1
|
Angara RK, Sladek MF, Gilk SD. ER-LD Membrane Contact Sites: A Budding Area in the Pathogen Survival Strategy. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241304196. [PMID: 39697586 PMCID: PMC11653285 DOI: 10.1177/25152564241304196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024]
Abstract
The endoplasmic reticulum (ER) and lipid droplets (LDs) are essential organelles involved in lipid synthesis, storage, and transport. Physical membrane contacts between the ER and LDs facilitate lipid and protein exchange and thus play a critical role in regulating cellular lipid homeostasis. Recent research has revealed that ER-LD membrane contact sites are targeted by pathogens seeking to exploit host lipid metabolic processes. Both viruses and bacteria manipulate ER-LD membrane contact sites to enhance their replication and survival within the host. This review discusses the research advancements elucidating the mechanisms by which pathogens manipulate the ER-LD contacts through protein molecular mimicry and host cell protein manipulation, thereby hijacking host lipid metabolic processes to facilitate pathogenesis. Understanding the crosstalk between ER and LDs during infection provides deeper insight into host lipid regulation and uncovers potential therapeutic targets for treating infectious diseases.
Collapse
Affiliation(s)
- Rajendra Kumar Angara
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Margaret F. Sladek
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Stacey D. Gilk
- Department of Pathology, Microbiology and Immunology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Kiss RS, Chicoine J, Khalil Y, Sladek R, Chen H, Pisaturo A, Martin C, Dale JD, Brudenell TA, Kamath A, Kyei-Boahen J, Hafiane A, Daliah G, Alecki C, Hopes TS, Heier M, Aligianis IA, Lebrun JJ, Aspden J, Paci E, Kerksiek A, Lütjohann D, Clayton P, Wills JC, von Kriegsheim A, Nilsson T, Sheridan E, Handley MT. Comparative proximity biotinylation implicates the small GTPase RAB18 in sterol mobilization and biosynthesis. J Biol Chem 2023; 299:105295. [PMID: 37774976 PMCID: PMC10641524 DOI: 10.1016/j.jbc.2023.105295] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023] Open
Abstract
Loss of functional RAB18 causes the autosomal recessive condition Warburg Micro syndrome. To better understand this disease, we used proximity biotinylation to generate an inventory of potential RAB18 effectors. A restricted set of 28 RAB18 interactions were dependent on the binary RAB3GAP1-RAB3GAP2 RAB18-guanine nucleotide exchange factor complex. Twelve of these 28 interactions are supported by prior reports, and we have directly validated novel interactions with SEC22A, TMCO4, and INPP5B. Consistent with a role for RAB18 in regulating membrane contact sites, interactors included groups of microtubule/membrane-remodeling proteins, membrane-tethering and docking proteins, and lipid-modifying/transporting proteins. Two of the putative interactors, EBP and OSBPL2/ORP2, have sterol substrates. EBP is a Δ8-Δ7 sterol isomerase, and ORP2 is a lipid transport protein. This prompted us to investigate a role for RAB18 in cholesterol biosynthesis. We found that the cholesterol precursor and EBP-product lathosterol accumulates in both RAB18-null HeLa cells and RAB3GAP1-null fibroblasts derived from an affected individual. Furthermore, de novo cholesterol biosynthesis is impaired in cells in which RAB18 is absent or dysregulated or in which ORP2 expression is disrupted. Our data demonstrate that guanine nucleotide exchange factor-dependent Rab interactions are highly amenable to interrogation by proximity biotinylation and may suggest that Micro syndrome is a cholesterol biosynthesis disorder.
Collapse
Affiliation(s)
- Robert S Kiss
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Jarred Chicoine
- Metabolic Disorders and Complications (MEDIC) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Youssef Khalil
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Robert Sladek
- Metabolic Disorders and Complications (MEDIC) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - He Chen
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Alessandro Pisaturo
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Cyril Martin
- Cardiovascular Health Across the Lifespan (CHAL) Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Jessica D Dale
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom
| | - Tegan A Brudenell
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom
| | - Archith Kamath
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Division of Medical Sciences, University of Oxford, Oxford, United Kingdom
| | - Jeffrey Kyei-Boahen
- Department of Medicine, McGill University Health Centre, CHAL Research Program, Montreal, Canada
| | - Anouar Hafiane
- Department of Medicine, McGill University Health Centre, CHAL Research Program, Montreal, Canada
| | - Girija Daliah
- Department of Medicine, McGill University Health Centre, Cancer Research Program, Montreal, Canada
| | - Célia Alecki
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Tayah S Hopes
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Martin Heier
- Department of Clinical Neuroscience for Children, Oslo University Hospital, Oslo, Norway
| | - Irene A Aligianis
- Medical and Developmental Genetics, Medical Research Council Human Genetics Unit, Edinburgh, United Kingdom
| | - Jean-Jacques Lebrun
- Department of Medicine, McGill University Health Centre, Cancer Research Program, Montreal, Canada
| | - Julie Aspden
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Emanuele Paci
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
| | - Anja Kerksiek
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, Bonn, Germany
| | - Peter Clayton
- Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Jimi C Wills
- Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom; Firefinch Software Ltd, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research United Kingdom Edinburgh Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tommy Nilsson
- Cancer Research Program (CRP), Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Eamonn Sheridan
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom
| | - Mark T Handley
- Leeds Institute of Medical Research, St James's University Hospital, Leeds, United Kingdom; Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.
| |
Collapse
|
3
|
Vormittag S, Ende RJ, Derré I, Hilbi H. Pathogen vacuole membrane contact sites - close encounters of the fifth kind. MICROLIFE 2023; 4:uqad018. [PMID: 37223745 PMCID: PMC10117887 DOI: 10.1093/femsml/uqad018] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/30/2023] [Accepted: 04/06/2023] [Indexed: 05/25/2023]
Abstract
Vesicular trafficking and membrane fusion are well-characterized, versatile, and sophisticated means of 'long range' intracellular protein and lipid delivery. Membrane contact sites (MCS) have been studied in far less detail, but are crucial for 'short range' (10-30 nm) communication between organelles, as well as between pathogen vacuoles and organelles. MCS are specialized in the non-vesicular trafficking of small molecules such as calcium and lipids. Pivotal MCS components important for lipid transfer are the VAP receptor/tether protein, oxysterol binding proteins (OSBPs), the ceramide transport protein CERT, the phosphoinositide phosphatase Sac1, and the lipid phosphatidylinositol 4-phosphate (PtdIns(4)P). In this review, we discuss how these MCS components are subverted by bacterial pathogens and their secreted effector proteins to promote intracellular survival and replication.
Collapse
Affiliation(s)
| | | | - Isabelle Derré
- Corresponding author. Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 1340 Jefferson Park Ave, Charlottesville, VA 22908, United States. Tel: +1-434-924-2330; E-mail:
| | - Hubert Hilbi
- Corresponding author. Institute of Medical Microbiology, University of Zürich, Gloriastrasse 30, 8006 Zürich, Switzerland. Tel: +41-44-634-2650; E-mail:
| |
Collapse
|
4
|
Weber-Boyvat M, Kroll J, Trimbuch T, Olkkonen VM, Rosenmund C. The lipid transporter ORP2 regulates synaptic neurotransmitter release via two distinct mechanisms. Cell Rep 2022; 41:111882. [PMID: 36577376 DOI: 10.1016/j.celrep.2022.111882] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/26/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
Cholesterol is crucial for neuronal synaptic transmission, assisting in the molecular and structural organization of lipid rafts, ion channels, and exocytic proteins. Although cholesterol absence was shown to result in impaired neurotransmission, how cholesterol locally traffics and its route of action are still under debate. Here, we characterized the lipid transfer protein ORP2 in murine hippocampal neurons. We show that ORP2 preferentially localizes to the presynapse. Loss of ORP2 reduces presynaptic cholesterol levels by 50%, coinciding with a profoundly reduced release probability, enhanced facilitation, and impaired presynaptic calcium influx. In addition, ORP2 plays a cholesterol-transport-independent role in regulating vesicle priming and spontaneous release, likely by competing with Munc18-1 in syntaxin1A binding. To conclude, we identified a dual function of ORP2 as a physiological modulator of the synaptic cholesterol content and a regulator of neuronal exocytosis.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Jana Kroll
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Christian Rosenmund
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Neurophysiology, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
5
|
Depta L, Whitmarsh-Everiss T, Laraia L. Structure, function and small molecule modulation of intracellular sterol transport proteins. Bioorg Med Chem 2022; 68:116856. [PMID: 35716590 DOI: 10.1016/j.bmc.2022.116856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 11/02/2022]
Abstract
Intracellular sterol transport proteins (STPs) are crucial for maintaining cellular lipid homeostasis by regulating local sterol pools. Despite structural similarities in their sterol binding domains, STPs have different substrate specificities, intracellular localisation and biological functions. In this review, we highlight recent advances in the determination of STP structures and how this regulates their lipid specificities. Furthermore, we cover the important discoveries relating to the intracellular localisation of STPs, and the organelles between which lipid transport is carried out, giving rise to specific functions in health and disease. Finally, serendipitous and targeted efforts to identify small molecule modulators of STPs, as well as their ability to act as tool compounds and potential therapeutics, will be discussed.
Collapse
Affiliation(s)
- Laura Depta
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Thomas Whitmarsh-Everiss
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800 Kgs Lyngby, Denmark.
| |
Collapse
|
6
|
Olkkonen VM, Ikonen E. Cholesterol transport in the late endocytic pathway: Roles of ORP family proteins. J Steroid Biochem Mol Biol 2022; 216:106040. [PMID: 34864207 DOI: 10.1016/j.jsbmb.2021.106040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 12/29/2022]
Abstract
Oxysterol-binding protein (OSBP) homologues, designated ORP or OSBPL proteins, constitute one of the largest families of intracellular lipid-binding/transfer proteins (LTP). This review summarizes the mounting evidence that several members of this family participate in the machinery facilitating cholesterol trafficking in the late endocytic pathway. There are indications that OSBP, besides acting as a cholesterol/phosphatidylinositol 4-phosphate (PI4P) exchanger at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCS), also exchanges these lipids at ER-lysosome (Lys) contacts, increasing Lys cholesterol content. The long isoform of ORP1 (ORP1L), which also targets ER-late endosome (LE)/Lys MCS, has the capacity to mediate cholesterol transport either from ER to LE or in the opposite direction. Moreover, it regulates the motility, positioning and fusion of LE as well as autophagic flux. ORP2, the closest relative of ORP1, is mainly cytosolic, but also targets PI(4,5)P2-rich endosomal compartments. Our latest data suggest that ORP2 transfers cholesterol from LE to recycling endosomes (RE) in exchange for PI(4,5)P2, thus stimulating the recruitment of focal adhesion kinase (FAK) on the RE and cell adhesion. FAK activates phosphoinositide kinase on the RE to enhance PI(4,5)P2 synthesis. ORP2 in turn transfers PI(4,5)P2 from RE to LE, thus regulating LE tubule formation and transport activity.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
7
|
Arora A, Taskinen JH, Olkkonen VM. Coordination of inter-organelle communication and lipid fluxes by OSBP-related proteins. Prog Lipid Res 2022; 86:101146. [PMID: 34999137 DOI: 10.1016/j.plipres.2022.101146] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/10/2021] [Accepted: 01/03/2022] [Indexed: 12/31/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute one of the largest families of lipid-binding/transfer proteins (LTPs) in eukaryotes. The current view is that many of them mediate inter-organelle lipid transfer over membrane contact sites (MCS). The transfer occurs in several cases in a 'counter-current' fashion: A lipid such as cholesterol or phosphatidylserine (PS) is transferred against its concentration gradient driven by transport of a phosphoinositide in the opposite direction. In this way ORPs are envisioned to maintain the distinct organelle lipid compositions, with impacts on multiple organelle functions. However, the functions of ORPs extend beyond lipid homeostasis to regulation of processes such as cell survival, proliferation and migration. Important expanding areas of mammalian ORP research include their roles in viral and bacterial infections, cancers, and neuronal function. The yeast OSBP homologue (Osh) proteins execute multifaceted functions in sterol and glycerophospholipid homeostasis, post-Golgi vesicle transport, phosphatidylinositol-4-phosphate, sphingolipid and target of rapamycin (TOR) signalling, and cell cycle control. These observations identify ORPs as lipid transporters and coordinators of signals with an unforeseen variety of cellular processes. Understanding their activities not only enlightens the biology of the living cell but also allows their employment as targets of new therapeutic approaches for disease.
Collapse
Affiliation(s)
- Amita Arora
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, and Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
8
|
Takahashi K, Kanerva K, Vanharanta L, Almeida‐Souza L, Lietha D, Olkkonen VM, Ikonen E. ORP2 couples LDL-cholesterol transport to FAK activation by endosomal cholesterol/PI(4,5)P 2 exchange. EMBO J 2021; 40:e106871. [PMID: 34124795 PMCID: PMC8281050 DOI: 10.15252/embj.2020106871] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Low-density lipoprotein (LDL)-cholesterol delivery from late endosomes to the plasma membrane regulates focal adhesion dynamics and cell migration, but the mechanisms controlling it are poorly characterized. Here, we employed auxin-inducible rapid degradation of oxysterol-binding protein-related protein 2 (ORP2/OSBPL2) to show that endogenous ORP2 mediates the transfer of LDL-derived cholesterol from late endosomes to focal adhesion kinase (FAK)-/integrin-positive recycling endosomes in human cells. In vitro, cholesterol enhances membrane association of FAK to PI(4,5)P2 -containing lipid bilayers. In cells, ORP2 stimulates FAK activation and PI(4,5)P2 generation in endomembranes, enhancing cell adhesion. Moreover, ORP2 increases PI(4,5)P2 in NPC1-containing late endosomes in a FAK-dependent manner, controlling their tubulovesicular trafficking. Together, these results provide evidence that ORP2 controls FAK activation and LDL-cholesterol plasma membrane delivery by promoting bidirectional cholesterol/PI(4,5)P2 exchange between late and recycling endosomes.
Collapse
Affiliation(s)
- Kohta Takahashi
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
- Present address:
Laboratory of Microbiology and ImmunologyGraduate School of Pharmaceutical SciencesChiba UniversityChibaJapan
| | - Kristiina Kanerva
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Lauri Vanharanta
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Leonardo Almeida‐Souza
- Helsinki Institute of Life Science, HiLIFEUniversity of HelsinkiHelsinkiFinland
- Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
- Institute of BiotechnologyUniversity of HelsinkiHelsinkiFinland
| | - Daniel Lietha
- Centro de Investigaciones Biológicas Margarita Salas (CIB)Spanish National Research Council (CSIC)MadridSpain
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| | - Elina Ikonen
- Department of Anatomy and Stem Cells and Metabolism Research ProgramFaculty of MedicineUniversity of HelsinkiHelsinkiFinland
- Minerva Foundation Institute for Medical ResearchHelsinkiFinland
| |
Collapse
|
9
|
Avula K, Singh B, Kumar PV, Syed GH. Role of Lipid Transfer Proteins (LTPs) in the Viral Life Cycle. Front Microbiol 2021; 12:673509. [PMID: 34248884 PMCID: PMC8260984 DOI: 10.3389/fmicb.2021.673509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
Viruses are obligate parasites that depend on the host cell machinery for their replication and dissemination. Cellular lipids play a central role in multiple stages of the viral life cycle such as entry, replication, morphogenesis, and egress. Most viruses reorganize the host cell membranes for the establishment of viral replication complex. These specialized structures allow the segregation of replicating viral RNA from ribosomes and protect it from host nucleases. They also facilitate localized enrichment of cellular components required for viral replication and assembly. The specific composition of the lipid membrane governs its ability to form negative or positive curvature and possess a rigid or flexible form, which is crucial for membrane rearrangement and establishment of viral replication complexes. In this review, we highlight how different viruses manipulate host lipid transfer proteins and harness their functions to enrich different membrane compartments with specific lipids in order to facilitate multiple aspects of the viral life cycle.
Collapse
Affiliation(s)
- Kiran Avula
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Bharati Singh
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Preethy V Kumar
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India.,School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneshwar, India
| | - Gulam H Syed
- Virus-Host Interaction Lab, Institute of Life Sciences, Bhubaneshwar, India
| |
Collapse
|
10
|
Koponen A, Pan G, Kivelä AM, Ralko A, Taskinen JH, Arora A, Kosonen R, Kari OK, Ndika J, Ikonen E, Cho W, Yan D, Olkkonen VM. ORP2, a cholesterol transporter, regulates angiogenic signaling in endothelial cells. FASEB J 2020; 34:14671-14694. [DOI: 10.1096/fj.202000202r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/22/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Annika Koponen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Guoping Pan
- Department of Biology Jinan University Guangzhou China
| | - Annukka M. Kivelä
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Arthur Ralko
- Department of Chemistry University of Illinois at Chicago Chicago IL USA
| | - Juuso H. Taskinen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Riikka Kosonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
| | - Otto K. Kari
- Drug Research Program Division of Pharmaceutical Biosciences Faculty of Pharmacy University of Helsinki Helsinki Finland
| | - Joseph Ndika
- Human Microbiome Research Faculty of Medicine University of Helsinki Helsinki Finland
| | - Elina Ikonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
- Department of Anatomy Faculty of Medicine University of Helsinki Helsinki Finland
| | - Wonhwa Cho
- Department of Chemistry University of Illinois at Chicago Chicago IL USA
| | - Daoguang Yan
- Department of Biology Jinan University Guangzhou China
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical ResearchBiomedicum 2U Helsinki Finland
- Department of Anatomy Faculty of Medicine University of Helsinki Helsinki Finland
| |
Collapse
|
11
|
Delfosse V, Bourguet W, Drin G. Structural and Functional Specialization of OSBP-Related Proteins. ACTA ACUST UNITED AC 2020. [DOI: 10.1177/2515256420946627] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Lipids are precisely distributed in the eukaryotic cell where they help to define organelle identity and function, in addition to their structural role. Once synthesized, many lipids must be delivered to other compartments by non-vesicular routes, a process that is undertaken by proteins called Lipid Transfer Proteins (LTPs). OSBP and the closely-related ORP and Osh proteins constitute a major, evolutionarily conserved family of LTPs in eukaryotes. Most of these target one or more subcellular regions, and membrane contact sites in particular, where two organelle membranes are in close proximity. It was initially thought that such proteins were strictly dedicated to sterol sensing or transport. However, over the last decade, numerous studies have revealed that these proteins have many more functions, and we have expanded our understanding of their mechanisms. In particular, many of them are lipid exchangers that exploit PI(4)P or possibly other phosphoinositide gradients to directionally transfer sterol or PS between two compartments. Importantly, these transfer activities are tightly coupled to processes such as lipid metabolism, cellular signalling and vesicular trafficking. This review describes the molecular architecture of OSBP/ORP/Osh proteins, showing how their specific structural features and internal configurations impart unique cellular functions.
Collapse
Affiliation(s)
- Vanessa Delfosse
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - William Bourguet
- Centre de Biochimie Structurale, Inserm, CNRS, Univ Montpellier, Montpellier, France
| | - Guillaume Drin
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| |
Collapse
|
12
|
ORP/Osh mediate cross-talk between ER-plasma membrane contact site components and plasma membrane SNAREs. Cell Mol Life Sci 2020; 78:1689-1708. [PMID: 32734583 PMCID: PMC7904734 DOI: 10.1007/s00018-020-03604-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
OSBP-homologous proteins (ORPs, Oshp) are lipid binding/transfer proteins. Several ORP/Oshp localize to membrane contacts between the endoplasmic reticulum (ER) and the plasma membrane, where they mediate lipid transfer or regulate lipid-modifying enzymes. A common way in which they target contacts is by binding to the ER proteins, VAP/Scs2p, while the second membrane is targeted by other interactions with lipids or proteins.We have studied the cross-talk of secretory SNARE proteins and their regulators with ORP/Oshp and VAPA/Scs2p at ER-plasma membrane contact sites in yeast and murine primary neurons. We show that Oshp-Scs2p interactions depend on intact secretory SNARE proteins, especially Sec9p. SNAP-25/Sec9p directly interact with ORP/Osh proteins and their disruption destabilized the ORP/Osh proteins, associated with dysfunction of VAPA/Scs2p. Deleting OSH1-3 in yeast or knocking down ORP2 in primary neurons reduced the oligomerization of VAPA/Scs2p and affected their multiple interactions with SNAREs. These observations reveal a novel cross-talk between the machineries of ER-plasma membrane contact sites and those driving exocytosis.
Collapse
|
13
|
Lipp NF, Ikhlef S, Milanini J, Drin G. Lipid Exchangers: Cellular Functions and Mechanistic Links With Phosphoinositide Metabolism. Front Cell Dev Biol 2020; 8:663. [PMID: 32793602 PMCID: PMC7385082 DOI: 10.3389/fcell.2020.00663] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 12/28/2022] Open
Abstract
Lipids are amphiphilic molecules that self-assemble to form biological membranes. Thousands of lipid species coexist in the cell and, once combined, define organelle identity. Due to recent progress in lipidomic analysis, we now know how lipid composition is finely tuned in different subcellular regions. Along with lipid synthesis, remodeling and flip-flop, lipid transfer is one of the active processes that regulates this intracellular lipid distribution. It is mediated by Lipid Transfer Proteins (LTPs) that precisely move certain lipid species across the cytosol and between the organelles. A particular subset of LTPs from three families (Sec14, PITP, OSBP/ORP/Osh) act as lipid exchangers. A striking feature of these exchangers is that they use phosphatidylinositol or phosphoinositides (PIPs) as a lipid ligand and thereby have specific links with PIP metabolism and are thus able to both control the lipid composition of cellular membranes and their signaling capacity. As a result, they play pivotal roles in cellular processes such as vesicular trafficking and signal transduction at the plasma membrane. Recent data have shown that some PIPs are used as energy by lipid exchangers to generate lipid gradients between organelles. Here we describe the importance of lipid counter-exchange in the cell, its structural basis, and presumed links with pathologies.
Collapse
Affiliation(s)
- Nicolas-Frédéric Lipp
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Souade Ikhlef
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Julie Milanini
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| | - Guillaume Drin
- Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, Université Côte d'Azur, Valbonne, France
| |
Collapse
|
14
|
Shi H, Wang H, Yao J, Lin C, Wei Q, Lu Y, Cao X. Comparative transcriptome analysis of auditory OC-1 cells and zebrafish inner ear tissues in the absence of human OSBPL2 orthologues. Biochem Biophys Res Commun 2019; 521:42-49. [PMID: 31629475 DOI: 10.1016/j.bbrc.2019.10.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/05/2019] [Indexed: 12/16/2022]
Abstract
In our previous study, Oxysterol-binding protein-related protein 2 (OSBPL2) was first identified as a new deafness-causative gene contribute to non-syndromic hearing loss. However, the underlying mechanism of OSBPL2-induced hearing loss remains unknown. Here, we used hearing-specific cells and tissues OC-1 cells and zebrafish inner ear tissues as models to identify common transcriptome changes in genes and pathways in the absence of human OSBPL2 orthologues by RNA-seq analysis. In total, 2112 differentially expressed genes (DEGs) were identified between wild-type (WT) and Osbpl2-/- OC-1 cells, and 877 DEGs were identified between WT and osbpl2b-/- zebrafish inner ear tissues. Functional annotation implicated Osbpl2/osbpl2b in lipid metabolism, cell adhesion and the extracellular matrix in both OC-1 cells and zebrafish inner ear tissues. Protein-protein interaction (PPI) analysis indicated that Osbpl2/osbpl2b were also involved in ubiquitination. Further experiments showed that Osbpl2-/- OC-1 cells exhibited an abnormal focal adhesion morphology characterized by inhibited FAK activity and impaired cell adhesion. In conclusion, we identified novel pathways modulated by OSBPL2 orthologues, providing new insight into the mechanism of hearing loss induced by OSBPL2 deficiency.
Collapse
Affiliation(s)
- Hairong Shi
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Zhang C, Zhang H, Zhang M, Lin C, Wang H, Yao J, Wei Q, Lu Y, Chen Z, Xing G, Cao X. OSBPL2 deficiency upregulate SQLE expression increasing intracellular cholesterol and cholesteryl ester by AMPK/SP1 and SREBF2 signalling pathway. Exp Cell Res 2019; 383:111512. [PMID: 31356817 DOI: 10.1016/j.yexcr.2019.111512] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/12/2022]
Abstract
Previous studies have shown that oxysterol binding protein like 2 (OSBPL2) knockdown is closely related to cholesterol metabolism. However, whether there is a direct relation between OSBPL2 and cholesterol synthesis is unknown. This study explored the mechanism of OSBPL2 deficiency in the upregulation of squalene epoxidase (SQLE) and the subsequent accumulation of intracellular cholesterol and cholesteryl ester. Here, we constructed an OSBPL2-deleted HeLa cell line using CRISPR/Cas9 technology, screened differentially expressed genes and examined the transcriptional regulation of SQLE using a dual-luciferase reporter gene. RNA-seq analysis showed that SQLE was upregulated significantly and the dual luciferase reporter gene assay revealed that two new functional transcription factor binding sites of Sp1 transcription factor (SP1) and sterol regulatory element-binding transcription factor 2 (SREBF2) in the SQLE promoter participated in the SQLE transcription and expression. In addition, we also observed that OSBPL2 deletion inhibited the AMPK signalling pathway and that the inhibition of AMPK signalling promoted SP1 and SREBF2 entry into the nuclear to upregulate SQLE expression. Therefore, these data support that OSBPL2 deficiency upregulates SQLE expression and increases the accumulation of cholesterol and cholesteryl ester by suppressing AMPK signalling, which provides new evidence of the connection between OSBPL2 and cholesterol synthesis.
Collapse
Affiliation(s)
- Cui Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongdu Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Changsong Lin
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Hongshun Wang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
| | - Jun Yao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Qinjun Wei
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yajie Lu
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhibin Chen
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guangqian Xing
- Department of Otolaryngology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Cao
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China; Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China; The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Olkkonen VM, Koponen A, Arora A. OSBP-related protein 2 (ORP2): Unraveling its functions in cellular lipid/carbohydrate metabolism, signaling and F-actin regulation. J Steroid Biochem Mol Biol 2019; 192:105298. [PMID: 30716465 DOI: 10.1016/j.jsbmb.2019.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/21/2019] [Accepted: 01/25/2019] [Indexed: 12/20/2022]
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) constitute a family of intracellular lipid-binding/transport proteins (LTPs) in eukaryotes. They typically have a modular structure comprising a lipid-binding domain and membrane targeting determinants, being thus suited for function at membrane contact sites. Among the mammalian ORPs, ORP2/OSBPL2 is the only member that only exists as a 'short' variant lacking a membrane-targeting pleckstrin homology domain. ORP2 is expressed ubiquitously and has been assigned a multitude of functions. Its OSBP-related domain binds cholesterol, oxysterols, and phosphoinositides, and its overexpression enhances cellular cholesterol efflux. Consistently, the latest observations suggest a function of ORP2 in cholesterol transport to the plasma membrane (PM) in exchange for phosphatidylinositol 4,5-bisphosphate (PI4,5P2), with significant impacts on the concentrations of PM cholesterol and PI4,5P2. On the other hand, ORP2 localizes at the surface of cytoplasmic lipid droplets (LDs) and at endoplasmic-reticulum-LD contact sites, and its depletion modifies cellular triglyceride (TG) metabolism. Study in an adrenocortical cell line further suggested a function of ORP2 in the synthesis of steroid hormones. Our recent knock-out of ORP2 in human hepatoma cells revealed its function in hepatocellular PI3K/Akt signaling, glucose and triglyceride metabolism, as well as in actin cytoskeletal regulation, cell adhesion, migration and proliferation. ORP2 was shown to interact physically with F-actin regulators such as DIAPH1, ARHGAP12, SEPT9 and MLC12, as well as with IQGAP1 and the Cdc37-Hsp90 chaperone complex controlling the activity of Akt. Interestingly, mutations in OSBPL2 encoding ORP2 are associated with autosomal dominant non-syndromic hearing loss, and the protein was found to localize in cochlear hair cell stereocilia. The functions assigned to ORP2 suggest that this protein, in concert with other LTPs, controls the subcellular distribution of cholesterol in various cell types and steroid hormone synthesis in adrenocortical cells. However, it also impacts cellular TG and carbohydrate metabolism and F-actin-dependent functions, revealing a bewildering spectrum of activities.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland.
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| |
Collapse
|
17
|
OSBPL2-disrupted pigs recapitulate dual features of human hearing loss and hypercholesterolaemia. J Genet Genomics 2019; 46:379-387. [PMID: 31451425 DOI: 10.1016/j.jgg.2019.06.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 02/06/2023]
Abstract
Oxysterol binding protein like 2 (OSBPL2), an important regulator in cellular lipid metabolism and transport, was identified as a novel deafness-causal gene in our previous work. To resemble the phenotypic features of OSBPL2 mutation in animal models and elucidate the potential genotype-phenotype associations, the OSBPL2-disrupted Bama miniature (BM) pig model was constructed using CRISPR/Cas9-mediated gene editing, somatic cell nuclear transfer (SCNT) and embryo transplantation approaches, and then subjected to phenotypic characterization of auditory function and serum lipid profiles. The OSBPL2-disrupted pigs displayed progressive hearing loss (HL) with degeneration/apoptosis of cochlea hair cells (HCs) and morphological abnormalities in HC stereocilia, as well as hypercholesterolaemia. High-fat diet (HFD) feeding aggravated the development of HL and led to more severe hypercholesterolaemia. The dual phenotypes of progressive HL and hypercholesterolaemia resembled in OSBPL2-disrupted pigs confirmed the implication of OSBPL2 mutation in nonsydromic hearing loss (NSHL) and contributed to the potential linkage between auditory dysfunction and dyslipidaemia/hypercholesterolaemia.
Collapse
|
18
|
Wang H, Ma Q, Qi Y, Dong J, Du X, Rae J, Wang J, Wu WF, Brown AJ, Parton RG, Wu JW, Yang H. ORP2 Delivers Cholesterol to the Plasma Membrane in Exchange for Phosphatidylinositol 4, 5-Bisphosphate (PI(4,5)P2). Mol Cell 2019; 73:458-473.e7. [DOI: 10.1016/j.molcel.2018.11.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 10/15/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
19
|
Koponen A, Arora A, Takahashi K, Kentala H, Kivelä AM, Jääskeläinen E, Peränen J, Somerharju P, Ikonen E, Viitala T, Olkkonen VM. ORP2 interacts with phosphoinositides and controls the subcellular distribution of cholesterol. Biochimie 2018; 158:90-101. [PMID: 30590084 DOI: 10.1016/j.biochi.2018.12.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
ORP2 is a sterol-binding protein with documented functions in lipid and glucose metabolism, Akt signaling, steroidogenesis, cell adhesion, migration and proliferation. Here we investigate the interactions of ORP2 with phosphoinositides (PIPs) by surface plasmon resonance (SPR), its affinity for cholesterol with a pull-down assay, and its capacity to transfer sterol in vitro. Moreover, we determine the effects of wild-type (wt) ORP2 and a mutant with attenuated PIP binding, ORP2(mHHK), on the subcellular distribution of cholesterol, and analyze the interaction of ORP2 with the related cholesterol transporter ORP1L. ORP2 showed specific affinity for PI(4,5)P2, PI(3,4,5)P3 and PI(4)P, with suggestive Kd values in the μM range. Also binding of cholesterol by ORP2 was detectable, but a Kd could not be determined. Wt ORP2 was in HeLa cells mainly detected in the cytosol, ER, late endosomes, and occasionally on lipid droplets (LDs), while ORP2(mHHK) displayed an enhanced LD localization. Overexpression of wt ORP2 shifted the D4H cholesterol probe away from endosomes, while ORP2(mHHK) caused endosomal accumulation of the probe. Although ORP2 failed to transfer dehydroergosterol in an in vitro assay where OSBP is active, its knock-down resulted in the accumulation of cholesterol in late endocytic compartments, as detected by both D4H and filipin probes. Interestingly, ORP2 was shown to interact and partially co-localize on late endosomes with ORP1L, a cholesterol transporter/sensor at ER-late endosome junctions. Our data demonstrates that ORP2 binds several phosphoinositides, both PI(4)P and multiply phosphorylated species. ORP2 regulates the subcellular distribution of cholesterol dependent on its PIP-binding capacity. The interaction of ORP2 with ORP1L suggests a concerted action of the two ORPs.
Collapse
Affiliation(s)
- Annika Koponen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Amita Arora
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Kohta Takahashi
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Eeva Jääskeläinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland
| | - Johan Peränen
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Pentti Somerharju
- Department of Biochemistry and Developmental Biology, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Elina Ikonen
- Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland
| | - Tapani Viitala
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, FI-00014, University of Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, FI-00290, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
20
|
Kentala H, Koponen A, Vihinen H, Pirhonen J, Liebisch G, Pataj Z, Kivelä A, Li S, Karhinen L, Jääskeläinen E, Andrews R, Meriläinen L, Matysik S, Ikonen E, Zhou Y, Jokitalo E, Olkkonen VM. OSBP-related protein-2 (ORP2): a novel Akt effector that controls cellular energy metabolism. Cell Mol Life Sci 2018; 75:4041-4057. [PMID: 29947926 PMCID: PMC11105326 DOI: 10.1007/s00018-018-2850-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/18/2022]
Abstract
ORP2 is a ubiquitously expressed OSBP-related protein previously implicated in endoplasmic reticulum (ER)-lipid droplet (LD) contacts, triacylglycerol (TG) metabolism, cholesterol transport, adrenocortical steroidogenesis, and actin-dependent cell dynamics. Here, we characterize the role of ORP2 in carbohydrate and lipid metabolism by employing ORP2-knockout (KO) hepatoma cells (HuH7) generated by CRISPR-Cas9 gene editing. The ORP2-KO and control HuH7 cells were subjected to RNA sequencing, analyses of Akt signaling, carbohydrate and TG metabolism, the extracellular acidification rate, and the lipidome, as well as to transmission electron microscopy. The loss of ORP2 resulted in a marked reduction of active phosphorylated Akt(Ser473) and its target Glycogen synthase kinase 3β(Ser9), consistent with defective Akt signaling. ORP2 was found to form a physical complex with the key controllers of Akt activity, Cdc37, and Hsp90, and to co-localize with Cdc37 and active Akt(Ser473) at lamellipodial plasma membrane regions, in addition to the previously reported ER-LD localization. ORP2-KO reduced glucose uptake, glycogen synthesis, glycolysis, mRNA-encoding glycolytic enzymes, and SREBP-1 target gene expression, and led to defective TG synthesis and storage. ORP2-KO did not reduce but rather increased ER-LD contacts under basal culture conditions and interfered with their expansion upon fatty acid loading. Together with our recently published work (Kentala et al. in FASEB J 32:1281-1295, 2018), this study identifies ORP2 as a new regulatory nexus of Akt signaling, cellular energy metabolism, actin cytoskeletal function, cell migration, and proliferation.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Helena Vihinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Juho Pirhonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Gerhard Liebisch
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Zoltan Pataj
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Annukka Kivelä
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Shiqian Li
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Leena Karhinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - Eeva Jääskeläinen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Leena Meriläinen
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Silke Matysik
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Elina Ikonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland
- Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, UK
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290, Helsinki, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
| |
Collapse
|
21
|
Pietrangelo A, Ridgway ND. Bridging the molecular and biological functions of the oxysterol-binding protein family. Cell Mol Life Sci 2018; 75:3079-3098. [PMID: 29536114 PMCID: PMC11105248 DOI: 10.1007/s00018-018-2795-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/18/2018] [Accepted: 03/07/2018] [Indexed: 12/19/2022]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) constitute a large eukaryotic gene family that transports and regulates the metabolism of sterols and phospholipids. The original classification of the family based on oxysterol-binding activity belies the complex dual lipid-binding specificity of the conserved OSBP homology domain (OHD). Additional protein- and membrane-interacting modules mediate the targeting of select OSBP/ORPs to membrane contact sites between organelles, thus positioning the OHD between opposing membranes for lipid transfer and metabolic regulation. This unique subcellular location, coupled with diverse ligand preferences and tissue distribution, has identified OSBP/ORPs as key arbiters of membrane composition and function. Here, we will review how molecular models of OSBP/ORP-mediated intracellular lipid transport and regulation at membrane contact sites relate to their emerging roles in cellular and organismal functions.
Collapse
Affiliation(s)
- Antonietta Pietrangelo
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada
| | - Neale D Ridgway
- Atlantic Research Center, C306 CRC Bldg, Department of Pediatrics, and Biochemistry and Molecular Biology, Dalhousie University, 5849 University Av., Halifax, NS, B3H4R2, Canada.
| |
Collapse
|
22
|
Meutiawati F, Bezemer B, Strating JRPM, Overheul GJ, Žusinaite E, van Kuppeveld FJM, van Cleef KWR, van Rij RP. Posaconazole inhibits dengue virus replication by targeting oxysterol-binding protein. Antiviral Res 2018; 157:68-79. [PMID: 29981375 DOI: 10.1016/j.antiviral.2018.06.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/08/2018] [Accepted: 06/30/2018] [Indexed: 11/30/2022]
Abstract
Dengue virus (DENV) is associated with an estimated 390 million infections per year, occurring across approximately 100 countries in tropical and sub-tropical regions. To date, there are no antiviral drugs or specific therapies to treat DENV infection. Posaconazole and itraconazole are potent antifungal drugs that inhibit ergosterol biosynthesis in fungal cells, but also target a number of human proteins. Here, we show that itraconazole and posaconazole have antiviral activity against DENV. Posaconazole inhibited replication of multiple serotypes of DENV and the related flavivirus Zika virus, and reduced viral RNA replication, but not translation of the viral genome. We used a combination of knockdown and drug sensitization assays to define the molecular target of posaconazole that mediates its antiviral activity. We found that knockdown of oxysterol-binding protein (OSBP) inhibited DENV replication. Moreover, knockdown of OSBP, but not other known targets of posaconazole, enhanced the inhibitory effect of posaconazole. Our findings imply OSBP as a potential target for the development of antiviral compounds against DENV.
Collapse
Affiliation(s)
- Febrina Meutiawati
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bodine Bezemer
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen R P M Strating
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Eva Žusinaite
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Frank J M van Kuppeveld
- Virology Division, Department of Infectious Diseases & Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Koen W R van Cleef
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Kentala H, Koponen A, Kivelä AM, Andrews R, Li C, Zhou Y, Olkkonen VM. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation. FASEB J 2018; 32:1281-1295. [PMID: 29092904 DOI: 10.1096/fj.201700604r] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ORP2 is implicated in cholesterol transport, triglyceride metabolism, and adrenocortical steroid hormone production. We addressed ORP2 function in hepatocytes by generating ORP2-knockout (KO) HuH7 cells by CRISPR-Cas9 gene editing, followed by analyses of transcriptome, F-actin morphology, migration, adhesion, and proliferation. RNA sequencing of ORP2-KO cells revealed >2-fold changes in 579 mRNAs. The Ingenuity Pathway Analysis (IPA) uncovered alterations in the following functional categories: cellular movement, cell-cell signaling and interaction, cellular development, cellular function and maintenance, cellular growth and proliferation, and cell morphology. Many pathways in these categories involved actin cytoskeleton, cell migration, adhesion, or proliferation. Analysis of the ORP2 interactome uncovered 109 putative new partners. Their IPA analysis revealed Ras homolog A (RhoA) signaling as the most significant pathway. Interactions of ORP2 with SEPT9, MLC12, and ARHGAP12 were validated by independent assays. ORP2-KO resulted in abnormal F-actin morphology characterized by impaired capacity to form lamellipodia, migration defect, and impaired adhesion and proliferation. Rescue of the migration phenotype and generation of typical cell surface morphology required an intact ORP2 phosphoinositide binding site, suggesting that ORP2 function involves phosphoinositide binding and transport. The results point at a novel function of ORP2 as a lipid-sensing regulator of the actin cytoskeleton, with impacts on hepatocellular migration, adhesion, and proliferation.-Kentala, H., Koponen, A., Kivelä, A. M., Andrews, R., Li, C., Zhou, Y., Olkkonen, V. M. Analysis of ORP2-knockout hepatocytes uncovers a novel function in actin cytoskeletal regulation.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annika Koponen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Annukka M Kivelä
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Robert Andrews
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - ChunHei Li
- Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Systems Immunity Research Institute, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland.,Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland
| |
Collapse
|
24
|
Raitoharju E, Seppälä I, Lyytikäinen LP, Viikari J, Ala-Korpela M, Soininen P, Kangas AJ, Waldenberger M, Klopp N, Illig T, Leiviskä J, Loo BM, Oksala N, Kähönen M, Hutri-Kähönen N, Laaksonen R, Raitakari O, Lehtimäki T. Blood hsa-miR-122-5p and hsa-miR-885-5p levels associate with fatty liver and related lipoprotein metabolism-The Young Finns Study. Sci Rep 2016; 6:38262. [PMID: 27917915 PMCID: PMC5137183 DOI: 10.1038/srep38262] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are involved in disease development and may be utilized as biomarkers. We investigated the association of blood miRNA levels and a) fatty liver (FL), b) lipoprotein and lipid pathways involved in liver lipid accumulation and c) levels of predicted mRNA targets in general population based cohort. Blood microRNA profiling (TaqMan OpenArray), genome-wide gene expression arrays and nuclear magnetic resonance metabolomics were performed for Young Finns Study participants aged 34–49 years (n = 871). Liver fat status was assessed ultrasonographically. Levels of hsa-miR-122-5p and -885-5p were up-regulated in individuals with FL (fold change (FC) = 1.55, p = 1.36 * 10−14 and FC = 1.25, p = 4.86 * 10−4, respectively). In regression model adjusted with age, sex and BMI, hsa-miR-122-5p and -885-5p predicted FL (OR = 2.07, p = 1.29 * 10−8 and OR = 1.41, p = 0.002, respectively). Together hsa-miR-122-5p and -885-5p slightly improved the detection of FL beyond established risk factors. These miRNAs may be associated with FL formation through the regulation of lipoprotein metabolism as hsa-miR-122-5p levels associated with small VLDL, IDL, and large LDL lipoprotein subclass components, while hsa-miR-885-5p levels associated inversely with XL HDL cholesterol levels. Hsa-miR-885-5p levels correlated inversely with oxysterol-binding protein 2 (OSBPL2) expression (r = −0.143, p = 1.00 * 10−4) and suppressing the expression of this lipid receptor and sterol transporter could link hsa-miR-885-5p with HDL cholesterol levels.
Collapse
Affiliation(s)
- Emma Raitoharju
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Jorma Viikari
- Division of Medicine Turku University Hospital and Department of Medicine, University of Turku, Turku, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Computational Medicine, School of Social and Community Medicine and the Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Pasi Soininen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland.,NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Antti J Kangas
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany
| | - Norman Klopp
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Thomas Illig
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum, German Research Center for Environmental Health, Munich, Germany.,Hannover Unified Biobank, Hannover Medical School, Hannover, Germany.,Institute for Human Genetics, Hannover Medical School, Hanover, Germany
| | - Jaana Leiviskä
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Britt-Marie Loo
- Department of Health, National Institute for Health and Welfare, Helsinki and Turku, Finland
| | - Niku Oksala
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland.,Division of Vascular Surgery, Department of Surgery, Tampere University Hospital, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, and School of Medicine, University of Tampere, Tampere, Finland
| | - Nina Hutri-Kähönen
- Department of Pediatrics, University of Tampere and Tampere University Hospital, Tampere, Finland
| | - Reijo Laaksonen
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| | - Olli Raitakari
- Research Centre for Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland.,Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Pirkanmaa Hospital District, Fimlab Laboratories, and University of Tampere, School of Medicine, Tampere, Finland
| |
Collapse
|
25
|
Escajadillo T, Wang H, Li L, Li D, Sewer MB. Oxysterol-related-binding-protein related Protein-2 (ORP2) regulates cortisol biosynthesis and cholesterol homeostasis. Mol Cell Endocrinol 2016; 427:73-85. [PMID: 26992564 PMCID: PMC4833515 DOI: 10.1016/j.mce.2016.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/30/2022]
Abstract
Oxysterol binding protein-related protein 2 (ORP2) is a lipid binding protein that has been implicated in various cellular processes, including lipid sensing, cholesterol efflux, and endocytosis. We recently identified ORP2 as a member of a protein complex that regulates glucocorticoid biosynthesis. Herein, we examine the effect of silencing ORP2 on adrenocortical function and show that the ORP2 knockdown cells exhibit reduced amounts of multiple steroid metabolites, including progesterone, 11-deoxycortisol, and cortisol, but have increased concentrations of androgens, and estrogens. Moreover, silencing ORP2 suppresses the expression of most proteins required for cortisol production and reduces the expression of steroidogenic factor 1 (SF1). ORP2 silencing also increases cellular cholesterol, concomitant with decreased amounts of 22-hydroxycholesterol and 7-ketocholesterol, two molecules that have been shown to bind to ORP2. Further, we show that ORP2 binds to liver X receptor (LXR) and is required for nuclear LXR expression. LXR and ORP2 are recruited to the CYP11B1 promoter in response to cAMP signaling. Additionally, ORP2 is required for the expression of other LXR target genes, including ABCA1 and the LDL receptor (LDLR). In summary, we establish a novel role for ORP2 in regulating steroidogenic capacity and cholesterol homeostasis in the adrenal cortex.
Collapse
Affiliation(s)
- Tamara Escajadillo
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| | - Hongxia Wang
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Linda Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Donghui Li
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Marion B Sewer
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
26
|
Kentala H, Weber-Boyvat M, Olkkonen VM. OSBP-Related Protein Family: Mediators of Lipid Transport and Signaling at Membrane Contact Sites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 321:299-340. [PMID: 26811291 DOI: 10.1016/bs.ircmb.2015.09.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Oxysterol-binding protein (OSBP) and its related protein homologs, ORPs, constitute a conserved family of lipid-binding/transfer proteins (LTPs) expressed ubiquitously in eukaryotes. The ligand-binding domain of ORPs accommodates cholesterol and oxysterols, but also glycerophospholipids, particularly phosphatidylinositol-4-phosphate (PI4P). ORPs have been implicated as intracellular lipid sensors or transporters. Most ORPs carry targeting determinants for the endoplasmic reticulum (ER) and non-ER organelle membrane. ORPs are located and function at membrane contact sites (MCSs), at which ER is closely apposed with other organelle limiting membranes. Such sites have roles in lipid transport and metabolism, control of Ca(2+) fluxes, and signaling events. ORPs are postulated either to transport lipids over MCSs to maintain the distinct lipid compositions of organelle membranes, or to control the activity of enzymes/protein complexes with functions in signaling and lipid metabolism. ORPs may transfer PI4P and another lipid class bidirectionally. Transport of PI4P followed by its hydrolysis would in this model provide the energy for transfer of the other lipid against its concentration gradient. Control of organelle lipid compositions by OSBP/ORPs is important for the life cycles of several pathogenic viruses. Targeting ORPs with small-molecular antagonists is proposed as a new strategy to combat viral infections. Several ORPs are reported to modulate vesicle transport along the secretory or endocytic pathways. Moreover, antagonists of certain ORPs inhibit cancer cell proliferation. Thus, ORPs are LTPs, which mediate interorganelle lipid transport and coordinate lipid signals with a variety of cellular regimes.
Collapse
Affiliation(s)
- Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| |
Collapse
|
27
|
Weber-Boyvat M, Kentala H, Peränen J, Olkkonen VM. Ligand-dependent localization and function of ORP-VAP complexes at membrane contact sites. Cell Mol Life Sci 2015; 72:1967-87. [PMID: 25420878 PMCID: PMC11114005 DOI: 10.1007/s00018-014-1786-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 10/17/2014] [Accepted: 11/17/2014] [Indexed: 01/08/2023]
Abstract
Oxysterol-binding protein/OSBP-related proteins (ORPs) constitute a conserved family of sterol/phospholipid-binding proteins with lipid transporter or sensor functions. We investigated the spatial occurrence and regulation of the interactions of human OSBP/ORPs or the S. cerevisiae orthologs, the Osh (OSBP homolog) proteins, with their endoplasmic reticulum (ER) anchors, the VAMP-associated proteins (VAPs), by employing bimolecular fluorescence complementation and pull-down set-ups. The ORP-VAP interactions localize frequently at distinct subcellular sites, shown in several cases to represent membrane contact sites (MCSs). Using established ORP ligand-binding domain mutants and pull-down assays with recombinant proteins, we show that ORP liganding regulates the ORP-VAP association, alters the subcellular targeting of ORP-VAP complexes, or modifies organelle morphology. There is distinct protein specificity in the effects of the mutants on subcellular targeting of ORP-VAP complexes. We provide evidence that complexes of human ORP2 and VAPs at ER-lipid droplet interfaces regulate the hydrolysis of triglycerides and lipid droplet turnover. The data suggest evolutionarily conserved, complex ligand-dependent functions of ORP-VAP complexes at MCSs, with implications for cellular lipid homeostasis and signaling.
Collapse
Affiliation(s)
- Marion Weber-Boyvat
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Henriikka Kentala
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Johan Peränen
- Cell and Molecular Biology Program, Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Tukholmankatu 8, 00290 Helsinki, Finland
- Institute of Biomedicine, Anatomy, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
28
|
Sakai-Kato K, Un K, Nanjo K, Nishiyama N, Kusuhara H, Kataoka K, Kawanishi T, Goda Y, Okuda H. Elucidating the molecular mechanism for the intracellular trafficking and fate of block copolymer micelles and their components. Biomaterials 2014; 35:1347-58. [DOI: 10.1016/j.biomaterials.2013.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 11/08/2013] [Indexed: 01/14/2023]
|
29
|
Udagawa O, Ito C, Ogonuki N, Sato H, Lee S, Tripvanuntakul P, Ichi I, Uchida Y, Nishimura T, Murakami M, Ogura A, Inoue T, Toshimori K, Arai H. Oligo-astheno-teratozoospermia in mice lacking ORP4, a sterol-binding protein in the OSBP-related protein family. Genes Cells 2013; 19:13-27. [PMID: 24245814 DOI: 10.1111/gtc.12105] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 09/19/2013] [Indexed: 12/20/2022]
Abstract
Oligo-astheno-teratozoospermia (OAT), a condition that includes low sperm number, low sperm motility and abnormal sperm morphology, is the commonest cause of male infertility. Because genetic analysis is frequently impeded by the infertility phenotype, the genetic basis of many of OAT conditions has been hard to verify. Here, we show that deficiency of ORP4, a sterol-binding protein in the oxysterol-binding protein (OSBP)-related protein family, causes male infertility due to severe OAT in mice. In ORP4-deficient mice, spermatogonia proliferation and subsequent meiosis occurred normally, but the morphology of elongating and elongated spermatids was severely distorted, with round-shaped head, curled back head or symplast. Spermatozoa derived from ORP4-deficient mice had little or no motility and no fertilizing ability in vitro. In ORP4-deficient testis, postmeiotic spermatids underwent extensive apoptosis, leading to a severely reduced number of spermatozoa. At the ultrastructural level, nascent acrosomes appeared to normally develop in round spermatids, but acrosomes were detached from the nucleus in elongating spermatids. These results suggest that ORP4 is essential for the postmeiotic differentiation of germ cells.
Collapse
Affiliation(s)
- Osamu Udagawa
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Olkkonen VM, Li S. Oxysterol-binding proteins: Sterol and phosphoinositide sensors coordinating transport, signaling and metabolism. Prog Lipid Res 2013; 52:529-38. [DOI: 10.1016/j.plipres.2013.06.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/15/2013] [Accepted: 06/22/2013] [Indexed: 01/27/2023]
|
31
|
Park IW, Ndjomou J, Wen Y, Liu Z, Ridgway ND, Kao CC, He JJ. Inhibition of HCV replication by oxysterol-binding protein-related protein 4 (ORP4) through interaction with HCV NS5B and alteration of lipid droplet formation. PLoS One 2013; 8:e75648. [PMID: 24069433 PMCID: PMC3775767 DOI: 10.1371/journal.pone.0075648] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 08/20/2013] [Indexed: 12/21/2022] Open
Abstract
Hepatitis C virus (HCV) RNA replication involves complex interactions among the 3’x RNA element within the HCV 3’ untranslated region, viral and host proteins. However, many of the host proteins remain unknown. In this study, we devised an RNA affinity chromatography /2D/MASS proteomics strategy and identified nine putative 3’ X-associated host proteins; among them is oxysterol-binding protein-related protein 4 (ORP4), a cytoplasmic receptor for oxysterols. We determined the relationship between ORP4 expression and HCV replication. A very low level of constitutive ORP4 expression was detected in hepatocytes. Ectopically expressed ORP4 was detected in the endoplasmic reticulum and inhibited luciferase reporter gene expression in HCV subgenomic replicon cells and HCV core expression in JFH-1-infected cells. Expression of ORP4S, an ORP4 variant that lacked the N-terminal pleckstrin-homology domain but contained the C-terminal oxysterol-binding domain also inhibited HCV replication, pointing to an important role of the oxysterol-binding domain in ORP4-mediated inhibition of HCV replication. ORP4 was found to associate with HCV NS5B and its expression led to inhibition of the NS5B activity. ORP4 expression had little effect on intracellular lipid synthesis and secretion, but it induced lipid droplet formation in the context of HCV replication. Taken together, these results demonstrate that ORP4 is a negative regulator of HCV replication, likely via interaction with HCV NS5B in the replication complex and regulation of intracellular lipid homeostasis. This work supports the important role of lipids and their metabolism in HCV replication and pathogenesis.
Collapse
Affiliation(s)
- In-Woo Park
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jean Ndjomou
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Yahong Wen
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Ziqing Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Neale D. Ridgway
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - C. Cheng Kao
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, United States of America
| | - Johnny J. He
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- Center for AIDS Research, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
- University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
32
|
Un K, Sakai-Kato K, Oshima Y, Kawanishi T, Okuda H. Intracellular trafficking mechanism, from intracellular uptake to extracellular efflux, for phospholipid/cholesterol liposomes. Biomaterials 2012; 33:8131-41. [DOI: 10.1016/j.biomaterials.2012.07.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 07/15/2012] [Indexed: 01/27/2023]
|
33
|
Gorin A, Gabitova L, Astsaturov I. Regulation of cholesterol biosynthesis and cancer signaling. Curr Opin Pharmacol 2012; 12:710-6. [PMID: 22824431 DOI: 10.1016/j.coph.2012.06.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 06/24/2012] [Accepted: 06/29/2012] [Indexed: 12/18/2022]
Abstract
Cellular growth is highly dependent on sustained production of lipids. Sterol composition of cellular membranes determines multiple biochemical and biophysical properties of membrane-based processes including vesicle traffic, receptor signaling, and assembly of protein complexes. Lipid biogenesis has become an attractive biochemical target in cancer given the high level of dependency on sterols and lipids in a cancer cell. This review summarized the current knowledge of mechanisms of interaction between the metabolism of sterols and receptor signaling.
Collapse
Affiliation(s)
- Andrey Gorin
- Program in Developmental Therapeutics, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | | | | |
Collapse
|
34
|
Fu Q, Lynn-Miller A, Lan Q. Characterization of the oxysterol-binding protein gene family in the yellow fever mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2011; 20:541-52. [PMID: 21699592 PMCID: PMC3139008 DOI: 10.1111/j.1365-2583.2011.01087.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are sterol-binding proteins that may be involved in cellular sterol transportation, sterol metabolism and signal transduction pathways. Four ORP genes were cloned from Aedes aegypti. Based on amino acid sequence homology to human proteins, they are AeOSBP, AeORP1, AeORP8 and AeORP9. Splicing variants of AeOSBP and AeORP8 were identified. The temporal and spatial transcription patterns of members of the AeOSBP gene family through developmental stages and the gonotrophic cycle were profiled. AeORP1 transcription seemed to be head tissue-specific, whereas AeOSBP and AeORP9 expression was induced by a bloodmeal. Furthermore, over-expression of AeORPs facilitated [(3)H]-cholesterol uptake in Ae. aegypti cultured Aag -2 cells.
Collapse
Affiliation(s)
- Qiang Fu
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53705
| | - Ace Lynn-Miller
- Department of Entomology, University of Arkansas, Fayetteville, AR 72701
| | - Que Lan
- Department of Entomology, University of Wisconsin-Madison, Madison, WI 53705
| |
Collapse
|
35
|
Jansen M, Ohsaki Y, Rega LR, Bittman R, Olkkonen VM, Ikonen E. Role of ORPs in sterol transport from plasma membrane to ER and lipid droplets in mammalian cells. Traffic 2010; 12:218-31. [PMID: 21062391 DOI: 10.1111/j.1600-0854.2010.01142.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study, we investigated the mechanisms of sterol transport from the plasma membrane (PM) to the endoplasmic reticulum (ER) and lipid droplets (LDs) in HeLa cells. By overexpressing all mammalian oxysterol-binding protein-related proteins (ORPs), we found that especially ORP1S and ORP2 enhanced PM-to-LD sterol transport. This reflected the stimulation of transport from the PM to the ER, rather than from the ER to LDs. Double knockdown of ORP1S and ORP2 inhibited sterol transport from the PM to the ER and LDs, suggesting a physiological role for these ORPs in the process. A two phenylalanines in an acidic tract (FFAT) motif in ORPs that mediates interaction with VAMP-associated proteins (VAPs) in the ER was not necessary for the enhancement of sterol transport by ORPs. However, VAP-A and VAP-B silencing slowed down PM-to-LD sterol transport. This was accompanied by enhanced degradation of ORP2 and decreased levels of several FFAT motif-containing ORPs, suggesting a role for VAPs in sterol transport by stabilization of ORPs.
Collapse
Affiliation(s)
- Maurice Jansen
- Institute of Biomedicine, University of Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
36
|
Abstract
Oxysterol-binding protein (OSBP)-related proteins (ORPs) are lipid-binding proteins that are conserved from yeast to humans. They are implicated in many cellular processes including signaling, vesicular trafficking, lipid metabolism, and nonvesicular sterol transport. All ORPs contain an OSBP-related domain (ORD) that has a hydrophobic pocket that binds a single sterol. ORDs also contain additional membrane-binding surfaces, some of which bind phosphoinositides and may regulate sterol binding. Studies in yeast suggest that ORPs function as sterol transporters, perhaps in regions where organelle membranes are closely apposed. Yeast ORPs also participate in vesicular trafficking, although their role is unclear. In mammalian cells, some ORPs function as sterol sensors that regulate the assembly of protein complexes in response to changes in cholesterol levels. This review will summarize recent advances in our understanding of how ORPs bind lipids and membranes and how they function in diverse cellular processes.
Collapse
Affiliation(s)
- Sumana Raychaudhuri
- Laboratory of Cell Biochemistry and Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
37
|
Functional implications of sterol transport by the oxysterol-binding protein gene family. Biochem J 2010; 429:13-24. [PMID: 20545625 DOI: 10.1042/bj20100263] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cholesterol and its numerous oxygenated derivatives (oxysterols) profoundly affect the biophysical properties of membranes, and positively and negatively regulate sterol homoeostasis through interaction with effector proteins. As the bulk of cellular sterols are segregated from the sensory machinery that controls homoeostatic responses, an important regulatory step involves sterol transport or signalling between membrane compartments. Evidence for rapid, energy-independent transport between organelles has implicated transport proteins, such as the eukaryotic family of OSBP (oxysterol-binding protein)/ORPs (OSBP-related proteins). Since the founding member of this family was identified more than 25 years ago, accumulated evidence has implicated OSBP/ORPs in sterol signalling and/or sterol transport functions. However, recent evidence of sterol transfer activity by OSBP/ORPs suggests that other seemingly disparate functions could be the result of alterations in membrane sterol distribution or ancillary to this primary activity.
Collapse
|
38
|
Abstract
In eukaryotic cells, membranes of the late secretory pathway contain a disproportionally large amount of cholesterol in relation to the endoplasmic reticulum, nuclear envelope and mitochondria. At one extreme, enrichment of the plasma membrane with cholesterol and sphingolipids is crucial for formation of liquid ordered domains (rafts) involved in cell communication and transport. On the other hand, regulatory machinery in the endoplasmic reticulum is maintained in a relatively cholesterol-poor environment, to ensure appropriate rapid responses to fluctuations in cellular sterol levels. Thus, cholesterol homeostasis is absolutely dependent on its distribution along an intracellular gradient. It is apparent that this gradient is maintained by a combination of sterol-lipid interactions, vesicular transport and sterol-binding/transport proteins. Evidence for rapid, energy-independent transport between organelles has implicated transport proteins, in particular the eukaryotic oxysterol binding protein (OSBP) family. Since the founding member of this family was identified more than 25 years ago, accumulated evidence implicates the 12-member family of OSBP and OSBP-related proteins (ORPs) in sterol signalling and/or sterol transport functions. The OSBP/ORP gene family is characterized by a conserved beta-barrel sterol-binding fold but is differentiated from other sterol-binding proteins by the presence of additional domains that target multiple organelle membranes. Here we will discuss the functional and structural characteristics of the mammalian OSBP/ORP family that support a 'dual-targeting' model for sterol transport between membranes.
Collapse
Affiliation(s)
- Neale D Ridgway
- Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, B3H 4H7, Canada.
| |
Collapse
|
39
|
Schroeder F, Huang H, McIntosh AL, Atshaves BP, Martin GG, Kier AB. Caveolin, sterol carrier protein-2, membrane cholesterol-rich microdomains and intracellular cholesterol trafficking. Subcell Biochem 2010; 51:279-318. [PMID: 20213548 DOI: 10.1007/978-90-481-8622-8_10] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
While the existence of membrane lateral microdomains has been known for over 30 years, interest in these structures accelerated in the past decade due to the discovery that cholesterol-rich microdomains serve important biological functions. It is increasingly appreciated that cholesterol-rich microdomains in the plasma membranes of eukaryotic cells represent an organizing nexus for multiple cellular proteins involved in transmembrane nutrient uptake (cholesterol, fatty acid, glucose, etc.), cell-signaling, immune recognition, pathogen entry, and many other roles. Despite these advances, however, relatively little is known regarding the organization of cholesterol itself in these plasma membrane microdomains. Although a variety of non-sterol markers indicate the presence of microdomains in the plasma membranes of living cells, none of these studies have demonstrated that cholesterol is enriched in these microdomains in living cells. Further, the role of cholesterol-rich membrane microdomains as targets for intracellular cholesterol trafficking proteins such as sterol carrier protein-2 (SCP-2) that facilitate cholesterol uptake and transcellular transport for targeting storage (cholesterol esters) or efflux is only beginning to be understood. Herein, we summarize the background as well as recent progress in this field that has advanced our understanding of these issues.
Collapse
Affiliation(s)
- Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC College Station, TX, 77843-4466, USA.
| | | | | | | | | | | |
Collapse
|
40
|
Abstract
Cholesterol available for bile secretion is controlled by a wide variety of proteins that mediate lipoprotein cholesterol uptake and cholesterol transport and metabolism in the liver. From a disease perspective, abnormalities in the transhepatic traffic of cholesterol from plasma into the bile may influence the risk of cholesterol gallstone formation. This review summarizes some recent progress in understanding the hepatic determinants of biliary cholesterol secretion and its potential pathogenic implications in cholesterol gallstone disease. This information together with new discoveries in this field may lead to improved risk evaluation, novel surrogate markers and earlier diagnosis, better preventive approaches and more effective pharmacological therapies for this prevalent human disease.
Collapse
Affiliation(s)
- Silvana Zanlungo
- Departamento de Gastroenterología, Facultad de Medicina, Pontificia Universidad Católica, Santiago, Chile
| | | |
Collapse
|
41
|
Hynynen R, Suchanek M, Spandl J, Bäck N, Thiele C, Olkkonen VM. OSBP-related protein 2 is a sterol receptor on lipid droplets that regulates the metabolism of neutral lipids. J Lipid Res 2009; 50:1305-15. [PMID: 19224871 DOI: 10.1194/jlr.m800661-jlr200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Oxysterol binding protein-related protein 2 (ORP2) is a member of the oxysterol binding protein family, previously shown to bind 25-hydroxycholesterol and implicated in cellular cholesterol metabolism. We show here that ORP2 also binds 22(R)-hydroxycholesterol [22(R)OHC], 7-ketocholesterol, and cholesterol, with 22(R)OHC being the highest affinity ligand of ORP2 (K(d) 1.4 x 10(-8) M). We report the localization of ORP2 on cytoplasmic lipid droplets (LDs) and its function in neutral lipid metabolism using the human A431 cell line as a model. The ORP2 LD association depends on sterol binding: Treatment with 5 microM 22(R)OHC inhibits the LD association, while a mutant defective in sterol binding is constitutively LD bound. Silencing of ORP2 using RNA interference slows down cellular triglyceride hydrolysis. Furthermore, ORP2 silencing increases the amount of [(14)C]cholesteryl esters but only under conditions in which lipogenesis and LD formation are enhanced by treatment with oleic acid. The results identify ORP2 as a sterol receptor present on LD and provide evidence for its role in the regulation of neutral lipid metabolism, possibly as a factor that integrates the cellular metabolism of triglycerides with that of cholesterol.
Collapse
Affiliation(s)
- Riikka Hynynen
- National Institute for Health and Welfare, University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Oxysterol binding to liver X receptors (LXR) increases the transcription of genes involved in cholesterol efflux and disposal, such as ABCA1 (ATP-binding cassette transporter A1). Other cytoplasmic sterol-binding proteins could interact with this pathway by sequestering or delivering substrates and ligands. One potential regulator is OSBP (oxysterol-binding protein), which is implicated in the integration of sterol sensing/transport with sphingomyelin synthesis and cell signaling. Since these activities could impact the cholesterol efflux pathway, we examined whether OSBP was involved in LXR regulation and in expression and activity of ABCA1. Suppression of OSBP in Chinese hamster ovary cells by RNA interference resulted in increased ABCA1 protein expression and cholesterol efflux activity following induction with oxysterols or the synthetic LXR agonist TO901317. OSBP knockdown in J774 macrophages also increased ABCA1 expression in the presence and absence of LXR agonists. OSBP depletion did not affect ABCA1 mRNA levels or LXR activity. Rather, OSBP silencing increased the half-life of ABCA1 protein by 3-fold. Sphingomyelin synthesis was suppressed in OSBP-depleted cells treated with 25-hydroxycholesterol but not TO901317 or 22-hydroxycholesterol and did not correlate with ABCA1 stabilization. Moreover, co-transfection experiments revealed that reduction of ABCA1 protein by OSBP was prevented by a mutation in the sterol-binding domain but not by mutations that abrogated interaction with the Golgi apparatus or endoplasmic reticulum. Thus, OSBP opposes the activity of LXR by negatively regulating ABCA1 activity in the cytoplasm by sterol-binding domain-dependent protein destabilization.
Collapse
Affiliation(s)
- Kristin Bowden
- Department of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada
| | | |
Collapse
|
43
|
Li DY, Inoue H, Takahashi M, Kojima T, Shiraiwa M, Takahara H. Molecular characterization of a novel salt-inducible gene for an OSBP (oxysterol-binding protein)-homologue from soybean. Gene 2008; 407:12-20. [PMID: 17466467 DOI: 10.1016/j.gene.2007.02.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2006] [Revised: 01/19/2007] [Accepted: 02/27/2007] [Indexed: 11/28/2022]
Abstract
Oxysterol-binding protein (OSBP) and its homologues constitute a protein family in many eukaryotes from yeast to humans, which are involved in cellular lipid metabolism, vesicle transport and signal transduction. In this study, we characterized a novel salt-inducible gene for an OSBP-homologue from soybean (Glycine max [L.] Merr.). The soybean OSBP-homologous gene, denoted as G. max OSBP (GmOSBP), encoded a 789 aa putative protein with two characteristic domains; the pleckstrin homology (PH) domain and the ligand-binding (LB) domain, in the N- and C-terminus, respectively. The GmOSBP-PH domain showed localization into/around the nucleus in a transient subcellular localization assay. The phylogenetic relationship of the GmOSBP-LB domain to those in other OSBP-homologues suggested that GmOSBP might bind a lipid molecule(s) different from the ligand-candidates found for the human/yeast OSBP-homologues. The GmOSBP gene was constitutively transcribed in all of the soybean organs examined--root, stem and trifoliate leaf--at low levels and was highly induced in all these organs by high-salt stress (300 mM NaCl). Interestingly, gene expression of GmOSBP was also markedly induced in the senesced soybean cotyledon, which contains high levels of a variety of cellular lipids utilized for energy for germination and as membrane components. Therefore, we suggest that GmOSBP may be involved in some physiological reactions for stress-response and cotyledon senescence in the soybean.
Collapse
Affiliation(s)
- Dong Yan Li
- Laboratory of Biochemistry and Molecular Biology, Department of Applied Biological Resource Sciences, School of Agriculture, Ibaraki University, Chuo 3-21-1, Ami-machi, Inashiki-gun, Ibaraki, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Yan D, Olkkonen VM. Characteristics of oxysterol binding proteins. INTERNATIONAL REVIEW OF CYTOLOGY 2008; 265:253-85. [PMID: 18275891 DOI: 10.1016/s0074-7696(07)65007-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein families characterized by a ligand binding domain related to that of oxysterol binding protein (OSBP) have been identified in eukaryotic species from yeast to humans. These proteins, designated OSBP-related (ORP) or OSBP-like (OSBPL) proteins, have been implicated in various cellular functions. However, the detailed mechanisms of their action have remained elusive. Data from our and other laboratories suggest that binding of sterol ligands may be a unifying theme. Work with Saccharomyces cerevisiae ORPs suggests a function of these proteins in the nonvesicular intracellular transport of sterols, in secretory vesicle transport from the Golgi complex, and in the establishment of cell polarity. Mammals have more ORP genes, and differential splicing substantially increases the complexity of the encoded protein family. Functional studies on mammalian ORPs point in different directions: integration of sterol and sphingomyelin metabolism, sterol transport, regulation of neutral lipid metabolism, control of the microtubule-dependent motility of endosomes/lysosomes, and regulation of signaling cascades. We envision that during evolution, the functions of ORPs have diverged from an ancestral one in sterol transport, to meet the increasing demand of the regulatory potential in multicellular organisms. Our working hypothesis is that mammalian ORPs mainly act as sterol sensors that relay information to a spectrum of different cellular processes.
Collapse
Affiliation(s)
- Daoguang Yan
- Department of Molecular Medicine, National Public Health Institute, Biomedicum, FI-00290 Helsinki, Finland
| | | |
Collapse
|
45
|
Suchanek M, Hynynen R, Wohlfahrt G, Lehto M, Johansson M, Saarinen H, Radzikowska A, Thiele C, Olkkonen V. The mammalian oxysterol-binding protein-related proteins (ORPs) bind 25-hydroxycholesterol in an evolutionarily conserved pocket. Biochem J 2007; 405:473-80. [PMID: 17428193 PMCID: PMC2267293 DOI: 10.1042/bj20070176] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OSBP (oxysterol-binding protein) homologues, ORPs (OSBP-related proteins), constitute a 12-member family in mammals. We employed an in vitro [3H]25OH (25-hydroxycholesterol)-binding assay with purified recombinant proteins as well as live cell photo-cross-linking with [3H]photo-25OH and [3H]photoCH (photo-cholesterol), to investigate sterol binding by the mammalian ORPs. ORP1 and ORP2 [a short ORP consisting of an ORD (OSBP-related ligand-binding domain) only] were in vitro shown to bind 25OH. GST (glutathione S-transferase) fusions of the ORP1L [long variant with an N-terminal extension that carries ankyrin repeats and a PH domain (pleckstrin homology domain)] and ORP1S (short variant consisting of an ORD only) variants bound 25OH with similar affinity (ORP1L, K(d)=9.7x10(-8) M; ORP1S, K(d)=8.4 x10(-8) M), while the affinity of GST-ORP2 for 25OH was lower (K(d)=3.9x10(-6) M). Molecular modelling suggested that ORP2 has a sterol-binding pocket similar to that of Saccharomyces cerevisiae Osh4p. This was confirmed by site-directed mutagenesis of residues in proximity of the bound sterol in the structural model. Substitution of Ile249 by tryptophan or Lys150 by alanine markedly inhibited 25OH binding by ORP2. In agreement with the in vitro data, ORP1L, ORP1S, and ORP2 were cross-linked with photo-25OH in live COS7 cells. Furthermore, in experiments with either truncated cDNAs encoding the OSBP-related ligand-binding domains of the ORPs or the full-length proteins, photo-25OH was bound to OSBP, ORP3, ORP4, ORP5, ORP6, ORP7, ORP8, ORP10 and ORP11. In addition, the ORP1L variant and ORP3, ORP5, and ORP8 were cross-linked with photoCH. The present study identifies ORP1 and ORP2 as OSBPs and suggests that most of the mammalian ORPs are able to bind sterols.
Collapse
Affiliation(s)
- Monika Suchanek
- *Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Riikka Hynynen
- †Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, FIN-00251 Helsinki, Finland
| | - Gerd Wohlfahrt
- ‡Orion Pharma, Computer-Aided Drug Design, P.O. Box 65, FIN-02101 Espoo, Finland
| | - Markku Lehto
- †Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, FIN-00251 Helsinki, Finland
| | - Marie Johansson
- †Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, FIN-00251 Helsinki, Finland
| | - Hannu Saarinen
- †Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, FIN-00251 Helsinki, Finland
| | - Anna Radzikowska
- *Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Christoph Thiele
- *Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
- Correspondence may be addressed to either of the authors (email or )
| | - Vesa M. Olkkonen
- †Department of Molecular Medicine, National Public Health Institute, Biomedicum, P.O. Box 104, FIN-00251 Helsinki, Finland
- Correspondence may be addressed to either of the authors (email or )
| |
Collapse
|
46
|
Lam PPL, Hyvärinen K, Kauppi M, Cosen-Binker L, Laitinen S, Keränen S, Gaisano HY, Olkkonen VM. A cytosolic splice variant of Cab45 interacts with Munc18b and impacts on amylase secretion by pancreatic acini. Mol Biol Cell 2007; 18:2473-80. [PMID: 17442889 PMCID: PMC1924827 DOI: 10.1091/mbc.e06-10-0950] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We identified in a yeast two-hybrid screen the EF-hand Ca(2+)-binding protein Cab45 as an interaction partner of Munc18b. Although the full-length Cab45 resides in Golgi lumen, we characterize a cytosolic splice variant, Cab45b, expressed in pancreatic acini. Cab45b is shown to bind (45)Ca(2+), and, of its three EF-hand motifs, EF-hand 2 is demonstrated to be crucial for the ion binding. Cab45b is shown to interact with Munc18b in an in vitro assay, and this interaction is enhanced in the presence of Ca(2+). In this assay, Cab45b also binds the Munc18a isoform in a Ca(2+)-dependent manner. The endogenous Cab45b in rat acini coimmunoprecipitates with Munc18b, syntaxin 2, and syntaxin 3, soluble N-ethylmaleimide-sensitive factor attachment protein receptors with key roles in the Ca(2+)-triggered zymogen secretion. Furthermore, we show that Munc18b bound to syntaxin 3 recruits Cab45b onto the plasma membrane. Importantly, antibodies against Cab45b are shown to inhibit in a specific and dose-dependent manner the Ca(2+)-induced amylase release from streptolysin-O-permeabilized acini. The present study identifies Cab45b as a novel protein factor involved in the exocytosis of zymogens by pancreatic acini.
Collapse
Affiliation(s)
- Patrick P L Lam
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wyles JP, Perry RJ, Ridgway ND. Characterization of the sterol-binding domain of oxysterol-binding protein (OSBP)-related protein 4 reveals a novel role in vimentin organization. Exp Cell Res 2007; 313:1426-37. [PMID: 17350617 DOI: 10.1016/j.yexcr.2007.01.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Revised: 01/21/2007] [Accepted: 01/23/2007] [Indexed: 01/12/2023]
Abstract
Oxysterol-binding protein (OSBP) and OSBP-related protein 4 (ORP4; also designated OSBP2 and HLM) are implicated in sterol-transport and/or sensing via binding to protein partners. The aggregation of vimentin by an N-terminal-truncated variant of ORP4 (ORP4S), but not full-length ORP4L, suggested a functional interaction with this intermediate filament. Herein, we identify ORP4 domains that interact with vimentin, and determine how sterols and OSBP influence this activity. In CHO cells, ORP4L co-localized with filamentous vimentin but extensive remodeling of vimentin filaments required mutation of a leucine repeat motif (amino acids 361-382) adjacent to the oxysterol-binding domain. Similarly, the absence of the leucine repeat in ORP4S 418-878 resulted in co-localization with aggregated vimentin filaments, suggesting that both the sterol-binding domain and leucine repeat are involved. Transient expression of OSBP leucine repeat mutants also promoted vimentin aggregation by a mechanism involving heterodimerization with ORP4L. Glutathione S-transferase (GST)-ORP4 380-878 bound vimentin, cholesterol and 25-hydroxycholesterol in vitro. However, sterol-binding or a mutation that ablated sterol-binding did not influence the interaction of GST-ORP4 with vimentin. Thus the sterol-binding domain of ORP4 binds vimentin, cholesterol and oxysterols, and interacts with the filamentous vimentin network.
Collapse
Affiliation(s)
- Jessica P Wyles
- The Atlantic Research Centre, Department of Pediatrics, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
48
|
|
49
|
Käkelä R, Tanhuanpää K, Laitinen S, Somerharju P, Olkkonen VM. Overexpression of OSBP-related protein 2 (ORP2) in CHO cells induces alterations of phospholipid species composition. Biochem Cell Biol 2006; 83:677-83. [PMID: 16234858 DOI: 10.1139/o05-056] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have previously shown that overexpression of human OSBP-related protein 2 (ORP2) in Chinese hamster ovary (CHO) cells results in increased efflux and reduced esterification of cholesterol. The ORP2-expressing cells also have a reduced level of triacylglycerols. We investigated the effects of ORP2 expression on the phospholipid (PL) molecular species and the neutral lipid (NL) fatty acid composition of CHO cells cultured in the presence or absence of serum lipoproteins. In the presence of lipoproteins, ORP2/CHO cells display an increase in polyunsaturated PL species, and polyunsaturated fatty acids (PUFA) in the diminished NL pool are reduced. The increase of polyunsaturated PL may represent a compensatory response to alterations in cholesterol metabolism. Upon lipoprotein deprivation, the ORP2/CHO cells display a drop in polyunsaturated and an increase in mono and diunsaturated PL species. Our results suggest that this is due to defective recycling of PUFA from the diminished NL pool to PL. Furthermore, the PL PUFA, which are elevated in ORP2/CHO cells, are most likely subject to more rapid turnover than the NL-associated pool. The results provide evidence for a delicate integration of cholesterol, PL, and NL metabolism and a role of ORP2 as a regulator of the cellular lipidome.
Collapse
Affiliation(s)
- Reijo Käkelä
- Department of Biochemistry, Insitute of Biomedicine, P.O.Box 63, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
50
|
Perry RJ, Ridgway ND. Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol Biol Cell 2006; 17:2604-16. [PMID: 16571669 PMCID: PMC1474796 DOI: 10.1091/mbc.e06-01-0060] [Citation(s) in RCA: 191] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sphingomyelin (SM) and cholesterol are coregulated metabolically and associate physically in membrane microdomains involved in cargo sorting and signaling. One mechanism for regulation of this metabolic interface involves oxysterol binding protein (OSBP) via high-affinity binding to oxysterol regulators of cholesterol homeostasis and activation of SM synthesis at the Golgi apparatus. Here, we show that OSBP regulation of SM synthesis involves the endoplasmic reticulum (ER)-to-Golgi ceramide transport protein (CERT). RNA interference (RNAi) experiments in Chinese hamster ovary (CHO)-K1 cells revealed that OSBP and vesicle-associated membrane protein-associated protein (VAP) were required for stimulation of CERT-dependent ceramide transport and SM synthesis by 25-hydroxycholesterol and cholesterol depletion in response to cyclodextrin. Additional RNAi experiments in human embryonic kidney 293 cells supported OSBP involvement in oxysterol-activated SM synthesis and also revealed a role for OSBP in basal SM synthesis. Activation of ER-to-Golgi ceramide transport in CHO-K1 cells required interaction of OSBP with the ER and Golgi apparatus, OSBP-dependent Golgi translocation of CERT, and enhanced CERT-VAP interaction. Regulation of CERT by OSBP, sterols, and VAP reveals a novel mechanism for integrating sterol regulatory signals with ceramide transport and SM synthesis in the Golgi apparatus.
Collapse
Affiliation(s)
- Ryan J. Perry
- Departments of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | - Neale D. Ridgway
- Departments of Pediatrics and Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| |
Collapse
|