1
|
Abu Aqel Y, Alnesf A, Aigha II, Islam Z, Kolatkar PR, Teo A, Abdelalim EM. Glucokinase (GCK) in diabetes: from molecular mechanisms to disease pathogenesis. Cell Mol Biol Lett 2024; 29:120. [PMID: 39245718 PMCID: PMC11382428 DOI: 10.1186/s11658-024-00640-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024] Open
Abstract
Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic β-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic β-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.
Collapse
Affiliation(s)
- Yasmin Abu Aqel
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Aldana Alnesf
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
| | - Idil I Aigha
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Zeyaul Islam
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Prasanna R Kolatkar
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation (QF), PO Box 34110, Doha, Qatar
| | - Adrian Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Proteos, Singapore, Singapore
- Department of Biochemistry and Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme (PM TRP), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Essam M Abdelalim
- Laboratory of Pluripotent Stem Cell Disease Modeling, Translational Medicine Division, Research Branch, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- College of Health and Life Sciences, Hamad Bin Khalifa University (HBKU), Qatar Foundation, Education City, Doha, Qatar.
| |
Collapse
|
2
|
Rodríguez-Rivera NS, Barrera-Oviedo D. Exploring the Pathophysiology of ATP-Dependent Potassium Channels in Insulin Resistance. Int J Mol Sci 2024; 25:4079. [PMID: 38612888 PMCID: PMC11012456 DOI: 10.3390/ijms25074079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/15/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Ionic channels are present in eucaryotic plasma and intracellular membranes. They coordinate and control several functions. Potassium channels belong to the most diverse family of ionic channels that includes ATP-dependent potassium (KATP) channels in the potassium rectifier channel subfamily. These channels were initially described in heart muscle and then in other tissues such as pancreatic, skeletal muscle, brain, and vascular and non-vascular smooth muscle tissues. In pancreatic beta cells, KATP channels are primarily responsible for maintaining the membrane potential and for depolarization-mediated insulin release, and their decreased density and activity may be related to insulin resistance. KATP channels' relationship with insulin resistance is beginning to be explored in extra-pancreatic beta tissues like the skeletal muscle, where KATP channels are involved in insulin-dependent glucose recapture and their activation may lead to insulin resistance. In adipose tissues, KATP channels containing Kir6.2 protein subunits could be related to the increase in free fatty acids and insulin resistance; therefore, pathological processes that promote prolonged adipocyte KATP channel inhibition might lead to obesity due to insulin resistance. In the central nervous system, KATP channel activation can regulate peripheric glycemia and lead to brain insulin resistance, an early peripheral alteration that can lead to the development of pathologies such as obesity and Type 2 Diabetes Mellitus (T2DM). In this review, we aim to discuss the characteristics of KATP channels, their relationship with clinical disorders, and their mechanisms and potential associations with peripheral and central insulin resistance.
Collapse
Affiliation(s)
- Nidia Samara Rodríguez-Rivera
- Laboratorio de Farmacología y Bioquímica Clínica, Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | | |
Collapse
|
3
|
Farooq Z, Ismail H, Bhat SA, Layden BT, Khan MW. Aiding Cancer's "Sweet Tooth": Role of Hexokinases in Metabolic Reprogramming. Life (Basel) 2023; 13:946. [PMID: 37109475 PMCID: PMC10141071 DOI: 10.3390/life13040946] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Hexokinases (HKs) convert hexose sugars to hexose-6-phosphate, thus trapping them inside cells to meet the synthetic and energetic demands. HKs participate in various standard and altered physiological processes, including cancer, primarily through the reprogramming of cellular metabolism. Four canonical HKs have been identified with different expression patterns across tissues. HKs 1-3 play a role in glucose utilization, whereas HK 4 (glucokinase, GCK) also acts as a glucose sensor. Recently, a novel fifth HK, hexokinase domain containing 1 (HKDC1), has been identified, which plays a role in whole-body glucose utilization and insulin sensitivity. Beyond the metabolic functions, HKDC1 is differentially expressed in many forms of human cancer. This review focuses on the role of HKs, particularly HKDC1, in metabolic reprogramming and cancer progression.
Collapse
Affiliation(s)
- Zeenat Farooq
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hagar Ismail
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sheraz Ahmad Bhat
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
- Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA
| | - Md. Wasim Khan
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Anthony Ammal SM, Sudha S, Rajkumar D, Baskaran A, Krishnamoorthy G, Anbumozhi MK. In Silico Molecular Docking Studies of Phytocompounds From Coleus Amboinicus Against Glucokinase. Cureus 2023; 15:e34507. [PMID: 36874339 PMCID: PMC9984118 DOI: 10.7759/cureus.34507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Diabetes is one of the most prevalent metabolic illnesses that can be fatal, and it is the ninth-largest cause of mortality worldwide. Even though there are effective hypoglycemic medications available for the treatment of diabetes, researchers continue to look for a medication that is more effective and has fewer adverse effects by focusing on various metabolic components such as enzymes, transporters, receptors. The enzyme Glucokinase (GCK), which is present mainly in the liver and beta cells of the pancreas, is involved in maintaining blood glucose homeostasis. Hence, the present in silico study is designed to determine the interaction between GCK and compounds (ligands) of Coleus amboinicus. In the current docking investigation, we discovered that important residues, including ASP-205, LYS-169, GLY-181, and ILE-225, significantly influence in ligand binding affinity. Docking tests of these compounds with target proteins revealed that this is a suitable molecule that docks well with the target of diabetes treatment. In conclusion, we believe that the compounds of caryophyllene have anti-diabetic activity based on the present study.
Collapse
Affiliation(s)
- Soosai Marian Anthony Ammal
- Department of Anatomy, Karpaga Vinayaga Institute of Medical Sciences and Research Centre, Maduranthagam, IND
| | - Sai Sudha
- Department of Pathology, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Durairaj Rajkumar
- Department of Anatomy, Karpaga Vinayaga Institute of Medical Sciences and Research Centre, Maduranthagam, IND
| | - Adhithya Baskaran
- Department of Oral Pathology, Adhiparasakthi Dental College and Hospital, Chennai, IND
| | - Gunasekaran Krishnamoorthy
- Department of Medical Biochemistry, College of Medical and Health Sciences, Dambi Dollo University, Oromia Region, ETH
| | | |
Collapse
|
5
|
Pasula MB, Napit PR, Alhamyani A, Roy SC, Sylvester PW, Bheemanapally K, Briski KP. Sex Dimorphic Glucose Transporter-2 Regulation of Hypothalamic Astrocyte Glucose and Energy Sensor Expression and Glycogen Metabolism. Neurochem Res 2023; 48:404-417. [PMID: 36173588 PMCID: PMC9898103 DOI: 10.1007/s11064-022-03757-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/17/2022] [Accepted: 09/06/2022] [Indexed: 02/06/2023]
Abstract
The plasma membrane glucose transporter-2 (GLUT2) monitors brain cell uptake of the critical nutrient glucose, and functions within astrocytes of as-yet-unknown location to control glucose counter-regulation. Hypothalamic astrocyte-neuron metabolic coupling provides vital cues to the neural glucostatic network. Current research utilized an established hypothalamic primary astrocyte culture model along with gene knockdown tools to investigate whether GLUT2 imposes sex-specific regulation of glucose/energy sensor function and glycogen metabolism in this cell population. Data show that GLUT2 stimulates or inhibits glucokinase (GCK) expression in glucose-supplied versus -deprived male astrocytes, but does not control this protein in female. Astrocyte 5'-AMP-activated protein kinaseα1/2 (AMPK) protein is augmented by GLUT2 in each sex, but phosphoAMPKα1/2 is coincidently up- (male) or down- (female) regulated. GLUT2 effects on glycogen synthase (GS) diverges in the two sexes, but direction of this control is reversed by glucoprivation in each sex. GLUT2 increases (male) or decreases (female) glycogen phosphorylase-brain type (GPbb) protein during glucoprivation, yet simultaneously inhibits (male) or stimulates (female) GP-muscle type (GPmm) expression. Astrocyte glycogen accumulation is restrained by GLUT2 when glucose is present (male) or absent (both sexes). Outcomes disclose sex-dependent GLUT2 control of the astrocyte glycolytic pathway sensor GCK. Data show that glucose status determines GLUT2 regulation of GS (both sexes), GPbb (female), and GPmm (male), and that GLUT2 imposes opposite control of GS, GPbb, and GPmm profiles between sexes during glucoprivation. Ongoing studies aim to investigate molecular mechanisms underlying sex-dimorphic GLUT2 regulation of hypothalamic astrocyte metabolic-sensory and glycogen metabolic proteins, and to characterize effects of sex-specific astrocyte target protein responses to GLUT2 on glucose regulation.
Collapse
Affiliation(s)
- Madhu Babu Pasula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Prabhat R Napit
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Abdulrahman Alhamyani
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Sagor C Roy
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Paul W Sylvester
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Khaggeswar Bheemanapally
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA
| | - Karen P Briski
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana Monroe, Rm 356 Bienville Building 1800 Bienville Drive, 71201, Monroe, LA, USA.
| |
Collapse
|
6
|
Concolino P, Tartaglione L, De Paolis E, Carrozza C, Urbani A, Minucci A, Pitocco D, Santonocito C. A Novel GCK Large Genomic Rearrangement in a Patient with MODY-2 Detected by Clinical Exome Sequencing. Genes (Basel) 2022; 13:2104. [PMID: 36421779 PMCID: PMC9690203 DOI: 10.3390/genes13112104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/02/2022] [Accepted: 11/10/2022] [Indexed: 09/15/2023] Open
Abstract
Maturity-onset diabetes of the young (MODY) is a rare form of non-autoimmune diabetes with an autosomal dominant inheritance. To date, 14 genes have been reported as genetic basis of MODY. GCK gene, encoding the glucokinase enzyme, was the first MODY gene to be identified. GCK heterozygous inactivating variants cause the GCK-MODY or MODY2 subtype. However, partial or whole gene deletions have been rarely identified, showing it to be a rare cause of GCK-MODY. We reported the molecular evaluation of a Ukrainian patient with clinical diagnosis of MODY2. We performed the Next generation sequencing of the clinical exome using the Clinical Exome Solution® kit (SOPHiA Genetics), followed by the design of a 14 genes virtual panel related to the suggestive diagnosis of MODY. Bioinformatics analysis was performed using the SOPHiA DDM platform (SOPHiA Genetics). The SALSA MLPA kit for MODY (MRC-Holland) was used for relative quantification of GCK exons. From the molecular evaluation, no pathogenic sequence variants were detected in the investigated genes. Copy Number Variation analysis was able to identify a large deletion involving the last three exons of the GCK gene. This result was confirmed by MLPA. To the best of our knowledge, the identified rearrangement has never been reported in the literature.
Collapse
Affiliation(s)
- Paola Concolino
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy
| | - Linda Tartaglione
- Unit of Diabetes Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy
| | - Elisa De Paolis
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy
| | - Cinzia Carrozza
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00165 Rome, Italy
| | - Andrea Urbani
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00165 Rome, Italy
| | - Angelo Minucci
- Departmental Unit of Molecular and Genomic Diagnostics, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy
| | - Dario Pitocco
- Unit of Diabetes Care, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy
| | - Concetta Santonocito
- Clinical Chemistry, Biochemistry and Molecular Biology Operations (UOC), Fondazione Policlinico Universitario A. Gemelli IRCCS, 00165 Rome, Italy
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of Sacred Heart, 00165 Rome, Italy
| |
Collapse
|
7
|
Langer S, Waterstradt R, Hillebrand G, Santer R, Baltrusch S. The novel GCK variant p.Val455Leu associated with hyperinsulinism is susceptible to allosteric activation and is conducive to weight gain and the development of diabetes. Diabetologia 2021; 64:2687-2700. [PMID: 34532767 PMCID: PMC8563668 DOI: 10.1007/s00125-021-05553-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS/HYPOTHESIS The mammalian enzyme glucokinase (GK), expressed predominantly in liver and pancreas, plays an essential role in carbohydrate metabolism. Monogenic GK disorders emphasise the role of GK in determining the blood glucose set point. METHODS A family with congenital hyperinsulinism (CHI) was examined for GCK gene variants by Sanger sequencing. A combined approach, involving kinetic analysis (also using GK activators and inhibitors), intracellular translocation assays, insulin secretion measurements and structural modelling, was used to investigate the novel variant compared with known variants. RESULTS We report on the novel gain-of-function GCK variant p.Val455Leu (V455L), inherited as an autosomal dominant trait in a German family with CHI and concomitant obesity (fasting blood glucose 2.1 mmol/l, BMI 45.0 kg/m2, HOMA-IR 1.5 in an adult female family member); one male family member developed type 2 diabetes until age 35 years (with fasting glucose 2.8-3.7 mmol/l, BMI 38.9 kg/m2, HOMA-IR 4.6). Kinetic characterisation of the V455L variant revealed a significant increase in glucose affinity (glucose concentration at which reaction rate is half its maximum rate [S0.5]: mutant 2.4 ± 0.3 mmol/l vs wild-type 7.6 ± 1.0 mmol/l), accompanied by a distinct additive susceptibility to both the endogenous activator fructose 2,6-bisphosphatase and the synthetic allosteric activator RO-28-1675. The effect of RO-28-1675 was more pronounced when compared with the previously known GK variants V455M and V455E. Binding to the inhibitor glucokinase regulatory protein was unimpaired for V455L and V455E but was reduced for V455M, whereas mannoheptulose inhibited all GK variants and the wild-type enzyme. Structural analyses suggested a role for residue 455 in rearrangements between the inactive and active conformations of GK and also in allosteric activation. Comparison with V455M and V455E and an overview of activating GK variants provided a context for the novel sequence aberration in terms of altered GK enzyme characteristics caused by single amino acid changes. CONCLUSION/INTERPRETATION We provide new knowledge on the structure-function relationship of GK, with special emphasis on enzyme activation, potentially yielding fresh strategic insights into breaking the vicious circle of fluctuating blood glucose levels and the attendant risk of long-lasting metabolic changes in both CHI and type 2 diabetes.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany
| | - Georg Hillebrand
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
- Department of Pediatrics, Medical Center Itzehoe, Itzehoe, Germany
| | - René Santer
- Department of Pediatrics, University Medical Center Eppendorf, Hamburg, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Rostock, Rostock, Germany.
- Department Life, Light & Matter, University of Rostock, Rostock, Germany.
| |
Collapse
|
8
|
Guzmán TJ, Gurrola-Díaz CM. Glucokinase activation as antidiabetic therapy: effect of nutraceuticals and phytochemicals on glucokinase gene expression and enzymatic activity. Arch Physiol Biochem 2021; 127:182-193. [PMID: 31210550 DOI: 10.1080/13813455.2019.1627458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Diabetes represents an important public health problem. Recently, new molecular targets have been identified and exploited to treat this disease. Due to its pivotal role in glucose homeostasis, glucokinase (GCK) is a promising target for the development of novel antidiabetic drugs; however, pharmacological agents that modulate GCK activity have been linked to undesirable side-effects, limiting its use. Interestingly, plants might be a valuable source of new therapeutic compounds with GCK-activating properties and presumably no adverse effects. In this review, we describe biochemical characteristics related to the physiological and pathological importance of GCK, as well as the mechanisms involved in its regulation at different molecular levels. Posteriorly, we present a compendium of findings supporting the potential use of nutraceuticals and phytochemicals in the management of diabetes through modulation of GCK expression and activity. Finally, we propose critical aspects to keep in mind when designing experiments to evaluate GCK modulation properly.
Collapse
Affiliation(s)
- Tereso J Guzmán
- Departamento de Biología Molecular y Genómica, Instituto Transdisciplinar de Investigación e Innovación en Salud/Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| | - Carmen M Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Instituto Transdisciplinar de Investigación e Innovación en Salud/Instituto de Investigación en Enfermedades Crónico-Degenerativas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Jalisco, México
| |
Collapse
|
9
|
Lu VB, Gribble FM, Reimann F. Nutrient-Induced Cellular Mechanisms of Gut Hormone Secretion. Nutrients 2021; 13:nu13030883. [PMID: 33803183 PMCID: PMC8000029 DOI: 10.3390/nu13030883] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/27/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal tract can assess the nutrient composition of ingested food. The nutrient-sensing mechanisms in specialised epithelial cells lining the gastrointestinal tract, the enteroendocrine cells, trigger the release of gut hormones that provide important local and central feedback signals to regulate nutrient utilisation and feeding behaviour. The evidence for nutrient-stimulated secretion of two of the most studied gut hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), along with the known cellular mechanisms in enteroendocrine cells recruited by nutrients, will be the focus of this review. The mechanisms involved range from electrogenic transporters, ion channel modulation and nutrient-activated G-protein coupled receptors that converge on the release machinery controlling hormone secretion. Elucidation of these mechanisms will provide much needed insight into postprandial physiology and identify tractable dietary approaches to potentially manage nutrition and satiety by altering the secreted gut hormone profile.
Collapse
|
10
|
Ma Y, Ratnasabapathy R, De Backer I, Izzi-Engbeaya C, Nguyen-Tu MS, Cuenco J, Jones B, John CD, Lam BY, Rutter GA, Yeo GS, Dhillo WS, Gardiner J. Glucose in the hypothalamic paraventricular nucleus regulates GLP-1 release. JCI Insight 2020; 5:132760. [PMID: 32229720 PMCID: PMC7205434 DOI: 10.1172/jci.insight.132760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/25/2020] [Indexed: 01/23/2023] Open
Abstract
Glucokinase (GK) is highly expressed in the hypothalamic paraventricular nucleus (PVN); however, its role is currently unknown. We found that GK in the PVN acts as part of a glucose-sensing mechanism within the PVN that regulates glucose homeostasis by controlling glucagon-like peptide 1 (GLP-1) release. GLP-1 is released from enteroendocrine L cells in response to oral glucose. Here we identify a brain mechanism critical to the release of GLP-1 in response to oral glucose. We show that increasing expression of GK or injection of glucose into the PVN increases GLP-1 release in response to oral glucose. On the contrary, decreasing expression of GK or injection of nonmetabolizable glucose into the PVN prevents GLP-1 release. Our results demonstrate that gluco-sensitive GK neurons in the PVN are critical to the response to oral glucose and subsequent release of GLP-1.
Collapse
Affiliation(s)
- Yue Ma
- Section of Endocrinology and Investigative Medicine and
| | | | | | | | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | | | - Ben Jones
- Section of Endocrinology and Investigative Medicine and
| | | | - Brian Yh Lam
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Giles Sh Yeo
- University of Cambridge Metabolic Research Laboratories and MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | | | | |
Collapse
|
11
|
Abstract
Insulin secretion by the pancreatic β-cells is elicited in response to elevated extracellular glucose concentration. In addition to triggering insulin secretion, glucose-induced signal regulates β-cell proliferation and survival. However, the molecular mechanism underlying the effects of glucose on the β-cell functionality still remains unclear. Glucokinase, a hexokinase isozyme that catalyzes the phosphorylation of glucose, acts as the glucose sensor in the β-cells. To investigate the mechanisms of glucose signaling in the regulation of β-cell functions, we analyzed the role of glucokinase in insulin secretion, β-cell proliferation and β-cell apoptosis, using β-cell-specific glucokinase-haploinsufficient (Gck+/-) mice and allosteric glucokinase activators (GKAs). Glucokinase-mediated glucose metabolism (1) suppresses endoplasmic reticulum (ER) stress-induced β-cell apoptosis via inducing insulin receptor substrate-2 (IRS-2) expression and expression of ER stress-related molecules, (2) promotes adaptive β-cell proliferation through activation of the Forkhead Box M1 (FoxM1)/polo-like kinase-1 (PLK1)/centromere protein-A (CENP-A) pathway, (3) induces islet inflammation by promoting interaction of islet-derived S100 calcium-binding protein A8 (S100A8) with macrophages, (4) induces the expression of Fibulin-5 (Fbln5), an extracellular matrix protein to regulate β-cell functions, and (5) activates other unknown pathways. Glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase 4 (DPP-4) inhibitors have been found to possibly compensate for dysregulation of glucose metabolism in the β-cells. This review provides an update and overview of the recent advances in the study of β-cell pathophysiology and some therapeutic possibilities focusing on glucose-/glucokinase-mediated signaling.
Collapse
Affiliation(s)
- Jun Shirakawa
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yasuo Terauchi
- Department of Endocrinology and Metabolism, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| |
Collapse
|
12
|
Hirschberg PR, Sarkar P, Teegala SB, Routh VH. Ventromedial hypothalamus glucose-inhibited neurones: A role in glucose and energy homeostasis? J Neuroendocrinol 2020; 32:e12773. [PMID: 31329314 PMCID: PMC7074896 DOI: 10.1111/jne.12773] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/18/2019] [Accepted: 07/14/2019] [Indexed: 12/20/2022]
Abstract
The ventromedial hypothalamus (VMH) plays a complex role in glucose and energy homeostasis. The VMH is necessary for the counter-regulatory response to hypoglycaemia (CRR) that increases hepatic gluconeogenesis to restore euglycaemia. On the other hand, the VMH also restrains hepatic glucose production during euglycaemia and stimulates peripheral glucose uptake. The VMH is also important for the ability of oestrogen to increase energy expenditure. This latter function is mediated by VMH modulation of the lateral/perifornical hypothalamic area (lateral/perifornical hypothalamus) orexin neurones. Activation of VMH AMP-activated protein kinase (AMPK) is necessary for the CRR. By contrast, VMH AMPK inhibition favours decreased basal glucose levels and is required for oestrogen to increase energy expenditure. Specialised VMH glucose-sensing neurones confer the ability to sense and respond to changes in blood glucose levels. Glucose-excited (GE) neurones increase and glucose-inhibited (GI) neurones decrease their activity as glucose levels rise. VMH GI neurones, in particular, appear to be important in the CRR, although a role for GE neurones cannot be discounted. AMPK mediates glucose sensing in VMH GI neurones suggesting that, although activation of these neurones is important for the CRR, it is necessary to silence them to lower basal glucose levels and enable oestrogen to increase energy expenditure. In support of this, we found that oestrogen reduces activation of VMH GI neurones in low glucose by inhibiting AMPK. In this review, we present the evidence underlying the role of the VMH in glucose and energy homeostasis. We then discuss the role of VMH glucose-sensing neurones in mediating these effects, with a strong emphasis on oestrogenic regulation of glucose sensing and how this may affect glucose and energy homeostasis.
Collapse
Affiliation(s)
- Pamela R Hirschberg
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Pallabi Sarkar
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Suraj B Teegala
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| | - Vanessa H Routh
- Department of Pharmacology, Physiology and Neurosciences, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
13
|
Shinkafi TS, Kaushik A, Mahmood A, Tiwari AK, Alam MM, Akhter M, Gupta D, Ali S. Computational prediction and experimental validation of the activator function of C2-β-D-glucopyranosyl-1,3,6,7-tetrahydroxyxanthone on pancreatic and hepatic hexokinase. J Biomol Struct Dyn 2019; 38:2976-2987. [DOI: 10.1080/07391102.2019.1650829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Tijjani Salihu Shinkafi
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), Hamdard Nagar, New Delhi, India
- Department of Biochemistry, Faculty of Science, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Abhinav Kaushik
- Bioinformatics Infrastructure Facility, Jamia Hamdard, New Delhi, India
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Amena Mahmood
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), Hamdard Nagar, New Delhi, India
| | | | - Mohammad Mumtaz Alam
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mymoona Akhter
- Bioinformatics Infrastructure Facility, Jamia Hamdard, New Delhi, India
- School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Dinesh Gupta
- International Center for Genetic Engineering and Biotechnology, New Delhi, India
| | - Shakir Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard (Deemed University), Hamdard Nagar, New Delhi, India
- Bioinformatics Infrastructure Facility, Jamia Hamdard, New Delhi, India
| |
Collapse
|
14
|
Langer S, Hofmeister-Brix A, Waterstradt R, Baltrusch S. 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase and small chemical activators affect enzyme activity of activating glucokinase mutants by distinct mechanisms. Biochem Pharmacol 2019; 168:149-161. [PMID: 31254492 DOI: 10.1016/j.bcp.2019.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/24/2019] [Indexed: 11/17/2022]
Abstract
Glucokinase (GK), a monomeric glucose-phosphorylating enzyme characterised by high structural flexibility, acts as a glucose sensor in pancreatic beta cells and liver. Pharmaceutical efforts to control the enzyme are hampered by an incomplete understanding of GK regulation. We investigated GK characteristics of wild-type and activating S64Y and G68V mutant proteins in the presence of various combinations of the synthetic activators RO-28-1675 and compound A, the endogenous activator fructose-2,6-bisphosphatase (FBPase-2), and the inhibitor mannoheptulose. S64Y impedes formation of a turn structure that is characteristic for the inactive enzyme conformation, and complex formation with compound A induces collision with the large domain. G68V evokes close contact of connecting region I and helix α13 with RO-28-1675 and compound A. Both mutants showed higher activity than the wild-type at low glucose and were susceptible to further activation by FBPase-2 and RO-28-1675, alone and additively. G68V was less active than S64Y, but was activatable by compound A. In contrast, compound A inhibited S64Y, and this effect was even more pronounced in combination with mannoheptulose. Mutant and wild-type GK showed comparable thermal stability and intracellular lifetimes. A GK-6-phosphofructo-2-kinase (PFK-2)/FBPase-2 complex predicted by in silico protein-protein docking demonstrated possible binding of the FBPase-2 domain near the active site of GK. In summary, activating mutations within the allosteric site of GK do not preclude binding of chemical activators (GKAs), but can alter their action into inhibition. Our postulated GK-PFK-2/FBPase-2 complex represents the endogenous principle of activation by substrate channelling which permits binding of other small molecules and proteins.
Collapse
Affiliation(s)
- Sara Langer
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany
| | - Anke Hofmeister-Brix
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany; Institute of Clinical Biochemistry, Hannover Medical School, 30623 Hannover, Germany
| | - Rica Waterstradt
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany
| | - Simone Baltrusch
- Institute of Medical Biochemistry and Molecular Biology, University Medicine, University of Rostock, 18057 Rostock, Germany; Department Life, Light & Matter, University of Rostock, Germany.
| |
Collapse
|
15
|
Chen YH, Zhao H. Evolution of digestive enzymes and dietary diversification in birds. PeerJ 2019; 7:e6840. [PMID: 31086749 PMCID: PMC6487185 DOI: 10.7717/peerj.6840] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 03/24/2019] [Indexed: 11/20/2022] Open
Abstract
As the most species-rich class of tetrapod vertebrates, Aves possesses diverse feeding habits, with multiple origins of insectivory, carnivory, frugivory, nectarivory, granivory and omnivory. Since digestive enzymes mediate and limit energy and nutrient uptake, we hypothesized that genes encoding digestive enzymes have undergone adaptive evolution in birds. To test this general hypothesis, we identified 16 digestive enzyme genes (including seven carbohydrase genes (hepatic amy, pancreatic amy, salivary amy, agl, g6pc, gaa and gck), three lipase genes (cyp7a1, lipf and pnlip), two protease genes (ctrc and pgc), two lysozyme genes (lyz and lyg) and two chitinase genes (chia and chit1)) from the available genomes of 48 bird species. Among these 16 genes, three (salivary amy, lipf and chit1) were not found in all 48 avian genomes, which was further supported by our synteny analysis. Of the remaining 13 genes, eight were single-copy and five (chia, gaa, lyz, lyg and pgc) were multi-copy. Moreover, the multi-copy genes gaa, lyg and pgc were predicted to exhibit functional divergence among copies. Positively selected sites were detected in all of the analyzed digestive enzyme genes, except agl, g6pc, gaa and gck, suggesting that different diets may have favored differences in catalytic capacities of these enzymes. Furthermore, the analysis also revealed that the pancreatic amylase gene and one of the lipase genes (cyp7a1) have higher ω (the ratio of nonsynonymous to the synonymous substitution rates) values in species consuming a larger amount of seeds and meat, respectively, indicating an intense selection. In addition, the gck carbohydrase gene in species consuming a smaller amount of seeds, fruits or nectar, and a lipase gene (pnlip) in species consuming less meat were found to be under relaxed selection. Thus, gene loss, gene duplication, functional divergence, positive selection and relaxed selection have collectively shaped the evolution of digestive enzymes in birds, and the evolutionary flexibility of these enzymes may have facilitated their dietary diversification.
Collapse
Affiliation(s)
- Yan-Hong Chen
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Huabin Zhao
- Department of Ecology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
16
|
Hormay E, László B, Szabó I, Ollmann T, Nagy B, Péczely L, Mintál K, Karádi Z. The effect of loss of the glucose-monitoring neurons in the anterior cingulate cortex: Physiologic challenges induce complex feeding-metabolic alterations after local streptozotocin microinjection in rats. Neurosci Res 2019; 149:50-60. [PMID: 30685493 DOI: 10.1016/j.neures.2019.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 10/27/2022]
Abstract
The anterior cingulate cortex (ACC) is interrelated to limbic structures, parts of the central glucose-monitoring (GM) network. GM neurons, postulated to exist here, are hypothesised to participate in regulatory functions, such as the central control of feeding and metabolism. In the present experiments, GM neurons were identified and examined in the ACC by means of the multibarreled microelectrophoretic technique. After bilateral ACC microinjection of streptozotocin (STZ), glucose tolerance tests (GTTs), and determination of relevant plasma metabolite concentrations were performed. Body weights were measured at regular time points during the GTT experiment. Ten percent of the neurons - 30 of 282 recorded cells - responded to the administration of D-glucose, thus, declared to be the GM units. The peak values and dynamics of the GTT blood glucose curves, the plasma metabolite concentrations, and the weight gain were pathologically altered in the STZ treated animals. Our recording experiments revealed the existence of GM neurons in the anterior cingulate cortex. STZ induced selective destruction of these chemosensory cells resulted in feeding and metabolic alterations. The present findings indicate distinguished significance of the cingulate cortical GM neurons in adaptive processes of maintenance of the homeostatic balance.
Collapse
Affiliation(s)
- Edina Hormay
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary.
| | - Bettina László
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - István Szabó
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - Tamás Ollmann
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - Bernadett Nagy
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - László Péczely
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - Kitti Mintál
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Pécs University, Medical School, Pécs, Hungary; Neuroscience Centre, Pécs University, Pécs, Hungary; Molecular Neuroendocrinology and Neurophysiology Research Group, Szentágothai Research Center, Pécs University, Pécs, Hungary
| |
Collapse
|
17
|
Abstract
SIGNIFICANCE Hexokinases are key enzymes that are responsible for the first reaction of glycolysis, but they also moonlight other cellular processes, including mitochondrial redox signaling regulation. Modulation of hexokinase activity and spatiotemporal location by reactive oxygen and nitrogen species as well as other gasotransmitters serves as the basis for a unique, underexplored method of tight and flexible regulation of these fundamental enzymes. Recent Advances: Redox modifications of thiols serve as a molecular code that enables the precise and complex regulation of hexokinases. Redox regulation of hexokinases is also used by multiple parasites to cause widespread and severe diseases, including malaria, Chagas disease, and sleeping sickness. Redox-active molecules affect each other, and the moonlighting activity of hexokinases provides another feedback loop that affects the cellular redox status and is hijacked in malignantly transformed cells. CRITICAL ISSUES Several compounds affect the redox status of hexokinases in vivo. These include the dehydroascorbic acid (oxidized form of vitamin C), pyrrolidinium porrolidine-1-carbodithioate (contraceptive), peroxynitrite (product of ethanol metabolism), alloxan (a glucose analog), and isobenzothiazolinone ebselen. However, very limited information is available regarding which amino acid residues in hexokinases are affected by redox signaling. Except in cases of monogenic diabetes, direct evidence is absent for disease phenotypes that are associated with variations within motifs that are susceptible to redox signaling. FUTURE DIRECTIONS Further studies should address the propensity of hexokinases and their disease-associated variants to participate in redox regulation. Robust and straightforward proteomic methods are needed to understand the context and consequences of hexokinase-mediated redox regulation in health and disease.
Collapse
Affiliation(s)
- Petr Heneberg
- Third Faculty of Medicine, Charles University , Prague, Czech Republic
| |
Collapse
|
18
|
Sternisha SM, Miller BG. Molecular and cellular regulation of human glucokinase. Arch Biochem Biophys 2019; 663:199-213. [PMID: 30641049 DOI: 10.1016/j.abb.2019.01.011] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 01/23/2023]
Abstract
Glucose metabolism in humans is tightly controlled by the activity of glucokinase (GCK). GCK is predominantly produced in the pancreas, where it catalyzes the rate-limiting step of insulin secretion, and in the liver, where it participates in glycogen synthesis. A multitude of disease-causing mutations within the gck gene have been identified. Activating mutations manifest themselves in the clinic as congenital hyperinsulinism, while loss-of-function mutations produce several diabetic conditions. Indeed, pharmaceutical companies have shown great interest in developing GCK-associated treatments for diabetic patients. Due to its essential role in maintaining whole-body glucose homeostasis, GCK activity is extensively regulated at multiple levels. GCK possesses a unique ability to self-regulate its own activity via slow conformational dynamics, which allows for a cooperative response to glucose. GCK is also subject to a number of protein-protein interactions and post-translational modification events that produce a broad range of physiological consequences. While significant advances in our understanding of these individual regulatory mechanisms have been recently achieved, how these strategies are integrated and coordinated within the cell is less clear. This review serves to synthesize the relevant findings and offer insights into the connections between molecular and cellular control of GCK.
Collapse
Affiliation(s)
- Shawn M Sternisha
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA
| | - Brian G Miller
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
19
|
First evidence of changes in enzyme kinetics and stability of glucokinase affected by somatic cancer-associated variations. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1867:213-218. [PMID: 30590153 DOI: 10.1016/j.bbapap.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 12/07/2018] [Accepted: 12/20/2018] [Indexed: 12/27/2022]
Abstract
Recent investigation of somatic variations of allosterically regulated proteins in cancer genomes suggested that variations in glucokinase (GCK) might play a role in tumorigenesis. We hypothesized that somatic cancer-associated GCK variations include in part those with activating and/or stabilizing effects. We analyzed the enzyme kinetics and thermostability of recombinant proteins possessing the likely activating variations and the variations present in the connecting loop I and provided the first experimental evidence of the effects of somatic cancer-associated GCK variations. Activating and/or stabilizing variations were common among the analyzed cancer-associated variations, which was in strong contrast to their low frequency among germinal variations. The activating and stabilizing variations displayed focal distribution with respect to the tertiary structure, and were present in the surroundings of the heterotropic allosteric activator site, including but not limited to the connecting loop I and in the active site region subject to extensive rearrangements upon glucose binding. Activating somatic cancer-associated variations induced a reduction of GCK's cooperativity and an increase in the affinity to glucose (a decline in the S0.5 values). The hotspot-associated variations, which decreased cooperativity, also increased the half-maximal inhibitory concentrations of the competitive GCK inhibitor, N-acetylglucosamine. Concluded, we have provided the first convincing biochemical evidence establishing GCK as a previously unrecognized enzyme that contributes to the reprogramming of energy metabolism in cancer cells. Activating GCK variations substantially increase affinity of GCK to glucose, disrupt the otherwise characteristic sigmoidal response to glucose and/or prolong the enzyme half-life. This, combined, facilitates glucose phosphorylation, thus supporting glycolysis and associated pathways.
Collapse
|
20
|
Ma Y, Ratnasabapathy R, Izzi-Engbeaya C, Nguyen-Tu MS, Richardson E, Hussain S, De Backer I, Holton C, Norton M, Carrat G, Schwappach B, Rutter GA, Dhillo WS, Gardiner J. Hypothalamic arcuate nucleus glucokinase regulates insulin secretion and glucose homeostasis. Diabetes Obes Metab 2018; 20:2246-2254. [PMID: 29748994 PMCID: PMC6099255 DOI: 10.1111/dom.13359] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/30/2018] [Accepted: 05/09/2018] [Indexed: 01/08/2023]
Abstract
AIMS To investigate the role of arcuate glucokinase (GK) in the regulation of glucose homeostasis. MATERIALS AND METHODS A recombinant adeno-associated virus expressing either GK or an antisense GK construct was used to alter GK activity specifically in the hypothalamic arcuate nucleus (arc). GK activity in this nucleus was also increased by stereotactic injection of the GK activator, compound A. The effect of altered arc GK activity on glucose homeostasis was subsequently investigated using glucose and insulin tolerance tests. RESULTS Increased GK activity specifically within the arc increased insulin secretion and improved glucose tolerance in rats during oral glucose tolerance tests. Decreased GK activity in this nucleus reduced insulin secretion and increased glucose levels during the same tests. Insulin sensitivity was not affected in either case. The effect of arc GK was maintained in a model of type 2 diabetes. CONCLUSIONS These results demonstrate a role for arc GK in systemic glucose homeostasis.
Collapse
Affiliation(s)
- Yue Ma
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Risheka Ratnasabapathy
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Chioma Izzi-Engbeaya
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Marie-Sophie Nguyen-Tu
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Errol Richardson
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Sufyan Hussain
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Ivan De Backer
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Christopher Holton
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Mariana Norton
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Gaelle Carrat
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Blanche Schwappach
- Department of Molecular Biology, Centre for Biochemistry and Molecular Cell Biology, Heart Research Centre Göttingen, University Medicine Göttingen, Göttingen, Germany
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - James Gardiner
- Section of Endocrinology and Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| |
Collapse
|
21
|
Pérez-García A, Dongil P, Hurtado-Carneiro V, Blazquez E, Sanz C, Alvarez E. PAS Kinase deficiency alters the glucokinase function and hepatic metabolism. Sci Rep 2018; 8:11091. [PMID: 30038292 PMCID: PMC6056484 DOI: 10.1038/s41598-018-29234-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022] Open
Abstract
The liver controls metabolic homeostasis in response to fasting and refeeding periods. Glucokinase (GCK) adjusts hepatic glucose phosphorylation to blood glucose levels, acting as a glucose sensor. Our objective was to determine whether PAS kinase (PASK), a nutrient sensor, could be affecting the expression or activity of liver GCK and the response to fasting and refeeding states of key hepatic metabolic pathways. PASK-deficient mice have impaired insulin signaling (AKT overactivation). Furthermore, PASK deficiency modified the expression of several transcription factors involved in the adjustment to fasting and refeeding. Foxo1 decreased under fasting conditions, while Ppara and Pparg were overexpressed in PASK-deficient mice. However, PEPCK protein levels were similar or higher, while the expression of Cpt1a decreased in PASK-deficient mice. By contrast, Lxra and Chrebp were overexpressed after refeeding, while the expression of Acc and Fas decreased in PASK-deficient mice. Likewise, with a decreased expression of Gck and increased nuclear location of the complex GCK-GCKR, GCK activity decreased in PASK-deficient mice. Therefore, PASK regulated some of the genes and proteins responsible for glucose sensing, such as glucokinase, and for insulin signalling, affecting glucose and lipid metabolism and consequently certain critical hepatic functions.
Collapse
Affiliation(s)
- A Pérez-García
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University of Madrid, Institute of Medical Research at the Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, s/n, 28040, Madrid, Spain.,Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - P Dongil
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University of Madrid, Institute of Medical Research at the Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, s/n, 28040, Madrid, Spain.,Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
| | - V Hurtado-Carneiro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University of Madrid, Institute of Medical Research at the Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, s/n, 28040, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - E Blazquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University of Madrid, Institute of Medical Research at the Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, s/n, 28040, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - C Sanz
- Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain. .,Department of Cell Biology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain.
| | - E Alvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University of Madrid, Institute of Medical Research at the Hospital Clínico San Carlos (IdISSC), Ciudad Universitaria, s/n, 28040, Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
22
|
Emerging Concepts in Brain Glucose Metabolic Functions: From Glucose Sensing to How the Sweet Taste of Glucose Regulates Its Own Metabolism in Astrocytes and Neurons. Neuromolecular Med 2018; 20:281-300. [DOI: 10.1007/s12017-018-8503-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/13/2018] [Indexed: 12/16/2022]
|
23
|
Johansson BB, Fjeld K, Solheim MH, Shirakawa J, Zhang E, Keindl M, Hu J, Lindqvist A, Døskeland A, Mellgren G, Flatmark T, Njølstad PR, Kulkarni RN, Wierup N, Aukrust I, Bjørkhaug L. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation. Mol Cell Endocrinol 2017. [PMID: 28648619 DOI: 10.1016/j.mce.2017.06.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal (30LKKVMRR36) in the human enzyme. Substituting the residues KK31,32 and RR35,36 with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell.
Collapse
Affiliation(s)
- Bente Berg Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Karianne Fjeld
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marie Holm Solheim
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Section on Integrative Physiology and Metabolism, Joslin Diabetes Center and Harvard Medical School, Boston, MA, USA
| | - Jun Shirakawa
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA; Department of Endocrinology and Metabolism, Yokohama City University, Yokohama, Japan
| | | | - Magdalena Keindl
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | | | - Anne Døskeland
- Proteomics Unit (PROBE), Department of Biomedicine, University of Bergen, Norway
| | - Gunnar Mellgren
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Pål Rasmus Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA, USA
| | - Nils Wierup
- Lund University Diabetes Centre, Malmö, Sweden
| | - Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Lise Bjørkhaug
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Biomedical Laboratory Sciences and Chemical Engineering, Western Norway University of Applied Sciences, Bergen, Norway.
| |
Collapse
|
24
|
van den Top M, Zhao FY, Viriyapong R, Michael NJ, Munder AC, Pryor JT, Renaud LP, Spanswick D. The impact of ageing, fasting and high-fat diet on central and peripheral glucose tolerance and glucose-sensing neural networks in the arcuate nucleus. J Neuroendocrinol 2017; 29. [PMID: 28834571 DOI: 10.1111/jne.12528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 08/01/2017] [Accepted: 08/17/2017] [Indexed: 12/14/2022]
Abstract
Obesity and ageing are risk factors for diabetes. In the present study, we investigated the effects of ageing, obesity and fasting on central and peripheral glucose tolerance and on glucose-sensing neuronal function in the arcuate nucleus of rats, with a view to providing insight into the central mechanisms regulating glucose homeostasis and how they change or are subject to dysfunction with ageing and obesity. We show that, following a glucose load, central glucose tolerance at the level of the cerebrospinal fluid (CSF) and plasma is significantly reduced in rats maintained on a high-fat diet (HFD). With ageing, up to 2 years, central glucose tolerance was impaired in an age-dependent manner, whereas peripheral glucose tolerance remained unaffected. Ageing-induced peripheral glucose intolerance was improved by a 24-hour fast, whereas central glucose tolerance was not corrected. Pre-wean, immature animals have elevated basal plasma glucose levels and a delayed increase in central glucose levels following peripheral glucose injection compared to mature animals. Electrophysiological recording techniques revealed an energy-status-dependent role for glucose-excited, inhibited and adapting neurones, along with glucose-induced changes in synaptic transmission. We conclude that ageing affects central glucose tolerance, whereas HFD profoundly affects central and peripheral glucose tolerance and, in addition, glucose-sensing neurones adapt function in an energy-status-dependent manner.
Collapse
Affiliation(s)
| | - F-Y Zhao
- NeuroSolutions Ltd, Coventry, UK
| | - R Viriyapong
- Warwick Medical School, University of Warwick, Coventry, UK
- MOAC DTC, University of Warwick, Coventry, UK
| | - N J Michael
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - A C Munder
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - J T Pryor
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - L P Renaud
- Ottawa Hospital Research Institute, Ottawa Civic Hospital, Ottawa, ON, Canada
| | - D Spanswick
- NeuroSolutions Ltd, Coventry, UK
- Warwick Medical School, University of Warwick, Coventry, UK
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
- Department of Physiology, Monash University, Clayton, VIC, Australia
- Neuroscience Program, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Šimčíková D, Kocková L, Vackářová K, Těšínský M, Heneberg P. Evidence-based tailoring of bioinformatics approaches to optimize methods that predict the effects of nonsynonymous amino acid substitutions in glucokinase. Sci Rep 2017; 7:9499. [PMID: 28842611 PMCID: PMC5573313 DOI: 10.1038/s41598-017-09810-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Computational methods that allow predicting the effects of nonsynonymous substitutions are an integral part of exome studies. Here, we validated and improved their specificity by performing a comprehensive bioinformatics analysis combined with experimental and clinical data on a model of glucokinase (GCK): 8835 putative variations, including 515 disease-associated variations from 1596 families with diagnoses of monogenic diabetes (GCK-MODY) or persistent hyperinsulinemic hypoglycemia of infancy (PHHI), and 126 variations with available or newly reported (19 variations) data on enzyme kinetics. We also proved that high frequency of disease-associated variations found in patients is closely related to their evolutionary conservation. The default set prediction methods predicted correctly the effects of only a part of the GCK-MODY-associated variations and completely failed to predict the normoglycemic or PHHI-associated variations. Therefore, we calculated evidence-based thresholds that improved significantly the specificity of predictions (≤75%). The combined prediction analysis even allowed to distinguish activating from inactivating variations and identified a group of putatively highly pathogenic variations (EVmutation score <−7.5 and SNAP2 score >70), which were surprisingly underrepresented among MODY patients and thus under negative selection during molecular evolution. We suggested and validated the first robust evidence-based thresholds, which allow improved, highly specific predictions of disease-associated GCK variations.
Collapse
Affiliation(s)
- Daniela Šimčíková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Lucie Kocková
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | | | - Miroslav Těšínský
- Charles University, Third Faculty of Medicine, Prague, Czech Republic
| | - Petr Heneberg
- Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
26
|
Tagliavini A, Pedersen MG. Spatiotemporal Modeling of Triggering and Amplifying Pathways in GLP-1 Secreting Intestinal L Cells. Biophys J 2017; 112:162-171. [PMID: 28076808 PMCID: PMC5232896 DOI: 10.1016/j.bpj.2016.11.3199] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 11/16/2016] [Accepted: 11/29/2016] [Indexed: 01/06/2023] Open
Abstract
Glucagon-like peptide 1 (GLP-1) is secreted by intestinal L-cells, and augments glucose-induced insulin secretion, thus playing an important role in glucose control. The stimulus-secretion pathway in L-cells is still incompletely understood and a topic of debate. It is known that GLP-1 secreting cells can sense glucose to promote electrical activity either by the electrogenic sodium-glucose cotransporter SGLT1, or by closure of ATP-sensitive potassium channels after glucose metabolism. Glucose also has an effect on GLP-1 secretion downstream of electrical activity. An important aspect to take into account is the spatial organization of the cell. Indeed, the glucose transporter GLUT2 is located at the basolateral, vascular side, while SGLT1 is exposed to luminal glucose at the apical side of the cell, suggesting that the two types of transporters play different roles in glucose sensing. Here, we extend our recent model of electrical activity in primary L-cells to include spatiotemporal glucose and Ca2+ dynamics, and GLP-1 secretion. The model confirmed that glucose transportation into the cell through SGLT1 cotransporters can induce Ca2+ influx and release of GLP-1 as a result of electrical activity, while glucose metabolism alone is insufficient to depolarize the cell and evoke GLP-1 secretion in the model, suggesting a crucial role for SGLT1 in triggering GLP-1 release in agreement with experimental studies. We suggest a secondary, but participating, role of GLUT2 and glucose metabolism for GLP-1 secretion via an amplifying pathway that increases the secretion rate at a given Ca2+ level.
Collapse
Affiliation(s)
- Alessia Tagliavini
- Department of Information Engineering, University of Padova, Padova, Italy
| | | |
Collapse
|
27
|
Devarakonda K, Mobbs CV. Mechanisms and significance of brain glucose signaling in energy balance, glucose homeostasis, and food-induced reward. Mol Cell Endocrinol 2016; 438:61-69. [PMID: 27637346 DOI: 10.1016/j.mce.2016.09.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/12/2016] [Accepted: 09/12/2016] [Indexed: 12/15/2022]
Abstract
The concept that hypothalamic glucose signaling plays an important role in regulating energy balance, e.g., as instantiated in the so-called "glucostat" hypothesis, is one of the oldest in the field of metabolism. However the mechanisms by which neurons in the hypothalamus sense glucose, and the function of glucose signaling in the brain, has been difficult to establish. Nevertheless recent studies probing mechanisms of glucose signaling have also strongly supported a role for glucose signaling in regulating energy balance, glucose homeostasis, and food-induced reward.
Collapse
Affiliation(s)
- Kavya Devarakonda
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA; Department of Endocrinology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA
| | - Charles V Mobbs
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA; Department of Endocrinology, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA; Department of Geriatrics, Icahn School of Medicine at Mount Sinai, 1470 Madison Ave., 9-119, New York, NY 10029, USA.
| |
Collapse
|
28
|
Rosario W, Singh I, Wautlet A, Patterson C, Flak J, Becker TC, Ali A, Tamarina N, Philipson LH, Enquist LW, Myers MG, Rhodes CJ. The Brain-to-Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions. Diabetes 2016; 65:2711-23. [PMID: 27207534 PMCID: PMC5001176 DOI: 10.2337/db15-0629] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 04/06/2016] [Indexed: 12/24/2022]
Abstract
The brain influences glucose homeostasis, partly by supplemental control over insulin and glucagon secretion. Without this central regulation, diabetes and its complications can ensue. Yet, the neuronal network linking to pancreatic islets has never been fully mapped. Here, we refine this map using pseudorabies virus (PRV) retrograde tracing, indicating that the pancreatic islets are innervated by efferent circuits that emanate from the hypothalamus. We found that the hypothalamic arcuate nucleus (ARC), ventromedial nucleus (VMN), and lateral hypothalamic area (LHA) significantly overlap PRV and the physiological glucose-sensing enzyme glucokinase. Then, experimentally lowering glucose sensing, specifically in the ARC, resulted in glucose intolerance due to deficient insulin secretion and no significant effect in the VMN, but in the LHA it resulted in a lowering of the glucose threshold that improved glucose tolerance and/or improved insulin sensitivity, with an exaggerated counter-regulatory response for glucagon secretion. No significant effect on insulin sensitivity or metabolic homeostasis was noted. Thus, these data reveal novel direct neuronal effects on pancreatic islets and also render a functional validation of the brain-to-islet neuronal map. They also demonstrate that distinct regions of the hypothalamus differentially control insulin and glucagon secretion, potentially in partnership to help maintain glucose homeostasis and guard against hypoglycemia.
Collapse
Affiliation(s)
- Wilfredo Rosario
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Inderroop Singh
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Arnaud Wautlet
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Christa Patterson
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Jonathan Flak
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Thomas C Becker
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University, Durham, NC
| | - Almas Ali
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Natalia Tamarina
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Louis H Philipson
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| | - Lynn W Enquist
- Department of Molecular Biology, Princeton University, Princeton, NJ
| | - Martin G Myers
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI
| | - Christopher J Rhodes
- Kovler Diabetes Center, Department of Medicine, Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL
| |
Collapse
|
29
|
De Backer I, Hussain SS, Bloom SR, Gardiner JV. Insights into the role of neuronal glucokinase. Am J Physiol Endocrinol Metab 2016; 311:E42-55. [PMID: 27189932 PMCID: PMC4967152 DOI: 10.1152/ajpendo.00034.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 05/13/2016] [Indexed: 12/17/2022]
Abstract
Glucokinase is a key component of the neuronal glucose-sensing mechanism and is expressed in brain regions that control a range of homeostatic processes. In this review, we detail recently identified roles for neuronal glucokinase in glucose homeostasis and counterregulatory responses to hypoglycemia and in regulating appetite. We describe clinical implications from these advances in our knowledge, especially for developing novel treatments for diabetes and obesity. Further research required to extend our knowledge and help our efforts to tackle the diabetes and obesity epidemics is suggested.
Collapse
Affiliation(s)
- Ivan De Backer
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Sufyan S Hussain
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - Stephen R Bloom
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| | - James V Gardiner
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, United Kingdom
| |
Collapse
|
30
|
Vinod M, Patankar JV, Sachdev V, Frank S, Graier WF, Kratky D, Kostner GM. MiR-206 is expressed in pancreatic islets and regulates glucokinase activity. Am J Physiol Endocrinol Metab 2016; 311:E175-E185. [PMID: 27221121 PMCID: PMC4941929 DOI: 10.1152/ajpendo.00510.2015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/17/2016] [Indexed: 01/10/2023]
Abstract
Glucose homeostasis is a complex indispensable process, and its dysregulation causes hyperglycemia and type 2 diabetes mellitus. Glucokinase (GK) takes a central role in these pathways and is thus rate limiting for glucose-stimulated insulin secretion (GSIS) from pancreatic islets. Several reports have described the transcriptional regulation of Gck mRNA, whereas its posttranscriptional mechanisms of regulation, especially those involving microRNAs (miR), are poorly understood. In this study, we investigated the role of miR-206 as a posttranscriptional regulator of Gck In addition, we examined the effects of miR-206 on glucose tolerance, GSIS, and gene expression in control and germ line miR-206 knockout (KO) mice fed either with chow or high-fat diet (HFD). MiR-206 was found in Gck-expressing tissues and was differentially altered in response to HFD feeding. Pancreatic islets showed the most profound induction in the expression of miR-206 in response to HFD. Chow- and HFD-fed miR-206KO mice have improved glucose tolerance and GSIS but unaltered insulin sensitivity. In silico analysis of Gck mRNA revealed a conserved 8-mer miR-206 binding site. Hence, the predicted regulation of Gck by miR-206 was confirmed in reporter and GK activity assays. Concomitant with increased GK activity, miR-206KO mice had elevated liver glycogen content and plasma lactate concentrations. Our findings revealed a novel mechanism of posttranscriptional regulation of Gck by miR-206 and underline the crucial role of pancreatic islet miR-206 in the regulation of whole body glucose homeostasis in a murine model that mimics the metabolic syndrome.
Collapse
Affiliation(s)
- Manjula Vinod
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Jay V Patankar
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Vinay Sachdev
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Saša Frank
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Dagmar Kratky
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - Gerhard M Kostner
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| |
Collapse
|
31
|
Shi Y, He MX. PfIRR Interacts with HrIGF-I and Activates the MAP-kinase and PI3-kinase Signaling Pathways to Regulate Glycogen Metabolism in Pinctada fucata. Sci Rep 2016; 6:22063. [PMID: 26911653 PMCID: PMC4766514 DOI: 10.1038/srep22063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 02/05/2016] [Indexed: 11/18/2022] Open
Abstract
The insulin-induced mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K) pathways are major intracellular signaling modules and conserved among eukaryotes that are known to regulate diverse cellular processes. However, they have not been investigated in the mollusk species Pinctada fucata. Here, we demonstrate that insulin-related peptide receptor of P. fucata (pfIRR) interacts with human recombinant insulin-like growth factor I (hrIGF-I), and stimulates the MAPK and PI3K signaling pathways in P. fucata oocytes. We also show that inhibition of pfIRR by the inhibitor PQ401 significantly attenuates the basal and hrIGF-I-induced phosphorylation of MAPK and PI3K/Akt at amino acid residues threonine 308 and serine 473. Furthermore, our experiments show that there is cross-talk between the MAPK and PI3K/Akt pathways, in which MAPK kinase positively regulates the PI3K pathway, and PI3K positively regulates the MAPK cascade. Intramuscular injection of hrIGF-I stimulates the PI3K and MAPK pathways to increase the expression of pfirr, protein phosphatase 1, glucokinase, and the phosphorylation of glycogen synthase, decreases the mRNA expression of glycogen synthase kinase-3 beta, decreases glucose levels in hemocytes, and increases glycogen levels in digestive glands. These results suggest that the MAPK and PI3K pathways in P. fucata transmit the hrIGF-I signal to regulate glycogen metabolism.
Collapse
Affiliation(s)
- Yu Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Mao-xian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
32
|
Elizondo-Vega R, Cortes-Campos C, Barahona MJ, Oyarce KA, Carril CA, García-Robles MA. The role of tanycytes in hypothalamic glucosensing. J Cell Mol Med 2015; 19:1471-82. [PMID: 26081217 PMCID: PMC4511346 DOI: 10.1111/jcmm.12590] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/03/2015] [Indexed: 12/23/2022] Open
Abstract
Tanycytes are elongated hypothalamic glial cells that cover the basal walls of the third ventricle; their apical regions contact the cerebrospinal fluid (CSF), and their processes reach hypothalamic neuronal nuclei that control the energy status of an organism. These nuclei maintain the balance between energy expenditure and intake, integrating several peripheral signals and triggering cellular responses that modify the feeding behaviour and peripheral glucose homeostasis. One of the most important and well-studied signals that control this process is glucose; however, the mechanism by which this molecule is sensed remains unknown. We along with others have proposed that tanycytes play a key role in this process, transducing changes in CSF glucose concentration to the neurons that control energy status. Recent studies have demonstrated the expression and function of monocarboxylate transporters and canonical pancreatic β cell glucose sensing molecules, including glucose transporter 2 and glucokinase, in tanycytes. These and other data, which will be discussed in this review, suggest that hypothalamic glucosensing is mediated through a metabolic interaction between tanycytes and neurons through lactate. This article will summarize the recent evidence that supports the importance of tanycytes in hypothalamic glucosensing, and discuss the possible mechanisms involved in this process. Finally, it is important to highlight that a detailed analysis of this mechanism could represent an opportunity to understand the evolution of associated pathologies, including diabetes and obesity, and identify new candidates for therapeutic intervention.
Collapse
Affiliation(s)
- Roberto Elizondo-Vega
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | | - Maria J Barahona
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Karina A Oyarce
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Claudio A Carril
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Maria A García-Robles
- Laboratorio de Biología Celular, Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
33
|
Glucose and hypothalamic astrocytes: More than a fueling role? Neuroscience 2015; 323:110-20. [PMID: 26071958 DOI: 10.1016/j.neuroscience.2015.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 01/19/2023]
Abstract
Brain plays a central role in energy homeostasis continuously integrating numerous peripheral signals such as circulating nutrients, and in particular blood glucose level, a variable that must be highly regulated. Then, the brain orchestrates adaptive responses to modulate food intake and peripheral organs activity in order to achieve the fine tuning of glycemia. More than fifty years ago, the presence of glucose-sensitive neurons was discovered in the hypothalamus, but what makes them specific and identifiable still remains disconnected from their electrophysiological signature. On the other hand, astrocytes represent the major class of macroglial cells and are now recognized to support an increasing number of neuronal functions. One of these functions consists in the regulation of energy homeostasis through neuronal fueling and nutrient sensing. Twenty years ago, we discovered that the glucose transporter GLUT2, the canonical "glucosensor" of the pancreatic beta-cell together with the glucokinase, was also present in astrocytes and participated in hypothalamic glucose sensing. Since then, many studies have identified other actors and emphasized the astroglial participation in this mechanism. Growing evidence suggest that astrocytes form a complex network and have to be considered as spatially coordinated and regulated metabolic units. In this review we aim to provide an updated view of the molecular and respective cellular pathways involved in hypothalamic glucose sensing, and their relevance in physiological and pathological states.
Collapse
|
34
|
Lasram MM, El-Golli N, Lamine AJ, Douib IB, Bouzid K, Annabi A, El Fazaa S, Abdelmoula J, Gharbi N. Changes in glucose metabolism and reversion of genes expression in the liver of insulin-resistant rats exposed to malathion. The protective effects of N-acetylcysteine. Gen Comp Endocrinol 2015; 215:88-97. [PMID: 25449180 DOI: 10.1016/j.ygcen.2014.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/04/2014] [Accepted: 10/10/2014] [Indexed: 12/21/2022]
Abstract
Organophosphorus pesticides are known to disturb glucose homeostasis and increase incidence of metabolic disorders and diabetes via insulin resistance. The current study investigates the influence of malathion on insulin signaling pathways and the protective effects of N-acetylcysteine (NAC). Malathion (200 mg/kg) and NAC (2 g/l) were administered orally to rats, during 28 consecutive days. Malathion increases plasma glucose, plasma insulin and glycated hemoglobin levels. Further, we observed an increase of insulin resistance biomarkers and a decrease of insulin sensitivity indices. The GP, GSK3β and PEPCK mRNA expressions were amplified by malathion while, the expression of glucokinase gene is down-regulated. On the basis of biochemical and molecular findings, it is concluded that malathion impairs glucose homeostasis through insulin resistance and insulin signaling pathways disruptions in a way to result in a reduced function of insulin into hepatocytes. Otherwise, when malathion-treated rats were compared to NAC supplemented rats, fasting glucose and insulin levels, as well as insulin resistance indices were reduced. Furthermore, NAC restored liver GP and PEPCK expression. N-acetylcysteine showed therapeutic effects against malathion-induced insulin signaling pathways disruption in liver. These data support the concept that antioxidant therapies attenuate insulin resistance and ameliorate insulin sensitivity.
Collapse
Affiliation(s)
- Mohamed Montassar Lasram
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.
| | - Narjes El-Golli
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Aicha Jrad Lamine
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Ines Bini Douib
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Kahena Bouzid
- Laboratory of Clinical Biochemistry, Charles Nicolle Hospital, Tunis, Tunisia
| | - Alya Annabi
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia
| | - Saloua El Fazaa
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.
| | - Jaouida Abdelmoula
- Laboratory of Clinical Biochemistry, Charles Nicolle Hospital, Tunis, Tunisia
| | - Najoua Gharbi
- Laboratory of Aggression Physiology and Endocrine Metabolic Studies, Department of Biology, Faculty of Sciences, Tunis, Tunisia.
| |
Collapse
|
35
|
Otero YF, Stafford JM, McGuinness OP. Pathway-selective insulin resistance and metabolic disease: the importance of nutrient flux. J Biol Chem 2015; 289:20462-9. [PMID: 24907277 DOI: 10.1074/jbc.r114.576355] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatic glucose and lipid metabolism are altered in metabolic disease (e.g. obesity, metabolic syndrome, and Type 2 diabetes). Insulin-dependent regulation of glucose metabolism is impaired. In contrast, lipogenesis, hypertriglyceridemia, and hepatic steatosis are increased. Because insulin promotes lipogenesis and liver fat accumulation, to explain the elevation in plasma and tissue lipids, investigators have suggested the presence of pathway-selective insulin resistance. In this model, insulin signaling to glucose metabolism is impaired, but insulin signaling to lipid metabolism is intact. We discuss the evidence for the differential regulation of hepatic lipid and glucose metabolism. We suggest that the primary phenotypic driver is altered substrate delivery to the liver, as well as the repartitioning of hepatic nutrient handling. Specific alterations in insulin signaling serve to amplify the alterations in hepatic substrate metabolism. Thus, hyperinsulinemia and its resultant increased signaling may facilitate lipogenesis, but are not the major drivers of the phenotype of pathway-selective insulin resistance.
Collapse
|
36
|
Hussain S, Richardson E, Ma Y, Holton C, De Backer I, Buckley N, Dhillo W, Bewick G, Zhang S, Carling D, Bloom S, Gardiner J. Glucokinase activity in the arcuate nucleus regulates glucose intake. J Clin Invest 2014; 125:337-49. [PMID: 25485685 DOI: 10.1172/jci77172] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 11/06/2014] [Indexed: 01/21/2023] Open
Abstract
The brain relies on a constant supply of glucose, its primary fuel, for optimal function. A taste-independent mechanism within the CNS that promotes glucose delivery to the brain has been postulated to maintain glucose homeostasis; however, evidence for such a mechanism is lacking. Here, we determined that glucokinase activity within the hypothalamic arcuate nucleus is involved in regulation of dietary glucose intake. In fasted rats, glucokinase activity was specifically increased in the arcuate nucleus but not other regions of the hypothalamus. Moreover, pharmacologic and genetic activation of glucokinase in the arcuate nucleus of rodent models increased glucose ingestion, while decreased arcuate nucleus glucokinase activity reduced glucose intake. Pharmacologic targeting of potential downstream glucokinase effectors revealed that ATP-sensitive potassium channel and P/Q calcium channel activity are required for glucokinase-mediated glucose intake. Additionally, altered glucokinase activity affected release of the orexigenic neurotransmitter neuropeptide Y in response to glucose. Together, our results suggest that glucokinase activity in the arcuate nucleus specifically regulates glucose intake and that appetite for glucose is an important driver of overall food intake. Arcuate nucleus glucokinase activation may represent a CNS mechanism that underlies the oft-described phenomena of the "sweet tooth" and carbohydrate craving.
Collapse
|
37
|
Regulation of gonadotropin secretion by monitoring energy availability. Reprod Med Biol 2014; 14:39-47. [PMID: 29259401 DOI: 10.1007/s12522-014-0194-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/06/2014] [Indexed: 10/24/2022] Open
Abstract
Nutrition is a principal environmental factor influencing fertility in animals. Energy deficit causes amenorrhea, delayed puberty, and suppression of copulatory behaviors by inhibiting gonadal activity. When gonadal activity is impaired by malnutrition, the signals originating from an undernourished state are ultimately conveyed to the gonadotropin-releasing hormone (GnRH) pulse generator, leading to suppressed secretion of GnRH and luteinizing hormone (LH). The mechanism responsible for energetic control of gonadotropin release is believed to involve metabolic signals, sensing mechanisms, and neuroendocrine pathways. The availabilities of blood-borne energy substrates such as glucose, fatty acids, and ketone bodies, which fluctuate in parallel with changes in nutritional status, act as metabolic signals that regulate the GnRH pulse generator activity and GnRH/LH release. As components of the specific sensing system, the ependymocytes lining the cerebroventricular wall in the lower brainstem integrate the information derived from metabolic signals to control gonadotropin release. One of the pathways responsible for the energetic control of gonadal activity consists of noradrenergic neurons from the solitary tract nucleus in the lower brainstem, projecting to the paraventricular nucleus of the hypothalamus. Further studies are needed to elucidate the mechanisms underlying energetic control of reproductive function.
Collapse
|
38
|
Ogunnowo-Bada EO, Heeley N, Brochard L, Evans ML. Brain glucose sensing, glucokinase and neural control of metabolism and islet function. Diabetes Obes Metab 2014; 16 Suppl 1:26-32. [PMID: 25200293 PMCID: PMC4405079 DOI: 10.1111/dom.12334] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 06/05/2014] [Indexed: 11/30/2022]
Abstract
It is increasingly apparent that the brain plays a central role in metabolic homeostasis, including the maintenance of blood glucose. This is achieved by various efferent pathways from the brain to periphery, which help control hepatic glucose flux and perhaps insulin-stimulated insulin secretion. Also, critically important for the brain given its dependence on a constant supply of glucose as a fuel--emergency counter-regulatory responses are triggered by the brain if blood glucose starts to fall. To exert these control functions, the brain needs to detect rapidly and accurately changes in blood glucose. In this review, we summarize some of the mechanisms postulated to play a role in this and examine the potential role of the low-affinity hexokinase, glucokinase, in the brain as a key part of some of this sensing. We also discuss how these processes may become altered in diabetes and related metabolic diseases.
Collapse
Affiliation(s)
- E O Ogunnowo-Bada
- Wellcome Trust-MRC Institute of Metabolic Science, IMS Metabolic Research Laboratories, University of CambridgeCambridge, UK
| | - N Heeley
- Wellcome Trust-MRC Institute of Metabolic Science, IMS Metabolic Research Laboratories, University of CambridgeCambridge, UK
| | - L Brochard
- Wellcome Trust-MRC Institute of Metabolic Science, IMS Metabolic Research Laboratories, University of CambridgeCambridge, UK
| | - M L Evans
- Wellcome Trust-MRC Institute of Metabolic Science, IMS Metabolic Research Laboratories, University of CambridgeCambridge, UK
- Correspondence to: Mark Evans, Wellcome Trust-MRC Institute of Metabolic Science, University of Cambridge, IMS Metabolic Research Laboratories, Box 289 Addenbrookes Hospital, Hills Road, Cambridge CB2 0QQ, UK. E-mail:
| |
Collapse
|
39
|
Abstract
The glucokinase (GK) enzyme (EC 2.7.1.1.) is essential for the use of dietary glucose because it is the first enzyme to phosphorylate glucose in excess in different key tissues such as the pancreas and liver. The objective of the present review is not to fully describe the biochemical characteristics and the genetics of this enzyme but to detail its nutritional regulation in different vertebrates from fish to human. Indeed, the present review will describe the existence of the GK enzyme in different animal species that have naturally different levels of carbohydrate in their diets. Thus, some studies have been performed to analyse the nutritional regulation of the GK enzyme in humans and rodents (having high levels of dietary carbohydrates in their diets), in the chicken (moderate level of carbohydrates in its diet) and rainbow trout (no carbohydrate intake in its diet). All these data illustrate the nutritional importance of the GK enzyme irrespective of feeding habits, even in animals known to poorly use dietary carbohydrates (carnivorous species).
Collapse
|
40
|
Yellapu N, Mahto MK, Valasani KR, Sarma P, Matcha B. Mutations in exons 10 and 11 of human glucokinase result in conformational variations in the active site of the structure contributing to poor substrate binding – explains hyperglycemia in type 2 diabetic patients. J Biomol Struct Dyn 2014; 33:820-33. [DOI: 10.1080/07391102.2014.913989] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Nandakumar Yellapu
- Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhrapradesh 517502, India
- Biomedical Informatics Center, Vector Control Research Center, Indian Council of Medical Research, Pondicherry, 605006 India
| | - Manoj Kumar Mahto
- Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhrapradesh 517502, India
| | - Koteswara Rao Valasani
- Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, 66047 USA
| | - P.V.G.K. Sarma
- Department of Biotechnology, Sri Venkateswara Institute of Medical Sciences, Tirupati, Andhrapradesh, 517507 India
| | - Bhaskar Matcha
- Division of Animal Biotechnology, Department of Zoology, Sri Venkateswara University, Tirupati, Andhrapradesh 517502, India
| |
Collapse
|
41
|
Salgado M, Tarifeño-Saldivia E, Ordenes P, Millán C, Yañez MJ, Llanos P, Villagra M, Elizondo-Vega R, Martínez F, Nualart F, Uribe E, de los Angeles García-Robles M. Dynamic localization of glucokinase and its regulatory protein in hypothalamic tanycytes. PLoS One 2014; 9:e94035. [PMID: 24739934 PMCID: PMC3989220 DOI: 10.1371/journal.pone.0094035] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/11/2014] [Indexed: 11/28/2022] Open
Abstract
Glucokinase (GK), the hexokinase involved in glucose sensing in pancreatic β cells, is also expressed in hypothalamic tanycytes, which cover the ventricular walls of the basal hypothalamus and are implicated in an indirect control of neuronal activity by glucose. Previously, we demonstrated that GK was preferentially localized in tanycyte nuclei in euglycemic rats, which has been reported in hepatocytes and is suggestive of the presence of the GK regulatory protein, GKRP. In the present study, GK intracellular localization in hypothalamic and hepatic tissues of the same rats under several glycemic conditions was compared using confocal microscopy and Western blot analysis. In the hypothalamus, increased GK nuclear localization was observed in hyperglycemic conditions; however, it was primarily localized in the cytoplasm in hepatic tissue under the same conditions. Both GK and GKRP were next cloned from primary cultures of tanycytes. Expression of GK by Escherichia coli revealed a functional cooperative protein with a S0.5 of 10 mM. GKRP, expressed in Saccharomyces cerevisiae, inhibited GK activity in vitro with a Ki 0.2 µM. We also demonstrated increased nuclear reactivity of both GK and GKRP in response to high glucose concentrations in tanycyte cultures. These data were confirmed using Western blot analysis of nuclear extracts. Results indicate that GK undergoes short-term regulation by nuclear compartmentalization. Thus, in tanycytes, GK can act as a molecular switch to arrest cellular responses to increased glucose.
Collapse
Affiliation(s)
- Magdiel Salgado
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Estefanía Tarifeño-Saldivia
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio Ordenes
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Carola Millán
- Facultad de Artes Liberales, Universidad Adolfo Ibañez, Viña del Mar, Chile
| | - María José Yañez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Paula Llanos
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Marcos Villagra
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Roberto Elizondo-Vega
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Fernando Martínez
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Francisco Nualart
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | | |
Collapse
|
42
|
Negahdar M, Aukrust I, Molnes J, Solheim MH, Johansson BB, Sagen JV, Dahl-Jørgensen K, Kulkarni RN, Søvik O, Flatmark T, Njølstad PR, Bjørkhaug L. GCK-MODY diabetes as a protein misfolding disease: the mutation R275C promotes protein misfolding, self-association and cellular degradation. Mol Cell Endocrinol 2014; 382:55-65. [PMID: 24001579 DOI: 10.1016/j.mce.2013.08.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 08/22/2013] [Accepted: 08/23/2013] [Indexed: 11/28/2022]
Abstract
GCK-MODY, dominantly inherited mild hyperglycemia, is associated with more than 600 mutations in the glucokinase gene. Different molecular mechanisms have been shown to explain GCK-MODY. Here, we report a Pakistani family harboring the glucokinase mutation c.823C>T (p.R275C). The recombinant and in cellulo expressed mutant pancreatic enzyme revealed slightly increased enzyme activity (kcat) and normal affinity for α-D-glucose, and resistance to limited proteolysis by trypsin comparable with wild-type. When stably expressed in HEK293 cells and MIN6 β-cells (at different levels), the mutant protein appeared misfolded and unstable with a propensity to form dimers and aggregates. Its degradation rate was increased, involving the lysosomal and proteasomal quality control systems. On mutation, a hydrogen bond between the R275 side-chain and the carbonyl oxygen of D267 is broken, destabilizing the F260-L271 loop structure and the protein. This promotes the formation of dimers/aggregates and suggests that an increased cellular degradation is the molecular mechanism by which R275C causes GCK-MODY.
Collapse
Affiliation(s)
- Maria Negahdar
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Aukrust
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Janne Molnes
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Marie H Solheim
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Bente B Johansson
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Jørn V Sagen
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Institute of Medicine, University of Bergen, Bergen, Norway; Hormone Laboratory, Haukeland University Hospital, Bergen, Norway
| | - Knut Dahl-Jørgensen
- Pediatric Department Ullevaal, Oslo University Hospital, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Rohit N Kulkarni
- Section of Islet Cell Biology and Regenerative Medicine, Joslin Diabetes Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Oddmund Søvik
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Pål R Njølstad
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Pediatrics, Haukeland University Hospital, Bergen, Norway.
| | - Lise Bjørkhaug
- KG Jebsen Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway; Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|
43
|
O'Brien RM. Moving on from GWAS: functional studies on the G6PC2 gene implicated in the regulation of fasting blood glucose. Curr Diab Rep 2013; 13:768-77. [PMID: 24142592 PMCID: PMC4041587 DOI: 10.1007/s11892-013-0422-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genome-wide association studies (GWAS) have shown that single-nucleotide polymorphisms (SNPs) in G6PC2 are the most important common determinants of variations in fasting blood glucose (FBG) levels. Molecular studies examining the functional impact of these SNPs on G6PC2 gene transcription and splicing suggest that they affect FBG by directly modulating G6PC2 expression. This conclusion is supported by studies on G6pc2 knockout (KO) mice showing that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion that acts by hydrolyzing glucose-6-phosphate, thereby reducing glycolytic flux and opposing the action of glucokinase. Suppression of G6PC2 activity might, therefore, represent a novel therapy for lowering FBG and the risk of cardiovascular-associated mortality. GWAS and G6pc2 KO mouse studies also suggest that G6PC2 affects other aspects of beta cell function. The evolutionary benefit conferred by G6PC2 remains unclear, but it is unlikely to be related to its ability to modulate FBG.
Collapse
Affiliation(s)
- Richard M O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, 37232, USA,
| |
Collapse
|
44
|
Antidiabetic effects of glucokinase regulatory protein small-molecule disruptors. Nature 2013; 504:437-40. [PMID: 24226772 DOI: 10.1038/nature12724] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/30/2013] [Indexed: 11/08/2022]
Abstract
Glucose homeostasis is a vital and complex process, and its disruption can cause hyperglycaemia and type II diabetes mellitus. Glucokinase (GK), a key enzyme that regulates glucose homeostasis, converts glucose to glucose-6-phosphate in pancreatic β-cells, liver hepatocytes, specific hypothalamic neurons, and gut enterocytes. In hepatocytes, GK regulates glucose uptake and glycogen synthesis, suppresses glucose production, and is subject to the endogenous inhibitor GK regulatory protein (GKRP). During fasting, GKRP binds, inactivates and sequesters GK in the nucleus, which removes GK from the gluconeogenic process and prevents a futile cycle of glucose phosphorylation. Compounds that directly hyperactivate GK (GK activators) lower blood glucose levels and are being evaluated clinically as potential therapeutics for the treatment of type II diabetes mellitus. However, initial reports indicate that an increased risk of hypoglycaemia is associated with some GK activators. To mitigate the risk of hypoglycaemia, we sought to increase GK activity by blocking GKRP. Here we describe the identification of two potent small-molecule GK-GKRP disruptors (AMG-1694 and AMG-3969) that normalized blood glucose levels in several rodent models of diabetes. These compounds potently reversed the inhibitory effect of GKRP on GK activity and promoted GK translocation both in vitro (isolated hepatocytes) and in vivo (liver). A co-crystal structure of full-length human GKRP in complex with AMG-1694 revealed a previously unknown binding pocket in GKRP distinct from that of the phosphofructose-binding site. Furthermore, with AMG-1694 and AMG-3969 (but not GK activators), blood glucose lowering was restricted to diabetic and not normoglycaemic animals. These findings exploit a new cellular mechanism for lowering blood glucose levels with reduced potential for hypoglycaemic risk in patients with type II diabetes mellitus.
Collapse
|
45
|
Shammas C, Neocleous V, Phelan MM, Lian LY, Skordis N, Phylactou LA. A report of 2 new cases of MODY2 and review of the literature: implications in the search for type 2 diabetes drugs. Metabolism 2013; 62:1535-42. [PMID: 23890519 DOI: 10.1016/j.metabol.2013.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 10/26/2022]
Abstract
Glucokinase (GCK) acts as a glucose sensor and stimulates the release of insulin from pancreatic β-cells and any GCK gene mutations can lead to different forms of diabetes, such as GCK-monogenic diabetes of the young type 2 (MODY2), permanent neonatal diabetes and congenital hyperinsulinism. Many MODY2 causing mutations display a variation in the degree of severity, ranging from mild dietary-restricted forms to more detrimental presentation requiring insulin replacement. The present study reviews known and two novel GCK mutations in terms of molecular perturbation of the GCK atomic structure but also emphasizes the inactivating and activating properties of the GCK as treatment for T2DM. In silico analysis demonstrated that the newly discovered mutation p.Arg447Pro causes structural conformational changes that lead to the destabilization of the functional properties of the protein resulting in the reduction of glucose and MgATP2- affinity. The novel p.Glu440Stop nonsense mutation on the other hand inactivates the cytoplasmic enzymatic activity of the protein as it is responsible for the loss of the C-terminal end of the polypeptide that includes vital glucose-releasing residues. Based on the in silico models of existing structural data we identified several classes of GCK mutations and discuss their relation to disease outcome. GCK has a central role in controlling body glucose homeostasis and therefore is considered an outstanding drug target for developing new antidiabetic therapies using small molecular activators (GKAs). This study emphasizes the importance in understanding how inactivating and activating GCK mutations affect the mechanistic properties of this glucose sensor. Such information can become the basis for drug discovery of therapeutic compounds and the treatment of T2DM by targeting the GCK allosteric activator site.
Collapse
Affiliation(s)
- Christos Shammas
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | | | | | | | | | | |
Collapse
|
46
|
Stanley S, Domingos AI, Kelly L, Garfield A, Damanpour S, Heisler L, Friedman J. Profiling of Glucose-Sensing Neurons Reveals that GHRH Neurons Are Activated by Hypoglycemia. Cell Metab 2013; 18:596-607. [PMID: 24093682 DOI: 10.1016/j.cmet.2013.09.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/29/2013] [Accepted: 08/22/2013] [Indexed: 12/17/2022]
Abstract
Comprehensive transcriptional profiling of glucose-sensing neurons is challenging because of low expression levels of glucokinase (Gck) and other key proteins that transduce a glucose signal. To overcome this, we generated and validated transgenic mice with a neuronal/endocrine-specific Gck promoter driving cre expression and mated them to mice with cre-dependent expression of an EGFP-tagged ribosomal protein construct (EEF1A1-LSL.EGFPL10) that can be used to map and profile cells. We found significant Gck expression in hypothalamic and limbic regions in cells that are activated following administration of glucose or 2-deoxyglucose. Transcriptional profiling from Gck-cre/EEF1A1-LSL.EGFPL10 mice enriched known and previously unknown glucose-sensing populations including neurons expressing growth hormone releasing hormone (GHRH). Electrophysiological recordings show that hypoglycemia activates GHRH neurons, suggesting a mechanistic link between hypoglycemia and growth hormone release. These studies provide a means for mapping glucose-sensitive neurons and for generating transcriptional profiles from other cell types expressing cre in a cell-specific manner.
Collapse
Affiliation(s)
- Sarah Stanley
- Laboratory of Molecular Genetics, Rockefeller University, New York, NY 10065, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen G. Roles of Vitamin A Metabolism in the Development of Hepatic Insulin Resistance. ISRN HEPATOLOGY 2013; 2013:534972. [PMID: 27335827 PMCID: PMC4890907 DOI: 10.1155/2013/534972] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 08/18/2013] [Indexed: 02/07/2023]
Abstract
The increase in the number of people with obesity- and noninsulin-dependent diabetes mellitus has become a major public health concern. Insulin resistance is a common feature closely associated with human obesity and diabetes. Insulin regulates metabolism, at least in part, via the control of the expression of the hepatic genes involved in glucose and fatty acid metabolism. Insulin resistance is always associated with profound changes of the expression of hepatic genes for glucose and lipid metabolism. As an essential micronutrient, vitamin A (VA) is needed in a variety of physiological functions. The active metablite of VA, retinoic acid (RA), regulates the expression of genes through the activation of transcription factors bound to the RA-responsive elements in the promoters of RA-targeted genes. Recently, retinoids have been proposed to play roles in glucose and lipid metabolism and energy homeostasis. This paper summarizes the recent progresses in our understanding of VA metabolism in the liver and of the potential transcription factors mediating RA responses. These transcription factors are the retinoic acid receptor, the retinoid X receptor, the hepatocyte nuclear factor 4α, the chicken ovalbumin upstream promoter-transcription factor II, and the peroxisome proliferator-activated receptor β/δ. This paper also summarizes the effects of VA status and RA treatments on the glucose and lipid metabolism in vivo and the effects of retinoid treatments on the expression of insulin-regulated genes involved in the glucose and fatty acid metabolism in the primary hepatocytes. I discuss the roles of RA production in the development of insulin resistance in hepatocytes and proposes a mechanism by which RA production may contribute to hepatic insulin resistance. Given the large amount of information and progresses regarding the physiological functions of VA, this paper mainly focuses on the findings in the liver and hepatocytes and only mentions the relative findings in other tissues and cells.
Collapse
Affiliation(s)
- Guoxun Chen
- Department of Nutrition, University of Tennessee at Knoxville, Knoxville, TN 37996, USA
| |
Collapse
|
48
|
Majumdar SK, Inzucchi SE. Investigational anti-hyperglycemic agents: the future of type 2 diabetes therapy? Endocrine 2013; 44:47-58. [PMID: 23354728 DOI: 10.1007/s12020-013-9884-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Accepted: 01/11/2013] [Indexed: 12/18/2022]
Abstract
As the pandemic of type 2 diabetes spreads globally, clinicians face many challenges in treating an increasingly diverse patient population varying in age, comorbidities, and socioeconomic status. Current therapies for type 2 diabetes are often unable to alter the natural course of the disease and provide durable glycemic control, and side effects in the context of individual patient characteristics often limit treatment choices. This often results in the progression to insulin use and complex regimens that are difficult to maintain. Therefore, a number of agents are being developed to better address the pathogenesis of type 2 diabetes and to overcome limitations of current therapies. The hope is to provide more options for glucose lowering and complication reduction with less risk for hypoglycemia and other adverse effects. These agents include newer incretin-based therapies and PPAR agonists, as well as new therapeutic classes such as sodium-coupled glucose cotransporter 2 inhibitors, free fatty acid receptor agonists, 11-β-hydroxysteroid dehydrogenase type 1 inhibitors, glucokinase activators, and several others that may enter clinical use over the next decade. Herein we review these agents that are advancing through clinical trials and describe the rationale behind their use, mechanisms of action, and potential for glucose lowering, as well as what is known of their limitations.
Collapse
Affiliation(s)
- Sachin K Majumdar
- Section of Endocrinology, Department of Medicine, Bridgeport Hospital, Yale New Haven Health, 267 Grant Street, Bridgeport, CT 06610-0120, USA.
| | | |
Collapse
|
49
|
Pathogenesis of the metabolic syndrome: insights from monogenic disorders. Mediators Inflamm 2013; 2013:920214. [PMID: 23766565 PMCID: PMC3673346 DOI: 10.1155/2013/920214] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/18/2013] [Indexed: 12/16/2022] Open
Abstract
Identifying rare human metabolic disorders that result from a single-gene defect has not only enabled improved diagnostic and clinical management of such patients, but also has resulted in key biological insights into the pathophysiology of the increasingly prevalent metabolic syndrome. Insulin resistance and type 2 diabetes are linked to obesity and driven by excess caloric intake and reduced physical activity. However, key events in the causation of the metabolic syndrome are difficult to disentangle from compensatory effects and epiphenomena. This review provides an overview of three types of human monogenic disorders that result in (1) severe, non-syndromic obesity, (2) pancreatic beta cell forms of early-onset diabetes, and (3) severe insulin resistance. In these patients with single-gene defects causing their exaggerated metabolic disorder, the primary defect is known. The lessons they provide for current understanding of the molecular pathogenesis of the common metabolic syndrome are highlighted.
Collapse
|
50
|
Roncero I, Alvarez E, Acosta C, Sanz C, Barrio P, Hurtado-Carneiro V, Burks D, Blázquez E. Insulin-receptor substrate-2 (irs-2) is required for maintaining glucokinase and glucokinase regulatory protein expression in mouse liver. PLoS One 2013; 8:e58797. [PMID: 23560040 PMCID: PMC3613347 DOI: 10.1371/journal.pone.0058797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/06/2013] [Indexed: 12/02/2022] Open
Abstract
Insulin receptor substrate (IRS) proteins play important roles in hepatic nutrient homeostasis. Since glucokinase (GK) and glucokinase regulatory protein (GKRP) function as key glucose sensors, we have investigated the expression of GK and GKRP in liver of Irs-2 deficient mice and Irs2(−/−) mice where Irs2 was reintroduced specifically into pancreatic β-cells [RIP-Irs-2/IRS-2(−/−)]. We observed that liver GK activity was significantly lower (p<0.0001) in IRS-2(−/−) mice. However, in RIP-Irs-2/IRS-2(−/−) mice, GK activity was similar to the values observed in wild-type animals. GK activity in hypothalamus was not altered in IRS-2(−/−) mice. GK and GKRP mRNA levels in liver of IRS-2(−/−) were significantly lower, whereas in RIP-Irs-2/IRS-2(−/−) mice, both GK and GKRP mRNAs levels were comparable to wild-type animals. At the protein level, the liver content of GK was reduced in IRS-2(−/−) mice as compared with controls, although GKRP levels were similar between these experimental models. Both GK and GKRP levels were lower in RIP-Irs-2/IRS-2(−/−) mice. These results suggest that IRS-2 signalling is important for maintaining the activity of liver GK. Moreover, the differences between liver and brain GK may be explained by the fact that expression of hepatic, but not brain, GK is controlled by insulin. GK activity was restored by the β-cell compensation in the RIP-Irs-2/IRS-2 mice. Interestingly, GK and GKRP protein expression remained low in RIP-Irs-2/IRS-2(−/−) mice, perhaps reflecting different mRNA half-lives or alterations in the process of translation and post-translational regulation.
Collapse
Affiliation(s)
- Isabel Roncero
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Elvira Alvarez
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Carlos Acosta
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmen Sanz
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Pedro Barrio
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Veronica Hurtado-Carneiro
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Deborah Burks
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Enrique Blázquez
- The Center for Biomedical Research in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid-Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- * E-mail:
| |
Collapse
|