1
|
Zhang Y, Sun T, Wu T, Li J, Hu D, Liu D, Li J, Tian C. Consolidated bioprocessing for bioethanol production by metabolically engineered cellulolytic fungus Myceliophthora thermophila. Metab Eng 2023; 78:192-199. [PMID: 37348810 DOI: 10.1016/j.ymben.2023.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/14/2023] [Accepted: 06/18/2023] [Indexed: 06/24/2023]
Abstract
Using cellulosic ethanol as fuel is one way to help achieve the world's decarbonization goals. However, the economics of the present technology are unfavorable, especially the cost of cellulose degradation. Here, we reprogram the thermophilic cellulosic fungus Myceliophthora thermophila to directly ferment cellulose into ethanol by mimicking the aerobic ethanol fermentation of yeast (the Crabtree effect), including optimizing the synthetic pathway, enhancing the glycolytic rate, inhibiting mitochondrial NADH shuttles, and knocking out ethanol consumption pathway. The final engineered strain produced 52.8 g/L ethanol directly from cellulose, and 39.8 g/L from corncob, without the need for any added cellulase, while the starting strain produced almost no ethanol. We also demonstrate that as the ethanol fermentation by engineered M. thermophila increases, the composition and expression of cellulases that facilitate the degradation of cellulose, especially cellobiohydrolases, changes. The simplified production process and significantly increased ethanol yield indicate that the fungal consolidated bioprocessing technology that we develop here (one-step, one-strain ethanol production) is promising for fueling sustainable carbon-neutral biomanufacturing in the future.
Collapse
Affiliation(s)
- Yongli Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Tao Sun
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Taju Wu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Jinyang Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Die Hu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Defei Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Jingen Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| | - Chaoguang Tian
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; National Technology Innovation Center of Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
2
|
Sittewelle M, Kappès V, Zhou C, Lécuyer D, Monsoro-Burq AH. PFKFB4 interacts with ICMT and activates RAS/AKT signaling-dependent cell migration in melanoma. Life Sci Alliance 2022; 5:5/12/e202201377. [PMID: 35914811 PMCID: PMC9348664 DOI: 10.26508/lsa.202201377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Glycolysis regulator PFKFB4 promotes cell migration in metastatic melanoma and normal melanocytes by a non-conventional glycolysis-independent function involving ICMT, RAS, and AKT signaling. Cell migration is a complex process, tightly regulated during embryonic development and abnormally activated during cancer metastasis. RAS-dependent signaling is a major nexus controlling essential cell parameters including proliferation, survival, and migration, utilizing downstream effectors such as the PI3K/AKT signaling pathway. In melanoma, oncogenic mutations frequently enhance RAS, PI3K/AKT, or MAP kinase signaling and trigger other cancer hallmarks among which the activation of metabolism regulators. PFKFB4 is one of these critical regulators of glycolysis and of the Warburg effect. Here, however, we explore a novel function of PFKFB4 in melanoma cell migration. We find that PFKFB4 interacts with ICMT, a posttranslational modifier of RAS. PFKFB4 promotes ICMT/RAS interaction, controls RAS localization at the plasma membrane, activates AKT signaling and enhances cell migration. We thus provide evidence of a novel and glycolysis-independent function of PFKFB4 in human cancer cells. This unconventional activity links the metabolic regulator PFKFB4 to RAS-AKT signaling and impacts melanoma cell migration.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Vincent Kappès
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Chenxi Zhou
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Déborah Lécuyer
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France.,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Anne H Monsoro-Burq
- Université Paris-Saclay, Faculté des Sciences d'Orsay, CNRS UMR 3347, INSERM U1021, Orsay, France .,Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| |
Collapse
|
3
|
Sellem CH, Humbert A, Sainsard-Chanet A. Mutations in the phosphatase domain of the 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase result in the transcriptional activation of the alternative oxidase and gluconeogenic pathways in Podospora anserina. Fungal Genet Biol 2019; 130:1-10. [PMID: 30980907 DOI: 10.1016/j.fgb.2019.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 03/01/2019] [Accepted: 04/03/2019] [Indexed: 11/29/2022]
Abstract
By screening suppressors of a respiratory mutant lacking a functional cytochrome pathway in the filamentous fungus Podospora anserina, we isolated a mutation located in the phosphatase domain of the bi-functional enzyme 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase (PFK-2/FBPase-2). We show that the inactivation of the phosphatase but not of the kinase domain is responsible for the suppressor effect that results from the activation of the RSEs transcription factors that control expression of AOX, an alternative oxidase able to bypass the mitochondria cytochrome pathway of respiration. Remarkably, activation of the RSEs also stimulates the expression of the gluconeogenic enzymes, fructose-1,6 bi-phosphatase (FBPase-1) and phosphoenolpyruvate carboxykinase (PCK-1). We thus reveal in P. anserina an apparently paradoxical situation where the inactivation of the phosphatase domain of PFK-2/FBPase-2, supposed to stimulate glycolysis, is correlated with the transcriptional induction of the gluconeogenic enzymes. Phylogenic analysis revealed the presence of multiple presumed PFK-2/FBPase-2 isoforms in all the species of tested Ascomycetes.
Collapse
Affiliation(s)
- Carole H Sellem
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France.
| | - Adeline Humbert
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| | - Annie Sainsard-Chanet
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette cedex, France
| |
Collapse
|
4
|
Roles of PFKFB3 in cancer. Signal Transduct Target Ther 2017; 2:17044. [PMID: 29263928 PMCID: PMC5701083 DOI: 10.1038/sigtrans.2017.44] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/22/2017] [Accepted: 06/28/2017] [Indexed: 12/18/2022] Open
Abstract
The understanding of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFK-2/FBPase 3, PFKFB3) has advanced considerably since its initial identification in human macrophages in the mid-1990s. As a vital regulator of glycolysis, accumulating studies have suggested that PFKFB3 is associated with many aspects of cancer, including carcinogenesis, cancer cell proliferation, vessel aggressiveness, drug resistance and tumor microenvironment. In this review, we summarize current knowledge of PFKFB3 regulation by several signal pathways and its function in cancer development in different cell types in cancer tissues. Ubiquitous PFKFB3 has emerged as a potential target for anti-neoplastic therapy.
Collapse
|
5
|
Chang HY, Chou CC, Wu ML, Wang AH. Expression, purification and enzymatic characterization of undecaprenyl pyrophosphate phosphatase from Vibrio vulnificus. Protein Expr Purif 2017; 133:121-131. [DOI: 10.1016/j.pep.2017.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 11/16/2022]
|
6
|
Salabei JK, Lorkiewicz PK, Mehra P, Gibb AA, Haberzettl P, Hong KU, Wei X, Zhang X, Li Q, Wysoczynski M, Bolli R, Bhatnagar A, Hill BG. Type 2 Diabetes Dysregulates Glucose Metabolism in Cardiac Progenitor Cells. J Biol Chem 2016; 291:13634-48. [PMID: 27151219 DOI: 10.1074/jbc.m116.722496] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 12/22/2022] Open
Abstract
Type 2 diabetes is associated with increased mortality and progression to heart failure. Recent studies suggest that diabetes also impairs reparative responses after cell therapy. In this study, we examined potential mechanisms by which diabetes affects cardiac progenitor cells (CPCs). CPCs isolated from the diabetic heart showed diminished proliferation, a propensity for cell death, and a pro-adipogenic phenotype. The diabetic CPCs were insulin-resistant, and they showed higher energetic reliance on glycolysis, which was associated with up-regulation of the pro-glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3). In WT CPCs, expression of a mutant form of PFKFB, which mimics PFKFB3 activity and increases glycolytic rate, was sufficient to phenocopy the mitochondrial and proliferative deficiencies found in diabetic cells. Consistent with activation of phosphofructokinase in diabetic cells, stable isotope carbon tracing in diabetic CPCs showed dysregulation of the pentose phosphate and glycero(phospho)lipid synthesis pathways. We describe diabetes-induced dysregulation of carbon partitioning using stable isotope metabolomics-based coupling quotients, which relate relative flux values between metabolic pathways. These findings suggest that diabetes causes an imbalance in glucose carbon allocation by uncoupling biosynthetic pathway activity, which could diminish the efficacy of CPCs for myocardial repair.
Collapse
Affiliation(s)
- Joshua K Salabei
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | | | - Parul Mehra
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Andrew A Gibb
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Petra Haberzettl
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Kyung U Hong
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center
| | - Xiaoli Wei
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202
| | - Xiang Zhang
- Chemistry, the Center for Regulatory and Environmental Analytical Metabolomics, University of Louisville, Louisville, Kentucky 40202 Pharmacology and Toxicology, and
| | | | | | - Roberto Bolli
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology
| | - Aruni Bhatnagar
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics
| | - Bradford G Hill
- From the Institute of Molecular Cardiology, Diabetes and Obesity Center, Physiology, the Departments of Biochemistry and Molecular Genetics,
| |
Collapse
|
7
|
A paralogue of the phosphomutase-like gene family in Candida glabrata, CgPmu2, gained broad-range phosphatase activity due to a small number of clustered substitutions. Biochem J 2015; 471:187-98. [PMID: 26268557 DOI: 10.1042/bj20150611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/12/2015] [Indexed: 11/17/2022]
Abstract
Inorganic phosphate is required for a range of cellular processes, such as DNA/RNA synthesis and intracellular signalling. The phosphate starvation-inducible phosphatase activity of Candida glabrata is encoded by the gene CgPMU2 (C. glabrata phosphomutase-like protein). CgPMU2 is part of a three-gene family (∼75% identical) created through gene duplication in the C. glabrata clade; only CgPmu2 is a PHO-regulated broad range acid phosphatase. We identified amino acids that confer broad range phosphatase activity on CgPmu2 by creating fusions of sections of CgPMU2 with CgPMU1, a paralogue with little broad range phosphatase activity. We used site-directed mutagenesis on various fusions to sequentially convert CgPmu1 to CgPmu2. Based on molecular modelling of the Pmu proteins on to a histidine phosphatase crystal structure, clusters of amino acids were found in two distinct regions that were able to confer phosphatase activity. Substitutions in these two regions together conferred broad phosphatase activity on CgPmu1. Interestingly, one change is a histidine adjacent to the active site histidine of CgPmu2 and it exhibits a novel ability to partially replace the conserved active site histidine in CgPmu2. Additionally, a second amino acid change was able to confer nt phosphatase activity to CgPmu1, suggesting single amino acid changes neofunctionalize CgPmu2.
Collapse
|
8
|
Phosphofructo-2-kinase/fructose-2,6-bisphosphatase modulates oscillations of pancreatic islet metabolism. PLoS One 2012; 7:e34036. [PMID: 22532827 PMCID: PMC3332096 DOI: 10.1371/journal.pone.0034036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 02/21/2012] [Indexed: 12/29/2022] Open
Abstract
Pulses of insulin from pancreatic beta-cells help maintain blood glucose in a narrow range, although the source of these pulses is unclear. It has been proposed that a positive feedback circuit exists within the glycolytic pathway, the autocatalytic activation of phosphofructokinase-1 (PFK1), which endows pancreatic beta-cells with the ability to generate oscillations in metabolism. Flux through PFK1 is controlled by the bifunctional enzyme PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) in two ways: via (1) production/degradation of fructose-2,6-bisphosphate (Fru2,6-BP), a potent allosteric activator of PFK1, as well as (2) direct activation of glucokinase due to a protein-protein interaction. In this study, we used a combination of live-cell imaging and mathematical modeling to examine the effects of inducibly-expressed PFK2/FBPase2 mutants on glucose-induced Ca2+ pulsatility in mouse islets. Irrespective of the ability to bind glucokinase, mutants of PFK2/FBPase2 that increased the kinase:phosphatase ratio reduced the period and amplitude of Ca2+ oscillations. Mutants which reduced the kinase:phosphatase ratio had the opposite effect. These results indicate that the main effect of the bifunctional enzyme on islet pulsatility is due to Fru2,6-BP alteration of the threshold for autocatalytic activation of PFK1 by Fru1,6-BP. Using computational models based on PFK1-generated islet oscillations, we then illustrated how moderate elevation of Fru-2,6-BP can increase the frequency of glycolytic oscillations while reducing their amplitude, with sufficiently high activation resulting in termination of slow oscillations. The concordance we observed between PFK2/FBPase2-induced modulation of islet oscillations and the models of PFK1-driven oscillations furthermore suggests that metabolic oscillations, like those found in yeast and skeletal muscle, are shaped early in glycolysis.
Collapse
|
9
|
Bykov D, Neese F. Substrate binding and activation in the active site of cytochrome c nitrite reductase: a density functional study. J Biol Inorg Chem 2010; 16:417-30. [DOI: 10.1007/s00775-010-0739-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 11/19/2010] [Indexed: 10/18/2022]
|
10
|
Li H, Jogl G. Structural and biochemical studies of TIGAR (TP53-induced glycolysis and apoptosis regulator). J Biol Chem 2008; 284:1748-54. [PMID: 19015259 DOI: 10.1074/jbc.m807821200] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Activation of the p53 tumor suppressor by cellular stress leads to variable responses ranging from growth inhibition to apoptosis. TIGAR is a novel p53-inducible gene that inhibits glycolysis by reducing cellular levels of fructose-2,6-bisphosphate, an activator of glycolysis and inhibitor of gluconeogenesis. Here we describe structural and biochemical studies of TIGAR from Danio rerio. The overall structure forms a histidine phosphatase fold with a phosphate molecule coordinated to the catalytic histidine residue and a second phosphate molecule in a position not observed in other phosphatases. The recombinant human and zebra fish enzymes hydrolyze fructose-2,6-bisphosphate as well as fructose-1,6-bisphosphate but not fructose 6-phosphate in vitro. The TIGAR active site is open and positively charged, consistent with its enzymatic function as bisphosphatase. The closest related structures are the bacterial broad specificity phosphatase PhoE and the fructose-2,6-bisphosphatase domain of the bifunctional 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. The structural comparison shows that TIGAR combines an accessible active site as observed in PhoE with a charged substrate-binding pocket as seen in the fructose-2,6-bisphosphatase domain of the bifunctional enzyme.
Collapse
Affiliation(s)
- Hua Li
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, Rhode Island 02912, USA
| | | |
Collapse
|
11
|
Abstract
The histidine phosphatase superfamily is a large functionally diverse group of proteins. They share a conserved catalytic core centred on a histidine which becomes phosphorylated during the course of the reaction. Although the superfamily is overwhelmingly composed of phosphatases, the earliest known and arguably best-studied member is dPGM (cofactor-dependent phosphoglycerate mutase). The superfamily contains two branches sharing very limited sequence similarity: the first containing dPGM, fructose-2,6-bisphosphatase, PhoE, SixA, TIGAR [TP53 (tumour protein 53)-induced glycolysis and apoptosis regulator], Sts-1 and many other activities, and the second, smaller, branch composed mainly of acid phosphatases and phytases. Human representatives of both branches are of considerable medical interest, and various parasites contain superfamily members whose inhibition might have therapeutic value. Additionally, several phosphatases, notably the phytases, have current or potential applications in agriculture. The present review aims to draw together what is known about structure and function in the superfamily. With the benefit of an expanding set of histidine phosphatase superfamily structures, a clearer picture of the conserved elements is obtained, along with, conversely, a view of the sometimes surprising variation in substrate-binding and proton donor residues across the superfamily. This analysis should contribute to correcting a history of over- and mis-annotation in the superfamily, but also suggests that structural knowledge, from models or experimental structures, in conjunction with experimental assays, will prove vital for the future description of function in the superfamily.
Collapse
|
12
|
Shaikh MS, Mittal A, Bharatam PV. Design of fructose-2,6-bisphosphatase inhibitors: A novel virtual screening approach. J Mol Graph Model 2008; 26:900-6. [PMID: 17644015 DOI: 10.1016/j.jmgm.2007.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 06/14/2007] [Accepted: 06/16/2007] [Indexed: 11/25/2022]
Abstract
Fructose-2,6-bisphosphatase (FBPase-2) is a switch between gluconeogenesis and glycolysis in the hepatic cells. The structural features required for inhibitory activity of FBPase-2 were unidentified; no leads are available for inhibiting this important enzyme. In this paper pharmacophore mapping, molecular docking methods were employed in a virtual screening strategy to identify leads for FBPase-2. A receptor based pharmacophore map was modeled which comprised of important interactions as observed in co-crystal of rat liver isozyme with the product inhibitor fructose-6-phosphate. The pharmacophore model was validated against two databases of best docked structural analogues of fructose-2,6-bisphosphate and fructose-6-phosphate. The query generated was submitted for flexible search of ligands in chemical databases, namely LeadQuest, Maybridge and NCI. The hits obtained were further screened by molecular docking using FlexX.
Collapse
Affiliation(s)
- M S Shaikh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Mohali, Punjab 160062, India
| | | | | |
Collapse
|
13
|
Hakoshima T, Ichihara H. Structure of SixA, a Histidine Protein Phosphatase of the ArcB Histidine‐Containing Phosphotransfer Domain in Escherichia coli. Methods Enzymol 2007; 422:288-304. [PMID: 17628145 DOI: 10.1016/s0076-6879(06)22014-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Escherichia coli protein SixA was the first identified histidine protein phosphatase that dephosphorylates the histidine-containing phosphotransfer (HPt) domain of histidine kinase ArcB. The crystal structures of the free and tungstate-bound forms of SixA revealed an alpha/beta architecture with a fold unlike those previously described in eukaryotic protein phosphatases, but related to a family of phosphatases containing the arginine-histidine-glycine (RHG) motif at their active sites. Compared with these RHG phosphatases, SixA lacks an extra alpha-helical subdomain that forms a lid over the active site, thereby forming a relatively shallow groove important for accommodating the kidney-shaped four-helix bundle of the HPt domain. Sequence database searches revealed that a single SixA homolog was found in a variety of bacteria, where two homologs were found in some bacteria while no homolog was found in others. No SixA homologs were found in the majority of firmicutes and euryarchaea. Structure-based examination and multiple alignment of sequences revealed SixA active residues from loop beta1-H2, which might assist in the identification of SixA homologs among RHG phosphatases even with poor amino acid identity.
Collapse
|
14
|
Chevalier N, Bertrand L, Rider MH, Opperdoes FR, Rigden DJ, Michels PAM. 6-Phosphofructo-2-kinase and fructose-2,6-bisphosphatase in Trypanosomatidae. Molecular characterization, database searches, modelling studies and evolutionary analysis. FEBS J 2005; 272:3542-60. [PMID: 16008555 DOI: 10.1111/j.1742-4658.2005.04774.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fructose 2,6-bisphosphate is a potent allosteric activator of trypanosomatid pyruvate kinase and thus represents an important regulator of energy metabolism in these protozoan parasites. A 6-phosphofructo-2-kinase, responsible for the synthesis of this regulator, was highly purified from the bloodstream form of Trypanosoma brucei and kinetically characterized. By searching trypanosomatid genome databases, four genes encoding proteins homologous to the mammalian bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) were found for both T. brucei and the related parasite Leishmania major and four pairs in Trypanosoma cruzi. These genes were predicted to each encode a protein in which, at most, only a single domain would be active. Two of the T. brucei proteins showed most conservation in the PFK-2 domain, although one of them was predicted to be inactive due to substitution of residues responsible for ligating the catalytically essential divalent metal cation; the two other proteins were most conserved in the FBPase-2 domain. The two PFK-2-like proteins were expressed in Escherichia coli. Indeed, the first displayed PFK-2 activity with similar kinetic properties to that of the enzyme purified from T. brucei, whereas no activity was found for the second. Interestingly, several of the predicted trypanosomatid PFK-2/FBPase-2 proteins have long N-terminal extensions. The N-terminal domains of the two polypeptides with most similarity to mammalian PFK-2s contain a series of tandem repeat ankyrin motifs. In other proteins such motifs are known to mediate protein-protein interactions. Phylogenetic analysis suggests that the four different PFK-2/FBPase-2 isoenzymes found in Trypanosoma and Leishmania evolved from a single ancestral bifunctional enzyme within the trypanosomatid lineage. A possible explanation for the evolution of multiple monofunctional enzymes and for the presence of the ankyrin-motif repeats in the PFK-2 isoenzymes is presented.
Collapse
Affiliation(s)
- Nathalie Chevalier
- Research Unit for Tropical Diseases, Christian de Duve Institute of Cellular Pathology and Laboratory of Biochemistry, Université catholique de Louvain, Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
15
|
Manes NP, El-Maghrabi MR. The kinase activity of human brain 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is regulated via inhibition by phosphoenolpyruvate. Arch Biochem Biophys 2005; 438:125-36. [PMID: 15896703 DOI: 10.1016/j.abb.2005.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Revised: 04/14/2005] [Accepted: 04/14/2005] [Indexed: 12/31/2022]
Abstract
The two enzymatic activities of the highly conserved catalytic core of 6PF2K/Fru-2,6-P(2)ase are thought to be reciprocally regulated by the amino- and carboxy-terminal regions unique to each isoform. In this study, we describe the recombinant expression, purification, and kinetic characterization of two human brain 6PF2K/Fru-2,6-P(2)ase splice variants, HBP1 and HBP2. Interestingly, both lack an arginine which is highly conserved among other tissue isoforms, and which is understood to be critical to the fructose-2,6-bisphosphatase mechanism. As a result, the phosphatase activity of both HBP isoforms is negligible, but we found that it could be recovered by restoration of the arginine by site directed mutagenesis. We also found that AMP activated protein kinase and protein kinases A, B, and C catalyzed the phosphorylation of Ser-460 of HBP1, and that in addition both isoforms are phosphorylated at a second, as yet undetermined site by protein kinase C. However, none of the phosphorylations had any effect on the intrinsic kinetic characteristics of either enzymatic activity, and neither did point mutation (mimicking phosphorylation), deletion, and alternative-splice modification of the HBP1 carboxy-terminal region. Instead, these phosphorylations and mutations decreased the sensitivity of the 6PF2K to a potent allosteric inhibitor, phosphoenolpyruvate, which appears to be the major regulatory mechanism.
Collapse
Affiliation(s)
- Nathan P Manes
- Department of Physiology and Biophysics, Stony Brook University, NY 11794-8661, USA
| | | |
Collapse
|
16
|
Hamada K, Kato M, Shimizu T, Ihara K, Mizuno T, Hakoshima T. Crystal structure of the protein histidine phosphatase SixA in the multistep His-Asp phosphorelay. Genes Cells 2004; 10:1-11. [PMID: 15670209 DOI: 10.1111/j.1365-2443.2005.00817.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The multiple histidine-aspartate phosphorelay system plays a crucial role in cellular adaptation to environments in microorganisms and plants. Like kinase-phosphatase systems in higher eukaryotes, the multiple steps provide additional regulatory checkpoints with phosphatases. The Escherichia coli phosphatase SixA exhibits protein phosphatase activity against the histidine-containing phosphotransfer (HPt) domain located in the C-terminus of the histidine kinase ArcB engaged in anaerobic responses. We have determined the crystal structures of the free and tungstate-bound forms of SixA at 2.06 A and 1.90 A resolution, respectively. The results provide the first three-dimensional view of a bacterial protein histidine phosphatase, revealing a compact alpha/beta architecture related to a family of phosphatases containing the arginine-histidine-glycine (RHG) motif at their active sites. Compared with these RHG phosphatases, SixA lacks an extra alpha-helical subdomain as a lid over the active site, thereby forming a relatively shallow groove important for the accommodation of the HPt domain of ArcB. The tungstate ion, which mimics the substrate phosphate group, is located at the centre of the active site where the active residue, His8, points to the tungsten atom in the mode of in-line nucleophilic attack.
Collapse
Affiliation(s)
- Keisuke Hamada
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Okar DA, Wu C, Lange AJ. Regulation of the regulatory enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. ACTA ACUST UNITED AC 2004; 44:123-54. [PMID: 15581487 DOI: 10.1016/j.advenzreg.2003.11.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- David A Okar
- Veterans Administration Medical Center, One Veterans Drive, Minneapolis, MN 55417, USA
| | | | | |
Collapse
|
18
|
Choi IY, Wu C, Okar DA, Lange AJ, Gruetter R. Elucidation of the role of fructose 2,6-bisphosphate in the regulation of glucose fluxes in mice using in vivo (13)C NMR measurements of hepatic carbohydrate metabolism. ACTA ACUST UNITED AC 2002. [PMID: 12230553 DOI: 10.1046/j.1432-1033.2002.t01-1-03125.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fructose 2,6-bisphosphate (Fru-2,6-P2) plays an important role in the regulation of major carbohydrate fluxes as both allosteric activator and inhibitor of target enzymes. To examine the role of Fru-2,6-P2 in the regulation of hepatic carbohydrate metabolism in vivo, Fru-2,6-P2 levels were elevated in ADM mice with adenovirus-mediated overexpression of a double mutant bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (n = 6), in comparison to normal control mice (control, n = 6). The rates of hepatic glycogen synthesis in the ADM and control mouse liver in vivo were measured using new advances in 13C NMR including 3D localization in conjunction with [1-13C]glucose infusion. In addition to glycogen C1, the C6 and C2-C5 signals were measured simultaneously for the first time in vivo, which provide the basis for the estimation of direct and indirect synthesis of glycogen in the liver. The rate of label incorporation into glycogen C1 was not different between the control and ADM group, whereas the rate of label incorporation into glycogen C6 signals was in the ADM group 5.6 +/- 0.5 micro mol.g-1.h-1, which was higher than that of the control group of 3.7 +/- 0.5 micro mol.g-1.h-1 (P < 0.02). The rates of net glycogen synthesis, determined by the glycogen C2-C5 signal changes, were twofold higher in the ADM group (P = 0.04). The results provide direct in vivo evidence that the effects of elevated Fru-2,6-P2 levels in the liver include increased glycogen storage through indirect synthesis of glycogen. These observations provide a key to understanding the mechanisms by which elevated hepatic Fru-2,6-P2 levels promote reduced hepatic glucose production and lower blood glucose in diabetes mellitus.
Collapse
Affiliation(s)
- In-Young Choi
- Departments of RadiologyBiochemistry, Molecular Biology and Biophysics Neuroscience University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
19
|
Jedrzejas MJ. Structure, function, and evolution of phosphoglycerate mutases: comparison with fructose-2,6-bisphosphatase, acid phosphatase, and alkaline phosphatase. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2001; 73:263-87. [PMID: 10958932 DOI: 10.1016/s0079-6107(00)00007-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M J Jedrzejas
- Department of Microbiology, University of Alabama at Birmingham, 933 19th Street South, CHSB-19 room 545, Birmingham, AL 35-294-2041, USA.
| |
Collapse
|
20
|
Wu C, Okar DA, Newgard CB, Lange AJ. Overexpression of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production. J Clin Invest 2001; 107:91-8. [PMID: 11134184 PMCID: PMC198549 DOI: 10.1172/jci11103] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase is an important regulatory enzyme of glucose metabolism. By controlling the level of fructose-2,6-bisphosphate, an allosteric activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase regulates hepatic glucose output. We studied the effects of adenovirus-mediated overexpression of this enzyme on hepatic glucose metabolism in normal or diabetic mice. These animals were treated with virus encoding either wild-type or bisphosphatase activity-deficient 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase. Seven days after virus injection, hepatic fructose-2,6-bisphosphate levels increased significantly in both normal and diabetic mice, with larger increases observed in animals with overexpression of the mutant enzyme. Blood glucose levels in normal mice overexpressing either enzyme were lowered, accompanied by increased plasma lactate, triglycerides, and FFAs. Blood glucose levels were markedly reduced in diabetic mice overexpressing the wild-type enzyme, and still more so in mice overexpressing the mutant form of the enzyme. The lower blood glucose levels in diabetic mice were accompanied by partially normalized plasma triglycerides and FFAs, increased plasma lactate, and increased liver glycogen levels, relative to diabetic mice treated with a control adenovirus. Our findings underscore the critical role played by hepatic 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in control of fuel homeostasis and suggest that this enzyme may be considered as a therapeutic target in diabetes.
Collapse
Affiliation(s)
- C Wu
- Department of Biochemistry, Molecular Biology and Biophysics, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | |
Collapse
|
21
|
Okar DA, Live DH, Devany MH, Lange AJ. Mechanism of the bisphosphatase reaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase probed by (1)H-(15)N NMR spectroscopy. Biochemistry 2000; 39:9754-62. [PMID: 10933792 DOI: 10.1021/bi000815k] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histidines in the bisphosphatase domain of rat liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase were labeled with (15)N, both specifically at N1' and globally, for use in heteronuclear single quantum correlation (HSQC) NMR spectroscopic analyses. The histidine-associated (15)N resonances were assigned by correlation to the C2' protons which had been assigned previously [Okar et al., Biochemistry 38, 1999, 4471-79]. Acquisition of the (1)H-(15)N HSQC from a phosphate-free sample demonstrated that the existence of His-258 in the rare N1' tautomeric state is dependent upon occupation of the phosphate binding site filled by the O2 phosphate of the substrate, fructose-2,6-bisphosphate, and subsequently, the phosphohistidine intermediate. The phosphohistidine intermediate is characterized by two hydrogen bonds involving the catalytic histidines, His-258 and His-392, which are directly observed at the N1' positions of the imidazole rings. The N1' of phospho-His-258 is protonated ((1)H chemical shift, 14.0 ppm) and hydrogen bonded to the backbone carbonyl of Gly-259. The N1' of cationic His-392 is hydrogen bonded ((1)H chemical shift, 13.5 ppm) to the phosphoryl moiety of the phosphohistidine. The existence of a protonated phospho-His-258 intermediate and the observation of a fairly strong hydrogen bond to the same phosphohistidine implies that hydrolysis of the covalent intermediate proceeds without any requirement for an "activated" water. Using the labeled histidines as probes of the catalytic site mutation of Glu-327 to alanine revealed that, in addition to its function as the proton donor to fructose-6-phosphate during formation of the transient phosphohistidine intermediate at the N3' of His-258, this residue has a significant role in maintaining the structural integrity of the catalytic site. The (1)H-(15)N HSQC data also provide clear evidence that despite being a surface residue, His-446 has a very acidic pK(a), much less than 6.0. On the basis of these observations a revised mechanism for fructose-2,6-bisphosphatase that is consistent with all of the previously published kinetic data and X-ray crystal structures is proposed. The revised mechanism accounts for the structural and kinetic consequences produced by mutation of the catalytic histidines and Glu-327. It also provides the basis for a hypothetical mechanism of bisphosphatase activation by cAMP-dependent phosphorylation of Ser-32, which is located in the N-terminal kinase domain.
Collapse
Affiliation(s)
- D A Okar
- University of Minnesota, Medical School and College of Biological Sciences, Department of Biochemistry, Molecular Biology, and Biophysics, 321 Church Street S.E., Minneapolis, Minnesota 55455, USA
| | | | | | | |
Collapse
|
22
|
Cheong CG, Escalante-Semerena JC, Rayment I. The three-dimensional structures of nicotinate mononucleotide:5,6- dimethylbenzimidazole phosphoribosyltransferase (CobT) from Salmonella typhimurium complexed with 5,6-dimethybenzimidazole and its reaction products determined to 1.9 A resolution. Biochemistry 1999; 38:16125-35. [PMID: 10587435 DOI: 10.1021/bi991752c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase (CobT) from Salmonella typhimurium plays a central role in the synthesis of alpha-ribazole, which is a key component of the lower ligand of cobalamin. Two X-ray structures of CobT are reported here at 1.9 A resolution. First, a complex of CobT with 5,6-dimethylbenzimidazole, and second, a complex of CobT with its reaction products, nicotinate and alpha-ribazole-5'-phosphate. CobT was cocrystallized with 5,6-dimethylbenzimidazole (DMB) in the space group P2(1)2(1)2 with unit cell dimensions of a = 72.1 A, b = 90.2 A, and c = 47.5 A and one protomer per asymmetric unit. Subsequently, the crystals containing DMB were soaked in nicotinate mononucleotide whereupon the physiological reaction occurred in the crystal lattice to yield nicotinate and alpha-ribazole-5'-phosphate. These studies show that CobT is a dimer where each subunit consists of two domains. The large domain is dominated by a parallel six-stranded beta-sheet with connecting alpha-helices that exhibit the topology of a Rossmann fold. The small domain is made from components of the N- and C-terminal sections of the polypeptide chain and contains a three-helix bundle. The fold of CobT is unrelated to the type I and II phosphoribosylpyrophosphate dependent transferases and does not appear to be related to any other protein whose structure is known. The enzyme active site is located in a large cavity formed by the loops at the C-terminal ends of the beta-strands and the small domain of the neighboring subunit. DMB binds in a hydrophobic pocket created in part by the neighboring small domain. This is consistent with the broad specificity of this enzyme for aromatic substrates [Trzebiatowski, J. R., Escalante-Semerena (1997) J. Biol. Chem. 272, 17662-17667]. The binding site for DMB suggests that Glu317 is the catalytic base required for the reaction. The remainder of the cavity binds the nicotinate and ribose-5'-phosphate moieties, which are nestled within the loops at the ends of the beta-strands. Interestingly, the orientation of the substrate and products are opposite from that expected for a Rossmann fold.
Collapse
Affiliation(s)
- C G Cheong
- Institute for Enzyme Research, Department of Biochemistry, University of Wisconsin, Madison 53705, USA
| | | | | |
Collapse
|
23
|
Yuen MH, Wang XL, Mizuguchi H, Uyeda K, Hasemann CA. A switch in the kinase domain of rat testis 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Biochemistry 1999; 38:12333-42. [PMID: 10493801 DOI: 10.1021/bi991268+] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase plays an essential role in the regulation of glucose metabolism by both producing and degrading Fru-2,6-P(2) via its distinct catalytic activities. The 6-PF-2-K and Fru-2,6-P(2)ase active sites are located in separate domains of the enzyme. The kinase domain is structurally related to the superfamily of mononucleotide binding proteins that includes adenylate kinase and the G-proteins. We have determined three new structures of the enzymatic monomer, each with a different ligand in the ATP binding site of the 6-PF-2-K domain (AMP-PNP, PO(4), and water). A comparison of these three new structures with the ATPgammaS-bound 6-PF-2-K domain reveals a rearrangement of a helix that is dependent on the ligand bound in the ATP binding site of the enzyme. This helix motion dramatically alters the position of a catalytic residue (Lys172). This catalytic cation is analogous to the Arg residue donated by the rasGAP protein, and the Arg residue at the core of the GTP or GDP sensing switch motion seen in the heterotrimeric G-proteins. In addition, a succinate molecule is observed in the Fru-6-P binding site. Kinetic analysis of succinate inhibition of the 6-PF-2-K reaction is consistent with the structural findings, and suggests a mechanism for feedback inhibition of glycolysis by citric acid cycle intermediates. Alterations in the 6-PF-2-K kinetics of several proteins mutated near both the switch and the succinate binding site suggest a mode of communication between the ATP- and F6P binding sites. Together with these kinetic data, these new structures provide insights into the mechanism of the 6-PF-2-K activity of this important bifunctional enzyme.
Collapse
Affiliation(s)
- M H Yuen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | |
Collapse
|
24
|
Durante P, Gueuning MA, Darville MI, Hue L, Rousseau GG. Apoptosis induced by growth factor withdrawal in fibroblasts overproducing fructose 2,6-bisphosphate. FEBS Lett 1999; 448:239-43. [PMID: 10218483 DOI: 10.1016/s0014-5793(99)00387-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Fructose 2,6-bisphosphate is a potent endogenous stimulator of glycolysis. A high aerobic glycolytic rate often correlates with increased cell proliferation. To investigate this relationship, we have produced clonal cell lines of Rat-1 fibroblasts that stably express transgenes coding for 6-phosphofructo-2-kinase, which catalyzes the synthesis of fructose 2,6-bisphosphate, or for fructose 2,6-bisphosphatase, which catalyzes its degradation. While serum deprivation in culture reduced the growth rate of control cells, it caused apoptosis in cells overproducing fructose 2,6-bisphosphate. Apoptosis was inhibited by 5-amino-4-imidazolecarboxamide riboside, suggesting that 5'-AMP-activated protein kinase interferes with this phenomenon.
Collapse
Affiliation(s)
- P Durante
- Hormone and Metabolic Research Unit, Université Catholique de Louvain and Christian de Duve Institute of Cellular Pathology, Brussels, Belgium
| | | | | | | | | |
Collapse
|
25
|
Rigden DJ, Walter RA, Phillips SE, Fothergill-Gilmore LA. Sulphate ions observed in the 2.12 A structure of a new crystal form of S. cerevisiae phosphoglycerate mutase provide insights into understanding the catalytic mechanism. J Mol Biol 1999; 286:1507-17. [PMID: 10064712 DOI: 10.1006/jmbi.1999.2566] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The structure of a new crystal form of Saccharomyces cerevisiae phosphoglycerate mutase has been solved and refined to 2.12 A with working and free R-factors of 19.7 and 22.9 %, respectively. Higher-resolution data and greater non-crystallographic symmetry have produced a more accurate protein structure than previously. Prominent among the differences from the previous structure is the presence of two sulphate ions within each active site cleft. The separation of the sulphates suggests that they may occupy the same sites as phospho groups of the bisphosphate ligands of the enzyme. Plausible binding modes for 2,3-bisphosphoglycerate and 1, 3-bisphosphoglycerate are thereby suggested. These results support previous conclusions from mutant studies, highlight interesting new targets for mutagenesis and suggest a possible mechanism of enzyme phosphorylation.
Collapse
Affiliation(s)
- D J Rigden
- School of Biochemistry and Molecular Biology, Astbury Building, University of Leeds, Leeds, LS2 9JT, UK
| | | | | | | |
Collapse
|
26
|
Metón I, Caseras A, Mediavilla D, Fernández F, Baanante IV. Molecular cloning of a cDNA encoding 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase from liver of Sparus aurata: nutritional regulation of enzyme expression. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1444:153-65. [PMID: 10023046 DOI: 10.1016/s0167-4781(98)00270-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A cDNA clone encoding full-length 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2, 6-P2ase) was isolated and sequenced from a Sparus aurata liver cDNA library. The 2527 bp nucleotide sequence of the cDNA contains a 73 bp 5'-untranslated region (5'-UTR), an open reading frame that encodes a 469 amino acid protein and 1041 bp at the 3'-UTR. The deduced amino acid sequence is the first inferred 6PF-2-K/Fru-2, 6-P2ase in fish. The kinase and bisphosphatase domains, where the residues described as crucial for the mechanism of reaction of the bifunctional enzyme are located, present a high degree of homology with other liver isoenzymes. However, within the first 30 amino acids at the N-terminal regulatory domain of the fish enzyme a low homology is found. Nutritional regulation of the 6-phosphofructo-2-kinase activity, together with immunodetectable protein and mRNA levels of 6PF-2-K/Fru-2,6-P2ase, was observed after starvation and refeeding. In contrast to results previously described for rat liver, the decrease in immunodetectable protein and kinase activity caused by starvation was associated in the teleostean fish to a decrease in mRNA levels.
Collapse
Affiliation(s)
- I Metón
- Departament de Bioquímica, Facultat de Farmàcia, Universitat de Barcelona, Avda. Diagonal 643, 08028, Barcelona, Spain
| | | | | | | | | |
Collapse
|
27
|
Mizuguchi H, Cook PF, Tai CH, Hasemann CA, Uyeda K. Reaction mechanism of fructose-2,6-bisphosphatase. A mutation of nucleophilic catalyst, histidine 256, induces an alteration in the reaction pathway. J Biol Chem 1999; 274:2166-75. [PMID: 9890979 DOI: 10.1074/jbc.274.4.2166] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A bifunctional enzyme, fructose-6-phosphate,2-kinase/fructose 2, 6-bisphosphatase (Fru-6-P,2-kinase/Fru-2,6-Pase), catalyzes synthesis and degradation of fructose 2,6-bisphosphate (Fru-2,6-P2). Previously, the rat liver Fru-2,6-Pase reaction (Fru-2,6-P2 --> Fru-6-P + Pi) has been shown to proceed via a phosphoenzyme intermediate with His258 phosphorylated, and mutation of the histidine to alanine resulted in complete loss of activity (Tauler, A., Lin, K., and Pilkis, S. J. (1990) J. Biol. Chem. 265, 15617-15622). In the present study, it is shown that mutation of the corresponding histidine (His256) of the rat testis enzyme decreases activity by less than a factor of 10 with a kcat of 17% compared with the wild type enzyme. Mutation of His390 (in close proximity to His256) to Ala results in a kcat of 12.5% compared with the wild type enzyme. Attempts to detect a phosphohistidine intermediate with the H256A mutant enzyme were unsuccessful, but the phosphoenzyme is detected in the wild type, H390A, R255A, R305S, and E325A mutant enzymes. Data demonstrate that the mutation of His256 induces a change in the phosphatase hydrolytic reaction mechanism. Elimination of the nucleophilic catalyst, H256A, results in a change in mechanism. In the H256A mutant enzyme, His390 likely acts as a general base to activate water for direct hydrolysis of the 2-phosphate of Fru-2,6-P2. Mutation of Arg255 and Arg305 suggests that the arginines probably have a role in neutralizing excess charge on the 2-phosphate and polarizing the phosphoryl for subsequent transfer to either His256 or water. The role of Glu325 is less certain, but it may serve as a general acid, protonating the leaving 2-hydroxyl of Fru-2,6-P2.
Collapse
Affiliation(s)
- H Mizuguchi
- Research Service, Dallas Veterans Affairs Medical Center, Dallas, Texas 75216, USA
| | | | | | | | | |
Collapse
|
28
|
Yuen MH, Mizuguchi H, Lee YH, Cook PF, Uyeda K, Hasemann CA. Crystal structure of the H256A mutant of rat testis fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase. Fructose 6-phosphate in the active site leads to mechanisms for both mutant and wild type bisphosphatase activities. J Biol Chem 1999; 274:2176-84. [PMID: 9890980 DOI: 10.1074/jbc.274.4.2176] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Fructose-6-phosphate,2-kinase/fructose-2,6-bisphosphatase (Fru-6-P, 2-kinase/Fru-2,6-Pase) is a bifunctional enzyme, catalyzing the interconversion of beta-D-fructose- 6-phosphate (Fru-6-P) and fructose-2,6-bisphosphate (Fru-2,6-P2) at distinct active sites. A mutant rat testis isozyme with an alanine replacement for the catalytic histidine (H256A) in the Fru-2,6-Pase domain retains 17% of the wild type activity (Mizuguchi, H., Cook, P. F., Tai, C-H., Hasemann, C. A., and Uyeda, K. (1998) J. Biol. Chem. 274, 2166-2175). We have solved the crystal structure of H256A to a resolution of 2. 4 A by molecular replacement. Clear electron density for Fru-6-P is found at the Fru-2,6-Pase active site, revealing the important interactions in substrate/product binding. A superposition of the H256A structure with the RT2K-Wo structure reveals no significant reorganization of the active site resulting from the binding of Fru-6-P or the H256A mutation. Using this superposition, we have built a view of the Fru-2,6-P2-bound enzyme and identify the residues responsible for catalysis. This analysis yields distinct catalytic mechanisms for the wild type and mutant proteins. The wild type mechanism would lead to an inefficient transfer of a proton to the leaving group Fru-6-P, which is consistent with a view of this event being rate-limiting, explaining the extremely slow turnover (0. 032 s-1) of the Fru-2,6-Pase in all Fru-6-P,2-kinase/Fru-2,6-Pase isozymes.
Collapse
Affiliation(s)
- M H Yuen
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75235, USA
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Fructose-2,6-bisphosphate is an important intracellular biofactor in the control of carbohydrate metabolic fluxes in eukaryotes. It is generated from ATP and fructose-6-phosphate by 6-phosphofructo-2-kinase and degraded to fructose-6-phosphate and phosphate ion by fructose-2,6-bisphosphatase. In most organisms these enzymatic activities are contained in a single polypeptide. The reciprocal modulation of the kinase and bisphosphatase activities by post-translational modifications places the level of the biofactor under the control of extra-cellular signals. In general, these signals are generated in response to changing nutritional states, therefore, fructose-2,6-bisphosphate plays a role in the adaptation of organisms, and the tissues within them, to changes in environmental and metabolic states. Although the specific mechanism of fructose-2,6-bisphosphate action varies between species and between tissues, most involve the allosteric activation of 6-phosphofructo-1-kinase and inhibition of fructose-1,6-bisphosphatase. These highly conserved enzymes regulate the fructose-6-phosphate/fructose-1,6-bisphosphate cycle, and thereby, determine the carbon flux. It is by reciprocal modulation of these activities that fructose-2,6-bisphosphate plays a fundamental role in eukaryotic carbohydrate metabolism.
Collapse
Affiliation(s)
- D A Okar
- University of Minnesota, Medical School, Department of Biochemistry, Molecular Biology, and Biophysics, Minneapolis 55455, USA
| | | |
Collapse
|
30
|
Liberator P, Anderson J, Feiglin M, Sardana M, Griffin P, Schmatz D, Myers RW. Molecular cloning and functional expression of mannitol-1-phosphatase from the apicomplexan parasite Eimeria tenella. J Biol Chem 1998; 273:4237-44. [PMID: 9461622 DOI: 10.1074/jbc.273.7.4237] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A metabolic pathway responsible for the biosynthesis and utilization of mannitol is present in the seven species of Eimeria that infect chickens, but is not in the avian host. Mannitol-1-phosphatase (M1Pase), a key enzyme for mannitol biosynthesis, is a highly substrate-specific phosphatase and, accordingly, represents an attractive chemotherapeutic target. Amino acid sequence of tryptic peptides obtained from biochemically purified Eimeria tenella M1Pase was used to synthesize degenerate oligonucleotide hybridization probes. Using these reagents, a partial genomic clone and full-length cDNA clones have been isolated and characterized. The deduced amino acid sequence of E. tenella M1Pase shows limited overall homology to members of the phosphohistidine family of phosphatases. This limited homology to other histidine phosphatases does, however, include several conserved residues that have been shown to be essential for their catalytic activity. Kinetic parameters of recombinant M1Pase expressed in bacteria are essentially identical to those of the biochemically purified preparation from E. tenella. Moreover, recombinant M1Pase is subject to active site-directed, hydroxylamine-reversible inhibition by the histidine-selective acylating reagent diethyl pyrocarbonate. These results indicate the presence of an essential histidine residue(s) at the M1Pase active site, as predicted for a histidine phosphatase.
Collapse
Affiliation(s)
- P Liberator
- Department of Parasite Biochemistry and Cell Biology, Merck Research Laboratories, Rahway, New Jersey 07065, USA.
| | | | | | | | | | | | | |
Collapse
|
31
|
Lee YH, Olson TW, Ogata CM, Levitt DG, Banaszak LJ, Lange AJ. Crystal structure of a trapped phosphoenzyme during a catalytic reaction. NATURE STRUCTURAL BIOLOGY 1997; 4:615-8. [PMID: 9253407 DOI: 10.1038/nsb0897-615] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The crystal structure of the fructose-2,6-bisphosphatase domain trapped during the reaction reveal a phosphorylated His 258, and a water molecule immobilized by the product, fructose-6-phosphate. The geometry suggests that the dephosphorylation step requires prior removal of the product for an 'associative in-line' phosphoryl transfer to the catalytic water.
Collapse
|
32
|
Lima CD, D'Amico KL, Naday I, Rosenbaum G, Westbrook EM, Hendrickson WA. MAD analysis of FHIT, a putative human tumor suppressor from the HIT protein family. Structure 1997; 5:763-74. [PMID: 9261067 DOI: 10.1016/s0969-2126(97)00231-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND The fragile histidine triad (FHIT) protein is a member of the large and ubiquitous histidine triad (HIT) family of proteins. It is expressed from a gene located at a fragile site on human chromosome 3, which is commonly disrupted in association with certain cancers. On the basis of the genetic evidence, it has been postulated that the FHIT protein may function as a tumor suppressor, implying a role for the FHIT protein in carcinogenesis. The FHIT protein has dinucleoside polyphosphate hydrolase activity in vitro, thus suggesting that its role in vivo may involve the hydrolysis of a phosphoanhydride bond. The structural analysis of FHIT will identify critical residues involved in substrate binding and catalysis, and will provide insights into the in vivo function of HIT proteins. RESULTS The three-dimensional crystal structures of free and nucleoside complexed FHIT have been determined from multiwavelength anomalous diffraction (MAD) data, and they represent some of the first successful structures to be measured with undulator radiation at the Advanced Photon Source. The structures of FHIT reveal that this protein exists as an intimate homodimer, which is based on a core structure observed previously in another human HIT homolog, protein kinase C interacting protein (PKCI), but has distinctive elaborations at both the N and C termini. Conserved residues within the HIT family, which are involved in the interactions of the proteins with nucleoside and phosphate groups, appear to be relevant for the catalytic activity of this protein. CONCLUSIONS The structure of FHIT, a divergent HIT protein family member, in complex with a nucleotide analog suggests a metal-independent catalytic mechanism for the HIT family of proteins. A structural comparison of FHIT with PKCI and galactose-1-phosphate uridylyltransferase (GaIT) reveals additional implications for the structural and functional evolution of the ubiquitous HIT family of proteins.
Collapse
Affiliation(s)
- C D Lima
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | | | | | | | | | |
Collapse
|
33
|
Argaud D, Kirby TL, Newgard CB, Lange AJ. Stimulation of glucose-6-phosphatase gene expression by glucose and fructose-2,6-bisphosphate. J Biol Chem 1997; 272:12854-61. [PMID: 9139747 DOI: 10.1074/jbc.272.19.12854] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Glucose-6-phosphatase, a key enzyme in the homeostatic regulation of blood glucose concentration, catalyzes the terminal step in gluconeogenesis and glycogenolysis. Glucose, the product of the glucose-6-phosphatase reaction, dramatically increases the level of glucose-6-phosphatase mRNA transcripts in primary hepatocytes (20-fold), and the maximum response is obtained at a glucose concentration as low as 11 mM. Glucose specifically increases glucose-6-phosphatase mRNA and L-type pyruvate kinase mRNA. In the rat hepatoma-derived cell line, Fao, glucose increases the glucose-6-phosphatase mRNA only modestly (3-fold). In the presence of high glucose concentrations, overexpression of glucokinase in Fao cells via recombinant adenovirus vectors increases lactate production to the level found in primary hepatocytes and increases glucose-6-phosphatase gene expression by 21-fold. Similar overexpression of hexokinase I in Fao cells with high levels of glucose does not increase lactate production nor does it change the response of glucose-6-phosphatase mRNA to glucose. Glucokinase overexpression in Fao cells blunts the previously reported inhibitory effect of insulin on glucose-6-phosphatase gene expression in these cells. Raising the cellular concentration of fructose-2,6-bisphosphate, a potent effector of the direction of carbon flux through the gluconeogenic and glycolytic pathways, also stimulated glucose-6-phosphatase gene expression in Fao cells. Increasing the fructose-2,6-bisphosphate concentration over a 15-fold range (12 +/- 1 to 187 +/- 17 pmol/plate) via an adenoviral vector overexpression system, led to a 6-fold increase (0.32 +/- 0. 03 to 2.2 +/- 0.33 arbitrary units of mRNA) in glucose-6-phosphatase gene expression with a concomitant increase in glycolysis and a decrease in gluconeogenesis. Also, the effects of fructose-2, 6-bisphosphate concentrations on fructose-1,6-bisphosphatase gene expression were stimulatory, leading to a 5-6-fold increase in mRNA level over a 15-fold range in fructose-2,6-bisphosphate level. Liver pyruvate kinase and phosphoenolpyruvate carboxykinase mRNA were unchanged by the manipulation of fructose-2,6-bisphosphate level.
Collapse
Affiliation(s)
- D Argaud
- Department of Biochemistry, Medical School, University of Minnesota, Minneapolis, Minnesota 55455-0347, USA
| | | | | | | |
Collapse
|
34
|
Abstract
The complete sequence of the yeast genome predicts the existence of 29 proteins belonging to the ubiquitous ATP-binding cassette (ABC) superfamily. Using binary comparison, phylogenetic classification and detection of conserved amino acid residues, the yeast ABC proteins have been classified in a total of six clusters, including ten subclusters of distinct predicted topology and presumed distinct function. Study of the yeast ABC proteins provides insight into the physiological function and biochemical mechanisms of their human homologues, such as those involved in cystic fibrosis, adrenoleukodystrophy, Zellweger syndrome, multidrug resistance and the antiviral activity of interferons.
Collapse
Affiliation(s)
- A Decottignies
- Unité de Biochimie Physiologique, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | |
Collapse
|
35
|
Hasemann CA, Istvan ES, Uyeda K, Deisenhofer J. The crystal structure of the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase reveals distinct domain homologies. Structure 1996; 4:1017-29. [PMID: 8805587 DOI: 10.1016/s0969-2126(96)00109-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Glucose homeostasis is maintained by the processes of glycolysis and gluconeogenesis. The importance of these pathways is demonstrated by the severe and life threatening effects observed in various forms of diabetes. The bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase catalyzes both the synthesis and degradation of fructose-2,6-bisphosphate, a potent regulator of glycolysis. Thus this bifunctional enzyme plays an indirect yet key role in the regulation of glucose metabolism. RESULTS We have determined the 2.0 A crystal structure of the rat testis isozyme of this bifunctional enzyme. The enzyme is a homodimer of 55 kDa subunits arranged in a head-to-head fashion, with each monomer consisting of independent kinase and phosphatase domains. The location of ATPgammaS and inorganic phosphate in the kinase and phosphatase domains, respectively, allow us to locate and describe the active sites of both domains. CONCLUSIONS The kinase domain is clearly related to the superfamily of mononucleotide binding proteins, with a particularly close relationship to the adenylate kinases and the nucleotide-binding portion of the G proteins. This is in disagreement with the broad speculation that this domain would resemble phosphofructokinase. The phosphatase domain is structurally related to a family of proteins which includes the cofactor independent phosphoglycerate mutases and acid phosphatases.
Collapse
Affiliation(s)
- C A Hasemann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75235-8884, USA.
| | | | | | | |
Collapse
|
36
|
Lee YH, Ogata C, Pflugrath JW, Levitt DG, Sarma R, Banaszak LJ, Pilkis SJ. Crystal structure of the rat liver fructose-2,6-bisphosphatase based on selenomethionine multiwavelength anomalous dispersion phases. Biochemistry 1996; 35:6010-9. [PMID: 8634242 DOI: 10.1021/bi9600613] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The crystal structure of the recombinant fructose-2,6-bisphosphatase domain, which covers the residues between 251 and 440 of the rat liver bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase, was determined by multiwavelength anomalous dispersion phasing and refined at 2.5 A resolution. The selenomethionine-substituted protein was induced in the methionine auxotroph, Escherichia coli DL41DE3, purified, and crystallized in a manner similar to that of the native protein. Phase information was calculated using the multiwavelength anomalous dispersion data collected at the X-ray wavelengths near the absorption edge of the K-shell alpha electrons of selenium. The fructose-2,6-bisphosphatase domain has a core alpha/beta structure which consists of six stacked beta-strands, four parallel and two antiparallel. The core beta-sheet is surrounded by nine alpha-helices. The catalytic site, as defined by a bound phosphate ion, is positioned near the C-terminal end of the beta-sheet and close to the N-terminal end of an alpha-helix. The active site pocket is funnel-shaped. The narrow opening of the funnel is wide enough for a water molecule to pass. The key catalytic residues, including His7, His141, and Glu76, are near each other at the active site and probably function as general acids and/or bases during a catalytic cycle. The inorganic phosphate molecule is bound to an anion trap formed by Arg6, His7, Arg56, and His141. The core structure of the Fru-2,6-P2ase is similar to that of the yeast phosphoglycerate mutase and the rat prostatic acid phosphatase. However, the structure of one of the loops near the active site is completely different from the other family members, perhaps reflecting functional differences and the nanomolar range affinity of Fru-2,6-P2ase for its substrate. The imidazole rings of the two key catalytic residues, His7 and His141, are not parallel as in the yeast phosphoglycerate mutase. The crystal structure is used to interpret the existing chemical data already available for the bisphosphatase domain. In addition, the crystal structure is compared with two other proteins that belong to the histidine phosphatase family.
Collapse
Affiliation(s)
- Y H Lee
- Department of Biochemistry, University of Minnesota, Minneapolis 55455, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Argaud D, Lange AJ, Becker TC, Okar DA, el-Maghrabi MR, Newgard CB, Pilkis SJ. Adenovirus-mediated overexpression of liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in gluconeogenic rat hepatoma cells. Paradoxical effect on Fru-2,6-P2 levels. J Biol Chem 1995; 270:24229-36. [PMID: 7592629 DOI: 10.1074/jbc.270.41.24229] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase has been postulated to be a metabolic signaling enzyme, which acts as a switch between glycolysis and gluconeogenesis in mammalian liver by regulating the level of fructose 2,6-bisphosphate. The effect of overexpressing the bifunctional enzyme was studied in FAO cells transduced with recombinant adenoviral constructs of either the wild-type enzyme or a double mutant that has no bisphosphatase activity or protein kinase phosphorylation site. With both constructs, the mRNA and protein were overexpressed by 150- and 40-fold, respectively. Addition of cAMP to cells overexpressing the wild-type enzyme increased the S0.5 for fructose 6-phosphate of the kinase by 1.5-fold but had no effect on the overexpressed double mutant. When the wild-type enzyme was overexpressed, there was a decrease in fructose 2,6-bisphosphate levels, even though 6-phosphofructo-2-kinase maximal activity increased more than 22-fold and was in excess of fructose-2,6-bisphosphatase maximal activity. The kinase:bisphosphatase maximal activity ratio was decreased, indicating that the overexpressed enzyme was phosphorylated by cAMP-dependent protein kinase. Overexpression of the double mutant resulted in a 28-fold increase in kinase maximal activity and a 3-4-fold increase in fructose 2,6-bisphosphate levels. Overexpression of this form inhibited the rate of glucose production from dihydroxyacetone by 90% and stimulated the rate of lactate plus pyruvate production by 200%. In contrast, overexpression of the wild-type enzyme enhanced glucose production and inhibited lactate plus pyruvate production. These results provide direct support for fructose 2,6-bisphosphate as a regulator of gluconeogenic/glycolytic pathway flux and suggest that regulation of bifunctional enzyme activities by covalent modification is more important than the amount of the protein.
Collapse
Affiliation(s)
- D Argaud
- Department of Physiology and Biophysics, SUNY at Stony Brook 11794, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Kurland IJ, Pilkis SJ. Covalent control of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: insights into autoregulation of a bifunctional enzyme. Protein Sci 1995; 4:1023-37. [PMID: 7549867 PMCID: PMC2143155 DOI: 10.1002/pro.5560040601] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The hepatic bifunctional enzyme, 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P2ase), E.C. 2.7-1-105/E.C. 3-1-3-46, is one member of a family of unique bifunctional proteins that catalyze the synthesis and degradation of the regulatory metabolite fructose-2,6-bisphosphate (Fru-2,6-P2). Fru-2,6-P2 is a potent activator of the glycolytic enzyme 6-phosphofructo-1-kinase and an inhibitor of the gluconeogenic enzyme fructose-1,6-bisphosphatase, and provides a switching mechanism between these two opposing pathways of hepatic carbohydrate metabolism. The activities of the hepatic 6PF-2-K/Fru-2,6-P2ase isoform are reciprocally regulated by a cyclic AMP-dependent protein kinase (cAPK)-catalyzed phosphorylation at a single NH2-terminal residue, Ser-32. Phosphorylation at Ser-32 inhibits the kinase and activates the bisphosphatase, in part through an electrostatic mechanism. Substitution of Asp for Ser-32 mimics the effects of cAPK-catalyzed phosphorylation. In the dephosphorylated homodimer, the NH2- and COOH-terminal tail regions also have an interaction with their respective active sites on the same subunit to produce an autoregulatory inhibition of the bisphosphatase and activation of the kinase. In support of this hypothesis, deletion of either the NH2- or COOH-terminal tail region, or both regions, leads to a disruption of these interactions with a maximal activation of the bisphosphatase. Inhibition of the kinase is observed with the NH2-truncated forms, in which there is also a diminution of cAPK phosphorylation to decrease the Km for Fru-6-P. Phosphorylation of the bifunctional enzyme by cAPK disrupts these autoregulatory interactions, resulting in inhibition of the kinase and activation of the bisphosphatase. Therefore, effects of cyclic AMP-dependent phosphorylation are mediated by a combination of electrostatic and autoregulatory control mechanisms.
Collapse
Affiliation(s)
- I J Kurland
- Department of Physiology, State University of New York at Stony Brook 11794-8661, USA
| | | |
Collapse
|
39
|
Lei KJ, Pan CJ, Liu JL, Shelly LL, Chou JY. Structure-function analysis of human glucose-6-phosphatase, the enzyme deficient in glycogen storage disease type 1a. J Biol Chem 1995; 270:11882-6. [PMID: 7744838 DOI: 10.1074/jbc.270.20.11882] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glucose-6-phosphatase (G6Pase) is the enzyme deficient in glycogen storage disease type 1a, an autosomal recessive disorder. We have previously identified six mutations in the G6Pase gene of glycogen storage disease type 1a patients and demonstrated that these mutations abolished or greatly reduced enzymatic activity of G6Pase, a hydrophobic protein of 357 amino acids. Of these, four mutations (R83C, R295C, G222R, and Q347X) are missense and one (Q347X) generates a truncated G6Pase of 346 residues. To further understand the roles and structural requirements of amino acids 83, 222, 295, and those at the carboxyl terminus in G6Pase catalysis, we characterized mutant G6Pases generated by near-saturation mutagenesis of the aforementioned amino acids. Substitution of Arg-83 with amino acids of diverse structures including Lys, a conservative change, yielded mutant G6Pase with no enzymatic activity. On the other hand, substitution of Arg-295 with Lys (R295K) retained high activity, and R295N, R295S, and R295Q exhibited moderate activity. All other substitutions of Arg-295 had no G6Pase activity, suggesting that the role of Arg-295 is to stabilize the protein either by salt bridge or hydrogen-bond formation. Substitution of Gly-222, however, remained functional unless a basic (Arg or Lys), acidic (Asp), or large polar (Gln) residue was introduced, consistent with the hydrophobic requirement of codon 222, which is predicted to be in the fourth membrane-spanning domain. It is possible that Arg-83 is involved in stabilizing the enzyme (His)-phosphate intermediate formed during G6Pase catalysis. There exist 9 conserved His residues in human G6Pase. His-9, His-119, His-252, and His-353 reside on the same side of the endoplasmic reticulum membrane as Arg-83. Whereas H119A mutant G6Pase had no enzymatic activity, H9A, H252A, and H353A mutant G6Pases retained significant activity. Substitution of His-119 with amino acids of diverse structures also yielded mutant G6Pase with no activity, suggesting that His-119 is the phosphate acceptor in G6Pase catalysis. We also present data demonstrating that the carboxyl-terminal 8 residues in human G6Pase are not essential for G6Pase catalysis.
Collapse
Affiliation(s)
- K J Lei
- Human Genetics Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
40
|
O'Toole GA, Trzebiatowski JR, Escalante-Semerena JC. The cobC gene of Salmonella typhimurium codes for a novel phosphatase involved in the assembly of the nucleotide loop of cobalamin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47223-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
Evidence for NH2- and COOH-terminal interactions in rat 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89482-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
42
|
Mechanism of modulation of rat liver fructose-2,6-bisphosphatase by nucleoside triphosphates. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78083-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
43
|
Heterologous expression of human prostatic acid phosphatase and site-directed mutagenesis of the enzyme active site. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37063-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
44
|
Kretschmer M, Langer C, Prinz W. Mutation of monofunctional 6-phosphofructo-2-kinase in yeast to bifunctional 6-phosphofructo-2-kinase/fructose 2,6-bisphosphatase. Biochemistry 1993; 32:11143-8. [PMID: 8218176 DOI: 10.1021/bi00092a025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We have shown previously that 6-phosphofructo-2-kinase in yeast has negligible fructose-2,6-bisphosphatase activity even though resembling in part of its C-terminal sequence the phosphatase domain of the bifunctional liver enzyme. Here we show that exchanging Ser-404 to His-404 in the yeast peptide creates a bifunctional enzyme with a fructose-2,6-bisphosphatase activity involving a phosphoprotein intermediate. Like mammalian bifunctional enzymes, the His-404 mutant protein is readily phosphorylated by fructose 2,6-P2 with a half-saturation of 0.4 microM, the same Km value as for its fructose-2,6-bisphosphatase activity. Protein phosphorylation by the C-subunit of cAMP-dependent protein kinase, presumably at a C-terminal consensus site, increases the Km value to 1.5 microM. The newly created fructose-2,6-bisphosphatase is inhibited competitively by its product fructose 6-P with a K(i) of 0.6 mM. No effect of the His-404 mutation was found on 6-phosphofructo-2-kinase activity, in line with the mutant yeast enzyme having independent kinase and phosphatase domains, like its mammalian wild-type counterparts. The results would fit with the evolution of the PFK26 gene having involved fusion between kinase and phosphatase genes--as proposed for the mammalian enzyme--but with accompanying or later silencing of the fructose-2,6-bisphosphatase activity.
Collapse
Affiliation(s)
- M Kretschmer
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | | | | |
Collapse
|
45
|
Ostanin K, Van Etten R. Asp304 of Escherichia coli acid phosphatase is involved in leaving group protonation. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)36851-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
46
|
Crepin K, Vertommen D, Dom G, Hue L, Rider M. Rat muscle 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase. Study of the kinase domain by site-directed mutagenesis. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)82466-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
47
|
Expression of human liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase in Escherichia coli. Role of N-2 proline in degradation of the protein. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(18)53065-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
48
|
Garel MC, Lemarchandel V, Calvin MC, Arous N, Craescu CT, Prehu MO, Rosa J, Rosa R. Amino acid residues involved in the catalytic site of human erythrocyte bisphosphoglycerate mutase. Functional consequences of substitutions of His10, His187 and Arg89. EUROPEAN JOURNAL OF BIOCHEMISTRY 1993; 213:493-500. [PMID: 8477721 DOI: 10.1111/j.1432-1033.1993.tb17786.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Human bisphosphoglycerate mutase (GriP2 mutase) is a trifunctional enzyme which synthesizes and degrades GriP2 in red cells. Among the amino acid residues involved in its active site there are two conserved histidine residues, His10 which is phosphorylated during the catalytic process and His187 for which only speculative data have been made about the potential role during the reactions. Another amino acid residue, Arg89, had not been described as part of this active site but we have recently shown that a natural mutant Arg89-->Cys was highly thermolabile and showed severe perturbations of its enzymatic properties. To understand better the exact role of these residues, replacements of His10 by Gly (H10G) or Asp (H10D), His187 by Asn (H187N), Tyr (H187Y) or Asp (H187D) and Arg89 by Cys (R89C), Ser (R89S), Gly (R89G) or Lys (R89K) were performed by site-directed mutagenesis. The results obtained in this report show that replacement of the His10 residue completely abolished the enzymatic activities. Concerning the His187 residue, our results afford arguments that it plays an essential role in the three catalytic activities. Indeed all these activities are abolished in the two H187Y and H187D variants, whereas they are detectable though strongly diminished, for the H187N variant. In addition mutations at His187 could be distinguishable from those at His10 since the former resulted in a thermolabile enzyme, whereas no significant change in heat stability was observed for the latter. It is noteworthy that the H187N variant is protected against thermal instability by glycerate 2,3-bisphosphate (GriP2). Concerning the Arg89 mutants, R89C, R89S and R89G, the three variants showed characteristics identical to those found in the natural R89C mutant, i.e. loss of 99% of synthase activity, consistent decrease of mutase and 2-phosphoglycolate-stimulated phosphatase activities whereas the unstimulated phosphatase activity was normal. Moreover these mutants were unstable at 55 degrees C but GriP2 was able to protect them against thermal instability. In contrast, the R89K mutant was stable at 55 degrees C. Its synthase and unstimulated phosphatase activities were normal but its mutase and 2-phosphoglycolate-stimulated phosphatase activities were decreased. In addition, Km values for monophosphoglycerates were increased (3.2-fold) in the synthase but normal in mutase activities, whereas Km values for GriP2 were normal in mutase and phosphatase activities.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M C Garel
- INSERM U.91, Hôpital Henri-Mondor, Créteil, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rousseau GG, Hue L. Mammalian 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a bifunctional enzyme that controls glycolysis. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1993; 45:99-127. [PMID: 8393580 DOI: 10.1016/s0079-6603(08)60868-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- G G Rousseau
- Department of Biochemistry and Cell Biology, University of Louvain Medical School, Brussels, Belgium
| | | |
Collapse
|
50
|
Ostanin K, Harms E, Stevis P, Kuciel R, Zhou M, Van Etten R. Overexpression, site-directed mutagenesis, and mechanism of Escherichia coli acid phosphatase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)50022-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|