1
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
2
|
Alemany M. The Metabolic Syndrome, a Human Disease. Int J Mol Sci 2024; 25:2251. [PMID: 38396928 PMCID: PMC10888680 DOI: 10.3390/ijms25042251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
This review focuses on the question of metabolic syndrome (MS) being a complex, but essentially monophyletic, galaxy of associated diseases/disorders, or just a syndrome of related but rather independent pathologies. The human nature of MS (its exceptionality in Nature and its close interdependence with human action and evolution) is presented and discussed. The text also describes the close interdependence of its components, with special emphasis on the description of their interrelations (including their syndromic development and recruitment), as well as their consequences upon energy handling and partition. The main theories on MS's origin and development are presented in relation to hepatic steatosis, type 2 diabetes, and obesity, but encompass most of the MS components described so far. The differential effects of sex and its biological consequences are considered under the light of human social needs and evolution, which are also directly related to MS epidemiology, severity, and relations with senescence. The triggering and maintenance factors of MS are discussed, with especial emphasis on inflammation, a complex process affecting different levels of organization and which is a critical element for MS development. Inflammation is also related to the operation of connective tissue (including the adipose organ) and the widely studied and acknowledged influence of diet. The role of diet composition, including the transcendence of the anaplerotic maintenance of the Krebs cycle from dietary amino acid supply (and its timing), is developed in the context of testosterone and β-estradiol control of the insulin-glycaemia hepatic core system of carbohydrate-triacylglycerol energy handling. The high probability of MS acting as a unique complex biological control system (essentially monophyletic) is presented, together with additional perspectives/considerations on the treatment of this 'very' human disease.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
3
|
Häberle J, Moore MB, Haskins N, Rüfenacht V, Rokicki D, Rubio-Gozalbo E, Tuchman M, Longo N, Yandell M, Andrews A, AhMew N, Caldovic L. Noncoding sequence variants define a novel regulatory element in the first intron of the N-acetylglutamate synthase gene. Hum Mutat 2021; 42:1624-1636. [PMID: 34510628 DOI: 10.1002/humu.24281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/19/2021] [Accepted: 09/08/2021] [Indexed: 11/10/2022]
Abstract
N-acetylglutamate synthase deficiency is an autosomal recessive urea cycle disorder caused either by decreased expression of the NAGS gene or defective NAGS enzyme resulting in decreased production of N-acetylglutamate (NAG), an allosteric activator of carbamylphosphate synthetase 1 (CPS1). NAGSD is the only urea cycle disorder that can be effectively treated with a single drug, N-carbamylglutamate (NCG), a stable NAG analog, which activates CPS1 to restore ureagenesis. We describe three patients with NAGSD due to four novel noncoding sequence variants in the NAGS regulatory regions. All three patients had hyperammonemia that resolved upon treatment with NCG. Sequence variants NM_153006.2:c.427-222G>A and NM_153006.2:c.427-218A>C reside in the 547 bp-long first intron of NAGS and define a novel NAGS regulatory element that binds retinoic X receptor α. Sequence variants NC_000017.10:g.42078967A>T (NM_153006.2:c.-3065A>T) and NC_000017.10:g.42078934C>T (NM_153006.2:c.-3098C>T) reside in the NAGS enhancer, within known HNF1 and predicted glucocorticoid receptor binding sites, respectively. Reporter gene assays in HepG2 and HuH-7 cells demonstrated that all four substitutions could result in reduced expression of NAGS. These findings show that analyzing noncoding regions of NAGS and other urea cycle genes can reveal molecular causes of disease and identify novel regulators of ureagenesis.
Collapse
Affiliation(s)
- Johannes Häberle
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Marvin B Moore
- Department of Human Genetics, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Nantaporn Haskins
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Dariusz Rokicki
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children's Memorial Health Institute, Warsaw, Poland
| | - Estela Rubio-Gozalbo
- Department of Pediatrics and Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Nicola Longo
- Division of Medical Genetics, Department of Pediatrics, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Mark Yandell
- Eccles Institute of Human Genetics, University of Utah Health Science Center, Salt Lake City, Utah, USA.,8USTAR Center for Genetic Discovery, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Ashley Andrews
- Division of Medical Genetics, Pediatrics, University of Utah Health Science Center, Salt Lake City, Utah, USA
| | - Nicholas AhMew
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children's National Hospital, Washington, District of Columbia, USA.,Department of Genomics and Precision Medicine, School of Medical and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Galsgaard KD, Pedersen J, Kjeldsen SAS, Winther-Sørensen M, Stojanovska E, Vilstrup H, Ørskov C, Wewer Albrechtsen NJ, Holst JJ. Glucagon receptor signaling is not required for N-carbamoyl glutamate- and l-citrulline-induced ureagenesis in mice. Am J Physiol Gastrointest Liver Physiol 2020; 318:G912-G927. [PMID: 32174131 DOI: 10.1152/ajpgi.00294.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Glucagon regulates the hepatic amino acid metabolism and increases ureagenesis. Ureagenesis is activated by N-acetylglutamate (NAG), formed via activation of N-acetylglutamate synthase (NAGS). With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we investigated whether glucagon receptor-mediated activation of ureagenesis is required in a situation where NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle in vivo. Female C57BL/6JRj mice treated with a glucagon receptor antagonist (GRA), glucagon receptor knockout (Gcgr-/-) mice, and wild-type (Gcgr+/+) littermates received an intraperitoneal injection of N-carbamoyl glutamate (Car; a stable variant of NAG), l-citrulline (Cit), Car and Cit (Car + Cit), or PBS. In separate experiments, Gcgr-/- and Gcgr+/+ mice were administered N-carbamoyl glutamate and l-citrulline (wCar + wCit) in the drinking water for 8 wk. Car, Cit, and Car + Cit significantly (P < 0.05) increased plasma urea concentrations, independently of pharmacological and genetic disruption of glucagon receptor signaling (P = 0.9). Car increased blood glucose concentrations equally in GRA- and vehicle-treated mice (P = 0.9), whereas the increase upon Car + Cit was impaired in GRA-treated mice (P = 0.008). Blood glucose concentrations remained unchanged in Gcgr-/- mice upon Car (P = 0.2) and Car + Cit (P = 0.9). Eight weeks administration of wCar + wCit did not change blood glucose (P > 0.2), plasma amino acid (P > 0.4), and urea concentrations (P > 0.3) or the area of glucagon-positive cells (P > 0.3) in Gcgr-/- and Gcgr+/+ mice. Our data suggest that glucagon-mediated activation of ureagenesis is not required when NAGS activity and/or NAG levels are sufficient to activate the first step of the urea cycle.NEW & NOTEWORTHY Hepatic ureagenesis is essential in amino acid metabolism and is importantly regulated by glucagon, but the exact mechanism is unclear. With the aim to identify the steps whereby glucagon both acutely and chronically regulates ureagenesis, we here show, contrary to our hypothesis, that glucagon receptor-mediated activation of ureagenesis is not required when N-acetylglutamate synthase activity and/or N-acetylglutamate levels are sufficient to activate the first step of the urea cycle in vivo.
Collapse
Affiliation(s)
- Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Endocrinology and Nephrology, Nordsjaellands Hospital Hilleroed, Hilleroed, Denmark
| | - Sasha A S Kjeldsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Elena Stojanovska
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Cathrine Ørskov
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Heibel SK, McGuire PJ, Haskins N, Datta Majumdar H, Rayavarapu S, Nagaraju K, Hathout Y, Brown K, Tuchman M, Caldovic L. AMP-activated protein kinase signaling regulated expression of urea cycle enzymes in response to changes in dietary protein intake. J Inherit Metab Dis 2019; 42:1088-1096. [PMID: 31177541 PMCID: PMC7385982 DOI: 10.1002/jimd.12133] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 04/02/2019] [Accepted: 06/05/2019] [Indexed: 12/30/2022]
Abstract
Abundance of urea cycle enzymes in the liver is regulated by dietary protein intake. Although urea cycle enzyme levels rise in response to a high-protein (HP) diet, signaling networks that sense dietary protein intake and trigger changes in expression of urea cycle genes have not been identified. The aim of this study was to identify signaling pathway(s) that respond to changes in protein intake and regulate expression of urea cycle genes in mice and human hepatocytes. Mice were adapted to either HP or low-protein diets followed by isolation of liver protein and mRNA and integrated analysis of the proteomic and transcriptomic data. HP diet led to increased expression of mRNA and enzymes in amino acid degradation pathways and decreased expression of mRNA and enzymes in carbohydrate and fat metabolism, which implicated adenosine monophosphate-activated protein kinase (AMPK) as a possible regulator. Primary human hepatocytes, treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) an activator of AMPK, were used to test whether AMPK regulates expression of urea cycle genes. The abundance of carbamoylphosphate synthetase 1 and ornithine transcarbamylase mRNA increased in hepatocytes treated with AICAR, which supports a role for AMPK signaling in regulation of the urea cycle. Because AMPK is either a target of drugs used to treat type-2 diabetes, these drugs might increase the expression of urea cycle enzymes in patients with partial urea cycle disorders, which could be the basis of a new therapeutic approach.
Collapse
Affiliation(s)
- Sandra Kirsch Heibel
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | | | - Nantaporn Haskins
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Himani Datta Majumdar
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Sree Rayavarapu
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Kanneboyina Nagaraju
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton NY, USA
| | - Yetrib Hathout
- Department of Pharmaceutical Sciences, Binghamton University, Binghamton NY, USA
| | - Kristy Brown
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Mendel Tuchman
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| | - Ljubica Caldovic
- Center for Genetic Medicine Research, Children’s National Medical Center, 111 Michigan Ave NW, Washington DC, USA
| |
Collapse
|
6
|
Wewer Albrechtsen NJ, Pedersen J, Galsgaard KD, Winther-Sørensen M, Suppli MP, Janah L, Gromada J, Vilstrup H, Knop FK, Holst JJ. The Liver-α-Cell Axis and Type 2 Diabetes. Endocr Rev 2019; 40:1353-1366. [PMID: 30920583 DOI: 10.1210/er.2018-00251] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 02/08/2023]
Abstract
Both type 2 diabetes (T2D) and nonalcoholic fatty liver disease (NAFLD) strongly associate with increasing body mass index, and together these metabolic diseases affect millions of individuals. In patients with T2D, increased secretion of glucagon (hyperglucagonemia) contributes to diabetic hyperglycemia as proven by the significant lowering of fasting plasma glucose levels following glucagon receptor antagonist administration. Emerging data now indicate that the elevated plasma concentrations of glucagon may also be associated with hepatic steatosis and not necessarily with the presence or absence of T2D. Thus, fatty liver disease, most often secondary to overeating, may result in impaired amino acid turnover, leading to increased plasma concentrations of certain glucagonotropic amino acids (e.g., alanine). This, in turn, causes increased glucagon secretion that may help to restore amino acid turnover and ureagenesis, but it may eventually also lead to increased hepatic glucose production, a hallmark of T2D. Early experimental findings support the hypothesis that hepatic steatosis impairs glucagon's actions on amino acid turnover and ureagenesis. Hepatic steatosis also impairs hepatic insulin sensitivity and clearance that, together with hyperglycemia and hyperaminoacidemia, lead to peripheral hyperinsulinemia; systemic hyperinsulinemia may itself contribute to worsen peripheral insulin resistance. Additionally, obesity is accompanied by an impaired incretin effect, causing meal-related glucose intolerance. Lipid-induced impairment of hepatic sensitivity, not only to insulin but potentially also to glucagon, resulting in both hyperinsulinemia and hyperglucagonemia, may therefore contribute to the development of T2D at least in a subset of individuals with NAFLD.
Collapse
Affiliation(s)
- Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Cardiology, Nephrology and Endocrinology, Nordsjællands Hospital Hillerød, University of Copenhagen, Hillerød, Denmark
| | - Katrine D Galsgaard
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie Winther-Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Malte P Suppli
- Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Lina Janah
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Hendrik Vilstrup
- Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Filip K Knop
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Lam T, McLean M, Hayden A, Poljak A, Cheema B, Gurney H, Stone G, Bahl N, Reddy N, Shahidipour H, Birzniece V. A potent liver-mediated mechanism for loss of muscle mass during androgen deprivation therapy. Endocr Connect 2019; 8:605-615. [PMID: 30991356 PMCID: PMC6510709 DOI: 10.1530/ec-19-0179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/15/2019] [Indexed: 12/25/2022]
Abstract
CONTEXT Androgen deprivation therapy (ADT) in prostate cancer results in muscular atrophy, due to loss of the anabolic actions of testosterone. Recently, we discovered that testosterone acts on the hepatic urea cycle to reduce amino acid nitrogen elimination. We now hypothesize that ADT enhances protein oxidative losses by increasing hepatic urea production, resulting in muscle catabolism. We also investigated whether progressive resistance training (PRT) can offset ADT-induced changes in protein metabolism. OBJECTIVE To investigate the effect of ADT on whole-body protein metabolism and hepatic urea production with and without a home-based PRT program. DESIGN A randomized controlled trial. PATIENTS AND INTERVENTION Twenty-four prostate cancer patients were studied before and after 6 weeks of ADT. Patients were randomized into either usual care (UC) (n = 11) or PRT (n = 13) starting immediately after ADT. MAIN OUTCOME MEASURES The rate of hepatic urea production was measured by the urea turnover technique using 15N2-urea. Whole-body leucine turnover was measured, and leucine rate of appearance (LRa), an index of protein breakdown and leucine oxidation (Lox), a measure of irreversible protein loss, was calculated. RESULTS ADT resulted in a significant mean increase in hepatic urea production (from 427.6 ± 18.8 to 486.5 ± 21.3; P < 0.01) regardless of the exercise intervention. Net protein loss, as measured by Lox/Lra, increased by 12.6 ± 4.9% (P < 0.05). PRT preserved lean body mass without affecting hepatic urea production. CONCLUSION As early as 6 weeks after initiation of ADT, the suppression of testosterone increases protein loss through elevated hepatic urea production. Short-term PRT was unable to offset changes in protein metabolism during a state of profound testosterone deficiency.
Collapse
Affiliation(s)
- Teresa Lam
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Department of Diabetes and Endocrinology, Westmead Hospital, Westmead, New South Wales, Australia
- Correspondence should be addressed to T Lam:
| | - Mark McLean
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
| | - Amy Hayden
- Department of Radiation Oncology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Anne Poljak
- Bioanalytical Mass Spectrometry Facility and School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Birinder Cheema
- School of Science and Health, Western Sydney University, Penrith, New South Wales, Australia
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead Hospital, Westmead, New South Wales, Australia
| | - Glenn Stone
- School of Computing, Engineering and Mathematics, Western Sydney University, Penrith, New South Wales, Australia
| | - Neha Bahl
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
| | - Navneeta Reddy
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Haleh Shahidipour
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- School of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Translational Health Research Institute, Penrith, New South Wales, Australia
| | - Vita Birzniece
- School of Medicine, Western Sydney University, Penrith, New South Wales, Australia
- Department of Diabetes and Endocrinology, Blacktown Hospital, Blacktown, New South Wales, Australia
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- School of Medicine, UNSW Sydney, Sydney, New South Wales, Australia
- Translational Health Research Institute, Penrith, New South Wales, Australia
| |
Collapse
|
8
|
Abstract
Globally, 13% of the world's adult population is obese, and more than 400 million people suffer from diabetes. These conditions are both associated with significant morbidity, mortality and financial cost. Therefore, finding new pharmacological treatments is an imperative. Relative hyperglucagonaemia is seen in all types of diabetes, and has been implicated in its pathogenesis. Consequently, clinical trials are underway using drugs which block glucagon activity to treat type 2 diabetes. Conversely, exogenous glucagon can increase energy expenditure. Therefore, researchers are designing peptides that combine activation of the glucagon receptor with further incretin properties, which will treat obesity while mitigating the hyperglycaemic effects of glucagon. This review will discuss these conflicting physiological properties of glucagon, and the attempts to harness these effects pharmacologically.
Collapse
Affiliation(s)
- R V Scott
- Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, London, W12 0NN, United Kingdom.
| | - S R Bloom
- Imperial College London, 6th Floor, Commonwealth Building, Hammersmith Hospital, London, W12 0NN, United Kingdom.
| |
Collapse
|
9
|
Yoon JH, Gwak GY, Woo GH, Kim TH, Kim KA, Kim CY, Lee HS. Augmentation of Butyrate-induced Differentiation of Human Hepatocyte by Cyclin E Over-expression. Int J Artif Organs 2018; 28:44-50. [PMID: 15742309 DOI: 10.1177/039139880502800108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In mammalian cells, cellular differentiation into specific cell types is usually preceded by growth arrest. On the other hand, the induced differentiation may also be preceded by an enhanced G1–S transition of the cell cycle prior to the growth arrest. This suggests that an early increase in proliferation is in some way a prerequisite for subsequent differentiation. We therefore attempted to assess whether we could produce human hepatocytes with further differentiated functions by promoting G1-S transition in a butyrate-treated human hepatocyte cell line. A cyclin E-over-expressing cell line was established by transfecting human cyclin E cDNA. Upon butyrate treatment, the cyclin E-over-expressing cells exhibited a significantly increased albumin-secreting and ammonia-detoxifying capacity when compared to the control cells. In particular, the ornithine transcarbamylase activity was increased in these cells. Collectively, these results implicate that the cyclin E over-expression may augment the hepatocyte-specific functions during the butyrate-induced differentiation process of human hepatocytes by enhancing G1-S cell cycle transition.
Collapse
Affiliation(s)
- J-H Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
10
|
Savaraj N, Wu C, Kuo MT, You M, Wangpaichitr M, Robles C, Spector S, Feun L. The Relationship of Arginine Deprivation, Argininosuccinate Synthetase and Cell Death in Melanoma. Drug Target Insights 2017. [DOI: 10.1177/117739280700200016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Niramol Savaraj
- VA Medical Center, Hematology-Oncology, Miami, Florida, U.S.A
| | - Chunjing Wu
- University of Miami, Hematology-Oncology, Miami, Florida, U.S.A
| | - Marcus Tien Kuo
- M.D. Anderson Cancer Center, Molecular Pathology, Houston, Texas, U.S.A
| | - Min You
- University of Miami, Hematology-Oncology, Miami, Florida, U.S.A
| | | | - Carlos Robles
- VA Medical Center, Hematology-Oncology, Miami, Florida, U.S.A
| | - Seth Spector
- VA Medical Center, Hematology-Oncology, Miami, Florida, U.S.A
| | - Lynn Feun
- University of Miami, Hematology-Oncology, Miami, Florida, U.S.A
| |
Collapse
|
11
|
Daytime restricted feeding modifies 24 h rhythmicity and subcellular distribution of liver glucocorticoid receptor and the urea cycle in rat liver. Br J Nutr 2012; 108:2002-13. [DOI: 10.1017/s0007114512000268] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The timing system in mammals is formed by a set of peripheral biological clocks coordinated by a light-entrainable pacemaker located in the suprachiasmatic nucleus. Daytime restricted feeding (DRF) modifies the circadian control and uncouples the light-dependent physiological rhythmicity, food access becoming the principal external time cue. In these conditions, an alternative biological clock is expressed, the food-entrainable oscillator (FEO). Glucocorticoid hormones are an important part of the humoral mechanisms in the daily synchronisation of the metabolic response of peripheral oscillators by the timing system. A peak of circulating corticosterone has been reported before food access in DRF protocols. In the present study we explored in the liver the 24 h variations of: (1) the subcellular distribution of glucocorticoid receptor (GCR), (2) the activities of the corticosterone-forming and NADPH-generating enzymes (11β-hydroxysteroid dehydrogenase type 1 (11β-HSD-1) and hexose-6-phosphate dehydrogenase (H6PDH)), and, (3) parameters related with the urea cycle (circulating urea and activities of carbamoyl phosphate synthetase and ornithine transcarbamylase) elicited by DRF. The results showed that DRF promoted an increase of more than two times of the hepatic GCR, but exclusively in the cytosolic compartment, since the GCR in the nuclear fraction showed a reduction. No changes were observed in the activities of 11β-HSD-1 and H6PDH, but the rhythmicity of all of the urea cycle-related parameters was modified. It is concluded that liver glucocorticoid signalling and the urea cycle are responsive to feeding-restricted schedules and could be part of the FEO.
Collapse
|
12
|
Walters MW, Wallace KB. Urea cycle gene expression is suppressed by PFOA treatment in rats. Toxicol Lett 2010; 197:46-50. [PMID: 20452409 DOI: 10.1016/j.toxlet.2010.04.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 11/28/2022]
Abstract
Perfluorooctanoic acid (PFOA), with an array of industrial uses, is one of the most common perfluoroalkyl acids. Resistance to biological degradation and a global distribution are characteristics that have caused PFOA to become a frequent subject of toxicological studies. PFOA treatment in rodents causes peroxisome proliferation, mitochondrial biogenesis, and transactivation of PPARs. Prior work has shown urea cycle gene expression to be reduced in mice by another PPARalpha ligand, WY14643. In light of these findings, the aim of our investigation was to determine if PFOA treatment in rats alters expression of genes responsible for ureogenesis. 30 mg/kg of PFOA was administered to adult male Sprague-Dawley rats via oral gavage for 28 days and their livers were harvested. Gene transcription was measured using real time PCR and protein expression was determined through western blotting. We observed a decrease in mRNA for the coordinately expressed urea cycle genes Cps1, Ass1, and Asl; mRNA of the ammonia generating Gls2 was also reduced. Protein amounts for CPS1, ASS1, and OTC were all decreased in the PFOA treated rats, and interestingly there was an increase in the amount of S133 phosphorylated CREB, which is a regulator of urea cycle gene transcription. We conclude that the transactivation of PPARalpha by PFOA leads to a metabolic shift that favors the catabolism of lipids over proteins, thereby suppressing urea cycle gene expression. Our findings provide further evidence of the effect of PFOA on intermediary metabolism in rodents and add valuable information in assessing the potential risks of PFOA exposure.
Collapse
Affiliation(s)
- M W Walters
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, MN 55812, United States.
| | | |
Collapse
|
13
|
Bobe G, Velez J, Beitz D, Donkin S. Glucagon increases hepatic mRNA concentrations of ureagenic and gluconeogenic enzymes in early-lactation dairy cows. J Dairy Sci 2009; 92:5092-9. [DOI: 10.3168/jds.2009-2152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Mizumoto H, Ishihara K, Nakazawa K, Ijima H, Funatsu K, Kajiwara T. A new culture technique for hepatocyte organoid formation and long-term maintenance of liver-specific functions. Tissue Eng Part C Methods 2009; 14:167-75. [PMID: 18491949 DOI: 10.1089/ten.tec.2007.0373] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To develop a useful hybrid artificial liver, it is important to use cultured hepatocytes that maintain liver-specific functions for a long time. These requirements were achieved recently by the use of a hepatocyte multicellular aggregate (organoid) with a tissue-like structure. In this study, we developed a three-dimensional culture of hepatocytes that formed an organoid. Primary rat hepatocytes were immobilized inside hollow fibers (for plasma separation) by centrifugation. Hepatocytes formed a cylindrical organoid (cylindroid) of 200 mum in diameter by day 2 of culture. We used two types of culture media, medium A (Williams' medium E containing insulin and epidermal growth factor) and medium B (Dulbecco's modified Eagle's medium containing insulin, epidermal growth factor, and hydrocortisone). In medium A, the hepatocyte cylindroid diminished after 14 days of culture and liver-specific functions of the hepatocyte cylindroid nearly disappeared after 1 month of culture. In contrast, hepatocyte cylindroid cultured in medium B maintained its morphology and liver-specific functions for 2-5 months. These results indicate that a combination of the new culture technique and suitable culture medium is effective for expression and maintenance of liver-specific functions of hepatocytes. This culture technique will be helpful in the development of a hybrid artificial liver.
Collapse
Affiliation(s)
- Hiroshi Mizumoto
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
15
|
Satoh M, Ando S, Shinoda T, Yamazaki M. Clearance of bacterial lipopolysaccharides and lipid A by the liver and the role of argininosuccinate synthase. Innate Immun 2008; 14:51-60. [PMID: 18387919 DOI: 10.1177/1753425907087267] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The liver is thought to be involved in the systemic clearance and detoxification of lipopolysaccharide (LPS). Argininosuccinate synthase (AS), a liver cytosolic urea cycle enzyme, has been found to bind to and inactivate LPS and lipid A. To elucidate the participation of AS in the clearance of LPS by liver and hepatocytes, we investigated the correlation between AS content and the removal of lipid A and LPS in vivo and in vitro, tracing levels of biological activity. A hepatotoxic model in which mice were injected with CCl(4) revealed a significant reduction in lipid A clearance along with liver failure on day 1; total body clearance was changed to 0.534 ml/min from 1.42 ml/min. AS content in liver concomitantly decreased to about half and AS leaked to blood at about 6 microg/ml. Total body clearance of i.v. injected AS was estimated at 0.083 ml/min, which predicted about 24-h leakage of AS after CCl(4) injection. The treatment also reduced the clearance of R-type LPSs to a lesser degree the larger its polysaccharide portion. S-type LPS, which has a large O-antigen polysaccharide, exhibited enhancement of clearance on CCl(4) treatment. When pretreated in vitro with AS and injected into normal mice, lipid A and R-type LPS showed a similar pattern of clearance of residual activities to the untreated forms, but S-type LPS exhibited enhancement of clearance. Comparison between different strains of mice revealed a correlation of AS content in liver and lipid A clearance, where the higher AS strain C3H/He mice showed a more rapid clearance than the lower AS strains C57BL/6 and BALB/c. Primary spheroid cultures of hepatocytes treated with 0.1 microM dexamethasone and 1 microM glucagon showed about a 2-fold increase in AS amount and a more rapid clearance of LPS from culture medium than untreated cells. These results suggest that AS in hepatocytes may be involved in the process of lipid A and LPS clearance and the extracellular leakage of AS may also participate in the systemic detoxification.
Collapse
Affiliation(s)
- Motonobu Satoh
- Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa, Japan.
| | | | | | | |
Collapse
|
16
|
Husson A, Brasse-Lagnel C, Fairand A, Renouf S, Lavoinne A. Argininosuccinate synthetase from the urea cycle to the citrulline-NO cycle. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:1887-99. [PMID: 12709047 DOI: 10.1046/j.1432-1033.2003.03559.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Argininosuccinate synthetase (ASS, EC 6.3.4.5) catalyses the condensation of citrulline and aspartate to form argininosuccinate, the immediate precursor of arginine. First identified in the liver as the limiting enzyme of the urea cycle, ASS is now recognized as a ubiquitous enzyme in mammalian tissues. Indeed, discovery of the citrulline-NO cycle has increased interest in this enzyme that was found to represent a potential limiting step in NO synthesis. Depending on arginine utilization, location and regulation of ASS are quite different. In the liver, where arginine is hydrolyzed to form urea and ornithine, the ASS gene is highly expressed, and hormones and nutrients constitute the major regulating factors: (a) glucocorticoids, glucagon and insulin, particularly, control the expression of this gene both during development and adult life; (b) dietary protein intake stimulates ASS gene expression, with a particular efficiency of specific amino acids like glutamine. In contrast, in NO-producing cells, where arginine is the direct substrate in the NO synthesis, ASS gene is expressed at a low level and in this way, proinflammatory signals constitute the main factors of regulation of the gene expression. In most cases, regulation of ASS gene expression is exerted at a transcriptional level, but molecular mechanisms are still poorly understood.
Collapse
Affiliation(s)
- Annie Husson
- ADEN, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides no. 23 (IFRMP 23), Rouen, France.
| | | | | | | | | |
Collapse
|
17
|
Yoon JH, Lee HS, Kim TH, Woo GH, Kim CY. Augmentation of urea-synthetic capacity by inhibition of nitric oxide synthesis in butyrate-induced differentiated human hepatocytes. FEBS Lett 2000; 474:175-8. [PMID: 10838080 DOI: 10.1016/s0014-5793(00)01599-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have recently developed an in vitro differentiation model of immortalized non-transformed human hepatocytes using butyrate, and observed the induction of inducible NO synthase (iNOS). In this study, we analyzed the effect of NO on the urea-synthetic capacity of these cells. The inhibition of iNOS during butyrate treatment significantly increased the urea-synthetic capacity as compared to that of butyrate treatment alone, possibly through the further induction of ornithine transcarbamylase expression. Therefore, the inhibition of NO production might be useful for obtaining more differentiated hepatocytes in the process of in vitro induction of hepatocyte-specific differentiation.
Collapse
Affiliation(s)
- J H Yoon
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, 28 Yungun-dong Chongno-gu, 110-744, Seoul, South Korea
| | | | | | | | | |
Collapse
|
18
|
Grøfte T, Jensen DS, Grønbaek H, Wolthers T, Jensen SA, Tygstrup N, Vilstrup H. Effects of growth hormone on steroid-induced increase in ability of urea synthesis and urea enzyme mRNA levels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:E79-86. [PMID: 9688877 DOI: 10.1152/ajpendo.1998.275.1.e79] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Growth hormone (GH) reduces the catabolic side effects of steroid treatment due to its effects on tissue protein synthesis/degradation. Little attention is focused on hepatic amino acid degradation and urea synthesis. Five groups of rats were given 1) placebo, 2) prednisolone, 3) placebo, pair fed to the steroid group, 4) GH, and 5) prednisolone and GH. After 7 days, the in vivo capacity of urea N synthesis (CUNS) was determined by saturating alanine infusion, in parallel with measurements of liver mRNA levels of urea cycle enzymes, N contents of organs, N balance, and hormones. Prednisolone increased CUNS (micromol . min-1 . 100 g-1, mean +/- SE) from 9.1 +/- 1.0 (pair-fed controls) to 13.2 +/- 0.8 (P < 0.05), decreased basal blood alpha-amino N concentration from 4.2 +/- 0.5 to 3.1 +/- 0.3 mmol/l (P < 0.05), increased mRNA levels of the rate- and flux-limiting urea cycle enzymes by 20 and 65%, respectively (P < 0. 05), and decreased muscle N contents and N balance. In contrast, GH decreased CUNS from 6.1 +/- 0.9 (free-fed controls) to 4.2 +/- 0.5 (P < 0.05), decreased basal blood alpha-amino N concentration from 3. 8 +/- 0.3 to 3.2 +/- 0.2, decreased mRNA levels of the rate- and flux-limiting urea cycle enzymes to 60 and 40%, respectively (P < 0. 05), and increased organ N contents and N balance. Coadministration of GH abolished all steroid effects. We found that prednisolone increases the ability of amino N conversion into urea N and urea cycle gene expression. GH had the opposite effects and counteracted the N-wasting side effects of prednisolone.
Collapse
Affiliation(s)
- T Grøfte
- Department of Medicine V, Aarhus University Hospital, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | |
Collapse
|
19
|
Bourgeois P, Harlin JC, Renouf S, Goutal I, Fairand A, Husson A. Regulation of argininosuccinate synthetase mRNA level in rat foetal hepatocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:669-74. [PMID: 9395312 DOI: 10.1111/j.1432-1033.1997.t01-1-00669.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Expression of the hepatic gene for argininosuccinate synthase (ASS), one of the key enzymes of the urea cycle, was analysed during the perinatal period in the rat. To this end, the amount of specific mRNA was measured in the liver at various stages of development and in cultured foetal hepatocytes maintained in different hormonal conditions. The ASS mRNA was first detected in 15.5-day foetuses and its level increased concomitantly with a rise in the enzyme activity, suggesting that the appearance of the ASS activity reflects the turning on of specific gene transcription. This was demonstrated by run-on assay which showed an enhanced rate of transcription of the ASS gene during the perinatal period. When foetal hepatocytes were cultured with dexamethasone, a dose-dependent increase in ASS mRNA was measured, which was completely abolished by actinomycin D addition. The transcription rate of the gene was increased about twofold in the presence of the steroid, as measured by nuclear run-on assay. This transcriptional action could additionally require a protein factor since it could be inhibited by the simultaneous addition of puromycin. Insulin or glucagon respectively repressed or enhanced the dexamethasone-induced accumulation of ASS mRNA when added simultaneously with the steroid for 24 h. This developmental regulation of the ASS mRNA by glucocorticoids, insulin and glucagon could account for the modulation of the enzyme activity previously observed in vivo and in vitro in the foetal liver.
Collapse
Affiliation(s)
- P Bourgeois
- Groupe de Biochimie Physiopathologie Digestive et Nutritionelle, Institut Fédératif de Recherches Multidisciplinaires sur les Peptides no. 23, St-Etienne-du-Rouvray, France
| | | | | | | | | | | |
Collapse
|
20
|
Gotoh T, Araki M, Mori M. Chromosomal localization of the human arginase II gene and tissue distribution of its mRNA. Biochem Biophys Res Commun 1997; 233:487-91. [PMID: 9144563 DOI: 10.1006/bbrc.1997.6473] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Liver-type arginase (arginase I) is expressed almost exclusively in the liver and catalyzes the last step of urea synthesis, whereas the nonhepatic type (arginase II) is expressed in extrahepatic tissues and is probably involved in down-regulation of nitric oxide synthesis. We isolated cDNA for human arginase II (T. Gotoh et al., 1996, FEBS Lett. 395, 119-122). Fluorescence in situ hybridization mapping and PCR mapping studies with somatic cell hybrid panels and a radiation hybrid panel localized the arginase II gene to chromosome 14q24.1-24.3. Dot-blot analysis showed that arginase II mRNA is expressed strongly in the adult human kidney and weakly in the prostate, pituitary gland, lung, liver, thyroid gland, and small intestine. The mRNA was either at very low levels or not detectable in the fetal kidney, lung, and liver. Thus, expression of the human arginase II gene is regulated both tissue-specifically and developmentally.
Collapse
Affiliation(s)
- T Gotoh
- Department of Molecular Genetics, School of Medicine, Kumamoto University, Japan
| | | | | |
Collapse
|
21
|
Gotoh T, Sonoki T, Nagasaki A, Terada K, Takiguchi M, Mori M. Molecular cloning of cDNA for nonhepatic mitochondrial arginase (arginase II) and comparison of its induction with nitric oxide synthase in a murine macrophage-like cell line. FEBS Lett 1996; 395:119-22. [PMID: 8898077 DOI: 10.1016/0014-5793(96)01015-0] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Arginase exists in two isoforms. Liver-type arginase (arginase I) is expressed almost exclusively in the liver and catalyzes the last step of urea synthesis, whereas the nonhepatic type (arginase II) is expressed in extrahepatic tissues. Arginase II has been proposed to play a role in down-regulation of nitric oxide synthesis. A cDNA for human arginase II was isolated. A polypeptide of 354 amino acid residues including the putative NH2-terminal presequence for mitochondrial import was predicted. It was 59% identical with arginase I. The arginase II precursor synthesized in vitro was imported into isolated mitochondria and proteolytically processed. mRNA for human arginase II was present in the kidney and other tissues, but was not detected in the liver. Arginase II mRNA was coinduced with nitric oxide synthase mRNA in murine macrophage-like RAW 264.7 cells by lipopolysaccharide. This induction was enhanced by dexamethasone and dibutyryl cAMP, and was prevented by interferon-gamma. Possible roles of arginase II in NO synthesis are discussed.
Collapse
Affiliation(s)
- T Gotoh
- Department of Molecular Genetics, Kumamoto University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
22
|
Lundsgaard C, Hamberg O, Thomsen OO, Nielsen OH, Vilstrup H. Increased hepatic urea synthesis in patients with active inflammatory bowel disease. J Hepatol 1996; 24:587-93. [PMID: 8773915 DOI: 10.1016/s0168-8278(96)80145-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND/METHODS Patients with active inflammatory bowel disease are often reported to be in negative nitrogen balance. Therefore, we examined basal and amino acid stimulated urea synthesis in 11 patients with active inflammatory bowel disease (six with Crohn's disease and five with ulcerative colitis) and in 10 patients with non-active disease (six with Crohn's disease and four with ulcerative colitis). A primed continuous infusion of an amino acid mixture was given from t = 1 h to t = 5 h; during the first and the last 2 h no amino acid infusion was given. Urea nitrogen synthesis rate was calculated in hourly intervals for 7 consecutive hours. Urea nitrogen synthesis rate was quantified independent of changes in blood amino acid concentration by means of the functional hepatic nitrogen clearance, i.e. the linear slope of the regression of urea nitrogen synthesis rate of blood amino acid concentration. RESULTS Basal urea nitrogen synthesis rate was 24.5 +/- 2.9 mmol/h in the patients with no disease activity and 43.8 +/- 2.2 mmol/h in patients with active disease (p < 0.01). During amino acid infusion urea nitrogen synthesis rate was elevated two-fold in the patients with active disease. Functional hepatic nitrogen clearance was 28.2 +/- 1.5 1/h in patients with no disease activity and 56.1 +/- 4.1 1/h in patients with active disease (p < 0.01). No differences between the two groups were observed as regards basal or stimulated plasma glucagon and cortisol and serum levels of interleukin-1 alpha, interleukin-1 beta, tumor necrosis factor alpha and interleukin-6. CONCLUSIONS The results show that the liver function related to conversion of amino-nitrogen to urea is increased in patients with active inflammatory bowel disease. No differences among known and possible regulators of urea synthesis were found between the two groups. The accelerated hepatic amino-nitrogen conversion contributes to the less efficient nitrogen economy in patients with active inflammatory bowel disease.
Collapse
Affiliation(s)
- C Lundsgaard
- Department of Medical Gastroenterology, C. Herley Hospital, University of Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
23
|
Abstract
Arginase is a primordial enzyme, widely distributed in the biosphere and represented in all primary kingdoms. It plays a critical role in the hepatic metabolism of most higher organisms as a cardinal component of the urea cycle. Additionally, it occurs in numerous organisms and tissues where there is no functioning urea cycle. Many extrahepatic tissues have been shown to contain a second form of arginase, closely related to the hepatic enzyme but encoded by a distinct gene or genes and involved in a host of physiological roles. A variety of functions has been proposed for the "extrahepatic" arginases over the last three decades. In recent years, interest in arginase has been stimulated by a demonstrated involvement in the metabolism of the ubiquitous and multifaceted molecule nitric oxide. Molecular biology has begun to furnish new clues to the disparate functions of arginases in different environments and organisms. Comparative studies of arginase sequences are also beginning to elucidate the comparative evolution of arginases, their molecular structures and the nature of their catalytic mechanism. Further studies have sought to clarify the involvement of arginase in human disease. This review presents an outline of the current state of arginase research by giving a comparative overview of arginases and their associated properties.
Collapse
Affiliation(s)
- C P Jenkinson
- Mental Retardation Research Center, University of California, Los Angeles 90024-1759, USA.
| | | | | |
Collapse
|
24
|
Iwase K, Yamauchi K, Ishikawa K. Cloning of cDNAs encoding argininosuccinate lyase and arginase from Rana catesbeiana liver and regulation of their mRNAs during spontaneous and thyroid hormone-induced metamorphosis. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1260:139-46. [PMID: 7841190 DOI: 10.1016/0167-4781(94)00183-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Thyroid hormones are responsible for a change in the expression of many target genes during amphibian metamorphosis. In this study we cloned and sequenced cDNAs encoding two of the five urea cycle enzymes, argininosuccinate lyase and arginase, from adult liver of Rana catesbeiana. The cDNAs for the bullfrog argininosuccinate lyase and arginase encoded proteins of 467 and 321 amino acids with predicted molecular weights of 52,257 and 35,088, which were 72-75 and 64-68% identical to the mammalian enzymes, respectively. The accumulation of the mRNAs for argininosuccinate lyase and arginase in liver increased 26 and 4-times in a coordinated manner during spontaneous metamorphosis. Thyroid hormone-treatment induced about 5 and 10-times accumulation of mRNAs for argininosuccinate lyase and arginase in liver from premetamorphosing tadpoles within 4 days. These results suggest that the mRNA levels of the two enzymes in liver are upregulated by thyroid hormone during metamorphosis.
Collapse
Affiliation(s)
- K Iwase
- Department of Biology, Faculty of Science, Shizuoka University, Japan
| | | | | |
Collapse
|
25
|
Heindorff H, Almdal T, Vilstrup H. The in vivo effect of interleukin-1 beta on urea synthesis is mediated by glucocorticoids in rats. Eur J Clin Invest 1994; 24:388-92. [PMID: 7957491 DOI: 10.1111/j.1365-2362.1994.tb02181.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Interleukin-1 beta has been proposed as one mediator of parts of the catabolic response following surgery. However, it is not known whether such an effect is due to interleukin-1 beta itself or the associated changes in glucocorticoids. The effect of interleukin-1 beta on urea synthesis was investigated in rats given a high (10 micrograms kg-1) and a low dose (0.1 microgram kg-1) of recombinant interleukin-1 beta (NOVO, Denmark) 3 h prior to determination of the rate of urea synthesis in vivo. Urea synthesis increased dose-dependently after the low dose from 4.0 +/- 0.3 (control) to 6.3 +/- 0.3 (P < 0.01), and after the high dose to 7.7 +/- 0.3 mumol (min.100 gBW)-1 (P < 0.01). The blood concentration of amino acids fell during interleukin-1 beta treatment, so the effect on urea synthesis was not due solely to increased proteolysis, but was exerted predominantly in the liver. Pharmacological glucocorticoid receptor blockade (hormone analogue RU486, Roussel-Uclaf, Paris, France) given 1 h prior to the interleukin treatment, completely abolished the interleukin-1 beta induced increases in urea synthesis. The study demonstrates that interleukin-1 beta stimulates urea synthesis in vivo, and that the major part of the effect depends on glucocorticoid action.
Collapse
Affiliation(s)
- H Heindorff
- Department of Gastrointestinal Surgery C, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
26
|
Blachier F, M'Rabet-Touil H, Posho L, Darcy-Vrillon B, Duée PH. Intestinal arginine metabolism during development. Evidence for de novo synthesis of L-arginine in newborn pig enterocytes. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 216:109-17. [PMID: 8365397 DOI: 10.1111/j.1432-1033.1993.tb18122.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The capacity for L-arginine metabolism was studied in villus enterocytes isolated from pigs at birth, after 2-8 days suckling and after weaning. Immediately after birth, enterocytes were able to convert 1 mM L-citrulline, 2 mM L-glutamine or 1 mM L-ornithine to L-arginine. In 2-8-day-old animals, the net production of L-arginine from L-citrulline (2.00 +/- 0.45 nmol x 10(6) cells-1 x 30 min-1), or from L-ornithine (0.29 +/- 0.06 nmol x 10(6) cells-1 x 30 min-1) was similar to the values obtained at birth. Furthermore, 40% of L-arginine synthetized de novo from L-citrulline were released into the incubation medium. In 2-8-day-old animals, the production of L-arginine from L-glutamine represented only 5% of the production at birth (the latter being 0.73 +/- 0.15 nmol x 10(6) cells-1 x 30 min-1). In enterocytes isolated from post-weaned pigs, no significant production of L-arginine from either L-glutamine or L-ornithine was detected. In contrast, although the L-arginine production from L-citrulline was very low in post-weaned animals, it was significantly enhanced in the presence of L-glutamine, representing 23% of the production measured in suckling animals. The capacity of enterocytes to cleave L-arginine to L-ornithine and urea was very limited at birth, but was increased more than threefold in 2-day-old animals. This was concomitant with a marked increase in arginase activity. In post-weaned animals, the flux through arginase in intact enterocytes, and the arginase activity were both threefold higher than in 2-8-day-old animals. It is concluded that enterocytes isolated from neonatal pigs exhibit the capacity for a net production of L-arginine since the metabolism of this amino acid is oriented to anabolism rather than catabolism. The results are discussed in relation to L-arginine metabolism in the neonatal liver.
Collapse
Affiliation(s)
- F Blachier
- Unité d'Ecologie et de Physiologie du Système Digestif, Institut National de la Recherche Agronomique, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|
27
|
Luo QJ, MacRae JC, Scislowski PW. Characterization of sheep hepatocytes in primary culture. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1993; 25:719-23. [PMID: 8349013 DOI: 10.1016/0020-711x(93)90359-m] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
1. Primary cultures of isolated sheep hepatocytes were used to characterize metabolic functions of liver: gluconeogenesis, ureagenesis and protein synthesis. The rates of all three metabolic activities were linear over a 20 hr culture period. 2. Hepatocytes in the presence of glucagon increased the synthesis of urea by approx 30% (P < 0.05) and increased release of glucose into the medium by 60% (P < 0.05). 3. In the absence of insulin, significantly more (35%; P < 0.05) glucose was released in the medium than in the presence of insulin. 4. Results help evaluate the primary culture of sheep hepatocytes as an appropriate experimental model to study nutritional and hormonal regulation of liver in the ruminant species.
Collapse
Affiliation(s)
- Q J Luo
- Rowett Research Institute, Bucksburn, Aberdeen, Scotland
| | | | | |
Collapse
|
28
|
Heindorff H, Holst JJ, Almdal T, Vilstrup H. Effect of glucagon immunoneutralization on the increase in urea synthesis after hysterectomy in rats. Eur J Clin Invest 1993; 23:166-70. [PMID: 8477790 DOI: 10.1111/j.1365-2362.1993.tb00756.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
To study the effect of glucagon immunoneutralization on postoperative changes of urea synthesis, hysterectomized rats were given one injection of a specific high titre antibody against pancreatic glucagon 24 h before operation raising the plasma glucagon binding capacity to values 10-20 times higher than the plasma glucagon concentration in control animals. Earlier studies have shown that the spontaneous rate of urea-N synthesis (UNSR) doubles 3 h after operation, and that the Vmax of the process, the capacity of urea-N synthesis (CUNS) is 50% higher than normal values 24 h after operation. Therefore, the effect of glucagon on UNSR and CUNS were investigated 3 and 24 h postoperatively, respectively. Control animals were given non immune rabbit serum. Glucagon immunoneutralization partly normalized the early increase in UNSR 3 h postoperatively (control: 4.7 +/- 0.3, hysterectomy+serum: 6.7 +/- 0.4, hysterectomy+Gluc-Ab: 5.5 +/- 0.4 mumol (min.100 g BW)-1), but had no effect on the increase of CUNS 24 h postoperatively (control: 7.9 +/- 0.3, hysterectomy+serum: 9.5 +/- 0.3, hysterectomy+Gluc-Ab: 9.8 +/- 0.5 mumol (min.100 g BW)-1). This shows that glucagon is important for the early postoperative increase in the efficacy of urea synthesis, whereas the late increase in capacity seems not to depend on hyperglucagonemia.
Collapse
Affiliation(s)
- H Heindorff
- Department of Gastrointestinal Surgery C, Rigshospitalet, Copenhagen, Denmark
| | | | | | | |
Collapse
|
29
|
Xu Q, Baker BS, Tata JR. Developmental and hormonal regulation of the Xenopus liver-type arginase gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 211:891-8. [PMID: 7916684 DOI: 10.1111/j.1432-1033.1993.tb17622.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Liver-type L-arginase is a major urea-cycle enzyme which is strongly induced during amphibian metamorphosis, but little is known about the molecular mechanisms underlying this induction. As a first step towards elucidating the possible mechanisms, we have isolated a cDNA clone for L-arginase from an adult Xenopus laevis liver cDNA library. Sequence comparison of Xenopus liver-type L-arginase cDNA shows a strong conservation at the amino acid level with those of human, rat and yeast. Using a Xenopus arginase cDNA fragment as a hybridization probe, we have shown by Northern blotting that the gene is highly expressed in the liver, and very slightly in kidney and spleen, of adult Xenopus. The expression is developmentally regulated. Only traces of arginase mRNA can be detected in pre-metamorphic tadpoles, but its accumulation increases very markedly at the onset of natural metamorphosis, being maintained at a high concentration constitutively upon completion of this developmental process. Amphibian metamorphosis is under the strict control of thyroid hormones. It is therefore significant that exposure of pre-metamorphic tadpoles (at stages before endogenous thyroid hormone secretion) to exogenous hormone (1 nM triiodothyronine) precociously activated the L-arginase gene. The time course of this precocious hormonal induction paralleled that of serum albumin gene in the liver. Polyclonal antibodies were raised against recombinant Xenopus L-arginase expressed in Escherichia coli as a fusion protein with glutathione S-transferase in the plasmid expression vector pGEX. Western blotting using this antibody showed that, although arginase mRNA is present in high concentration in Xenopus tadpole liver at the onset of natural metamorphosis, the protein is detected only upon its completion. Our results show a complex transcriptional and post-transcriptional regulation of the Xenopus liver-type L-arginase gene during post-embryonic development. They also demonstrate that this gene can be exploited as a target for thyroid hormones in further studies to analyze the mechanisms underlying the establishment of the adult phenotype during amphibian metamorphosis.
Collapse
Affiliation(s)
- Q Xu
- Laboratory of Developmental Biochemistry, National Institute for Medical Research, Mill Hill, London, England
| | | | | |
Collapse
|
30
|
Heindorff H, Almdal TP, Vilstrup H. Blockade of glucocorticoid receptors prevents the increase in urea synthesis after hysterectomy in rats. Eur J Clin Invest 1991; 21:625-30. [PMID: 1778224 DOI: 10.1111/j.1365-2362.1991.tb01419.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The postoperative increase in hepatic conversion of amino nitrogen to urea nitrogen seems to be a primary cause of post-surgical catabolism. The importance of glucocorticosteroids for the spontaneous urea nitrogen synthesis rate (UNSR) and for the maximally amino acid-stimulated capacity of urea nitrogen synthesis (CUNS) was investigated 3 and 24 h postoperatively, respectively, in hysterectomized rats. Corticosteroid effects were neutralized by glucocorticoid receptor blockade by the pharmacological analogue RU486. Hysterectomy doubled UNSR from 3.16 +/- 0.20 to 6.12 +/- 0.27 mumol (per min per 100 g body weight) after 3 h (P less than 0.01) and increased CUNS by 40% from 7.47 +/- 0.30 to 10.29 +/- 0.41 mumol (per min per 100 g body weight) after 24 h (P less than 0.01). These changes were both normalized by the receptor blockade. Hysterectomy decreased total blood alpha-amino nitrogen concentration by 25% from 3.4 +/- 0.2 to 2.6 +/- 0.2 mmol l-1 (P less than 0.05) 3 h after surgery, which was normalized by glucocorticoid receptor blockade. Hysterectomized rats lost 10 +/- 1 g the first 24 h after surgery. The blockade reduced the weight loss to 6 +/- 1 g body weight (P less than 0.05) without changing food intake. The results indicate that glucocorticoid action plays a major role in the postoperative increase in hepatic amino nitrogen conversion.
Collapse
Affiliation(s)
- H Heindorff
- Division of Hepatology, Rigshospitalet, Copenhagen, Denmark
| | | | | |
Collapse
|
31
|
Mommsen TP, Danulat E, Walsh PJ. Hormonal regulation of metabolism in hepatocytes of the ureogenic teleostopsanus beta. FISH PHYSIOLOGY AND BIOCHEMISTRY 1991; 9:247-252. [PMID: 24213715 DOI: 10.1007/bf02265145] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/27/1990] [Indexed: 06/02/2023]
Abstract
Short-term exposure of isolated toadfish hepatocytes to high concentrations (100 nM) of glucagon, glucagon-like peptide (GLP) or epinephrine significantly increases the rate of lactate gluconeogenesis (1.3-fold) and glycogenolysis (5- to 7-fold). Half-maximal responsiveness to GLP is reached at about 2 nM for gluconeogenesis and 6 nM for glycogenolysis, while the value for glycogenolysis activated by catfish glucagon is 28 nM. Cells do not to respond to 5 nM epinephrine. Norepinephrine, urotensin II and leucine-enkephalin, each applied at 100 nM, increase the rate of glycogenolysis by 1.3 to 1.5-fold. All other hormones tested (vasotocin, isotocin, VIP, methionine-enkephalin, ovine prolactin, β-endorphin, APY, salmon insulin) failed to affect metabolic flux through glycogenolysis or gluconeogenesis. None of the hormones altered the rate of urea synthesis or the rate of lactate oxidation by hepatocytes. Although toadfish hepatocytes are responsive to hormonal stimuli, they do not appear to be a useful model to study evolutionary trends in short-term hormonal regulation of urea synthesis. However, the obvious differences in mechanisms of control of urea synthesis in this species compared with ureogenic amphibians and mammals open an intriguing avenue for research.
Collapse
Affiliation(s)
- T P Mommsen
- Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055, V8W 3P6, Victoria, B.C., Canada
| | | | | |
Collapse
|
32
|
Heindorff H, Vilstrup H, Almdal T, Harvald T, Nielsen J, Dalsgaard S. Elective cholecystectomy increases plasma amino-acid clearance and hepatic capacity for urea synthesis for one week. Clin Nutr 1991; 10:10-7. [PMID: 16839888 DOI: 10.1016/0261-5614(91)90075-n] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1990] [Accepted: 08/28/1990] [Indexed: 11/29/2022]
Abstract
The importance of the liver in post-operative catabolism was studied in 6 cholecystectomy patients given a mixture of amino-acids as prime-continuous infusionś pre-operatively and on the 1st, 3rd, 6th and 12th post-operative day. The plasma clearance of total alpha-amino-nitrogen and of single amino-acids, the urea-nitrogen synthesis rate, and the functional hepatic nitrogen clearance were calculated. Surgery decreased fasting blood amino-nitrogen concentration by 15% (p < 0.01), and increased the plasma clearance of amino-nitrogen by 30% (P < 0.05) on the 1st, 3rd and 6th post-operative day. Surgery doubled the functional hepatic nitrogen clearance (p < 0.01) on the 1st, 3rd and 6th post-operative day. This indicates that post-operative stress catabolism is partly due to a hepatic condition by which the liver eliminates more amino-nitrogen despite lower amino-acid concentration in the blood, for one week post-operatively.
Collapse
Affiliation(s)
- H Heindorff
- Department Surgery A, Frederiksborg County Hospital, Copenhagen, Denmark; Division of Hepatology A, Rigshospitalet, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
33
|
Urea synthesis in fishes: evolutionary and biochemical perspectives. PHYLOGENETIC AND BIOCHEMICAL PERSPECTIVES 1991. [DOI: 10.1016/b978-0-444-89124-2.50010-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
34
|
Spolarics Z, Bond JS. Comparison of biochemical properties of liver arginase from streptozocin-induced diabetic and control mice. Arch Biochem Biophys 1989; 274:426-33. [PMID: 2802620 DOI: 10.1016/0003-9861(89)90455-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Arginase activity is elevated in livers of diabetic animals compared to controls and there is evidence that this is due in part to increased specific activity (activity/mg arginase protein). To investigate the molecular basis of this increased activity, the physicochemical and kinetic properties of hepatic arginase from diabetic and control mice were compared. Two types of arginase subunits with molecular weights of 35,000 and 38,000 were found in both the diabetic and control animals and the subunits in these animals had similar, multiple ionic forms. Kinetic parameters of purified preparations of arginase for arginine (apparent Km and Vmax values) and the thermal stability of these preparations from diabetics and controls were also similar. Furthermore, no difference was found in the distribution of arginase activity among different subcellular liver fractions. Separation of basic and acidic oligomeric forms of arginase by fast-protein liquid chromatography resulted in a slightly different distribution of activity among the forms in the normal and diabetic group. The apparent Km values for Mn2+ of the basic form of the enzyme were 25 and 33 microM for the enzyme from normal and diabetic animals, respectively; for acidic forms, for which two apparent Km values were measured, the values were 8 and 197 microM for arginase from controls and 35 and 537 microM from diabetics. These results indicate that in diabetes, while no marked changes in the physicochemical characteristics of arginase are obvious, some changes are found in the interaction of arginase with its cofactor Mn.
Collapse
Affiliation(s)
- Z Spolarics
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond 23298-0614
| | | |
Collapse
|
35
|
Snodgrass PJ. Urea cycle enzyme activities are normal and inducible by a high-protein diet in CCl4 cirrhosis of rats. Hepatology 1989; 9:373-9. [PMID: 2920993 DOI: 10.1002/hep.1840090306] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We produced moderately severe, inactive micronodular cirrhosis in rats using CCl4 and measured the urea cycle enzyme activities in liver after feeding a 15% casein diet for 1 week and again after a 60% casein diet for 1 week. There was no deficiency of any of the five urea cycle enzymes in cirrhotic livers of rats pair-fed the 15% casein diet. Argininosuccinate synthetase and carbamyl phosphate synthetase activities were lower than in non-pair-fed controls by some baselines. All five enzymes in cirrhotic livers were induced 1.5- to 3-fold by the high-protein diet expressed as units per 100 gm of rat. The level of carbamyl phosphate synthetase activity was lower in the livers of rats pair-fed the 60% casein diet than in control livers based on wet weight, collagen-free protein and DNA, but the activities were equal expressed as units per 100 gm of rat. This example of CCl4-induced cirrhosis in the rat does not serve as a good model for human cirrhosis, in which the urea cycle enzymes are reported to be decreased in activity.
Collapse
Affiliation(s)
- P J Snodgrass
- Veterans Administration Medical Center, Indianapolis, Indiana 46202
| |
Collapse
|
36
|
Regulation of urea cycle enzymes. Nutr Rev 1988; 46:326-7. [PMID: 3067149 DOI: 10.1111/j.1753-4887.1988.tb05474.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
37
|
Abstract
When rat hepatocytes were cultured in serum-free and hormone-free Waymouth's medium, secretion rates of apolipoproteins (apo) AI and AIV were stable for two days, while the secretion rate of apo E decreased only 20% on the second day. Effects of insulin and dexamethasone on hepatic secretion of apo AI, apo E, and apo AIV were studied in primary culture of rat liver cells within two days. Adding insulin alone and dexamethasone alone, 1 mumol/L each, to cultured hepatocytes for 20 hours had little effect on the amounts of apo AI secreted by the cells. But when the treatment with either insulin or dexamethasone was prolonged for 44 hours, apo AI secretion by treated cells was increased 2.0-fold and 1.4-fold over that by control cells, respectively. If both hormones were added together, secretion of apo AI was synergistically increased 1.5-fold and 7-fold after 20 and 44 hours incubation, respectively. The optimal concentrations of both hormones for the synergistic effect were 0.1 mumol/L. Insulin alone did not affect, while dexamethasone alone slightly suppressed, apo E secretion by hepatocytes. However, when hepatocytes had been incubated with both hormones, a 70% increase in the release of apo E into the culture medium was also observed after 20 hours. Insulin caused a two-fold increase in cellular apo E in hepatocytes. The insulin-mediated cellular accumulation of apo E could be enhanced only very slightly by dexamethasone, but was completely blocked by glucagon.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R C Lin
- Veterans Administration Medical Center, Indianapolis, IN 46202
| |
Collapse
|
38
|
|
39
|
Dich J, Vind C, Grunnet N. Long-term culture of hepatocytes: effect of hormones on enzyme activities and metabolic capacity. Hepatology 1988; 8:39-45. [PMID: 3276589 DOI: 10.1002/hep.1840080109] [Citation(s) in RCA: 83] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
(i) Hepatocytes isolated from adult rats were cultured for 2 to 3 weeks on collagen in a modified, serum-free Waymouth medium containing fatty acids and varying concentrations of glucocorticoid, insulin and glucagon. (ii) In the presence of all three hormones, it was possible to maintain the content of DNA, the activity of glucokinase, pyruvate kinase, hexokinase and lactate dehydrogenase at initial levels for 2 to 3 weeks. The activity of glucokinase and pyruvate kinase was affected by the concentration of insulin. (iii) The activity of alcohol dehydrogenase was stable for 3 days and declined to about 25% of the initial level after 2 weeks of culture, irrespective of the presence of hormones. (iv) Maintenance of albumin secretion was dependent on the presence of glucocorticoid, and glucocorticoid and insulin showed an additive or, at some time points, a synergistic effect on its secretion. (v) The content of cytochrome P-450 could be kept at 65% of the initial level, provided that a relatively high concentration of dexamethasone was present (10(-6) M). (vi) In the absence of hormones, urea synthesis was 70% of initial levels throughout the experimental period. With insulin and glucocorticoid present, a high concentration of glucagon (10(-8) M) was required to maintain the synthesis of urea at this level. (vii) It is concluded that hepatocyte cultures as described in the present study may be a useful, well-defined system for long-term metabolic, pharmacologic and toxicologic studies.
Collapse
Affiliation(s)
- J Dich
- Department of Biochemistry A, Panum Institute, University of Copenhagen, Denmark
| | | | | |
Collapse
|
40
|
Abstract
Hepatic arginase (L-arginine amidinohydrolase, EC 3.5.3.1) is an oligomer composed of three or four subunits. The present studies indicate heterogeneity in the size and charge of arginase subunits in mouse liver. Two types of arginase subunits with molecular weights of approximately 35,000 and 38,000 have been found. These two subunits are detected in liver cytosol or in purified preparations of arginase after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and Western blotting. Two dimensional SDS-PAGE revealed multiple ionic forms of arginase for both the 35,000 and 38,000 subunits; the subunits contain basic proteins (pI range 7.8-9.1) and acidic proteins (pI range 5.8-6.4). Limited proteolysis by trypsin eliminated the molecular weight differences between the subunits without substantially affecting either their isoelectric points or activity. Comparative peptide maps and amino acid analyses of the 35,000- and 38,000-Da subunits showed that they were very similar. The data indicate that a neutral peptide (approx 3000 Da) is responsible for the differences in subunit molecular weight and that the multiple sized and charged forms are variants of the same protein.
Collapse
Affiliation(s)
- Z Spolarics
- Department of Biochemistry and Molecular Biophysics, Virginia Commonwealth University, Richmond 23298-0614
| | | |
Collapse
|
41
|
Husson A, Buquet C, Vaillant R. Induction of the five urea-cycle enzymes by glucagon in cultured foetal rat hepatocytes. Differentiation 1987; 35:212-8. [PMID: 3328726 DOI: 10.1111/j.1432-0436.1987.tb00171.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Foetal hepatocytes obtained from rats at different stages were cultured in order to investigate the inducibility of the five urea-cycle enzymes by glucagon and dibutyryl cyclic AMP (Bt2cAMP). When 18.5-day-old hepatocytes were cultured for 3 days with 10(-7) M glucagon, the activities of carbamoyl phosphate synthetase (CPS), argininosuccinase (ASL) and arginase were increased by 1.4-, 1.8- and 1.9-fold, respectively, as compared to controls. These effects were mimicked by 10(-4) M Bt2cAMP, but the activities of ornithine transcarbamylase (OTC) and argininosuccinate synthetase (ASS) were never changed by the addition of these compounds. Hepatocytes cultured at earlier stages were not responsive to glucagon unless dexamethasone was added simultaneously, suggesting that this steroid might induce some steps necessary for glucagon action. Bt2cAMP was effective as early as day 16.5 without requiring the presence of steroids. In addition, the effect of the cyclic nucleotide appeared additive or synergistic with that of dexamethasone. The simultaneous addition of actinomycin D did not affect the glucagon-induced increase in enzyme levels, thus suggesting a post-transcriptional effect of the hormone on the foetal enzyme activities. Insulin itself did not have any effect on the basal level of the enzyme activities and had only a moderate inhibitory effect on glucagon-induced ASL activity. This slight effect of insulin is in contrast with the marked inhibitory effect of dexamethasone on this enzyme activity that we described previously.
Collapse
Affiliation(s)
- A Husson
- Laboratoire d'Endocrinologie UA 650, Faculté des Sciences et des Techniques, Mont Saint Aignan, France
| | | | | |
Collapse
|
42
|
Kitagawa Y. Hormonal regulation of carbamoyl-phosphate synthetase I synthesis in primary cultured hepatocytes and Reuber hepatoma H-35. Defective regulation in hepatoma cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 167:19-25. [PMID: 3040399 DOI: 10.1111/j.1432-1033.1987.tb13299.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Regulation of carbamoyl-phosphate synthetase I (CPS) synthesis by various hormones was compared in primary cultured hepatocytes from adult rat and in Reuber hepatoma H-35 by pulse labeling of the cells with [35S]methionine. CPS synthesis in hepatocytes was stimulated 8-fold and 5-fold by dexamethasone and glucagon respectively. CPS synthesis in hepatocytes was synergically (about 50-fold) stimulated by a combination of dexamethasone and glucagon. Less synergic stimulation was observed by combining dexamethasone with N6, O2'-dibutyryladenosine 3',5'-monophosphate (dibutyryl-cAMP) or with isoproterenol. The basal level of CPS synthesis in hepatoma cells was higher than that in hepatocytes. CPS synthesis in hepatoma cells was stimulated by dexamethasone and dibutyryl-cAMP but the extent was only 3-fold and 1.8-fold respectively. The synergic effect of combination of dexamethasone and dibutyryl-cAMP was not observed in hepatoma cells. Neither glucagon nor isoproterenol exhibited an appreciable effect on CPS synthesis in hepatoma cells. Insulin and epinephrine suppressed CPS synthesis both in hepatocytes and hepatoma cells. The effect of epinephrine was indicated to be through alpha-adrenergic receptors. The effects of insulin and epinephrine were additive on CPS synthesis both in hepatocytes and hepatoma cells.
Collapse
|
43
|
Morris SM, Moncman CL, Rand KD, Dizikes GJ, Cederbaum SD, O'Brien WE. Regulation of mRNA levels for five urea cycle enzymes in rat liver by diet, cyclic AMP, and glucocorticoids. Arch Biochem Biophys 1987; 256:343-53. [PMID: 3038025 DOI: 10.1016/0003-9861(87)90455-3] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Adaptive changes in levels of urea cycle enzymes are largely coordinate in both direction and magnitude. In order to determine the extent to which these adaptive responses reflect coordinate regulatory events at the pretranslational level, measurements of hybridizable mRNA levels for all five urea cycle enzymes were carried out for rats subjected to various dietary regimens and hormone treatments. Changes in relative abundance of the mRNAs in rats with varying dietary protein intakes are comparable to reported changes in enzyme activities, indicating that the major response to diet occurs at the pretranslational level for all five enzymes and that this response is largely coordinate. In contrast to the dietary changes, variable responses of mRNA levels were observed following intraperitoneal injections of dibutyryl cAMP and dexamethasone. mRNAs for only three urea cycle enzymes increased in response to dexamethasone. Levels of all five mRNAs increased severalfold in response to dibutyryl cAMP at both 1 and 5 h after injection, except for ornithine transcarbamylase mRNA which showed a response at 1 h but no response at 5 h. Combined effects of dexamethasone and dibutyryl cAMP were additive for only two urea cycle enzyme mRNAs, suggesting independent regulatory pathways for these two hormones. Transcription run-on assays revealed that transcription of at least two of the urea cycle enzyme genes--carbamylphosphate synthetase I and argininosuccinate synthetase--is stimulated approximately four- to fivefold by dibutyryl cAMP within 30 min. The varied hormonal responses indicate that regulatory mechanisms for modulating enzyme concentration are not identical for each of the enzymes in the pathway.
Collapse
|
44
|
|
45
|
Patterson CE, Davis KS, Beckman DE, Rhoades RA. Fatty acid synthesis in the fetal lung: relationship to surfactant lipids. BIOCHIMICA ET BIOPHYSICA ACTA 1986; 878:110-26. [PMID: 3015223 DOI: 10.1016/0005-2760(86)90349-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The aims of this study were to investigate the control of fatty acid synthesis and its relationship to surfactant production in the fetal lung during alteration of hormonal and substrate conditions. Lung explants from 18 day fetuses (term = 22 days) which were cultured 2 days in the presence of 10 mM lactate showed parallel acceleration of de novo fatty acid synthesis (3H2O incorporation) and [14C]choline incorporation into disaturated phosphatidylcholine (DSPC) compared to culture of explants in glucose. Both the cultured and fresh explants were resistant to the classical short term (4 h) cAMP inhibition of fatty acid synthesis with 3 mM dibutyryl cAMP or 0.5 mM aminophylline. In the cultured explants short term cAMP elevation increased DSPC production, and long term (2 day) cAMP elevation caused a further increase in DSPC synthesis and also stimulated fatty acid synthesis. In cultured explants from 17 day fetuses, dexamethasone (0.1 microM) caused a synergistic increase with aminophylline in both fatty acid synthesis and DSPC production whereas, in explants from 18 day fetuses, dexamethasone inhibited both processes and reduced the level of stimulation of DSPC and fatty acid synthesis seen with aminophylline alone. Dexamethasone also reduced the stimulation of both DSPC and fatty acid synthesis produced in the culture of 18 day explants with bacitracin (0.5 mg/ml), whereas the combination of bacitracin and aminophylline resulted in a synergistic increase in DSPC production. Culture with glucagon (0.1 microM) also stimulated DSPC synthesis but at physiological levels insulin had no effect on either DSPC or fatty acid synthesis. These data show that lung fatty acid synthesis exhibits unique features of fatty acid synthesis regulation compared to other lipogenic tissues and also suggest a link between de novo fatty acid synthesis and surfactant production during the critical period of accelerated lung maturation.
Collapse
|
46
|
Kawamoto S, Amaya Y, Oda T, Kuzumi T, Saheki T, Kimura S, Mori M. Cloning and expression in Escherichia coli of cDNA for arginase of rat liver. Biochem Biophys Res Commun 1986; 136:955-61. [PMID: 2424441 DOI: 10.1016/0006-291x(86)90425-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A cDNA expression library constructed in a plasmid pUC8 from poly(A)+ RNA of rat liver was screened immunologically, using an antibody against arginase of rat liver. A cDNA clone was isolated and identified by hybrid-selected translation. The clone contained an insert approximately 1.35 kilobase pairs in length. In the bacterial clone, we detected a specific protein of Mr = about 43,000 that is slightly larger than the purified arginase (Mr = about 40,000) and a high activity of arginase was expressed. The arginase mRNA species of about 1600 bases long was detected in the liver, but not in the small intestine, kidney, spleen and heart of the rats.
Collapse
|
47
|
Ryall JC, Quantz MA, Shore GC. Rat liver and intestinal mucosa differ in the developmental pattern and hormonal regulation of carbamoyl-phosphate synthetase I and ornithine carbamoyl transferase gene expression. EUROPEAN JOURNAL OF BIOCHEMISTRY 1986; 156:453-8. [PMID: 3754512 DOI: 10.1111/j.1432-1033.1986.tb09603.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
cDNA probes were employed to measure levels of carbamoyl-phosphate synthetase I (CPS) and ornithine carbamoyltransferase (OCT) mRNAs in fetal and neonatal livers and intestines. In the fetal liver, significant levels of OCT mRNA were present at 15-days gestation while CPS mRNA could not be detected until day 17 of fetal development. Apart from a small decline just after birth, amounts of both mRNAs increased steadily to reach adult levels in postnatal life. In contrast to the situation in liver, CPS and OCT mRNA levels in the fetal intestine rose rapidly to peak at day 21 of gestation and then declined steadily in the first seven days after birth. Using the methyl-sensitive restriction isoschizomeric pair, MspI/HpaII, the 5' ends of both the CPS and OCT genes were shown to undergo demethylation during development. In the case of the OCT gene, however, the hypomethylation characteristic of the adult liver and intestinal mucosa was not observed in the 15-day-old fetal liver, where significant levels of gene expression had already been established. Levels of CPS and OCT mRNA in livers of adults responded to glucagon in normal animals (1.5-fold and 2.2-fold increases, respectively) and to dexamethasone in experimentally induced diabetic animals (3-fold increase in CPS mRNA with no change in OCT mRNA). These treatments were all without effect on the levels of CPS and OCT mRNA in intestinal mucosa.
Collapse
|
48
|
Miller MJ, McQueen CA. The effect of acrylamide on hepatocellular DNA repair. ENVIRONMENTAL MUTAGENESIS 1986; 8:99-108. [PMID: 3943500 DOI: 10.1002/em.2860080109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Acrylamide has recently been reported to induce tumors in laboratory animals. The effect of acrylamide on unscheduled DNA synthesis using the hepatocyte primary culture (HPC)/DNA repair test was examined. Isolated hepatocytes were exposed to acrylamide and [3H]thymidine ( [3H]TdR) for 18 hr. Incorporation of [3H]TdR into DNA was determined by autoradiography. No DNA repair was observed at acrylamide concentrations up to 10(-2) M. These findings were confirmed using density gradients. Acrylamide concentrations exceeding 10(-2) M were cytotoxic to hepatocytes. Because both autoradiography and density gradients measure DNA repair as an endpoint, the ability of acrylamide to inhibit these repair processes was also determined. Acrylamide had no effect on the repair of UV-damaged DNA. These results show that acrylamide is not genotoxic in isolated hepatocytes.
Collapse
|
49
|
Iynedjian PB, Salavert A. Effects of glucagon, dexamethasone and triiodothyronine on phosphoenolpyruvate carboxykinase (GTP) synthesis and mRNA level in rat liver cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 1984; 145:489-97. [PMID: 6510413 DOI: 10.1111/j.1432-1033.1984.tb08583.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Acute hormonal effects on the synthesis rate of the cytosolic form of the gluconeogenic enzyme, phosphoenolpyruvate carboxykinase (GTP), were investigated using rat hepatocytes maintained in short-term suspension culture. Cells were pulse-labeled with [3H]leucine or [35S]methionine and the rate of synthesis of phosphoenolpyruvate carboxykinase was estimated after immunoprecipitation of cell extracts with specific antibodies or following high-resolution two-dimensional gel electrophoresis of cell proteins. Total RNA was also extracted from cultured cells and subsequently translated in a wheat germ cell-free protein-synthesis system, in order to quantify the level of functional mRNA coding for phosphoenolpyruvate carboxykinase. Glucagon, the single most effective inducer, causes a 15--20-fold increase in the level of specific mRNA in 2 h, accompanied by a similar increase in enzyme synthesis rate. The extent of induction is further amplified about threefold when dexamethasone is added to the culture medium. The synergistic action of dexamethasone does not require pre-exposure of the cells to the glucocorticoid, but on the contrary occurs without lag upon simultaneous addition of glucagon and dexamethasone. The induction of phosphoenolpyruvate carboxykinase mRNA by glucagon is markedly depressed in hepatocytes inhibited for protein synthesis by cycloheximide. Cycloheximide-inhibited cells, however, display a considerable induction of the message after joint stimulation with dexamethasone and glucagon. Thus, the synergistic action of dexamethasone does not require concomitant protein synthesis. These data provide indirect evidence for a primary effect of the glucocorticoids on the expression of the phosphoenolpyruvate carboxykinase gene. Besides glucagon and dexamethasone, the thyroid hormones are shown to influence the rate of phosphoenolpyruvate carboxykinase synthesis in isolated liver cells. The stimulatory effect of 3,5,3'-triiodothyronine (T3) is best demonstrated as a twofold increase in relative rate of enzyme synthesis in cells supplied with T3 plus glucagon, as compared to cells challenged with glucagon alone. The effect of T3 relies on a pretranslational mechanism, as shown by a commensurate increase in functional mRNA coding for phosphoenolpyruvate carboxykinase. Dose-response experiments with T3 as well as dexamethasone demonstrate effects at very low hormone levels, consistent with a role for these hormones as physiological modulators of phosphoenolpyruvate carboxykinase expression.
Collapse
|
50
|
Adcock MW, O'Brien WE. Molecular cloning of cDNA for rat and human carbamyl phosphate synthetase I. J Biol Chem 1984. [DOI: 10.1016/s0021-9258(18)90718-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|