1
|
Huang Y, Sun Z. Triglyceride levels are associated with 30-day mortality in intensive care patients: a retrospective analysis in the MIMIC-IV database. Eur J Med Res 2024; 29:561. [PMID: 39587663 PMCID: PMC11590576 DOI: 10.1186/s40001-024-02159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 11/15/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Previous studies suggest that septic patients often have elevated triglyceride levels due to various factors, and higher levels may indicate a poorer prognosis. However, few studies have investigated whether lower triglycerides are associated with a better prognosis. METHODS The Medical Information Mart for Intensive Care IV (MIMIC-IV) database provided all the data. To assess the association between triglycerides and prognosis, we used logistic regression analysis (LR), least absolute shrinkage and selection operator (LASSO) and Cox proportional hazards models. RESULTS Inclusion criteria were met by a total of 804 patients with a mean triglyceride of 103 mg/dL. We found that patients had a higher risk of 30-day ICU mortality when triglycerides were in the second quartile (74-103 mg/dL). Interestingly, this group of patients seems to benefit more from the use of atorvastatin. CONCLUSION Our study showed that septic patients with triglyceride levels in the second quartile (74-103 mg/dL) have a higher 30-day ICU mortality rate compared to those with triglyceride levels in other quartiles.
Collapse
Affiliation(s)
- Yujie Huang
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Suzhou, China
| | - Zhengjie Sun
- Department of Emergency Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu Province, China.
- Jiangsu Provincial Medical Innovation Center of Trauma Medicine, Suzhou, China.
| |
Collapse
|
2
|
Gunay-Polatkan S, Caliskan S, Sigirli D. Association of atherogenic indices with myocardial damage and mortality in COVID-19. PLoS One 2024; 19:e0302984. [PMID: 38753890 PMCID: PMC11098497 DOI: 10.1371/journal.pone.0302984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Lipoproteins in cell membranes are related to membrane stability and play a role against microorganisms. Patients with COVID-19 often experience myocyte membrane damage. OBJECTIVE This study aimed to search the relationship of atherogenic indices with myocardial damage and mortality in COVID-19. METHODS This was an observational, single-center, retrospective study. The study population was grouped according to in-hospital mortality. C-reactive protein (CRP), CRP to albumin ratio (CAR), monocyte to high density lipoprotein cholesterol ratio (MHR), levels of total cholesterol (TC), triglycerides, high-density lipoprotein cholesterol (HDLc), and low-density lipoprotein cholesterol (LDLc) and cardiac troponin I (cTnI) were recorded. Atherogenic indices (plasma atherogenic index [AIP], atherogenic coefficient [AC], Castelli's risk indices I and II [CRI I and II], triglyceride to HDLc ratio (THR) were calculated. RESULTS A total of 783 patients were included. The mortality rate was 15.45% (n = 121). The median age of non-survivor group (NSG) was higher than survivor group (SG) [66.0 years (Q1 -Q3: 55.0-77.5) vs 54.0 years (Q1 -Q3: 43.0-63.0)] (p < 0.001). Study parameters which were measured significantly higher in the NSG were CRP, cTnI, triglyceride, CRI-I, CRI-II, AC, AIP, ferritin, CAR, MHR and THR. LDLc, HDLc, TC and albumin were significantly lower in NSG (p<0.001). CONCLUSION THR is positively correlated with myocardial damage and strongly predicts in-hospital mortality in COVID-19.
Collapse
Affiliation(s)
- Seyda Gunay-Polatkan
- Bursa Uludag University Faculty of Medicine, Department of Cardiology, Gorukle/Bursa, Turkey
| | - Serhat Caliskan
- Istanbul Bahcelievler State Hospital Department of Cardiology, Bahcelievler/Istanbul, Turkey
| | - Deniz Sigirli
- Bursa Uludag University Faculty of Medicine, Department of Biostatistics, Gorukle/Bursa, Turkey
| |
Collapse
|
3
|
Chouchane O, Schuurman AR, Reijnders TDY, Peters-Sengers H, Butler JM, Uhel F, Schultz MJ, Bonten MJ, Cremer OL, Calfee CS, Matthay MA, Langley RJ, Alipanah-Lechner N, Kingsmore SF, Rogers A, van Weeghel M, Vaz FM, van der Poll T. The Plasma Lipidomic Landscape in Patients with Sepsis due to Community-acquired Pneumonia. Am J Respir Crit Care Med 2024; 209:973-986. [PMID: 38240721 DOI: 10.1164/rccm.202308-1321oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/18/2024] [Indexed: 04/16/2024] Open
Abstract
Rationale: The plasma lipidome has the potential to reflect many facets of the host status during severe infection. Previous work is limited to specific lipid groups or was focused on lipids as prognosticators.Objectives: To map the plasma lipidome during sepsis due to community-acquired pneumonia (CAP) and determine the disease specificity and associations with clinical features.Methods: We analyzed 1,833 lipid species across 33 classes in 169 patients admitted to the ICU with sepsis due to CAP, 51 noninfected ICU patients, and 48 outpatient controls. In a paired analysis, we reanalyzed patients still in the ICU 4 days after admission (n = 82).Measurements and Main Results: A total of 58% of plasma lipids were significantly lower in patients with CAP-attributable sepsis compared with outpatient controls (6% higher, 36% not different). We found strong lipid class-specific associations with disease severity, validated across two external cohorts, and inflammatory biomarkers, in which triacylglycerols, cholesterol esters, and lysophospholipids exhibited the strongest associations. A total of 36% of lipids increased over time, and stratification by survival revealed diverging lipid recovery, which was confirmed in an external cohort; specifically, a 10% increase in cholesterol ester levels was related to a lower odds ratio (0.84; P = 0.006) for 30-day mortality (absolute mortality, 18 of 82). Comparison with noninfected ICU patients delineated a substantial common illness response (57.5%) and a distinct lipidomic signal for patients with CAP-attributable sepsis (37%).Conclusions: Patients with sepsis due to CAP exhibit a time-dependent and partially disease-specific shift in their plasma lipidome that correlates with disease severity and systemic inflammation and is associated with higher mortality.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabrice Uhel
- Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche S1151, Centre National de la Recherche Scientifique Unité Mixte de Recherche S8253, Institut Necker-Enfants Malades, Université Paris Cité, Paris, France
- Médecine Intensive Réanimation, Assistance Publique-Hôpitaux de Paris, Hôpital Louis Mourier, DMU ESPRIT, Colombes, France
| | - Marcus J Schultz
- Department of Intensive Care Medicine
- Laboratory of Experimental Intensive Care and Anesthesiology
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Marc J Bonten
- Department of Medical Microbiology
- Julius Center for Health Sciences and Primary Care, and
| | - Olaf L Cremer
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carolyn S Calfee
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Michael A Matthay
- Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, California
| | - Raymond J Langley
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama
| | | | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, California
| | - Angela Rogers
- Division of Pulmonary and Critical Care, Department of Medicine, Stanford, California; and
| | - Michel van Weeghel
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital
- Core Facility Metabolomics, and
- Inborn Errors of Metabolism Program, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers-Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Department of Clinical Chemistry and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital
- Core Facility Metabolomics, and
- Inborn Errors of Metabolism Program, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers-Location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine
- Division of Infectious Diseases
| |
Collapse
|
4
|
Zeng L, Tang H, Chen J, Deng Y, Zhao Y, Lei H, Wan Y, Pan Y, Deng Y. Causal association of lipoprotein-associated phospholipids on the risk of sepsis: a Mendelian randomization study. Front Endocrinol (Lausanne) 2024; 14:1275132. [PMID: 38274232 PMCID: PMC10808779 DOI: 10.3389/fendo.2023.1275132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Background Many previous studies have revealed a close relationship between lipoprotein metabolism and sepsis, but their causal relationship has, until now, remained unclear. Therefore, we performed a two-sample Mendelian randomization analysis to estimate the causal relationship of lipoprotein-associated phospholipids with the risk of sepsis. Materials and methods A two-sample Mendelian randomization (MR) analysis was performed to investigate the causal relationship between lipoprotein-associated phospholipids and sepsis based on large-scale genome-wide association study (GWAS) summary statistics. MR analysis was performed using a variety of methods, including inverse variance weighted as the primary method, MR Egger, weighted median, simple mode, and weighted mode as complementary methods. Further sensitivity analyses were used to test the robustness of the data. Results After Bonferroni correction, the results of the MR analysis showed that phospholipids in medium high-density lipoprotein (HDL; ORIVW = 0.82, 95% CI 0.71-0.95, P = 0.0075), large HDL (ORIVW = 0.92, 95% CI 0.85-0.98, P = 0.0148), and very large HDL (ORMR Egger = 0.83, 95% CI 0.72-0.95, P = 0.0134) had suggestive causal relationship associations with sepsis. Sensitivity testing confirmed the accuracy of these findings. There was no clear association between other lipoprotein-associated phospholipids and sepsis risk. Conclusions Our MR analysis data suggestively showed a correlation between higher levels of HDL-associated phospholipids and reduced risk of sepsis. Further studies are required to determine the underlying mechanisms behind this relationship.
Collapse
Affiliation(s)
- Liying Zeng
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haoxuan Tang
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jiehai Chen
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Precision Anaesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Yijian Deng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunfeng Zhao
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hang Lei
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yufei Wan
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Pan
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yongqiang Deng
- Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
5
|
Ruiz-Sanmartín A, Ribas V, Suñol D, Chiscano-Camón L, Palmada C, Bajaña I, Larrosa N, González JJ, Canela N, Ferrer R, Ruiz-Rodríguez JC. Characterization of a proteomic profile associated with organ dysfunction and mortality of sepsis and septic shock. PLoS One 2022; 17:e0278708. [PMID: 36459524 PMCID: PMC9718383 DOI: 10.1371/journal.pone.0278708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 11/21/2022] [Indexed: 12/04/2022] Open
Abstract
INTRODUCTION The search for new biomarkers that allow an early diagnosis in sepsis and predict its evolution has become a necessity in medicine. The objective of this study is to identify, through omics techniques, potential protein biomarkers that are expressed in patients with sepsis and their relationship with organ dysfunction and mortality. METHODS Prospective, observational and single-center study that included adult patients (≥ 18 years) who were admitted to a tertiary hospital and who met the criteria for sepsis. A mass spectrometry-based approach was used to analyze the plasma proteins in the enrolled subjects. Subsequently, using recursive feature elimination classification and cross-validation with a vector classifier, an association of these proteins with mortality and organ dysfunction was established. The protein-protein interaction network was analyzed with String software. RESULTS 141 patients were enrolled in this study. Mass spectrometry identified 177 proteins. Of all of them, and by recursive feature elimination, nine proteins (GPX3, APOB, ORM1, SERPINF1, LYZ, C8A, CD14, APOC3 and C1QC) were associated with organ dysfunction (SOFA > 6) with an accuracy of 0.82 ± 0.06, precision of 0.85 ± 0.093, sensitivity 0.81 ± 0.10, specificity 0.84 ± 0.10 and AUC 0.82 ± 0.06. Twenty-two proteins (CLU, LUM, APOL1, SAA1, CLEBC3B, C8A, ITIH4, KNG1, AGT, C7, SAA2, APOH, HRG, AFM, APOE, APOC1, C1S, SERPINC1, IGFALS, KLKB1, CFB and BTD) were associated with mortality with an accuracy of 0.86 ± 0.05, a precision of 0.91 ± 0.05, a sensitivity of 0.91 ± 0.05, a specificity of 0.72 ± 0.17, and an area under the curve (AUC) of 0.81 ± 0.08 with a confidence interval of 95%. CONCLUSION In sepsis there are proteomic patterns associated with organ dysfunction and mortality.
Collapse
Affiliation(s)
- Adolfo Ruiz-Sanmartín
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicent Ribas
- Eurecat, Centre Tecnològic de Catalunya, Digital Health Unit, Barcelona, Spain
| | - David Suñol
- Eurecat, Centre Tecnològic de Catalunya, Digital Health Unit, Barcelona, Spain
| | - Luis Chiscano-Camón
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Clara Palmada
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Iván Bajaña
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
| | - Nieves Larrosa
- Department of Clinical Microbiology, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII–CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Juan José González
- Department of Clinical Microbiology, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBERINFEC, ISCIII–CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences (COS), Joint Unit URV-EURECAT, Unique Scientific and Technical Infrastructures (ICTS), Reus, Spain
| | - Ricard Ferrer
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Juan Carlos Ruiz-Rodríguez
- Department of Intensive Care, Vall d’Hebron University Hospital, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
- Shock, Organ Dysfunction and Resuscitation (SODIR) Research Group, Vall d’Hebron Research Institute, Barcelona, Spain
- Departament de Medicina, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
6
|
Sorokin AV, Patel N, Abdelrahman KM, Ling C, Reimund M, Graziano G, Sampson M, Playford M, Dey AK, Reddy A, Teague HL, Stagliano M, Amar M, Chen MY, Mehta N, Remaley AT. Complex association of apolipoprotein E-containing HDL with coronary artery disease burden in cardiovascular disease. JCI Insight 2022; 7:159577. [PMID: 35389891 PMCID: PMC9220837 DOI: 10.1172/jci.insight.159577] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Background Although traditional lipid parameters and coronary imaging techniques are valuable for cardiovascular disease (CVD) risk prediction, better diagnostic tests are still needed. Methods In a prospective, observational study, 795 individuals had extensive cardiometabolic profiling, including emerging biomarkers, such as apolipoprotein E–containing HDL-cholesterol (ApoE-HDL-C). Coronary artery calcium (CAC) score was assessed in the entire cohort, and quantitative coronary computed tomography angiography (CCTA) characterization of total burden, noncalcified burden (NCB), and fibrous plaque burden (FB) was performed in a subcohort (n = 300) of patients stratified by concentration of ApoE-HDL-C. Total and HDL-containing apolipoprotein C-III (ApoC-III) were also measured. Results Most patients had a clinical diagnosis of coronary artery disease (CAD) (n = 80.4% of 795), with mean age of 59 years, a majority being male (57%), and about half on statin treatment. The low ApoE-HDL-C group had more severe stenosis (11% vs. 2%, overall P < 0.001), with higher CAC as compared with high ApoE-HDL-C. On quantitative CCTA, the high ApoE-HDL-C group had lower NCB (β = –0.24, P = 0.0001), which tended to be significant in a fully adjusted model (β = –0.32, P = 0.001) and altered by ApoC-III in HDL levels. Low ApoE-HDL-C was significantly associated with LDL particle number (β = 0.31; P = 0.0001). Finally, when stratified by FB, ApoC-III in HDL showed a more robust predictive value of CAD over ApoE-HDL-C (AUC: 0.705, P = 0.0001) in a fully adjusted model. Conclusion ApoE-containing HDL-C showed a significant association with early coronary plaque characteristics and is affected by the presence of ApoC-III, indicating that low ApoE-HDL-C and high ApoC-III may be important markers of CVD severity. Trial Registration ClinicalTrials.gov: NCT01621594. Funding This work was supported by the NHLBI at the NIH Intramural Research Program.
Collapse
Affiliation(s)
- Alexander V Sorokin
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| | - Nidhi Patel
- Section of Inflammation and Cardiometabolic Diseases, NIH, NHLBI, Bethesda, United States of America
| | - Khaled M Abdelrahman
- Section of Inflammation and Cardiometabolic Diseases, NIH, NHLBI, Bethesda, United States of America
| | - Clarence Ling
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| | - Mart Reimund
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| | - Giorgio Graziano
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| | - Maureen Sampson
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| | - Martin Playford
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| | - Amit K Dey
- Section of Inflammation and Cardiometabolic Diseases, NIH, NHLBI, Bethesda, United States of America
| | - Aarthi Reddy
- Section of Inflammation and Cardiometabolic Diseases, NIH, NHLBI, Bethesda, United States of America
| | - Heather L Teague
- Section of Inflammation and Cardiometabolic Diseases, NIH, NHLBI, Bethesda, United States of America
| | - Michael Stagliano
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| | - Marcelo Amar
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| | - Marcus Y Chen
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| | - Nehal Mehta
- Section of Inflammation and Cardiometabolic Diseases, NIH, NHLBI, Bethesda, United States of America
| | - Alan T Remaley
- Section of Lipoprotein Metabolism, Translational Vascular Medicine Branch, NIH, NHLBI, Bethesda, United States of America
| |
Collapse
|
7
|
Reisinger AC, Schuller M, Sourij H, Stadler JT, Hackl G, Eller P, Marsche G. Impact of Sepsis on High-Density Lipoprotein Metabolism. Front Cell Dev Biol 2022; 9:795460. [PMID: 35071235 PMCID: PMC8766710 DOI: 10.3389/fcell.2021.795460] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/29/2022] Open
Abstract
Background: High-density lipoproteins (HDL) are thought to play a protective role in sepsis through several mechanisms, such as promotion of steroid synthesis, clearing bacterial toxins, protection of the endothelial barrier, and antioxidant/inflammatory activities. However, HDL levels decline rapidly during sepsis, but the contributing mechanisms are poorly understood. Methods/Aim: In the present study, we investigated enzymes involved in lipoprotein metabolism in sepsis and non-sepsis patients admitted to the intensive care unit (ICU). Results: In 53 ICU sepsis and 25 ICU non-sepsis patients, we observed significant differences in several enzymes involved in lipoprotein metabolism. Lecithin-cholesterol acyl transferase (LCAT) activity, LCAT concentration, and cholesteryl transfer protein (CETP) activity were significantly lower, whereas phospholipid transfer activity protein (PLTP) and endothelial lipase (EL) were significantly higher in sepsis patients compared to non-sepsis patients. In addition, serum amyloid A (SAA) levels were increased 10-fold in sepsis patients compared with non-sepsis patients. Furthermore, we found that LCAT activity was significantly associated with ICU and 28-day mortality whereas SAA levels, representing a strong inflammatory marker, did not associate with mortality outcomes. Conclusion: We provide novel data on the rapid and robust changes in HDL metabolism during sepsis. Our results clearly highlight the critical role of specific metabolic pathways and enzymes in sepsis pathophysiology that may lead to novel therapeutics.
Collapse
Affiliation(s)
- Alexander C Reisinger
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Max Schuller
- Department of Internal Medicine, Division of Nephrology, Medical University of Graz, Graz, Austria
| | - Harald Sourij
- Department of Internal Medicine, Division of Endocrinology and Diabetology, Interdisciplinary Metabolic Medicine Trials Unit, Medical University of Graz, Graz, Austria
| | - Julia T Stadler
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| | - Gerald Hackl
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Department of Internal Medicine, Intensive Care Unit, Medical University of Graz, Graz, Austria
| | - Gunther Marsche
- Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria
| |
Collapse
|
8
|
Gautier T, Deckert V, Nguyen M, Desrumaux C, Masson D, Lagrost L. New therapeutic horizons for plasma phospholipid transfer protein (PLTP): Targeting endotoxemia, infection and sepsis. Pharmacol Ther 2021; 236:108105. [PMID: 34974028 DOI: 10.1016/j.pharmthera.2021.108105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Phospholipid Transfer Protein (PLTP) transfers amphiphilic lipids between circulating lipoproteins and between lipoproteins, cells and tissues. Indeed, PLTP is a major determinant of the plasma levels, turnover and functionality of the main lipoprotein classes: very low-density lipoproteins (VLDL), low-density lipoproteins (LDL) and high-density lipoproteins (HDL). To date, most attention has been focused on the role of PLTP in the context of cardiometabolic diseases, with additional insights in neurodegenerative diseases and immunity. Importantly, beyond its influence on plasma triglyceride and cholesterol transport, PLTP plays a key role in the modulation of the immune response, with immediate relevance to a wide range of inflammatory diseases including bacterial infection and sepsis. Indeed, emerging evidence supports the role of PLTP, in the context of its association with lipoproteins, in the neutralization and clearance of bacterial lipopolysaccharides (LPS) or endotoxins. LPS are amphipathic molecules originating from Gram-negative bacteria which harbor major pathogen-associated patterns, triggering an innate immune response in the host. Although the early inflammatory reaction constitutes a key step in the anti-microbial defense of the organism, it can lead to a dysregulated inflammatory response and to hemodynamic disorders, organ failure and eventually death. Moreover, and in addition to endotoxemia and acute inflammation, small amounts of LPS in the circulation can induce chronic, low-grade inflammation with long-term consequences in several metabolic disorders such as atherosclerosis, obesity and diabetes. After an updated overview of the role of PLTP in lipid transfer, lipoprotein metabolism and related diseases, current knowledge of its impact on inflammation, infection and sepsis is critically appraised. Finally, the relevance of PLTP as a new player and novel therapeutic target in the fight against inflammatory diseases is considered.
Collapse
Affiliation(s)
- Thomas Gautier
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France.
| | - Valérie Deckert
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France
| | - Maxime Nguyen
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service Anesthésie-Réanimation Chirurgicale, Dijon University Hospital, Dijon, France
| | - Catherine Desrumaux
- INSERM, U1198, Montpellier, France; Faculty of Sciences, Université Montpellier, Montpellier, France
| | - David Masson
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Plateau Automatisé de Biochimie, Dijon University Hospital, Dijon, France
| | - Laurent Lagrost
- INSERM, LNC UMR1231, Dijon, France; University of Bourgogne and Franche-Comté, LNC UMR1231, Dijon, France; FCS Bourgogne-Franche Comté, LipSTIC LabEx, Dijon, France; Service de la Recherche, Dijon University Hospital, Dijon, France.
| |
Collapse
|
9
|
Payen D, Dupuis C, Deckert V, Pais de Barros JP, Rérole AL, Lukaszewicz AC, Coudroy R, Robert R, Lagrost L. Endotoxin Mass Concentration in Plasma Is Associated With Mortality in a Multicentric Cohort of Peritonitis-Induced Shock. Front Med (Lausanne) 2021; 8:749405. [PMID: 34778311 PMCID: PMC8586519 DOI: 10.3389/fmed.2021.749405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 01/22/2023] Open
Abstract
Objectives: To investigate the association of plasma LPS mass with mortality and inflammation in patients with peritonitis-induced septic shock (SS). Design: Longitudinal endotoxin and inflammatory parameters in a multicentric cohort of SS. Patients: Protocolized post-operative parameters of 187 SS patients collected at T1 (12 h max post-surgery) and T4 (24 h after T1). Intervention: Post-hoc analysis of ABDOMIX trial. Measurements and Results: Plasma concentration of LPS mass as determined by HPLC-MS/MS analysis of 3-hydroxymyristate, activity of phospholipid transfer protein (PLTP), lipids, lipoproteins, IL-6, and IL-10. Cohort was divided in low (LLPS) and high (HLPS) LPS levels. The predictive value for mortality was tested by multivariate analysis. HLPS and LLPS had similar SAPSII (58 [48.5; 67]) and SOFA (8 [6.5; 9]), but HLPS showed higher death and LPS to PLTP ratio (p < 0.01). LPS was stable in HLPS, but it increased in LLPS with a greater decrease in IL-6 (p < 0.01). Dead patients had a higher T1 LPS (p = 0.02), IL-6 (<0.01), IL-10 (=0.01), and day 3 SOFA score (p = 0.01) than survivors. In the group of SAPSII > median, the risk of death in HLPS (38%) was higher than in LLPS (24%; p < 0.01). The 28-day death was associated only with SAPSII (OR 1.06 [1.02; 1.09]) and HLPS (OR 2.47 [1; 6.11]) in the multivariate model. In HLPS group, high PLTP was associated with lower plasma levels of IL-6 (p = 0.02) and IL-10 (p = 0.05). Conclusions: Combination of high LPS mass concentration and high SAPS II is associated with elevated mortality in peritonitis-induced SS patients.
Collapse
Affiliation(s)
- Didier Payen
- UFR de Médecine Lariboisière-Saint-Louis, University Paris 7 Denis Diderot, Paris, France
| | - Claire Dupuis
- Medical Intensive Care Unit, Gabriel Montpied University Hospital, Clermont-Ferrand, France
| | - Valérie Deckert
- Inserm, LNC-UMR1231, Dijon, France.,University Bourgogne-Franche Comté, LNC-UMR1231, Dijon, France.,LabEx LipSTIC, FCS Bourgogne-France Comté, Dijon, France
| | - Jean-Paul Pais de Barros
- Inserm, LNC-UMR1231, Dijon, France.,University Bourgogne-Franche Comté, LNC-UMR1231, Dijon, France.,LabEx LipSTIC, FCS Bourgogne-France Comté, Dijon, France
| | - Anne-Laure Rérole
- Inserm, LNC-UMR1231, Dijon, France.,University Bourgogne-Franche Comté, LNC-UMR1231, Dijon, France.,LabEx LipSTIC, FCS Bourgogne-France Comté, Dijon, France.,CHU Dijon, Service de la Recherche, Dijon, France
| | | | - Remi Coudroy
- Department of Medical Intensive Care, La Miléterie University Hospital, Poitiers University, Poitiers, France
| | - René Robert
- Department of Medical Intensive Care, La Miléterie University Hospital, Poitiers University, Poitiers, France
| | - Laurent Lagrost
- Inserm, LNC-UMR1231, Dijon, France.,University Bourgogne-Franche Comté, LNC-UMR1231, Dijon, France.,LabEx LipSTIC, FCS Bourgogne-France Comté, Dijon, France.,CHU Dijon, Service de la Recherche, Dijon, France
| |
Collapse
|
10
|
Laudanski K. Persistence of Lipoproteins and Cholesterol Alterations after Sepsis: Implication for Atherosclerosis Progression. Int J Mol Sci 2021; 22:ijms221910517. [PMID: 34638860 PMCID: PMC8508791 DOI: 10.3390/ijms221910517] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/22/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023] Open
Abstract
(1) Background: Sepsis is one of the most common critical care illnesses with increasing survivorship. The quality of life in sepsis survivors is adversely affected by several co-morbidities, including increased incidence of dementia, stroke, cardiac disease and at least temporary deterioration in cognitive dysfunction. One of the potential explanations for their progression is the persistence of lipid profile abnormalities induced during acute sepsis into recovery, resulting in acceleration of atherosclerosis. (2) Methods: This is a targeted review of the abnormalities in the long-term lipid profile abnormalities after sepsis; (3) Results: There is a well-established body of evidence demonstrating acute alteration in lipid profile (HDL-c ↓↓, LDL-C -c ↓↓). In contrast, a limited number of studies demonstrated depression of HDL-c levels with a concomitant increase in LDL-C -c in the wake of sepsis. VLDL-C -c and Lp(a) remained unaltered in few studies as well. Apolipoprotein A1 was altered in survivors suggesting abnormalities in lipoprotein metabolism concomitant to overall lipoprotein abnormalities. However, most of the studies were limited to a four-month follow-up and patient groups were relatively small. Only one study looked at the atherosclerosis progression in sepsis survivors using clinical correlates, demonstrating an acceleration of plaque formation in the aorta, and a large metanalysis suggested an increase in the risk of stroke or acute coronary event between 3% to 9% in sepsis survivors. (4) Conclusions: The limited evidence suggests an emergence and persistence of the proatherogenic lipid profile in sepsis survivors that potentially contributes, along with other factors, to the clinical sequel of atherosclerosis.
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA; ; Tel.: +1-215-662-8200
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Leonard Davis Institute of Healthcare Economics, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Correa Y, Waldie S, Thépaut M, Micciulla S, Moulin M, Fieschi F, Pichler H, Trevor Forsyth V, Haertlein M, Cárdenas M. SARS-CoV-2 spike protein removes lipids from model membranes and interferes with the capacity of high density lipoprotein to exchange lipids. J Colloid Interface Sci 2021; 602:732-739. [PMID: 34157514 PMCID: PMC8195693 DOI: 10.1016/j.jcis.2021.06.056] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 01/18/2023]
Abstract
Cholesterol has been shown to affect the extent of coronavirus binding and fusion to cellular membranes. The severity of Covid-19 infection is also known to be correlated with lipid disorders. Furthermore, the levels of both serum cholesterol and high-density lipoprotein (HDL) decrease with Covid-19 severity, with normal levels resuming once the infection has passed. Here we demonstrate that the SARS-CoV-2 spike (S) protein interferes with the function of lipoproteins, and that this is dependent on cholesterol. In particular, the ability of HDL to exchange lipids from model cellular membranes is altered when co-incubated with the spike protein. Additionally, the S protein removes lipids and cholesterol from model membranes. We propose that the S protein affects HDL function by removing lipids from it and remodelling its composition/structure.
Collapse
Affiliation(s)
- Yubexi Correa
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden
| | - Sarah Waldie
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden; Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Michel Thépaut
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Samantha Micciulla
- Large Scale Structures, Institut Laue Langevin (ILL), Grenoble F-38042, France
| | - Martine Moulin
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France
| | - Franck Fieschi
- Partnership for Structural Biology, Grenoble F-38042, France; Univ. Grenoble Alpes, CNRS, CEA, IBS, 71 avenue des Martyrs, F-38000 Grenoble, France
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology, Petersgasse 14, 8010 Graz, Austria; Graz University of Technology, Institute of Molecular Biotechnology, NAWI Graz, BioTechMed Graz, Petersgasse 14, 8010 Graz, Austria
| | - V Trevor Forsyth
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France; Faculty of Natural Sciences, Keele University, Staffordshire ST5 5BG, UK.
| | - Michael Haertlein
- Life Sciences Group, Institut Laue Langevin, Grenoble F-38042, France; Partnership for Structural Biology, Grenoble F-38042, France.
| | - Marité Cárdenas
- Biofilms - Research Center for Biointerfaces and Department of Biomedical Science, Faculty of Health and Society, Malmö University, 20506 Malmö, Sweden.
| |
Collapse
|
12
|
Kočar E, Režen T, Rozman D. Cholesterol, lipoproteins, and COVID-19: Basic concepts and clinical applications. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158849. [PMID: 33157278 PMCID: PMC7610134 DOI: 10.1016/j.bbalip.2020.158849] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 12/19/2022]
Abstract
Cholesterol is being recognized as a molecule involved in regulating the entry of the SARS-CoV-2 virus into the host cell. However, the data about the possible role of cholesterol carrying lipoproteins and their receptors in relation to infection are scarce and the connection of lipid-associated pathologies with COVID-19 disease is in its infancy. Herein we provide an overview of lipids and lipid metabolism in relation to COVID-19, with special attention on different forms of cholesterol. Cholesterol enriched lipid rafts represent a platform for viruses to enter the host cell by endocytosis. Generally, higher membrane cholesterol coincides with higher efficiency of COVID-19 entry. Inversely, patients with COVID-19 show lowered levels of blood cholesterol, high-density lipoproteins (HDL) and low-density lipoproteins. The modulated efficiency of viral entry can be explained by availability of SR-B1 receptor. HDL seems to have a variety of roles, from being itself a scavenger for viruses, an immune modulator and mediator of viral entry. Due to inverse roles of membrane cholesterol and lipoprotein cholesterol in COVID-19 infected patients, treatment of these patients with cholesterol lowering statins needs more attention. In conclusion, cholesterol and lipoproteins are potential markers for monitoring the viral infection status, while the lipid metabolic pathways and the composition of membranes could be targeted to selectively inhibit the life cycle of the virus as a basis for antiviral therapy.
Collapse
Affiliation(s)
- Eva Kočar
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia.
| |
Collapse
|
13
|
Márquez AB, Nazir S, van der Vorst EP. High-Density Lipoprotein Modifications: A Pathological Consequence or Cause of Disease Progression? Biomedicines 2020; 8:biomedicines8120549. [PMID: 33260660 PMCID: PMC7759904 DOI: 10.3390/biomedicines8120549] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 12/12/2022] Open
Abstract
High-density lipoprotein (HDL) is well-known for its cardioprotective effects, as it possesses anti-inflammatory, anti-oxidative, anti-thrombotic, and cytoprotective properties. Traditionally, studies and therapeutic approaches have focused on raising HDL cholesterol levels. Recently, it became evident that, not HDL cholesterol, but HDL composition and functionality, is probably a more fruitful target. In disorders, such as chronic kidney disease or cardiovascular diseases, it has been observed that HDL is modified and becomes dysfunctional. There are different modification that can occur, such as serum amyloid, an enrichment and oxidation, carbamylation, and glycation of key proteins. Additionally, the composition of HDL can be affected by changes to enzymes such as cholesterol ester transfer protein (CETP), lecithin-cholesterol acyltransferase (LCAT), and phospholipid transfer protein (PLTP) or by modification to other important components. This review will highlight some main modifications to HDL and discuss whether these modifications are purely a consequential result of pathology or are actually involved in the pathology itself and have a causal role. Therefore, HDL composition may present a molecular target for the amelioration of certain diseases, but more information is needed to determine to what extent HDL modifications play a causal role in disease development.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Sumra Nazir
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| | - Emiel P.C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany; (A.B.M.); (S.N.)
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80336 Munich, Germany
- Correspondence: ; Tel.: +49-241-80-36914
| |
Collapse
|
14
|
Sorokin AV, Karathanasis SK, Yang ZH, Freeman L, Kotani K, Remaley AT. COVID-19-Associated dyslipidemia: Implications for mechanism of impaired resolution and novel therapeutic approaches. FASEB J 2020; 34:9843-9853. [PMID: 32588493 PMCID: PMC7361619 DOI: 10.1096/fj.202001451] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022]
Abstract
The current coronavirus disease 2019 (COVID‐19) pandemic presents a global challenge for managing acutely ill patients and complications from viral infection. Systemic inflammation accompanied by a “cytokine storm,” hemostasis alterations and severe vasculitis have all been reported to occur with COVID‐19, and emerging evidence suggests that dysregulation of lipid transport may contribute to some of these complications. Here, we aim to summarize the current understanding of the potential mechanisms related to COVID‐19 dyslipidemia and propose possible adjunctive type therapeutic approaches that modulate lipids and lipoproteins. Specifically, we hypothesize that changes in the quantity and composition of high‐density lipoprotein (HDL) that occurs with COVID‐19 can significantly decrease the anti‐inflammatory and anti‐oxidative functions of HDL and could contribute to pulmonary inflammation. Furthermore, we propose that lipoproteins with oxidized phospholipids and fatty acids could lead to virus‐associated organ damage via overactivation of innate immune scavenger receptors. Restoring lipoprotein function with ApoA‐I raising agents or blocking relevant scavenger receptors with neutralizing antibodies could, therefore, be of value in the treatment of COVID‐19. Finally, we discuss the role of omega‐3 fatty acids transported by lipoproteins in generating specialized proresolving mediators and how together with anti‐inflammatory drugs, they could decrease inflammation and thrombotic complications associated with COVID‐19.
Collapse
Affiliation(s)
- Alexander V Sorokin
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sotirios K Karathanasis
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA.,NeoProgen, Baltimore, MD, USA
| | - Zhi-Hong Yang
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lita Freeman
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kazuhiko Kotani
- Division of Community and Family Medicine, Department of Clinical Laboratory Medicine, Jichi Medical University, Shimotsuke-City, Japan
| | - Alan T Remaley
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Blauw LL, Wang Y, Willems van Dijk K, Rensen PCN. A Novel Role for CETP as Immunological Gatekeeper: Raising HDL to Cure Sepsis? Trends Endocrinol Metab 2020; 31:334-343. [PMID: 32033866 DOI: 10.1016/j.tem.2020.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/11/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022]
Abstract
Raising HDL using cholesteryl ester transfer protein (CETP) inhibitors failed to show a clinically relevant risk reduction of cardiovascular disease in clinical trials, inviting reconsideration of the role of CETP and HDL in human physiology. Based on solid evidence from studies with isolated macrophages, rodents, and humans, we propose that a major function of CETP may be to modulate HDL in order to help resolve bacterial infections. When gram-negative bacteria invade the blood, as occurs in sepsis, Kupffer cells lose their expression of CETP to increase HDL levels. This rise in HDL prevents systemic endotoxemia by binding lipopolysaccharide and induces a systemic proinflammatory response in macrophages to mediate bacterial clearance. This raises the interesting possibility to repurpose CETP inhibitors for the treatment of sepsis.
Collapse
Affiliation(s)
- Lisanne L Blauw
- Department of Internal Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Yanan Wang
- Department of Internal Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ko Willems van Dijk
- Department of Internal Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Internal Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
16
|
Fuior EV, Gafencu AV. Apolipoprotein C1: Its Pleiotropic Effects in Lipid Metabolism and Beyond. Int J Mol Sci 2019; 20:ijms20235939. [PMID: 31779116 PMCID: PMC6928722 DOI: 10.3390/ijms20235939] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/19/2019] [Accepted: 11/21/2019] [Indexed: 12/20/2022] Open
Abstract
Apolipoprotein C1 (apoC1), the smallest of all apolipoproteins, participates in lipid transport and metabolism. In humans, APOC1 gene is in linkage disequilibrium with APOE gene on chromosome 19, a proximity that spurred its investigation. Apolipoprotein C1 associates with triglyceride-rich lipoproteins and HDL and exchanges between lipoprotein classes. These interactions occur via amphipathic helix motifs, as demonstrated by biophysical studies on the wild-type polypeptide and representative mutants. Apolipoprotein C1 acts on lipoprotein receptors by inhibiting binding mediated by apolipoprotein E, and modulating the activities of several enzymes. Thus, apoC1 downregulates lipoprotein lipase, hepatic lipase, phospholipase A2, cholesterylester transfer protein, and activates lecithin-cholesterol acyl transferase. By controlling the plasma levels of lipids, apoC1 relates directly to cardiovascular physiology, but its activity extends beyond, to inflammation and immunity, sepsis, diabetes, cancer, viral infectivity, and-not last-to cognition. Such correlations were established based on studies using transgenic mice, associated in the recent years with GWAS, transcriptomic and proteomic analyses. The presence of a duplicate gene, pseudogene APOC1P, stimulated evolutionary studies and more recently, the regulatory properties of the corresponding non-coding RNA are steadily emerging. Nonetheless, this prototypical apolipoprotein is still underexplored and deserves further research for understanding its physiology and exploiting its therapeutic potential.
Collapse
Affiliation(s)
- Elena V. Fuior
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
| | - Anca V. Gafencu
- Institute of Cellular Biology and Pathology “N. Simionescu”, 050568 Bucharest, Romania;
- Correspondence:
| |
Collapse
|
17
|
Golucci APBS, Marson FAL, Ribeiro AF, Nogueira RJN. Lipid profile associated with the systemic inflammatory response syndrome and sepsis in critically ill patients. Nutrition 2018; 55-56:7-14. [PMID: 29960160 DOI: 10.1016/j.nut.2018.04.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/02/2018] [Accepted: 04/22/2018] [Indexed: 02/09/2023]
Abstract
OBJECTIVES Changes in lipid profiles occur in systemic inflammatory response syndrome (SIRS), whether due to sepsis or another cause. Hypocholesterolemia associated with hypertriacylglycerolemia can lead to disease severity and higher mortality. The aim of this systematic review was to describe the principal alterations in markers that participate in the alteration of the lipid profile. METHODS We reviewed articles focused on alterations in the lipid profile in SIRS, sepsis, or both that were indexed in the Scientific Electronic Library Online from 2000 to 2017. The descriptors used were SIRS; sepsis; lipid profile; and lipoproteins. We focused in particular on the relationships among SIRS, sepsis, and lipid profiles. RESULTS We included 29 studies that discussed decreased high-density lipoprotein (HDL), total cholesterol, and low-density lipoprotein, and elevated triacylglycerols concentrations in patients with SIRS, sepsis, or both. The variation in the lipid profile was proportional to the level of inflammation as evaluated by inflammatory markers, including C-reactive protein, interleukin-6 and interleukin-8, lipopolysaccharide-binding protein, and tumor necrosis factor. Additionally, there was a change in the composition of lipoproteins, especially HDL, triacylglycerols, and very low-density lipoprotein. HDL appears to be an inflammatory marker, as reduction of its levels reflects the intensity of the underlying inflammatory process. CONCLUSION Critically ill patients with SIRS, sepsis, or both presented with alterations in lipid metabolism.
Collapse
Affiliation(s)
| | - Fernando Augusto Lima Marson
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil; Department of Medical Genetics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil; Center for Research in Pediatrics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Antônio Fernando Ribeiro
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil
| | - Roberto José Negrão Nogueira
- Department of Pediatrics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil; Center for Research in Pediatrics, Faculty of Medical Sciences, University of Campinas, São Paulo, Brazil; São Leopoldo Mandic Faculty, São Paulo, Brazil.
| |
Collapse
|
18
|
Audo R, Deckert V, Daien CI, Che H, Elhmioui J, Lemaire S, Pais de Barros JP, Desrumaux C, Combe B, Hahne M, Lagrost L, Morel J. PhosphoLipid transfer protein (PLTP) exerts a direct pro-inflammatory effect on rheumatoid arthritis (RA) fibroblasts-like-synoviocytes (FLS) independently of its lipid transfer activity. PLoS One 2018; 13:e0193815. [PMID: 29565987 PMCID: PMC5863966 DOI: 10.1371/journal.pone.0193815] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 02/19/2018] [Indexed: 12/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory rheumatic disease with modification of lipids profile and an increased risk of cardiovascular events related to inflammation. Plasma phospholipid transfer protein (PLTP) exerts a lipid transfer activity through its active form. PLTP can also bind to receptors such as ATP-binding cassette transporter A1 (ABCA1). In addition to its role in lipoprotein metabolism and atherosclerosis, the latest advances came in support of a complex role of PLTP in the regulation of the inflammatory response, both with pro-inflammatory or anti-inflammatory properties. The aim of the present study was to decipher the role of PLTP in joint inflammation and to assess its relevance in the context of RA. PLTP expression was examined by western-blot and by immunochemistry. ABCA1 expression was analyzed by flow cytometry. Lipid transfer activity of PLTP and pro-inflammatory cytokines were measured in sera and synovial fluid (SF) from RA patients and controls (healthy subjects or osteoarthritis patients [OA]). FLS were treated with both lipid-transfer active form and inactive form of recombinant human PLTP. IL-8, IL-6, VEGF and MMP3 produced by FLS were assessed by ELISA, and proliferation by measuring 3H-Thymidine incorporation. RA synovial tissues showed higher PLTP staining than OA and PLTP protein levels were also significantly higher in RA-FLS. In addition, RA, unlike OA patients, displayed elevated levels of PLTP activity in SF, which correlated with pro-inflammatory cytokines. Both lipid-transfer active and inactive forms of PLTP significantly increased the production of cytokines and proliferation of FLS. ABCA1 was expressed on RAFLS and PLTP activated STAT3 pathway. To conclude, PLTP is highly expressed in the joints of RA patients and may directly trigger inflammation and FLS proliferation, independently of its lipid transfer activity. These results suggest a pro-inflammatory role for PLTP in RA.
Collapse
Affiliation(s)
- Rachel Audo
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
- * E-mail: (RA); (JM)
| | - Valérie Deckert
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Claire I. Daien
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Hélène Che
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
| | - Jamila Elhmioui
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Stéphanie Lemaire
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- University Hospital of Dijon, Dijon, France
| | - Jean-Paul Pais de Barros
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
| | - Catherine Desrumaux
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- INSERM U1198, (MMDN), EiAlz Team, University Montpellier 2, EPHE, Montpellier, France
| | - Bernard Combe
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Michael Hahne
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
| | - Laurent Lagrost
- LNC Lipids, Nutrition and Cancer, INSERM UMR1231, Dijon, France
- University Bourgogne Franche-Comté, Dijon, France
- LipSTIC LabEx, Fondation de Coopération Scientifique Bourgogne-Franche Comté, Dijon, France
- University Hospital of Dijon, Dijon, France
| | - Jacques Morel
- Department of Rheumatology, Montpellier University and Lapeyronie Teaching Hospital, Montpellier, France
- Montpellier University, Montpellier, France
- Institut de Génétique Moléculaire de Montpellier (IGMM), CNRS, UMR5535, Montpellier, France
- * E-mail: (RA); (JM)
| |
Collapse
|
19
|
Bermudes ACG, de Carvalho WB, Zamberlan P, Muramoto G, Maranhão RC, Delgado AF. Changes in lipid metabolism in pediatric patients with severe sepsis and septic shock. Nutrition 2017; 47:104-109. [PMID: 29429528 DOI: 10.1016/j.nut.2017.09.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Limited knowledge exists regarding the lipid profiles of critically ill pediatric patients with systemic inflammatory response syndrome. The aim of this study was to evaluate the relationship between the intensity of the inflammatory response and changes in the lipid profiles of critically ill pediatric patients admitted to a pediatric intensive care unit (PICU) with severe sepsis/septic shock. METHODS This was a prospective and observational study at a 15-bed PICU at a public university hospital. We analyzed the lipid profiles of 40 patients with severe sepsis/septic shock admitted to the PICU on the first and seventh days of hospitalization. C-reactive protein was used as a marker for systemic inflammation. Forty-two pediatric patients seen in the emergency department and without systemic inflammatory response syndrome were used to provide control values. RESULTS On day 1 of admission to the PICU, the patients had significantly lower levels of total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) as well as higher concentrations of triacylglycerols compared with the control group. There was a significant increase in the TC, HDL, LDL, and apolipoprotein levels from day 1 to day 7 of the study. CONCLUSIONS During severe sepsis/septic shock, we found lower serum levels of lipoproteins and apolipoproteins, and these were negatively correlated with C-reactive protein. As the inflammatory response improved, the levels of TC, HDL, LDL, and apolipoproteins increased, suggesting a direct relationship between changes in the lipid profiles and inflammation.
Collapse
Affiliation(s)
- Ana Carolina G Bermudes
- Pediatric Critical Care Unit, Instituto da Criança da Faculdade de Medicina, São Paulo University, São Paulo, Brazil.
| | - Werther B de Carvalho
- Pediatric Critical Care Unit, Instituto da Criança da Faculdade de Medicina, São Paulo University, São Paulo, Brazil
| | - Patricia Zamberlan
- Division of Nutrition, Instituto da Criança da Faculdade de Medicina, São Paulo University, São Paulo, Brazil
| | - Giovana Muramoto
- Emergency Department, Hospital Universitário, São Paulo University, São Paulo, Brazil
| | - Raul C Maranhão
- Lipid Metabolism Laboratory, Heart Institute (InCor) of the Medical School Hospital, São Paulo University, São Paulo, Brazil
| | - Artur F Delgado
- Pediatric Critical Care Unit, Instituto da Criança da Faculdade de Medicina, São Paulo University, São Paulo, Brazil
| |
Collapse
|
20
|
Ahn WG, Jung JS, Kwon HY, Song DK. Alteration of Lysophosphatidylcholine-Related Metabolic Parameters in the Plasma of Mice with Experimental Sepsis. Inflammation 2016; 40:537-545. [DOI: 10.1007/s10753-016-0500-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Kim HJ, Ahn SJ, Woo SJ, Hong HK, Suh EJ, Ahn J, Park JH, Ryoo NK, Lee JE, Kim KW, Park KH, Lee C. Proteomics-based identification and validation of novel plasma biomarkers phospholipid transfer protein and mannan-binding lectin serine protease-1 in age-related macular degeneration. Sci Rep 2016; 6:32548. [PMID: 27605007 PMCID: PMC5015054 DOI: 10.1038/srep32548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/09/2016] [Indexed: 11/12/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of severe, progressive visual loss among the elderly. There are currently no established serological markers for the diagnosis of AMD. In this study, we carried out a large-scale quantitative proteomics analysis to identify plasma proteins that could serve as potential AMD biomarkers. We found that the plasma levels of phospholipid transfer protein (PLTP) and mannan-binding lectin serine protease (MASP)-1 were increased in AMD patients relative to controls. The receiver operating characteristic curve based on data from an independent set of AMD patients and healthy controls had an area under the curve of 0.936 for PLTP and 0.716 for MASP-1, revealing excellent discrimination between the two groups. A proteogenomic combination model that incorporated PLTP and MASP-1 along with two known risk genotypes of age-related maculopathy susceptibility 2 and complement factor H genes further enhanced discriminatory power. Additionally, PLTP and MASP-1 mRNA and protein expression levels were upregulated in retinal pigment epithelial cells upon exposure to oxidative stress in vitro. These results indicate that PLTP and MASP-1 can serve as plasma biomarkers for the early diagnosis and treatment of AMD, which is critical for preventing AMD-related blindness.
Collapse
Affiliation(s)
- Hye-Jung Kim
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Seong Joon Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Ophthalmology, Hanyang University College of Medicine, Hanyang University Hospital, Seoul, Korea
| | - Se Joon Woo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hye Kyoung Hong
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Eui Jin Suh
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Jeeyun Ahn
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Ophthalmology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Korea
| | - Ji Hyun Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Na-Kyung Ryoo
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ji Eun Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| | - Ki Woong Kim
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.,Department of Brain and Cognitive Science, Seoul National University College of Natural Sciences, Seoul, Korea
| | - Kyu Hyung Park
- Department of Ophthalmology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Cheolju Lee
- Center for Theragnosis, Korea Institute of Science and Technology, Seoul, Korea
| |
Collapse
|
22
|
Berbee JF, Havekes LM, Rensen PC. Apolipoproteins modulate the inflammatory response to lipopolysaccharide. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519050110020501] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An increasing body of evidence demonstrates a close interplay between lipoprotein metabolism and sepsis. Sepsis results in an increase of plasma triglycerides within VLDL as a consequence of an enhanced hepatic VLDL production and/or inhibited peripheral and hepatic VLDL clearance. In contrast, sepsis decreases plasma cholesterol within LDL and mainly HDL. The decrease in HDL is accompanied by a loss of mainly apoAI-containing particles, an almost total loss of apoCI, and an increase in apoE-containing HDL, as related to the effect of LPS on a wide range of apolipoproteins, plasma enzymes, lipid transfer factors, and receptors that are involved in HDL metabolism. Reciprocally, all lipoprotein classes have been shown to bind LPS and to attenuate the biological response to LPS in vitro and in rodents. Moreover, triglyceride-rich lipoproteins protect rodents against death from LPS and bacterial sepsis. Accumulating evidence indicates that apolipoproteins such as apoE and apoAI, and not the lipid moieties of the particles, may be responsible for these protective effects of lipoproteins. Therefore, to increase our understanding of the complex interaction between lipoprotein metabolism and sepsis, further studies that address the specific roles of apolipoproteins in sepsis are warranted.
Collapse
Affiliation(s)
- Jimmy F.P. Berbee
- TNO-Quality of Life, Department of Biomedical Research, Gaubius Laboratory, Leiden, The Netherlands, Department of General Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Louis M. Havekes
- TNO-Quality of Life, Department of Biomedical Research, Gaubius Laboratory, Leiden, The Netherlands, Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Patrick C.N. Rensen
- TNO-Quality of Life, Department of Biomedical Research, Gaubius Laboratory, Leiden, The Netherlands, Department of General Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands,
| |
Collapse
|
23
|
Frej C, Linder A, Happonen KE, Taylor FB, Lupu F, Dahlbäck B. Sphingosine 1-phosphate and its carrier apolipoprotein M in human sepsis and in Escherichia coli sepsis in baboons. J Cell Mol Med 2016; 20:1170-81. [PMID: 26990127 PMCID: PMC4882985 DOI: 10.1111/jcmm.12831] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/07/2016] [Indexed: 01/01/2023] Open
Abstract
Sphingosine 1‐phosphate (S1P) is an important regulator of vascular integrity and immune cell migration, carried in plasma by high‐density lipoprotein (HDL)‐associated apolipoprotein M (apoM) and by albumin. In sepsis, the protein and lipid composition of HDL changes dramatically. The aim of this study was to evaluate changes in S1P and its carrier protein apoM during sepsis. For this purpose, plasma samples from both human sepsis patients and from an experimental Escherichia coli sepsis model in baboons were used. In the human sepsis cohort, previously studied for apoM, plasma demonstrated disease‐severity correlated decreased S1P levels, the profile mimicking that of plasma apoM. In the baboons, a similar disease‐severity dependent decrease in plasma levels of S1P and apoM was observed. In the lethal E. coli baboon sepsis, S1P decreased already within 6–8 hrs, whereas the apoM decrease was seen later at 12–24 hrs. Gel filtration chromatography of plasma from severe human or baboon sepsis on Superose 6 demonstrated an almost complete loss of S1P and apoM in the HDL fractions. S1P plasma concentrations correlated with the platelet count but not with erythrocytes or white blood cells. The liver mRNA levels of apoM and apoA1 decreased strongly upon sepsis induction and after 12 hr both were almost completely lost. In conclusion, during septic challenge, the plasma levels of S1P drop to very low levels. Moreover, the liver synthesis of apoM decreases severely and the plasma levels of apoM are reduced. Possibly, the decrease in S1P contributes to the decreased endothelial barrier function observed in sepsis.
Collapse
Affiliation(s)
- Cecilia Frej
- Department of Translational Medicine, Division of Clinical Chemistry, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Adam Linder
- Department of Clinical Sciences, Division of Infection Medicine, Lund University, Skåne University Hospital, Lund, Sweden
| | - Kaisa E Happonen
- Department of Translational Medicine, Division of Clinical Chemistry, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Fletcher B Taylor
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Florea Lupu
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Björn Dahlbäck
- Department of Translational Medicine, Division of Clinical Chemistry, Skåne University Hospital, Lund University, Malmö, Sweden
| |
Collapse
|
24
|
The binding capability of plasma phospholipid transfer protein, but not HDL pool size, is critical to repress LPS induced inflammation. Sci Rep 2016; 6:20845. [PMID: 26857615 PMCID: PMC4746621 DOI: 10.1038/srep20845] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 01/13/2016] [Indexed: 01/10/2023] Open
Abstract
Phospholipid transfer protein (PLTP) participates in high density lipoprotein (HDL) metabolism. Increased plasma PLTP activity was observed in lipopolysaccharide (LPS) triggered acute inflammatory diseases. This study aimed to determine the exact role of PLTP in LPS induced inflammation. HDL pool size was shrunk both in PLTP deficient mice (PLTP−/−) and PLTP transgenic mice (PLTP-Tg). PLTP displayed a strong protective effect on lethal endotoxemia in mice survival study. Furthermore, after LPS stimulation, the expression of pro-inflammatory cytokines were increased in bone marrow derived macrophage (BMDM) from PLTP−/−, while decreased in BMDM from PLTP-Tg compared with BMDM from wild-type mice (WT). Moreover, LPS induced nuclear factor kappa-B (NFκB) activation was enhanced in PLTP−/− BMDM or PLTP knockdown RAW264.7. Conversely, PLTP overexpression countered the NFκB activation in LPS challenged BMDM. Additionally, the activation of toll like receptor 4 (TLR4) induced by LPS showed no alteration in PLTP−/− BMDM. Finally, PLTP could bind to LPS, attenuate the pro-inflammatory effects of LPS, and improve the cell viability in vitro. To sum up, these findings elucidated that PLTP repressed LPS induced inflammation due to extracellular LPS binding capability, and the protective effects were not related to HDL pool size in mice.
Collapse
|
25
|
Constantinou C, Karavia EA, Xepapadaki E, Petropoulou PI, Papakosta E, Karavyraki M, Zvintzou E, Theodoropoulos V, Filou S, Hatziri A, Kalogeropoulou C, Panayiotakopoulos G, Kypreos KE. Advances in high-density lipoprotein physiology: surprises, overturns, and promises. Am J Physiol Endocrinol Metab 2016; 310:E1-E14. [PMID: 26530157 DOI: 10.1152/ajpendo.00429.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/30/2015] [Indexed: 12/21/2022]
Abstract
Emerging evidence strongly supports that changes in the HDL metabolic pathway, which result in changes in HDL proteome and function, appear to have a causative impact on a number of metabolic disorders. Here, we provide a critical review of the most recent and novel findings correlating HDL properties and functionality with various pathophysiological processes and disease states, such as obesity, type 2 diabetes mellitus, nonalcoholic fatty liver disease, inflammation and sepsis, bone and obstructive pulmonary diseases, and brain disorders.
Collapse
Affiliation(s)
| | - Eleni A Karavia
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Eva Xepapadaki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Eugenia Papakosta
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Marilena Karavyraki
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Evangelia Zvintzou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | - Serafoula Filou
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | - Aikaterini Hatziri
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| | | | | | - Kyriakos E Kypreos
- Pharmacology Department, University of Patras Medical School, Rio Achaias, Greece
| |
Collapse
|
26
|
Plasma phospholipid transfer protein (PLTP) modulates adaptive immune functions through alternation of T helper cell polarization. Cell Mol Immunol 2015; 13:795-804. [PMID: 26320740 DOI: 10.1038/cmi.2015.75] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/01/2015] [Accepted: 07/01/2015] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE Plasma phospholipid transfer protein (PLTP) is a key determinant of lipoprotein metabolism, and both animal and human studies converge to indicate that PLTP promotes atherogenesis and its thromboembolic complications. Moreover, it has recently been reported that PLTP modulates inflammation and immune responses. Although earlier studies from our group demonstrated that PLTP can modify macrophage activation, the implication of PLTP in the modulation of T-cell-mediated immune responses has never been investigated and was therefore addressed in the present study. Approach and results: In the present study, we demonstrated that PLTP deficiency in mice has a profound effect on CD4+ Th0 cell polarization, with a shift towards the anti-inflammatory Th2 phenotype under both normal and pathological conditions. In a model of contact hypersensitivity, a significantly impaired response to skin sensitization with the hapten-2,4-dinitrofluorobenzene (DNFB) was observed in PLTP-deficient mice compared to wild-type (WT) mice. Interestingly, PLTP deficiency in mice exerted no effect on the counts of total white blood cells, lymphocytes, granulocytes, or monocytes in the peripheral blood. Moreover, PLTP deficiency did not modify the amounts of CD4+ and CD8+ T lymphocyte subsets. However, PLTP-deficiency, associated with upregulation of the Th2 phenotype, was accompanied by a significant decrease in the production of the pro-Th1 cytokine interleukin 18 by accessory cells. CONCLUSIONS For the first time, this work reports a physiological role for PLTP in the polarization of CD4+ T cells toward the pro-inflammatory Th1 phenotype.
Collapse
|
27
|
Abstract
This study was aimed to find new biomarkers for diagnosis and prediction of prognosis of sepsis. Serum samples from nonsurvivor, survivor, and control groups were obtained at 12 h after the induction of sepsis and labeled with isobaric tags (iTRAQ) and then analyzed by two-dimensional liquid chromatography and tandem mass spectrometry. Protein identification and quantification were obtained using mass spectrometry and the ProteinPilot software. Bioinformatics annotation was performed by searching against the PANTHER database. Enzyme-linked immunosorbent assays were used to further confirm the protein identification and differential expression. A logistic regression was then used to screen the index set for diagnosis and prognosis of sepsis. We found that 47 proteins were preferentially elevated in septic rats (both nonsurvivors and survivors) compared with the control rats, and 28 proteins were preferentially elevated in the NS rats as compared with the S group. Several biomarkers, such as multimerin 1, ficolin 1, carboxypeptidase N (CPN2), serine protease 1, and platelet factor 4, were tightly correlated with the diagnosis of sepsis. Logistic regression analyses established multimerin 1, pro-platelet basic protein, fibrinogen-α, and fibrinogen-β for prognosis of sepsis.
Collapse
|
28
|
Salama GS, Kaabneh MA, Almasaeed MN, Alquran MI. Intravenous lipids for preterm infants: a review. CLINICAL MEDICINE INSIGHTS-PEDIATRICS 2015; 9:25-36. [PMID: 25698888 PMCID: PMC4325703 DOI: 10.4137/cmped.s21161] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/17/2014] [Accepted: 12/30/2014] [Indexed: 01/21/2023]
Abstract
Extremely low birth weight infants (ELBW) are born at a time when the fetus is undergoing rapid intrauterine brain and body growth. Continuation of this growth in the first several weeks postnatally during the time these infants are on ventilator support and receiving critical care is often a challenge. These infants are usually highly stressed and at risk for catabolism. Parenteral nutrition is needed in these infants because most cannot meet the majority of their nutritional needs using the enteral route. Despite adoption of a more aggressive approach with amino acid infusions, there still appears to be a reluctance to use early intravenous lipids. This is based on several dogmas that suggest that lipid infusions may be associated with the development or exacerbation of lung disease, displace bilirubin from albumin, exacerbate sepsis, and cause CNS injury and thrombocytopena. Several recent reviews have focused on intravenous nutrition for premature neonate, but very little exists that provides a comprehensive review of intravenous lipid for very low birth and other critically ill neonates. Here, we would like to provide a brief basic overview, of lipid biochemistry and metabolism of lipids, especially as they pertain to the preterm infant, discuss the origin of some of the current clinical practices, and provide a review of the literature, that can be used as a basis for revising clinical care, and provide some clarity in this controversial area, where clinical care is often based more on tradition and dogma than science.
Collapse
|
29
|
Abstract
During infection significant alterations in lipid metabolism and lipoprotein composition occur. Triglyceride and VLDL cholesterol levels increase, while reduced HDL cholesterol (HDL-C) and LDL cholesterol (LDL-C) levels are observed. More importantly, endotoxemia modulates HDL composition and size: phospholipids are reduced as well as apolipoprotein (apo) A-I, while serum amyloid A (SAA) and secretory phospholipase A2 (sPLA2) dramatically increase, and, although the total HDL particle number does not change, a significant decrease in the number of small- and medium-size particles is observed. Low HDL-C levels inversely correlate with the severity of septic disease and associate with an exaggerated systemic inflammatory response. HDL, as well as other plasma lipoproteins, can bind and neutralize Gram-negative bacterial lipopolysaccharide (LPS) and Gram-positive bacterial lipoteichoic acid (LTA), thus favoring the clearance of these products. HDLs are emerging also as a relevant player during parasitic infections, and a specific component of HDL, namely, apoL-1, confers innate immunity against trypanosome by favoring lysosomal swelling which kills the parasite. During virus infections, proteins associated with the modulation of cholesterol bioavailability in the lipid rafts such as ABCA1 and SR-BI have been shown to favor virus entry into the cells. Pharmacological studies support the benefit of recombinant HDL or apoA-I mimetics during bacterial infection, while apoL-1-nanobody complexes were tested for trypanosome infection. Finally, SR-BI antagonism represents a novel and forefront approach interfering with hepatitis C virus entry which is currently tested in clinical studies. From the coming years, we have to expect new and compelling observations further linking HDL to innate immunity and infections.
Collapse
|
30
|
Abstract
During infections or acute conditions high-density lipoproteins cholesterol (HDL-C) levels decrease very rapidly and HDL particles undergo profound changes in their composition and function. These changes are associated with poor prognosis following endotoxemia or sepsis and data from genetically modified animal models support a protective role for HDL. The same is true for some parasitic infections, where the key player appears to be a specific and minor component of HDL, namely apoL-1. The ability of HDL to influence cholesterol availability in lipid rafts in immune cells results in the modulation of toll-like receptors, MHC-II complex, as well as B- and T-cell receptors, while specific molecules shuttled by HDL such as sphingosine-1-phosphate (S1P) contribute to immune cells trafficking. Animal models with defects associated with HDL metabolism and/or influencing cell cholesterol efflux present features related to immune disorders. All these functions point to HDL as a platform integrating innate and adaptive immunity. The aim of this review is to provide an overview of the connection between HDL and immunity in atherosclerosis and beyond.
Collapse
Affiliation(s)
- Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy IRCCS Multimedica, Milan, Italy
| | - Angela Pirillo
- IRCCS Multimedica, Milan, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, via Balzaretti 9, Milan 20133, Italy Center for the Study of Atherosclerosis, Ospedale Bassini, Cinisello Balsamo, Italy The Blizard Institute, Centre for Diabetes, Barts and The London School of Medicine & Dentistry, Queen Mary University, London, UK
| |
Collapse
|
31
|
Ma X, Hu YW, Zhao ZL, Zheng L, Qiu YR, Huang JL, Wu XJ, Mao XR, Yang J, Zhao JY, Li SF, Gu MN, Wang Q. Anti-inflammatory effects of propofol are mediated by apolipoprotein M in a hepatocyte nuclear factor-1α-dependent manner. Arch Biochem Biophys 2013; 533:1-10. [DOI: 10.1016/j.abb.2013.03.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 03/01/2013] [Accepted: 03/04/2013] [Indexed: 10/27/2022]
|
32
|
Biedzka-Sarek M, Metso J, Kateifides A, Meri T, Jokiranta TS, Muszyński A, Radziejewska-Lebrecht J, Zannis V, Skurnik M, Jauhiainen M. Apolipoprotein A-I exerts bactericidal activity against Yersinia enterocolitica serotype O:3. J Biol Chem 2011; 286:38211-38219. [PMID: 21896489 DOI: 10.1074/jbc.m111.249482] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apolipoprotein A-I (apoA-I), the main protein component of high density lipoprotein (HDL), is well recognized for its antiatherogenic, antioxidant, and antiinflammatory properties. Here, we report a novel role for apoA-I as a host defense molecule that contributes to the complement-mediated killing of an important gastrointestinal pathogen, Gram-negative bacterium Yersinia enterocolitica. We specifically show that the C-terminal domain of apoA-I is the effector site providing the bactericidal activity. Although the presence of the lipopolysaccharide O-antigen on the bacterial surface is absolutely required for apoA-I to kill the bacteria, apoA-I does not interact with the bacteria directly. To the contrary, exposure of the bacteria by serum proteins triggers apoA-I deposition on the bacterial surface. As our data show that both purified lipid-free and HDL-associated apoA-I displays anti-bacterial potential, apoA-I mimetic peptides may be a promising therapeutic agent for the treatment of certain Gram-negative infections.
Collapse
Affiliation(s)
- Marta Biedzka-Sarek
- Department of Chronic Disease Prevention, Public Health Genomics Research Unit, National Institute for Health and Welfare, and Institute for Molecular Medicine Finland (FIMM), 00290 Helsinki, Finland.
| | - Jari Metso
- Department of Chronic Disease Prevention, Public Health Genomics Research Unit, National Institute for Health and Welfare, and Institute for Molecular Medicine Finland (FIMM), 00290 Helsinki, Finland
| | - Andreas Kateifides
- Department of Molecular Genetics, Boston University Medical Center, Boston, Massachusetts 02118
| | - Taru Meri
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland; Department of Laboratory Diagnostics, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - T Sakari Jokiranta
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland
| | - Artur Muszyński
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | | | - Vassilis Zannis
- Department of Molecular Genetics, Boston University Medical Center, Boston, Massachusetts 02118
| | - Mikael Skurnik
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, 00014 Helsinki, Finland; Department of Laboratory Diagnostics, Helsinki University Central Hospital, 00290 Helsinki, Finland
| | - Matti Jauhiainen
- Department of Chronic Disease Prevention, Public Health Genomics Research Unit, National Institute for Health and Welfare, and Institute for Molecular Medicine Finland (FIMM), 00290 Helsinki, Finland
| |
Collapse
|
33
|
Vuletic S, Dong W, Wolfbauer G, Tang C, Albers JJ. PLTP regulates STAT3 and NFκB in differentiated THP1 cells and human monocyte-derived macrophages. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1917-24. [PMID: 21782857 DOI: 10.1016/j.bbamcr.2011.06.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/27/2011] [Indexed: 11/17/2022]
Abstract
Phospholipid transfer protein (PLTP) plays an important role in regulation of inflammation. Previously published studies have shown that PLTP binds, transfers and neutralizes bacterial lipopolysaccharides. In the current study we tested the hypothesis that PLTP can also regulate anti-inflammatory pathways in macrophages. Incubation of macrophage-like differentiated THP1 cells and human monocyte-derived macrophages with wild-type PLTP in the presence or absence of tumor necrosis factor alpha (TNFα) or interferon gamma (IFNγ) significantly increased nuclear levels of active signal transducer and activator of transcription 3, pSTAT3(Tyr705) (p<0.01). Similar results were obtained in the presence of a PLTP mutant without lipid transfer activity (PLTP(M159E)), suggesting that PLTP-mediated lipid transfer is not required for activation of the STAT3 pathway. Inhibition of ABCA1 by chemical inhibitor, glyburide, as well as ABCA1 RNA inhibition, reversed the observed PLTP-mediated activation of STAT3. In addition, PLTP reduced nuclear levels of active nuclear factor kappa-B (NFκB) p65 and secretion of pro-inflammatory cytokines in conditioned media of differentiated THP1 cells and human monocyte-derived macrophages. Our data suggest that PLTP has anti-inflammatory capabilities in macrophages.
Collapse
Affiliation(s)
- S Vuletic
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| | | | | | | | | |
Collapse
|
34
|
Albers JJ, Vuletic S, Cheung MC. Role of plasma phospholipid transfer protein in lipid and lipoprotein metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2011; 1821:345-57. [PMID: 21736953 DOI: 10.1016/j.bbalip.2011.06.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/01/2011] [Accepted: 06/14/2011] [Indexed: 12/13/2022]
Abstract
The understanding of the physiological and pathophysiological role of PLTP has greatly increased since the discovery of PLTP more than a quarter of century ago. A comprehensive review of PLTP is presented on the following topics: PLTP gene organization and structure; PLTP transfer properties; different forms of PLTP; characteristics of plasma PLTP complexes; relationship of plasma PLTP activity, mass and specific activity with lipoprotein and metabolic factors; role of PLTP in lipoprotein metabolism; PLTP and reverse cholesterol transport; insights from studies of PLTP variants; insights of PLTP from animal studies; PLTP and atherosclerosis; PLTP and signal transduction; PLTP in the brain; and PLTP in human disease. PLTP's central role in lipoprotein metabolism and lipid transport in the vascular compartment has been firmly established. However, more studies are needed to further delineate PLTP's functions in specific tissues, such as the lung, brain and adipose tissue. Furthermore, the specific role that PLTP plays in human diseases, such as atherosclerosis, cancer, or neurodegenerative disease, remains to be clarified. Exciting directions for future research include evaluation of PLTP's physiological relevance in intracellular lipid metabolism and signal transduction, which undoubtedly will advance our knowledge of PLTP functions in health and disease. This article is part of a Special Issue entitled Advances in High Density Lipoprotein Formation and Metabolism: A Tribute to John F. Oram (1945-2010).
Collapse
Affiliation(s)
- John J Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, 401 Queen Anne Ave N, Seattle, WA 98109, USA.
| | | | | |
Collapse
|
35
|
Taneja S, Ahmad I, Sen S, Kumar S, Arora R, Gupta VK, Aggarwal R, Narayanasamy K, Reddy VS, Jameel S. Plasma peptidome profiling of acute hepatitis E patients by MALDI-TOF/TOF. Proteome Sci 2011; 9:5. [PMID: 21294899 PMCID: PMC3042370 DOI: 10.1186/1477-5956-9-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 02/04/2011] [Indexed: 01/22/2023] Open
Abstract
Background Hepatitis E is endemic to resource-poor regions, where it manifests as sporadic cases and large waterborne outbreaks. The disease severity ranges from acute self-limited hepatitis with low mortality to fulminant hepatic failure with high mortality. It is believed that the host response plays an important role in determining the progression and outcome of this disease. We profiled the plasma peptidome from hepatitis E patients to discover suitable biomarkers and understand disease pathogenesis. Results The peptidome (< 10 kDa) fraction of plasma was enriched and analyzed by mass spectrometry. A comparative analysis of the peptide pattern of hepatitis E patients versus healthy controls was performed using ClinPro Tools. We generated a peptide profile that could be used for selective identification of hepatitis E cases. We have identified five potential biomarker peaks with m/z values of 9288.6, 7763.6, 4961.5, 1060.572 and 2365.139 that can be used to reliably differentiate between hepatitis E patients and controls with areas under the receiver operating characteristic curve (AUROC) values of 1.00, 0.954, 0.989, 0.960 and 0.829 respectively. A number of proteins involved in innate immunity were identified to be differentially present in the plasma of patients compared to healthy controls. Conclusions Besides the utility of this approach for biomarker discovery, identification of changes in endogenous peptides in hepatitis E patient plasma has increased our understanding of disease pathogenesis. We have identified peptides in plasma that can reliably distinguish hepatitis E patients from healthy controls. Results from this and an earlier proteomics study are discussed.
Collapse
Affiliation(s)
- Shikha Taneja
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi - 110067, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cheung MC, Vaisar T, Han X, Heinecke JW, Albers JJ. Phospholipid transfer protein in human plasma associates with proteins linked to immunity and inflammation. Biochemistry 2010; 49:7314-22. [PMID: 20666409 DOI: 10.1021/bi100359f] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phospholipid transfer protein (PLTP), which associates with apolipoprotein A-I (the major HDL protein), plays a key role in lipoprotein remodeling. Because its level in plasma increases during acute inflammation, it may also play previously unsuspected roles in the innate immune system. To gain further insight into its potential physiological functions, we isolated complexes containing PLTP from plasma by immunoaffinity chromatography and determined their composition. Shotgun proteomics revealed that only 6 of the 24 proteins detected in the complexes were apolipoproteins. The most abundant proteins were clusterin (apoJ), PLTP itself, coagulation factors, complement factors, and apoA-I. Remarkably, 20 of the 24 proteins had known protein-protein interactions. Biochemical studies confirmed two previously established interactions and identified five new ones between PLTP and proteins. Moreover, clusterin, apoA-I, and apoE preserved the lipid-transfer activity of recombinant PLTP in the absence of lipid, indicating that these interactions may have functional significance. Unexpectedly, lipids accounted for only 3% of the mass of the PLTP complexes. Collectively, our observations indicate that PLTP in human plasma resides on lipid-poor complexes dominated by clusterin and proteins implicated in host defense and inflammation. They further suggest that protein-protein interactions drive the formation of PLTP complexes in plasma.
Collapse
Affiliation(s)
- Marian C Cheung
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, School of Medicine, University of Washington, Seattle, Washington 98109, USA
| | | | | | | | | |
Collapse
|
37
|
Ng PC, Ang IL, Chiu RWK, Li K, Lam HS, Wong RPO, Chui KM, Cheung HM, Ng EWY, Fok TF, Sung JJY, Lo YMD, Poon TCW. Host-response biomarkers for diagnosis of late-onset septicemia and necrotizing enterocolitis in preterm infants. J Clin Invest 2010; 120:2989-3000. [PMID: 20592468 DOI: 10.1172/jci40196] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Accepted: 05/12/2010] [Indexed: 11/17/2022] Open
Abstract
Preterm infants are highly susceptible to life-threatening infections that are clinically difficult to detect, such as late-onset septicemia and necrotizing enterocolitis (NEC). Here, we used a proteomic approach to identify biomarkers for diagnosis of these devastating conditions. In a case-control study comprising 77 sepsis/NEC and 77 nonsepsis cases (10 in each group being monitored longitudinally), plasma samples collected at clinical presentation were assessed in the biomarker discovery and independent validation phases. We validated the discovered biomarkers in a prospective cohort study with 104 consecutively suspected sepsis/NEC episodes. Proapolipoprotein CII (Pro-apoC2) and a des-arginine variant of serum amyloid A (SAA) were identified as the most promising biomarkers. The ApoSAA score computed from plasma apoC2 and SAA concentrations was effective in identifying sepsis/NEC cases in the case-control and cohort studies. Stratification of infants into different risk categories by the ApoSAA score enabled neonatologists to withhold treatment in 45% and enact early stoppage of antibiotics in 16% of nonsepsis infants. The negative predictive value of this antibiotic policy was 100%. The ApoSAA score could potentially allow early and accurate diagnosis of sepsis/NEC. Upon confirmation by further multicenter trials, the score would facilitate rational prescription of antibiotics and target infants who require urgent treatment.
Collapse
Affiliation(s)
- Pak Cheung Ng
- Department of Pediatrics, Prince of Wales Hospital, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Heikkilä HM, Trosien J, Metso J, Jauhiainen M, Pentikäinen MO, Kovanen PT, Lindstedt KA. Mast cells promote atherosclerosis by inducing both an atherogenic lipid profile and vascular inflammation. J Cell Biochem 2010; 109:615-23. [PMID: 20024959 DOI: 10.1002/jcb.22443] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Accumulating in vitro and in vivo studies have proposed a role for mast cells in the pathogenesis of atherosclerosis. Here, we studied the role of mast cells in lipoprotein metabolism, a key element in the atherosclerotic disease. Male mice deficient in low-density lipoprotein receptors and mast cells on a Western diet for 26 weeks had significantly less atherosclerotic changes both in aortic sinus (55%, P = 0.0009) and in aorta (31%, P = 0.049), as compared to mast cell-competent littermates. Mast cell-deficient female mice had significantly less atherosclerotic changes in aortic sinus (43%, P = 0.011). Furthermore, we found a significant positive correlation between the extent of atherosclerosis and the number of adventitial/perivascular mast cells in aortic sinus of mast cell-competent mice (r = 0.615, P = 0.015). Serum cholesterol and triglyceride levels were significantly lower in both male (63%, P = 0.0005 and 57%, P = 0.004) and female (73%, P = 0.00009 and 54%, P = 0.007) mast cell-deficient mice, with a concomitant decrease in atherogenic apoB-containing particles and serum prebeta-high-density lipoprotein and phospholipid transfer protein activity in both male (69% and 24%) and female (74% and 54%) mast cell-deficient mice. Serum soluble intercellular adhesion molecule was decreased in both male (32%, P = 0.004) and female (28%, P = 0.003) mast cell-deficient mice, whereas serum amyloid A was similar between mast cell-deficient and competent mice. In conclusion, mast cells participate in the pathogenesis of atherosclerosis in ldlr(-/-) mice by inducing both an atherogenic lipid profile and vascular inflammation.
Collapse
Affiliation(s)
- Hanna M Heikkilä
- Wihuri Research Institute, Kalliolinnantie 4, FI-00140 Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
39
|
Berbée JFP, Coomans CP, Westerterp M, Romijn JA, Havekes LM, Rensen PCN. Apolipoprotein CI enhances the biological response to LPS via the CD14/TLR4 pathway by LPS-binding elements in both its N- and C-terminal helix. J Lipid Res 2010; 51:1943-52. [PMID: 20335569 DOI: 10.1194/jlr.m006809] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Timely sensing of lipopolysaccharide (LPS) is critical for the host to fight invading Gram-negative bacteria. We recently showed that apolipoprotein CI (apoCI) (apoCI1-57) avidly binds to LPS, involving an LPS-binding motif (apoCI48-54), and thereby enhances the LPS-induced inflammatory response. Our current aim was to further elucidate the structure and function relationship of apoCI with respect to its LPS-modulating characteristics and to unravel the mechanism by which apoCI enhances the biological activity of LPS. We designed and generated N- and C-terminal apoCI-derived peptides containing varying numbers of alternating cationic/hydrophobic motifs. ApoCI1-38, apoCI1-30, and apoCI35-57 were able to bind LPS, whereas apoCI1-23 and apoCI46-57 did not bind LPS. In line with their LPS-binding characteristics, apoCI1-38, apoCI1-30, and apoCI35-57 prolonged the serum residence of 125I-LPS by reducing its association with the liver. Accordingly, both apoCI1-30 and apoCI35-57 enhanced the LPS-induced TNFalpha response in vitro (RAW 264.7 macrophages) and in vivo (C57Bl/6 mice). Additional in vitro studies showed that the stimulating effect of apoCI on the LPS response resembles that of LPS-binding protein (LBP) and depends on CD14/ Toll-like receptor 4 signaling. We conclude that apoCI contains structural elements in both its N-terminal and C-terminal helix to bind LPS and to enhance the proinflammatory response toward LPS via a mechanism similar to LBP.
Collapse
Affiliation(s)
- Jimmy F P Berbée
- Department of General Internal Medicine, Endocrinology and Metabolic Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Dong W, Albers JJ, Vuletic S. Phospholipid transfer protein reduces phosphorylation of tau in human neuronal cells. J Neurosci Res 2009; 87:3176-85. [PMID: 19472218 DOI: 10.1002/jnr.22137] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tau function is regulated by phosphorylation, and abnormal tau phosphorylation in neurons is one of the key processes associated with development of Alzheimer's disease and other tauopathies. In this study we provide evidence that phospholipid transfer protein (PLTP), one of the main lipid transfer proteins in the brain, significantly reduces levels of phosphorylated tau and increases levels of the inactive form of glycogen synthase kinase-3beta (GSK3 beta) in HCN2 cells. Furthermore, inhibition of phosphatidylinositol-3 kinase (PI3K) reversed the PLTP-induced increase in levels of GSK3 beta phosphorylated at serine 9 (pGSK3 beta(Ser9)) and partially reversed the PLTP-induced reduction in tau phosphorylation. We provide evidence that the PLTP-induced changes are not due to activation of Disabled-1 (Dab1), insofar as PLTP reduced levels of total and phosphorylated Dab1 in HCN2 cells. We have also shown that inhibition of tyrosine kinase activity of insulin receptor (IR) and/or insulin-like growth factor 1 (IGF1) receptor (IGFR) reverses the PLTP-induced increase in levels of phosphorylated Akt (pAkt(Thr308) and pAkt(Ser473)), suggesting that PLTP-mediated activation of the PI3K/Akt pathway is dependent on IR/IGFR receptor tyrosine kinase activity. Our study suggests that PLTP may be an important modulator of signal transduction pathways in human neurons.
Collapse
Affiliation(s)
- Weijiang Dong
- Northwest Lipid Metabolism and Diabetes Research Laboratories, University of Washington School of Medicine, Seattle, Washington 98109, USA
| | | | | |
Collapse
|
41
|
Barlage S, Gnewuch C, Liebisch G, Wolf Z, Audebert FX, Glück T, Fröhlich D, Krämer BK, Rothe G, Schmitz G. Changes in HDL-associated apolipoproteins relate to mortality in human sepsis and correlate to monocyte and platelet activation. Intensive Care Med 2009; 35:1877-85. [DOI: 10.1007/s00134-009-1609-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 07/01/2009] [Indexed: 11/24/2022]
|
42
|
Quintão ECR, Cazita PM. Lipid transfer proteins: past, present and perspectives. Atherosclerosis 2009; 209:1-9. [PMID: 19733354 DOI: 10.1016/j.atherosclerosis.2009.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 07/02/2009] [Accepted: 08/03/2009] [Indexed: 11/15/2022]
Abstract
Lipid transfer proteins (PLTP and CETP) play roles in atherogenesis by modifying the arterial intima cholesterol content via altering the concentration and function of plasma lipoproteins and influencing inflammation. In this regard, endotoxins impair the reverse cholesterol transport (RCT) system in an endotoxemic rodent model, supporting a pro-inflammatory role of HDL reported in chronic diseases where atherosclerosis is premature. High PLTP activity related to atherosclerosis in some clinical studies, but the mechanisms involved could not be ascertained. In experimental animals the relation of elevated plasma PLTP concentration with atherosclerosis was confounded by HDL-C lowering and by unfavorable effects on several inflammatory markers. Coincidently, PLTP also increases in human experimental endotoxemia and in clinical sepsis. Human population investigations seem to favor low CETP as atheroprotective; this is supported by animal models where overexpression of huCETP is atherogenic, most likely due to increased concentration of apoB-lipoprotein-cholesterol. Thus, in spite of CETP facilitating the HDL-C-mediated RCT, the reduction of apoB-LP-cholesterol concentration is the probable antiatherogenic mechanism of CETP inhibition. On the other hand, experimental huCETP expression protects mice from the harmful effects of a bacterial polysaccharide infusion and the mortality rate of severely ill patients correlates with reduction of the plasma CETP concentration. Thus, the roles played by PLTP and CETP on atherosclerosis and acute inflammation seem contradictory. Therefore, the biological roles of PLTP and CETP must be carefully monitored when investigating drugs that inhibit their activity in the prevention of atherosclerosis.
Collapse
Affiliation(s)
- Eder C R Quintão
- Lipids Lab, LIM 10, Faculty of Medical Sciences, University of São Paulo, SP, Brazil.
| | | |
Collapse
|
43
|
Christoffersen C, Dahlbäck B, Nielsen LB. Apolipoprotein M: Progress in understanding its regulation and metabolic functions. Scand J Clin Lab Invest 2009; 66:631-7. [PMID: 17101555 DOI: 10.1080/00365510600885500] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
ApoM is a novel apolipoprotein mainly present in high-density lipoprotein (HDL). It belongs to the lipocalin protein superfamily and may bind a small but so far unknown lipophilic ligand. It is secreted without cleavage of its hydrophobic signal peptide, which probably anchors apoM in the phospholipid moiety of plasma lipoproteins. Recent studies suggest that apoM may affect HDL metabolism and have anti-atherogenic functions. The subfraction of human HDL that contains apoM therefore protects LDL from oxidation and mediates cholesterol efflux more efficiently then HDL without apoM. In addition to hepatocytes, apoM is highly expressed in kidney proximal tubule cells. Recent data suggest that apoM is secreted into the pre-urine from the tubule cells but is normally taken up again in a megalin-dependent fashion. Further studies of mice with genetically modified apoM expression will be essential to unravel the potential roles of apoM in lipoprotein metabolism, atherosclerosis and kidney biology.
Collapse
Affiliation(s)
- C Christoffersen
- Department of Clinical Biochemistry, Rigshospital, University of Copenhagen, Copenhagen, Denmark.
| | | | | |
Collapse
|
44
|
Zhang Z, Datta G, Zhang Y, Miller AP, Mochon P, Chen YF, Chatham J, Anantharamaiah GM, White CR. Apolipoprotein A-I mimetic peptide treatment inhibits inflammatory responses and improves survival in septic rats. Am J Physiol Heart Circ Physiol 2009; 297:H866-73. [PMID: 19561306 DOI: 10.1152/ajpheart.01232.2008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Systemic inflammation induces a multiple organ dysfunction syndrome that contributes to morbidity and mortality in septic patients. Since increasing plasma apolipoprotein A-I (apoA-I) and HDL may reduce the complications of sepsis, we tested the hypothesis that the apoA-I mimetic peptide 4F confers similar protective effects in rats undergoing cecal ligation and puncture (CLP) injury. Male Sprague-Dawley rats were randomized to undergo CLP or sham surgery. IL-6 levels were significantly elevated in plasma by 6 h after CLP surgery compared with shams. In subsequent studies, CLP rats were further subdivided to receive vehicle or 4F (10 mg/kg) by intraperitoneal injection, 6 h after sepsis induction. Sham-operated rats received saline. Echocardiographic studies showed a reduction in left ventricular end-diastolic volume, stroke volume, and cardiac output (CO) 24 h after CLP surgery. These changes were associated with reduced blood volume and left ventricular filling pressure. 4F treatment improved blood volume status, increased CO, and reduced plasma IL-6 in CLP rats. Total cholesterol (TC) and HDL were 79 +/- 5 and 61 +/- 4 mg/dl, respectively, in sham rats. TC was significantly reduced in CLP rats (54 +/- 3 mg/dl) due to a reduction in HDL (26 +/- 3 mg/dl). 4F administration to CLP rats attenuated the reduction in TC (69 +/- 4 mg/dl) and HDL (41 +/- 3 mg/dl) and prevented sepsis-induced changes in HDL protein composition. Increased plasma HDL in 4F-treated CLP rats was associated with an improvement in CO and reduced mortality. It is proposed that protective effects of 4F are related to its ability to prevent the sepsis-induced reduction in plasma HDL.
Collapse
Affiliation(s)
- Zhenghao Zhang
- Department of Physiology and Biophysics, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Apostolou F, Gazi IF, Kostoula A, Tellis CC, Tselepis AD, Elisaf M, Liberopoulos EN. Persistence of an atherogenic lipid profile after treatment of acute infection with Brucella. J Lipid Res 2009; 50:2532-9. [PMID: 19535817 DOI: 10.1194/jlr.p900063-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Serum lipid changes during infection may be associated with atherogenesis. No data are available on the effect of Brucellosis on lipids. Lipid parameters were determined in 28 patients with Brucellosis on admission and 4 months following treatment and were compared with 24 matched controls. Fasting levels of total cholesterol (TC), HDL-cholesterol (HDL-C), triglycerides, apolipoproteins (Apo) A, B, E CII, and CIII, and oxidized LDL (oxLDL) were measured. Activities of serum cholesterol ester transfer protein (CETP), paraoxonase 1 (PON1), and lipoprotein-associated phospholipase A(2) (Lp-PLA(2)) and levels of cytokines [interleukins (IL)-1beta, IL-6, and tumor necrosis factor (TNFa)] were also determined. On admission, patients compared with controls had 1) lower levels of TC, HDL-C, LDL-cholesterol (LDL-C), ApoB, ApoAI, and ApoCIII and higher LDL-C/HDL-C and ApoB/ApoAI ratios; 2) higher levels of IL-1b, IL-6, and TNFa; 3) similar ApoCII and oxLDL levels and Lp-PLA(2) activity, lower PON1, and higher CETP activity; and 4) higher small dense LDL-C concentration. Four months later, increases in TC, HDL-C, LDL-C, ApoB, ApoAI, and ApoCIII levels, ApoB/ApoAI ratio, and PON1 activity were noticed compared with baseline, whereas CETP activity decreased. LDL-C/HDL-C ratio, ApoCII, and oxLDL levels, Lp-PLA(2) activity, and small dense LDL-C concentration were not altered. Brucella infection is associated with an atherogenic lipid profile that is not fully restored 4 months following treatment.
Collapse
Affiliation(s)
- F Apostolou
- Department of Internal Medicine, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | |
Collapse
|
46
|
Thompson PA, Berbée JFP, Rensen PCN, Kitchens RL. Apolipoprotein A-II augments monocyte responses to LPS by suppressing the inhibitory activity of LPS-binding protein. Innate Immun 2009; 14:365-74. [PMID: 19039060 DOI: 10.1177/1753425908099171] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Lipopolysaccharide (LPS) binding protein (LBP) plays an important role in regulating leukocyte responses to LPS. Remarkably, it may either augment these responses at low LBP concentrations or inhibit them at high concentrations. We previously reported that native high-density lipoprotein (HDL) augments human monocyte responses to LPS by suppressing the inhibitory activity of high concentrations of LBP, a process that occurs before HDL can inhibit the response by subsequently binding and neutralizing LPS. We now show that this novel activity is conferred largely by an HDL component protein, apolipoprotein (apo)A-II. Purified apoA-II was highly active in our assays. We also found that HDL from apoA-II-deficient mice was almost completely inactive, whereas the activities of HDLs that lacked apoA-I, apoC-I, apoE, or apoC-III were similar to that of wild-type HDL. Decreased activity was also observed in rabbit HDL, which is naturally deficient in apoA-II. Incorporating human apoA-II into rabbit HDL increased its activity to levels found in human HDL. Our investigation of the mechanism of apoA-II activity revealed that LBP promoted the formation of large LPS aggregates with low bioactivity and that apoA-II inhibited the formation of these aggregates without binding and directly inhibiting LPS bioactivity. Our results suggest a novel pro-inflammatory activity of apoA-II that may help maintain sensitive host responses to LPS by suppressing LBP-mediated inhibition. Our findings also raise the possibility that the decline of plasma apoA-II during sepsis may help control the response to LPS.
Collapse
Affiliation(s)
- Patricia A Thompson
- Department of Internal Medicine, Division of Infectious Diseases, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | | |
Collapse
|
47
|
Vuletic S, Taylor BA, Tofler GH, Chait A, Marcovina SM, Schenck K, Albers JJ. SAA and PLTP activity in plasma of periodontal patients before and after full-mouth tooth extraction. Oral Dis 2009; 14:514-9. [PMID: 18826383 DOI: 10.1111/j.1601-0825.2007.01411.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To assess whether treatment of advanced periodontal disease affects plasma levels of serum amyloid A (SAA) and phospholipid transfer protein (PLTP) activity. DESIGN We measured the levels of SAA and PLTP activity in plasma of 66 patients with advanced periodontal disease before and after treatment by full-mouth tooth extraction (FME). RESULTS At baseline, median SAA levels in our study population were within the normal range (2.7 microg ml(-1)) but SAA was elevated (>5 microg ml(-1)) in 18% of periodontitis patients. Three months after FME, SAA levels were significantly reduced (P = 0.04). SAA did not correlate with any of the periodontal disease parameters. PLTP activity was elevated in patients with periodontitis, compared to the PLTP activity reference group (age-matched systemically healthy adults, n = 29; 18 micromol ml(-1) h(-1)vs 13 micromol ml(-1) h(-1), respectively, P = 0.002). PLTP activity inversely correlated with average periodontal pocket depth (PPD) per tooth (r(s) = -0.372; P = 0.002). Three months after FME, median PLTP activity did not change significantly. CONCLUSIONS Full-mouth tooth extraction significantly reduces SAA, a marker of inflammation, while it does not affect plasma PLTP activity. However, the inverse correlation between PLTP activity and average PPD suggests that increased PLTP activity may limit periodontal tissue damage.
Collapse
Affiliation(s)
- S Vuletic
- Department of Medicine, University of Washington, Seattle, Washington 98109, United States.
| | | | | | | | | | | | | |
Collapse
|
48
|
Liu X, Kruger P, Roberts MS. Optimizing Drug Dosing in the ICU. Intensive Care Med 2009. [DOI: 10.1007/978-0-387-92278-2_78] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
49
|
Local and systemic responses in matrix metalloproteinase 8-deficient mice during Porphyromonas gingivalis-induced periodontitis. Infect Immun 2008; 77:850-9. [PMID: 19029300 DOI: 10.1128/iai.00873-08] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Periodontitis is a bacterium-induced chronic inflammation that destroys tissues that attach teeth to jaw bone. Pathologically excessive matrix metalloproteinase 8 (MMP-8) is among the key players in periodontal destruction by initiating type I collagen degradation. We studied MMP-8 in Porphyromonas gingivalis-induced periodontitis by using MMP-8-deficient (MMP8(-/-)) and wild-type (WT) mice. Alveolar bone loss, inflammatory mediator expression, serum immunoglobulin, and lipoprotein responses were investigated to clarify the role of MMP-8 in periodontitis and systemic inflammatory responses. P. gingivalis infection induced accelerated site-specific alveolar bone loss in both MMP8(-/-) and WT mice relative to uninfected mice. The most extensive bone degradation took place in the P. gingivalis-infected MMP8(-/-) group. Surprisingly, MMP-8 significantly attenuated (P < 0.05) P. gingivalis-induced site-specific alveolar bone loss. Increased alveolar bone loss in P. gingivalis-infected MMP8(-/-) and WT mice was associated with increase in gingival neutrophil elastase production. Serum lipoprotein analysis demonstrated changes in the distribution of high-density lipoprotein (HDL) and very-low-density lipoprotein (VLDL) particles; unlike the WT mice, the MMP8(-/-) mice underwent a shift toward a smaller HDL/VLDL particle sizes. P. gingivalis infection increased the HDL/VLDL particle size in the MMP8(-/-) mice, which is an indicator of lipoprotein responses during systemic inflammation. Serum total lipopolysaccharide activity and the immunoglobulin G-class antibody level in response to P. gingivalis were significantly elevated in both infected mice groups. Thus, MMP-8 appears to act in a protective manner inhibiting the development of bacterium-induced periodontal tissue destruction, possibly through the processing anti-inflammatory cytokines and chemokines. Bacterium-induced periodontitis, especially in MMP8(-/-) mice, is associated with systemic inflammatory and lipoprotein changes that are likely involved in early atherosclerosis.
Collapse
|
50
|
Diehl LA, Fabris BA, Barbosa DS, De Faria EC, Wiechmann SL, Carrilho AJ. Metformin increases HDL3-cholesterol and decreases subcutaneous truncal fat in nondiabetic patients with HIV-associated lipodystrophy. AIDS Patient Care STDS 2008; 22:779-86. [PMID: 18800870 DOI: 10.1089/apc.2008.0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to assess metformin effects on high-density lipoprotein (HDL) composition of patients with HIV-associated lipodystrophy (LDHIV). Twenty-four adult outpatients were enrolled to receive metformin (1700 mg/d) during 6 months, but 2 were lost to follow-up and 6 stopped the drug due to adverse events (gastrointestinal in 5, and excessive weight loss in 1). From the 16 subjects who completed the study, 69% were female. At baseline, 3 and 6 months, we assessed: weight, waist and hip circumferences, blood pressure, fasting glucose and insulin, homeostasis model assessment of insulin resistance (HOMA2-IR), lipids, and HDL subfractions by microultracentrifugation. At 0 and 6 months, body fat distribution was assessed by computed tomography (CT) scan (L4 and middle femur). Metformin use was associated with reduction of mean weight (-2.4Kg at 6 months; p < 0.001), body mass index, waist, waist-to-hip ratio and a marked decrease in blood pressure (p < 0.001). Subcutaneous (p = 0.01) and total abdominal fat (p = 0.002) were reduced, but no change was found in visceral or thigh fat. No difference was detected on plasma glucose, insulin, HOMA2-IR, cholesterol or triglycerides, except for an increase in HDL3-cholesterol (from 21 mg/dL to 24 mg/dL, p = 0.002) and a reduction of nascent HDL (the fraction of plasma HDL-cholesterol not associated to subfractions HDL2 or HDL3) (p = 0.008). Adverse effects were very common, but most were gastrointestinal and mild. Thus, metformin use in LDHIV increases HDL3-cholesterol (probably due to improved maturation of HDL) and decreases blood pressure, weight, waist, and subcutaneous truncal fat, making this an attractive option for preventing cardiovascular disease in this population.
Collapse
|