1
|
Li A, Tomita H, Xu L. Temporal gene expression changes and affected pathways in neurodevelopment of a mouse model of Smith-Lemli-Opitz syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568116. [PMID: 38045361 PMCID: PMC10690207 DOI: 10.1101/2023.11.21.568116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Smith-Lemli-Opitz syndrome is an autosomal recessive disorder that arises from mutations in the gene DHCR7, which encodes the terminal enzyme of cholesterol biosynthesis, leading to decreased production of cholesterol and accumulation of the cholesterol precursor, 7-dehydrocholesterol, and its oxysterol metabolites. The disorder displays a wide range of neurodevelopmental defects, intellectual disability, and behavioral problems. However, an in-depth study on the temporal changes of gene expression in the developing brains of SLOS mice has not been done before. In this work, we carried out the transcriptomic analysis of whole brains from WT and Dhcr7-KO mice at four-time points through postnatal day 0. First, we observed the expected downregulation of the Dhcr7 gene in the Dhcr7-KO mouse model, as well as gene expression changes of several other genes involved in cholesterol biosynthesis throughout all time points. Pathway and GO term enrichment analyses revealed affected signaling pathways and biological processes that were shared amongst time points and unique to individual time points. Specifically, the pathways important for embryonic development, including Hippo, Wnt, and TGF-β signaling pathways are the most significantly affected at the earliest time point, E12.5. Additionally, neurogenesis-related GO terms were enriched in earlier time points, consistent with the timing of development. Conversely, pathways related to synaptogenesis, which occurs later in development compared to neurogenesis, are significantly affected at the later time points, E16.5 and PND0, including the cholinergic, glutamatergic, and GABAergic synapses. The impact of these transcriptomic changes and enriched pathways is discussed in the context of known biological phenotypes of SLOS.
Collapse
Affiliation(s)
- Amy Li
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Hideaki Tomita
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| |
Collapse
|
2
|
Li A, Xu L. MALDI-IM-MS Imaging of Brain Sterols and Lipids in a Mouse Model of Smith-Lemli-Opitz Syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.02.560415. [PMID: 37873113 PMCID: PMC10592934 DOI: 10.1101/2023.10.02.560415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a neurodevelopmental disorder caused by genetic mutations in the DHCR7 gene, encoding the enzyme 3β-hydroxysterol-Δ7-reductase (DHCR7) that catalyzes the last step of cholesterol synthesis. The resulting deficiency in cholesterol and accumulation of its precursor, 7-dehydrocholesterol (7-DHC), have a profound impact on brain development, which manifests as developmental delay, cognitive impairment, and behavioral deficits. To understand how the brain regions are differentially affected by the defective Dhcr7, we aim to map the regional distribution of sterols and other lipids in neonatal brains from a Dhcr7-KO mouse model of SLOS, using mass spectrometry imaging (MSI). MSI enables spatial localization of biomolecules in situ on the surface of a tissue section, which is particularly useful for mapping the changes that occur within a metabolic disorder such as SLOS, and in an anatomically complex organ such as the brain. In this work, using MALDI-ion mobility (IM)-MSI, we successfully determined the regional distribution of features that correspond to cholesterol, 7-DHC/desmosterol, and the precursor of desmosterol, 7-dehydrodesmosterol, in WT and Dhcr7-KO mice. Interestingly, we also observed m/z values that match the major oxysterol metabolites of 7-DHC (DHCEO and hydroxy-7-DHC), which displayed similar patterns as 7-DHC. We then identified brain lipids using m/z and CCS at the Lipid Species-level and curated a database of MALDIIM-MS-derived lipid CCS values. Subsequent statistical analysis of regions-of-interest allowed us to identify differentially expressed lipids between Dhcr7-KO and WT brains, which could contribute to defects in myelination, neurogenesis, neuroinflammation, and learning and memory in SLOS.
Collapse
Affiliation(s)
- Amy Li
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195
| |
Collapse
|
3
|
Chattopadhyay A, Sharma A. Smith-Lemli-Opitz syndrome: A pathophysiological manifestation of the Bloch hypothesis. Front Mol Biosci 2023; 10:1120373. [PMID: 36714259 PMCID: PMC9878332 DOI: 10.3389/fmolb.2023.1120373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
The biosynthesis of cholesterol, an essential component of higher eukaryotic membranes, was worked out by Konrad Bloch (and Feodor Lynen) in the 1960s and they received the Nobel Prize around that time in recognition of their pioneering contributions. An elegant consequence of this was a hypothesis proposed by Konrad Bloch (the Bloch hypothesis) which suggests that each subsequent intermediate in the cholesterol biosynthesis pathway is superior in supporting membrane function in higher eukaryotes relative to its precursor. In this review, we discuss an autosomal recessive metabolic disorder, known as Smith-Lemli-Opitz syndrome (SLOS), associated with a defect in the Kandutsch-Russell pathway of cholesterol biosynthesis that results in accumulation of the immediate precursor of cholesterol in its biosynthetic pathway (7-dehydrocholesterol) and an altered cholesterol to total sterol ratio. Patients suffering from SLOS have several developmental, behavioral and cognitive abnormalities for which no drug is available yet. We characterize SLOS as a manifestation of the Bloch hypothesis and review its molecular etiology and current treatment. We further discuss defective Hedgehog signaling in SLOS and focus on the role of the serotonin1A receptor, a representative neurotransmitter receptor belonging to the GPCR family, in SLOS. Notably, ligand binding activity and cellular signaling of serotonin1A receptors are impaired in SLOS-like condition. Importantly, cellular localization and intracellular trafficking of the serotonin1A receptor (which constitute an important determinant of a GPCR cellular function) are compromised in SLOS. We highlight some of the recent developments and emerging concepts in SLOS pathobiology and suggest that novel therapies based on trafficking defects of target receptors could provide new insight into treatment of SLOS.
Collapse
Affiliation(s)
- Amitabha Chattopadhyay
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India,*Correspondence: Amitabha Chattopadhyay,
| | - Ashwani Sharma
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
4
|
Tomita H, Hines KM, Herron JM, Li A, Baggett DW, Xu L. 7-Dehydrocholesterol-derived oxysterols cause neurogenic defects in Smith-Lemli-Opitz syndrome. eLife 2022; 11:e67141. [PMID: 36111785 PMCID: PMC9519149 DOI: 10.7554/elife.67141] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Defective 3β-hydroxysterol-Δ7 -reductase (DHCR7) in the developmental disorder, Smith-Lemli-Opitz syndrome (SLOS), results in a deficiency in cholesterol and accumulation of its precursor, 7-dehydrocholesterol (7-DHC). Here, we show that loss of DHCR7 causes accumulation of 7-DHC-derived oxysterol metabolites, premature neurogenesis from murine or human cortical neural precursors, and depletion of the cortical precursor pool, both in vitro and in vivo. We found that a major oxysterol, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), mediates these effects by initiating crosstalk between glucocorticoid receptor (GR) and neurotrophin receptor kinase TrkB. Either loss of DHCR7 or direct exposure to DHCEO causes hyperactivation of GR and TrkB and their downstream MEK-ERK-C/EBP signaling pathway in cortical neural precursors. Moreover, direct inhibition of GR activation with an antagonist or inhibition of DHCEO accumulation with antioxidants rescues the premature neurogenesis phenotype caused by the loss of DHCR7. These results suggest that GR could be a new therapeutic target against the neurological defects observed in SLOS.
Collapse
Affiliation(s)
- Hideaki Tomita
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Kelly M Hines
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Josi M Herron
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Amy Li
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - David W Baggett
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| | - Libin Xu
- Department of Medicinal Chemistry, University of WashingtonSeattleUnited States
| |
Collapse
|
5
|
Li A, Hines KM, Ross DH, MacDonald JW, Xu L. Temporal changes in the brain lipidome during neurodevelopment of Smith-Lemli-Opitz syndrome mice. Analyst 2022; 147:1611-1621. [PMID: 35293916 PMCID: PMC9018458 DOI: 10.1039/d2an00137c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neurodevelopment is an intricately orchestrated program of cellular events that occurs with tight temporal and spatial regulation. While it is known that the development and proper functioning of the brain, which is the second most lipid rich organ behind adipose tissue, greatly rely on lipid metabolism and signaling, the temporal lipidomic changes that occur throughout the course of neurodevelopment have not been investigated. Smith-Lemli-Opitz syndrome is a metabolic disorder caused by genetic mutations in the DHCR7 gene, leading to defective 3β-hydroxysterol-Δ7-reductase (DHCR7), the enzyme that catalyzes the last step of the Kandutsch-Russell pathway of cholesterol synthesis. Due to the close regulatory relationship between sterol and lipid homeostasis, we hypothesize that altered or dysregulated lipid metabolism beyond the primary defect of cholesterol biosynthesis is present in the pathophysiology of SLOS. Herein, we applied our HILIC-IM-MS method and LiPydomics Python package to streamline an untargeted lipidomics analysis of developing mouse brains in both wild-type and Dhcr7-KO mice, identifying lipids at Level 3 (lipid species level: lipid class/subclass and fatty acid sum composition). We compared relative lipid abundances throughout development, from embryonic day 12.5 to postnatal day 0 and determined differentially expressed brain lipids between wild-type and Dhcr7-KO mice at specific developmental time points, revealing lipid metabolic pathways that are affected in SLOS beyond the cholesterol biosynthesis pathway, such as glycerolipid, glycerophospholipid, and sphingolipid metabolism. Implications of the altered lipid metabolic pathways in SLOS pathophysiology are discussed.
Collapse
Affiliation(s)
- Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.
| | - Kelly M Hines
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.
| | - Dylan H Ross
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.
| | - James W MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA, USA.
| |
Collapse
|
6
|
Kaub PA, Sharp PC, Ranieri E, Fletcher JM. Isolated autism is not an indication for Smith-Lemli-Opitz syndrome biochemical testing. J Paediatr Child Health 2022; 58:630-635. [PMID: 34773316 DOI: 10.1111/jpc.15795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 12/01/2022]
Abstract
UNLABELLED Several studies have demonstrated a high incidence of autistic spectrum features in individuals with Smith-Lemli-Opitz syndrome (SLOS). However, do these findings imply a converse relationship that has diagnostic utility? Is SLOS testing implicated when autism spectrum disorder (ASD) is the only clinical indication? AIM To determine if there is any correlation with a clinical indication of ASD and a biochemical diagnosis of SLOS, based on historical test request and assay data. METHODS Six years (2008-2013) of clinical test requests for 7-dehydrocholesterol (7-DHC) level were classified and summarised according to indication and final test result. RESULTS From the audit period, 988 valid test results from post-natal samples were identified. In plasma/serum, mean 7-DHC level was 264.7 μmol/L (normal range < 2.0) for confirmed SLOS cases. No tests performed due to an isolated clinical indication of ASD or where no clinical information was supplied were associated with 7-DHC levels diagnostic for SLOS. CONCLUSIONS Historical test data analysis supports the recommendation that autism/ASD as a single clinical feature is not an appropriate indication for SLOS (7-DHC) biochemical testing.
Collapse
Affiliation(s)
- Peter A Kaub
- Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia.,Faculty of Health and Medical Sciences, Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Peter C Sharp
- Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Enzo Ranieri
- Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | - Janice M Fletcher
- Genetics and Molecular Pathology, SA Pathology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Koczok K, Horváth L, Korade Z, Mezei ZA, Szabó GP, Porter NA, Kovács E, Mirnics K, Balogh I. Biochemical and Clinical Effects of Vitamin E Supplementation in Hungarian Smith-Lemli-Opitz Syndrome Patients. Biomolecules 2021; 11:biom11081228. [PMID: 34439893 PMCID: PMC8393612 DOI: 10.3390/biom11081228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/02/2021] [Accepted: 08/12/2021] [Indexed: 11/16/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a severe monogenic disorder resulting in low cholesterol and high 7-dehydrocholesterol (7-DHC) levels. 7-DHC-derived oxysterols likely contribute to disease pathophysiology, and thus antioxidant treatment might be beneficial because of high oxidative stress. In a three-year prospective study, we investigated the effects of vitamin E supplementation in six SLOS patients already receiving dietary cholesterol treatment. Plasma vitamin A and E concentrations were determined by the high-performance liquid chromatography (HPLC) method. At baseline, plasma 7-DHC, 8-dehydrocholesterol (8-DHC) and cholesterol levels were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) method. The clinical effect of the supplementation was assessed by performing structured parental interviews. At baseline, patients were characterized by low or low-normal plasma vitamin E concentrations (7.19-15.68 μmol/L), while vitamin A concentrations were found to be normal or high (1.26-2.68 μmol/L). Vitamin E supplementation resulted in correction or significant elevation of plasma vitamin E concentration in all patients. We observed reduced aggression, self-injury, irritability, hyperactivity, attention deficit, repetitive behavior, sleep disturbance, skin photosensitivity and/or eczema in 3/6 patients, with notable individual variability. Clinical response to therapy was associated with a low baseline 7-DHC + 8-DHC/cholesterol ratio (0.2-0.4). We suggest that determination of vitamin E status is important in SLOS patients. Supplementation of vitamin E should be considered and might be beneficial.
Collapse
Affiliation(s)
- Katalin Koczok
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.K.); (E.K.)
| | - László Horváth
- Department of Pharmaceutical Surveillance and Economics, Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary;
| | - Zeljka Korade
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Zoltán András Mezei
- Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Gabriella P. Szabó
- Department of Pediatrics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Ned A. Porter
- Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA;
| | - Eszter Kovács
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.K.); (E.K.)
| | - Károly Mirnics
- Departments of Psychiatry, Biochemistry & Molecular Biology, Pharmacology & Experimental Neuroscience and Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68106, USA;
| | - István Balogh
- Division of Clinical Genetics, Department of Laboratory Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (K.K.); (E.K.)
- Department of Human Genetics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +36-52-340-006
| |
Collapse
|
8
|
Madan B, Virshup DM, Nes WD, Leaver DJ. Unearthing the Janus-face cholesterogenesis pathways in cancer. Biochem Pharmacol 2021; 196:114611. [PMID: 34010597 DOI: 10.1016/j.bcp.2021.114611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/23/2022]
Abstract
Cholesterol biosynthesis, primarily associated with eukaryotes, occurs as an essential component of human metabolism with biosynthetic deregulation a factor in cancer viability. The segment that partitions between squalene and the C27-end cholesterol yields the main cholesterogenesis branch subdivided into the Bloch and Kandutsch-Russell pathways. Their importance in cell viability, in normal growth and development originates primarily from the amphipathic property and shape of the cholesterol molecule which makes it suitable as a membrane insert. Cholesterol can also convert to variant oxygenated product metabolites of distinct function producing a complex interplay between cholesterol synthesis and overall steroidogenesis. In this review, we disassociate the two sides of cholesterogenesisis affecting the type and amounts of systemic sterols-one which is beneficial to human welfare while the other dysfunctional leading to misery and disease that could result in premature death. Our focus here is first to examine the cholesterol biosynthetic genes, enzymes, and order of biosynthetic intermediates in human cholesterogenesis pathways, then compare the effect of proximal and distal inhibitors of cholesterol biosynthesis against normal and cancer cell growth and metabolism. Collectively, the inhibitor studies of druggable enzymes and specific biosynthetic steps, suggest a potential role of disrupted cholesterol biosynthesis, in coordination with imported cholesterol, as a factor in cancer development and as discussed some of these inhibitors have chemotherapeutic implications.
Collapse
Affiliation(s)
- Babita Madan
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - David M Virshup
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore; Department of Pediatrics, Duke University, Durham, NC, USA
| | - W David Nes
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| | - David J Leaver
- Department of Biology, Geology, and Physical Sciences, Sul Ross State University, Alpine, TX, USA.
| |
Collapse
|
9
|
Miyamoto S, Lima RS, Inague A, Viviani LG. Electrophilic oxysterols: generation, measurement and protein modification. Free Radic Res 2021; 55:416-440. [PMID: 33494620 DOI: 10.1080/10715762.2021.1879387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cholesterol is an essential component of mammalian plasma membranes. Alterations in sterol metabolism or oxidation have been linked to various pathological conditions, including cardiovascular diseases, cancer, and neurodegenerative disorders. Unsaturated sterols are vulnerable to oxidation induced by singlet oxygen and other reactive oxygen species. This process yields reactive sterol oxidation products, including hydroperoxides, epoxides as well as aldehydes. These oxysterols, in particular those with high electrophilicity, can modify nucleophilic sites in biomolecules and affect many cellular functions. Here, we review the generation and measurement of reactive sterol oxidation products with emphasis on cholesterol hydroperoxides and aldehyde derivatives (electrophilic oxysterols) and their effects on protein modifications.
Collapse
Affiliation(s)
- Sayuri Miyamoto
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Rodrigo S Lima
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Alex Inague
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas G Viviani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
10
|
Fliesler SJ. EDITOR'S PERSPECTIVE: On the verge of translation: Combined cholesterol-antioxidant supplementation as a potential therapeutic intervention for Smith-Lemli-Opitz syndrome. Exp Eye Res 2020; 202:108390. [PMID: 33307076 DOI: 10.1016/j.exer.2020.108390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and the Neuroscience Graduate Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo- the State University of New York, Buffalo, NY, 14215-1129, USA; Research Service, Western New York Healthcare System, Buffalo, NY, 14215-1129, USA.
| |
Collapse
|
11
|
Kanuri B, Fong V, Ponny SR, Tallman KA, Rao SR, Porter N, Fliesler SJ, Patel SB. Generation and validation of a conditional knockout mouse model for the study of the Smith-Lemli-Opitz syndrome. J Lipid Res 2020; 62:100002. [PMID: 33410752 PMCID: PMC7890206 DOI: 10.1194/jlr.ra120001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/08/2020] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
Smith-Lemli-Opitz Syndrome (SLOS) is a developmental disorder (OMIM #270400) caused by autosomal recessive mutations in the Dhcr7 gene, which encodes the enzyme 3β-hydroxysterol-Δ7 reductase. SLOS patients present clinically with dysmorphology and neurological, behavioral, and cognitive defects, with characteristically elevated levels of 7-dehydrocholesterol (7-DHC) in all bodily tissues and fluids. Previous mouse models of SLOS have been hampered by postnatal lethality when Dhcr7 is knocked out globally, while a hypomorphic mouse model showed improvement in the biochemical phenotype with aging and did not manifest most other characteristic features of SLOS. We report the generation of a conditional knockout of Dhcr7 (Dhcr7flx/flx), validated by generating a mouse with a liver-specific deletion (Dhcr7L-KO). Phenotypic characterization of liver-specific knockout mice revealed no significant changes in viability, fertility, growth curves, liver architecture, hepatic triglyceride secretion, or parameters of systemic glucose homeostasis. Furthermore, qPCR and RNA-Seq analyses of livers revealed no perturbations in pathways responsible for cholesterol synthesis, either in male or in female Dhcr7L-KO mice, suggesting that hepatic disruption of postsqualene cholesterol synthesis leads to minimal impact on sterol metabolism in the liver. This validated conditional Dhcr7 knockout model may now allow us to systematically explore the pathophysiology of SLOS, by allowing for temporal, cell and tissue-specific loss of DHCR7.
Collapse
Affiliation(s)
- Babunageswararao Kanuri
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Vincent Fong
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA
| | - Sithara Raju Ponny
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Keri A Tallman
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Sriganesh Ramachandra Rao
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo-State University of New York, Buffalo, NY, USA
| | - Ned Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Steven J Fliesler
- Departments of Ophthalmology and Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo-State University of New York, Buffalo, NY, USA; Graduate Program in Neuroscience, University at Buffalo- State University of New York, Buffalo, NY, USA; Research Service, VA Western New York Healthcare System, Buffalo, NY, USA
| | - Shailendra B Patel
- Division of Endocrinology, Diabetes and Metabolism, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
12
|
Glinton KE, Elsea SH. Untargeted Metabolomics for Autism Spectrum Disorders: Current Status and Future Directions. Front Psychiatry 2019; 10:647. [PMID: 31551836 PMCID: PMC6746843 DOI: 10.3389/fpsyt.2019.00647] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022] Open
Abstract
Autism spectrum disorders (ASDs) are a group of neurodevelopment disorders characterized by childhood onset deficits in social communication and interaction. Although the exact etiology of most cases of ASDs is unknown, a portion has been proposed to be associated with various metabolic abnormalities including mitochondrial dysfunction, disorders of cholesterol metabolism, and folate abnormalities. Targeted biochemical testing like plasma amino acid and acylcarnitine profiles have demonstrated limited utility in helping to diagnose and manage such patients. Untargeted metabolomics has emerged, however, as a promising tool in screening for underlying biochemical abnormalities and managing treatment and as a means of investigating possible novel biomarkers for the disorder. Here, we review the principles and methodology behind untargeted metabolomics, recent pilot studies utilizing this technology, and areas in which it may be integrated into the care of children with this disorder in the future.
Collapse
Affiliation(s)
- Kevin E. Glinton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| | - Sarah H. Elsea
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
13
|
Herron JM, Hines KM, Tomita H, Seguin RP, Cui JY, Xu L. Multi-omics investigation reveals benzalkonium chloride disinfectants alter sterol and lipid homeostasis in the mouse neonatal brain. Toxicol Sci 2019; 171:32-45. [PMID: 31199489 PMCID: PMC6736422 DOI: 10.1093/toxsci/kfz139] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Lipids are critical for neurodevelopment; therefore, disruption of lipid homeostasis by environmental chemicals is expected to have detrimental effects on this process. Previously, we demonstrated that the benzalkonium chlorides (BACs), a class of commonly used disinfectants, alter cholesterol biosynthesis and lipid homeostasis in neuronal cell cultures in a manner dependent on their alkyl chain length. However, the ability of BACs to reach the neonatal brain and alter sterol and lipid homeostasis during neurodevelopment in vivo has not been characterized. Therefore, the goal of this study was to use targeted and untargeted mass spectrometry and transcriptomics to investigate the effect of BACs on sterol and lipid homeostasis, and to predict the mechanism of toxicity of BACs on neurodevelopmental processes. After maternal dietary exposure to 120 mg BAC/kg body weight/day, we quantified BAC levels in the mouse neonatal brain, demonstrating for the first time that BACs can cross the blood-placental barrier and enter the developing brain. Transcriptomic analysis of neonatal brains using RNA sequencing revealed alterations in canonical pathways related to cholesterol biosynthesis, liver X receptor-retinoid X receptor (LXR/RXR) signaling, and glutamate receptor signaling. Mass spectrometry analysis revealed decreases in total sterol levels and downregulation of triglycerides and diglycerides, which were consistent with the upregulation of genes involved in sterol biosynthesis and uptake as well as inhibition of LXR signaling. In conclusion, these findings demonstrate that BACs target sterol and lipid homeostasis and provide new insights for the possible mechanisms of action of BACs as developmental neurotoxicants.
Collapse
Affiliation(s)
- Josi M Herron
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Kelly M Hines
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Hideaki Tomita
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Ryan P Seguin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Julia Yue Cui
- Department of Medicinal Chemistry, University of Washington, Seattle, WA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, WA.,Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| |
Collapse
|
14
|
Fliesler SJ, Xu L. Oxysterols and Retinal Degeneration in a Rat Model of Smith-Lemli-Opitz Syndrome: Implications for an Improved Therapeutic Intervention. Molecules 2018; 23:E2720. [PMID: 30360379 PMCID: PMC6222618 DOI: 10.3390/molecules23102720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 01/31/2023] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive human disease caused by mutations in the gene encoding 7-dehydrocholesterol (7DHC) reductase (DHCR7), resulting in abnormal accumulation of 7DHC and reduced levels of cholesterol in bodily tissues and fluids. A rat model of the disease has been created by treating normal rats with the DHCR7 inhibitor, AY9944, which causes progressive, irreversible retinal degeneration. Herein, we review the features of this disease model and the evidence linking 7DHC-derived oxysterols to the pathobiology of the disease, with particular emphasis on the associated retinal degeneration. A recent study has shown that treating the rat model with cholesterol plus suitable antioxidants completely prevents the retinal degeneration. These findings are discussed with regard to their translational implications for developing an improved therapeutic intervention for SLOS over the current standard of care.
Collapse
Affiliation(s)
- Steven J Fliesler
- Departments of Ophthalmology and Biochemistry and Neuroscience Program, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
- Research Service, VA Western NY Healthcare System, Buffalo, NY 14260, USA.
| | - Libin Xu
- Department of Medicinal Chemistry, School of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
15
|
Chasalow F, Pierce-Cohen L. Ionotropin is the mammalian digoxin-like material (DLM). It is a phosphocholine ester of a steroid with 23 carbon atoms. Steroids 2018; 136:63-75. [PMID: 29550540 DOI: 10.1016/j.steroids.2018.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/06/2018] [Accepted: 03/01/2018] [Indexed: 11/22/2022]
Abstract
We describe a novel steroid, which we have named "Ionotropin". Its unique features are: [1] it has 23 carbon atoms and [2] it is a phosphocholine ester. There are no other known mammalian steroids with either structural feature. Ionotropin cross reacts with digoxin-specific antibodies and may be the long-sought, endogenous, mammalian digoxin-like material (DLM). Using LC-MS, we identified three other phosphocholine steroids in serum. Two of these steroids also cross-react with digoxin specific antibodies. In adrenal extracts, we found both phosphocholine esters and corresponding phospho-ethanolamine steroid esters. There are no other known phosphoethanolamine steroid esters. Together, these 8 compounds define a biosynthetic pathway from 7-dehydropregnenolone to Ionotropin. Ionotropin may be the only steroid hormone not synthesized with cholesterol as a precursor. Finally, we propose that Ionotropin serves as the endogenous potassium sparing hormone. Ionotropin provides a new understanding of renal, cardiac, gonadal and placental function.
Collapse
|
16
|
Petty HR. Frontiers of Complex Disease Mechanisms: Membrane Surface Tension May Link Genotype to Phenotype in Glaucoma. Front Cell Dev Biol 2018; 6:32. [PMID: 29682502 PMCID: PMC5897435 DOI: 10.3389/fcell.2018.00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/13/2018] [Indexed: 12/19/2022] Open
Abstract
Although many monogenic diseases are understood based upon structural changes of gene products, less progress has been made concerning polygenic disease mechanisms. This article presents a new interdisciplinary approach to understand complex diseases, especially their genetic polymorphisms. I focus upon primary open angle glaucoma (POAG). Although elevated intraocular pressure (IOP) and oxidative stress are glaucoma hallmarks, the linkages between these factors and cell death are obscure. Reactive oxygen species (ROS) promote the formation of oxidatively truncated phosphoglycerides (OTP), free fatty acids, lysophosphoglycerides, oxysterols, and other chemical species that promote membrane disruption and decrease membrane surface tension. Several POAG-linked gene polymorphisms identify proteins that manage damaged lipids and/or influence membrane surface tension. POAG-related genes expected to participate in these processes include: ELOVL5, ABCA1, APOE4, GST, CYP46A1, MYOC, and CAV. POAG-related gene products are expected to influence membrane surface tension, strength, and repair. I propose that heightened IOP overcomes retinal ganglion cell (RGC) membrane compressive strength, weakened by damaged lipid accumulation, to form pores. The ensuing structural failure promotes apoptosis and blindness. The linkage between glaucoma genotype and phenotype is mediated by physical events. Force balancing between the IOP and compressive strength regulates pore nucleation; force balancing between pore line tension and membrane surface tension regulates pore growth. Similar events may contribute to traumatic brain injury, Alzheimer's disease, and macular degeneration.
Collapse
Affiliation(s)
- Howard R Petty
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
17
|
Donoghue SE, Pitt JJ, Boneh A, White SM. Smith-Lemli-Opitz syndrome: clinical and biochemical correlates. J Pediatr Endocrinol Metab 2018; 31:451-459. [PMID: 29455191 DOI: 10.1515/jpem-2017-0501] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/18/2018] [Indexed: 11/15/2022]
Abstract
BACKGROUND Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disorder caused by mutations in the DHCR7 gene that result in reduced cholesterol biosynthesis. The aim of the study was to examine the biochemical and clinical features of SLOS in the context of the emerging evidence of the importance of cholesterol in morphogenesis and steroidogenesis. METHODS We retrospectively reviewed the records of 18 patients (including four fetuses) with confirmed SLOS and documented their clinical and biochemical features. RESULTS Seven patients had branchial arch abnormalities, including micrognathia, immune dysfunction and hypocalcemia. Thymic abnormalities were found in three fetuses. All four patients with a cholesterol level of ≤0.35 mmol/L died. They all had electrolyte abnormalities (hyperkalemia, hyponatremia, hypocalcemia), necrotizing enterocolitis, sepsis-like episodes and midline defects including the branchial and cardiac defects. Patients with cholesterol levels ≥1.7 mmol/L had milder features and were diagnosed at 9 months to 25 years of age. All 10 patients had intellectual disability. One patient was found to have a novel mutation, c.1220A>G (p.Asn407Ser). CONCLUSIONS We suggest that screening for adrenal insufficiency and for hypoparathyroidism, hypothyroidism and immunodeficiency, should be done routinely in infants diagnosed early with SLOS. Early diagnosis and intervention to correct these biochemical consequences may decrease mortality and improve long-term outcome in these patients.
Collapse
Affiliation(s)
- Sarah E Donoghue
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
| | - James J Pitt
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paedatrics, University of Melbourne, Melbourne, Australia
| | - Avihu Boneh
- Department of Metabolic Medicine, Royal Children's Hospital, Melbourne, Australia.,Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paedatrics, University of Melbourne, Melbourne, Australia
| | - Susan M White
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paedatrics, University of Melbourne, Melbourne, Australia
| |
Collapse
|
18
|
Herron J, Reese RC, Tallman KA, Narayanaswamy R, Porter NA, Xu L. Identification of Environmental Quaternary Ammonium Compounds as Direct Inhibitors of Cholesterol Biosynthesis. Toxicol Sci 2016; 151:261-70. [PMID: 26919959 DOI: 10.1093/toxsci/kfw041] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In this study, we aim to identify environmental molecules that can inhibit cholesterol biosynthesis, potentially leading to the same biochemical defects as observed in cholesterol biosynthesis disorders, which are often characterized by congenital malformations and developmental delay. Using the Distributed Structure-Searchable Toxicity (DSSTox) Database Network developed by EPA, we first carried out in silico screening of environmental molecules that display structures similar to AY9944, a known potent inhibitor of 3β-hydroxysterol-Δ(7)-reductase (DHCR7)-the last step of cholesterol biosynthesis. Molecules that display high similarity to AY9944 were subjected to test in mouse and human neuroblastoma cells for their effectiveness in inhibiting cholesterol biosynthesis by analyzing cholesterol and its precursor using gas chromatography-mass spectrometry. We found that a common disinfectant mixture, benzalkonium chlorides (BACs), exhibits high potency in inhibiting DHCR7, as suggested by greatly elevated levels of the cholesterol precursor, 7-dehydrocholesterol (7-DHC). Subsequent structure-activity studies suggested that the potency of BACs as Dhcr7 inhibitors decrease with the length of their hydrocarbon chain: C10 > C12 ≫ C14 > C16. Real-time qPCR analysis revealed upregulation of the genes related to cholesterol biosynthesis and downregulation of the genes related to cholesterol efflux, suggesting a feedback response to the inhibition. Furthermore, an oxidative metabolite of 7-DHC that was previously identified as a biomarker in vivo was also found in cells exposed to BACs by liquid chromatography-mass spectrometry. Our findings suggest that certain environmental molecules could potently inhibit cholesterol biosynthesis, which could be a new link between environment and developmental disorders.
Collapse
Affiliation(s)
- Josi Herron
- *Department of Medicinal Chemistry, University of Washington, Seattle, Washington; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington
| | - Rosalyn C Reese
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Keri A Tallman
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | | | - Ned A Porter
- Department of Chemistry, Vanderbilt University, Nashville, Tennessee
| | - Libin Xu
- *Department of Medicinal Chemistry, University of Washington, Seattle, Washington;
| |
Collapse
|
19
|
Korade Z, Kim HYH, Tallman KA, Liu W, Koczok K, Balogh I, Xu L, Mirnics K, Porter NA. The Effect of Small Molecules on Sterol Homeostasis: Measuring 7-Dehydrocholesterol in Dhcr7-Deficient Neuro2a Cells and Human Fibroblasts. J Med Chem 2016; 59:1102-15. [PMID: 26789657 DOI: 10.1021/acs.jmedchem.5b01696] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Well-established cell culture models were combined with new analytical methods to assess the effects of small molecules on the cholesterol biosynthesis pathway. The analytical protocol, which is based on sterol derivation with the dienolphile PTAD, was found to be reliable for the analysis of 7-DHC and desmosterol. The PTAD method was applied to the screening of a small library of pharmacologically active substances, and the effect of compounds on the cholesterol pathway was determined. Of some 727 compounds, over 30 compounds decreased 7-DHC in Dhcr7-deficient Neuro2a cells. The examination of chemical structures of active molecules in the screen grouped the compounds into distinct categories. In addition to statins, our screen found that SERMs, antifungals, and several antipsychotic medications reduced levels of 7-DHC. The activities of selected compounds were verified in human fibroblasts derived from Smith-Lemli-Opitz syndrome (SLOS) patients and linked to specific transformations in the cholesterol biosynthesis pathway.
Collapse
Affiliation(s)
- Zeljka Korade
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University , Nashville, Tennessee 37235, United States
| | | | | | | | - Katalin Koczok
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen , Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | - Istvan Balogh
- Department of Laboratory Medicine, Division of Clinical Genetics, University of Debrecen , Nagyerdei krt. 98, 4032 Debrecen, Hungary
| | | | - Karoly Mirnics
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University , Nashville, Tennessee 37235, United States
| | - Ned A Porter
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University , Nashville, Tennessee 37235, United States
| |
Collapse
|
20
|
Blassberg R, Macrae JI, Briscoe J, Jacob J. Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome. Hum Mol Genet 2015; 25:693-705. [PMID: 26685159 PMCID: PMC4743690 DOI: 10.1093/hmg/ddv507] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a common autosomal-recessive disorder that results from mutations in the gene encoding the cholesterol biosynthetic enzyme 7-dehydrocholesterol reductase (DHCR7). Impaired DHCR7 function is associated with a spectrum of congenital malformations, intellectual impairment, epileptiform activity and autism spectrum disorder. Biochemically, there is a deficit in cholesterol and an accumulation of its metabolic precursor 7-dehydrocholesterol (7DHC) in developing tissues. Morphological abnormalities in SLOS resemble those seen in congenital Sonic Hedgehog (SHH)-deficient conditions, leading to the proposal that the pathogenesis of SLOS is mediated by aberrant SHH signalling. SHH signalling is transduced through the transmembrane protein Smoothened (SMO), which localizes to the primary cilium of a cell on activation and is both positively and negatively regulated by sterol molecules derived from cholesterol biosynthesis. One proposed mechanism of SLOS involves SMO dysregulation by altered sterol levels, but the salient sterol species has not been identified. Here, we clarify the relationship between disrupted cholesterol metabolism and reduced SHH signalling in SLOS by modelling the disorder in vitro. Our results indicate that a deficit in cholesterol, as opposed to an accumulation of 7DHC, impairs SMO activation and its localization to the primary cilium.
Collapse
Affiliation(s)
- Robert Blassberg
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - James I Macrae
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - James Briscoe
- The Francis Crick Institute, Mill Hill Laboratory, Mill Hill, London NW7 1AA, UK
| | - John Jacob
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Level 6, West Wing, Oxford OX3 9DU, UK, Department of Neurology, Milton Keynes Hospital, Standing Way, Milton Keynes, Buckinghamshire MK6 5LD, UK and Department of Neurology, John Radcliffe Hospital, Headley Way, Oxford OX3 9DU, UK
| |
Collapse
|
21
|
Xu L, Porter NA. Free radical oxidation of cholesterol and its precursors: Implications in cholesterol biosynthesis disorders. Free Radic Res 2014; 49:835-49. [PMID: 25381800 DOI: 10.3109/10715762.2014.985219] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Free radical oxidation of cholesterol and its precursors contribute significantly to the pathophysiology of a number of human diseases. This review intends to summarize recent developments and provide a perspective on the reactivities of sterols toward free radical oxidation, the free radical reaction mechanism, and the biological consequences of oxysterols derived from the highly oxidizable cholesterol precursor, 7-dehydrocholesterol. We propose that the rigid structures, additional substituents on the double bonds, and the well-aligned reactive C-H bonds in sterols make them more prone to free radical oxidation than their acyclic analogs found in unsaturated fatty acids. The mechanism of sterol peroxidation follows some well-established reaction pathways found in the free radical peroxidation of polyunsaturated fatty acids, but sterols also undergo some reactions that are unique to these compounds. Peroxidation of 7-dehydrocholesterol gives arguably the most diverse set of oxysterol products that have been observed to date. The metabolism of these oxysterols in cells and the biological consequences of their formation will be discussed in the context of the pathophysiology of the human disease Smith-Lemli-Opitz syndrome. Considering the high reactivity of sterols, we propose that a number of other cholesterol biosynthesis disorders may be associated with oxidative stress.
Collapse
Affiliation(s)
- L Xu
- Department of Chemistry, Vanderbilt Institute of Chemical Biology, Vanderbilt University , Nashville, TN , USA
| | | |
Collapse
|
22
|
Antioxidant supplementation ameliorates molecular deficits in Smith-Lemli-Opitz syndrome. Biol Psychiatry 2014; 75:215-22. [PMID: 23896203 PMCID: PMC3874268 DOI: 10.1016/j.biopsych.2013.06.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/17/2013] [Accepted: 06/07/2013] [Indexed: 01/21/2023]
Abstract
BACKGROUND Smith-Lemli-Opitz syndrome (SLOS) is an inborn error of cholesterol biosynthesis characterized by diminished cholesterol and increased 7-dehydrocholesterol (7-DHC) levels. 7-Dehydrocholesterol is highly reactive, giving rise to biologically active oxysterols. METHODS 7-DHC-derived oxysterols were measured in fibroblasts from SLOS patients and an in vivo SLOS rodent model using high-performance liquid chromatography tandem mass spectrometry. Expression of lipid biosynthesis genes was ascertained by quantitative polymerase chain reaction and Western blot. The effects of an antioxidant mixture of vitamin A, coenzyme Q10, vitamin C, and vitamin E were evaluated for their potential to reduce formation of 7-DHC oxysterols in fibroblast from SLOS patients. Finally, the effect of maternal feeding of vitamin E enriched diet was ascertained in the brain and liver of newborn SLOS mice. RESULTS In cultured human SLOS fibroblasts, the antioxidant mixture led to decreased levels of the 7-DHC-derived oxysterol, 3β,5α-dihydroxycholest-7-en-6-one. Furthermore, gene expression changes in SLOS human fibroblasts were normalized with antioxidant treatment. The active ingredient appeared to be vitamin E, as even at low concentrations, it significantly decreased 3β,5α-dihydroxycholest-7-en-6-one levels. In addition, analyzing a mouse SLOS model revealed that feeding a vitamin E enriched diet to pregnant female mice led to a decrease in oxysterol formation in brain and liver tissues of the newborn Dhcr7-knockout pups. CONCLUSIONS Considering the adverse effects of 7-DHC-derived oxysterols in neuronal and glial cultures and the positive effects of antioxidants in patient cell cultures and the transgenic mouse model, we believe that preventing formation of 7-DHC oxysterols is critical for countering the detrimental effects of DHCR7 mutations.
Collapse
|
23
|
Windsor K, Genaro-Mattos TC, Kim HYH, Liu W, Tallman KA, Miyamoto S, Korade Z, Porter NA. Probing lipid-protein adduction with alkynyl surrogates: application to Smith-Lemli-Opitz syndrome. J Lipid Res 2013; 54:2842-50. [PMID: 23828810 DOI: 10.1194/jlr.m041061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lipid modifications aid in regulating (and misregulating) protein function and localization. However, efficient methods to screen for a lipid's ability to modify proteins are not readily available. We present a strategy to identify protein-reactive lipids and apply it to a neurodevelopmental disorder, Smith-Lemli-Opitz syndrome (SLOS). Alkynyl surrogates were synthesized for polyunsaturated fatty acids, phospholipids, cholesterol, 7-dehydrocholesterol (7-DHC), and a 7-DHC-derived oxysterol. To probe for protein-reactive lipids, we used click chemistry to biotinylate the alkynyl tag and detected the lipid-adducted proteins with streptavidin Western blotting. In Neuro2a cells, the trend in amount of protein adduction followed known rates of lipid peroxidation (7-DHC >> arachidonic acid > linoleic acid >> cholesterol), with alkynyl-7-DHC producing the most adduction among alkynyl lipids. 7-DHC reductase-deficient cells, which cannot properly metabolize 7-DHC, exhibited significantly more alkynyl-7-DHC-protein adduction than control cells. Model studies demonstrated that a 7-DHC peroxidation product covalently modifies proteins. We hypothesize that 7-DHC generates electrophiles that can modify the proteome, contributing to SLOS's complex pathology. These probes and methods would allow for analysis of lipid-modified proteomes in SLOS and other disorders exhibiting 7-DHC accumulation. More broadly, the alkynyl lipid library would facilitate exploration of lipid peroxidation's role in specific biological processes in numerous diseases.
Collapse
|
24
|
Korade Z, Folkes OM, Harrison FE. Behavioral and serotonergic response changes in the Dhcr7-HET mouse model of Smith-Lemli-Opitz syndrome. Pharmacol Biochem Behav 2013; 106:101-8. [PMID: 23541496 DOI: 10.1016/j.pbb.2013.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/13/2013] [Accepted: 03/16/2013] [Indexed: 01/22/2023]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a developmental disorder resulting from mutations to the Dhcr7 gene, which is required for cholesterol synthesis. Patients with SLOS typically exhibit a number of severe behavioral deficits and many are diagnosed with autistic spectrum disorder. Although the molecular pathophysiology underlying behavioral changes in SLOS and autism spectrum disorders is poorly understood, there is evidence for the involvement of the serotonergic system in SLOS and autism in general. Behavioral testing was undertaken to ascertain the basal behavioral differences between Dhcr7-heterozygous (HET) and wild-type control mice and explore the utility of a Dhcr7-HET mouse line in the development of new treatments for this disorder. Dhcr7-HET mice did not differ from wild-type control mice on basic measures of locomotor activity, anxiety and neuromuscular ability. However, female Dhcr7-HET mice at 6 months of age or older were significantly more likely to win on the social dominance tube test against an unfamiliar mouse. Pharmacological testing, using the 5-HT2A agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), showed increased head-twitch response in Dhcr7-HET mice, which was apparent from 6 months of age. No differences were found between the genotypes in testing for 5-HT1A agonist 8-OH-DPAT-induced hypothermia. These data indicate an underlying dysfunction of the 5-HT2A receptors in Dhcr7-HET mice that warrants further investigation to establish how this may relate to behavioral disturbances in human patients carrying Dhcr7 mutations.
Collapse
Affiliation(s)
- Z Korade
- Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN 37232-0475, USA
| | | | | |
Collapse
|
25
|
Placental ABC transporters, cellular toxicity and stress in pregnancy. Chem Biol Interact 2013; 203:456-66. [PMID: 23524238 DOI: 10.1016/j.cbi.2013.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 03/05/2013] [Accepted: 03/11/2013] [Indexed: 12/25/2022]
Abstract
The human placenta, in addition to its roles as a nutrient transfer and endocrine organ, functions as a selective barrier to protect the fetus against the harmful effects of exogenous and endogenous toxins. Members of the ATP-binding cassette (ABC) family of transport proteins limit the entry of xenobiotics into the fetal circulation via vectorial efflux from the placenta to the maternal circulation. Several members of the ABC family, including proteins from the ABCA, ABCB, ABCC and ABCG subfamilies, have been shown to be functional in the placenta with clinically significant roles in xenobiotic efflux. However, recent findings suggest that these transporters also protect placental tissue by preventing the cellular accumulation of cytotoxic compounds such as lipids, sterols and their derivatives. Such protective functions are likely to be particularly important in pregnancies complicated by inflammatory or oxidative stress, where the generation of toxic metabolites is enhanced. For example, ABC transporters have been shown to protect against the harmful effects of hypoxia and oxidative stress through increased expression and efflux of oxysterols and glutathione conjugated xenobiotics. However, this protective capacity may be diminished in response to the same stressors. Several studies in primary human trophoblast cells and animal models have demonstrated decreased expression and activity of placental ABC transporters with inflammatory, oxidative or metabolic stress. Several clinical studies in pregnancies complicated by inflammatory conditions such as preeclampsia and gestational diabetes support these findings, although further studies are required to determine the clinical relevance of the relationships between placental ABC transporter expression and activity, and placental function in stressed pregnancies. Such studies are necessary to fully understand the consequences of pregnancy disorders on placental function and viability in order to optimise pregnancy care and maximise fetal growth and health.
Collapse
|
26
|
Keller RK, Mitchell DA, Goulah CC, Fliesler SJ. Hepatic isoprenoid metabolism in a rat model of Smith-Lemli-Opitz Syndrome. Lipids 2013; 48:219-29. [PMID: 23361583 DOI: 10.1007/s11745-013-3762-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/08/2013] [Indexed: 02/06/2023]
Abstract
Elevated (4 to 7-fold) levels of urinary dolichol and coenzyme Q and substantially longer chain lengths for urinary dolichols have been reported in Smith-Lemli-Opitz Syndrome (SLOS) patients, compared to normal subjects. We investigated the possibility of similar alterations in hepatic, nonsterol isoprenoids in a well-established rat model of SLOS. In this model, the ratio of 7-dehydrocholesterol (7DHC) to cholesterol (Chol) in serum approached 15:1; however, total sterol mass in serum decreased by >80 %. Livers from treated rats had 7DHC/Chol ratios of ~32:1, but the steady-state levels of total sterols were >40 % those of livers from age-matched (3-month-old) control animals. No significant differences in the levels of LDL receptor or HMG-CoA reductase were observed. The levels of dolichol and coenzyme Q were elevated only modestly (by 64 and 31 %, respectively; p < 0.05, N = 6) in the livers of the SLOS rat model compared to controls; moreover, the chain lengths of these isoprenoids were not different in the two groups. We conclude that hepatic isoprenoid synthesis is marginally elevated in this animal model of SLOS, but without preferential shunting to the nonsterol branches (dolichol and coenzyme Q) of the pathway and without alteration of normal dolichol chain lengths.
Collapse
Affiliation(s)
- R Kennedy Keller
- Department of Molecular Medicine, University of South Florida, College of Medicine, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
27
|
Korade Z, Xu L, Mirnics K, Porter NA. Lipid biomarkers of oxidative stress in a genetic mouse model of Smith-Lemli-Opitz syndrome. J Inherit Metab Dis 2013; 36:113-22. [PMID: 22718275 PMCID: PMC3674764 DOI: 10.1007/s10545-012-9504-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 05/09/2012] [Accepted: 05/20/2012] [Indexed: 02/01/2023]
Abstract
7-Dehydrocholesterol (7-DHC) accumulates in tissues and fluids of patients with Smith-Lemli-Opitz syndrome (SLOS), which is caused by mutations in the gene encoding 3β-hydroxysterol-Δ(7)-reductase (DHCR7). We recently reported that 7-DHC is the most reactive lipid molecule toward free radical oxidation (lipid peroxidation) and 14 oxysterols have been identified as products of oxidation of 7-DHC in solution. As the high oxidizability of 7-DHC may lead to systemic oxidative stress in SLOS patients, we report here lipid biomarkers of oxidative stress in a Dhcr7-KO mouse model of SLOS, including oxysterols, isoprostanes (IsoPs), and neuroprostanes (NeuroPs) that are formed from the oxidation of 7-DHC, arachidonic acid and docosahexaenoic acid, respectively. In addition to a previously described oxysterol, 3β,5α-dihydroxycholest-7-en-6-one (DHCEO), we provide evidence for the chemical structures of three new oxysterols in the brain and/or liver tissue of Dhcr7-KO mice, two of which were quantified. We find that levels of IsoPs and NeuroPs are also elevated in brain and/or liver tissues of Dhcr7-KO mice relative to matching WT mice. While IsoPs and NeuroPs have been established as a reliable measurement of lipid peroxidation and oxidative stress in vivo, we show that in this genetic SLOS mouse model, 7-DHC-derived oxysterols are present at much higher levels than IsoPs and NeuroPs and thus are better markers of lipid oxidation and related oxidative stress.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Libin Xu
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, USA
| | - Karoly Mirnics
- Department of Psychiatry and Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN 37235, USA
| | - Ned A. Porter
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Nashville, TN 37235, USA. Department of Chemistry, 7962 Stevenson Center, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
28
|
Shinkyo R, Xu L, Tallman KA, Cheng Q, Porter NA, Guengerich FP. Conversion of 7-dehydrocholesterol to 7-ketocholesterol is catalyzed by human cytochrome P450 7A1 and occurs by direct oxidation without an epoxide intermediate. J Biol Chem 2011; 286:33021-8. [PMID: 21813643 PMCID: PMC3190903 DOI: 10.1074/jbc.m111.282434] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 08/01/2011] [Indexed: 11/06/2022] Open
Abstract
7-Ketocholesterol is a bioactive sterol, a potent competitive inhibitor of cytochrome P450 7A1, and toxic in liver cells. Multiple origins of this compound have been identified, with cholesterol being the presumed precursor. Although routes for formation of the 7-keto compound from cholesterol have been established, we found that 7-dehydrocholesterol (the immediate precursor of cholesterol) is oxidized by P450 7A1 to 7-ketocholesterol (k(cat)/K(m) = 3 × 10(4) m(-1) s(-1)). P450 7A1 converted lathosterol (Δ(5)-dihydro-7-dehydrocholesterol) to a mixture of the 7-keto and 7α,8α-epoxide products (~1:2 ratio), with the epoxide not rearranging to the ketone. The oxidation of 7-dehydrocholesterol occured with predominant formation of 7-ketocholesterol and with the 7α,8α-epoxide as only a minor product; the synthesized epoxide was stable in the presence of P450 7A1. The mechanism of 7-dehydrocholesterol oxidation to 7-ketocholesterol is proposed to involve a Fe(III)-O-C-C(+) intermediate and a 7,8-hydride shift or an alternative closing to yield the epoxide (Liebler, D. C., and Guengerich, F. P. (1983) Biochemistry 22, 5482-5489). Accordingly, reaction of P450 7A1 with 7-[(2)H(1)]dehydrocholesterol yielded complete migration of deuterium in the product 7-ketocholesterol. The finding that 7-dehydrocholesterol is a precursor of 7-ketocholesterol has relevance to an inborn error of metabolism known as Smith-Lemli-Opitz syndrome (SLOS) caused by defective cholesterol biosynthesis. Mutations within the gene encoding 7-dehydrocholesterol reductase, the last enzyme in the pathway, lead to the accumulation of 7-dehydrocholesterol in tissues and fluids of SLOS patients. Our findings suggest that 7-ketocholesterol levels may also be elevated in SLOS tissue and fluids as a result of P450 7A1 oxidation of 7-dehydrocholesterol.
Collapse
Affiliation(s)
| | | | | | - Qian Cheng
- To whom correspondence should be addressed: Dept. of Biochemistry, Vanderbilt University School of Medicine, 638 Robinson Research Bldg., 2200 Pierce Ave., Nashville, TN 37232-0146. Tel.: 615-322-2261; Fax: 615-322-3141; E-mail:
| | - Ned A. Porter
- From the Departments of Biochemistry and
- Chemistry and
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - F. Peter Guengerich
- From the Departments of Biochemistry and
- Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| |
Collapse
|
29
|
Vanmierlo T, Rutten K, van Vark - van der Zee LC, Friedrichs S, Bloks VW, Blokland A, Ramaekers FC, Sijbrands E, Steinbusch H, Prickaerts J, Kuipers F, Lütjohann D, Mulder M. Cerebral accumulation of dietary derivable plant sterols does not interfere with memory and anxiety related behavior in Abcg5-/- mice. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2011; 66:149-56. [PMID: 21431910 PMCID: PMC3134714 DOI: 10.1007/s11130-011-0219-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant sterols such as sitosterol and campesterol are frequently applied as functional food in the prevention of atherosclerosis. Recently, it became clear that plasma derived plant sterols accumulate in murine brains. We questioned whether plant sterols in the brain are associated with alterations in brain cholesterol homeostasis and subsequently with brain functions. ATP binding cassette (Abc)g5-/- mice, a phytosterolemia model, were compared to Abcg5+/+ mice for serum and brain plant sterol accumulation and behavioral and cognitive performance. Serum and brain plant sterol concentrations were respectively 35-70-fold and 5-12-fold increased in Abcg5-/- mice (P<0.001). Plant sterol accumulation resulted in decreased levels of desmosterol (P<0.01) and 24(S)-hydroxycholesterol (P<0.01) in the hippocampus, the brain region important for learning and memory functions, and increased lanosterol levels (P<0.01) in the cortex. However, Abcg5-/- and Abcg5+/+ displayed no differences in memory functions or in anxiety and mood related behavior. The swimming speed of the Abcg5-/- mice was slightly higher compared to Abcg5+/+ mice (P<0.001). In conclusion, plant sterols in the brains of Abcg5-/- mice did have consequences for brain cholesterol metabolism, but did not lead to an overt phenotype of memory or anxiety related behavior. Thus, our data provide no contra-indication for nutritional intake of plant sterol enriched nutrition.
Collapse
Affiliation(s)
- Tim Vanmierlo
- Department of Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Kris Rutten
- Department of Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Leonie C. van Vark - van der Zee
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Silvia Friedrichs
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Vincent W. Bloks
- Department of Pediatrics, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Arjan Blokland
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, The Netherlands
| | - Frans C. Ramaekers
- Department of Molecular Cell Biology, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Eric Sijbrands
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| | - Harry Steinbusch
- Department of Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Jos Prickaerts
- Department of Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Clinics Bonn, Sigmund-Freud-Str. 25, 53105 Bonn, Germany
| | - Monique Mulder
- Department of Neuroscience, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
- Department of Internal Medicine, Division of Pharmacology, Vascular and Metabolic Diseases, Erasmus Medical Center, ‘s-Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands
| |
Collapse
|
30
|
Korade Z, Xu L, Shelton R, Porter NA. Biological activities of 7-dehydrocholesterol-derived oxysterols: implications for Smith-Lemli-Opitz syndrome. J Lipid Res 2010; 51:3259-69. [PMID: 20702862 DOI: 10.1194/jlr.m009365] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is a metabolic and developmental disorder caused by mutations in the gene encoding the enzyme 7-dehydrocholesterol reductase (Dhcr7). This reductase catalyzes the last step in cholesterol biosynthesis, and levels of 7-dehydrocholesterol (7-DHC), the substrate for this enzyme, are elevated in SLOS patients as a result of this defect. Our group has previously shown that 7-DHC is extremely prone to free radical autoxidation, and we identified about a dozen different oxysterols formed from oxidation of 7-DHC. We report here that 7-DHC-derived oxysterols reduce cell viability in a dose- and time-dependent manner, some of the compounds showing activity at sub-micromolar concentrations. The reduction of cell survival is caused by a combination of reduced proliferation and induced differentiation of the Neuro2a cells. The complex 7-DHC oxysterol mixture added to control Neuro2a cells also triggers the gene expression changes that were previously identified in Dhcr7-deficient Neuro2a cells. Based on the identification of overlapping gene expression changes in Dhcr7-deficient and 7-DHC oxysterol-treated Neuro2a cells, we hypothesize that some of the pathophysiological findings in the mouse SLOS model and SLOS patients might be due to accumulated 7-DHC oxysterols.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Chemistry and Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
31
|
Sukumaran S, Xue B, Jusko WJ, Dubois DC, Almon RR. Circadian variations in gene expression in rat abdominal adipose tissue and relationship to physiology. Physiol Genomics 2010; 42A:141-52. [PMID: 20682845 DOI: 10.1152/physiolgenomics.00106.2010] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Circadian rhythms occur in all levels of organization from expression of genes to complex physiological processes. Although much is known about the mechanism of the central clock in the suprachiasmatic nucleus, the regulation of clocks present in peripheral tissues as well as the genes regulated by those clocks is still unclear. In this study, the circadian regulation of gene expression was examined in rat adipose tissue. A rich time series involving 54 animals euthanized at 18 time points within the 24-h cycle (12:12 h light-dark) was performed. mRNA expression was examined with Affymetrix gene array chips and quantitative real-time PCR, along with selected physiological measurements. Transcription factors involved in the regulation of central rhythms were examined, and 13 showed circadian oscillations. Mining of microarray data identified 190 probe sets that showed robust circadian oscillations. Circadian regulated probe sets were further parsed into seven distinct temporal clusters, with >70% of the genes showing maximum expression during the active/dark period. These genes were grouped into eight functional categories, which were examined within the context of their temporal expression. Circadian oscillations were also observed in plasma leptin, corticosterone, insulin, glucose, triglycerides, free fatty acids, and LDL cholesterol. Circadian oscillation in these physiological measurements along with the functional categorization of these genes suggests an important role for circadian rhythms in controlling various functions in white adipose tissue including adipogenesis, energy metabolism, and immune regulation.
Collapse
Affiliation(s)
- Siddharth Sukumaran
- Department of Biological Sciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | | | | | | | | |
Collapse
|
32
|
Aye ILMH, Waddell BJ, Mark PJ, Keelan JA. Placental ABCA1 and ABCG1 transporters efflux cholesterol and protect trophoblasts from oxysterol induced toxicity. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801:1013-24. [PMID: 20570635 DOI: 10.1016/j.bbalip.2010.05.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 05/16/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 mediate the efflux of cholesterol and other sterols. Both transporters are expressed on the fetal capillaries of the placenta and are involved in maternal-to-fetal cholesterol delivery. In this study, we report that ABCA1 and ABCG1 are also present on the syncytiotrophoblast, the maternal facing placental membrane. Syncytial ABCA1 expression is apical, suggesting a role in cholesterol efflux to the mother, while ABCG1 is expressed basolaterally indicating transport to the fetus. Silencing of ABCA1 expression in primary trophoblasts in culture, or pharmacological antagonism by glyburide, decreased cholesterol efflux to apolipoprotein A-I (apoA-I) compared to controls, while ABCG1-silencing decreased cholesterol efflux to high density lipoproteins (HDL). In contrast, treatment with endogenous or synthetic LXR alpha/beta ligands such as T0901317 increased ABCA1 and ABCG1 expression and enhanced cholesterol efflux to apoA-I and HDL, respectively, while treatment with pharmacological PPAR-alpha or -gamma ligands was without effect. Trophoblasts transfected with ABCA1 or ABCG1 siRNA were more sensitive to toxic oxysterols substrates (25-hydroxycholesterol and 7-ketocholesterol) compared to mock-transfected cells, while prior treatment with T0901317 reduced oxysterol-mediated toxicity. These results identify syncytial ABCA1 and ABCG1 as important, inducible cholesterol transporters which also prevent placental accumulation of cytotoxic oxysterols.
Collapse
Affiliation(s)
- Irving L M H Aye
- School of Women's & Infants' Health, Faculty of Medicine, Dentistry and Health Sciences, University of Western Australia, Perth, Western Australia, Australia
| | | | | | | |
Collapse
|
33
|
Vanmierlo T, Rutten K, Dederen J, Bloks VW, van Vark-van der Zee LC, Kuipers F, Kiliaan A, Blokland A, Sijbrands EJG, Steinbusch H, Prickaerts J, Lütjohann D, Mulder M. Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 2009; 32:1262-72. [PMID: 19674815 DOI: 10.1016/j.neurobiolaging.2009.07.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 06/03/2009] [Accepted: 07/10/2009] [Indexed: 11/19/2022]
Abstract
Alterations in cerebral cholesterol metabolism are thought to play a role in the progression of Alzheimer's disease (AD). Liver X receptors (LXRs) are key regulators of cholesterol metabolism. The synthetic LXR activator, T0901317 has been reported to improve memory functions in animal models for AD and to reduce amyloid-β (Aβ) deposition in the brain. Here we provide evidence that long-term administration of T0901317 to aged, 21-month-old APPSLxPS1mut mice restores impaired memory. Cerebral cholesterol turnover was enhanced as indicated by the increased levels of brain cholesterol precursors and the upregulation of LXR-target genes Abca1, Abcg1, and Apoe. Unexpectedly, the improved memory functions in the APPSLxPS1mut mice after T0901317 treatment were not accompanied by a decrease in Aβ plaque load in the cortex or hippocampus DG, CA1 or CA3. T0901317 administration also enhanced cerebral cholesterol turnover in aged C57BL/6NCrl mice, but did not further improve their memory functions. In conclusion, long-term activation of the LXR-pathway restored memory functions in aged APPSLxPS1mut mice with advanced Aβ deposition. However the beneficial effects of T0901317 on memory in the APPSLxPS1mut mice were independent of the Aβ plaque load in the hippocampus, but were associated with enhanced brain cholesterol turnover.
Collapse
Affiliation(s)
- Tim Vanmierlo
- Department of Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Korade Z, Kenworthy AK, Mirnics K. Molecular consequences of altered neuronal cholesterol biosynthesis. J Neurosci Res 2009; 87:866-75. [PMID: 18951487 DOI: 10.1002/jnr.21917] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The first dedicated step in de novo cholesterol biosynthesis begins with formation of squalene and ends with the reduction of 7-dehydrocholesterol by 7-dehydrocholesterol reductase (Dhcr7) into cholesterol, which is an essential structural and signaling molecule. Mutations in the Dhcr7 gene lead to Smith-Lemli-Opitz syndrome (SLOS), which is characterized by developmental deformities, incomplete myelination, and mental retardation. To understand better the molecular consequences of Dhcr7 deficiency in neuronal tissue, we analyzed the effect of cholesterol deficiency on the transcriptome in Neuro2a cells. Transient down-regulation of Dhcr7 by siRNA led to altered expression of multiple molecules that play critical roles in intracellular signaling or vesicular transport or are inserted into membrane rafts (e.g. Egr1, Snx, and Adam19). A similar down-regulation was also observed in stable Dhrc7-shRNA-transfected cell lines, and the findings were verified by qPCR. Furthermore, we investigated the Dhcr7-deficient and control cells for the expression of several critical genes involved in lipid biosynthesis. Among these, fatty acid synthase, sterol-regulatory element binding protein 2, SREBF chaperone, site-1 protease, and squalene synthase showed a significant down-regulation, suggesting that, in a neuronal cell line, Dhcr7 is a potent regulator of lipid biosynthesis. Importantly, the gene expression changes were present in both lipid-containing and cholesterol-deficient media, suggesting that intrinsic cholesterol biosynthesis is necessary for normal neuronal function and cannot be supplemented from extrinsic sources.
Collapse
Affiliation(s)
- Zeljka Korade
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | |
Collapse
|
35
|
van Straten EME, Huijkman NCA, Baller JFW, Kuipers F, Plösch T. Pharmacological activation of LXR in utero directly influences ABC transporter expression and function in mice but does not affect adult cholesterol metabolism. Am J Physiol Endocrinol Metab 2008; 295:E1341-8. [PMID: 18840761 DOI: 10.1152/ajpendo.90597.2008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cholesterol is critical for several cellular functions and essential for normal fetal development. Therefore, its metabolism is tightly controlled during all life stages. The liver X receptors-alpha (LXRalpha; NR1H3) and -beta (LXRbeta; NR1H2) are nuclear receptors that are of key relevance in coordinating cholesterol and fatty acid metabolism. The aim of this study was to elucidate whether fetal cholesterol metabolism can be influenced in utero via pharmacological activation of LXR and whether this would have long-term effects on cholesterol homeostasis. Administration of the LXR agonist T0901317 to pregnant mice via their diet (0.015% wt/wt) led to induced fetal hepatic expression levels of the cholesterol transporter genes Abcg5/g8 and Abca1, higher plasma cholesterol levels, and lower hepatic cholesterol levels compared with controls. These profound changes during fetal development did not affect cholesterol metabolism in adulthood nor did they influence coping with a high-fat/high-cholesterol diet. This study shows that the LXR system is functional in fetal mice and susceptible to pharmacological activation. Despite massive changes in fetal cholesterol metabolism, regulatory mechanisms involved in cholesterol metabolism return to a "normal" state in offspring and allow coping with a high-fat/high-cholesterol diet.
Collapse
Affiliation(s)
- E M E van Straten
- Dept. of Pediatrics, Univ. Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen
| | | | | | | | | |
Collapse
|
36
|
Paila YD, Murty MR, Vairamani M, Chattopadhyay A. Signaling by the human serotonin1A receptor is impaired in cellular model of Smith–Lemli–Opitz Syndrome. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1508-16. [DOI: 10.1016/j.bbamem.2008.03.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/01/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
|
37
|
Hagiwara K, Nakamura Y, Nishijima M, Yamakawa Y. Prevention of prion propagation by dehydrocholesterol reductase inhibitors in cultured cells and a therapeutic trial in mice. Biol Pharm Bull 2007; 30:835-8. [PMID: 17409533 DOI: 10.1248/bpb.30.835] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In prion diseases, the normal cellular form of prion protein (PrP(C)) is converted into the disease-associated isoforms (PrP(Sc)) which accumulate in the infected tissues. Although the precise mechanism of this conversion remains unsolved, drugs of various categories have been reported to reduce the accumulation of PrP(Sc) in prion-infected cultured cells. We here show that AY-9944 (a 7-dehydrocholesterol reductase inhibitor) and U18666A (a 24-dehydrocholesterol reductase inhibitor) prevent PrP(Sc) from accumulating in prion-infected mouse neuroblastoma cells (ScN2a), with an ED50 of about 0.5 microM and 10 nM, respectively. In order to evaluate the efficacy of these two inhibitors in vivo, C57BL/6J mice inoculated with mouse-adapted scrapie-prion received repetitive intraperitoneal injections of U18666A (10 mg/kg) or a mixture of U18666A (10 mg/kg) and AY-9944 (12 mg/kg). By contrast to the potent anti-prion effects observed in ScN2a cells, the in vivo trial was abortive with neither drug halting the progression of the disease.
Collapse
Affiliation(s)
- Ken'ichi Hagiwara
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, Japan.
| | | | | | | |
Collapse
|
38
|
Engelking LJ, Evers BM, Richardson JA, Goldstein JL, Brown MS, Liang G. Severe facial clefting in Insig-deficient mouse embryos caused by sterol accumulation and reversed by lovastatin. J Clin Invest 2006; 116:2356-65. [PMID: 16955138 PMCID: PMC1555642 DOI: 10.1172/jci28988] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Accepted: 07/11/2006] [Indexed: 11/17/2022] Open
Abstract
Insig-1 and Insig-2 are regulatory proteins that restrict the cholesterol biosynthetic pathway by preventing proteolytic activation of SREBPs and by enhancing degradation of HMG-CoA reductase. Here, we created Insig-double-knockout (Insig-DKO) mice that are homozygous for null mutations in Insig-1 and Insig-2. After 18.5 days of development, 96% of Insig-DKO embryos had defects in midline facial development, ranging from cleft palate (52%) to complete cleft face (44%). Middle and inner ear structures were abnormal, but teeth and skeletons were normal. The animals were lethargic and runted; they died within 1 day of birth. The livers and heads of Insig-DKO embryos overproduced sterols, causing a marked buildup of sterol intermediates. Treatment of pregnant mice with the HMG-CoA reductase inhibitor lovastatin reduced sterol synthesis in Insig-DKO embryos and reduced the pre-cholesterol intermediates. This treatment ameliorated the clefting syndrome so that 54% of Insig-DKO mice had normal faces, and only 7% had cleft faces. We conclude that buildup of pre-cholesterol sterol intermediates interferes with midline fusion of facial structures in mice. These findings have implications for the pathogenesis of the cleft palate component of Smith-Lemli-Opitz syndrome and other human malformation syndromes in which mutations in enzymes catalyzing steps in cholesterol biosynthesis produce a buildup of sterol intermediates.
Collapse
Affiliation(s)
- Luke J. Engelking
- Department of Molecular Genetics and
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Bret M. Evers
- Department of Molecular Genetics and
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - James A. Richardson
- Department of Molecular Genetics and
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph L. Goldstein
- Department of Molecular Genetics and
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Michael S. Brown
- Department of Molecular Genetics and
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guosheng Liang
- Department of Molecular Genetics and
Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
39
|
Tint GS, Yu H, Shang Q, Xu G, Patel SB. The use of the Dhcr7 knockout mouse to accurately determine the origin of fetal sterols. J Lipid Res 2006; 47:1535-41. [PMID: 16651660 PMCID: PMC1488821 DOI: 10.1194/jlr.m600141-jlr200] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mice with a targeted mutation of 3beta-hydroxysterol Delta(7)-reductase (Dhcr7) that cannot convert 7-dehydrocholesterol to cholesterol were used to identify the origin of fetal sterols. Because their heterozygous mothers synthesize cholesterol normally, virtually all sterols found in a Dhcr7 knockout fetus having a Delta(7) or a Delta(8) double bond must have been synthesized by the fetus itself but any cholesterol had to have come from the mother. Early in gestation, most fetal sterols were of maternal origin, but at approximately E13-14, in situ synthesis became increasingly important, and by birth, 55-60% of liver and lung sterols had been made by the fetus. In contrast, at E10-11, upon formation of the blood-brain barrier, the brain rapidly became the source of almost all of its own sterols (90% at birth). New, rapid, de novo sterol synthesis in brain was confirmed by the observation that concentrations of C24,25-unsaturated sterols were low in the brains of all very young fetuses but increased rapidly beginning at approximately E11-12. Reduced activity of sterol C24,25-reductase (Dhcr24) in brain, suggested by the abundance of C24,25-unsaturated compounds, seems to be the result of suppressed Dhcr24 expression. The early fetal brain also appears to conserve cholesterol by keeping cholesterol 24-hydroxylase expression low until approximately E18.
Collapse
Affiliation(s)
- G S Tint
- Research Service, Department of Veterans Affairs Medical Center, East Orange, NJ 07018, USA.
| | | | | | | | | |
Collapse
|
40
|
Matsumoto Y, Morishima KI, Honda A, Watabe S, Yamamoto M, Hara M, Hasui M, Saito C, Takayanagi T, Yamanaka T, Saito N, Kudo H, Okamoto N, Tsukahara M, Matsuura S. R352Q mutation of the DHCR7 gene is common among Japanese Smith-Lemli-Opitz syndrome patients. J Hum Genet 2005; 50:353-356. [PMID: 16044199 DOI: 10.1007/s10038-005-0267-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive malformation syndrome characterized by microcephaly, syndactyly of toes, ambiguous genitalia, and mental retardation. The underlying DHCR7 gene has been identified and a wide variety of distinct mutations were reported in USA and European SLOS patients. A significant difference has been suggested in the frequency of SLOS among different ethnic populations. Here, we report mutational analysis of seven Japanese SLOS patients. Five mutations, R352Q, R242H, G303R, X476Q, and S192F, were identified, and R352Q appeared most frequent, since nine out of the 13 mutations of Japanese origin were the same R352Q. These results suggest that R352Q is a predominant founder mutation in Japanese SLOS patients.
Collapse
Affiliation(s)
- Yoshiyuki Matsumoto
- Department of Radiation Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Ken-Ichi Morishima
- Department of Radiation Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Akira Honda
- Department of Gastroenterology, University of Tsukuba, Tsukuba, Japan
| | - Shoji Watabe
- Faculty of Health Sciences, Yamaguchi University School of Medicine, Ube, Japan
| | - Misa Yamamoto
- Faculty of Health Sciences, Yamaguchi University School of Medicine, Ube, Japan
| | - Masayuki Hara
- General Isotope Center, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Chikako Saito
- Department of Psychiatrics, National Sanatorium Hokuriku Hospital, Joe-hana, Japan
| | | | - Tsutomu Yamanaka
- Department of Human Welfare, Okazaki Women's Junior College, Okazaki, Japan
| | | | - Hideaki Kudo
- Asahigawasou Ryoiku Center Ryoikuen, Okayama, Japan
| | - Nobuhiko Okamoto
- Osaka Medical Center and Research Institute for Maternal and Child Health, Osaka, Japan
| | - Masato Tsukahara
- Faculty of Health Sciences, Yamaguchi University School of Medicine, Ube, Japan
| | - Shinya Matsuura
- Department of Radiation Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan.
| |
Collapse
|
41
|
Abstract
The Smith-Lemli-Opitz syndrome (SLOS) is a disorder of impaired cholesterol biosynthesis because of a deficiency of the enzyme 7-dehydrocholesterol-Delta(7)-reductase, in the last step in cholesterol biosynthesis. Dietary cholesterol has been proposed as a potential therapy for SLOS and is being tested currently. Because there is no information on cholesterol absorption in SLOS, we recruited 12 SLOS patients into the General Clinical Research Center for 1-wk periods for administration of test meals and for blood and stool collections. A test breakfast that contained tracer cholesterol-4-C(14) with egg yolk or with crystalline cholesterol in suspension was given subsequently. Twenty-four and 48-h blood and 1-wk stool samples then were collected. The radioactivities in these samples were analyzed to determine the absorption of cholesterol by these patients. In 11 patients who were given egg yolk cholesterol, cholesterol absorption was 27.3 +/- 6.7%. The absorption was slightly less at 20.5 +/- 10.3% but not significantly different for the six patients who were given crystalline cholesterol. There was a positive correlation between the absorption of isotopic cholesterol as measured by determination of radioactive cholesterol in stool and the amount of isotopic cholesterol in the plasma at 24 and 48 h after the meal. Our data indicated that SLOS patients absorb cholesterol from the diet. However, the percentage of absorption is lower than reported values for normal adults and for hypercholesterolemic children. The absorption of crystalline cholesterol in suspension was slightly lower than the absorption of cholesterol in egg yolk cholesterol by these patients. The absorption of cholesterol may ameliorate some of the biochemical and developmental deficits in SLOS patients.
Collapse
Affiliation(s)
- Don S Lin
- Division of Endocrinology, Diabetes and Clinical Nutrition, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | |
Collapse
|
42
|
Wolf G. The function of cholesterol in embryogenesis. J Nutr Biochem 2005; 10:188-92. [PMID: 15539288 DOI: 10.1016/s0955-2863(98)00102-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/1998] [Accepted: 12/08/1998] [Indexed: 11/20/2022]
Abstract
Cholesterol is critical in embryonic development. Inhibition of cholesterol synthesis in experimental animals has caused a birth defect called holoprosencephaly (HPE), which is evidenced by cyclopia (one eye in the middle of the face), monorhinia (protruding single nose above the eye), absence of the pituitary gland, and central nervous system (CNS) abnormalities. In humans, an inherited defect in the cholesterol-synthesizing enzyme 7-dehydrocholesterol reductase depletes cholesterol and results in human HPE, termed Smith-Lemli-Opitz syndrome. In its most severe form, the syndrome leads to cyclopia, monorhinia, and lack of separation of cerebral hemispheres. The cause of the syndrome is a defect in a protein coded by the gene Sonic hedgehog (SHH). The protein SHH is expressed in the notochord of the CNS in the early embryo and is activated by being cleaved autocatalytically, with simultaneous covalent attachment of cholesterol to the N-terminal fragment, which is secreted by cells of the mesoderm layer, signaling the establishment of the neural midline cells. Thus, cholesterol is essential for proper signaling in the development of the normal embryo.
Collapse
Affiliation(s)
- G Wolf
- Department of Nutritional Sciences, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
43
|
Mueller C, Patel S, Irons M, Antshel K, Salen G, Tint G, Bay C. Normal cognition and behavior in a Smith-Lemli-Opitz syndrome patient who presented with Hirschsprung disease. Am J Med Genet A 2004; 123A:100-6. [PMID: 14556255 PMCID: PMC1201564 DOI: 10.1002/ajmg.a.20491] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive disorder of cholesterol biosynthesis. It is caused by mutations in the gene encoding the enzyme 7-dehydrocholesterol Delta7-reductase (DHCR7), which catalyzes the final step in cholesterol biosynthesis, usually resulting in cholesterol deficiency. We report a 3.5-year-old girl who has cognition in the low average range and normal behavior, but in whom molecular studies identified two missense mutations in DHCR7: V326L and F284L. She was born at term following an uncomplicated pregnancy and delivery, and presented at 12 days of age with poor feeding, abdominal distention, and jaundice. Colonic biopsy was consistent with Hirschsprung disease. On physical examination she had mild ptosis, a long philtrum, mild micrognathia, a short, upturned nose, and subtle 2,3 syndactyly. Her 7-dehydrocholesterol (7-DHC) level was markedly elevated at 8.7 mg/dl (normal 0.10 +/- 0.05), and her cholesterol level was normal at 61 mg/dl (normal for newborn period 50-80 mg/dl). Karyotype analysis was normal, 46,XX. Breast milk feeding was initiated and continued for 18 months. Cholesterol supplementation was implemented at 100 mg/kg/day at 3 months, which resulted in increased cholesterol levels and reduced dehydrocholesterol levels. Neuropsychological testing has shown functioning in the low average range, between the 14th and 18th centiles when compared to peers. This is markedly higher than most children with SLOS. She has no behavioral problems. MRI and MRS testing of the brain revealed no structural abnormalities. This is in contrast to a recently reported case by Prasad et al. [2002: Am J Med Genet 108:64-68] with a mild phenotype, behavioral problems, and abnormal MRI, who is compound heterozygote for both a null and missense mutation. Our case suggests that patients with severe feeding disorders with or without Hirschprung disease and postnatal onset microcephaly may warrant screening for SLOS.
Collapse
Affiliation(s)
- C. Mueller
- Department of Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - S. Patel
- Medical University of South Carolina, Charleston, South Carolina
| | - M. Irons
- Children’s Hospital Boston, Boston, Massachusetts
| | - K. Antshel
- Children’s Hospital Boston, Boston, Massachusetts
| | - G. Salen
- VA Medical Center, East Orange, New Jersey
| | - G.S. Tint
- VA Medical Center, East Orange, New Jersey
| | - C. Bay
- Children’s Hospital Pittsburgh, Pittsburgh, Pennsylvania
- *Correspondence to: C. Bay, Children’s Hospital of Pittsburgh, 3705 Fifth Ave., Pittsburgh, PA 15213. E-mail:
| |
Collapse
|
44
|
Marcos J, Guo LW, Wilson WK, Porter FD, Shackleton C. The implications of 7-dehydrosterol-7-reductase deficiency (Smith-Lemli-Opitz syndrome) to neurosteroid production. Steroids 2004; 69:51-60. [PMID: 14715377 DOI: 10.1016/j.steroids.2003.09.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Smith-Lemli-Opitz syndrome (SLOS) is an autosomal recessive, multiple malformation/mental retardation syndrome with an estimated incidence among individuals of European ancestry of 1 in 20000 to 1 in 30000. It is caused by inactivity of the enzyme 7-dehydrosterol-delta(7)-reductase, which catalyses the terminal transformation in cholesterol synthesis. Patients show not only an increased level of 7-dehydrocholesterol in blood and tissues, but also increased 8-dehydrocholesterol because of the presence of an active delta(8)-delta(7) isomerase. A major consequence of these biochemical abnormalities is the alteration of normal embryonic and fetal somatic development causing postnatal abnormalities of growth, learning, language and behavior. While deficient cholesterol during early development is the primary cause of central nervous system (CNS) abnormalities and retardation, we questioned whether neurosteroids could also be involved since they can have a profound influence on behavioral characteristics. Disordered neurosteroidogenesis would be expected in SLOS and could be caused by a deficiency in classical neurosteroid synthesis secondary to cholesterol deficiency, or by synthesis from 7- and 8-dehydrocholesterol of novel neurosteroids with delta(7) or delta(8) unsaturation which may have altered activity compared with conventional neurosteroids. In particular we sought analogues of dehydroepiandrosterone sulfate, pregnenolone sulfate and the pregnanolone epimers. We targeted urine from post-pubertal females, as this type of sample would be most likely to yield identifiable amounts of the pregnanolone metabolites of progesterone. Analysis by GC/MS of urinary steroids excreted by post-pubertal females confirmed the presence of neurosteroid-like compounds in SLOS patient's urine. Even though the new neuroactive steroids identified were unlikely to have been formed in the brain, it is likely that mechanisms for their synthesis are operable in this organ.
Collapse
Affiliation(s)
- Josep Marcos
- Children's Hospital Oakland Research Institute, 5700 Martin Luther King Jr Way, Oakland, CA 94609, USA
| | | | | | | | | |
Collapse
|
45
|
Schmid KE, Davidson WS, Myatt L, Woollett LA. Transport of cholesterol across a BeWo cell monolayer: implications for net transport of sterol from maternal to fetal circulation. J Lipid Res 2003; 44:1909-18. [PMID: 12897187 DOI: 10.1194/jlr.m300126-jlr200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The placental transport of various compounds, such as glucose and fatty acids, has been well studied. However, the transport of cholesterol, a sterol essential for proper fetal development, remains undefined in the placenta. Therefore, the purpose of these studies was to examine the transport of cholesterol across a placental monolayer and its uptake by various cholesterol acceptors. BeWo cells, which originated from a human choriocarcinoma, were grown on transwells for 3 days to form a confluent monolayer. The apical side of the cells was radiolabeled with either free cholesterol or LDL cholesteryl ester. After 24 h, the radiolabel was removed and cholesterol acceptors were added to the basolateral chamber. Cholesterol was found to be taken up by the apical surface of the placental monolayer, transported to the basolateral surface of the cell, and effluxed to fetal human serum, fetal HDL, or phospholipid vesicles, but not to apolipoprotein A-I. In addition, increasing the cellular cholesterol concentration further increased the amount of cholesterol transported to the basolateral acceptors. These are the first studies to demonstrate the movement of cholesterol across a placental cell from the maternal circulation (apical side) to the fetal circulation (basolateral side).
Collapse
Affiliation(s)
- Kara E Schmid
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | |
Collapse
|
46
|
Lee JN, Bae SH, Paik YK. Structure and alternative splicing of the rat 7-dehydrocholesterol reductase gene. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:148-56. [PMID: 12031495 DOI: 10.1016/s0167-4781(02)00285-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The enzyme 7-dehydrocholesterol reductase (Dhcr7) catalyzes the reduction of 7-dehydrocholesterol (DHC), the terminal reaction of the pathway of cholesterol biosynthesis. We report the isolation and characterization of the genomic DNA encoding rat Dhcr7 that contains nine exons and eight introns distributed over 15944 nucleotides (nts) and a consensus GT-AG at each exon/intron junction. Unexpectedly, we have found the occurrence of at least five isoforms of Dhcr7, designated as Dhcr7-AS (alternatively spliced)-1 (1474 nts), -2 (1595 nts), -3 (1602 nts), -4 (1723 nts) and -5 (1287 nts), which was believed to be caused by alternative usage of three 5' noncoding exons. Furthermore, Dhcr7-AS-1 was found to be differentially expressed in six tissues examined while Dhcr7-AS-2 was expressed mainly in liver and brain. Interestingly, human Dhcr7 gene in HepG2 cells produced no detectable isoform while mouse Dhcr7 gene in L929 cells produced three isoforms, suggesting a difference in alternative splicing between species. Thus, regulation of Dhcr7 through the combined mechanisms of tissue-specific transcription and differential alternative splicing appears unique among enzymes characterized from the entire post-lanosterol pathway in cholesterol biosynthesis.
Collapse
Affiliation(s)
- Joon No Lee
- Department of Biochemistry, Bioproducts Research Center, and Yonsei Proteome Research Center, Yonsei University, 134 Shinchon-dong, Sudaemoon-ku, Seoul 120-749, South Korea
| | | | | |
Collapse
|
47
|
Barrero AF, Oltra JE, Robinson J, Burke PV, Jiménez D, Oliver E. Sterols in erg mutants of Phycomyces: metabolic pathways and physiological effects. Steroids 2002; 67:403-9. [PMID: 11958798 DOI: 10.1016/s0039-128x(01)00195-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phycomyces is a fungal producer of beta-carotene and other beneficial metabolites. Several erg mutants of Phycomyces, originally selected to study the effects of membrane alteration on physiological responses, have now been used to gain information about sterol biosynthesis in filamentous fungi. One mutant, H23, and its progeny were found to be blocked at episterol C-5 dehydrogenase and did not produce ergosterol or any other sterol with a conjugated Delta(5,7) diene system. This mutant showed abnormal phototropism, which was correlated with the altered sterol composition. Another mutant, H25, seems to be a regulatory mutant. All analyzed mutants synthesized ergosta-7,22,24(28)-trien-3beta-ol, demonstrating for the first time that the sterol C-22 dehydrogenase of Phycomyces is capable of recognizing sterols with a 24(28) unsaturated side chain. New evidence regarding the biogenesis of neoergosterol and phycomysterols, the potential sparking function of cholesterol, as well as the regulation of sterol biosynthesis in this fungus is also reported. Given these results, a pathway for sterol biosynthesis in Phycomyces is proposed.
Collapse
Affiliation(s)
- Alejandro F Barrero
- Departamento de Química Orgánica, Instituto de Biotecnología, Facultad de Ciencias, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
The known disorders of cholesterol biosynthesis have expanded rapidly since the discovery that Smith-Lemli-Opitz syndrome is caused by a deficiency of 7-dehydrocholesterol. Each of the six now recognized sterol disorders-mevalonic aciduria, Smith-Lemli-Opitz syndrome, desmosterolosis, Conradi-Hünermann syndrome, CHILD syndrome, and Greenberg dysplasia-has added to our knowledge of the relationship between cholesterol metabolism and embryogenesis. One of the most important lessons learned from the study of these disorders is that abnormal cholesterol metabolism impairs the function of the hedgehog class of embryonic signaling proteins, which help execute the vertebrate body plan during the earliest weeks of gestation. The study of the enzymes and genes in these several syndromes has also expanded and better delineated an important class of enzymes and proteins with diverse structural functions and metabolic actions that include sterol biosynthesis, nuclear transcriptional signaling, regulation of meiosis, and even behavioral modulation.
Collapse
Affiliation(s)
- R I Kelley
- Kennedy Krieger Institute, Baltimore Maryland 21205, USA.
| | | |
Collapse
|
49
|
Fitzky BU, Moebius FF, Asaoka H, Waage-Baudet H, Xu L, Xu G, Maeda N, Kluckman K, Hiller S, Yu H, Batta AK, Shefer S, Chen T, Salen G, Sulik K, Simoni RD, Ness GC, Glossmann H, Patel SB, Tint G. 7-Dehydrocholesterol–dependent proteolysis of HMG-CoA reductase suppresses sterol biosynthesis in a mouse model of Smith-Lemli-Opitz/RSH syndrome. J Clin Invest 2001. [DOI: 10.1172/jci200112103] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Abstract
Over the past few years, the number of identified inborn errors of cholesterol biosynthesis has increased significantly. The first inborn error of cholesterol biosynthesis to be characterized, in the mid 1980s, was mevalonic aciduria. In 1993, Irons et al. ( 1 ) (M. Irons, E. R. Elias, G. Salen, G. S. Tint, and A. K. Batta, Lancet 341:1414, 1993) reported that Smith-Lemli-Opitz syndrome, a classic autosomal recessive malformation syndrome, was due to an inborn error of cholesterol biosynthesis. This was the first inborn error of postsqualene cholesterol biosynthesis to be identified, and subsequently additional inborn errors of postsqualene cholesterol biosynthesis have been characterized to various extent. To date, eight inborn errors of cholesterol metabolism have been described in human patients or in mutant mice. The enzymatic steps impaired in these inborn errors of metabolism include mevolonate kinase (mevalonic aciduria as well as hyperimmunoglobulinemia D and periodic fever syndrome), squalene synthase (Ss-/- mouse), 3beta-hydroxysteroid Delta14-reductase (hydrops-ectopic calcification-moth-eaten skeletal dysplasia), 3beta-hydroxysteroid dehydrogenase (CHILD syndrome, bare patches mouse, and striated mouse), 3beta-hydroxysteroid Delta8,Delta7-isomerase (X-linked dominant chondrodysplasia punctata type 2, CHILD syndrome, and tattered mouse), 3beta-hydroxysteroid Delta24-reductase (desmosterolosis) and 3beta-hydroxysteroid Delta7-reductase (RSH/Smith-Lemli-Opitz syndrome and Dhcr7-/- mouse). Identification of the genetic and biochemical defects which give rise to these syndromes has provided the first step in understanding the pathophysiological processes which underlie these malformation syndromes.
Collapse
Affiliation(s)
- N A Nwokoro
- Heritable Disorders Branch, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|