1
|
Quadro L, Iqbal J, Kim YK, Hussain MM. Microsomal triglyceride transfer protein-mediated transfer of β-carotene from donor to acceptor vesicles in vitro. Methods Enzymol 2022; 674:343-362. [PMID: 36008012 PMCID: PMC9940632 DOI: 10.1016/bs.mie.2022.03.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dietary β-carotene is the most abundant vitamin A precursor. Once absorbed by the enterocytes, the provitamin A carotenoid can either be cleaved into retinoids (vitamin A and its derivatives) or incorporated in its intact form within chylomicrons to be distributed throughout the body for utilization and/or storage by other tissues. From the liver, together with endogenous lipids, intact β-carotene can also be incorporated within very low-density lipoprotein/low-density lipoprotein (VLDL/LDL) for transport to other tissues and organs. Microsomal triglyceride transfer protein (MTP) is a key regulator of lipoprotein biosynthesis in intestine and liver as it facilitates the incorporation of dietary and endogenous lipids into nascent lipoproteins. MTP is also critical for transferring β-carotene into lipoprotein particles for secretion. Here, we present an in vitro method to assess the transfer of β-carotene by MTP from donor to acceptor vesicles. This transfer can be assessed by precipitating donor vesicles and measuring amounts of β-carotene transferred to acceptor vesicles. The levels of transferred β-carotene are quantified by HPLC analysis and intrinsic fluorescence of β-carotene. This chapter demonstrates the feasibility of this method which is also useful to study the role of MTP for incorporation of other carotenoids that are known to be carried within VLDL/LDL and chylomicrons for organ distribution.
Collapse
Affiliation(s)
- Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, United States.
| | - Jahangir Iqbal
- King Abdullah International Medical Research Center (KAIMRC)-Eastern Region, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard-Health Affairs (MNG-HA), Al Ahsa, Saudi Arabia
| | - Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, and New Jersey Institute for Food, Nutrition, and Health, Rutgers University, New Brunswick, NJ, USA
| | - M. Mahmood Hussain
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY, USA.,Corresponding authors: (LQ); (MMH)
| |
Collapse
|
2
|
Lin A, Peiris NJ, Dhaliwal H, Hakim M, Li W, Ganesh S, Ramaswamy Y, Patel S, Misra A. Mural Cells: Potential Therapeutic Targets to Bridge Cardiovascular Disease and Neurodegeneration. Cells 2021; 10:cells10030593. [PMID: 33800271 PMCID: PMC7999039 DOI: 10.3390/cells10030593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mural cells collectively refer to the smooth muscle cells and pericytes of the vasculature. This heterogenous population of cells play a crucial role in the regulation of blood pressure, distribution, and the structural integrity of the vascular wall. As such, dysfunction of mural cells can lead to the pathogenesis and progression of a number of diseases pertaining to the vascular system. Cardiovascular diseases, particularly atherosclerosis, are perhaps the most well-described mural cell-centric case. For instance, atherosclerotic plaques are most often described as being composed of a proliferative smooth muscle cap accompanied by a necrotic core. More recently, the role of dysfunctional mural cells in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, is being recognized. In this review, we begin with an exploration of the mechanisms underlying atherosclerosis and neurodegenerative diseases, such as mural cell plasticity. Next, we highlight a selection of signaling pathways (PDGF, Notch and inflammatory signaling) that are conserved across both diseases. We propose that conserved mural cell signaling mechanisms can be exploited for the identification or development of dual-pronged therapeutics that impart both cardio- and neuroprotective qualities.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Animals
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cardiotonic Agents/pharmacology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neuroprotective Agents/pharmacology
- Parkinson Disease/drug therapy
- Parkinson Disease/genetics
- Parkinson Disease/metabolism
- Parkinson Disease/pathology
- Pericytes/drug effects
- Pericytes/metabolism
- Pericytes/pathology
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Alexander Lin
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Niridu Jude Peiris
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Harkirat Dhaliwal
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Hakim
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Weizhen Li
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India;
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Cardiac Catheterization Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: ; Tel.: +61-18-0065-1373
| |
Collapse
|
3
|
Apolipoprotein E and Atherosclerosis: From Lipoprotein Metabolism to MicroRNA Control of Inflammation. J Cardiovasc Dev Dis 2018; 5:jcdd5020030. [PMID: 29789495 PMCID: PMC6023389 DOI: 10.3390/jcdd5020030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 12/26/2022] Open
Abstract
Apolipoprotein (apo) E stands out among plasma apolipoproteins through its unprecedented ability to protect against atherosclerosis. Although best recognized for its ability to mediate plasma lipoprotein clearance in the liver and protect against macrophage foam cell formation, our recent understanding of the influence that apoE can exert to control atherosclerosis has significantly widened. Among apoE’s newfound athero-protective properties include an ability to control exaggerated hematopoiesis, blood monocyte activation and aortic stiffening in mice with hyperlipidemia. Mechanisms responsible for these exciting new properties extend beyond apoE’s ability to prevent cellular lipid excess. Rather, new findings have revealed a role for apoE in regulating microRNA-controlled cellular signaling in cells of the immune system and vascular wall. Remarkably, infusions of apoE-responsive microRNA mimics were shown to substitute for apoE in protecting against systemic and vascular inflammation to suppress atherosclerosis in mice with hyperlipidemia. Finally, more recent evidence suggests that apoE may control the release of microvesicles that could modulate cellular signaling, inflammation and atherosclerosis at a distance. These exciting new findings position apoE within the emerging field of intercellular communication that could introduce new approaches to control atherosclerosis cardiovascular disease.
Collapse
|
4
|
Lillis AP, Muratoglu SC, Au DT, Migliorini M, Lee MJ, Fried SK, Mikhailenko I, Strickland DK. LDL Receptor-Related Protein-1 (LRP1) Regulates Cholesterol Accumulation in Macrophages. PLoS One 2015; 10:e0128903. [PMID: 26061292 PMCID: PMC4463855 DOI: 10.1371/journal.pone.0128903] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 05/03/2015] [Indexed: 11/18/2022] Open
Abstract
Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1) to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR)-deficient background (macLRP1-/-). After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.
Collapse
Affiliation(s)
- Anna P. Lillis
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, United States of America
| | - Selen Catania Muratoglu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Dianaly T. Au
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Mi-Jeong Lee
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA 02118, United States of America
| | - Susan K. Fried
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University School of Medicine, Boston, MA 02118, United States of America
| | - Irina Mikhailenko
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, United States of America
- * E-mail:
| |
Collapse
|
5
|
Khedoe PPSJ, Hoeke G, Kooijman S, Dijk W, Buijs JT, Kersten S, Havekes LM, Hiemstra PS, Berbée JFP, Boon MR, Rensen PCN. Brown adipose tissue takes up plasma triglycerides mostly after lipolysis. J Lipid Res 2014; 56:51-9. [PMID: 25351615 DOI: 10.1194/jlr.m052746] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Brown adipose tissue (BAT) produces heat by burning TGs that are stored within intracellular lipid droplets and need to be replenished by the uptake of TG-derived FA from plasma. It is currently unclear whether BAT takes up FA via uptake of TG-rich lipoproteins (TRLs), after lipolysis-mediated liberation of FA, or via a combination of both. Therefore, we generated glycerol tri[(3)H]oleate and [(14)C]cholesteryl oleate double-labeled TRL-mimicking particles with an average diameter of 45, 80, and 150 nm (representing small VLDL to chylomicrons) and injected these intravenously into male C57Bl/6J mice. At room temperature (21°C), the uptake of (3)H-activity by BAT, expressed per gram of tissue, was much higher than the uptake of (14)C-activity, irrespective of particle size, indicating lipolysis-mediated uptake of TG-derived FA rather than whole particle uptake. Cold exposure (7°C) increased the uptake of FA derived from the differently sized particles by BAT, while retaining the selectivity for uptake of FA over cholesteryl ester (CE). At thermoneutrality (28°C), total FA uptake by BAT was attenuated, but the specificity of uptake of FA over CE was again largely retained. Altogether, we conclude that, in our model, BAT takes up plasma TG preferentially by means of lipolysis-mediated uptake of FA.
Collapse
Affiliation(s)
- P Padmini S J Khedoe
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Geerte Hoeke
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Sander Kooijman
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wieneke Dijk
- Wageningen University, Wageningen, The Netherlands
| | - Jeroen T Buijs
- Department of Urology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Louis M Havekes
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Pieter S Hiemstra
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jimmy F P Berbée
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Mariëtte R Boon
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Endocrinology, Leiden University Medical Center, Leiden, The Netherlands Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
6
|
Tan L, Wray AE, Green MH, Ross AC. Compartmental modeling of whole-body vitamin A kinetics in unsupplemented and vitamin A-retinoic acid-supplemented neonatal rats. J Lipid Res 2014; 55:1738-49. [PMID: 24914038 PMCID: PMC4109768 DOI: 10.1194/jlr.m050518] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 11/29/2022] Open
Abstract
Little is known about the contribution of different tissues to whole-body vitamin A (VA) kinetics in neonates. Here, we have used model-based compartmental analysis of tissue tracer kinetic data from unsupplemented (control) and VA-retinoic acid (VARA)-supplemented neonatal rats to determine VA kinetics in specific tissues under control and supplemented conditions. First, compartmental models for retinol kinetics were developed for individual tissues, and then an integrated compartmental model incorporating all tissues was developed for both groups. The models predicted that 52% of chylomicron (CM) retinyl ester was cleared by liver in control pups versus 22% in VARA-treated pups, whereas about 51% of VA was predicted to be extrahepatic in 4- to 6-day-old unsupplemented neonatal rats. VARA increased CM retinyl ester uptake by lung, carcass, and intestine; decreased the release into plasma of retinol that had been cleared by liver and lung as CM retinyl esters; stimulated the uptake of retinol from plasma holo-retinol binding protein into carcass; and decreased the retinol turnover out of the liver. Overall, neonatal VA trafficking differed from that previously described for adult animals, with a larger contribution of extrahepatic tissues to CM clearance, especially after VA supplementation, and a significant amount of VA distributed in extrahepatic tissues.
Collapse
Affiliation(s)
- Libo Tan
- Graduate Program in Nutrition, The Pennsylvania State University, University Park, PA 16802 Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Amanda E Wray
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Michael H Green
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - A Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802 The Huck Institutes for the Life Sciences, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
7
|
|
8
|
Yang H, Mohamed ASS, Zhou SH. Oxidized low density lipoprotein, stem cells, and atherosclerosis. Lipids Health Dis 2012; 11:85. [PMID: 22747902 PMCID: PMC3475066 DOI: 10.1186/1476-511x-11-85] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 06/16/2012] [Indexed: 02/07/2023] Open
Abstract
Oxidized low density lipoprotein (ox-LDL), a risk factor of atherosclerosis, facilitates the formation and vulnerability of atherosclerotic plaque, thus contributing to several clinical complications. Stem cells participate in vascular repair after damage and atherosclerosis is a process of inflammation accompanied with vascular injury. Researchers have proposed that stem cells participate in the formation of atherosclerotic plaque. Also, because ox-LDL is capable of inducing toxic effects on stem cells, it is reasonable to postulate that ox-LDL promotes the progress of atherosclerosis via acting on stem cells. In the present article, we review the relationship between ox-LDL, stem cells, and atherosclerosis and a portion of the associated mechanisms.
Collapse
Affiliation(s)
- Hui Yang
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | |
Collapse
|
9
|
Shearer MJ, Fu X, Booth SL. Vitamin K nutrition, metabolism, and requirements: current concepts and future research. Adv Nutr 2012; 3:182-95. [PMID: 22516726 PMCID: PMC3648719 DOI: 10.3945/an.111.001800] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In 2001, the US Food and Nutrition Board concluded that there were insufficient data with which to establish a RDA for vitamin K, in large part because of a lack of robust endpoints that reflected adequacy of intake. Knowledge of the relative bioavailability of multiple vitamin K forms was also poor. Since then, stable isotope methodologies have been applied to the assessment of the bioavailability of the major dietary form of vitamin K in its free state and when incorporated into a plant matrix. There is a need for stable isotope studies with enhanced sensitivity to expand knowledge of the bioavailability, absorption, disposition, and metabolism of different molecular forms of vitamin K. Another area for future research stems from evidence that common polymorphisms or haplotypes in certain key genes implicated in vitamin K metabolism might affect nutritional requirements. Thus far, much of this evidence is indirect via effects on warfarin dose requirements. In terms of clinical endpoints, vitamin K deficiency in early infancy continues to be a leading cause of intracranial bleeding even in developed countries and the reasons for its higher prevalence in certain Asian countries has not been solved. There is universal consensus for the need for vitamin K prophylaxis in newborns, but the effectiveness of any vitamin K prophylactic regimen needs to be based on sound nutritional principles. In contrast, there is still a lack of suitable biomarkers or clinical endpoints that can be used to determine vitamin K requirements among adults.
Collapse
Affiliation(s)
- Martin J. Shearer
- Haemostasis Research Unit, Centre for Haemostasis and Thrombosis, Guy’s and St Thomas’ NHS Foundation Trust, and King’s College, London, UK; and,To whom correspondence should be addressed. E-mail:
| | - Xueyan Fu
- Haemostasis Research Unit, Centre for Haemostasis and Thrombosis, Guy’s and St Thomas’ NHS Foundation Trust, and King’s College, London, UK; and
| | - Sarah L. Booth
- Haemostasis Research Unit, Centre for Haemostasis and Thrombosis, Guy’s and St Thomas’ NHS Foundation Trust, and King’s College, London, UK; and
| |
Collapse
|
10
|
Amelioration of hypertriglyceridemia with hypo-alpha-cholesterolemia in LPL deficient mice by hematopoietic cell-derived LPL. PLoS One 2011; 6:e25620. [PMID: 21980507 PMCID: PMC3183060 DOI: 10.1371/journal.pone.0025620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 09/08/2011] [Indexed: 11/20/2022] Open
Abstract
Background Macrophage-derived lipoprotein lipase (LPL) has been shown uniformly to promote atherosclerotic lesion formation while the extent to which it affects plasma lipid and lipoprotein levels varies in wild-type and hypercholesterolemic mice. It is known that high levels of LPL in the bulk of adipose tissue and skeletal muscle would certainly mask the contribution of macrophage LPL to metabolism of plasma lipoprotein. Therefore, we chose LPL deficient (LPL-/-) mice with severe hypertriglyceridemia as an alternative model to assess the role of macrophage LPL in plasma lipoprotein metabolism via bone marrow transplant, through which LPL will be produced mainly by hematopoietic cell-derived macrophages. Methods and Results Hypertriglyceridemic LPL-/- mice were lethally irradiated, then transplanted with bone marrow from wild-type (LPL+/+) or LPL-/- mice, respectively. Sixteen weeks later, LPL+/+ →LPL-/- mice displayed significant reduction in plasma levels of triglyceride and cholesterol (408±44.9 vs. 2.7±0.5×103 and 82.9±7.1 vs. 229.1±30.6 mg/dl, p<0.05, respectively), while a 2.7-fold increase in plasma high density lipoprotein- cholesterol (p<0.01) was observed, compared with LPL-/-→LPL-/- control mice. The clearance rate for the oral fat load test in LPL+/+ →LPL-/- mice was faster than that in LPL-/-→LPL-/- mice, but slower than that in wild-type mice. Liver triglyceride content in LPL+/+→LPL-/- mice was also significantly increased, compared with LPL-/-→LPL-/- mice (6.8±0.7 vs. 4.6±0.5 mg/g wet tissue, p<0.05, n = 6). However, no significant change was observed in the expression levels of genes involved in hepatic lipid metabolism between the two groups. Conclusions Hematopoietic cell-derived LPL could efficiently ameliorate severe hypertriglyceridemia and hypo-alpha-cholesterolemia at the compensation of increased triglyceride content of liver in LPL-/- mice.
Collapse
|
11
|
Wray AE, Okita N, Ross AC. Cortical and trabecular bone, bone mineral density, and resistance to ex vivo fracture are not altered in response to life-long vitamin A supplementation in aging rats. J Nutr 2011; 141:660-6. [PMID: 21310867 PMCID: PMC3056581 DOI: 10.3945/jn.110.132126] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
High vitamin A (VA) intakes have been correlated with increased risk of bone fracture. Over 50% of the U.S. adult population reports use of dietary supplements, which can result in VA intakes > 200% of the RDA. In this study, 2 experiments were designed to determine the effect of dietary VA on cortical and trabecular bone properties and resistance to ex vivo fracture. In Expt. 1, we investigated whether orally administered VA accumulates in bone. Seven-week-old rats were treated daily with VA (6 mg/d for 14 d). Total retinol increased in both the tibia and femur (P < 0.01). In Expt. 2, we conducted a longitudinal study in which rats were fed 1 of 3 levels of dietary VA (marginal, adequate, and supplemented, equal to 0.35, 4, and 50 μg retinol/g diet, respectively) from weaning until the ages of 2-3 mo (young), 8-10 mo (middle-age), and 18-20 mo (old). Tibial trabecular and cortical bone structure, bone mineral density, and resistance to fracture were measured using micro-computed tomography and material testing system analysis, respectively. The VA-marginal diet affected measures of cortical bone dimension, suggesting bone remodeling was altered. VA supplementation increased medullary area and decreased cortical thickness in young rats (P < 0.05), but these changes were not present during aging. VA supplementation did not affect resistance to fracture or bone mineral content in old rats. From these results, we conclude that VA-marginal status affects trabecular bone more than cortical bone, and VA supplementation at a moderate level over the lifetime is unlikely to increase the risk of age-related bone fracture in rats.
Collapse
Affiliation(s)
- Amanda E. Wray
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - Nori Okita
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802
| | - A. Catharine Ross
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA 16802,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Sou K, Goins B, Oyajobi BO, Travi BL, Phillips WT. Bone marrow-targeted liposomal carriers. Expert Opin Drug Deliv 2011; 8:317-28. [PMID: 21275831 DOI: 10.1517/17425247.2011.553218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Bone marrow-targeted drug delivery systems appear to offer a promising strategy for advancing diagnostic, protective and/or therapeutic medicine for the hematopoietic system. Liposome technology can provide a drug delivery system with high bone marrow targeting that is mediated by specific phagocytosis in bone marrow. AREA COVERED This review focuses on a bone marrow-specific liposome formulation labeled with technetium-99 m. Interspecies differences in bone marrow distribution of the bone marrow-targeted formulation are emphasized. This review provides a liposome technology to target bone marrow. In addition, the selection of proper species for the investigation of bone marrow targeting is suggested. EXPERT OPINION It can be speculated that the bone marrow macrophages have a role in the delivery of lipids to the bone marrow as a source of energy and for membrane biosynthesis or in the delivery of fat-soluble vitamins for hematopoiesis. This homeostatic system offers a potent pathway to deliver drugs selectively into bone marrow tissues from blood. High selectivity of the present bone marrow-targeted liposome formulation for bone marrow suggests the presence of an active and specific mechanism, but specific factors affecting the uptake of the bone marrow mononuclear phagocyte system are still unknown. Further investigation of this mechanism will increase our understanding of factors required for effective transport of agents to the bone marrow, and may provide an efficient system for bone marrow delivery for therapeutic purposes.
Collapse
Affiliation(s)
- Keitaro Sou
- Waseda University (TWIns), Center for Advanced Biomedical Sciences, Tokyo 162 8480, Japan.
| | | | | | | | | |
Collapse
|
13
|
Gianturco SH, Bradley WA. Pathophysiology of triglyceride-rich lipoproteins in atherothrombosis: cellular aspects. Clin Cardiol 2009; 22:II7-14. [PMID: 10376191 PMCID: PMC6655668 DOI: 10.1002/clc.4960221403] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Elevated plasma levels of triglyceride-rich lipoproteins (TGRLP), including very low-density lipoproteins (VLDL), chylomicrons, and their remnants, are now acknowledged as risk factors for cardiovascular disease. Interactions of TGRLP with lipoprotein receptors on monocytes, macrophages, and endothelial cells may be mechanistically linked to this risk. Triglyceride-rich lipoproteins from hypertriglyceridemic (HTG) subjects have the abnormal ability to bind to low-denisty lipoprotein receptors via apoE, and plasma chylomicrons from all subjects bind to a new, distinct receptor for apoB48 that is expressed specifically by monocytes, macrophages, and endothelial cells. Receptor binding and uptake of TGRLP by these cells are likely mechanisms involved in the formation of lipid-filled, macrophage-derived "foam cells" of atherosclerotic lesions and for defective fibrinolysis due to endothelial dysfunction. Recognition of the atherothrombogenic potential of TGRLP may lead to improved interventions to lessen or prevent the often fatal sequelae of coronary atherosclerosis and thrombosis associated with elevated plasma triglyceride levels.
Collapse
Affiliation(s)
- S H Gianturco
- Department of Medicine/Gerontology and Geriatrics, University of Alabama at Birmingham 35294-0012, USA
| | | |
Collapse
|
14
|
Laplante M, Festuccia WT, Soucy G, Blanchard PG, Renaud A, Berger JP, Olivecrona G, Deshaies Y. Tissue-specific postprandial clearance is the major determinant of PPARgamma-induced triglyceride lowering in the rat. Am J Physiol Regul Integr Comp Physiol 2008; 296:R57-66. [PMID: 18971352 DOI: 10.1152/ajpregu.90552.2008] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPARgamma) agonism potently reduces circulating triglycerides (TG) in rodents and more modestly so in humans. This study aimed to quantify in vivo the relative contribution of hepatic VLDL-TG secretion and tissue-specific TG clearance to such action. Rats were fed an obesogenic diet, treated with the PPARgamma full agonist COOH (30 mg.kg(-1).day(-1)) for 3 wk, and studied in both the fasted and refed (fat-free) states. Hepatic VLDL-TG secretion rate was not affected by chronic COOH in the fasted state and was only modestly decreased (-30%) in refed rats. In contrast, postprandial VLDL-TG clearance was increased 2.6-fold by COOH, which concomitantly stimulated adipose tissue TG-derived lipid uptake and one of its major determinants, lipoprotein lipase (LPL) activity, in a highly depot-specific manner. TG-derived lipid uptake and LPL were indeed strongly increased in subcutaneous inguinal white adipose tissue and in brown adipose tissue, independently of the nutritional state, whereas of the three visceral fat depots examined (epididymal, retroperitoneal, mesenteric) only the latter responded consistently to COOH. Robust correlations (0.5 < r < 0.9) were observed between TG-derived lipid uptake and LPL in adipose tissues. The agonist did not increase LPL in muscle, and its enhancing action on postprandial muscle lipid uptake appeared to be mediated by post-LPL processes involving increased expression of fatty acid binding/transport proteins (aP2, likely in infiltrated adipocytes, FAT/CD36, and FATP-1). The study establishes in a diet-induced obesity model the major contribution of lipid uptake by specific, metabolically safe adipose depots to the postprandial hypotriglyceridemic action of PPARgamma agonism, and suggests a key role for LPL therein.
Collapse
Affiliation(s)
- Mathieu Laplante
- Laval Hospital Research Center, Faculty of Medicine, Laval Univ., 2725 Ch Sainte-Foy, Québec, QC, Canada G1V 4G5
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Niemeier A, Niedzielska D, Secer R, Schilling A, Merkel M, Enrich C, Rensen PCN, Heeren J. Uptake of postprandial lipoproteins into bone in vivo: impact on osteoblast function. Bone 2008; 43:230-237. [PMID: 18538644 DOI: 10.1016/j.bone.2008.03.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2007] [Revised: 03/17/2008] [Accepted: 03/19/2008] [Indexed: 01/08/2023]
Abstract
Dietary lipids and lipophilic vitamins are transported by postprandial lipoproteins and are required for bone metabolism. Despite that, it remains unknown whether bone cells are involved in the uptake of circulating postprandial lipoproteins in vivo. The current study was performed to investigate a putative participation of bone in the systemic postprandial lipoprotein metabolism in mice, to identify potentially involved cell type populations and to analyze whether lipoprotein uptake affects bone function in vivo. As a model for the postprandial state, chylomicron remnants (CR) were injected intravenously into mice. Next to the liver and compared to other organs, bone appeared to be the second most important organ for the clearance of radiolabeled CR particles from the circulation in vivo. In addition, uptake of radiolabeled CR by primary murine osteoblasts and hepatocytes was quantified to be in a similar range in vitro. A complementary approach with fluorescently labeled CR and immunohistochemical staining for apoE proved that intact CR particles were taken up into bone and liver. Electron microscopy localization studies of bone sections revealed CR uptake into sinusoidal endothelial cells, macrophages and osteoblasts. The relative amount of radiolabeled CR uptake into femoral cortical bone, representing predominantly osteoblasts, and bone marrow, representing predominantly non-osteoblast cells, was within the same range. Most importantly, the injection of vitamin K1-enriched CR resulted in an increase of the degree of osteocalcin carboxylation in vivo while total osteocalcin concentrations remained unaffected, giving functional proof that osteoblasts process CR in vivo. In conclusion, here we demonstrate that bone is involved in the postprandial lipoprotein metabolism in mice. Osteoblasts participate in CR clearance from the circulation, which has a direct impact on the secretory function of osteoblasts.
Collapse
Affiliation(s)
- Andreas Niemeier
- Department of Orthopaedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Dagmara Niedzielska
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Rukiye Secer
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Arndt Schilling
- Department of Trauma- Hand- and Reconstructive Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Merkel
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carlos Enrich
- Departament de Biologia Cellular, Facultat de Medicina, Universitat de Barcelona, Spain
| | - Patrick C N Rensen
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, The Netherlands
| | - Joerg Heeren
- Department of Biochemistry and Molecular Biology II: Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
16
|
Densupsoontorn N, Worgall TS, Seo T, Hamai H, Deckelbaum RJ. Fatty acid supplied as triglyceride regulates SRE-mediated gene expression as efficiently as free fatty acids. Lipids 2007; 42:885-91. [PMID: 17680293 DOI: 10.1007/s11745-007-3093-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Accepted: 06/26/2007] [Indexed: 01/21/2023]
Abstract
Sterol regulatory element binding proteins (SREBPs) are key transcription proteins that bind to sterol regulatory elements (SRE) of genes essential for cellular cholesterol and fatty acid homeostasis. Polyunsaturated fatty acids (PUFA) strongly inhibit SREBP processing at post-transcriptional levels. We questioned if delivering PUFA as part of a triglyceride (TG) molecule would have similar effects and efficiency as free non-esterified PUFA. CHO cells stably transfected with an SRE-promoter linked to the luciferase reporter gene were incubated for 8-24 h with linoleic acid (LA) complexed to BSA (molar ratios 0.5-4:1), VLDL-sized trilinolein emulsions (TL, 25-200 microg/ml), and chylomicron-sized soy oil emulsions in the presence and absence of apoE. Effects of LA and TL on decreasing SRE-luciferase activity were similar and dose and time dependent. Both TL and LA significantly and rapidly (<or=2-12 h) reduced SRE-mediated gene expression by up to 75%. At equal fatty acid concentrations, SRE inhibition by TL was as effective as LA. ApoE addition increased inhibition by TL. Inhibition of gene expression was highly correlated to cell TG accumulation. We conclude that TG like fatty acids are rapid and efficient modulators of SRE-mediated gene expression.
Collapse
Affiliation(s)
- Narumon Densupsoontorn
- Institute of Human Nutrition and Department of Pediatrics, College of Physicians and Surgeons, Columbia University, 630 W. 168th St., PH1512, New York, NY 10032, USA
| | | | | | | | | |
Collapse
|
17
|
Anwar K, Iqbal J, Hussain MM. Mechanisms involved in vitamin E transport by primary enterocytes and in vivo absorption. J Lipid Res 2007; 48:2028-38. [PMID: 17582142 DOI: 10.1194/jlr.m700207-jlr200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is generally believed that vitamin E is absorbed along with chylomicrons. However, we previously reported that human colon carcinoma Caco-2 cells use dual pathways, apolipoprotein B (apoB)-lipoproteins and HDLs, to transport vitamin E. Here, we used primary enterocytes and rodents to identify in vivo vitamin E absorption pathways. Uptake of [(3)H]alpha-tocopherol by primary rat and mouse enterocytes increased with time and reached a maximum at 1 h. In the absence of exogenous lipid supply, these cells secreted vitamin E with HDL. Lipids induced the secretion of vitamin E with intermediate density lipoproteins, and enterocytes supplemented with lipids and oleic acid secreted vitamin E with chylomicrons. The secretion of vitamin E with HDL was not affected by lipid supply but was enhanced when incubated with HDL. Microsomal triglyceride transfer protein inhibition reduced vitamin E secretion with chylomicrons without affecting its secretion with HDL. Enterocytes from Mttp-deficient mice also secreted less vitamin E with chylomicrons. In vivo absorption of [(3)H]alpha-tocopherol by mice after poloxamer 407 injection to inhibit lipoprotein lipase revealed that vitamin E was associated with triglyceride-rich lipoproteins and small HDLs containing apoB-48 and apoA-I. These studies indicate that enterocytes use two pathways for vitamin E absorption. Absorption with chylomicrons is the major pathway of vitamin E absorption. The HDL pathway may be important when chylomicron assembly is defective and can be exploited to deliver vitamin E without increasing fat consumption.
Collapse
Affiliation(s)
- Kamran Anwar
- Molecular and Cellular Biology Program, School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | |
Collapse
|
18
|
Ross AC. Vitamin A supplementation and retinoic acid treatment in the regulation of antibody responses in vivo. VITAMINS AND HORMONES 2007; 75:197-222. [PMID: 17368317 PMCID: PMC3843126 DOI: 10.1016/s0083-6729(06)75008-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Vitamin A (VA, retinol) is essential for normal immune system maturation, but the effect of VA(1) on antibody production, the hallmark of successful vaccination, is still not well understood. In countries where VA deficiency is a public health problem, many children worldwide are now receiving VA along with immunizations against poliovirus, measles, diphtheria, pertussis, and tetanus. The primary goal has been to provide enough VA to protect against the development of VA deficiency for a period of 4-6 months. However, it is also possible that VA might promote the vaccine antibody response. Several community studies, generally of small size, have been conducted in children supplemented with VA at the time of immunization, as promoted by the World Health Organization/UNICEF. However, only a few studies have reported differences in antibody titers or seroconversion rates due to VA. However, VA status was not directly assessed, and in some communities children were often breast fed, another strategy for preventing VA deficiency. Some of the vaccines used induced a high rate of seroconversion, even without VA. In children likely to have been VA deficient, oral polio vaccine seroconversion rate was increased by VA. In animal models, where VA status was controlled and VA deficiency confirmed, the antibody response to T-cell-dependent (TD) and polysaccharide antigens was significantly reduced, congruent with other defects in innate and adaptive immunity. Moreover, the active metabolite of VA, retinoic acid (RA) can potentiate antibody production to TD antigens in normal adult and neonatal animals. We speculate that numerous animal studies have correctly identified VA deficiency as a risk factor for low antibody production. A lack of effect of VA in human studies could be due to a low rate of VA deficiency in the populations studied or low sample numbers. The ability to detect differences in antibody response may also depend on the vaccine-adjuvant combination used. Future studies of VA supplementation and immunization should include assessment of VA status and a sufficiently large sample size. It would also be worthwhile to test the effect of neonatal VA supplementation on the response to immunization given after 6 months to 1 year of age, as VA supplementation, by preventing the onset of VA deficiency, may improve the response to immunizations given later on.
Collapse
Affiliation(s)
- A. Catharine Ross
- Department of Nutritional Sciences and Huck Institute for Life Sciences Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
19
|
Fatma S, Yakubov R, Anwar K, Hussain MM. Pluronic L81 enhances triacylglycerol accumulation in the cytosol and inhibits chylomicron secretion. J Lipid Res 2006; 47:2422-32. [PMID: 16894241 DOI: 10.1194/jlr.m600211-jlr200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pluronic L81 (PL81) inhibits fat absorption, and other Pluronic copolymers help overcome drug resistance in cancer cells. To understand how PL81 acts, we synthesized a radiolabeled analog, [14C]PL81, and showed that it was structurally similar to PL81 based on (1)H NMR as well as mass spectrometric analysis. [14C]PL81 inhibited the secretion of chylomicrons (CMs), lipoproteins essential for fat absorption, by differentiated Caco-2 cells similar to PL81. Moreover, PL81 competed with the cellular uptake of [14C]PL81. Thus, [14C]PL81 and PL81 behave similarly in these physiologic assays. Uptake of [14C]PL81 by Caco-2 cells was concentration-, time-, and temperature-dependent and occurred mainly from the apical side. Intracellularly, it was assimilated in the cytosol. Cells excreted PL81 toward the apical side via a pathway partially sensitive to verapamil. Small amounts were secreted toward the basolateral side unassociated with CM, and this secretion was unaffected by the inhibition of CM assembly. Nonetheless, PL81 significantly inhibited the secretion of triacylglycerols (TGs) and phospholipids as part of CM. PL81-treated cells showed decreased activity of microsomal triglyceride transfer protein and accumulated more TGs, but not phospholipids, in their cytosol. We propose that Pluronic copolymers act by interfering with the export of molecules from the cytosol. They inhibit fat absorption by decreasing TG transport to the endoplasmic reticulum and increase drug efficacy against cancer cells by competing for their excretion.
Collapse
Affiliation(s)
- Sumbul Fatma
- Department of Anatomy & Cell Biology, State University of New York Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
20
|
Abstract
In hepatocytes, vitamin E is secreted via the efflux pathway and is believed to associate with apolipoprotein B (apoB)-lipoproteins extracellularly. The molecular mechanisms involved in the uptake, intracellular trafficking, and secretion of dietary vitamin E by the intestinal cells are unknown. We observed that low concentrations of Tween-40 were better for the solubilization and delivery of vitamin E to differentiated Caco-2 cells, whereas high concentrations of Tween-40 and sera inhibited this uptake. Vitamin E uptake was initially rapid and then reached saturation. Subcellular localization revealed that vitamin E primarily accumulated in microsomal membranes. Oleic acid (OA) treatment, which induces chylomicron assembly and secretion, decreased microsomal membrane-bound vitamin E in a time-dependent manner. To study secretion, differentiated Caco-2 cells were pulse-labeled with vitamin E and chased in the presence and absence of OA. In the absence of OA, vitamin E was associated with intestinal high density lipoprotein (I-HDL), whereas OA-treated cells secreted vitamin E with I-HDL and chylomicrons. No extracellular transfer of vitamin E between these lipoproteins was observed. Glyburide, an antagonist of ABCA1, partially inhibited its secretion with I-HDL, whereas plasma HDL increased vitamin E efflux. An antagonist of microsomal triglyceride transfer protein, brefeldin A, and monensin specifically inhibited vitamin E secretion with chylomicrons. These studies indicate that vitamin E taken up by Caco-2 cells is stored in the microsomal membranes and secreted with chylomicrons and I-HDL. Transport via I-HDL might contribute to vitamin E absorption in patients with abetalipoproteinemia receiving large oral doses of the vitamin.
Collapse
Affiliation(s)
- Kamran Anwar
- Department of Anatomy, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | | | | |
Collapse
|
21
|
Iqbal J, Hussain MM. Evidence for multiple complementary pathways for efficient cholesterol absorption in mice. J Lipid Res 2005; 46:1491-501. [PMID: 15834127 DOI: 10.1194/jlr.m500023-jlr200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Apolipoprotein B (apoB)-dependent and apoB-independent pathways for cholesterol transport have been described in cultured cells. Here, we show that the apoB-independent pathway involves apoA-I-containing high density lipoproteins (HDLs). Cholesterol secretion by the HDLs, but not by the apoB pathway, was significantly reduced in primary enterocytes isolated from chow- and cholesterol-fed apoA-I(-/-) mice. These enterocytes were capable of cholesterol efflux when apoA-I was provided extracellularly. In apoA-I(-/-) mice, the absorption of a bolus of cholesterol was similar in control and apoA-I(-/-) mice fed chow or high-cholesterol diet. However, short-term studies revealed that cholesterol absorption was occurring over longer lengths of the intestine, and cholesterol but not triglyceride transport to the plasma and liver in chow- and cholesterol-fed apoA-I(-/-) mice was significantly reduced. These studies indicate that in apoA-I deficiency, there is a delay in cholesterol absorption, but cholesterol is eventually absorbed because of the compensatory apoB pathway. Nonetheless, long-term studies involving multiple feedings showed significant reduction in cholesterol absorption after 4 days. We propose that multiple compensatory mechanisms ensure efficient cholesterol absorption in mice.
Collapse
Affiliation(s)
- Jahangir Iqbal
- Department of Anatomy and Cell Biology, and Pediatrics, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | | |
Collapse
|
22
|
Pedrini MT, Kranebitter M, Niederwanger A, Kaser S, Engl J, Debbage P, Huber LA, Patsch JR. Human triglyceride-rich lipoproteins impair glucose metabolism and insulin signalling in L6 skeletal muscle cells independently of non-esterified fatty acid levels. Diabetologia 2005; 48:756-66. [PMID: 15747109 DOI: 10.1007/s00125-005-1684-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2004] [Accepted: 11/15/2004] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Elevated fasting and postprandial plasma levels of triglyceride-rich lipoproteins (TGRLs), i.e. VLDL/remnants and chylomicrons/remnants, are a characteristic feature of insulin resistance and are considered a consequence of this state. The aim of this study was to investigate whether intact TGRL particles are capable of inducing insulin resistance. METHODS We studied the effect of highly purified TGRLs on glycogen synthesis, glycogen synthase activity, glucose uptake, insulin signalling and intramyocellular lipid (IMCL) content using fully differentiated L6 skeletal muscle cells. RESULTS Incubation with TGRLs diminished insulin-stimulated glycogen synthesis, glycogen synthase activity, glucose uptake and insulin-stimulated phosphorylation of Akt and glycogen synthase kinase 3. Insulin-stimulated tyrosine phosphorylation of IRS-1, and IRS-1- and IRS-2-associated phosphatidylinositol 3-kinase (PI3K) activity were not impaired by TGRLs, suggesting that these steps were not involved in the lipoprotein-induced effects on glucose metabolism. The overall observed effects were time- and dose-dependent and paralleled IMCL accumulation. NEFA concentration in the incubation media did not increase in the presence of TGRLs indicating that the effects observed were solely due to intact lipoprotein particles. Moreover, co-incubation of TGRLs with orlistat, a potent active-site inhibitor of various lipases, did not alter TGRL-induced effects, whereas co-incubation with receptor-associated protein (RAP), which inhibits interaction of TGRL particles with members of the LDL receptor family, reversed the TGRL-induced effects on glycogen synthesis and insulin signalling. CONCLUSIONS/INTERPRETATION Our data suggest that the accumulation of TGRLs in the blood stream of insulin-resistant patients may not only be a consequence of insulin resistance but could also be a cause for it.
Collapse
Affiliation(s)
- M T Pedrini
- Clinical Department of Internal Medicine, Medical University of Innsbruck, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Kawakami A, Tani M, Chiba T, Yui K, Shinozaki S, Nakajima K, Tanaka A, Shimokado K, Yoshida M. Pitavastatin inhibits remnant lipoprotein-induced macrophage foam cell formation through ApoB48 receptor-dependent mechanism. Arterioscler Thromb Vasc Biol 2004; 25:424-9. [PMID: 15591219 DOI: 10.1161/01.atv.0000152632.48937.2d] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Atherogenic remnant lipoproteins (RLPs) are known to induce foam cell formation in macrophages in vitro and in vivo. We examined the involvement of apoB48 receptor (apoB48R), a novel receptor for RLPs, in that process in vitro and its potential regulation by pitavastatin. METHODS AND RESULTS THP-1 macrophages were incubated in the presence of RLPs (20 mg cholesterol/dL, 24 hours) isolated from hypertriglyceridemic subjects. RLPs significantly increased intracellular cholesterol ester (CE) and triglyceride (TG) contents (4.8-fold and 5.8-fold, respectively) in the macrophages. Transfection of THP-1 macrophages with short interfering RNA (siRNA) against apoB48R significantly inhibited RLP-induced TG accumulation by 44%. When THP-1 macrophages were pretreated with pitavastatin (5 micromol/L, 24 hours), the expression of apoB48R was significantly decreased and RLP-induced TG accumulation was reduced by 56%. ApoB48R siRNA also inhibited TG accumulation in THP-1 macrophage induced by beta-very-low-density lipoprotein derived from apoE-/- mice by 58%, supporting the notion that apoB48R recognizes and takes-up RLPs in an apoE-independent manner. CONCLUSIONS RLPs induce macrophage foam cell formation via apoB48R. Pitavastatin inhibits RLP-induced macrophage foam cell formation. The underlying mechanism involves, at least in part, inhibition of apoB48R-dependent mechanism. Our findings indicate a potential role of apoB48R in atherosclerosis. RLPs induced macrophage foam cell formation via apoB48R. Pitavastatin inhibited RLP-induced macrophage foam cell formation, at least in part, via inhibition of apoB48R expression. Our findings indicate a potential role of apoB48R in atherosclerosis.
Collapse
Affiliation(s)
- Akio Kawakami
- Department of Geriatrics and Vascular Medicine, Graduate School of Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ross AC, Pasatiempo AMG, Green MH. Chylomicron margination, lipolysis, and vitamin a uptake in the lactating rat mammary gland: implications for milk retinoid content. Exp Biol Med (Maywood) 2004; 229:46-55. [PMID: 14709776 DOI: 10.1177/153537020422900106] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have reported previously that the concentration of vitamin A (VA) in the milk of lactating rats varies with dietary VA intake, even when plasma retinol concentration is unaffected. In the current study, we investigated the role of lipolysis in the uptake of chylomicron (CM) VA into mammary tissue of lactating rats and estimated the proportion of CM-VA that is associated with the mammary gland during CM clearance. Chylomicrons containing [(3)H]VA, mainly as retinyl esters, were prepared in donor rats and administered intravenously to lactating recipient rats. Chylomicron VA rapidly disappeared from plasma and appeared in mammary tissue (maximum within 2-3 mins), followed by a decline. Concomitantly, uptake by liver increased continuously, reaching a plateau within 20-30 mins. Active lipolysis in mammary tissue was necessary for rapid VA uptake, as significantly less CM-VA was recovered in mammary tissue of postlactating rats than of lactating rats, after heparin treatment in lactating rats, or after injection of preformed CM remnants in lactating rats. [(3)H]Vitamin A uptake by mammary tissue increased linearly with CM-VA dose over a 150-fold dose range (R(2) = 0.972, P = 0.0001), suggesting a high capacity for uptake and apparent first-order assimilation of CM-VA during CM remnant formation in situ. Model-based compartmental analysis using WinSAAM predicted that approximately 42% of CM-VA marginated, that is, were temporarily removed, from plasma to the mammary glands during lipolysis and that a total of 3.8% of CM-VA was transferred to mammary tissue. The model-predicted t(1/2) for CM remnants was 3.04 mins. The metabolism of CM-VA in the lactating mammary gland, in proportion to VA absorption and CM-VA contents, may explain how milk VA concentration varies even when plasma retinol levels are unchanged. The mechanism of CM margination and mammary gland uptake described here for VA may be similar for other lipophilic substances.
Collapse
Affiliation(s)
- A Catharine Ross
- Department of Nutritional Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA.
| | | | | |
Collapse
|
25
|
Haraguchi G, Kobayashi Y, Brown ML, Tanaka A, Isobe M, Gianturco SH, Bradley WA. PPAR(alpha) and PPAR(gamma) activators suppress the monocyte-macrophage apoB-48 receptor. J Lipid Res 2003; 44:1224-31. [PMID: 12700342 DOI: 10.1194/jlr.m300077-jlr200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Certain triglyceride-rich lipoproteins (TRLs), specifically chylomicrons, dyslipemic VLDLs, and their remnants, are atherogenic and can induce monocyte-macrophage foam cell formation in vitro via the apolipoprotein B-48 receptor (apoB-48R). Human atherosclerotic lesion foam cells express the apoB-48R, as determined immunohistochemically, suggesting it can play a role in the conversion of macrophages into foam cells in vivo. The regulation of the apoB-48R in monocyte-macrophages is not fully understood, albeit previous studies indicated that cellular sterol levels and state of differentiation do not affect apoB-48R expression. Since peroxisome proliferator-activated receptors (PPARs) regulate some aspects of cellular lipid metabolism and may be protective in atherogenesis by up-regulation of liver X-activated receptor alpha and ATP-binding cassette transporter A1, we examined the regulation of apoB-48R by PPAR ligands in human monocyte-macrophages. Using real-time PCR, Northern, Western, and functional cellular lipid accumulation assays, we show that PPARalpha and PPARgamma activators significantly suppress the expression of apoB-48R mRNA in human THP-1 and blood-borne monocyte-macrophages. Moreover, PPAR activators inhibit the expression of the apoB-48R protein and, notably, the apoB-48R-mediated lipid accumulation of TRL by THP-1 monocytes in vitro. If PPAR activators also suppress the apoB-48R pathway in vivo, diminished apoB-48R-mediated monocyte-macrophage lipid accumulation may be yet another antiatherogenic effect of the action of PPAR ligands.
Collapse
Affiliation(s)
- Go Haraguchi
- Tokyo Medical and Dental University, Department of Cardiovascular Medicine, Tokyo 113-8519, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
Wilhelm MG, Cooper AD. Induction of Atherosclerosis by Human Chylomicron Remnants: A Hypothesis. J Atheroscler Thromb 2003; 10:132-9. [PMID: 14564081 DOI: 10.5551/jat.10.132] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Epidemiologic studies have provided support for the association between delayed remnant removal and premature atherosclerosis. Triglyceride-rich particles such as chylomicrons and chylomicron remnants that carry dietary derived fats, may play a role in the early stages of developing arteriosclerosis. Currently research focuses on these lipoprotein classes seeking distinguishing factors that causes some lipoproteins to be atherogenic while others are not. Such lipoproteins could be involved in atherogenesis directly or indirectly. Direct involvement occurs by interaction of triglyceride-rich particles with the arterial wall, possibly affecting the artery wall by oxidative stress, direct endothelial toxicity by constituents such as lysophosphatidylcholine or oxysterols, induction of prothrombotic changes, stimulation of endothelial expression of cell adhesion molecules and direct interaction with circulating blood cells. Indirect involvement refers to the influence of triglyceride-rich lipoproteins on other lipoproteins on the composition of low density lipoprotein (LDL) and high density lipoprotein (HDL) particles. We propose that in individuals with delayed removal of chylomicron remnants, the prolonged exposure of areas of endothelium that have been partially activated by turbulent flow, to specific components of the remnants, results in the endothelial cells becoming further activated and able to bind monocytes. During or shortly after the transcytosis to the intima and transformation of monocytes to macrophages, the macrophages become engorged with remnant derived lipids and form the nidus of a fatty streak.
Collapse
Affiliation(s)
- Monica G Wilhelm
- Stanford University School of Medicine, Research Institute, Palo Alto Medical Foundation, Palo Alto, CA 94301, USA
| | | |
Collapse
|
27
|
Affiliation(s)
- Jeffrey M Gimble
- Pennington Biomedical Research Center, Louisiana State University, 6400 Perkins Road, Baton Rouge, Louisiana 70808, USA.
| | | |
Collapse
|
28
|
|
29
|
Nayak N, Harrison EH, Hussain MM. Retinyl ester secretion by intestinal cells: a specific and regulated process dependent on assembly and secretion of chylomicrons. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31689-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Parhami F, Tintut Y, Beamer WG, Gharavi N, Goodman W, Demer LL. Atherogenic high-fat diet reduces bone mineralization in mice. J Bone Miner Res 2001; 16:182-8. [PMID: 11149483 DOI: 10.1359/jbmr.2001.16.1.182] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The epidemiological correlation between osteoporosis and cardiovascular disease is independent of age, but the basis for this correlation is unknown. We previously found that atherogenic oxidized lipids inhibit osteoblastic differentiation in vitro and ex vivo, suggesting that an atherogenic diet may contribute to both diseases. In this study, effects of an atherogenic high-fat diet versus control chow diet on bone were tested in two strains of mice with genetically different susceptibility to atherosclerosis and lipid oxidation. After 4 months and 7 months on the diets, mineral content and density were measured in excised femurs and lumbar vertebrae using peripheral quantitative computed tomographic (pQCT) scanning. In addition, expression of osteocalcin in marrow isolated from the mice after 4 months on the diets was examined. After 7 months, femoral mineral content in C57BL/6 atherosclerosis-susceptible mice on the high-fat diet was 43% lower (0.73 +/- 0.09 mg vs. 1.28 +/- 0.42 mg; p = 0.008), and mineral density was 15% lower compared with mice on the chow diet. Smaller deficits were observed after 4 months. Vertebral mineral content also was lower in the fat-fed C57BL/6 mice. These changes in the atherosclerosis-resistant, C3H/HeJ mice were smaller and mostly not significant. Osteocalcin expression was reduced in the marrow of high fat-fed C57BL/6 mice. These findings suggest that an atherogenic diet inhibits bone formation by blocking differentiation of osteoblast progenitor cells.
Collapse
Affiliation(s)
- F Parhami
- Division of Cardiology, University of California, Los Angeles School of Medicine, 90095-1679, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The new therapeutic options available to clinicians treating dyslipidaemia in the last decade have enabled effective treatment for many patients. The development of the HMG-CoA reductase inhibitors (statins) have been a major advance in that they possess multiple pharmacological effects (pleiotropic effects) resulting in potent reductions of low density lipoproteins (LDL) and prevention of the atherosclerotic process. More recently, the newer fibric acid derivatives have also reduced LDL to levels comparable to those achieved with statins, have reduced triglycerides, and gemfibrozil has been shown to increase high density lipoprotein (HDL) levels. Nicotinic acid has been made tolerable with sustained-release formulations, and is still considered an excellent choice in elevating HDL cholesterol and is potentially effective in reducing lipoprotein(a) [Lp(a)] levels, an emerging risk factor for coronary heart disease (CHD). Furthermore, recent studies have reported positive lipid-lowering effects from estrogen and/or progestogen in postmenopausal women but there are still conflicting reports on the use of these agents in dyslipidaemia and in females at risk for CHD. In addition to lowering lipid levels, these antihyperlipidaemic agents may have directly or indirectly targeted thrombogenic, fibrinolytic and atherosclerotic processes which may have been unaccounted for in their overall success in clinical trials. Although LDL cholesterol is still the major target for therapy, it is likely that over the next several years other lipid/lipoprotein and nonlipid parameters will become more generally accepted targets for specific therapeutic interventions. Some important emerging lipid/lipoprotein parameters that have been associated with CHD include elevated triglyceride, oxidised LDL cholesterol and Lp(a) levels, and low HDL levels. The nonlipid parameters include elevated homocysteine and fibrinogen, and decreased endothelial-derived nitric oxide production. Among the new investigational agents are inhibitors of squalene synthetase, acylCoA: cholesterol acyltransferase, cholesteryl ester transfer protein, monocyte-macrophages and LDL cholesterol oxidation. Future applications may include thyromimetic therapy, cholesterol vaccination, somatic gene therapy, and recombinant proteins, in particular, apolipoproteins A-I and E. Non-LDL-related targets such as peroxisome proliferator-activating receptors, matrix metalloproteinases and scavenger receptor class B type I may also have clinical significance in the treatment of atherosclerosis in the near future. Before lipid-lowering therapy, dietary and lifestyle modification is and should be the first therapeutic intervention in the management of dyslipidaemia. Although current recommendations from the US and Europe are slightly different, adherence to these recommendations is essential to lower the risk of atherosclerotic vascular disease, more specifically CHD. New guidelines that are expected in the near future will encompass global opinions from the expert scientific community addressing the issue of target LDL goal (aggressive versus moderate lowering) and the application of therapy for newer emerging CHD risk factors.
Collapse
Affiliation(s)
- P H Chong
- College of Pharmacy, University of Illinois, and Cook County Hospital, Chicago 60612-3785, USA.
| | | |
Collapse
|
32
|
Brown ML, Ramprasad MP, Umeda PK, Tanaka A, Kobayashi Y, Watanabe T, Shimoyamada H, Kuo WL, Li R, Song R, Bradley WA, Gianturco SH. A macrophage receptor for apolipoprotein B48: cloning, expression, and atherosclerosis. Proc Natl Acad Sci U S A 2000; 97:7488-93. [PMID: 10852956 PMCID: PMC16572 DOI: 10.1073/pnas.120184097] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have cloned a human macrophage receptor that binds to apolipoprotein (apo)B48 of dietary triglyceride (TG)-rich lipoproteins. TG-rich lipoprotein uptake by the apoB48R rapidly converts macrophages and apoB48R-transfected Chinese hamster ovary cells in vitro into lipid-filled foam cells, as seen in atherosclerotic lesions. The apoB48R cDNA (3,744 bp) encodes a protein with no known homologs. Its approximately 3.8-kb mRNA is expressed primarily by reticuloendothelial cells: monocytes, macrophages, and endothelial cells. Immunohistochemistry shows the apoB48R is in human atherosclerotic lesion foam cells. Normally, the apoB48R may provide essential lipids to reticuloendothelial cells. If overwhelmed, foam cell formation, endothelial dysfunction, and atherothrombogenesis may ensue, a mechanism for cardiovascular disease risk of elevated TG.
Collapse
Affiliation(s)
- M L Brown
- Department of Medicine, Division of Gerontology and Geriatrics, University of Alabama, Birmingham, AL 35294-0012, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Oxygenated derivatives of cholesterol (oxysterols) present a remarkably diverse profile of biological activities, including effects on sphingolipid metabolism, platelet aggregation, apoptosis, and protein prenylation. The most notable oxysterol activities center around the regulation of cholesterol homeostasis, which appears to be controlled in part by a complex series of interactions of oxysterol ligands with various receptors, such as the oxysterol binding protein, the cellular nucleic acid binding protein, the sterol regulatory element binding protein, the LXR nuclear orphan receptors, and the low-density lipoprotein receptor. Identification of the endogenous oxysterol ligands and elucidation of their enzymatic origins are topics of active investigation. Except for 24, 25-epoxysterols, most oxysterols arise from cholesterol by autoxidation or by specific microsomal or mitochondrial oxidations, usually involving cytochrome P-450 species. Oxysterols are variously metabolized to esters, bile acids, steroid hormones, cholesterol, or other sterols through pathways that may differ according to the type of cell and mode of experimentation (in vitro, in vivo, cell culture). Reliable measurements of oxysterol levels and activities are hampered by low physiological concentrations (approximately 0.01-0.1 microM plasma) relative to cholesterol (approximately 5,000 microM) and by the susceptibility of cholesterol to autoxidation, which produces artifactual oxysterols that may also have potent activities. Reports describing the occurrence and levels of oxysterols in plasma, low-density lipoproteins, various tissues, and food products include many unrealistic data resulting from inattention to autoxidation and to limitations of the analytical methodology. Because of the widespread lack of appreciation for the technical difficulties involved in oxysterol research, a rigorous evaluation of the chromatographic and spectroscopic methods used in the isolation, characterization, and quantitation of oxysterols has been included. This review comprises a detailed and critical assessment of current knowledge regarding the formation, occurrence, metabolism, regulatory properties, and other activities of oxysterols in mammalian systems.
Collapse
Affiliation(s)
- G J Schroepfer
- Departments of Biochemistry, Rice University, Houston, Texas, USA.
| |
Collapse
|
34
|
Parhami F, Jackson SM, Tintut Y, Le V, Balucan JP, Territo M, Demer LL. Atherogenic diet and minimally oxidized low density lipoprotein inhibit osteogenic and promote adipogenic differentiation of marrow stromal cells. J Bone Miner Res 1999; 14:2067-78. [PMID: 10620066 DOI: 10.1359/jbmr.1999.14.12.2067] [Citation(s) in RCA: 196] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In osteoporosis, the bone marrow stroma osteogenic cell population declines and adipocyte numbers increase. We recently showed that oxidized lipids inhibit differentiation of preosteoblasts. In this report, we assess the effect of minimally oxidized low density lipoprotein (MM-LDL) on osteoblastic differentiation of murine marrow stromal cells, M2-10B4. MM-LDL, but not native LDL, inhibited stromal cell osteoblastic differentiation as demonstrated by inhibition of alkaline phosphatase activity, collagen I processing, and mineralization, through a mitogen-activated protein kinase-dependent pathway. In addition, marrow stromal cells from C57BL/6 mice fed a high fat, atherogenic diet failed to undergo osteogenic differentiation in vitro. The ability of MM-LDL to regulate adipogenesis was also assessed. Treatment of M2-10B4 as well as 3T3-L1 preadipocytes with MM-LDL, but not native LDL, promoted adipogenic differentiation in the presence of peroxisome proliferator-activated receptor (PPAR) gamma agonist thiazolidinediones, BRL49653 and ciglitizone. Based on promoter-reporter construct experiments, MM-LDL may be acting in part through activating PPARalpha. These observations suggest that LDL oxidation products promote osteoporotic loss of bone by directing progenitor marrow stromal cells to undergo adipogenic instead of osteogenic differentiation. These data lend support to the "lipid hypothesis of osteoporosis."
Collapse
Affiliation(s)
- F Parhami
- Department of Medicine, UCLA School of Medicine, Los Angeles, California, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
The low-density lipoprotein (LDL) receptor (LDL-R) family consists of cell-surface receptors that recognize extracellular ligands and internalize them for degradation by lysosomes. The LDL-R is the prototype of this family, which also contains very-low-density lipoprotein receptors (VLDL-R), apolipoprotein E receptor 2, LRP, and megalin. The family members contain four major structural modules: the cysteine-rich complement-type repeats, epidermal growth factor precursor-like repeats, a transmembrane domain, and a cytoplasmic domain. Each structural module serves distinct and important functions. These receptors bind several structurally dissimilar ligands. It is proposed that instead of a primary sequence, positive electrostatic potential in different ligands constitutes a receptor binding domain. This family of receptors plays crucial roles in various physiologic functions. LDL-R plays an important role in cholesterol homeostasis. Mutations cause familial hypercholesterolemia and premature coronary artery disease. LDL-R-related protein plays an important role in the clearance of plasma-activated alpha 2-macroglobulin and apolipoprotein E-enriched lipoproteins. It is essential for fetal development and has been associated with Alzheimer's disease. Megalin is the major receptor in absorptive epithelial cells of the proximal tubules and an antigenic determinant for Heymann nephritis in rats. Mutations in a chicken homolog of VLDL-R cause female sterility and premature atherosclerosis. This receptor is not expressed in liver tissue; however, transgenic expression of VLDL-R in liver corrects hypercholesterolemia in experiment animals, which suggests that it can be a candidate for gene therapy for various hyperlipidemias. The functional importance of individual receptors may lie in their differential tissue expression. The regulation of expression of these receptors occurs at the transcriptional level. Expression of the LDL-R is regulated by intracellular sterol levels involving novel membrane-bound transcription factors. Other members of the family are not regulated by sterols. All the members are, however, regulated by hormones and growth factors, but the mechanisms of regulation by hormones have not been elucidated. Studies of these receptors have provided important insights into receptor structure-function and mechanisms of ligand removal and catabolism. It is anticipated that increased knowledge about the LDL-R family members will open new avenues for the treatment of many disorders.
Collapse
Affiliation(s)
- M M Hussain
- Department of Biochemistry, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA.
| | | | | |
Collapse
|
36
|
Luchoomun J, Hussain MM. Assembly and secretion of chylomicrons by differentiated Caco-2 cells. Nascent triglycerides and preformed phospholipids are preferentially used for lipoprotein assembly. J Biol Chem 1999; 274:19565-72. [PMID: 10391890 DOI: 10.1074/jbc.274.28.19565] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To develop a cell culture model for chyclomicron (CM) assembly, the apical media of differentiated Caco-2 cells were supplemented with oleic acid (OA) together with either albumin or taurocholate (TC). The basolateral media were subjected to sequential density gradient ultracentrifugations to obtain large CM, small CM, and very low density lipoproteins (VLDL), and the distribution of apoB in these fractions was quantified. In the absence of OA, apoB was secreted as VLDL/LDL size particles. Addition of OA (>/=0.8 mM) with TC, but not with albumin, resulted in the secretion of one-third of apoB as CM. Lipid analysis revealed that half of the secreted phospholipids (PL) and triglycerides (TG) were associated with CM. In CM, TG were 7-11-fold higher than PL indicating that CM were TG-rich particles. Secreted CM contained apoB100, apoB48, and other apolipoproteins. Secretion of large CM was specifically inhibited by Pluronic L81, a detergent known to inhibit CM secretion in animals. These studies demonstrate that differentiated Caco-2 cells assemble and secrete CM in a manner similar to enterocytes in vivo. Next, experiments were performed to identify the sources of lipids used for lipoprotein assembly. Cells were labeled with [3H]glycerol for 12 h, washed, and supplemented with OA, TC, and [14C] glycerol for various times to induce CM assembly and to radiolabel nascent lipids. TG and PL were extracted from cells and media and the association of preformed and nascent lipids with lipoproteins was determined. All the lipoproteins contained higher amounts of preformed PL compared with nascent PL. VLDL contained equal amounts of nascent and preformed TG, whereas CM contained higher amounts of nascent TG even when nascent TG constituted a small fraction of the total cellular pool. These studies indicate that nascent TG and preformed PL are preferentially used for CM assembly and provide a molecular explanation for the in vivo observations that the fatty acid composition of TG, but not PL, of secreted CM reflects the composition of dietary fat. It is proposed that in the intestinal cells the preformed PL from the endoplasmic reticulum bud off with apoB as primordial particles and the assembly of larger lipoproteins is dependent on the synthesis and delivery of nascent TG to these particles.
Collapse
Affiliation(s)
- J Luchoomun
- Department of Biochemistry, School of Medicine, MCP Hahnemann University, Philadelphia, Pennsylvania 19129, USA
| | | |
Collapse
|
37
|
Ross AC. Mutations in the gene encoding retinol binding protein and retinol deficiency: is there compensation by retinyl esters and retinoic acid? Am J Clin Nutr 1999; 69:829-30. [PMID: 10232619 DOI: 10.1093/ajcn/69.5.829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
38
|
Gianturco SH, Ramprasad MP, Song R, Li R, Brown ML, Bradley WA. Apolipoprotein B-48 or its apolipoprotein B-100 equivalent mediates the binding of triglyceride-rich lipoproteins to their unique human monocyte-macrophage receptor. Arterioscler Thromb Vasc Biol 1998; 18:968-76. [PMID: 9633939 DOI: 10.1161/01.atv.18.6.968] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Studies in animals and humans have demonstrated uptake of plasma chylomicrons (triglyceride-rich lipoprotein [TGRLP] of Sf>400) by accessible macrophages in vivo. One potential mechanism is via a unique receptor pathway we previously identified in human blood and THP-1 monocytes and macrophages for the lipoprotein lipase (LpL)- and apolipoprotein (apo) E-independent, high-affinity, specific binding of plasma chylomicrons and hypertriglyceridemic VLDL (HTG-VLDL) to cell-surface membrane-binding proteins (MBP 200, 235; apparent Mr 200, 235 kD on SDS-PAGE) that leads to lipid accumulation in vitro. Competitive binding studies reported here demonstrate that anti-apoB antibodies specifically block the high-affinity binding of TGRLP to this receptor on THP-1 cells and on ligand blots. LpL, which binds to an N-terminal domain of apoB, also inhibits TGRLP binding both to this site on THP-1s and to MBP 200, 235 by binding to apoB. Chylomicrons of Sf>1100 that contain apoB-48, but not apoB-100, bind specifically to MBP 200, 235, and this binding is blocked by anti-apoB IgG. In contrast, lactoferrin and heparin do not inhibit TGRLP binding. We conclude that the receptor-binding domain is within apoB-48 (or an equivalent in apoB-100) near the LpL-binding domain, but not a heparin-binding domain. Uptake of TGRLP by this mechanism could provide essential nutrients or, in HTG, cause excess lipid accumulation and foam cell formation.
Collapse
Affiliation(s)
- S H Gianturco
- Department of Medicine, University of Alabama at Birmingham, 35294-0012, USA
| | | | | | | | | | | |
Collapse
|
39
|
Lespine A, Periquet B, Garcia J, Ghisolfi J, Thouvenot JP. Retinol and retinyl ester concentrations in rat tissues during total parenteral nutrition. J Nutr Biochem 1998. [DOI: 10.1016/s0955-2863(98)00028-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
40
|
Sirtori CR. Evaluation of lipoproteins/apolipoproteins as therapeutic agents for the treatment of vascular and nonvascular disease. Am J Cardiol 1998; 81:36F-39F. [PMID: 9604905 DOI: 10.1016/s0002-9149(98)00259-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- C R Sirtori
- Institute of Pharmacological Sciences, University of Milano, Milan, Italy
| |
Collapse
|
41
|
Beau P, Mannant PR, Pelletier D, Brizard A. Comparison of bone marrow toxicity of medium-chain and long-chain triglyceride emulsions: an in vitro study in humans. JPEN J Parenter Enteral Nutr 1997; 21:343-6. [PMID: 9406132 DOI: 10.1177/0148607197021006343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND In this study, we evaluated the in vitro bone marrow toxicity of two lipid emulsions containing either long-chain triglycerides (LCT) or a mixture of medium-chain triglycerides (MCT) and LCT. METHODS Bone marrow cells were obtained from six healthy subjects and were cultured for 14 days after a 24-hour preincubation with various concentrations (from 0 to 10 mg/mL) of LCT- and LCT/MCT-based lipid emulsions. RESULTS Compared with controls (no preincubation with lipid emulsion), both lipid emulsions significantly inhibited by 50% to 70% colony formation of all the human bone marrow cells cultured from a triglyceride concentration of 0.5 mg/mL (p < .05). Erythroid burst-forming unit (BFU-E) formation was significantly more inhibited with LCT/MCT emulsion than with LCT emulsion (p < .05). The inhibition of granulocyte-macrophage colony-forming unit (GM-CFU) and mixed granulocyte-erythrocyte-monocyte-megakaryocyte colony-forming unit (GEMM-CFU) formation did not significantly differ with the two emulsions. CONCLUSIONS Both LCT- and LCT/MCT-based lipid emulsions strongly inhibit colony formation by human bone marrow cells. BFU-E colony formation is more sensitive to LCT/MCT inhibition than to LCT.
Collapse
Affiliation(s)
- P Beau
- Gastroenterology and Nutritional Support Unit, University Hospital, Poitiers, France
| | | | | | | |
Collapse
|
42
|
Huang Y, Schwendner SW, Rall SC, Sanan DA, Mahley RW. Apolipoprotein E2 transgenic rabbits. Modulation of the type III hyperlipoproteinemic phenotype by estrogen and occurrence of spontaneous atherosclerosis. J Biol Chem 1997; 272:22685-94. [PMID: 9312550 DOI: 10.1074/jbc.272.36.22685] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Transgenic rabbits were produced that expressed high plasma levels (30-70 mg/dl) of human apolipoprotein (apo) E2(Cys-158), an apoE variant associated with the human genetic disorder type III hyperlipoproteinemia (HLP). Male transgenic rabbits fed normal chow had up to 8-fold (289 +/- 148 mg/dl) and 15-fold (697 +/- 452 mg/dl) increases in plasma total cholesterol and triglycerides, respectively, compared with nontransgenic males. Female transgenic rabbits had only a modest hyperlipidemia (total cholesterol, 140 +/- 46 mg/dl; total triglycerides, 174 +/- 66 mg/dl). Both sexes displayed the hallmarks fo type III HLP: beta-migrating very low density lipoproteins (beta-VLDL) (intestinal and hepatic remnant lipoproteins) and significantly increased VLDL and intermediate density lipoproteins. Apolipoprotein E2-containing VLDL particles were cleared from teh circulation more slowly and were more resistant to lipoprotein lipase-mediated lipolysis than normal VLDL. Only females had increased high density lipoproteins (HDL) (40%), which were shifted from typical small HDL to larger HDL1. Plasma apoE2 was predominantly associated with beta-VLDL in males and with HDL in females. To ascertain reasons for the phenotypic gender difference, we treated male transgenic rabbits with 17alpha-ethinyl estradiol. Estrogen treatment for 10 days dramatically decreased total cholesterol (73%) and triglycerides (89%) and converted beta-VLDL to pre-beta-migrating VLDL. Concomitantly, lipoprotein lipase and hepatic lipase activities increased by 90%, low density lipoprotein receptor activity was stimulated significantly, apoE2 was redistributed to HDL, and HDL were converted to HDL1. Conversely, ovariectomy in female transgenic rabbits significantly increased total cholesterol (75%), triglycerides (117%), and beta-VLDL, while decreasing lipoprotein lipase and hepatic lipase activities by 35% and redistributing apoE2 to the beta-VLDL. Thus, estrogen status appears to be responsible for much of the gender difference of the lipoprotein phenotype, mainly by modulating both lipase and low density lipoprotein receptor activities. Furthermore, transgenic rabbits fed normal chow for 11 months developed fatty streaks, and some had more advanced atherosclerotic lesions, especially around the aortic arch and proximal abdominal aorta. The lesions were more extensive in males, roughly correlating with the magnitude of the hyperlipidemia. Therefore, high plasma levels of human apoE2 in transgenic rabbits result in a type III HLP phenotype, in which males have both more severe hyperlipidemia and more extensive atherosclerosis than females.
Collapse
Affiliation(s)
- Y Huang
- Gladstone Institute of Cardiovascular Disease, Cardiovascular Research Institute, University of California, San Francisco, California 94141-9100, USA
| | | | | | | | | |
Collapse
|
43
|
Hussain MM, Goldberg IJ, Weisgraber KH, Mahley RW, Innerarity TL. Uptake of chylomicrons by the liver, but not by the bone marrow, is modulated by lipoprotein lipase activity. Arterioscler Thromb Vasc Biol 1997; 17:1407-13. [PMID: 9261274 DOI: 10.1161/01.atv.17.7.1407] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have shown that chylomicrons are catabolized by the liver and bone marrow in rabbits and marmosets. In the present investigation, we studied the role of various apolipoproteins and lipoprotein lipase in the clearance of these particles by the liver and bone marrow in rabbits. Incubation of chylomicrons with purified apolipoprotein (apo) E or C-II resulted in more rapid clearance of these particles from the plasma, whereas incubation of chylomicrons with apoA-I, apoC-I, apoC-III1, or apoC-III2, did not affect their clearance rates. Analysis of tissue uptake revealed that the increased plasma clearance rate of chylomicrons enriched with apoE or apoC-II was primarily due to enhanced uptake by the liver. The uptake of chylomicrons by the bone marrow increased after their enrichment with apoA-I but decreased after their enrichment with apoC-II. Because apoC-II is a cofactor for lipoprotein lipase, we hypothesized that the increased clearance rates were due to faster hydrolysis of chylomicrons and rapid generation of chylomicron remnants. To test this hypothesis, lipoprotein lipase activity was inhibited by injection of an antilipoprotein lipase monoclonal antibody. Inhibition of lipoprotein lipase retarded clearance of chylomicrons from the plasma and decreased their uptake by the liver but did not affect their uptake by the bone marrow. These studies suggest that bone marrow can take up chylomicrons in the absence of lipoprotein lipase activity and provide an explanation for the presence of foam cells in the bone marrow of type I hyperlipoproteinemic patients.
Collapse
Affiliation(s)
- M M Hussain
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94141-9100, USA
| | | | | | | | | |
Collapse
|
44
|
Riddell DR, Graham A, Owen JS. Apolipoprotein E inhibits platelet aggregation through the L-arginine:nitric oxide pathway. Implications for vascular disease. J Biol Chem 1997; 272:89-95. [PMID: 8995232 DOI: 10.1074/jbc.272.1.89] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously reported that plasma apolipoprotein (apo) E-containing high density lipoprotein particles have a potent anti-platelet action, apparently by occupying saturable binding sites in the cell surface. Here we show that purified apoE (10-50 microg/ml), complexed with phospholipid vesicles (dimyristoylphosphatidylcholine, DMPC), suppresses platelet aggregation induced by ADP, epinephrine, or collagen. This effect was not due to sequestration of cholesterol from platelet membranes; apoE x DMPC chemically modified with cyclohexanedione (cyclohexanedione-apoE x DMPC) did not inhibit aggregation but nevertheless removed similar amounts of cholesterol as untreated complexes, about 2% during the aggregation period. Rather we found that apoE influenced intracellular platelet signaling. Thus, apoE x DMPC markedly increased cGMP in ADP-stimulated platelets which correlated with the resulting inhibition of aggregation (r = 0.85; p < 0.01, n = 10), whereas cyclohexanedione-apoE x DMPC vesicles had no effect. One important cellular mechanism for up-regulation of cGMP is through stimulation of nitric oxide (NO) synthase, the NO generated by conversion of L-arginine to L-citrulline, binds to and activates guanylate cyclase. This signal transduction pathway was implicated by the finding that NO synthase inhibitors of distinct structural and functional types all reversed the anti-platelet action of apoE, whereas a selective inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (100 nM), had a similar reversing action. Direct confirmation that apoE stimulates NO synthase was obtained by use of L-[3H]arginine; platelets pretreated with apoE x DMPC produced markedly more L-[3H]citrulline (0.71 +/- 0.1 pmol/h/10(9) platelets) than controls (0.18 +/- 0.03; p < 0.05). In addition, hemoglobin which avidly binds NO also suppressed the anti-aggregatory effect, indicating that apoE stimulated sufficient production of NO by platelets for extracellular release to occur. We conclude that apoE inhibits platelet aggregation through the L-arginine:NO signal transduction pathway.
Collapse
Affiliation(s)
- D R Riddell
- University Department of Medicine, Royal Free Hospital School of Medicine, London, United Kingdom
| | | | | |
Collapse
|
45
|
Lespine A, Periquet B, Jaconi S, Alexandre MC, Garcia J, Ghisolfi J, Thouvenot JP, Siegenthaler G. Decreases in retinol and retinol-binding protein during total parenteral nutrition in rats are not due to a vitamin A deficiency. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)37454-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
46
|
Hussain MM, Kancha RK, Zhou Z, Luchoomun J, Zu H, Bakillah A. Chylomicron assembly and catabolism: role of apolipoproteins and receptors. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1300:151-70. [PMID: 8679680 DOI: 10.1016/0005-2760(96)00041-0] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Chylomicrons are lipoproteins synthesized exclusively by the intestine to transport dietary fat and fat-soluble vitamins. Synthesis of apoB48, a translational product of the apob gene, is required for the assembly of chylomicrons. The apob gene transcription in the intestine results in 14 and 7 kb mRNAs. These mRNAs are post-transcriptionally edited creating a stop codon. The edited mRNAs chylomicrons from the shorter apoB48 peptide remains to be elucidated. In addition, the roles of proteins involved in the assembly pathway, e.g. apobec-1, MTP and apoA-IV, needs to be studied. Cloning of enzymes involved in the intestinal biosynthesis of triglycerides will be crucial to fully appreciate the assembly of chylomicrons. There is a need for cell culture and transgenic animal models that can be used for intestinal lipoprotein assembly. The catabolism of chylomicrons is far more complex and efficient than the catabolism of VLDL. Even though the major steps involved in the catabolism of chylomicrons are now known, the determinants for apolipoprotein exchange, processing of remnants in the space of Disse, as well as the mechanism of uptake of these particles by extra-hepatic tissue needs further exploration.
Collapse
Affiliation(s)
- M M Hussain
- Department of Pathology, Medical College of Pennsylvania, Philadelphia 19129, USA. hussain@medcolpa. edu
| | | | | | | | | | | |
Collapse
|
47
|
Niemeier A, Gàfvels M, Heeren J, Meyer N, Angelin B, Beisiegel U. VLDL receptor mediates the uptake of human chylomicron remnants in vitro. J Lipid Res 1996. [DOI: 10.1016/s0022-2275(20)39116-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
48
|
Hussain MM, Innerarity TL, Brecht WJ, Mahley RW. Chylomicron metabolism in normal, cholesterol-fed, and Watanabe heritable hyperlipidemic rabbits. Saturation of the sequestration step of the remnant clearance pathway. J Biol Chem 1995; 270:8578-87. [PMID: 7721759 DOI: 10.1074/jbc.270.15.8578] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The plasma clearance of radiolabeled chylomicrons was compared in normal, cholesterol-fed, and Watanabe heritable hyperlipidemic (WHHL) rabbits. Chylomicron clearance was rapid in normal rabbits but was significantly retarded in cholesterol-fed and WHHL rabbits. At 40 min after the injection of chylomicrons, 14-17% of the injected dose remained in the plasma of normal rabbits, whereas approximately 40-50% of the injected dose remained in the plasma of cholesterol-fed and WHHL rabbits. The differences were reflected in the reduced plasma clearance by the liver and bone marrow of the cholesterol-fed and WHHL rabbits. The hyperlipidemic rabbits expressed normal levels of low density lipoprotein (LDL) receptor-related protein/alpha 2-macroglobulin receptor in the liver. In contrast, the hepatic levels of LDL receptors were lower in hyperlipidemic rabbits; as expected, they were significantly lower in WHHL rabbits compared with normal and cholesterol-fed rabbits. Furthermore, it was demonstrated that lipoproteins accumulating in the plasma of the hyperlipidemic rabbits competed for and retarded the clearance of chylomicrons from the plasma. Competition was demonstrated by cross-circulation of normal and cholesterol-fed or normal and WHHL rabbits, in which the rapid influx of plasma containing the accumulated plasma lipoproteins from cholesterol-fed or WHHL rabbits was shown to impair the uptake of chylomicrons by the liver and bone marrow of normal rabbits. These observations were extended by infusing isolated lipoproteins into normal rabbits. The rabbit d < 1.02 g/ml (remnant) fraction and the canine cholesterol-rich high density lipoproteins (HDL) with apolipoprotein E (HDLc) inhibited chylomicron clearance, whereas human LDL and HDL from humans and rabbits did not. We conclude that the low LDL receptor activity in the cholesterol-fed and WHHL rabbits may contribute, at least in part, to the impaired clearance by decreasing remnant uptake and causing the accumulation of chylomicron and/or very low density lipoprotein remnants. The accumulated remnant lipoproteins then compete for and saturate the mechanism responsible for the initial rapid clearance of chylomicrons from the plasma. We speculate that saturation of the initial rapid clearance may occur at the sequestration step, which involves the binding of remnants to heparan sulfate proteoglycans in the space of Disse.
Collapse
Affiliation(s)
- M M Hussain
- Gladstone Institute of Cardiovascular Disease, University of California, San Francisco 94110, USA
| | | | | | | |
Collapse
|
49
|
Intravenous heparinase inhibits remnant lipoprotein clearance from the plasma and uptake by the liver: in vivo role of heparan sulfate proteoglycans. J Lipid Res 1995. [DOI: 10.1016/s0022-2275(20)39892-8] [Citation(s) in RCA: 85] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
50
|
Schwiegelshohn B, Presley JF, Gorecki M, Vogel T, Carpentier YA, Maxfield FR, Deckelbaum RJ. Effects of apoprotein E on intracellular metabolism of model triglyceride-rich particles are distinct from effects on cell particle uptake. J Biol Chem 1995; 270:1761-9. [PMID: 7829512 DOI: 10.1074/jbc.270.4.1761] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Apoprotein E (apoE) enhances uptake of triglyceride-rich lipoprotein particles (TGRP). We questioned whether apoE would also modulate intracellular metabolism of TGRP in addition to its effects on particle uptake. We prepared model TGRP with triolein and cholesteryl oleate (1:1, w/w) as the core lipids, emulsified by egg yolk phosphatidylcholine, and containing a non-degradable marker, [3H]cholesteryl hexadecyl ether. Particles were intermediate density lipoprotein-sized as determined by core lipid/phospholipid ratios (2.0-3.0/1) and gel filtration chromatography on Sepharose CL-2B. Emulsions were incubated with J774 macrophages for 5 min to 6 h at core lipid concentrations of 300-1200 micrograms/ml and 0-0.2 microgram recombinant apoE/mg core lipid. Particle uptake was determined by [3H]cholesteryl ether uptake and fluorescence microscopy in the absence and presence of apoE. Similar uptake of particles with and without apoE was achieved by utilizing a 4 times higher particle concentration in the absence of apoE. At equivalent levels of uptake, particles with apoE lead to one-half of the triglyceride mass accumulation and twice the triglyceride utilization as compared to particles without apoE. Further, apoE doubles cell cholesteryl ester hydrolysis and to a lesser extent (approximately 30%) increases cholesteryl ester resynthesis by acyl-CoA cholesterol acyltransferase. Particles, both with and without apoE, reach the lysosomal compartment as determined by colocalization with fluorescein-labeled alpha 2-macroglobulin. These results suggest that, in addition to its role in enhancing TGRP uptake, apoE has additional effects on modulating the cellular metabolism of both triglyceride and cholesteryl ester, after particle internalization.
Collapse
Affiliation(s)
- B Schwiegelshohn
- Department of Pediatrics, College of Physicians and Surgeons of Columbia University, New York, New York 10032
| | | | | | | | | | | | | |
Collapse
|