1
|
Ren Y, Li M, Shi Y, Liu P, Wu Q, Yang Y, Zhang L, Jin Y. Schistosoma japonicum proteins that interact with the gynecophoral canal protein identified using a yeast two-hybrid system. Exp Parasitol 2022; 239:108305. [PMID: 35714725 DOI: 10.1016/j.exppara.2022.108305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/27/2022]
Abstract
The large amount of schistosome eggs produced by mature female worms not only induce major pathological damage to the host but also lead to the transmission of schistosomiasis. Mature female schistosome worms need constant pairing contact with a male partner as male signaling is indispensable to female growth, development, and reproduction. The gynecophoral canal protein (GCP), a cell-surface glycoprotein, plays a potential role in the interaction between males and females and in stimulating female development and maturation. In this study, a yeast two-hybrid cDNA library of Schistosoma japonicum (Sj) parasites 18 days post-infection (dpi) was constructed; the Sjgcp gene was inserted into a pGBKT7-BD bait plasmid and used as a bait protein to screen for its molecular interactions using a yeast mating procedure. Twenty-four prey proteins that interacted with the SjGCP were selected after excluding false positives; the interactions between S.japonicum lethal giant larvae (SjLGL) and SjGCP, S.japonicum type V collagen (SjColV) and SjGCP, were verified by co-immunoprecipitation. The RNA interference against SjGCP, SjColV and SjGCP + SjColV led to severe underdevelopment of tegument in male worms and vitelline globules in female worms as well as reduced reproductive capacity of the females. Collectively, SjGCP and its interacting proteins may play pivotal roles in growth and development. The findings also suggested that SjGCP and its interacting protein partners might represent new candidate targets for drug development against schistosomiasis.
Collapse
Affiliation(s)
- Yuqi Ren
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Mian Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yanli Shi
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Pingping Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Qijin Wu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yunxia Yang
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
2
|
Lu Z, Kamat K, Johnson BP, Yin CC, Scholler N, Abbott KL. Generation of a Fully Human scFv that binds Tumor-Specific Glycoforms. Sci Rep 2019; 9:5101. [PMID: 30911061 PMCID: PMC6433917 DOI: 10.1038/s41598-019-41567-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Tumor-specific glycosylation changes are an attractive target for the development of diagnostic and therapeutic applications. Periostin is a glycoprotein with high expression in many tumors of epithelial origin including ovarian cancer. Strategies to target the peptide portion of periostin as a diagnostic or therapeutic biomarker for cancer are limited due to increased expression of periostin in non-cancerous inflammatory conditions. Here, we have screened for antibody fragments that recognize the tumor-specific glycosylation present on glycoforms of periostin containing bisecting N-glycans in ovarian cancer using a yeast-display library of antibody fragments, while subtracting those that bind to the periostin protein with glycoforms found in non-malignant cell types. We generated a biotinylated form of a fully human scFv antibody (scFvC9) that targets the bisecting N-glycans expressed by cancer cells. Validation studies in vitro and in vivo using scFvC9 indicate this antibody can be useful for the development of diagnostic, imaging, and therapeutic applications for cancers that express the antigen.
Collapse
Affiliation(s)
- Zhongpeng Lu
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, 72205, USA
| | - Kalika Kamat
- SRI International Biosciences Division, Center for Cancer and Metabolism, Menlo Park, CA, 94025-3493, USA
| | - Blake P Johnson
- Ouachita Baptist University, Department of Biology, Arkadelphia, AR, 71998, USA
| | - Catherin C Yin
- SRI International Biosciences Division, Center for Cancer and Metabolism, Menlo Park, CA, 94025-3493, USA
| | - Nathalie Scholler
- SRI International Biosciences Division, Center for Cancer and Metabolism, Menlo Park, CA, 94025-3493, USA
| | - Karen L Abbott
- University of Arkansas for Medical Sciences, Department of Biochemistry and Molecular Biology, Little Rock, AR, 72205, USA.
| |
Collapse
|
3
|
Xue H, Veit C, Abas L, Tryfona T, Maresch D, Ricardi MM, Estevez JM, Strasser R, Seifert GJ. Arabidopsis thaliana FLA4 functions as a glycan-stabilized soluble factor via its carboxy-proximal Fasciclin 1 domain. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:613-630. [PMID: 28482115 PMCID: PMC5575511 DOI: 10.1111/tpj.13591] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 04/18/2017] [Accepted: 04/28/2017] [Indexed: 05/12/2023]
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) are involved in numerous important functions in plants but the relevance of their complex structure to physiological function and cellular fate is unresolved. Using a fully functional fluorescent version of Arabidopsis thaliana FLA4 we show that this protein is localized at the plasma membrane as well as in endosomes and soluble in the apoplast. FLA4 is likely to be GPI-anchored, is highly N-glycosylated and carries two O-glycan epitopes previously associated with arabinogalactan proteins. The activity of FLA4 was resistant against deletion of the amino-proximal fasciclin 1 domain and was unaffected by removal of the GPI-modification signal, a highly conserved N-glycan or the deletion of predicted O-glycosylation sites. Nonetheless these structural changes dramatically decreased endoplasmic reticulum (ER)-exit and plasma membrane localization of FLA4, with N-glycosylation acting at the level of ER-exit and O-glycosylation influencing post-secretory fate. We show that FLA4 acts predominantly by molecular interactions involving its carboxy-proximal fasciclin 1 domain and that its amino-proximal fasciclin 1 domain is required for stabilization of plasma membrane localization. FLA4 functions as a soluble glycoprotein via its carboxy-proximal Fas1 domain and its normal cellular trafficking depends on N- and O-glycosylation.
Collapse
Affiliation(s)
- Hui Xue
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Christiane Veit
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Lindy Abas
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Theodora Tryfona
- Department of BiochemistryUniversity of CambridgeCambridgeCB2 1QWUK
| | - Daniel Maresch
- Department of ChemistryUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Martiniano M. Ricardi
- Biología Molecular y Neurociencias–Consejo Nacional de Investigaciones Científicas y Técnicas(IFIByNE‐CONICET)Instituto de FisiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresC1428EGAArgentina
| | - José Manuel Estevez
- Biología Molecular y Neurociencias–Consejo Nacional de Investigaciones Científicas y Técnicas(IFIByNE‐CONICET)Instituto de FisiologíaFacultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresC1428EGAArgentina
- Fundación Instituto Leloir and Instituto de Investigaciones Bioquímicas de Buenos AiresBuenos Aires CPC1405BWEArgentina
| | - Richard Strasser
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| | - Georg J. Seifert
- Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life ScienceBOKU ViennaMuthgasse 11A‐1190ViennaAustria
| |
Collapse
|
4
|
Moody RG, Williamson MP. Structure and function of a bacterial Fasciclin I Domain Protein elucidates function of related cell adhesion proteins such as TGFBIp and periostin. FEBS Open Bio 2013; 3:71-7. [PMID: 23772377 PMCID: PMC3668549 DOI: 10.1016/j.fob.2013.01.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/03/2013] [Accepted: 01/07/2013] [Indexed: 11/30/2022] Open
Abstract
Fasciclin I (FAS1) domains have important roles in cell adhesion, which are not understood despite many structural and functional studies. Examples of FAS1 domain proteins include TGFBIp (βig-h3) and periostin, which function in angiogenesis and development of cornea and bone, and are also highly expressed in cancer tissues. Here we report the structure of a single-domain bacterial fasciclin I protein, Fdp, in the free-living photosynthetic bacterium Rhodobacter sphaeroides, and show that it confers cell adhesion properties in vivo. A binding site is identified which includes the most highly conserved region and is adjacent to the N-terminus. By mapping this onto eukaryotic homologues, which all contain tandem FAS1 domains, it is concluded that the interaction site is normally buried in the dimer interface. This explains why corneal dystrophy mutations are concentrated in the C-terminal domain of TGFBIp and suggests new therapeutic approaches.
Collapse
Affiliation(s)
- Robert G Moody
- Dept. of Molecular Biology and Biotechnology, Firth Court, Western Bank, University of Sheffield, Sheffield S10 2TN, UK
| | | |
Collapse
|
5
|
Orecchia P, Conte R, Balza E, Castellani P, Borsi L, Zardi L, Mingari MC, Carnemolla B. Identification of a novel cell binding site of periostin involved in tumour growth. Eur J Cancer 2011; 47:2221-9. [PMID: 21605971 DOI: 10.1016/j.ejca.2011.04.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/19/2011] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Periostin (PN), a member of the fasciclin family of proteins, is a TGF-β-induced extracellular matrix protein involved in cell survival, angiogenesis, invasion and metastasis. It is considered a potent angiogenic factor and a marker of tumour progression in many types of human cancer. Many different kinds of cells bind to PN by means of the integrins αvβ3 and αvβ5, but the periostin epitope recognised by these integrins is not formally demonstrated. The aim of our study was to identify which domain of PN could be involved in cell adhesion and its potential role in tumour growth. METHODS We generated the monoclonal antibody OC-20 (mAb OC-20) by hybridoma technology. Different PN recombinant fragments were used to characterise the periostin epitope recognised by the mAb OC-20 and to localise a new cell binding site of the protein. A murine model of human melanoma was used in the preclinical in vivo experiments. RESULTS We formally demonstrate that the periostin epitope recognised by OC-20 is a new binding site for the integrins αvβ3 and αvβ5, localised in the second FAS1 domain (FAS1-2) of the protein. Moreover the in vivo use of this antibody significantly inhibits tumour growth and angiogenesis. CONCLUSION Our results show that the FAS1-2 domain of PN plays a role in tumour progression. Moreover this novel antibody may likewise prove to be very useful in clarifying the role of PN in angiogenesis and may contribute to the design of novel anti-angiogenesis drugs.
Collapse
Affiliation(s)
- Paola Orecchia
- Laboratory of Immunology, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Ding ZY, Wang YH, Luo ZK, Lee HF, Hwang J, Chien CT, Huang ML. Glial cell adhesive molecule unzipped mediates axon guidance in Drosophila. Dev Dyn 2010; 240:122-34. [PMID: 21117153 DOI: 10.1002/dvdy.22508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Axon guidance needs help from the glial cell system during embryogenesis. In the Drosophila embryonic central nervous system (CNS), longitudinal glia (LG) have been implicated in axon guidance but the mechanism remains unclear. We identified the protein encoded by the Drosophila gene unzipped (uzip) as a novel cell adhesion molecule (CAM). Uzip expressed in Drosophila S2 cells triggered cell aggregation through homophilic binding. In the embryonic CNS, Uzip was mainly produced by the LG but was also located at axons, which is consistent with the secretion of Uzip expressed in cultured cells. Although uzip mutants displayed no axonal defect, loss of uzip enhanced the axonal defects in the mutant of N-cadherin (CadN) and the Wnt gene family member wnt5. Overexpression of uzip could rescue the phenotype in the CadNuzip(D43) mutant. Thus, Uzip is a novel CAM from the LG regulating axon guidance.
Collapse
Affiliation(s)
- Zhao-Ying Ding
- Department of Life Science, National Chung-Cheng University, Chia-Yi, Taiwan
| | | | | | | | | | | | | |
Collapse
|
7
|
Song SM, Shin JW, de Guzman JV, Kim J, Yu HS, Jha BK, Kong HH, Hong Y, Chung DI. Paragonimus westermani: Identification and characterization of the fasciclin I domain-containing protein. Exp Parasitol 2010; 125:76-83. [DOI: 10.1016/j.exppara.2009.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 12/29/2009] [Accepted: 12/30/2009] [Indexed: 11/16/2022]
|
8
|
Farzan SF, Stegman MA, Ogden SK, Ascano M, Black KE, Tacchelly O, Robbins DJ. A quantification of pathway components supports a novel model of Hedgehog signal transduction. J Biol Chem 2009; 284:28874-84. [PMID: 19717563 PMCID: PMC2781433 DOI: 10.1074/jbc.m109.041608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 08/25/2009] [Indexed: 11/06/2022] Open
Abstract
The secreted protein Hedgehog (Hh) plays a critical instructional role during metazoan development. In Drosophila, Hh signaling is interpreted by a set of conserved, downstream effectors that differentially localize and interact to regulate the stability and activity of the transcription factor Cubitus interruptus. Two essential models that integrate genetic, cell biological, and biochemical information have been proposed to explain how these signaling components relate to one another within the cellular context. As the molar ratios of the signaling effectors required in each of these models are quite different, quantitating the cellular ratio of pathway components could distinguish these two models. Here, we address this important question using a set of purified protein standards to perform a quantitative analysis of Drosophila cell lysates for each downstream pathway component. We determine each component's steady-state concentration within a given cell, demonstrate the molar ratio of Hh signaling effectors differs more than two orders of magnitude and that this ratio is conserved in vivo. We find that the G-protein-coupled transmembrane protein Smoothened, an activating component, is present in limiting amounts, while a negative pathway regulator, Suppressor of Fused, is present in vast molar excess. Interestingly, despite large differences in the steady-state ratio, all downstream signaling components exist in an equimolar membrane-associated complex. We use these quantitative results to re-evaluate the current models of Hh signaling and now propose a novel model of signaling that accounts for the stoichiometric differences observed between various Hh pathway components.
Collapse
Affiliation(s)
- Shohreh F. Farzan
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Melanie A. Stegman
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Stacey K. Ogden
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Manuel Ascano
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Kendall E. Black
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - Ofelia Tacchelly
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
| | - David J. Robbins
- From the Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, New Hampshire 03755 and
- the Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire 03756
| |
Collapse
|
9
|
Nagaraj K, Kristiansen LV, Skrzynski A, Castiella C, Garcia-Alonso L, Hortsch M. Pathogenic human L1-CAM mutations reduce the adhesion-dependent activation of EGFR. Hum Mol Genet 2009; 18:3822-31. [PMID: 19617634 PMCID: PMC2748892 DOI: 10.1093/hmg/ddp325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 11/13/2022] Open
Abstract
L1-cell adhesion molecule (L1-CAM) belongs to a functionally conserved group of neural cell adhesion molecules that are implicated in many aspects of nervous system development. In many neuronal cells the adhesive function of L1-type CAMs induces cellular signaling processes that involves the activation of neuronal tyrosine protein kinases and among other functions regulates axonal growth and guidance. Mutations in the human L1-CAM gene are responsible for a complex neurodevelopmental condition, generally referred to as L1 syndrome. Several pathogenic L1-CAM mutations have been identified in humans that cause L1 syndrome in affected individuals without affecting the level of L1-CAM-mediated homophilic cell adhesion when tested in vitro. In this study, an analysis of two different pathogenic human L1-CAM molecules indicates that although both induce normal L1-CAM-mediated cell aggregation, they are defective in stimulating human epidermal growth factor receptor tyrosine kinase activity in vitro and are unable to rescue L1 loss-of-function conditions in a Drosophila transgenic model in vivo. These results indicate that the L1 syndrome-associated phenotype might involve the disruption of L1-CAM's functions at different levels. Either by reducing or abolishing L1-CAM protein expression, by interfering with L1-CAM's cell surface expression, by reducing L1-CAM's adhesive ability or by impeding further downstream adhesion-dependent signaling processes.
Collapse
Affiliation(s)
- Kakanahalli Nagaraj
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Lars V. Kristiansen
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- The Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark and
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain
| | - Adam Skrzynski
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Carlos Castiella
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain
| | - Luis Garcia-Alonso
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain
| | - Michael Hortsch
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
10
|
Ruan K, Bao S, Ouyang G. The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci 2009; 66:2219-30. [PMID: 19308325 PMCID: PMC11115806 DOI: 10.1007/s00018-009-0013-7] [Citation(s) in RCA: 257] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 02/24/2009] [Accepted: 02/27/2009] [Indexed: 12/18/2022]
Abstract
Periostin, also called osteoblast-specific factor 2 (OSF-2), is a member of the fasciclin family and a disulfide-linked cell adhesion protein that has been shown to be expressed preferentially in the periosteum and periodontal ligaments, where it acts as a critical regulator of bone and tooth formation and maintenance. Furthermore, periostin plays an important role in cardiac development. Recent clinical evidence has also revealed that periostin is involved in the development of various tumors, such as breast, lung, colon, pancreatic, and ovarian cancers. Periostin interacts with multiple cell-surface receptors, most notably integrins, and signals mainly via the PI3-K/Akt and other pathways to promote cancer cell survival, epithelial-mesenchymal transition (EMT), invasion, and metastasis. In this review, aspects related to the function of periostin in tumorigenesis are summarized.
Collapse
Affiliation(s)
- Kai Ruan
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, 361005 Xiamen, China
| | - Shideng Bao
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, 361005 Xiamen, China
- Present Address: Stem Cell Biology and Regenerative Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195 USA
| | - Gaoliang Ouyang
- Key Laboratory of the Ministry of Education for Cell Biology and Tumor Cell Engineering, School of Life Sciences, Xiamen University, 361005 Xiamen, China
| |
Collapse
|
11
|
Norris RA, Potts JD, Yost MJ, Junor L, Brooks T, Tan H, Hoffman S, Hart MM, Kern MJ, Damon B, Markwald RR, Goodwin RL. Periostin promotes a fibroblastic lineage pathway in atrioventricular valve progenitor cells. Dev Dyn 2009; 238:1052-63. [PMID: 19334280 PMCID: PMC2886283 DOI: 10.1002/dvdy.21933] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Differentiation of prevalvular mesenchyme into valve fibroblasts is an integral step towards the development of functionally mature cardiac valves. Although clinically relevant, little is known regarding the molecular and cellular mechanisms by which this process proceeds. Genes that are regulated in a spatio-temporal pattern during valve remodeling are candidates for affecting this differentiation process. Based on its expression pattern, we have focused our studies on the role of the matricellular gene, periostin, in regulating the differentiation of cushion mesenchymal cells into valve fibroblasts. Herein, we demonstrate that periostin expression is coincident with and regulates type I collagen protein production, a major component of mature valve tissue. Adenoviral-mediated knock-down of periostin in atrioventricular mesenchyme resulted in a decrease in collagen I protein expression and aberrant induction of myocyte markers indicating an alteration in AV mesenchyme differentiation. In vitro analyses using a novel "cardiotube" assay further demonstrated that expression of periostin regulates lineage commitment of valve precursor cells. In these cells, expression of periostin and collagen I are regulated, in part, by TGFbeta-3. We further demonstrate that TGFbeta-3, through a periostin/collagen pathway, enhances the viscoelastic properties of AV cushion tissue surface tension and plays a crucial role in regulating valve remodeling. Thus, data presented here demonstrate that periostin, a TGFbeta-3 responsive gene, functions as a crucial mediator of chick AV valve maturation via promoting mesenchymal-to-fibroblast differentiation while blocking differentiation of alternative cell types (myocytes).
Collapse
Affiliation(s)
- Russell A Norris
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston, South Carolina 29425, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Blanchard C, Mingler MK, McBride M, Putnam PE, Collins MH, Chang G, Stringer K, Abonia JP, Molkentin JD, Rothenberg ME. Periostin facilitates eosinophil tissue infiltration in allergic lung and esophageal responses. Mucosal Immunol 2008; 1:289-96. [PMID: 19079190 PMCID: PMC2683986 DOI: 10.1038/mi.2008.15] [Citation(s) in RCA: 207] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Periostin is an extracellular matrix protein that has been primarily studied in the context of the heart, where it has been shown to promote cardiac repair and remodeling. In this study, we focused on the role of periostin in an allergic eosinophilic inflammatory disease (eosinophilic esophagitis (EE)) known to involve extensive tissue remodeling. Periostin was indeed markedly overexpressed (35-fold) in the esophagus of EE patients, particularly in the papillae, compared with control individuals. Periostin expression was downstream from transforming growth factor-beta and interleukin-13, as these cytokines were elevated in EE esophageal samples and markedly induced periostin production by primary esophageal fibroblasts (107- and 295-fold, respectively, at 10 ng ml(-1)). A functional role for periostin in eliciting esophageal eosinophilia was demonstrated, as periostin-null mice had a specific defect in allergen-induced eosinophil recruitment to the lungs and esophagus (66 and 72% decrease, respectively). Mechanistic analyses revealed that periostin increased (5.8-fold) eosinophil adhesion to fibronectin. As such, these findings extend the involvement of periostin to esophagitis and uncover a novel role for periostin in directly regulating leukocyte (eosinophil) accumulation in T helper type 2-associated mucosal inflammation in both mice and humans.
Collapse
Affiliation(s)
- C Blanchard
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - MK Mingler
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - M McBride
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - PE Putnam
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - MH Collins
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - G Chang
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - K Stringer
- Division of Pathology and Laboratory Medicine, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - JP Abonia
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - JD Molkentin
- Division of Molecular Cardiology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - ME Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
13
|
Norris RA, Borg TK, Butcher JT, Baudino TA, Banerjee I, Markwald RR. Neonatal and Adult Cardiovascular Pathophysiological Remodeling and Repair. Ann N Y Acad Sci 2008; 1123:30-40. [DOI: 10.1196/annals.1420.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
14
|
Norris RA, Moreno-Rodriguez RA, Sugi Y, Hoffman S, Amos J, Hart MM, Potts JD, Goodwin RL, Markwald RR. Periostin regulates atrioventricular valve maturation. Dev Biol 2008; 316:200-13. [PMID: 18313657 DOI: 10.1016/j.ydbio.2008.01.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 12/20/2007] [Accepted: 01/03/2008] [Indexed: 12/27/2022]
Abstract
Cardiac valve leaflets develop from rudimentary structures termed endocardial cushions. These pre-valve tissues arise from a complex interplay of signals between the myocardium and endocardium whereby secreted cues induce the endothelial cells to transform into migratory mesenchyme through an endothelial to mesenchymal transformation (EMT). Even though much is currently known regarding the initial EMT process, the mechanisms by which these undifferentiated cushion mesenchymal tissues are remodeled "post-EMT" into mature fibrous valve leaflets remains one of the major, unsolved questions in heart development. Expression analyses, presented in this report, demonstrate that periostin, a component of the extracellular matrix, is predominantly expressed in post-EMT valve tissues and their supporting apparatus from embryonic to adult life. Analyses of periostin gene targeted mice demonstrate that it is within these regions that significant defects are observed. Periostin null mice exhibit atrial septal defects, structural abnormalities of the AV valves and their supporting tensile apparatus, and aberrant differentiation of AV cushion mesenchyme. Rescue experiments further demonstrate that periostin functions as a hierarchical molecular switch that can promote the differentiation of mesenchymal cells into a fibroblastic lineage while repressing their transformation into other mesodermal cell lineages (e.g. myocytes). This is the first report of an extracellular matrix protein directly regulating post-EMT AV valve differentiation, a process foundational and indispensable for the morphogenesis of a cushion into a leaflet.
Collapse
Affiliation(s)
- Russell A Norris
- Department of Cell Biology and Anatomy, Medical University of South Carolina, BSB Suite 601, 173 Ashley Avenue, Charleston, SC 29425, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Litvin J, Zhu S, Norris R, Markwald R. Periostin family of proteins: therapeutic targets for heart disease. ACTA ACUST UNITED AC 2006; 287:1205-12. [PMID: 16240445 DOI: 10.1002/ar.a.20237] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Judith Litvin
- Department of Anatomy and Cell Biology, Temple Medical School, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | |
Collapse
|
16
|
Litvin J, Blagg A, Mu A, Matiwala S, Montgomery M, Berretta R, Houser S, Margulies K. Periostin and periostin-like factor in the human heart: possible therapeutic targets. Cardiovasc Pathol 2006; 15:24-32. [PMID: 16414453 DOI: 10.1016/j.carpath.2005.09.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2005] [Revised: 07/27/2005] [Accepted: 09/16/2005] [Indexed: 10/25/2022] Open
Abstract
BACKGROUND Although numerous signaling pathways have been identified in adult heart disease, our ability to diagnose and treat human cardiomyopathies remains limited. A family of proteins, which includes periostin and periostin-like factor (PLF), has been identified during heart development and disease. Based on recent findings, these proteins are candidate therapeutic agents for heart disease. METHODS Affymetrix GeneChip Expression Analysis as well as northern and western blot analyses were used to determine periostin and PLF expression in humans. Periostin-like factor levels were determined, by western blot analysis, in the rat animal model used to study myocardial loading and unloading. In vivo and in vitro effects of overexpressing PLF by infection with adenovirus were assessed by calculating cardiac myocyte cross-sectional area and determining the level of protein synthesis, respectively. RESULTS AND CONCLUSIONS Our findings on PLF suggest that this periostin isoform plays a crucial role in adult cardiac myocyte growth following mechanical overload, thus, implicating its potential as a therapeutic target. In addition, we believe that the differences between the periostin and PLF are of functional significance.
Collapse
Affiliation(s)
- Judith Litvin
- Cardiovascular Research Group, Temple University Medical School, Philadelphia, PA 19140, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Panáková D, Sprong H, Marois E, Thiele C, Eaton S. Lipoprotein particles are required for Hedgehog and Wingless signalling. Nature 2005; 435:58-65. [PMID: 15875013 DOI: 10.1038/nature03504] [Citation(s) in RCA: 512] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Accepted: 02/28/2005] [Indexed: 11/09/2022]
Abstract
Wnt and Hedgehog family proteins are secreted signalling molecules (morphogens) that act at both long and short range to control growth and patterning during development. Both proteins are covalently modified by lipid, and the mechanism by which such hydrophobic molecules might spread over long distances is unknown. Here we show that Wingless, Hedgehog and glycophosphatidylinositol-linked proteins copurify with lipoprotein particles, and co-localize with them in the developing wing epithelium of Drosophila. In larvae with reduced lipoprotein levels, Hedgehog accumulates near its site of production, and fails to signal over its normal range. Similarly, the range of Wingless signalling is narrowed. We propose a novel function for lipoprotein particles, in which they act as vehicles for the movement of lipid-linked morphogens and glycophosphatidylinositol-linked proteins.
Collapse
Affiliation(s)
- Daniela Panáková
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse-108, 01307 Dresden, Germany
| | | | | | | | | |
Collapse
|
18
|
Litvin J, Selim AH, Montgomery MO, Lehmann K, Rico MC, Devlin H, Bednarik DP, Safadi FF. Expression and function of periostin-isoforms in bone. J Cell Biochem 2005; 92:1044-61. [PMID: 15258926 DOI: 10.1002/jcb.20115] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Periostin was originally identified in MC3T3-E1 osteoblast-like cells. We have identified an isoform of periostin referred to as periostin-like-factor (PLF). It is homologous to other proteins such as fasciclin I (fas I), MPB70, betaIG-H3, and Algal-CAMs. All of these proteins are implicated in regulating cell adhesion. PLF and the other isoforms of periostin differ in their C-terminal sequences. PLF and periostin differ in two specific regions, between 673 and 699 amino acids (aa) and 785-812 aa. Periostin isoforms are expressed in vivo and in vitro during the stages of osteoblast differentiation and maturation. Their mRNAs are present in pre-osteoblast cells as detected by in situ hybridization, and the proteins are between 86 and 93 kD in size as determined by Western blot analysis. Antisense oligonucleotides and antibodies directed against the isoforms of periostin were used to block the activity of these proteins. In both cases, the levels of osteoblast-specific-differentiation markers were markedly reduced suggesting a role for these proteins in osteoblast differentiation.
Collapse
Affiliation(s)
- Judith Litvin
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Galletta BJ, Chakravarti M, Banerjee R, Abmayr SM. SNS: adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts. Mech Dev 2004; 121:1455-68. [PMID: 15511638 DOI: 10.1016/j.mod.2004.08.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/20/2004] [Accepted: 08/04/2004] [Indexed: 11/30/2022]
Abstract
The body wall muscles in the Drosophila larva arise from interactions between Duf/Kirre and Irregular chiasm C-roughest (IrreC-rst)-expressing founder myoblasts and sticks-and-stones (SNS)-expressing fusion competent myoblasts in the embryo. Herein, we demonstrate that SNS mediates heterotypic adhesion of S2 cells with Duf/Kirre and IrreC-rst-expressing S2 cells, and colocalizes with these proteins at points of cell contact. These properties are independent of their transmembrane and cytoplasmic domains, and are observed quite readily with GPI-anchored forms of the ectodomains. Heterotypic interactions between Duf/Kirre and SNS-expressing S2 cells occur more rapidly and to a greater extent than homotypic interactions with other Duf/Kirre-expressing cells. In addition, Duf/Kirre and SNS are present in an immunoprecipitable complex from S2 cells. In the embryo, Duf/Kirre and SNS are present at points of contact between founder and fusion competent cells. Moreover, SNS clustering on the cell surface is dependent on Duf/Kirre and/or IrreC-rst. Finally, although the cytoplasmic and transmembrane domains of SNS are expendable for interactions in culture, they are essential for fusion of embryonic myoblasts.
Collapse
Affiliation(s)
- Brian J Galletta
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
20
|
Faivre-Sarrailh C, Banerjee S, Li J, Hortsch M, Laval M, Bhat MA. Drosophila contactin, a homolog of vertebrate contactin, is required for septate junction organization and paracellular barrier function. Development 2004; 131:4931-42. [PMID: 15459097 DOI: 10.1242/dev.01372] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Septate junctions (SJs) in epithelial and neuronal cells play an important role in the formation and maintenance of charge and size selective barriers. They form the basis for the ensheathment of nerve fibers in Drosophila and for the attachment of myelin loops to axonal surface in vertebrates. The cell-adhesion molecules NRX IV/Caspr/Paranodin (NCP1),contactin and Neurofascin-155 (NF-155) are all present at the vertebrate axo-glial SJs. Mutational analyses have shown that vertebrate NCP1 and its Drosophila homolog, Neurexin IV (NRX IV) are required for the formation of SJs. In this study, we report the genetic, molecular and biochemical characterization of the Drosophila homolog of vertebrate contactin, CONT. Ultrastructural and dye-exclusion analyses of Contmutant embryos show that CONT is required for organization of SJs and paracellular barrier function. We show that CONT, Neuroglian (NRG)(Drosophila homolog of NF-155) and NRX IV are interdependent for their SJ localization and these proteins form a tripartite complex. Hence, our data provide evidence that the organization of SJs is dependent on the interactions between these highly conserved cell-adhesion molecules.
Collapse
Affiliation(s)
- Catherine Faivre-Sarrailh
- Neurobiologie des Interactions Cellulaires et Neurophysiopathologie, UMR 6184 CNRS, Institut Jean-Roche, Boulevard Pierre Dramard, 13916 Marseille Cedex 20, France.
| | | | | | | | | | | |
Collapse
|
21
|
Islam R, Kristiansen LV, Romani S, Garcia-Alonso L, Hortsch M. Activation of EGF receptor kinase by L1-mediated homophilic cell interactions. Mol Biol Cell 2004; 15:2003-12. [PMID: 14718570 PMCID: PMC379294 DOI: 10.1091/mbc.e03-05-0333] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Revised: 10/13/2003] [Accepted: 12/19/2003] [Indexed: 11/11/2022] Open
Abstract
Neural cell adhesion molecules (CAMs) are important players during neurogenesis and neurite outgrowth as well as axonal fasciculation and pathfinding. Some of these developmental processes entail the activation of cellular signaling cascades. Pharmacological and genetic evidence indicates that the neurite outgrowth-promoting activity of L1-type CAMs is at least in part mediated by the stimulation of neuronal receptor tyrosine kinases (RTKs), especially FGF and EGF receptors. It has long been suspected that neural CAMs might physically interact with RTKs, but their activation by specific cell adhesion events has not been directly demonstrated. Here we report that gain-of-function conditions of the Drosophila L1-type CAM Neuroglian result in profound sensory axon pathfinding defects in the developing Drosophila wing. This phenotype can be suppressed by decreasing the normal gene dosage of the Drosophila EGF receptor gene. Furthermore, in Drosophila S2 cells, cell adhesion mediated by human L1-CAM results in the specific activation of human EGF tyrosine kinase at cell contact sites and EGF receptors engage in a physical interaction with L1-CAM molecules. Thus L1-type CAMs are able to promote the adhesion-dependent activation of EGF receptor signaling in vitro and in vivo.
Collapse
Affiliation(s)
- Rafique Islam
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | |
Collapse
|
22
|
Matthies HJG, Broadie K. Techniques to dissect cellular and subcellular function in the Drosophila nervous system. Methods Cell Biol 2004; 71:195-265. [PMID: 12884693 DOI: 10.1016/s0091-679x(03)01011-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Heinrich J G Matthies
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
23
|
Johnson KL, Jones BJ, Bacic A, Schultz CJ. The fasciclin-like arabinogalactan proteins of Arabidopsis. A multigene family of putative cell adhesion molecules. PLANT PHYSIOLOGY 2003; 133:1911-25. [PMID: 14645732 PMCID: PMC300743 DOI: 10.1104/pp.103.031237] [Citation(s) in RCA: 261] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Revised: 08/20/2003] [Accepted: 08/28/2003] [Indexed: 05/18/2023]
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) are a subclass of arabinogalactan proteins (AGPs) that have, in addition to predicted AGP-like glycosylated regions, putative cell adhesion domains known as fasciclin domains. In other eukaryotes (e.g. fruitfly [Drosophila melanogaster] and humans [Homo sapiens]), fasciclin domain-containing proteins are involved in cell adhesion. There are at least 21 FLAs in the annotated Arabidopsis genome. Despite the deduced proteins having low overall similarity, sequence analysis of the fasciclin domains in Arabidopsis FLAs identified two highly conserved regions that define this motif, suggesting that the cell adhesion function is conserved. We show that FLAs precipitate with beta-glucosyl Yariv reagent, indicating that they share structural characteristics with AGPs. Fourteen of the FLA family members are predicted to be C-terminally substituted with a glycosylphosphatidylinositol anchor, a cleavable form of membrane anchor for proteins, indicating different FLAs may have different developmental roles. Publicly available microarray and expressed sequence tag data were used to select FLAs for further expression analysis. RNA gel blots for a number of FLAs indicate that they are likely to be important during plant development and in response to abiotic stress. FLAs 1,2, and 8 show a rapid decrease in mRNA abundance in response to the phytohormone abscisic acid. Also, the accumulation of FLA1 and FLA2 transcripts differs during callus and shoot development, indicating that the proteins may be significant in the process of competence acquisition and induction of shoot development.
Collapse
Affiliation(s)
- Kim L Johnson
- Plant Cell Biology Research Centre, School of Botany, University of Melbourne, 3010 Victoria, Australia
| | | | | | | |
Collapse
|
24
|
Zhang SX, Han Y, Blissard GW. Palmitoylation of the Autographa californica multicapsid nucleopolyhedrovirus envelope glycoprotein GP64: mapping, functional studies, and lipid rafts. J Virol 2003; 77:6265-73. [PMID: 12743283 PMCID: PMC155031 DOI: 10.1128/jvi.77.11.6265-6273.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Budded virions (BV) of the baculovirus Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) contain a major envelope glycoprotein known as GP64, which was previously shown to be palmitoylated. In the present study, we used truncation and amino acid substitution mutations to map the palmitoylation site to cysteine residue 503. Palmitoylation of GP64 was not detected when Cys503 was replaced with alanine or serine. Palmitoylation-minus forms of GP64 were used to replace wild-type GP64 in AcMNPV, and these viruses were used to examine potential functions of GP64 palmitoylation in the context of the infection cycle. Analysis by immunoprecipitation and cell surface studies revealed that palmitoylation of GP64 did not affect GP64 synthesis or its transport to the cell surface in Sf9 cells. GP64 proteins lacking palmitoylation also mediated low-pH-triggered membrane fusion in a manner indistinguishable from that of wild-type GP64. Cells infected with viruses expressing palmitoylation-minus forms of GP64 produced infectious virions at levels similar to those from cells infected with wild-type AcMNPV. In combination, these data suggest that virus entry and exit in Sf9 cells were not significantly affected by GP64 palmitoylation. To determine whether GP64 palmitoylation affected the association of GP64 with membrane microdomains, the potential association of GP64 with lipid raft microdomains was examined. These experiments showed that: (i) AcMNPV-infected Sf9 cell membranes contain lipid raft microdomains, (ii) GP64 association with lipid rafts was not detected in infected Sf9 cells, and (iii) GP64 palmitoylation did not affect the apparent exclusion of GP64 from lipid raft microdomains.
Collapse
|
25
|
Clout NJ, Tisi D, Hohenester E. Novel fold revealed by the structure of a FAS1 domain pair from the insect cell adhesion molecule fasciclin I. Structure 2003; 11:197-203. [PMID: 12575939 DOI: 10.1016/s0969-2126(03)00002-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fasciclin I is an insect neural cell adhesion molecule consisting of four FAS1 domains, homologs of which are present in many bacterial, plant, and animal proteins. The crystal structure of FAS1 domains 3 and 4 of Drosophila fasciclin I reveals a novel domain fold, consisting of a seven-stranded beta wedge and a number of alpha helices. The two domains are arranged in a linear fashion and interact through a substantial polar interface. Missense mutations in the FAS1 domains of the human protein betaig-h3 cause corneal dystrophies. Many mutations alter highly conserved core residues, but the two most common mutations, affecting Arg-124 and Arg-555, map to exposed alpha-helical regions, suggesting reduced protein solubility as the disease mechanism.
Collapse
Affiliation(s)
- Naomi J Clout
- Biophysics Section, Department of Biological Sciences, Imperial College, SW7 2AZ, London, United Kingdom
| | | | | |
Collapse
|
26
|
Harris TJC, Siu CH. Reciprocal raft-receptor interactions and the assembly of adhesion complexes. Bioessays 2002; 24:996-1003. [PMID: 12386930 DOI: 10.1002/bies.10172] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cell adhesion complexes are critical for the physical coordination of cell-cell interactions and the morphogenesis of tissues and organs. Many adhesion receptors are anchored to the plasma membrane by a glycosylphosphatidylinositol (GPI) moiety and are thereby partitioned into membrane rafts. In this review, we focus on reciprocal interactions between rafts and adhesion molecules, leading to receptor clustering and raft expansion and stability. A model for a three-stage adhesion complex assembly process is also proposed. First, GPI-anchored adhesion molecules are recruited into rafts, which in turn promote receptor cis-oligomerization and thereby produce precursory complexes primed for avid trans-interactions. Second, trans-interactions of the receptors cross-link and stabilize large amalgams of rafts at sites of adhesion complex assembly. Finally, the enlarged and stabilized rafts acquire enhanced abilities to recruit the cytoskeleton and induce signaling. This process exemplifies how the domain structure of the plasma membrane can impact the function of its receptors.
Collapse
Affiliation(s)
- Tony J C Harris
- Banting and Best Department of Medical Research, University of Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Wright JW, Copenhaver PF. Different isoforms of fasciclin II play distinct roles in the guidance of neuronal migration during insect embryogenesis. Dev Biol 2000; 225:59-78. [PMID: 10964464 DOI: 10.1006/dbio.2000.9777] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During the formation of the enteric nervous system (ENS) of the moth Manduca sexta, identified populations of neurons and glial cells participate in precisely timed waves of migration. The cell adhesion receptor fasciclin II is expressed in the developing ENS and is required for normal migration. Previously, we identified two isoforms of Manduca fasciclin II (MFas II), a glycosyl phosphatidylinositol-linked isoform (GPI-MFas II) and a transmembrane isoform (TM-MFas II). Using RNA and antibody probes, we found that these two isoforms were expressed in cell type-specific patterns: GPI-MFas II was expressed by glial cells and newly generated neurons, while TM-MFas II was confined to differentiating neurons. The expression of each isoform also corresponded to the motile state of the different cell types: GPI-MFas II was detected on tightly adherent or slowly spreading cells, while TM-MFas II was expressed by actively migrating neurons and was localized to their most motile regions. Manipulations of each isoform in embryo culture showed that they played distinct roles: whereas GPI-MFas II acted strictly as an adhesion molecule, TM-MFas II promoted the motility of the EP cells as well as maintaining fasciculation with their pathways. These results indicate that precisely regulated patterns of isoform expression govern the functions of fasciclin II within the developing nervous system.
Collapse
Affiliation(s)
- J W Wright
- Department of Cell and Developmental Biology L-215, Oregon Health Sciences University, 3181 SW Sam Jackson Park Road, Portland, Oregon, 97201, USA
| | | |
Collapse
|
28
|
Reynolds WS, Schwarz JA, Weis VM. Symbiosis-enhanced gene expression in cnidarian-algal associations: cloning and characterization of a cDNA, sym32, encoding a possible cell adhesion protein. Comp Biochem Physiol A Mol Integr Physiol 2000; 126:33-44. [PMID: 10908850 DOI: 10.1016/s0742-8413(00)00099-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mutualistic endosymbioses between two partners are complex associations that are regulated by the genetic interactions of the partners. One important marine symbiosis is that between various cnidarians, such as corals and anemones, and their photosynthetic algal symbionts. We have been interested in characterizing cnidarian host genes that are expressed as a function of the symbiotic state, using the temperate sea anemone Anthopleura elegantissima as a model. In this study, we report on symbiosis-enhanced expression and synthesis of sym32 in anemones. We characterized the full-length sym32 cDNA, obtained by RT-PCR, and demonstrated, by semi-quantitative RT-PCR, that sym32 transcript was much more abundant in symbiotic than in non-symbiotic host anemone RNA. Further, using immunoblots, we determined that an antibody made to a sym32 fusion protein labeled a 32 kD band much more strongly in symbiotic compared to non-symbiotic anemone protein homogenates. Databank searches revealed that the sym32 deduced amino acid sequence shares significant homology with the fasciclin I (Fas I) family of homophilic cell adhesion proteins, present in a variety of organisms ranging from bacteria to humans. This strong homology with the Fas I family suggests that sym32 is involved in regulation of the symbiosis by mediating cell-cell interactions.
Collapse
Affiliation(s)
- W S Reynolds
- Department of Zoology, Oregon State University, Corvallis 97331, USA
| | | | | |
Collapse
|
29
|
Minchiotti G, Parisi S, Liguori G, Signore M, Lania G, Adamson ED, Lago CT, Persico MG. Membrane-anchorage of Cripto protein by glycosylphosphatidylinositol and its distribution during early mouse development. Mech Dev 2000; 90:133-42. [PMID: 10640699 DOI: 10.1016/s0925-4773(99)00235-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
cripto is the original member of the family of EGF-CFC genes, recently recognized as novel extracellular factors essential for vertebrate development. During the early stages of mouse gastrulation, cripto mRNA is detected in mesodermal cells; later, cripto mRNA is detected only in the truncus arteriosus of the developing heart. Here we describe the in vivo distribution of Cripto protein throughout mouse embryo development and show that cripto mRNA and protein colocalize. By means of immunofluorescence analysis and biochemical characterization, we show that Cripto is a membrane-bound protein anchored to the lipid bilayer by a glycosylphosphatidylinositol (GPI) moiety. We suggest that presentation of Cripto on the cell surface via a GPI-linkage is important in determining the spatial specificity of cell-cell interactions that play a critical role in the early patterning of the embryo.
Collapse
Affiliation(s)
- G Minchiotti
- International Institute of Genetics and Biophysics, CNR, Via G. Marconi 12, 80125, Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H, Toyama Y, Bonewald LF, Kudo A. Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 1999; 14:1239-49. [PMID: 10404027 DOI: 10.1359/jbmr.1999.14.7.1239] [Citation(s) in RCA: 753] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We had previously identified the cDNA for a novel protein called osteoblast-specific factor 2 (OSF-2) from an MC3T3-E1 cDNA library using subtraction hybridization and differential screening techniques. Here we describe the localization, regulation, and potential function of this protein. Immunohistochemistry using specific antiserum revealed that in adult mice, the protein is preferentially expressed in periosteum and periodontal ligament, indicating its tissue specificity and a potential role in bone and tooth formation and maintenance of structure. Based on this observation and the fact that other proteins have been called OSF-2, the protein was renamed "periostin." Western blot analysis showed that periostin is a disulfide linked 90 kDa protein secreted by osteoblasts and osteoblast-like cell lines. Nucleotide sequence revealed four periostin transcripts that differ in the length of the C-terminal domain, possibly caused by alternative splicing events. Reverse transcription- polymerase chain reaction analysis revealed that these isoforms are not expressed uniformly but are differentially expressed in various cell lines. Both purified periostin protein and the periostin-Fc recombinant protein supported attachment and spreading of MC3T3-E1 cells, and this effect was impaired by antiperiostin antiserum, suggesting that periostin is involved in cell adhesion. The protein is highly homologous to betaig-h3, a molecule induced by transforming growth factor beta (TGF-beta) that promotes the adhesion and spreading of fibroblasts. Because TGF-beta has dramatic effects on periosteal expansion and the recruitment of osteoblast precursors, this factor was tested for its effects on periostin expression. By Western blot analysis, TGF-beta increased periostin expression in primary osteoblast cells. Together, these data suggest that periostin may play a role in the recruitment and attachment of osteoblast precursors in the periosteum.
Collapse
Affiliation(s)
- K Horiuchi
- Department of Life Science, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Rietveld A, Neutz S, Simons K, Eaton S. Association of sterol- and glycosylphosphatidylinositol-linked proteins with Drosophila raft lipid microdomains. J Biol Chem 1999; 274:12049-54. [PMID: 10207028 DOI: 10.1074/jbc.274.17.12049] [Citation(s) in RCA: 244] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vertebrates, the formation of raft lipid microdomains plays an important part in both polarized protein sorting and signal transduction. To establish a system in which raft-dependent processes could be studied genetically, we have analyzed the protein and lipid composition of these microdomains in Drosophila melanogaster. Using mass spectrometry, we identified the phospholipids, sphingolipids, and sterols present in Drosophila membranes. Despite chemical differences between Drosophila and mammalian lipids, their structure suggests that the biophysical properties that allow raft formation have been preserved. Consistent with this, we have identified a detergent-insoluble fraction of Drosophila membranes that, like mammalian rafts, is rich in sterol, sphingolipids, and glycosylphosphatidylinositol-linked proteins. We show that the sterol-linked Hedgehog N-terminal fragment associates specifically with this detergent-insoluble membrane fraction. Our findings demonstrate that raft formation is preserved across widely separated phyla in organisms with different lipid structures. They further suggest sterol modification as a novel mechanism for targeting proteins to raft membranes and raise the possibility that signaling and polarized intracellular transport of Hedgehog are based on raft association.
Collapse
Affiliation(s)
- A Rietveld
- Cell Biology Programme, European Molecular Biology Laboratory, Meyerhofstrasse-1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
32
|
Wildermuth MC, Fall R. Biochemical characterization of stromal and thylakoid-bound isoforms of isoprene synthase in willow leaves. PLANT PHYSIOLOGY 1998; 116:1111-23. [PMID: 9501144 PMCID: PMC35081 DOI: 10.1104/pp.116.3.1111] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/1997] [Accepted: 11/18/1997] [Indexed: 05/20/2023]
Abstract
Isoprene synthase is the enzyme responsible for the foliar emission of the hydrocarbon isoprene (2-methyl-1,3-butadiene) from many C3 plants. Previously, thylakoid-bound and soluble forms of isoprene synthase had been isolated separately, each from different plant species using different procedures. Here we describe the isolation of thylakoid-bound and soluble isoprene synthases from a single willow (Salix discolor L.) leaf-fractionation protocol. Willow leaf isoprene synthase appears to be plastidic, with whole-leaf and intact chloroplast fractionations yielding approximately equal soluble (i.e. stromal) and thylakoid-bound isoprene synthase activities. Although thylakoid-bound isoprene synthase is tightly bound to the thylakoid membrane (M.C. Wildermuth, R. Fall [1996] Plant Physiol 112: 171-182), it can be solubilized by pH 10.0 treatment. The solubilized thylakoid-bound and stromal isoprene synthases exhibit similar catalytic properties, and contain essential cysteine, histidine, and arginine residues, as do other isoprenoid synthases. In addition, two regulators of foliar isoprene emission, leaf age and light, do not alter the percentage of isoprene synthase activity in the bound or soluble form. The relationship between the isoprene synthase isoforms and the implications for function and regulation of isoprene production are discussed.
Collapse
Affiliation(s)
- MC Wildermuth
- Department of Chemistry and Biochemistry, and the Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309-0215, USA
| | | |
Collapse
|
33
|
Ohashi T, Erickson HP. Two oligomeric forms of plasma ficolin have differential lectin activity. J Biol Chem 1997; 272:14220-6. [PMID: 9162054 DOI: 10.1074/jbc.272.22.14220] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Ficolins are plasma proteins with binding activity for carbohydrates, elastin, and corticosteroids. The ficolin polypeptide has a collagen-like domain that presumably brings three subunits together in a triple helical rod, a C-terminal fibrinogen-like domain (fbg) similar to that of tenascin, which presumably has the binding activities, and a small N-terminal domain that we find to be the primary site for forming the ficolin oligomer. By sedimentation equilibrium we determined that the main plasma form, which we call big ficolin, had mass of 827,000 Da, consistent with 24 subunits. Little ficolin, about half this size, was obtained after binding to a GlcNAc affinity column. Electron microscopy of little ficolin showed a parachute-like structure, with a small globe at one end, corresponding to the 12 N-terminal domains, and the fbg domains clustered together at the ends of the collagen rods. Big ficolin was formed by the face to face fusion of the fbg domains of two little ficolins, leaving the rods and N-terminal domains projecting at opposite ends. Little ficolin maintained a high affinity for the GlcNAc column, and big ficolin had a low affinity or none. The binding sites for ligands may be obscured in this big ficolin oligomer, providing a regulation of their activity.
Collapse
Affiliation(s)
- T Ohashi
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
34
|
Kreft B, Berndorff D, Böttinger A, Finnemann S, Wedlich D, Hortsch M, Tauber R, Gessner R. LI-cadherin-mediated cell-cell adhesion does not require cytoplasmic interactions. J Cell Biol 1997; 136:1109-21. [PMID: 9060475 PMCID: PMC2132471 DOI: 10.1083/jcb.136.5.1109] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The adhesive function of classical cadherins depends on the association with cytoplasmic proteins, termed catenins, which serve as a link between cadherins and the actin cytoskeleton. LI-cadherin, a structurally different member of the cadherin family, mediates Ca2+-dependent cell-cell adhesion, although its markedly short cytoplasmic domain exhibits no homology to this highly conserved region of classical cadherins. We now examined whether the adhesive function of LI-cadherin depends on the interaction with catenins, the actin cytoskeleton or other cytoplasmic components. In contrast to classical cadherins, LI-cadherin, when expressed in mouse L cells, was neither associated with catenins nor did it induce an upregulation of beta-catenin. Consistent with these findings, LI-cadherin was not resistant to detergent extraction and did not induce a reorganization of the actin cytoskeleton. However, LI-cadherin was still able to mediate Ca2+-dependent cell-cell adhesion. To analyze whether this function requires any interaction with proteins other than catenins, a glycosyl phosphatidylinositol-anchored form of LI-cadherin (LI-cadherin(GPI)) was constructed and expressed in Drosophila S2 cells. The mutant protein was able to induce Ca2+-dependent, homophilic cell-cell adhesion, and its adhesive properties were indistinguishable from those of wild type LI-cadherin. These findings indicate that the adhesive function of LI-cadherin is independent of any interaction with cytoplasmic components, and consequently should not be sensitive to regulatory mechanisms affecting the binding of classical cadherins to catenins and to the cytoskeleton. Thus, we postulate that the adhesive function of LI-cadherin is complementary to that of coexpressed classical cadherins ensuring cell-cell contacts even under conditions that downregulate the function of classical cadherins.
Collapse
Affiliation(s)
- B Kreft
- Institute of Clinical Chemistry and Biochemistry, Humboldt-University Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bostic JR, Strand M. Molecular cloning of a Schistosoma mansoni protein expressed in the gynecophoral canal of male worms. Mol Biochem Parasitol 1996; 79:79-89. [PMID: 8844674 DOI: 10.1016/0166-6851(96)02640-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Female members of the species Schistosoma mansoni require continual interaction with males to achieve sexual maturity [1,2]. The nature of the developmental stimuli provided by the adult male parasite are unknown. Aronstein and Strand have reported that the surface expression of an 86-kDa gynecophoral canal protein, SmGCP, is gender-specific in adult S. mansoni [3]. The antigen shows wide distribution on the surface of adult female worms, but in males surface expression is limited to the gynecophoral canal, the site of direct interaction between the mating pair. Expression of the antigen is undetectable or severely diminished in unmated male worms, suggesting a role for this glycoprotein in schistosome mating and/or egg production. We report here the molecular cloning and sequencing of a cDNA clone, SmGCP, which contains a deduced amino acid sequence of 688 residues with a predicted molecular mass of 79 kDa. SmGCP is encoded by a single RNA transcript of 2.4 kb. Enzymatic removal of N-linked glycans from native SmGCP results in a 7-kDa shift in molecular mass as observed by SDS-PAGE. SmGCP contains multiple short, conserved repeat regions with sequence similarity to the developmentally-regulated neural cell adhesion molecule fasciclin I. Although localized to the schistosome surface, SmGCP lacks a convincing transmembrane region. The identification of a gynecophoral canal-specific antigen may have implications for the reproductive development of schistosomes and may provide a novel target for anti-parasite therapeutics.
Collapse
Affiliation(s)
- J R Bostic
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | |
Collapse
|
36
|
Seaver EC, Carpenter EM, Bastiani MJ. REGA-1 is a GPI-linked member of the immunoglobulin superfamily present on restricted regions of sheath cell processes in grasshopper. Development 1996; 122:567-78. [PMID: 8625808 DOI: 10.1242/dev.122.2.567] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
REGA-1 is a glycoprotein localized to sheath cell processes in the developing CNS when NBs are producing progeny and neurons are maturing and extending processes. It is also present on a subset of muscles and on the lumenal surface of the ectoderm in the embryonic appendages when pioneer neurons are growing into the CNS. REGA-1 is associated with the extracellular side of the cell membrane by a glycosyl-phosphatidylinositol linkage. We have identified a cDNA clone encoding REGA-1 using a sequence from purified protein. Sequence analysis defines REGA-1 as a novel member of the immunoglobulin superfamily containing three immunoglobulin domains and one fibronectin type III repeat. Each Ig domain has distinct sequence characteristics that suggest discrete functions. REGA-1 is similar to other Ig superfamily members involved in cell adhesion events and neurite outgrowth.
Collapse
Affiliation(s)
- E C Seaver
- Department of Biology, University of Utah, Salt Lake City, 84112, USA
| | | | | |
Collapse
|
37
|
GPI-Anchored Proteins in Neural Cell Adhesion. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1569-2558(08)60067-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
38
|
Hortsch M, Wang YM, Marikar Y, Bieber AJ. The cytoplasmic domain of the Drosophila cell adhesion molecule neuroglian is not essential for its homophilic adhesive properties in S2 cells. J Biol Chem 1995; 270:18809-17. [PMID: 7642532 DOI: 10.1074/jbc.270.32.18809] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Drosophila neuroglian is a transmembrane glycoprotein that has strong structural and sequence homology to the vertebrate L1 gene family of cell adhesion molecules (Bieber, A.J., Snow, P.M., Hortsch, M., Patel, N.H., Jacobs, J.R., Traquina, Z.R., Schilling, J., and Goodman, C.S. (1989) Cell 59, 447-460. Two different neuroglian protein forms that are generated by a differential splicing process are expressed in a tissue-specific fashion by embryonic and larval cells (Hortsch, M., Bieber, A.J., Patel, N.H., and Goodman, C.S. (1990) Neuron 4, 697-709). The two neuroglial polypeptides differ only in their cytoplasmic domains. Both of these neuroglian species, when transfected into the expressed in Drosophila S2 cells, induce the calcium-independent, homophilic aggregation of transformed cells. A third artificial neuroglian protein form was constructed by substituting the neuroglian transmembrane segment and cytoplasmic domains with the glycosyl phosphatidylinositol attachment signal of the Drosophila fasciclin I protein. This cDNA construct generates a glycosyl phosphatidylinositol-anchored form of neuroglian, which retains the ability to induce homophilic cell aggregation when expressed in S2 cells, and was able to interact with both of the two naturally occurring neuroglian polypeptides. These results demonstrate that neuroglian mediates a calcium-independent, homophilic cell adhesion activity and that neither cytoplasmic neuroglian domains nor a direct interaction with cytoskeletal elements is essential for this property.
Collapse
Affiliation(s)
- M Hortsch
- Department of Anatomy and Cell Biology, University of Michigan, Ann Arbor 48109, USA
| | | | | | | |
Collapse
|
39
|
Raeber AJ, Muramoto T, Kornberg TB, Prusiner SB. Expression and targeting of Syrian hamster prion protein induced by heat shock in transgenic Drosophila melanogaster. Mech Dev 1995; 51:317-27. [PMID: 7547477 DOI: 10.1016/0925-4773(95)00379-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
To evaluate the fruit fly as a model for studying neurodegenerative diseases caused by prions, transgenic flies were generated by introducing the Syrian hamster prion protein (SHaPrP) gene into the Drosophila melanogaster germ line by P element-mediated transformation. Nine transgenic lines were isolated; induction of transgenes that had been placed under the control of the Drosophila heat shock promoter, hsp 70, resulted in the synthesis of full-length SHaPrP. The relative molecular weight of the recombinant protein was lower than that of authentic SHaPrP due to incomplete processing of Asn-linked CHOs. To determine the cellular localization of SHaPrP, Drosophila Schneider line 2 cells were transfected with the same constructs used for fly transformation. Heat shock induced SHaPrP was anchored to the surface of S2 cells by a glycolipid, demonstrating that the carboxy-terminal glycolipidation signal of SHaPrP is recognized by this evolutionarily distant host. When SHaPrP was synthesized in transgenic flies constitutively by subjecting them to heat pulses continuously, no difference in their lifespans compared with controls was detected. Furthermore, expression of SHaPrP for 20 days did not produce protease resistant SHaPrP, which is the major and possibly only component of the infectious prion. In contrast to transgenic mice overexpressing SHaPrP, which develop a profound neuromyopathy, no disease phenotype was associated with expression of SHaPrP over the entire lifespan of transgenic flies.
Collapse
Affiliation(s)
- A J Raeber
- Department of Neurology, University of California, San Francisco 94143-0518, USA
| | | | | | | |
Collapse
|
40
|
Zhukareva V, Levitt P. The limbic system-associated membrane protein (LAMP) selectively mediates interactions with specific central neuron populations. Development 1995; 121:1161-72. [PMID: 7743928 DOI: 10.1242/dev.121.4.1161] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The limbic system-associated membrane protein (LAMP) is a 64–68 × 10(3) M(r) glycoprotein that is expressed by subsets of neurons that are functionally interconnected. LAMP exhibits characteristics that are indicative of a developmentally significant protein, such as an early and restricted pattern of expression and the ability to mediate specific fiber-target interactions. A potential, selective adhesive mechanism by which LAMP may regulate the formation of specific circuits is investigated in the present experiments. LAMP is readily released from intact membranes by phosphatidyl inositol-specific phospholipase C. Purified, native LAMP, isolated by PI-PLC digestion and immunoaffinity chromatography, is capable of mediating fluorescent Covasphere aggregation via homophilic binding. To test the ability of LAMP to selectively facilitate substrate adhesion and growth of neurons from LAMP-positive, in contrast to LAMP-negative regions of the developing brain, purified LAMP was dotted onto nitrocellulose-coated dishes and test cells plated. Limbic neurons from perirhinal cortex bind specifically to substrate-bound LAMP within 4 hours, forming small cell aggregates with short neuritic processes that continue to grow through a 48 hour period of monitoring. Preincubation of cells with anti-LAMP has a modest effect on cell binding but significantly reduces initiation of process growth. Non-limbic neurons from somatosensory cortex and olfactory bulb fail to bind or extend processes on the LAMP substrate to any significant extent. All cell populations bind equally well and form neurites on poly-D-lysine and laminin. The present results provide direct evidence that LAMP can specifically facilitate interactions with select neurons in the CNS during development. The data support the concept that patterned expression of unique cell adhesion molecules in functionally related regions of the mammalian brain can regulate circuit formation.
Collapse
Affiliation(s)
- V Zhukareva
- Department of Neuroscience and Cell Biology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
41
|
Ganfornina MD, Sánchez D, Bastiani MJ. Lazarillo, a new GPI-linked surface lipocalin, is restricted to a subset of neurons in the grasshopper embryo. Development 1995; 121:123-34. [PMID: 7867494 DOI: 10.1242/dev.121.1.123] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Lazarillo, a protein recognized by the monoclonal antibody 10E6, is expressed by a subset of neurons in the developing nervous system of the grasshopper. It is a glycoprotein of 45x10(3) M(r) with internal disulfide bonds and linked to the extracellular side of the plasma membrane by a glycosylphosphatidylinositol moiety. Peptide sequences obtained from affinity purified adult protein were used to identify an embryonic cDNA clone, and in situ hybridizations confirmed that the distribution of the Lazarillo mRNA paralleled that of the monoclonal antibody labeling on embryos. Sequence analysis defines Lazarillo as a member of the lipocalin family, extracellular carriers of small hydrophobic ligands, and most related to the porphyrin- and retinol-binding lipocalins. Lazarillo is the first example of a lipocalin anchored to the plasma membrane, highly glycosylated, and restricted to a subset of developing neurons.
Collapse
Affiliation(s)
- M D Ganfornina
- Biology Department, University of Utah, Salt Lake City 84112
| | | | | |
Collapse
|
42
|
Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA. Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)31646-6] [Citation(s) in RCA: 418] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
43
|
Huang JH, Getty RR, Chisari FV, Fowler P, Greenspan NS, Tykocinski ML. Protein transfer of preformed MHC-peptide complexes sensitizes target cells to T cell cytolysis. Immunity 1994; 1:607-13. [PMID: 7600289 DOI: 10.1016/1074-7613(94)90050-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recombinant GPI-anchored HLA-A2.1 (HLA-A2.1-GPI/beta 2m) was used as a protein transfer vehicle to deliver a hepatitis B virus antigenic peptide to the surfaces of cytotoxic T cell targets. Empty HLA-A2.1-GPI/beta 2m was first produced in D. melanogaster cotransfectants and immunoaffinity purified. Cell coating with HLA-A2.1-GPI/beta 2m was shown to occur rapidly, and to be protein concentration dependent. Protein-transferred HLA-A2.1-GPI/beta 2m effectively presented a hepatitis B virus peptide to peptide-specific HLA-A2.1-restricted T cell clones in cytotoxicity assays. Protein transfer of functional GPI-modified class I MHC-antigenic peptide complexes represents a novel strategy for delivering functional antigenic complexes to cell surfaces that bypasses limitations of gene transfer and permits control of antigenic peptide densities at cell surfaces.
Collapse
Affiliation(s)
- J H Huang
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | | | | | | | | | | |
Collapse
|
44
|
Connor EA, Smith MA. Retrograde signaling in the formation and maintenance of the neuromuscular junction. JOURNAL OF NEUROBIOLOGY 1994; 25:722-39. [PMID: 8071669 DOI: 10.1002/neu.480250611] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The neuromuscular junction is characterized by precise alignment between the nerve terminal and the postsynaptic apparatus formed by the muscle fiber. Organization of the neuromuscular junction during embryonic development, growth, and maintenance is coordinated by signals exchanged between motor neurons and their target muscle fibers. Identification of proteins such as agrin, likely to represent neuronal agents that direct the organization of the postsynaptic apparatus, has focused attention on characterization of proteins that mediate retrograde signals that regulate the organization and function of the nerve terminal. The results of these studies implicate a role for both adhesive and diffusible signals in coordinating the development, maturation, and maintenance of the motor nerve terminal. The diversity of molecules identified to date that appear to play a role in these processes implies a considerable level of redundancy in the transduction pathway. However, studies of early nerve-muscle interactions suggest that a common feature of many of these retrograde agents is activation of a protein kinase coupled with an increase in cytosolic Ca2+ concentration. While the molecular signals that regulate growth and maintenance of neuromuscular junctions are less well understood it seems likely that similar adhesive and diffusible factors will be involved.
Collapse
Affiliation(s)
- E A Connor
- Department of Biology, University of Massachusetts, Amherst 01003
| | | |
Collapse
|
45
|
Diamond P, Mallavarapu A, Schnipper J, Booth J, Park L, O'Connor TP, Jay DG. Fasciclin I and II have distinct roles in the development of grasshopper pioneer neurons. Neuron 1993; 11:409-21. [PMID: 8398136 DOI: 10.1016/0896-6273(93)90146-i] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have used a new technique, micro-CALI (chromophore-assisted laser inactivation), to investigate the function of the neural cell adhesion molecules fasciclin I and II in the development of the grasshopper Ti1 neurons. Micro-CALI of fasciclin I results in defasciculation of the Ti1 axons similar to that achieved using large scale CALI (Jay and Keshishian, 1990). The initial point of axon separation corresponds to the site of laser irradiation, and defasciculation always continues distal to this point. Micro-CALI of fasciclin II prevents the initiation of Ti1 axon outgrowth but has no effect on fasciculation. This effect is restricted to a 3 hr interval between cytokinesis and growth cone emergence.
Collapse
Affiliation(s)
- P Diamond
- Department of Cellular and Developmental Biology, Harvard University, Cambridge, Massachusetts 02138
| | | | | | | | | | | | | |
Collapse
|
46
|
Whitlock KE. Development of Drosophila wing sensory neurons in mutants with missing or modified cell surface molecules. Development 1993; 117:1251-60. [PMID: 8404529 DOI: 10.1242/dev.117.4.1251] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The neurons of the sensory receptors on the wing of Drosophila melanogaster have highly characteristic axon projections in the central nervous system (CNS). The morphology of these projections was studied in flies bearing mutations that affect cell surface molecules thought to be important in axon guidance. The animals used were mutant for the fasciclinI (fasI), fasciclinII (fasII), fasciclinIII (fasIII) and neurally altered carbohydrate (nac) genes. Axon populations were visualized by staining with DiI and light-reacting the dye with diaminobenzidine to yield permanent preparations. The fasI, fasII and fasIII mutants as well as the nac mutant display altered axonal trajectories in the CNS. One phenotype seen in fasII mutants and in animals mutant for both fasI and fasIII was extra branching within the axon projection pattern. A second phenotype observed was a reduction or complete loss of one of the tracts, apparently due to the axons shifting to a neighboring tract. This was seen in the most extreme form in nac mutants and to a lesser degree in fasIII mutants. To determine if the mutations discussed here affected axon guidance, wing discs were analyzed using the antibody 22C10 to label sensory neurons in the wing during metamorphosis. Both misrouting of axons and the appearance of ectopic neurons in the wing were observed. In the fasI:fasIII, the fasII and the nac mutants, there was misrouting of sensory axons in the developing wing. In addition, the fasII and nac mutants displayed ectopic sensory neurons in the wing. This implies that the cell surface molecules missing (fasciclins) or modified (by the nac gene product), in these mutants may play a role in both neurogenesis and axon guidance.
Collapse
Affiliation(s)
- K E Whitlock
- Department of Zoology, University of Washington, Seattle 98195
| |
Collapse
|
47
|
Hoshino M, Matsuzaki F, Nabeshima Y, Hama C. hikaru genki, a CNS-specific gene identified by abnormal locomotion in Drosophila, encodes a novel type of protein. Neuron 1993; 10:395-407. [PMID: 8461133 DOI: 10.1016/0896-6273(93)90329-p] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We have identified a gene, hikaru genki (hig), whose mutant phenotype includes abnormal locomotor behavior. Mutant first instar larvae have uncoordinated movements, and both larvae and adults have reduced locomotion. Sequence analyses revealed that this gene encodes a novel type of protein with a signal sequence, but without transmembrane regions. One of its domains has similarities with immunoglobulin domains; three or four regions are similar to a complement-binding domain found in complement-related proteins and selectins. In situ hybridization to embryos revealed that accumulation of the hig transcripts is restricted to subsets of cells in the CNS. Our data suggest that hig has a role in the development of CNS functions involved in locomotor activity.
Collapse
Affiliation(s)
- M Hoshino
- Division of Molecular Genetics, National Institute of Neuroscience NCNP, Tokyo, Japan
| | | | | | | |
Collapse
|
48
|
Nambu JR, Lewis JO, Crews ST. The development and function of the Drosophila CNS midline cells. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. COMPARATIVE PHYSIOLOGY 1993; 104:399-409. [PMID: 8097144 DOI: 10.1016/0300-9629(93)90439-b] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
1. The midline cells of the Drosophila embryonic CNS comprise a discrete neuroanatomical structure consisting of a small subset of neurons and glia. 2. Developmental commitment of the CNS midline cells requires the action of dorsal/ventral patterning genes. 3. The single-minded gene encodes a basic-helix-loop-helix transcription factor and acts as a master regulator for the CNS midline lineage. 4. A number of different transcription factors and proteins involved in cell-cell interactions are necessary for the differentiation of midline neurons and glia. 5. CNS midline cells have important functions in the formation of the ventral epidermis and axon commissures.
Collapse
Affiliation(s)
- J R Nambu
- Department of Biology, University of California, Los Angeles 90024
| | | | | |
Collapse
|
49
|
|
50
|
Affiliation(s)
- T A Bunch
- Department of Molecular and Cellular Biology, University of Arizona, Tucson 85721
| | | |
Collapse
|