller
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Bettina Purfürst
- Electron Microscopy Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Sun
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Wei Chen
- Scientific Genomics Platform, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Matthew N Poy
- Molecular Mechanisms of Metabolic Disease, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
19
|
Guo C, Ludvik AE, Arlotto ME, Hayes MG, Armstrong LL, Scholtens DM, Brown CD, Newgard CB, Becker TC, Layden BT, Lowe WL, Reddy TE. Coordinated regulatory variation associated with gestational hyperglycaemia regulates expression of the novel hexokinase HKDC1. Nat Commun 2015; 6:6069. [PMID: 25648650 PMCID: PMC4318120 DOI: 10.1038/ncomms7069] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 12/10/2014] [Indexed: 02/06/2023] Open
Abstract
Maternal glucose levels during pregnancy impact the developing fetus, affecting metabolic health early and later in life. Both genetic and environmental factors influence maternal metabolism, but little is known about the genetic mechanisms that alter glucose metabolism during pregnancy. Here we report that haplotypes previously associated with gestational hyperglycemia in the third trimester disrupt regulatory element activity and reduce expression of the nearby HKDC1 gene. We further find that experimentally reducing or increasing HKDC1 expression reduces or increases hexokinase activity, respectively, in multiple cellular models; and that purified HKDC1 protein has hexokinase activity in vitro. Together, these results suggest a novel mechanism of gestational glucose regulation in which the effects of genetic variants in multiple regulatory elements alter glucose homeostasis by coordinately reducing expression of the novel hexokinase HKDC1.
Collapse
Affiliation(s)
- Cong Guo
- 1] Duke University Program in Genetics &Genomics, Durham, North Carolina 27708, USA [2] Center for Genomic &Computational Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Anton E Ludvik
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Michelle E Arlotto
- Sarah W. Stedman Nutrition &Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - M Geoffrey Hayes
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Loren L Armstrong
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Denise M Scholtens
- Department of Preventive Medicine, Division of Biostatistics, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Christopher B Newgard
- 1] Sarah W. Stedman Nutrition &Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA [2] Department of Pharmacology &Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710, USA [3] Division of Endocrinology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Thomas C Becker
- 1] Sarah W. Stedman Nutrition &Metabolism Center, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA [2] Division of Endocrinology, Department of Medicine, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Brian T Layden
- 1] Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA [2] Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, USA
| | - William L Lowe
- Division of Endocrinology, Metabolism &Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | - Timothy E Reddy
- 1] Center for Genomic &Computational Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA [2] Department of Biostatistics &Bioinformatics, Duke University Medical School, Durham, North Carolina 27710, USA
| |
Collapse
|
20
|
Abstract
The short chain fatty acid (SCFA) receptor (free fatty acid receptor-3; FFAR3) is expressed in pancreatic β cells; however, its role in insulin secretion is not clearly defined. Here, we examined the role of FFAR3 in insulin secretion. Using islets from global knockout FFAR3 (Ffar3(-/-)) mice, we explored the role of FFAR3 and ligand-induced FFAR3 signaling on glucose stimulated insulin secretion. RNA sequencing was also performed to gain greater insight into the impact of FFAR3 deletion on the islet transcriptome. First exploring insulin secretion, it was determined that Ffar3(-/-) islets secrete more insulin in a glucose-dependent manner as compared to wildtype (WT) islets. Next, exploring its primary endogenous ligand, propionate, and a specific agonist for FFAR3, signaling by FFAR3 inhibited glucose-dependent insulin secretion, which occurred through a Gαi/o pathway. To help understand these results, transcriptome analyses by RNA-sequencing of Ffar3(-/-) and WT islets observed multiple genes with well-known roles in islet biology to be altered by genetic knockout of FFAR3. Our data shows that FFAR3 signaling mediates glucose stimulated insulin secretion through Gαi/o sensitive pathway. Future studies are needed to more rigorously define the role of FFAR3 by in vivo approaches.
Collapse
Affiliation(s)
- Medha Priyadarshini
- Division of Endocrinology, Metabolism and Molecular Medicine; Northwestern University Feinberg School of Medicine; Chicago, IL USA
| | - Brian T Layden
- Division of Endocrinology, Metabolism and Molecular Medicine; Northwestern University Feinberg School of Medicine; Chicago, IL USA
- Jesse Brown Veterans Affairs Medical Center; Chicago, IL USA
- Correspondence to: Brian T Layden;
| |
Collapse
|
21
|
Rengifo HR, Giraldo JA, Labrada I, Stabler CL. Long-term survival of allograft murine islets coated via covalently stabilized polymers. Adv Healthc Mater 2014; 3:1061-70. [PMID: 24497465 DOI: 10.1002/adhm.201300573] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/13/2013] [Indexed: 12/20/2022]
Abstract
Clinical islet transplantation (CIT) has emerged as a promising treatment option for type 1 diabetes mellitus (T1DM); however, the antirejection drug regimen necessary to mitigate allograft islet rejection is undesirable. The use of polymeric coatings to immunocamouflage the transplant from host immune attack has great potential. Alginate and poly(ethylene glycol) (PEG)-based polymers, functionalized with azide and phosphine, respectively, which form spontaneous and chemoselective crosslinks via the bioorthogonal Staudinger ligation scheme, were recently developed. Here, the utility of these polymers to form immunoprotective, ultrathin coatings on murine primary pancreatic islets is explored. Resulting coatings are nontoxic, with unimpaired glucose stimulated insulin secretion. Transplantation of coated BALB/c (H-2(d) ) islets into streptozotozin-induced diabetic C57BL/6 (H-2(b) ) results in prompt achievement of normoglycemia, at a rate comparable to controls. A significant subset of animals receiving coated islets (57%) exhibits long-term (>100 d) function, with robust islets observed upon explantation. Control islets rejected after 15 d (±9 d). Results illustrate the capacity of chemoselectively functionalized polymers to form coatings on islets, imparting no detrimental effect to the underlying cells, with resulting coatings exhibiting significant protective effects in an allograft murine model.
Collapse
Affiliation(s)
- Hernán R. Rengifo
- Diabetes Research Institute; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
| | - Jaime A. Giraldo
- Diabetes Research Institute; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
- Department of Biomedical Engineering; College of Engineering; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
| | - Irayme Labrada
- Diabetes Research Institute; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
| | - Cherie L. Stabler
- Diabetes Research Institute; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
- Department of Biomedical Engineering; College of Engineering; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
- Department of Surgery; Leonard M. Miller School of Medicine; University of Miami; 1450 NW 10 Ave Miami FL 33136 USA
| |
Collapse
|
22
|
Liu J, Gao F, Ji B, Wang R, Yang J, Liu H, Zhou F. Anthocyanins-rich extract of wild Chinese blueberry protects glucolipotoxicity-induced INS832/13 β-cell against dysfunction and death. Journal of Food Science and Technology 2014; 52:3022-9. [PMID: 25892804 DOI: 10.1007/s13197-014-1379-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/09/2014] [Accepted: 04/15/2014] [Indexed: 01/08/2023]
Abstract
As commonly observed events in diabetic patients, glucolipotoxicity induces oxidative stress, apoptosis and functional defects in β-cells. Anthocyanins are well investigated as strong antioxidants and modulators for metabolic syndromes. Therefore, this study examined the protective effects of anthocyanins-rich extracts (BAE) from wild Chinese blueberry (Vaccinium spp.) against glucolipotoxicity in β-cells. Results showed that INS832/13 β-cells subjected to glucolipotoxicity were significantly decreased (p < 0.05) in cell survival rate, which were alleviated by BAE and metformin treatments. Both BAE and metformin reduced reactive oxidative species and improved the antioxidant defense system. Moreover, BAE were effective in reducing intracellular triglycerides (TG) level, restoring intracellular insulin content, lowering basal insulin secretion (BIS) and increasing glucose-stimulated insulin secretion which in turn resulted in an elevated insulin secretion index. However, metformin only demonstrated marginal effect on secretion dysfunction and had no effect (p > 0.05) on BIS or TG. Additionally, TG levels reduced by BAE treatment were correlated with BIS (p < 0.01, r = 0.9755). This study has for the first time demonstrated that anthocyanin enriched extract of wild Chinese blueberry could effectively protect β-cells against glucolipotoxicity in vitro. These results implied the potential efficacy of BAE as a complementary measure for diabetes intervention.
Collapse
Affiliation(s)
- Jia Liu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Fengyi Gao
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Baoping Ji
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China ; China Agricultural University, Mailbox #294, #17 Qinghua East Road, Haidian District, Beijing, 100083 People's Republic of China
| | - Ruojun Wang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Junsi Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Huijun Liu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| | - Feng Zhou
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
23
|
Seiler SE, Martin OJ, Noland RC, Slentz DH, DeBalsi KL, Ilkayeva OR, An J, Newgard CB, Koves TR, Muoio DM. Obesity and lipid stress inhibit carnitine acetyltransferase activity. J Lipid Res 2014; 55:635-44. [PMID: 24395925 DOI: 10.1194/jlr.m043448] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Carnitine acetyltransferase (CrAT) is a mitochondrial matrix enzyme that catalyzes the interconversion of acetyl-CoA and acetylcarnitine. Emerging evidence suggests that this enzyme functions as a positive regulator of total body glucose tolerance and muscle activity of pyruvate dehydrogenase (PDH), a mitochondrial enzyme complex that promotes glucose oxidation and is feedback inhibited by acetyl-CoA. Here, we used tandem mass spectrometry-based metabolic profiling to identify a negative relationship between CrAT activity and muscle content of lipid intermediates. CrAT specific activity was diminished in muscles from obese and diabetic rodents despite increased protein abundance. This reduction in enzyme activity was accompanied by muscle accumulation of long-chain acylcarnitines (LCACs) and acyl-CoAs and a decline in the acetylcarnitine/acetyl-CoA ratio. In vitro assays demonstrated that palmitoyl-CoA acts as a direct mixed-model inhibitor of CrAT. Similarly, in primary human myocytes grown in culture, nutritional and genetic manipulations that promoted mitochondrial influx of fatty acids resulted in accumulation of LCACs but a pronounced decrease of CrAT-derived short-chain acylcarnitines. These results suggest that lipid-induced antagonism of CrAT might contribute to decreased PDH activity and glucose disposal in the context of obesity and diabetes.
Collapse
Affiliation(s)
- Sarah E Seiler
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27704
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jensen MV, Haldeman JM, Zhang H, Lu D, Huising MO, Vale WW, Hohmeier HE, Rosenberg P, Newgard CB. Control of voltage-gated potassium channel Kv2.2 expression by pyruvate-isocitrate cycling regulates glucose-stimulated insulin secretion. J Biol Chem 2013; 288:23128-40. [PMID: 23788641 DOI: 10.1074/jbc.m113.491654] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent studies have shown that the pyruvate-isocitrate cycling pathway, involving the mitochondrial citrate/isocitrate carrier and the cytosolic NADP-dependent isocitrate dehydrogenase (ICDc), is involved in control of glucose-stimulated insulin secretion (GSIS). Here we demonstrate that pyruvate-isocitrate cycling regulates expression of the voltage-gated potassium channel family member Kv2.2 in islet β-cells. siRNA-mediated suppression of ICDc, citrate/isocitrate carrier, or Kv2.2 expression impaired GSIS, and the effect of ICDc knockdown was rescued by re-expression of Kv2.2. Moreover, chronic exposure of β-cells to elevated fatty acids, which impairs GSIS, resulted in decreased expression of Kv2.2. Surprisingly, knockdown of ICDc or Kv2.2 increased rather than decreased outward K(+) current in the 832/13 β-cell line. Immunoprecipitation studies demonstrated interaction of Kv2.1 and Kv2.2, and co-overexpression of the two channels reduced outward K(+) current compared with overexpression of Kv2.1 alone. Also, siRNA-mediated knockdown of ICDc enhanced the suppressive effect of the Kv2.1-selective inhibitor stromatoxin1 on K(+) currents. Our data support a model in which a key function of the pyruvate-isocitrate cycle is to maintain levels of Kv2.2 expression sufficient to allow it to serve as a negative regulator of Kv channel activity.
Collapse
Affiliation(s)
- Mette V Jensen
- Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, North Carolina 27704, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Henquin JC, Sempoux C, Marchandise J, Godecharles S, Guiot Y, Nenquin M, Rahier J. Congenital hyperinsulinism caused by hexokinase I expression or glucokinase-activating mutation in a subset of β-cells. Diabetes 2013; 62:1689-96. [PMID: 23274908 PMCID: PMC3636634 DOI: 10.2337/db12-1414] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Congenital hyperinsulinism causes persistent hypoglycemia in neonates and infants. Most often, uncontrolled insulin secretion (IS) results from a lack of functional K(ATP) channels in all β-cells or only in β-cells within a resectable focal lesion. In more rare cases, without K(ATP) channel mutations, hyperfunctional islets are confined within few lobules, whereas hypofunctional islets are present throughout the pancreas. They also can be cured by selective partial pancreatectomy; however, unlike those with a K(ATP) focal lesion, they show clinical sensitivity to diazoxide. Here, we characterized in vitro IS by fragments of pathological and adjacent normal pancreas from six such cases. Responses of normal pancreas were unremarkable. In pathological region, IS was elevated at 1 mmol/L and was further increased by 15 mmol/L glucose. Diazoxide suppressed IS and tolbutamide antagonized the inhibition. The most conspicuous anomaly was a large stimulation of IS by 1 mmol/L glucose. In five of six cases, immunohistochemistry revealed undue presence of low-K(m) hexokinase-I in β-cells of hyperfunctional islets only. In one case, an activating mutation of glucokinase (I211F) was found in pathological islets only. Both abnormalities, attributed to somatic genetic events, may account for inappropriate IS at low glucose levels by a subset of β-cells. They represent a novel cause of focal congenital hyperinsulinism.
Collapse
Affiliation(s)
- Jean-Claude Henquin
- Unit of Endocrinology and Metabolism, University of Louvain, Faculty of Medicine, Brussels, Belgium.
| | | | | | | | | | | | | |
Collapse
|
26
|
Bensellam M, Laybutt DR, Jonas JC. The molecular mechanisms of pancreatic β-cell glucotoxicity: recent findings and future research directions. Mol Cell Endocrinol 2012; 364:1-27. [PMID: 22885162 DOI: 10.1016/j.mce.2012.08.003] [Citation(s) in RCA: 208] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/11/2012] [Accepted: 08/01/2012] [Indexed: 02/06/2023]
Abstract
It is well established that regular physiological stimulation by glucose plays a crucial role in the maintenance of the β-cell differentiated phenotype. In contrast, prolonged or repeated exposure to elevated glucose concentrations both in vitro and in vivo exerts deleterious or toxic effects on the β-cell phenotype, a concept termed as glucotoxicity. Evidence indicates that the latter may greatly contribute to the pathogenesis of type 2 diabetes. Through the activation of several mechanisms and signaling pathways, high glucose levels exert deleterious effects on β-cell function and survival and thereby, lead to the worsening of the disease over time. While the role of high glucose-induced β-cell overstimulation, oxidative stress, excessive Unfolded Protein Response (UPR) activation, and loss of differentiation in the alteration of the β-cell phenotype is well ascertained, at least in vitro and in animal models of type 2 diabetes, the role of other mechanisms such as inflammation, O-GlcNacylation, PKC activation, and amyloidogenesis requires further confirmation. On the other hand, protein glycation is an emerging mechanism that may play an important role in the glucotoxic deterioration of the β-cell phenotype. Finally, our recent evidence suggests that hypoxia may also be a new mechanism of β-cell glucotoxicity. Deciphering these molecular mechanisms of β-cell glucotoxicity is a mandatory first step toward the development of therapeutic strategies to protect β-cells and improve the functional β-cell mass in type 2 diabetes.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Université catholique de Louvain, Institut de recherche expérimentale et clinique, Pôle d'endocrinologie, diabète et nutrition, Brussels, Belgium
| | | | | |
Collapse
|
27
|
Muoio DM, Noland RC, Kovalik JP, Seiler SE, Davies MN, DeBalsi KL, Ilkayeva OR, Stevens RD, Kheterpal I, Zhang J, Covington JD, Bajpeyi S, Ravussin E, Kraus W, Koves TR, Mynatt RL. Muscle-specific deletion of carnitine acetyltransferase compromises glucose tolerance and metabolic flexibility. Cell Metab 2012; 15:764-77. [PMID: 22560225 PMCID: PMC3348515 DOI: 10.1016/j.cmet.2012.04.005] [Citation(s) in RCA: 272] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Revised: 11/18/2011] [Accepted: 04/09/2012] [Indexed: 02/04/2023]
Abstract
The concept of "metabolic inflexibility" was first introduced to describe the failure of insulin-resistant human subjects to appropriately adjust mitochondrial fuel selection in response to nutritional cues. This phenomenon has since gained increasing recognition as a core component of the metabolic syndrome, but the underlying mechanisms have remained elusive. Here, we identify an essential role for the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT), in regulating substrate switching and glucose tolerance. By converting acetyl-CoA to its membrane permeant acetylcarnitine ester, CrAT regulates mitochondrial and intracellular carbon trafficking. Studies in muscle-specific Crat knockout mice, primary human skeletal myocytes, and human subjects undergoing L-carnitine supplementation support a model wherein CrAT combats nutrient stress, promotes metabolic flexibility, and enhances insulin action by permitting mitochondrial efflux of excess acetyl moieties that otherwise inhibit key regulatory enzymes such as pyruvate dehydrogenase. These findings offer therapeutically relevant insights into the molecular basis of metabolic inflexibility.
Collapse
Affiliation(s)
- Deborah M Muoio
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Medicine, Duke University, Durham, NC 27704, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Souza DDFI, Ignácio-Souza LM, Reis SRDL, Reis MADB, Stoppiglia LF, Carneiro EM, Boschero AC, Arantes VC, Latorraca MQ. A low-protein diet during pregnancy alters glucose metabolism and insulin secretion. Cell Biochem Funct 2011; 30:114-21. [PMID: 22034157 DOI: 10.1002/cbf.1824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 09/15/2011] [Accepted: 09/27/2011] [Indexed: 11/06/2022]
Abstract
In pancreatic islets, glucose metabolism is a key process for insulin secretion, and pregnancy requires an increase in insulin secretion to compensate for the typical insulin resistance at the end of this period. Because a low-protein diet decreases insulin secretion, this type of diet could impair glucose homeostasis, leading to gestational diabetes. In pancreatic islets, we investigated GLUT2, glucokinase and hexokinase expression patterns as well as glucose uptake, utilization and oxidation rates. Adult control non-pregnant (CNP) and control pregnant (CP) rats were fed a normal protein diet (17%), whereas low-protein non-pregnant (LPNP) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) from days 1 to 15 of pregnancy. The insulin secretion in 2.8 mmol l(-1) of glucose was higher in islets from LPP rats than that in islets from CP, CNP and LPNP rats. Maximal insulin release was obtained at 8.3 and 16.7 mmol l(-1) of glucose in LPP and CP groups, respectively. The glucose dose-response curve from LPNP group was shifted to the right in relation to the CNP group. In the CP group, the concentration-response curve to glucose was shifted to the left compared with the CNP group. The LPP groups exhibited an "inverted U-shape" dose-response curve. The alterations in the GLUT2, glucokinase and hexokinase expression patterns neither impaired glucose metabolism nor correlated with glucose islet sensitivity, suggesting that β-cell sensitivity to glucose requires secondary events other than the observed metabolic/molecular events.
Collapse
|
29
|
Metabolic and molecular action of Trigonella foenum-graecum (fenugreek) and trace metals in experimental diabetic tissues. J Biosci 2011; 36:383-96. [PMID: 21654091 DOI: 10.1007/s12038-011-9042-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Diabetes mellitus is a heterogeneous metabolic disorder characterized by hyperglycaemia resulting in defective insulin secretion, resistance to insulin action or both. The use of biguanides, sulphonylurea and other drugs are valuable in the treatment of diabetes mellitus; their use, however, is restricted by their limited action, pharmacokinetic properties, secondary failure rates and side effects. Trigonella foenum-graecum, commonly known as fenugreek, is a plant that has been extensively used as a source of antidiabetic compounds from its seeds and leaf extracts. Preliminary human trials and animal experiments suggest possible hypoglycaemic and antihyperlipedemic properties of fenugreek seed powder taken orally. Our results show that the action of fenugreek in lowering blood glucose levels is almost comparable to the effect of insulin. Combination with trace metal showed that vanadium had additive effects and manganese had additive effects with insulin on in vitro system in control and diabetic animals of young and old ages using adipose tissue. The Trigonella and vanadium effects were studied in a number of tissues including liver, kidney, brain peripheral nerve, heart, red blood cells and skeletal muscle. Addition of Trigonella to vanadium significantly removed the toxicity of vanadium when used to reduce blood glucose levels. Administration of the various combinations of the antidiabetic compounds to diabetic animals was found to reverse most of the diabetic effects studied at physiological, biochemical, histochemical and molecular levels. Results of the key enzymes of metabolic pathways have been summarized together with glucose transporter, Glut-4 and insulin levels. Our findings illustrate and elucidate the antidiabetic/insulin mimetic effects of Trigonella, manganese and vanadium.
Collapse
|
30
|
Lavine JA, Raess PW, Davis DB, Rabaglia ME, Presley BK, Keller MP, Beinfeld MC, Kopin AS, Newgard CB, Attie AD. Contamination with E1A-positive wild-type adenovirus accounts for species-specific stimulation of islet cell proliferation by CCK: a cautionary note. Mol Endocrinol 2010; 24:464-7. [PMID: 20081104 DOI: 10.1210/me.2009-0384] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We have previously reported that adenovirus-mediated expression of preprocholecystokin (CCK) stimulates human and mouse islet cell proliferation. In follow-up studies, we became concerned that the CCK adenovirus might have been contaminated with a wild-type E1A-containing adenovirus. Here we show conclusively that the proliferative effects reported in the original paper in mouse and human islets were not due to CCK expression but rather to a contaminating E1A-expressing wild-type adenovirus. We also show, however, that CCK expression does have a proliferative effect in rat islets. We hope that our report of the steps taken to detect the wild-type virus contamination, and purification of the contributing viral stocks, will be helpful to other investigators, and that our experience will serve as a cautionary tale for use of adenovirus vectors, especially for studies on cellular replication.
Collapse
Affiliation(s)
- Jeremy A Lavine
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Noland RC, Koves TR, Seiler SE, Lum H, Lust RM, Ilkayeva O, Stevens RD, Hegardt FG, Muoio DM. Carnitine insufficiency caused by aging and overnutrition compromises mitochondrial performance and metabolic control. J Biol Chem 2009; 284:22840-52. [PMID: 19553674 DOI: 10.1074/jbc.m109.032888] [Citation(s) in RCA: 246] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In addition to its essential role in permitting mitochondrial import and oxidation of long chain fatty acids, carnitine also functions as an acyl group acceptor that facilitates mitochondrial export of excess carbons in the form of acylcarnitines. Recent evidence suggests carnitine requirements increase under conditions of sustained metabolic stress. Accordingly, we hypothesized that carnitine insufficiency might contribute to mitochondrial dysfunction and obesity-related impairments in glucose tolerance. Consistent with this prediction whole body carnitine diminution was identified as a common feature of insulin-resistant states such as advanced age, genetic diabetes, and diet-induced obesity. In rodents fed a lifelong (12 month) high fat diet, compromised carnitine status corresponded with increased skeletal muscle accumulation of acylcarnitine esters and diminished hepatic expression of carnitine biosynthetic genes. Diminished carnitine reserves in muscle of obese rats was accompanied by marked perturbations in mitochondrial fuel metabolism, including low rates of complete fatty acid oxidation, elevated incomplete beta-oxidation, and impaired substrate switching from fatty acid to pyruvate. These mitochondrial abnormalities were reversed by 8 weeks of oral carnitine supplementation, in concert with increased tissue efflux and urinary excretion of acetylcarnitine and improvement of whole body glucose tolerance. Acetylcarnitine is produced by the mitochondrial matrix enzyme, carnitine acetyltransferase (CrAT). A role for this enzyme in combating glucose intolerance was further supported by the finding that CrAT overexpression in primary human skeletal myocytes increased glucose uptake and attenuated lipid-induced suppression of glucose oxidation. These results implicate carnitine insufficiency and reduced CrAT activity as reversible components of the metabolic syndrome.
Collapse
Affiliation(s)
- Robert C Noland
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Khamaisi M, Dahan R, Hamed S, Abassi Z, Heyman SN, Raz I. Role of protein kinase C in the expression of endothelin converting enzyme-1. Endocrinology 2009; 150:1440-9. [PMID: 18974277 DOI: 10.1210/en.2008-0524] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Increased expression of endothelin converting enzyme-1 (ECE-1) is associated with diabetic nephropathy. The molecular mechanisms underlying this association, as yet unknown, possibly involve protein kinase C (PKC) pathways. In the present study, we examined the effects of high glucose and PKC activation on ECE-1 expression in primary human umbilical vein endothelial cells (HUVECs) and in HUVEC line (EA.hy926). Increasing glucose concentration, but not mannitol, from 5.5-22.2 mmol/liter for 3 d, enhanced prepro endothelin-1 (ET-1) mRNA expression, ET-1 levels, ECE-1 protein, and mRNA expressions by 7, 4, 20, and 2.6-fold, respectively. High glucose increased ECE-1 protein expression dose and time dependently. By Western blot analysis, PKC-beta1, -beta2, and -delta isoform levels were significantly increased relative to other isoforms when glucose level was increased. Treatment with Rottlerin, a PKC-delta isoform inhibitor, reduced significantly the glucose-induced ET-1 secretion, and ECE-1 protein expression, but (S)-13-[(dimethylamino)methyl]-10,11,14,15-tetrahydro-4,9:16,21-dimetheno 1H,1(3)H-dibenzo[e,k]pyrrolo[3,4-h] (1, 4, 3) oxadiaza-cyclohexadecene-1,3(2H)-dione or Gö6976, specific PKC-beta and -alpha inhibitors, respectively, did not. Overexpression of PKC-delta but not PKC-alpha or -beta1 isoforms by adenovirus vector containing the respective cDNA in HUVECs incubated with 5.5 mmol/liter glucose, increased in parallel PKC proteins, and glucose-induced endothein-1 and ECE-1 protein expression by 4- to 6-fold. These results show that enhanced ECE-1 expression induced by hyperglycemia is partly due to activation of the PKC-delta isoform. Thus, inhibition of this PKC isoform may prevent diabetes-related increase in ET-1.
Collapse
Affiliation(s)
- Mogher Khamaisi
- Department of Medicine, Diabetes Research Unit, Hadassah Hospital, Ein Kerem, Mt Scopus, and the Hebrew University Medical School, Jerusalem, Israel.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
A differentiated beta-cell results not only from cell-specific gene expression, but also from cell-selective repression of certain housekeeping genes. Indeed, to prevent insulin toxicity, beta-cells should handle insulin stores carefully, preventing exocytosis under conditions when circulating insulin is unwanted. Some ubiquitously expressed proteins would significantly jeopardize this safeguard, when allowed to function in beta-cells. This is illustrated by two studied examples. First, low-K(m) hexokinases are disallowed as their high affinity for glucose would, when expressed, significantly lower the threshold for glucose-induced beta-cell function and cause hypoglycaemia, as happens in patients with beta-cell tumours. Thus the beta-cell phenotype means not only expression of glucokinase but also absence of low-K(m) hexokinases. Secondly, the absence of MCTs (monocarboxylic acid transporters) in beta-cells explains the pyruvate paradox (pyruvate being an excellent substrate for mitochondrial ATP production, yet not stimulating insulin release when added to beta-cells). The relevance of this disallowance is underlined in patients with exercise-induced inappropriate insulin release: these have gain-of-function MCT1 promoter mutations and loss of the pyruvate paradox. By genome-wide ex vivo mRNA expression studies using mouse islets and an extensive panel of other tissues, we have started to identify in a systematic manner other specifically disallowed genes. For each of those, the future challenge is to explore the physiological/pathological relevance and study conditions under which the phenotypically disallowed state in the beta-cell is breached.
Collapse
|
34
|
Fueger PT, Schisler JC, Lu D, Babu DA, Mirmira RG, Newgard CB, Hohmeier HE. Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function. Mol Endocrinol 2008; 22:1251-9. [PMID: 18258687 DOI: 10.1210/me.2007-0500] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Both major forms of diabetes involve a decline in beta-cell mass, mediated by autoimmune destruction of insulin-producing cells in type 1 diabetes and by increased rates of apoptosis secondary to metabolic stress in type 2 diabetes. Methods for controlled expansion of beta-cell mass are currently not available but would have great potential utility for treatment of these diseases. In the current study, we demonstrate that overexpression of trefoil factor 3 (TFF3) in rat pancreatic islets results in a 4- to 5-fold increase in [(3)H]thymidine incorporation, with full retention of glucose-stimulated insulin secretion. This increase was almost exclusively due to stimulation of beta-cell replication, as demonstrated by studies of bromodeoxyuridine incorporation and co-immunofluorescence analysis with anti-bromodeoxyuridine and antiinsulin or antiglucagon antibodies. The proliferative effect of TFF3 required the presence of serum or 0.5 ng/ml epidermal growth factor. The ability of TFF3 overexpression to stimulate proliferation of rat islets in serum was abolished by the addition of epidermal growth factor receptor antagonist AG1478. Furthermore, TFF3-induced increases in [3H]thymidine incorporation in rat islets cultured in serum was blocked by overexpression of a dominant-negative Akt protein or treatment with triciribine, an Akt inhibitor. Finally, overexpression of TFF3 also caused a doubling of [3H]thymidine incorporation in human islets. In summary, our findings reveal a novel TFF3-mediated pathway for stimulation of beta-cell replication that could ultimately be exploited for expansion or preservation of islet beta-cell mass.
Collapse
Affiliation(s)
- Patrick T Fueger
- Sarah W. Stedman Nutrition and Metabolism Center, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27704, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Mukai E, Fujimoto S, Sakurai F, Kawabata K, Yamashita M, Inagaki N, Mizuguchi H. Efficient gene transfer into murine pancreatic islets using adenovirus vectors. J Control Release 2007; 119:136-41. [PMID: 17331612 DOI: 10.1016/j.jconrel.2007.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2006] [Revised: 12/27/2006] [Accepted: 01/21/2007] [Indexed: 12/11/2022]
Abstract
We investigated the efficiency of gene transduction into murine pancreatic islets using the adenovirus (Ad) vector. Western blotting analysis showed that mouse pancreatic islets express coxsackievirus and adenovirus receptor, a receptor for Ad. Nevertheless, gene expression after transduction of the Ad vector in vitro was observed only in the periphery of the islets, probably due to physical obstruction against Ad infection of the cells in the inside of islets. Ca(2+)-free treatment before the Ad vector transduction enhanced transduction efficiency in the islets, but not the cells in the inside of islets. The Ad vector transduction through the celiac artery in vivo and then cultivation of islets in vitro resulted in efficient transduction even in the inside of islets. Thus we propose a new strategy for efficient gene transfer to pancreatic beta-cells.
Collapse
Affiliation(s)
- Eri Mukai
- Laboratory of Gene Transfer and Regulation, National Institute of Biomedical Innovation, 7-6-8 Saito, Asagi, Ibaraki, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Quesada E, Castell JV, Vilanova E, Carrera V. Over-expression of neuropathy target esterase activity in bovine chromaffin cell cultures by adenovirus-mediated gene transfer. Toxicol Lett 2007; 168:286-91. [PMID: 17184936 DOI: 10.1016/j.toxlet.2006.10.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Accepted: 10/16/2006] [Indexed: 11/23/2022]
Abstract
Chromaffin cells in culture show high neuropathy target esterase (NTE) activity. It is well known that inhibition and specific modification of NTE by some organophosphorus (OPs) compounds induces a neurodegenerative neuropathy. It has been suggested that NTE is responsible for phosphatidylcholine homeostasis, although its role in neuropathy induction remains unclear. The cDNA of human NTE (4.4kbp) was inserted into an adenoviral vector. Bovine chromaffin cells cultured at 50,000 cells/well were incubated with the vector for 2h and after removing the volume of infection, cells were maintained in the incubator. After 24h, NTE activity was 6.8+/-0.5mU/10(6) cells in untreated cells and 14.8+/-1.5mU/10(6) cells, 19.3+/-2.9mU/10(6) cells, 24.8+/-0.9mU/10(6) cells and 30.9+/-1.0mU/10(6) cells in cells incubated with 2, 4, 8 and 16microl of vector, respectively. After 60min of inhibition with mipafox increased concentrations, the calculated I(50) (60min) values were 5.5, 6.2 and 6.6microM for cells infected with 0, 2 and 10microl of vector preparation. We confirm that the adenoviral vector containing the human NTE gene is active in bovine chromaffin cells in culture and that the NTE activity expressed by the vector shows the same inhibition pattern by the neuropathic OP mipafox as the NTE activity of bovine chromaffin cells and cells remained viable after the high NTE activity expression.
Collapse
Affiliation(s)
- Encarna Quesada
- Unidad de Toxicología y Seguridad Química, Instituto de Bioingeniería, Universidad Miguel Hernández. Avda. de la Universidad, s/n. E-03202 Elche (Alicante), Spain.
| | | | | | | |
Collapse
|
37
|
Chen S, Ding JH, Bekeredjian R, Yang BZ, Shohet RV, Johnston SA, Hohmeier HE, Newgard CB, Grayburn PA. Efficient gene delivery to pancreatic islets with ultrasonic microbubble destruction technology. Proc Natl Acad Sci U S A 2006; 103:8469-74. [PMID: 16709667 PMCID: PMC1482516 DOI: 10.1073/pnas.0602921103] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Indexed: 12/31/2022] Open
Abstract
This study describes a method of gene delivery to pancreatic islets of adult, living animals by ultrasound targeted microbubble destruction (UTMD). The technique involves incorporation of plasmids into the phospholipid shell of gas-filled microbubbles, which are then infused into rats and destroyed within the pancreatic microcirculation with ultrasound. Specific delivery of genes to islet beta cells by UTMD was achieved by using a plasmid containing a rat insulin 1 promoter (RIP), and reporter gene expression was regulated appropriately by glucose in animals that received a RIP-luciferase plasmid. To demonstrate biological efficacy, we used UTMD to deliver RIP-human insulin and RIP-hexokinase I plasmids to islets of adult rats. Delivery of the former plasmid resulted in clear increases in circulating human C-peptide and decreased blood glucose levels, whereas delivery of the latter plasmid resulted in a clear increase in hexokinase I protein expression in islets, increased insulin levels in blood, and decreased circulating glucose levels. We conclude that UTMD allows relatively noninvasive delivery of genes to pancreatic islets with an efficiency sufficient to modulate beta cell function in adult animals.
Collapse
Affiliation(s)
- Shuyuan Chen
- *Department of Internal Medicine, Cardiology Section, Baylor University Medical Center, Baylor Heart and Vascular Institute, 621 North Hall Street, Suite H030, Dallas, TX 75226
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX 75246
| | - Jia-huan Ding
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX 75246
| | | | - Bing-zhi Yang
- Institute of Metabolic Disease, Baylor University Medical Center, Dallas, TX 75246
| | - Ralph V. Shohet
- Department of Internal Medicine, Division of Cardiology, and
| | - Stephen A. Johnston
- Center for Biomedical Invention, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Hans E. Hohmeier
- Sarah W. Stedman Nutrition and Metabolism Center, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27710
| | - Christopher B. Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, Departments of Pharmacology and Cancer Biology and Medicine, Duke University Medical Center, Durham, NC 27710
| | - Paul A. Grayburn
- *Department of Internal Medicine, Cardiology Section, Baylor University Medical Center, Baylor Heart and Vascular Institute, 621 North Hall Street, Suite H030, Dallas, TX 75226
| |
Collapse
|
38
|
He Z, Wang F, Kumagai-Braesch M, Permert J, Holgersson J. Long-term gene expression and metabolic control exerted by lentivirus-transduced pancreatic islets. Xenotransplantation 2006; 13:195-203. [PMID: 16756562 DOI: 10.1111/j.1399-3089.2006.00274.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Genetic modification of non-human islets before transplantation may provide means by which they can escape immunity and, thus, be used in a human host. To accomplish this, efficient gene transfer methods are needed. Lentiviral vectors are transgene vehicles capable of stably transducing a variety of primary, post-mitotic cells including islets. METHODS We investigated whether lentiviral transduction impaired rat pancreatic islet function long term. Following transduction, the gross morphology, viability and in vitro functionality of islets were evaluated by microscopy, adenylate nucleotide and insulin secretion assays, respectively. Further, in vivo functionality of transduced islets was assessed by transplanting the islets under the kidney capsule of diabetic nude mice. RESULTS All transduced islets contained green fluorescent protein (GFP)-positive cells. In single cell suspensions prepared from transduced islets, 33+/-8% (n = 3) of dispersed islet cells were GFP-positive. The ADP/ATP ratio was 0.07+/-0.01 for transduced islets and 0.06+/-0.01 for controls (normal range <0.11). No morphological changes were observed in transduced islets. Further, basal insulin secretion was comparable between the two islet groups. When transduced and non-transduced islets were challenged with insulin secretagogues, they showed similar increases in insulin release. Transduced and non-transduced islets were equally effective in normalizing blood glucose when transplanted into diabetic nude mice. Euglycemia was maintained for 8 weeks until the graft-bearing kidney was removed. Intense green fluorescence was seen in removed islet grafts. Histology revealed preserved islet morphology, with abundant insulin-producing cells, few apoptotic cells and infiltrating leukocytes in both transduced and non-transduced grafts. CONCLUSIONS Lentivirus transduction does not affect islet morphology or function. Lentiviral vectors will allow genetic modifications to be performed in islets before transplantation--modifications that can improve engraftment and/or prevent xenograft rejection.
Collapse
Affiliation(s)
- Zhong He
- Division of Clinical Immunology, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | | | | | | | | |
Collapse
|
39
|
Abstract
The most intensively studied autoimmune disorder, type 1 diabetes mellitus (DM1), has attracted perhaps the greatest interest for gene-based therapeutic and prophylactic interventions. The final clinical manifestation of this immunologically and genetically complex disease, the absence of insulin, is the major starting point for almost all the gene therapy modalities attempted to date. Insulin replacement by transplantation of islets of Langerhans or surrogate beta cells is the obvious choice, but the allogeneic nature of the transplants activates potent antidonor immunoreactivity necessitating gene and cell-based immunosuppressive strategies as an alternative to the toxic pharmacologic immunosuppressives indicated for classic solid organ transplants. Accumulating knowledge of the cellular mechanisms involved in onset, however, have yielded promising tolerance induction prophylactic approaches using genes and cells. Despite the early successes in a number of animal models, the true test of efficacy in humans remains to be demonstrated.
Collapse
Affiliation(s)
- Nick Giannoukakis
- Diabetes Institute, Pediatric Research Section, Children's Hospital of Pittsburgh and University of Pittsburgh, Rangos Research Center, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
40
|
Koves TR, Li P, An J, Akimoto T, Slentz D, Ilkayeva O, Dohm GL, Yan Z, Newgard CB, Muoio DM. Peroxisome proliferator-activated receptor-gamma co-activator 1alpha-mediated metabolic remodeling of skeletal myocytes mimics exercise training and reverses lipid-induced mitochondrial inefficiency. J Biol Chem 2005; 280:33588-98. [PMID: 16079133 DOI: 10.1074/jbc.m507621200] [Citation(s) in RCA: 371] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Peroxisome proliferator-activated receptor-gamma co-activator 1alpha (PGC1alpha) is a promiscuous co-activator that plays a key role in regulating mitochondrial biogenesis and fuel homeostasis. Emergent evidence links decreased skeletal muscle PGC1alpha activity and coincident impairments in mitochondrial performance to the development of insulin resistance in humans. Here we used rodent models to demonstrate that muscle mitochondrial efficiency is compromised by diet-induced obesity and is subsequently rescued by exercise training. Chronic high fat feeding caused accelerated rates of incomplete fatty acid oxidation and accumulation of beta-oxidative intermediates. The capacity of muscle mitochondria to fully oxidize a heavy influx of fatty acid depended on factors such as fiber type and exercise training and was positively correlated with expression levels of PGC1alpha. Likewise, an efficient lipid-induced substrate switch in cultured myocytes depended on adenovirus-mediated increases in PGC1alpha expression. Our results supported a novel paradigm in which a high lipid supply, occurring under conditions of low PGC1alpha, provokes a disconnect between mitochondrial beta-oxidation and tricarboxylic acid cycle activity. Conversely, the metabolic remodeling that occurred in response to PGC1alpha overexpression favored a shift from incomplete to complete beta-oxidation. We proposed that PGC1alpha enables muscle mitochondria to better cope with a high lipid load, possibly reflecting a fundamental metabolic benefit of exercise training.
Collapse
Affiliation(s)
- Timothy R Koves
- Department of Medicine, and Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Strategies for restoring beta-cell function in diabetic patients would be greatly aided by the ability to target genes, proteins, or small molecules specifically to these cells. Furthermore, the ability to direct imaging agents specifically to beta-cells would facilitate diagnosis and monitoring of disease progression. To isolate ligands that can home to beta-cells in vivo, we have panned a random phage-displayed 20-mer peptide library on freshly isolated rat islets. We have isolated two 20-mer peptides that bind to islets ex vivo. One of these peptides preferentially homes to the islets of Langerhans in a normal rat with clear differentiation between the endocrine and exocrine cells of the pancreas. Furthermore, this peptide does not target beta-cells in a type 2 diabetes animal model, suggesting that the peptide can discriminate between glucose-stimulated insulin secretion-functional and -dysfunctional beta-cells.
Collapse
Affiliation(s)
- Kausar N Samli
- Center for Biomedical Inventions, Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9185, USA
| | | | | | | | | |
Collapse
|
42
|
Lee KU, Lee IK, Han J, Song DK, Kim YM, Song HS, Kim HS, Lee WJ, Koh EH, Song KH, Han SM, Kim MS, Park IS, Park JY. Effects of recombinant adenovirus-mediated uncoupling protein 2 overexpression on endothelial function and apoptosis. Circ Res 2005; 96:1200-7. [PMID: 15905464 DOI: 10.1161/01.res.0000170075.73039.5b] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Increased oxidative stress in vascular cells plays a key role in the development of endothelial dysfunction and atherosclerosis. Uncoupling protein 2 (UCP2) is an important regulator of intracellular reactive oxygen species (ROS) production. This study was undertaken to test the hypothesis that, UCP2 functions as an inhibitor of the atherosclerotic process in endothelial cells. Adenovirus-mediated UCP2 (Ad-UCP2) overexpression led to a significant increase in endothelial nitric oxide synthase (eNOS) and decrease in endothelin-1 mRNA expression in human aortic endothelial cells (HAECs). Moreover, UCP2 inhibited the increase in ROS production and NF-kappaB activation, and apoptosis of HAECs induced by lysophophatidylcholine (LPC) and linoleic acid. LPC and linoleic acid caused mitochondrial calcium accumulation and transient mitochondrial membrane hyperpolarization, which was followed by depolarization. UCP2 overexpression prevented these processes. In isolated rat aorta, Ad-UCP2 infection markedly improved impaired vascular relaxation induced by LPC. The data collectively suggest that UCP2, functions as a physiologic regulator of ROS generation in endothelial cells. Thus, measures to increase UCP2 expression in vascular endothelial cells may aid in preventing the development and progression of atherosclerosis in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Ki-Up Lee
- University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Castaing M, Guerci A, Mallet J, Czernichow P, Ravassard P, Scharfmann R. Efficient restricted gene expression in beta cells by lentivirus-mediated gene transfer into pancreatic stem/progenitor cells. Diabetologia 2005; 48:709-19. [PMID: 15759109 DOI: 10.1007/s00125-005-1694-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2004] [Accepted: 12/04/2004] [Indexed: 12/24/2022]
Abstract
AIMS/HYPOTHESIS Gene transfer into pancreatic beta cells, which produce and secrete insulin, is a promising strategy to protect such cells against autoimmune destruction and also to generate beta cells in mass, thereby providing a novel therapeutic approach to treat diabetic patients. Until recently, exogenous DNA has been directly transferred into mature beta cells with various levels of success. We investigated whether exogenous DNA could be stably transferred into pancreatic stem/progenitor cells, which would subsequently differentiate into mature beta cells expressing the transgene. METHODS We designed transplantation and tissue culture procedures to obtain ex vivo models of pancreatic development. We next constructed recombinant lentiviruses expressing enhanced green fluorescent protein (eGFP) under the control of either the rat insulin promoter or a ubiquitous promoter, and performed viral infection of rat embryonic pancreatic tissue. RESULTS Embryonic pancreas infected with recombinant lentiviruses resulted in endocrine cell differentiation and restricted cell type expression of the transgene according to the specificity of the promoter used in the viral construct. We next demonstrated that the efficiency of infection could be further improved upon infection of embryonic pancreatic epithelia, followed by their in vitro culture, using conditions that favour endocrine cell differentiation. Under these conditions, endocrine stem/progenitor cells expressing neurogenin 3 are efficiently transduced by recombinant lentiviral vectors. Moreover, when eGFP was placed under the control of the insulin promoter, 70.4% of the developed beta cells were eGFP-expressing cells. All of the eGFP-positive cells were insulin-producing cells. CONCLUSIONS/INTERPRETATION We have demonstrated that mature rat pancreatic beta cells can be stably modified by infecting pancreatic stem/progenitor cells that undergo endocrine differentiation.
Collapse
Affiliation(s)
- M Castaing
- INSERM EMI 0363, Faculté Necker, 156 rue Vaugirard, 75015 Paris, France
| | | | | | | | | | | |
Collapse
|
44
|
Jimenez-Chillaron JC, Hernandez-Valencia M, Reamer C, Fisher S, Joszi A, Hirshman M, Oge A, Walrond S, Przybyla R, Boozer C, Goodyear LJ, Patti ME. Beta-cell secretory dysfunction in the pathogenesis of low birth weight-associated diabetes: a murine model. Diabetes 2005; 54:702-11. [PMID: 15734846 DOI: 10.2337/diabetes.54.3.702] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Low birth weight (LBW) is an important risk factor for type 2 diabetes. We have developed a mouse model of LBW resulting from undernutrition during pregnancy. Restriction of maternal food intake from day 12.5 to 18.5 of pregnancy results in a 23% decrease in birth weight (P < 0.001), with normalization after birth. However, offspring of undernutrition pregnancies develop progressive, severe glucose intolerance by 6 months. To identify early defects that are responsible for this phenotype, we analyzed mice of undernutrition pregnancies at age 2 months, before the onset of glucose intolerance. Fed insulin levels were 1.7-fold higher in mice of undernutrition pregnancies (P = 0.01 vs. controls). However, insulin sensitivity was normal in mice of undernutrition pregnancies, with normal insulin tolerance, insulin-stimulated glucose disposal, and isolated muscle and adipose glucose uptake. Although insulin clearance was mildly impaired in mice of undernutrition pregnancies, the major metabolic phenotype in young mice of undernutrition pregnancies was dysregulation of insulin secretion. Despite normal beta-cell mass, islets from normoglycemic mice of undernutrition pregnancies showed basal hypersecretion of insulin, complete lack of responsiveness to glucose, and a 2.5-fold increase in hexokinase activity. Taken together, these data suggest that, at least in mice, primary beta-cell dysfunction may play a significant role in the pathogenesis of LBW-associated type 2 diabetes.
Collapse
|
45
|
Hashimoto N, Kido Y, Uchida T, Matsuda T, Suzuki K, Inoue H, Matsumoto M, Ogawa W, Maeda S, Fujihara H, Ueta Y, Uchiyama Y, Akimoto K, Ohno S, Noda T, Kasuga M. PKClambda regulates glucose-induced insulin secretion through modulation of gene expression in pancreatic beta cells. J Clin Invest 2005; 115:138-45. [PMID: 15630453 PMCID: PMC539193 DOI: 10.1172/jci22232] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Accepted: 10/26/2004] [Indexed: 12/15/2022] Open
Abstract
Altered regulation of insulin secretion by glucose is characteristic of individuals with type 2 diabetes mellitus, although the mechanisms that underlie this change remain unclear. We have now generated mice that lack the lambda isoform of PKC in pancreatic beta cells (betaPKClambda(-/-) mice) and show that these animals manifest impaired glucose tolerance and hypoinsulinemia. Furthermore, insulin secretion in response to high concentrations of glucose was impaired, whereas the basal rate of insulin release was increased, in islets isolated from betaPKClambda(-/-) mice. Neither the beta cell mass nor the islet insulin content of betaPKClambda(-/-) mice differed from that of control mice, however. The abundance of mRNAs for Glut2 and HNF3beta was reduced in islets of betaPKClambda(-/-) mice, and the expression of genes regulated by HNF3beta was also affected (that of Sur1 and Kir6.2 genes was reduced, whereas that of hexokinase 1 and hexokinase 2 genes was increased). Normalization of HNF3beta expression by infection of islets from betaPKClambda(-/-) mice with an adenoviral vector significantly reversed the defect in glucose-stimulated insulin secretion. These results indicate that PKClambda plays a prominent role in regulation of glucose-induced insulin secretion by modulating the expression of genes important for beta cell function.
Collapse
Affiliation(s)
- Naoko Hashimoto
- Department of Clinical Molecular Medicine, Division of Diabetes and Digestive and Kidney Diseases, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Linning KD, Tai MH, Madhukar BV, Chang CC, Reed DN, Ferber S, Trosko JE, Olson LK. Redox-mediated enrichment of self-renewing adult human pancreatic cells that possess endocrine differentiation potential. Pancreas 2004; 29:e64-76. [PMID: 15367896 DOI: 10.1097/00006676-200410000-00015] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The limited availability of transplantable human islets has stimulated the development of methods needed to isolate adult pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation. The objective of this study was to determine whether modulation of intracellular redox state with N-acetyl-L-cysteine (NAC) would allow for the propagation of pancreatic stem/progenitor cells from adult human pancreatic tissue. METHODS Cells were propagated from human pancreatic tissue using a serum-free, low-calcium medium supplemented with NAC and tested for their ability to differentiate when cultured under different growth conditions. RESULTS Human pancreatic cell (HPC) cultures coexpressed alpha-amylase, albumin, vimentin, and nestin. The HPC cultures, however, did not express other genes associated with differentiated pancreatic exocrine, duct, or endocrine cells. A number of transcription factors involved in endocrine cell development including Beta 2, Islet-1, Nkx6.1, Pax4, and Pax6 were expressed at variable levels in HPC cultures. In contrast, pancreatic duodenal homeobox factor 1 (Pdx-1) expression was extremely low and at times undetectable. Overexpression of Pdx-1 in HPC cultures stimulated somatostatin, glucagon, and carbonic anhydrase expression but had no effect on insulin gene expression. HPC cultures could form 3-dimensional islet-like cell aggregates, and this was associated with expression of somatostatin and glucagon but not insulin. Cultivation of HPCs in a differentiation medium supplemented with nicotinamide, exendin-4, and/or LY294002, an inhibitor of phosphatidylinositol-3 kinase, stimulated expression of insulin mRNA and protein. CONCLUSION These data support the use of intracellular redox modulation for the enrichment of pancreatic stem/progenitor cells capable of self-renewal and endocrine differentiation.
Collapse
Affiliation(s)
- Katrina D Linning
- Department of Physiology, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bain JR, Schisler JC, Takeuchi K, Newgard CB, Becker TC. An adenovirus vector for efficient RNA interference-mediated suppression of target genes in insulinoma cells and pancreatic islets of langerhans. Diabetes 2004; 53:2190-4. [PMID: 15331526 DOI: 10.2337/diabetes.53.9.2190] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Silencing gene expression by RNA interference (RNAi) can provide insight into gene function but requires efficient delivery of small interfering RNAs (siRNAs) into cells. Introduction of exogenous nucleic acids can be especially difficult in cultured pancreatic islets. This article describes a method for making recombinant adenoviruses that efficiently drive expression of siRNAs in islet beta-cells and a beta-cell-derived cell line. Transduction with a virus expressing an siRNA specific for GLUT2 reduced GLUT2 mRNA and protein levels by 80% in the INS-1-derived beta-cell line, 832/13, and GLUT2 protein levels by >90% in primary rat islets. Another virus expressing an siRNA specific for glucokinase (GK) caused 80% suppression of GK mRNA and 50% suppression of GK protein levels in 832/13 cells. These experiments validate recombinant adenoviral RNAi vectors as a useful tool for suppression of the expression of specific genes in pancreatic islets and beta-cell lines. Advantages of this approach include 1) the high efficiency of adenovirus-mediated gene transfer in insulinoma cell lines and rat islets and 2) the rapidity with which RNAi constructs can be prepared and tested relative to stable-transfection strategies.
Collapse
Affiliation(s)
- James R Bain
- Duke Independence Park Facility, Duke University Medical Center, 4321 Medical Park Dr., Suite 200, Durham, NC 27704, USA
| | | | | | | | | |
Collapse
|
48
|
Abstract
The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, I-35121 Padua, Italy
| | | | | |
Collapse
|
49
|
Understanding of basic mechanisms of β-cell function and survival. Cell Biochem Biophys 2004. [DOI: 10.1007/bf02739020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
50
|
Newgard CB, Hohmeier HE, Lu D, Jensen MV, Tran VV, Chen G, Burgess S, Sherry AD. Understanding of basic mechanisms of beta-cell function and survival: prelude to new diabetes therapies. Cell Biochem Biophys 2004; 40:159-68. [PMID: 15289651 DOI: 10.1385/cbb:40:3:159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type 1 and type 2 diabetes are both diseases of insulin insufficiency, although they develop by distinct pathways. The recent surge in the incidence of type 2 diabetes and the chronic ailments confronted by patients with either form of the disease highlight the need for better understanding of beta-cell biology. In this review, we present recent work focused on this goal. Our hope is that basic research being conducted in this and other laboratories will ultimately contribute to the development of methods for enhancing beta-cell function and survival in the context of both major forms of diabetes. Our strategy for understanding the beta-cell involves a multidisciplinary approach in which tools from the traditional fields of biochemistry, enzymology, and physiology are teamed with newer technologies from the fields of molecular biology, gene discovery, cell and developmental biology, and biophysical chemistry. We have focused on two important aspects of beta-cell biology in our studies: beta-cell function, specifically the metabolic regulatory mechanisms involved in glucose-stimulated insulin secretion, and beta-cell resistance to immune attack, with emphasis on resistance to inflammatory cytokines and reactive oxygen species.
Collapse
Affiliation(s)
- Christopher B Newgard
- Sarah W. Stedman Nutrition and Metabolism Center, and Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | |
Collapse
|