1
|
Widman CJ, Ventresca S, Dietrich J, Elmslie G, Smith H, Kaup G, Wesley A, Doenecke M, Williams FE, Schiefer IT, Ellis J, Messer WS. Allosteric modulators of M 1 muscarinic receptors enhance acetylcholine efficacy and decrease locomotor activity and turning behaviors in zebrafish. Sci Rep 2024; 14:14901. [PMID: 38942828 PMCID: PMC11213934 DOI: 10.1038/s41598-024-65445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024] Open
Abstract
Allosteric modulation of muscarinic acetylcholine receptors (mAChR) has been identified as a potential strategy for regulating cholinergic signaling in the treatment of various neurological disorders. Most positive allosteric modulators (PAMs) of mAChR enhance agonist affinity and potency, while very few PAMs (e.g., amiodarone) selectively enhance G protein coupling efficacy. The key structural features of amiodarone responsible for enhancement of mAChR efficacy were examined in CHO cells expressing M1 receptors. Subsequent incorporation of these structural features into previously identified allosteric modulators of potency (i.e., n-benzyl isatins) generated ligands that demonstrated similar or better enhancement of mAChR efficacy, lower in vivo toxicity, and higher allosteric binding affinity relative to amiodarone. Notable ligands include 8a, c which respectively demonstrated the strongest binding affinity and the most robust enhancement of mAChR efficacy as calculated from an allosteric operational model. Amiodarone derivatives and hybrid ligands were additionally screened in wildtype zebrafish (Danio rerio) to provide preliminary in vivo toxicity data as well as to observe effects on locomotor and turning behaviors relative to other mAChR PAMs. Several compounds, including 8a, c, reduced locomotor activity and increased measures of turning behaviors in zebrafish, suggesting that allosteric modulation of muscarinic receptor efficacy might be useful in the treatment of repetitive behaviors associated with autism spectrum disorder (ASD) and other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Corey J Widman
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Mail Stop #1015, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Sestina Ventresca
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Jillian Dietrich
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Gwendolynne Elmslie
- Departments of Psychiatry and Pharmacology, College of Medicine, Penn State University, Hershey, PA, 17033, USA
| | - Hazel Smith
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Mail Stop #1015, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Gina Kaup
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Mail Stop #1015, 3000 Arlington Ave., Toledo, OH, 43614, USA
| | - Aaron Wesley
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Madeline Doenecke
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Frederick E Williams
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - Isaac T Schiefer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Mail Stop #1015, 3000 Arlington Ave., Toledo, OH, 43614, USA
- Center for Drug Design and Development, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA
| | - John Ellis
- Departments of Psychiatry and Pharmacology, College of Medicine, Penn State University, Hershey, PA, 17033, USA
| | - William S Messer
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Mail Stop #1015, 3000 Arlington Ave., Toledo, OH, 43614, USA.
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
2
|
Widman CJ, Ventresca S, Dietrich J, Elmslie G, Smith H, Kaup G, Wesley A, Doenecke M, Williams FE, Schiefer IT, Ellis J, Messer WS. Hybrid Allosteric Modulators of M1 Muscarinic Receptors Enhance Acetylcholine Efficacy and Decrease Locomotor Activity and Turning Behaviors in Zebrafish. RESEARCH SQUARE 2024:rs.3.rs-3901189. [PMID: 38410427 PMCID: PMC10896388 DOI: 10.21203/rs.3.rs-3901189/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Allosteric modulation of muscarinic acetylcholine receptors (mAChR) has been identified as a potential strategy for regulating cholinergic signaling in the treatment of various neurological disorders. Most positive allosteric modulators (PAMs) of mAChR enhance agonist affinity and potency, while very few PAMs selectively enhance G-protein coupling efficacy (e.g., amiodarone). The key structural features of amiodarone responsible for enhancement of mAChR efficacy were examined in CHO cells expressing M1 receptors. Subsequent incorporation of these structural features into previously identified allosteric modulators of potency (i.e., n-benzyl isatins) generated hybrid ligands that demonstrated similar or better enhancement of mAChR efficacy, lower in vivo toxicity, and higher allosteric binding affinity relative to amiodarone. Notable hybrid ligands include 8a and 8b which respectively demonstrated the strongest binding affinity and the most robust enhancement of mAChR efficacy as calculated from an allosteric operational model. Amiodarone derivatives and hybrid ligands were additionally screened in wildtype zebrafish (Danio rerio) to provide preliminary in vivo toxicity data as well as to observe effects on locomotor and turning behaviors relative to other mAChR PAMs. Several compounds, including 8a and 8c, reduced locomotor activity and increased measures of turning behaviors in zebrafish, suggesting that allosteric modulation of muscarinic receptor efficacy might be useful in the treatment of repetitive behaviors associated with autism spectrum disorder (ASD) and other neuropsychiatric disorders.
Collapse
|
3
|
Palma JA. Muscarinic control of cardiovascular function in humans: a review of current clinical evidence. Clin Auton Res 2024; 34:31-44. [PMID: 38305989 PMCID: PMC10994193 DOI: 10.1007/s10286-024-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/11/2024] [Indexed: 02/03/2024]
Abstract
PURPOSE To review the available evidence on the impact of muscarinic receptor modulation on cardiovascular control in humans. METHODS In this narrative Review we summarize data on cardiovascular endpoints from clinical trials of novel subtype-selective or quasi-selective muscarinic modulators, mostly PAMs, performed in the last decade. We also review the cardiovascular phenotype in recently described human genetic and autoimmune disorders affecting muscarinic receptors. RESULTS Recent advancements in the development of compounds that selectively target muscarinic acetylcholine receptors are expanding our knowledge about the physiological function of each muscarinic receptor subtype (M1, M2, M3, M4, M5). Among these novel compounds, positive allosteric modulators (PAMs) have emerged as the preferred therapeutic to regulate muscarinic receptor subtype function. Many muscarinic allosteric and orthosteric modulators (including but not limited to xanomeline-trospium and emraclidine) are now in clinical development and approaching regulatory approval for multiple indications, including the treatment of cognitive and psychiatric symptoms in patients with schizophrenia as well as Alzheimer's disease and other dementias. The results of these clinical trials provide an opportunity to understand the influence of muscarinic modulation on cardiovascular autonomic control in humans. While the results and the impact of each of these therapies on heart rate and blood pressure control have been variable, in part because the clinical trials were not specifically designed to measure cardiovascular endpoints, the emerging data is valuable to elucidate the relative cardiovascular contributions of each muscarinic receptor subtype. CONCLUSION Understanding the muscarinic control of cardiovascular function is of paramount importance and may contribute to the development of novel therapeutic strategies for treating cardiovascular disease.
Collapse
Affiliation(s)
- Jose-Alberto Palma
- Department of Neurology, NYU Dysautonomia Center, New York University School of Medicine, 530 First Av, Suite 9Q, New York, 10016, USA.
| |
Collapse
|
4
|
Myslivecek J. Reply to Cinelli et al. Am J Physiol Lung Cell Mol Physiol 2023; 325:L709-L710. [PMID: 37922557 DOI: 10.1152/ajplung.00278.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/31/2023] [Indexed: 11/07/2023] Open
Affiliation(s)
- Jaromir Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Muscarinic acetylcholine receptors for psychotic disorders: bench-side to clinic. Trends Pharmacol Sci 2022; 43:1098-1112. [PMID: 36273943 DOI: 10.1016/j.tips.2022.09.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 11/11/2022]
Abstract
Modern interest in muscarinic acetylcholine receptor (mAChR) activators for schizophrenia began in the 1990s when xanomeline, an M1/M4-preferring mAChR agonist developed for cognitive symptoms of Alzheimer's disease (AD), had unexpected antipsychotic activity. However, strategies to address tolerability concerns associated with activation of peripheral mAChRs were not available at that time. The discovery of specific targeted ligands and combination treatments to reduce peripheral mAChR engagement have advanced the potential of mAChR activators as effective treatments for psychotic disorders. This review provides perspectives on the background of the identification of mAChRs as potential antipsychotics, advances in the preclinical understanding of mAChRs as targets, and the current state of mAChR activators under active clinical development for schizophrenia.
Collapse
|
6
|
Two Players in the Field: Hierarchical Model of Interaction between the Dopamine and Acetylcholine Signaling Systems in the Striatum. Biomedicines 2021; 9:biomedicines9010025. [PMID: 33401461 PMCID: PMC7824505 DOI: 10.3390/biomedicines9010025] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 12/13/2022] Open
Abstract
Tight interactions exist between dopamine and acetylcholine signaling in the striatum. Dopaminergic neurons express muscarinic and nicotinic receptors, and cholinergic interneurons express dopamine receptors. All neurons in the striatum are pacemakers. An increase in dopamine release is activated by stopping acetylcholine release. The coordinated timing or synchrony of the direct and indirect pathways is critical for refined movements. Changes in neurotransmitter ratios are considered a prominent factor in Parkinson’s disease. In general, drugs increase striatal dopamine release, and others can potentiate both dopamine and acetylcholine release. Both neurotransmitters and their receptors show diurnal variations. Recently, it was observed that reward function is modulated by the circadian system, and behavioral changes (hyperactivity and hypoactivity during the light and dark phases, respectively) are present in an animal model of Parkinson’s disease. The striatum is one of the key structures responsible for increased locomotion in the active (dark) period in mice lacking M4 muscarinic receptors. Thus, we propose here a hierarchical model of the interaction between dopamine and acetylcholine signaling systems in the striatum. The basis of this model is their functional morphology. The next highest mode of interaction between these two neurotransmitter systems is their interaction at the neurotransmitter/receptor/signaling level. Furthermore, these interactions contribute to locomotor activity regulation and reward behavior, and the topmost level of interaction represents their biological rhythmicity.
Collapse
|
7
|
Gurevich EV, Gurevich VV. GRKs as Modulators of Neurotransmitter Receptors. Cells 2020; 10:cells10010052. [PMID: 33396400 PMCID: PMC7823573 DOI: 10.3390/cells10010052] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 12/23/2020] [Accepted: 12/30/2020] [Indexed: 01/08/2023] Open
Abstract
Many receptors for neurotransmitters, such as dopamine, norepinephrine, acetylcholine, and neuropeptides, belong to the superfamily of G protein-coupled receptors (GPCRs). A general model posits that GPCRs undergo two-step homologous desensitization: the active receptor is phosphorylated by kinases of the G protein-coupled receptor kinase (GRK) family, whereupon arrestin proteins specifically bind active phosphorylated receptors, shutting down G protein-mediated signaling, facilitating receptor internalization, and initiating distinct signaling pathways via arrestin-based scaffolding. Here, we review the mechanisms of GRK-dependent regulation of neurotransmitter receptors, focusing on the diverse modes of GRK-mediated phosphorylation of receptor subtypes. The immediate signaling consequences of GRK-mediated receptor phosphorylation, such as arrestin recruitment, desensitization, and internalization/resensitization, are equally diverse, depending not only on the receptor subtype but also on phosphorylation by GRKs of select receptor residues. We discuss the signaling outcome as well as the biological and behavioral consequences of the GRK-dependent phosphorylation of neurotransmitter receptors where known.
Collapse
|
8
|
Finlay M, Bhar-Amato J, Ng KE, Santos D, Orini M, Vyas V, Taggart P, Grace AA, Huang CLH, Lambiase PD, Tinker A. Autonomic modulation of the electrical substrate in mice haploinsufficient for cardiac sodium channels: a model of the Brugada syndrome. Am J Physiol Cell Physiol 2019; 317:C576-C583. [PMID: 31291141 DOI: 10.1152/ajpcell.00028.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A murine line haploinsufficient in the cardiac sodium channel has been used to model human Brugada syndrome: a disease causing sudden cardiac death due to lethal ventricular arrhythmias. We explored the effects of cholinergic tone on electrophysiological parameters in wild-type and genetically modified, heterozygous, Scn5a+/- knockout mice. Scn5a+/- ventricular slices showed longer refractory periods than wild-type both at baseline and during isoprenaline challenge. Scn5a+/- hearts also showed lower conduction velocities and increased mean increase in delay than did littermate controls at baseline and blunted responses to isoprenaline challenge. Carbachol exerted limited effects but reversed the effects of isoprenaline with coapplication. Scn5a+/- mice showed a reduction in conduction reserve in that isoprenaline no longer increased conduction velocity, and this was not antagonized by muscarinic agonists.
Collapse
Affiliation(s)
- Malcolm Finlay
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Justine Bhar-Amato
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Keat-Eng Ng
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Diogo Santos
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Vishal Vyas
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Peter Taggart
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Andrew A Grace
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Christopher L-H Huang
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Andrew Tinker
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
9
|
Yohn SE, Conn PJ. Positive allosteric modulation of M 1 and M 4 muscarinic receptors as potential therapeutic treatments for schizophrenia. Neuropharmacology 2018; 136:438-448. [PMID: 28893562 PMCID: PMC5844786 DOI: 10.1016/j.neuropharm.2017.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 01/22/2023]
Abstract
Current antipsychotic drugs provide symptomatic relief for positive symptoms of schizophrenia, but do not offer symptom management for negative and cognitive symptoms. In addition, many patients discontinue treatment due to adverse side effects. Therefore, there is a critical need to develop more effective and safe treatment options. Although the etiology of schizophrenia is unclear, considerable data from post-mortem, neuroimaging and neuropharmacology studies support a role of the muscarinic acetylcholine (mAChRs) in the pathophysiology of schizophrenia. Substantial evidence suggests that activation of mAChRs has the potential to treat all symptom domains of schizophrenia. Despite encouraging results in demonstrating efficacy, clinical trials of nonselective mAChR agonists were limited in their clinical utility due to dose-limiting peripheral side effects. Accordingly, efforts have been made to specifically target centrally located M1 and M4 mAChR subtypes devoid of adverse-effect liability. To circumvent this limitation, there have been tremendous advances in the discovery of ligands that bind at allosteric sites, binding sites distinct from the orthosteric site, which are structurally less conserved and thereby afford high levels of receptor subtype selectivity. The discovery of subtype-specific allosteric modulators has greatly advanced our understanding of the physiological role of various muscarinic receptor subtypes in schizophrenia and the potential utility of M1 and M4 mAChR subtypes as targets for the development of novel treatments for schizophrenia and related disorders. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.
Collapse
Affiliation(s)
- Samantha E Yohn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States
| | - P Jeffrey Conn
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, United States; Vanderbilt Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN 37232, United States.
| |
Collapse
|
10
|
Moehle MS, Pancani T, Byun N, Yohn SE, Wilson GH, Dickerson JW, Remke DH, Xiang Z, Niswender CM, Wess J, Jones CK, Lindsley CW, Rook JM, Conn PJ. Cholinergic Projections to the Substantia Nigra Pars Reticulata Inhibit Dopamine Modulation of Basal Ganglia through the M 4 Muscarinic Receptor. Neuron 2017; 96:1358-1372.e4. [PMID: 29268098 PMCID: PMC5753765 DOI: 10.1016/j.neuron.2017.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 10/04/2017] [Accepted: 12/04/2017] [Indexed: 12/16/2022]
Abstract
Cholinergic regulation of dopaminergic inputs into the striatum is critical for normal basal ganglia (BG) function. This regulation of BG function is thought to be primarily mediated by acetylcholine released from cholinergic interneurons (ChIs) acting locally in the striatum. We now report a combination of pharmacological, electrophysiological, optogenetic, chemogenetic, and functional magnetic resonance imaging studies suggesting extra-striatal cholinergic projections from the pedunculopontine nucleus to the substantia nigra pars reticulata (SNr) act on muscarinic acetylcholine receptor subtype 4 (M4) to oppose cAMP-dependent dopamine receptor subtype 1 (D1) signaling in presynaptic terminals of direct pathway striatal spiny projections neurons. This induces a tonic inhibition of transmission at direct pathway synapses and D1-mediated activation of motor activity. These studies provide important new insights into the unique role of M4 in regulating BG function and challenge the prevailing hypothesis of the centrality of striatal ChIs in opposing dopamine regulation of BG output.
Collapse
Affiliation(s)
- Mark S Moehle
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Tristano Pancani
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Nellie Byun
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Samantha E Yohn
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - George H Wilson
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Johnathan W Dickerson
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Daniel H Remke
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Zixiu Xiang
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Colleen M Niswender
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, NIDDK, NIH, Bethesda, MD, USA
| | - Carrie K Jones
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Craig W Lindsley
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jerri M Rook
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - P Jeffrey Conn
- Vanderbilt Center for Neuroscience Drug Discovery and Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Kennedy Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|
11
|
The Analgesic Effects of (5R,6R)6-(3-Propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1] Octane on a Mouse Model of Neuropathic Pain. Anesth Analg 2017; 124:1330-1338. [PMID: 28002166 PMCID: PMC5367490 DOI: 10.1213/ane.0000000000001755] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Published ahead of print December 19, 2016. BACKGROUND: Both pharmacologic and genetic approaches have been used to study the involvement of the muscarinic acetylcholine system in the regulation of chronic pain. Previous studies suggest that the M2 and M4 subtypes of muscarinic acetylcholine receptors (mAChRs) are important targets for the development of chronic pain. (5R,6R)6-(3-Propylthio-1,2,5-thiadiazol-4-yl)-1-azabicyclo[3.2.1] octane (PTAC) has agonist effects on muscarinic M2 and M4 receptors and antagonist effects on muscarinic M1, M3, and M5 receptors. However, its analgesic effects have been less studied. METHODS: Male C57B L/6 mice were anesthetized, and left common peroneal nerve (CPN) ligation was performed to induce neuropathic pain. Before and after the application of PTAC systemically or specifically to the anterior cingulate cortex (ACC), the withdrawal thresholds to mechanical stimulation and static weight balance were measured, and the effects of PTAC on the conditioned place preference (CPP) were further evaluated. Western blotting was used to examine the expression of M1 and M2 in the striatum, ACC, and ventral tegmental area. RESULTS: The application of PTAC ([i.p.] intraperitoneal injection) increased the paw withdraw threshold in both the early (0.05 mg/kg, mean difference [95% confidence interval, CI]: 0.19 [0.05–0.32]; 0.10 mg/kg: mean difference [95% CI]: 0.34 [0.22–0.46]) and the late phases (0.05 mg/kg: mean difference [95% CI]: 0.45 [0.39–0.50]; 0.1 mg/kg: mean difference [95% CI]: 0.44 [0.37–0.51]) after nerve injury and rebalanced the weight distribution on the hind paws of mice (L/R ratio: before, 0.56 ± 0.03. 0.05 mg/kg, 1.00 ± 0.04, 0.10 mg/kg, 0.99 ± 0.03); however, it failed to induce place preference in the CPP (0.05 mg/kg, 2-way analysis of variance, P > .05; 0.2 mg/kg, 2-way analysis of variance, P > .05,). At the same doses, the analgesic effects at D3–5 lasted longer than the effects at D14–16. This may be due to the down-regulation of the M2 and M1 in tested brain regions. CONCLUSIONS: These observations suggested that PTAC has analgesic effects on the neuropathic pain induced by nerve injury.
Collapse
|
12
|
Salamone JD, Podurgiel S, Collins-Praino LE, Correa M. Physiological and Behavioral Assessment of Tremor in Rodents. Mov Disord 2015. [DOI: 10.1016/b978-0-12-405195-9.00038-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
13
|
The muscarinic acetylcholine receptor agonist BuTAC mediates antipsychotic-like effects via the M4 subtype. Neuropsychopharmacology 2013; 38:2717-26. [PMID: 23907402 PMCID: PMC3828543 DOI: 10.1038/npp.2013.186] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 07/18/2013] [Accepted: 07/22/2013] [Indexed: 11/08/2022]
Abstract
The generation of muscarinic acetylcholine receptor (mAChR) subtype-selective compounds has been challenging, requiring use of nonpharmacological approaches, such as genetically engineered animals, to deepen our understanding of the potential that members of the muscarinic receptor subtype family hold as therapeutic drug targets. The muscarinic receptor agonist 'BuTAC' was previously shown to exhibit efficacy in animal models of psychosis, although the particular receptor subtype(s) responsible for such activity was unclear. Here, we evaluate the in vitro functional agonist and antagonist activity of BuTAC using an assay that provides a direct measure of G protein activation. In addition, we employ the conditioned avoidance response paradigm, an in vivo model predictive of antipsychotic activity, and mouse genetic deletion models to investigate which presynaptic mAChR subtype mediates the antipsychotic-like effects of BuTAC. Our results show that, in vitro, BuTAC acts as a full agonist at the M2AChR and a partial agonist at the M1 and M4 receptors, with full antagonist activity at M3- and M5AChRs. In the mouse conditioned avoidance response (CAR) assay, BuTAC exhibits an atypical antipsychotic-like profile by selectively decreasing avoidance responses at doses that do not induce escape failures. CAR results using M2(-/-), M4(-/-), and M2/M4 (M2/M4(-/-)) mice found that the effects of BuTAC were near completely lost in M2/M4(-/-) double-knockout mice and potency of BuTAC was right-shifted in M4(-/-) as compared with wild-type and M2(-/-) mice. The M2/M4(-/-) mice showed no altered sensitivity to the antipsychotic effects of either haloperidol or clozapine, suggesting that these compounds mediate their actions in CAR via a non-mAChR-mediated mechanism. These data support a role for the M4AChR subtype in mediating the antipsychotic-like activity of BuTAC and implicate M4AChR agonism as a potential novel therapeutic mechanism for ameliorating symptoms associated with schizophrenia.
Collapse
|
14
|
Benes J, Mravec B, Kvetnansky R, Myslivecek J. The restructuring of muscarinic receptor subtype gene transcripts in c-fos knock-out mice. Brain Res Bull 2013; 94:30-9. [PMID: 23395867 DOI: 10.1016/j.brainresbull.2013.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 01/17/2013] [Accepted: 01/29/2013] [Indexed: 10/27/2022]
Abstract
Although c-Fos plays a key role in intracellular signalling, the disruption of the c-fos gene has only minor consequences on the central nervous system (CNS) function. As muscarinic receptors (MR) play important roles in many CNS functions (attention, arousal, and cognition), the c-fos knock-out might be compensated through MR changes. The aim of this study was to evaluate changes in the M1-M5 MR mRNA in selected CNS areas: frontal, parietal, temporal and occipital cortex, striatum, hippocampus, hypothalamus and cerebellum (FC, PC, TC, OC, stria, hip, hypo, and crbl, respectively). Knocking out the c-fos gene changed the expression of MR in FC (reduced M1R, M4R and M5R expression), TC (increased M4R expression), OC (decreased M2R and M3R expression) and hippocampus (reduced M3R expression). Moreover, gender differences were observed in WT mice: increased expression of all M1-M5R in the FC in males and M1-M4R in the striatum in females. A detailed analysis of MR transcripts showed pre-existing correlations in the amount of MR-mRNA between specific regions. WT mice showed three major types of cortico-cortical correlations: fronto-occipital, temporo-parietal and parieto-occipital. The cortico-subcortical correlations involved associations between the FC, PC, TC and striatum. In KO mice, a substantial rearrangement of the correlation pattern was observed: only a temporo-parietal correlation and correlations between the FC and striatum remained, and a new correlation between the hypothalamus and cerebellum appeared. Thus, in addition to the previously described dopamine receptor restructuring, the restructuring of MR mRNA correlations reveals an additional mechanism for adaptation to the c-fos gene knockout.
Collapse
Affiliation(s)
- Jan Benes
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| | | | | | | |
Collapse
|
15
|
Hurt JK, Coleman JL, Fitzpatrick BJ, Taylor-Blake B, Bridges AS, Vihko P, Zylka MJ. Prostatic acid phosphatase is required for the antinociceptive effects of thiamine and benfotiamine. PLoS One 2012; 7:e48562. [PMID: 23119057 PMCID: PMC3485352 DOI: 10.1371/journal.pone.0048562] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 09/27/2012] [Indexed: 01/19/2023] Open
Abstract
Thiamine (Vitamin B1) is an essential vitamin that must be obtained from the diet for proper neurological function. At higher doses, thiamine and benfotiamine (S-benzoylthiamine O-monophosphate, BT)–a phosphorylated derivative of thiamine–have antinociceptive effects in animals and humans, although how these compounds inhibit pain is unknown. Here, we found that Prostatic acid phosphatase (PAP, ACPP) can dephosphorylate BT in vitro, in dorsal root ganglia (DRG) neurons and in primary-afferent axon terminals in the dorsal spinal cord. The dephosphorylated product S-benzoylthiamine (S-BT) then decomposes to O-benzoylthiamine (O-BT) and to thiamine in a pH-dependent manner, independent of additional enzymes. This unique reaction mechanism reveals that BT only requires a phosphatase for conversion to thiamine. However, we found that the antinociceptive effects of BT, thiamine monophosphate (TMP) and thiamine–a compound that is not phosphorylated–were entirely dependent on PAP at the spinal level. Moreover, pharmacokinetic studies with wild-type and Pap−/− mice revealed that PAP is not required for the conversion of BT to thiamine in vivo. Taken together, our study highlights an obligatory role for PAP in the antinociceptive effects of thiamine and phosphorylated thiamine analogs, and suggests a novel phosphatase-independent function for PAP.
Collapse
Affiliation(s)
- Julie K. Hurt
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Jennifer L. Coleman
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Brendan J. Fitzpatrick
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Bonnie Taylor-Blake
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Arlene S. Bridges
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
| | - Pirkko Vihko
- Department of Clinical Medicine, Division of Clinical Chemistry, HUSLAB, University of Helsinki, Helsinki, Finland
| | - Mark J. Zylka
- Department of Cell and Molecular Physiology, UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, United States of America
- * E-mail:
| |
Collapse
|
16
|
Benes J, Varejkova E, Farar V, Novakova M, Myslivecek J. Decrease in heart adrenoceptor gene expression and receptor number as compensatory tool for preserved heart function and biological rhythm in M(2) KO animals. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:1161-73. [PMID: 23093370 DOI: 10.1007/s00210-012-0800-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 10/05/2012] [Indexed: 11/26/2022]
Abstract
Muscarinic receptors (MR) are main cardioinhibitory receptors. We investigated the changes in gene expression, receptor number, echocardiography, muscarinic/adrenergic agonist/antagonist changes in heart rate (HR) and HR biorhythm in M(2) KO mice (mice lacking the main cardioinhibitory receptors) in the left ventricle (LV) and right ventricle (RV). We hypothesize that the disruption of M(2) MR, key players in parasympathetic bradycardia, would change the number of receptors with antagonistic effects on the heart (β(1)- and β(2)-adrenoceptors, BAR), while the function of the heart would be changed only marginally. We have found changes in LV, but not in RV: decrease in M(3) MR, β(1)- and β(2)-adrenoceptor gene expressions that were accompanied by a decrease in MR and BAR receptor binding. No changes were found both in LV systolic and diastolic function as assessed by echocardiography (e.g., similar LV end-systolic and end-diastolic diameter, fractional shortening, mitral flow characteristics, and maximal velocity in LV outflow tract). We have found only marginal changes in specific HR biorhythm parameters. The effects of isoprenaline and propranolol on HR were similar in WT and KO (but with lesser extent). Atropine was not able to increase HR in KO animals. Carbachol decreased the HR in WT but increased HR in KO, suggesting the presence of cardiostimulatory MR. Therefore, we can conclude that although the main cardioinhibitory receptors are not present in the heart, the function is not much affected. As possible mechanisms of almost normal cardiac function, the decreases of both β(1)- and β(2)-adrenoceptor gene expression and receptor binding should be considered.
Collapse
Affiliation(s)
- Jan Benes
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00, Prague, Czech Republic
| | | | | | | | | |
Collapse
|
17
|
Benes J, Novakova M, Rotkova J, Farar V, Kvetnansky R, Riljak V, Myslivecek J. Beta3 adrenoceptors substitute the role of M(2) muscarinic receptor in coping with cold stress in the heart: evidence from M(2)KO mice. Cell Mol Neurobiol 2012; 32:859-69. [PMID: 22222438 PMCID: PMC11498497 DOI: 10.1007/s10571-011-9781-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/03/2011] [Indexed: 01/22/2023]
Abstract
We investigated the role of beta3-adrenoceptors (AR) in cold stress (1 or 7 days in cold) in animals lacking main cardioinhibitive receptors-M2 muscarinic receptors (M(2)KO). There was no change in receptor number in the right ventricles. In the left ventricles, there was decrease in binding to all cardiostimulative receptors (beta1-, and beta2-AR) and increase in cardiodepressive receptors (beta3-AR) in unstressed KO in comparison to WT. The cold stress in WT animals resulted in decrease in binding to beta1- and beta2-AR (to 37%/35% after 1 day in cold and to 27%/28% after 7 days in cold) while beta3-AR were increased (to 216% of control) when 7 days cold was applied. MR were reduced to 46% and 58%, respectively. Gene expression of M2 MR in WT was not changed due to stress, while M3 was changed. The reaction of beta1- and beta2-AR (binding) to cold was similar in KO and WT animals, and beta3-AR in stressed KO animals did not change. Adenylyl cyclase activity was affected by beta3-agonist CL316243 in cold stressed WT animals but CL316243 had almost no effects on adenylyl cyclase activity in stressed KO. Nitric oxide activity (NOS) was not affected by BRL37344 (beta3-agonist) both in WT and KO animals. Similarly, the stress had no effects on NOS activity in WT animals and in KO animals. We conclude that the function of M2 MR is substituted by beta3-AR and that these effects are mediated via adenylyl cyclase rather than NOS.
Collapse
Affiliation(s)
- Jan Benes
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
| | - Martina Novakova
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
| | - Jana Rotkova
- Laboratory of Physiology, Institute of Health Sciences, Technical University, Liberec, Czech Republic
| | - Vladimir Farar
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
- Laboratory of Physiology, Institute of Health Sciences, Technical University, Liberec, Czech Republic
| | - Richard Kvetnansky
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladimir Riljak
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
- Laboratory of Physiology, Institute of Health Sciences, Technical University, Liberec, Czech Republic
| | - Jaromir Myslivecek
- Institute of Physiology, 1st Faculty of Medicine, Charles University, Albertov 5, 128 00 Prague, Czech Republic
- Laboratory of Physiology, Institute of Health Sciences, Technical University, Liberec, Czech Republic
| |
Collapse
|
18
|
Noreikat K, Wolff M, Kummer W, Kölle S. Ciliary activity in the oviduct of cycling, pregnant, and muscarinic receptor knockout mice. Biol Reprod 2012; 86:120. [PMID: 22302687 DOI: 10.1095/biolreprod.111.096339] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The transport of the oocyte and the embryo in the oviduct is managed by ciliary beating and muscular contractions. Because nonneuronally produced acetylcholine influences ciliary beating in the trachea via the muscarinic receptors M2 and M3, we supposed that components of the cholinergic system may also modulate ciliary activity in the oviduct. To address this issue, we analyzed the expression profile of muscarinic receptors (CHRMs) in the murine oviduct by RT-PCR and assessed ciliary beat frequency (CBF) and cilia-driven particle transport speed (PTS) on the mucosal surface of opened oviductal segments in correlation with histomorphological investigations. RT-PCR of laser-assisted microdissected epithelium revealed expression of Chrm subtypes Chrm1 and Chrm3. In opened isthmic segments, particle transport was barely seen, correlating with a significantly lower number of ciliated cells compared to the ampulla. In the ampulla, basal PTS and CBF were high (71 μm/sec and 21 Hz, respectively) both in cycling and pregnant wild-type mice and in mice with targeted deletion of the Chrm genes Chrm1, Chrm3, Chrm4, and Chrm5. In contrast to the trachea, where basal ciliary activity was low and largely enhanced by muscarinic stimulation, muscarinic agonists and antagonists did not affect the high ampullar PTS. Our results imply that this high oviductal autonomous ciliary activity is independent from the intrinsic cholinergic system and serves to maintain optimal clearance of the tube throughout all stages of the estrous cycle and early pregnancy.
Collapse
Affiliation(s)
- Katharina Noreikat
- Institute of Veterinary Anatomy, Histology, and Embryology, Justus-Liebig University, Giessen, Germany
| | | | | | | |
Collapse
|
19
|
Koshimizu H, Leiter LM, Miyakawa T. M4 muscarinic receptor knockout mice display abnormal social behavior and decreased prepulse inhibition. Mol Brain 2012; 5:10. [PMID: 22463818 PMCID: PMC3361477 DOI: 10.1186/1756-6606-5-10] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In the central nervous system (CNS), the muscarinic system plays key roles in learning and memory, as well as in the regulation of many sensory, motor, and autonomic processes, and is thought to be involved in the pathophysiology of several major diseases of the CNS, such as Alzheimer's disease, depression, and schizophrenia. Previous studies reveal that M4 muscarinic receptor knockout (M4R KO) mice displayed an increase in basal locomotor activity, an increase in sensitivity to the prepulse inhibition (PPI)-disrupting effect of psychotomimetics, and normal basal PPI. However, other behaviorally significant roles of M4R remain unclear. RESULTS In this study, to further investigate precise functional roles of M4R in the CNS, M4R KO mice were subjected to a battery of behavioral tests. M4R KO mice showed no significant impairments in nociception, neuromuscular strength, or motor coordination/learning. In open field, light/dark transition, and social interaction tests, consistent with previous studies, M4R KO mice displayed enhanced locomotor activity compared to their wild-type littermates. In the open field test, M4R KO mice exhibited novelty-induced locomotor hyperactivity. In the social interaction test, contacts between pairs of M4R KO mice lasted shorter than those of wild-type mice. In the sensorimotor gating test, M4R KO mice showed a decrease in PPI, whereas in the startle response test, in contrast to a previous study, M4R KO mice demonstrated normal startle response. M4R KO mice also displayed normal performance in the Morris water maze test. CONCLUSIONS These findings indicate that M4R is involved in regulation of locomotor activity, social behavior, and sensorimotor gating in mice. Together with decreased PPI, abnormal social behavior, which was newly identified in the present study, may represent a behavioral abnormality related to psychiatric disorders including schizophrenia.
Collapse
Affiliation(s)
- Hisatsugu Koshimizu
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| | - Lorene M Leiter
- Howard Hughes Medical Institute, The Picower Center for Learning and Memory and RIKEN/Massachusetts Institute of Technology Neuroscience Research Center, Departments of Biology and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake 470-1192, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
- Howard Hughes Medical Institute, The Picower Center for Learning and Memory and RIKEN/Massachusetts Institute of Technology Neuroscience Research Center, Departments of Biology and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
20
|
Lanzafame AA, Christopoulos A, Mitchelson F. Cellular Signaling Mechanisms for Muscarinic Acetylcholine Receptors. ACTA ACUST UNITED AC 2011. [DOI: 10.3109/10606820308263] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
21
|
Novel strains of mice deficient for the vesicular acetylcholine transporter: insights on transcriptional regulation and control of locomotor behavior. PLoS One 2011; 6:e17611. [PMID: 21423695 PMCID: PMC3053374 DOI: 10.1371/journal.pone.0017611] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Accepted: 01/31/2011] [Indexed: 12/19/2022] Open
Abstract
Defining the contribution of acetylcholine to specific behaviors has been challenging, mainly because of the difficulty in generating suitable animal models of cholinergic dysfunction. We have recently shown that, by targeting the vesicular acetylcholine transporter (VAChT) gene, it is possible to generate genetically modified mice with cholinergic deficiency. Here we describe novel VAChT mutant lines. VAChT gene is embedded within the first intron of the choline acetyltransferase (ChAT) gene, which provides a unique arrangement and regulation for these two genes. We generated a VAChT allele that is flanked by loxP sequences and carries the resistance cassette placed in a ChAT intronic region (FloxNeo allele). We show that mice with the FloxNeo allele exhibit differential VAChT expression in distinct neuronal populations. These mice show relatively intact VAChT expression in somatomotor cholinergic neurons, but pronounced decrease in other cholinergic neurons in the brain. VAChT mutant mice present preserved neuromuscular function, but altered brain cholinergic function and are hyperactive. Genetic removal of the resistance cassette rescues VAChT expression and the hyperactivity phenotype. These results suggest that release of ACh in the brain is normally required to “turn down” neuronal circuits controlling locomotion.
Collapse
|
22
|
Zavitsanou K, Dalton VS, Wang H, Newson P, Chahl LA. Receptor changes in brain tissue of rats treated as neonates with capsaicin. J Chem Neuroanat 2010; 39:248-55. [DOI: 10.1016/j.jchemneu.2010.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 01/19/2010] [Accepted: 01/19/2010] [Indexed: 02/03/2023]
|
23
|
Distinct muscarinic acetylcholine receptor subtypes contribute to stability and growth, but not compensatory plasticity, of neuromuscular synapses. J Neurosci 2010; 29:14942-55. [PMID: 19940190 DOI: 10.1523/jneurosci.2276-09.2009] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Muscarinic acetylcholine receptors (mAChRs) modulate synaptic function, but whether they influence synaptic structure remains unknown. At neuromuscular junctions (NMJs), mAChRs have been implicated in compensatory sprouting of axon terminals in paralyzed or denervated muscles. Here we used pharmacological and genetic inhibition and localization studies of mAChR subtypes at mouse NMJs to demonstrate their roles in synaptic stability and growth but not in compensatory sprouting. M(2) mAChRs were present solely in motor neurons, whereas M(1), M(3), and M(5) mAChRs were associated with Schwann cells and/or muscle fibers. Blockade of all five mAChR subtypes with atropine evoked pronounced effects, including terminal sprouting, terminal withdrawal, and muscle fiber atrophy. In contrast, methoctramine, an M(2/4)-preferring antagonist, induced terminal sprouting and terminal withdrawal, but no muscle fiber atrophy. Consistent with this observation, M(2)(-/-) but no other mAChR mutant mice exhibited spontaneous sprouting accompanied by extensive loss of parental terminal arbors. Terminal sprouting, however, seemed not to be the causative defect because partial loss of terminal branches was common even in the M(2)(-/-) NMJs without sprouting. Moreover, compensatory sprouting after paralysis or partial denervation was normal in mice deficient in M(2) or other mAChR subtypes. We also found that many NMJs of M(5)(-/-) mice were exceptionally small and reduced in proportion to the size of parental muscle fibers. These findings show that axon terminals are unstable without M(2) and that muscle fiber growth is defective without M(5). Subtype-specific muscarinic signaling provides a novel means for coordinating activity-dependent development and maintenance of the tripartite synapse.
Collapse
|
24
|
Barch DM. Pharmacological strategies for enhancing cognition in schizophrenia. Curr Top Behav Neurosci 2010; 4:43-96. [PMID: 21312397 DOI: 10.1007/7854_2010_39] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Researchers have long recognized that individuals with schizophrenia experience challenges in a wide range of cognitive domains, and research on cognitive impairment in schizophrenia is not a recent phenomena. However, the past 10-20 years have seen an increasing recognition of the central importance of cognition to understanding function and outcome in this illness (Green et al. in Schizophr Bull 26:119-136, 2000), an awareness that has shifted the emphasis of at least some work on schizophrenia. More specifically, there has been a rapidly growing body of work on methods of enhancing cognition in schizophrenia, as a means to potentially facilitate improved outcome and quality of life for individuals with this debilitating illness. The current chapter reviews the results of a range of studies examining adjunctive pharmacological treatments to enhance cognition in schizophrenia using a range of designs, including single-dose studies, open-label repeated dosing studies, and double-blind parallel group and crossover designs with repeated dosing. Although many of the single-dose and open-label studies have suggested positive cognitive effects from a range of agents, few of the larger-scale double-blind studies have generated positive results. The current state of results may reflect the need to identify alternative molecular mechanisms for enhancing cognition in schizophrenia or the need to reconceptualize the ways in which pharmacological agents may improve cognition in this illness, with a concomitant change in the traditional clinical trial study design used in prior studies of cognitive enhancement in schizophrenia.
Collapse
Affiliation(s)
- Deanna M Barch
- Washington University, St. Louis, One Brookings Drive, Box 1125, St. Louis, MO 63130, USA.
| |
Collapse
|
25
|
Schneider SA, Udani V, Sankhla CS, Bhatia KP. Recurrent acute dystonic reaction and oculogyric crisis despite withdrawal of dopamine receptor blocking drugs. Mov Disord 2009; 24:1226-9. [DOI: 10.1002/mds.22532] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
26
|
Oculogyric crisis with exacerbation of psychosis: Possible mechanism and clinical implications. Neurosci Lett 2009; 451:50-1. [DOI: 10.1016/j.neulet.2008.12.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 12/03/2008] [Accepted: 12/17/2008] [Indexed: 11/19/2022]
|
27
|
Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB, Shirey JK, Conn PJ, Lindsley CW. Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 2008; 327:941-53. [PMID: 18772318 PMCID: PMC2745822 DOI: 10.1124/jpet.108.140350] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Previous clinical and animal studies suggest that selective activators of M(1) and/or M(4) muscarinic acetylcholine receptors (mAChRs) have potential as novel therapeutic agents for treatment of schizophrenia and Alzheimer's disease. However, highly selective centrally penetrant activators of either M(1) or M(4) have not been available, making it impossible to determine the in vivo effects of selective activation of these receptors. We previously identified VU10010 [3-amino-N-(4-chlorobenzyl)-4, 6-dimethylthieno[2,3-b]pyridine-2-carboxamide] as a potent and selective allosteric potentiator of M(4) mAChRs. However, unfavorable physiochemical properties prevented use of this compound for in vivo studies. We now report that chemical optimization of VU10010 has afforded two centrally penetrant analogs, VU0152099 [3-amino-N-(benzo[d][1,3]dioxol-5-ylmethyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide] and VU0152100 [3-amino-N-(4-methoxybenzyl)-4,6-dimethylthieno[2,3-b]pyridine carboxamide], that are potent and selective positive allosteric modulators of M(4). VU0152099 and VU0152100 had no agonist activity but potentiated responses of M(4) to acetylcholine. Both compounds were devoid of activity at other mAChR subtypes or at a panel of other GPCRs. The improved physiochemical properties of VU0152099 and VU0152100 allowed in vivo dosing and evaluation of behavioral effects in rats. Interestingly, these selective allosteric potentiators of M(4) reverse amphetamine-induced hyperlocomotion in rats, a model that is sensitive to known antipsychotic agents and to nonselective mAChR agonists. This is consistent with the hypothesis that M(4) plays an important role in regulating midbrain dopaminergic activity and raises the possibility that positive allosteric modulation of M(4) may mimic some of the antipsychotic-like effects of less selective mAChR agonists.
Collapse
Affiliation(s)
- Ashley E Brady
- Department of Pharmacology, Vanderbilt Program in Drug Discovery, Vanderbilt University Medical Center, Nashville, TN 37232-6600, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bonsi P, Martella G, Cuomo D, Platania P, Sciamanna G, Bernardi G, Wess J, Pisani A. Loss of muscarinic autoreceptor function impairs long-term depression but not long-term potentiation in the striatum. J Neurosci 2008; 28:6258-63. [PMID: 18550768 PMCID: PMC3849426 DOI: 10.1523/jneurosci.1678-08.2008] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2007] [Revised: 05/09/2008] [Accepted: 05/12/2008] [Indexed: 01/22/2023] Open
Abstract
Muscarinic autoreceptors regulate cholinergic tone in the striatum. We investigated the functional consequences of genetic deletion of striatal muscarinic autoreceptors by means of electrophysiological recordings from either medium spiny neurons (MSNs) or cholinergic interneurons (ChIs) in slices from single M(4) or double M(2)/M(4) muscarinic acetylcholine receptor (mAChR) knock-out (-/-) mice. In control ChIs, the muscarinic agonist oxotremorine (300 nM) produced a self-inhibitory outward current that was mostly reduced in M(4)(-/-) and abolished in M(2)/M(4)(-/-) mice, suggesting an involvement of both M(2) and M(4) autoreceptors. In MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, muscarine caused a membrane depolarization that was prevented by the M(1) receptor-preferring antagonist pirenzepine (100 nM), suggesting that M(1) receptor function was unaltered. Acetylcholine has been involved in striatal long-term potentiation (LTP) or long-term depression (LTD) induction. Loss of muscarinic autoreceptor function is predicted to affect synaptic plasticity by modifying striatal cholinergic tone. Indeed, high-frequency stimulation of glutamatergic afferents failed to induce LTD in MSNs from both M(4)(-/-) and M(2)/M(4)(-/-) mice, as well as in wild-type mice pretreated with the M(2)/M(4) antagonist AF-DX384 (11-[[2-[(diethylamino)methyl]-1-piperidinyl]acetyl]-5,1 1-dihydro-6H-pyrido[2,3b][1,4] benzodiazepin-6-one). Interestingly, LTD could be restored by either pirenzepine (100 nM) or hemicholinium-3 (10 microM), a depletor of endogenous ACh. Conversely, LTP induction did not show any difference among the three mouse strains and was prevented by pirenzepine. These results demonstrate that M(2)/M(4) muscarinic autoreceptors regulate ACh release from striatal ChIs. As a consequence, endogenous ACh drives the polarity of bidirectional synaptic plasticity.
Collapse
Affiliation(s)
- Paola Bonsi
- Fondazione Santa Lucia Instituto di Ricovero e Cura a Carattere Scientifico, Rome 00146, Italy
| | - Giuseppina Martella
- Department of Neuroscience, University “Tor Vergata,” Rome 00133, Italy, and
| | - Dario Cuomo
- Department of Neuroscience, University “Tor Vergata,” Rome 00133, Italy, and
| | - Paola Platania
- Department of Neuroscience, University “Tor Vergata,” Rome 00133, Italy, and
| | - Giuseppe Sciamanna
- Fondazione Santa Lucia Instituto di Ricovero e Cura a Carattere Scientifico, Rome 00146, Italy
- Department of Neuroscience, University “Tor Vergata,” Rome 00133, Italy, and
| | - Giorgio Bernardi
- Fondazione Santa Lucia Instituto di Ricovero e Cura a Carattere Scientifico, Rome 00146, Italy
- Department of Neuroscience, University “Tor Vergata,” Rome 00133, Italy, and
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0810
| | - Antonio Pisani
- Fondazione Santa Lucia Instituto di Ricovero e Cura a Carattere Scientifico, Rome 00146, Italy
- Department of Neuroscience, University “Tor Vergata,” Rome 00133, Italy, and
| |
Collapse
|
29
|
Rhodes ME, Rubin RT, McKlveen JM, Karwoski TE, Fulton BA, Czambel RK. Pituitary-adrenal responses to oxotremorine and acute stress in male and female M1 muscarinic receptor knockout mice: comparisons to M2 muscarinic receptor knockout mice. J Neuroendocrinol 2008; 20:617-25. [PMID: 18363805 DOI: 10.1111/j.1365-2826.2008.01700.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Both within the brain and in the periphery, M(1) muscarinic receptors function primarily as postsynaptic receptors and M(2) muscarinic receptors function primarily as presynaptic autoreceptors. In addition to classical parasympathetic effectors, cholinergic stimulation of central muscarinic receptors influences the release of adrenocorticotrophic hormone (ACTH) and corticosterone. We previously reported that oxotremorine administration to male and female M(2) receptor knockout and wild-type mice increased ACTH to a significantly greater degree in knockout males compared to all other groups, and that M(2) knockout mice of both sexes were significantly more responsive to the mild stress of saline injection than were wild-type mice. These results accord with the primary function of M(2) receptors as presynaptic autoreceptors. In the present study, we explored the role of the M(1) receptor in pituitary-adrenal responses to oxotremorine and saline in male and female M(1) knockout and wild-type mice. Because these mice responded differently to the mild stress of saline injection than did the M(2) knockout and wild-type mice, we also determined hormone responses to restraint stress in both M(1) and M(2) knockout and wild-type mice. Male and female M(1) knockout and wild-type mice were equally unresponsive to the stress of saline injection. Oxotremorine increased both ACTH and corticosterone in M(1) wild-type mice to a significantly greater degree than in knockout mice. In both M(1) knockout and wild-type animals, ACTH responses were greater in males compared to females, and corticosterone responses were greater in females compared to males. Hormone responses to restraint stress were increased in M(2) knockout mice and decreased in M(1) knockout mice compared to their wild-type counterparts. These findings suggest that M(1) and M(2) muscarinic receptor subtypes differentially influence male and female pituitary-adrenal responses to cholinergic stimulation and stress. The decreased pituitary-adrenal sensitivity to oxotremorine and restraint stress noted in M(1) knockout mice is consistent with M(1) being primarily a postsynaptic receptor. Conversely, the increased pituitary-adrenal sensitivity to these challenges noted in M(2) knockout mice is consistent with M(2) being primarily a presynaptic autoreceptor.
Collapse
Affiliation(s)
- M E Rhodes
- Department of Biology, Saint Vincent College, Latrobe, PA 15650-2690, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Gilsbach R, Hein L. Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline. Handb Exp Pharmacol 2008:261-88. [PMID: 18064417 DOI: 10.1007/978-3-540-74805-2_9] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Presynaptic metabotropic receptors for acetylcholine and adrenaline/noradrenaline were first described more than three decades ago. Molecular cloning has resulted in the identification of five G protein-coupled muscarinic receptors (M(1) - M(5)) which mediate the biological effects of acetylcholine. Nine adrenoceptors (alpha(1ABD),alpha(2ABC),beta(123)) transmit adrenaline/noradrenaline signals between cells. The lack of sufficiently subtype-selective ligands has prevented identification of the physiological role and therapeutic potential of these receptor subtypes for a long time. Recently, mouse lines with targeted deletions for all muscarinic and adrenoceptor genes have been generated. This review summarizes the results from these gene-targeting studies with particular emphasis on presynaptic auto- and heteroreceptor functions of muscarinic and adrenergic receptors. Specific knowledge about the function of receptor subtypes will enhance our understanding of the physiological role of the cholinergic and adrenergic nervous system and open new avenues for subtype-selective therapeutic strategies.
Collapse
Affiliation(s)
- Ralf Gilsbach
- Institute of Experimental and Clinical Pharmacology and Toxicology, University of Freiburg, Albertstrasse 25, 79104, Freiburg, Germany
| | | |
Collapse
|
31
|
Boudinot E, Champagnat J, Foutz AS. M(1)/M(3) and M(2)/M(4) muscarinic receptor double-knockout mice present distinct respiratory phenotypes. Respir Physiol Neurobiol 2007; 161:54-61. [PMID: 18206430 DOI: 10.1016/j.resp.2007.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2007] [Revised: 11/14/2007] [Accepted: 12/01/2007] [Indexed: 11/27/2022]
Abstract
We investigated the role of muscarinic acetylcholine receptors in the control of breathing. Baseline breathing at rest and ventilatory responses to brief exposures to hypoxia (10% O(2)) and hypercapnia (3% and 5% CO(2)), measured by whole-body plethysmography in partially restrained animals, were compared in mice lacking either M(1) and M(3) or M(2) and M(4) muscarinic receptors, and in wild-type matched controls. M(1/3)R double-knockout mice showed at rest an elevated ventilation (V (E)) due to a large (57%) increase in tidal volume (V(T)). Chemosensory ventilatory responses were unaltered. M(2/4)R double-knockout mice were agitated and showed elevated V (E) and breathing frequency (f(R)) at rest when partially restrained, but unaltered V (E) and low f(R) when recorded unrestrained. Chemosensory ventilatory responses were unaltered. The results suggest that M(1) and M(3) receptors are involved in the control of tidal volume, while M(2) and M(4) receptors may be involved in the control of breathing frequency at rest and response to stress.
Collapse
Affiliation(s)
- E Boudinot
- Neurobiologie Génétique et Intégrative, Institut de Neurobiologie Alfred Fessard, C.N.R.S., 91190 Gif-sur-Yvette, France
| | | | | |
Collapse
|
32
|
Galeotti N, Quattrone A, Vivoli E, Bartolini A, Ghelardini C. Knockdown of the type 2 and 3 inositol 1,4,5-trisphosphate receptors suppresses muscarinic antinociception in mice. Neuroscience 2007; 149:409-20. [PMID: 17890015 DOI: 10.1016/j.neuroscience.2007.07.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 06/29/2007] [Accepted: 07/04/2007] [Indexed: 11/25/2022]
Abstract
The involvement of central endoplasmic inositol 1,4,5-trisphosphate receptors (IP3R) in muscarinic antinociception was investigated in the mouse hot plate test. Selective knockdown of type 1, 2 and 3 IP3R was obtained by means of an antisense oligonucleotide (aODN) strategy. A selective IP3R protein level reduction of approximately 30-50% produced by aODN administration for each receptor subtype investigated was demonstrated by Western blotting experiments. I.c.v. pretreatment with an aODN complementary to the sequence of the type 2 IP3R (0.1-3 nmol per mouse i.c.v.) prevented the antinociception induced by physostigmine (0.15 mg kg(-1) s.c.) and oxotremorine (60 microg kg(-1) s.c.). Similarly, an aODN against type 3 IP3R (0.1-3 nmol per mouse i.c.v.) antagonized cholinergic antinociception. A shift to the right of the physostigmine dose-response curve was obtained after anti-type 2 IP3R2 and anti-type 3 IP3R treatments. Conversely, pretreatment with an aODN complementary to the sequence of type 1 IP3R (0.1-5 nmol per mouse i.c.v.) did not modify the antinociception induced by physostigmine and oxotremorine. Mice undergoing treatment with aODNs did not show any impairment of the locomotor activity, spontaneous motility and exploratory activity as revealed by the rota-rod and hole board tests. These results indicate a selective involvement of type 2 and 3 IP3R in central muscarinic antinociception in mice.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Exploratory Behavior/drug effects
- Injections, Intraventricular
- Inositol 1,4,5-Trisphosphate Receptors/biosynthesis
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/physiology
- Male
- Membranes/drug effects
- Membranes/metabolism
- Mice
- Motor Activity/drug effects
- Motor Activity/physiology
- Muscarinic Agonists/pharmacology
- Muscarinic Antagonists/pharmacology
- Nociceptors/drug effects
- Nociceptors/physiology
- Oligonucleotides, Antisense/pharmacology
- Oxotremorine/pharmacology
- Pain Measurement/drug effects
- Physostigmine/pharmacology
- Postural Balance/drug effects
- RNA, Messenger/genetics
- Receptors, Muscarinic/drug effects
- Receptors, Muscarinic/physiology
Collapse
Affiliation(s)
- N Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | | | | | |
Collapse
|
33
|
Hasse S, Chernyavsky AI, Grando SA, Paus R. The M4 muscarinic acetylcholine receptor plays a key role in the control of murine hair follicle cycling and pigmentation. Life Sci 2007; 80:2248-52. [PMID: 17346754 PMCID: PMC2017094 DOI: 10.1016/j.lfs.2007.01.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2006] [Revised: 11/26/2006] [Accepted: 01/05/2007] [Indexed: 01/09/2023]
Abstract
Cholinergic receptors of the muscarinic class (M1-M5) are expressed in epidermal keratinocytes and melanocytes as well as in the hair follicle. Knockout (KO) mice of all five receptors have been created and resulted in different phenotypes. KO mice with a deletion of the M4 muscarinic acetylcholine receptor (M4R) present a striking hair phenotype, which we have analyzed here in greater detail by quantitative histomorphometry. Earlier studies revealed a retarded hair follicle morphogenesis in M4R KO mice, compared to age-matched wild type controls. On day 17, when mice enter the first hair growth cycle, the KO mice still showed a slightly retarded catagen phase. Subsequently, hair follicles of the KO mice stayed in a highly significantly prolonged telogen phase, while wild type mice had already far progressed in the hair cycle by entry into anagen. Most strikingly, the M4R KO mice did not engage in follicular melanogenesis and failed to produce pigmented hair shafts. The current pilot study suggests that the M4R plays a fundamental role in the control of the murine hair follicle cycling and is an essential signaling element in the control of hair follicle pigmentation.
Collapse
Affiliation(s)
- Sybille Hasse
- Department of Dermatology, University Hospital Schleswig-Holstein, Campus Luebeck, University of Luebeck, D-23538 Luebeck, Germany
| | | | | | | |
Collapse
|
34
|
Garzón M, Pickel VM. Subcellular distribution of M2 muscarinic receptors in relation to dopaminergic neurons of the rat ventral tegmental area. J Comp Neurol 2006; 498:821-39. [PMID: 16927256 PMCID: PMC2577061 DOI: 10.1002/cne.21082] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Acetylcholine can affect cognitive functions and reward, in part, through activation of muscarinic receptors in the ventral tegmental area (VTA) to evoke changes in mesocorticolimbic dopaminergic transmission. Among the known muscarinic receptor subtypes present in the VTA, the M2 receptor (M2R) is most implicated in autoregulation and also may play a heteroreceptor role in regulation of the output of the dopaminergic neurons. We sought to determine the functionally relevant sites for M2R activation in relation to VTA dopaminergic neurons by examining the electron microscopic immunolabeling of M2R and the dopamine transporter (DAT) in the VTA of rat brain. The M2R was localized to endomembranes in DAT-containing somatodendritic profiles but showed a more prominent, size-dependent plasmalemmal location in nondopaminergic dendrites. M2R also was located on the plasma membrane of morphologically heterogenous axon terminals contacting unlabeled as well as M2R- or DAT-labeled dendrites. Some of these terminals formed asymmetric synapses resembling those of cholinergic terminals in the VTA. The majority, however, formed symmetric, inhibitory-type synapses or were apposed without recognized junctions. Our results provide the first ultrastructural evidence that the M2R is expressed, but largely not available for local activation, on the plasma membrane of VTA dopaminergic neurons. Instead, the M2R in this region has a distribution suggesting more indirect regulation of mesocorticolimbic transmission through autoregulation of acetylcholine release and changes in the physiological activity or release of other, largely inhibitory transmitters. These findings could have implications for understanding the muscarinic control of cognitive and goal-directed behaviors within the VTA.
Collapse
Affiliation(s)
- Miguel Garzón
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
35
|
Dresviannikov AV, Bolton TB, Zholos AV. Muscarinic receptor-activated cationic channels in murine ileal myocytes. Br J Pharmacol 2006; 149:179-87. [PMID: 16894345 PMCID: PMC2013797 DOI: 10.1038/sj.bjp.0706852] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND AND PURPOSE There is little information about the excitatory cholinergic mechanisms of mouse small intestine although this model is important for gene knock-out studies. EXPERIMENTAL APPROACH Using patch-clamp techniques, voltage-dependent and pharmacological properties of carbachol- or intracellular GTPgammaS-activated cationic channels in mouse ileal myocytes were investigated. KEY RESULTS Three types of cation channels were identified in outside-out patches (17, 70 and 140 pS). The voltage-dependent behaviour of the 70 pS channel, which was also the most abundantly expressed channel (approximately 0.35 micro(-2)) was most consistent with the properties of the whole-cell muscarinic current (half-maximal activation at -72.3+/-9.3 mV, slope of -9.1+/-7.4 mV and mean open probability of 0.16+/-0.01 at -40 mV; at near maximal activation by 50 microM carbachol). Both channel conductance and open probability depended on the permeant cation in the order: Cs+ (70 pS) >Rb+ (66pS) >Na+ (47 pS) >Li+ (30 pS). External application of divalent cations, quinine, SK&F 96365 or La3+ strongly inhibited the whole-cell current. At the single channel level the nature of the inhibitory effects appeared to be very different. Either reduction of the open probability (quinine and to some extent SK&F 96365 and La3+) or of unitary current amplitude (Ca2+, Mg2+, SK&F 96365, La3+) was observed implying significant differences in the dissociation rates of the blockers. CONCLUSIONS AND IMPLICATIONS The muscarinic cation current of murine small intestine is very similar to that in guinea-pig myocytes and murine genetic manipulation should yield important information about muscarinic receptor transduction mechanisms.
Collapse
Affiliation(s)
- A V Dresviannikov
- Department of Nerve-Muscle Physiology, Laboratory of Molecular Pharmacology of Cellular Receptors and Ion Channels, Bogomoletz Institute of Physiology Kiev, Ukraine
- Department of Basic Medical Sciences, St George's University of London, Cranmer Terrace London, UK
| | - T B Bolton
- Department of Basic Medical Sciences, St George's University of London, Cranmer Terrace London, UK
| | - A V Zholos
- Department of Nerve-Muscle Physiology, Laboratory of Molecular Pharmacology of Cellular Receptors and Ion Channels, Bogomoletz Institute of Physiology Kiev, Ukraine
- Department of Basic Medical Sciences, St George's University of London, Cranmer Terrace London, UK
- Department of Physiology, Queen's University Belfast Belfast, UK
- Author for correspondence:
| |
Collapse
|
36
|
Lanzafame AA, Sexton PM, Christopoulos A. Interaction studies of multiple binding sites on m4 muscarinic acetylcholine receptors. Mol Pharmacol 2006; 70:736-46. [PMID: 16709648 DOI: 10.1124/mol.106.024711] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study investigated the reciprocal cross-interactions between two distinct allosteric sites on the M(4) muscarinic acetylcholine receptor (mAChR) in the absence or presence of different orthosteric ligands. Initial studies revealed that two novel benzimidazole allosteric modulators, 17-beta-hydroxy-17-alpha-ethy nyl-delta(4)-androstano[3,2-b]pyrimido[1,2-a]benzimidazole (WIN 62,577) and 17-beta-hydroxy-17-alpha-ethynyl-5-alpha-androstano[3,2-b]pyrimido[1,2-a]benzimidazole (WIN 51,708), exhibited different degrees of positive, negative, or close-to-neutral cooperativity with the orthosteric site on M(1) or M(4) mAChRs, depending on the chemical nature of the orthosteric radioligand that was used [[(3)H]N-methylscopolamine ([(3)H]NMS) versus [(3)H]quinuclidinylbenzilate ([(3)H]QNB)]. The largest window for observing an effect (negative cooperativity) was noted for the combination of WIN 62,577 and [(3)H]QNB at the M(4) mAChR. Experiments involving the combination of these two ligands with unlabeled agonists [acetylcholine, 4-(m-chlorophenylcarbamoyloxy)-2-butynyltrimethylammonium (McN-A-343), or xanomeline] revealed low degrees of negative cooperativity between WIN 62,577 and each agonist, whereas stronger negative cooperativity was observed against atropine. It is interesting that when these experiments were repeated using the prototypical modulators heptane-1,7-bis-(dimethyl-3'-phthalimidopropyl)-ammonium bromide (C(7)/3-phth), alcuronium, or brucine (which act at a separate allosteric site), WIN 62,577 exhibited negative cooperativity with each modulator when the orthosteric site was unoccupied, but this switched to neutral cooperativity when the receptor was occupied by [(3)H]QNB. Dissociation kinetic experiments using [(3)H]NMS and combination of C(7)/3-phth with WIN 62,577 also provided evidence for neutral cooperativity between the two allosteric sites when the orthosteric site is occupied. Together, these results provide insight into the nature of the interaction between two distinct allosteric sites on the M(4) mAChR and how this interaction is perturbed upon occupancy of the orthosteric site.
Collapse
Affiliation(s)
- Alfred A Lanzafame
- Drug Discovery Biology Laboratory, Department of Pharmacology, Building 13E, Monash University, Clayton 3800, Victoria, Australia
| | | | | |
Collapse
|
37
|
Rhodes ME, Billings TE, Czambel RK, Rubin RT. Pituitary-adrenal responses to cholinergic stimulation and acute mild stress are differentially elevated in male and female M(2) muscarinic receptor knockout mice. J Neuroendocrinol 2005; 17:817-26. [PMID: 16280029 DOI: 10.1111/j.1365-2826.2005.01376.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adrenocorticotrophic hormone (ACTH) and corticosterone responses to cholinergic stimulation are greater in male rats and mice than in females. To explore the role of M(2) muscarinic receptors in this sex difference, we administered the nonselective muscarinic agonist, oxotremorine, the acetylcholinesterase inhibitor, physostigmine, and saline (a mild stressor) to male and female M(2) receptor knockout (KO) and wild-type (WT) mice of the same genetic background. Because M(2) receptors function primarily as presynaptic autoreceptors, we hypothesized that their absence in M(2) KO mice would increase the sensitivity of hormone responses to cholinergic stimulation in these groups. Both male and female M(2) KO mice were significantly more responsive to the stress of saline injection than were their WT counterparts. Oxotremorine and physostigmine increased ACTH and corticosterone in all four groups, but to a significantly greater degree in KO males compared to WT males, KO females, and WT females. The increase in ACTH also was significantly greater in WT males compared to WT females. By contrast, the increase in corticosterone was significantly more in females compared to males, independent of genotype. Following pretreatment with the nonselective muscarinic antagonist, scopolamine, ACTH and corticosterone responses to oxotremorine and to saline in the M(2) KO mice were comparable with those of their WT counterparts. These findings suggest that the M(2) muscarinic receptor subtype influences male and female pituitary-adrenal responses following stimulation by both mild stress and cholinergic drugs. The M(2) receptor appears to regulate ACTH responses to cholinergic stimulation in males but not in females; however, other muscarinic receptors may be involved because corticosterone responses were higher in females compared to males. Because ACTH and corticosterone responses were greater in male and female M(2) KO mice, the M(2) receptor appears to dampen the stress response.
Collapse
Affiliation(s)
- M E Rhodes
- Center for Neurosciences Research, Allegheny-Singer Research Institute, Allegheny General Hospital, Pittsburgh, PA 15650-2690, USA.
| | | | | | | |
Collapse
|
38
|
Galeotti N, Bartolini A, Ghelardini C. Ryanodine receptors are involved in muscarinic antinociception in mice. Behav Brain Res 2005; 164:165-71. [PMID: 16051378 DOI: 10.1016/j.bbr.2005.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 11/18/2022]
Abstract
The role of ryanodine receptors (RyRs) in the induction of muscarinic antinociception was investigated in a condition of acute thermal pain by means of the mouse hot-plate test. I.c.v. administration of non-hyperalgesic doses of ryanodine (0.001-0.06 nmol per mouse i.c.v.), an antagonist of ryanodine receptors (RyRs), dose-dependently prevented the antinociception induced by both physostigmine (100-150 microgkg(-1) s.c.) and oxotremorine (40-70 microgkg(-1) s.c.). A shift to the right of the dose-response curve of both cholinomimetic compounds was observed. Pretreatment with non-analgesic doses of 4-chloro-m-cresol (4-Cmc; 0.003-0.3 nmol per mouse i.c.v.), an agonist of RyRs, reversed in a dose-dependent manner the antagonistic effect produced by ryanodine of muscarinic antinociception. The pharmacological treatments employed neither modified the animals' gross behavior nor produced any behavioral impairment of mice as revealed by the rota-rod and hole-board tests. These results indicate that a variation of intracellular calcium contents at the central nervous system level is involved in muscarinic antinociception. In particular, the stimulation of RyRs appears to play an important role in the increase of the pain threshold produced by physostigmine and oxotremorine in mice.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-50139 Florence, Italy.
| | | | | |
Collapse
|
39
|
Fick LG, Fuller A, Mitchell D. Thermoregulatory, motor, behavioural, and nociceptive responses of rats to 3 long-acting neuroleptics. Can J Physiol Pharmacol 2005; 83:517-27. [PMID: 16049552 DOI: 10.1139/y05-037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated physiological effects of intramuscular injections of the following 3 long-acting neuroleptics commonly used in wildlife management: haloperidol (0.05, 0.1, and 0.5 mg/kg body mass), zuclopenthixol acetate (0.5, 1, and 5 mg/kg), and perphenazine enanthate (1, 3, and 10 mg/kg), in a rat model. Body temperature and cage activity were measured by intra-abdominal telemeters. Nociceptive responses were assessed by challenges to noxious heat and pressure. Haloperidol (0.5 mg/kg) produced a significant nocturnal hypothermia (p < 0.05) and decreased nighttime cage activity and food intake. Zuclopenthixol (5 mg/kg) significantly decreased nighttime body temperature and cage activity and, at 1 mg/kg and 5 mg/kg, significantly decreased food intake 517 h after injection (p < 0.05). Perphenazine (10 mg/kg) significantly decreased nighttime body temperature and cage activity and, at all doses, significantly decreased food intake 517 h after injection (p < 0.05). Significant analgesic activity was evident in rats given 5 mg/kg zuclopenthixol up to 40 h after injection, and 10 mg/kg perphenazine from 48 to 96 h after injection (p < 0.0001). Zuclopenthixol (5 mg/kg) and perphenazine (10 mg/kg) had significant antihyperalgesic activities at 16 h postinjection and 2448 h postinjection, respectively (p < 0.0001). Haloperidol had no significant antinociceptive activity at doses tested. Motor function was impaired in rats given 0.5 mg/kg haloperidol, 5 mg/kg zuclopenthixol and 10 mg/kg perphenazine. Effects of long-acting neuroleptics on body temperature, feeding, and activity were short-lasted and should not preclude their use in wildlife. Antinociceptive actions were longer-lasting, but were nonspecific, and we recommend additional analgesics for painful procedures during wildlife management. Key words: body temperature, spontaneous activity, food intake, antinociception, motor function, long-acting neuroleptic.
Collapse
Affiliation(s)
- L G Fick
- Brain Function Research Unit, School of Physiology, University of Witwatersrand Medical School, Parktown, South Africa.
| | | | | |
Collapse
|
40
|
Steger KA, Avery L. The GAR-3 muscarinic receptor cooperates with calcium signals to regulate muscle contraction in the Caenorhabditis elegans pharynx. Genetics 2005; 167:633-43. [PMID: 15238517 PMCID: PMC1470925 DOI: 10.1534/genetics.103.020230] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Muscarinic acetylcholine receptors regulate the activity of neurons and muscle cells through G-protein-coupled cascades. Here, we identify a pathway through which the GAR-3 muscarinic receptor regulates both membrane potential and excitation-contraction coupling in the Caenorhabditis elegans pharyngeal muscle. GAR-3 signaling is enhanced in worms overexpressing gar-3 or lacking GPB-2, a G-protein beta-subunit involved in RGS-mediated inhibition of G(o)alpha- and G(q)alpha-linked pathways. High levels of signaling through GAR-3 inhibit pharyngeal muscle relaxation and impair feeding--but do not block muscle repolarization--when worms are exposed to arecoline, a muscarinic agonist. Loss of gar-3 function results in shortened action potentials and brief muscle contractions in the pharyngeal terminal bulb. High levels of calcium entry through voltage-gated channels also impair terminal bulb relaxation and sensitize worms to the toxic effects of arecoline. Mutation of gar-3 reverses this sensitivity, suggesting that GAR-3 regulates calcium influx or calcium-dependent processes. Because the effects of GAR-3 signaling on membrane depolarization and muscle contraction can be separated, we conclude that GAR-3 regulates multiple calcium-dependent processes in the C. elegans pharyngeal muscle.
Collapse
Affiliation(s)
- Katherine A Steger
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9148, USA
| | | |
Collapse
|
41
|
Aronov S, Ben-Abraham R, Givati-Divshi D, Katz Y. CEREBROVENTRICULAR INJECTION OF CLONIDINE CAUSES ANALGESIA MEDIATED BY A NITROGEN PATHWAY. ACTA ACUST UNITED AC 2005; 21:55-66. [PMID: 16086556 DOI: 10.1515/dmdi.2005.21.1.55] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Whereas neuroaxially administered clonidine produces analgesia partially mediated by alpha2-adrenoceptor-induced augmented synthesis of nitric oxide (NO), the central mechanisms by which clonidine produces its antinociceptive effects are still speculative. We used the tail-flick model of acute pain in mice to further explore the role of NO in mediating clonidine-induced central analgesia. Cerebroventricular administration of the following agents was studied: clonidine, L-arginine (NO precursor), the NO production inhibitor nitro-L-arginine-methyl ester (L-NAME), the NO antagonist methylene blue (MB), and nitroglycerine (NO-releasing agent). Analgesic response was achieved with clonidine and L-arginine. Simultaneous administration of L-arginine and clonidine produced no additive analgesic effect. Prior administration of L-NAME or MB partially abolished the clonidine-induced analgesic effect, whereas nitroglycerine administration did not affect it. NO may be involved in the mediation of the central antinociceptive effects of clonidine. Further investigation is necessary to determine the possible role of NO-promoting agents in analgesia when co-administered with clonidine.
Collapse
Affiliation(s)
- Stella Aronov
- Laboratory for Anesthesia, Pain, and Neural Research, The Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | |
Collapse
|
42
|
Tien LT, Fan LW, Ma T, Loh HH, Ho IK. ROLES OF .MU.-OPIOID RECEPTORS IN DEVELOPMENT OF TOLERANCE TO DIISOPROPYLFLUOROPHOSPHATE (DFP). J Toxicol Sci 2005; 30:43-59. [PMID: 15800401 DOI: 10.2131/jts.30.43] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Anatomical evidence indicates that cholinergic and opioidergic systems are co-localized and acting on the same neuron. However, the regulatory mechanisms between cholinergic and opioidergic system have not been well characterized. In the present study, the potential involvement of mu-opioid receptors in mediating the changes of toxic signs and muscarinic receptor binding after administration of irreversible anti-acetylcholinesterase diisopropylfluorophosphate (DFP) was investigated. DFP (1 mg/kg/day, subcutaneous injection, s.c.)-induced tremors and chewing movements were monitored during the 28-day treatment period in mu-opioid receptor knockout and wild type mice. Autoradiographic studies of total, M1, and M2 muscarinic receptors were conducted using [(3)H]-quinuclidinyl benzilate, [(3)H]-pirenzepine, and [(3)H]-AF-DX384 as ligands, respectively. DFP-induced tremors in both mu-opioid receptor knockout and wild type mice showed tolerance development. However, DFP-induced tremors in mu-opioid receptor knockout mice showed delayed tolerance development than that of DFP-treated wild type controls. DFP-induced chewing movements in both mu-opioid receptor knockout and wild type mice failed to show development of tolerance after four weeks of treatment. M2 muscarinic receptor binding of DFP-treated mu-opioid receptor knockout mice was significantly decreased than that of the DFP-treated wild type controls in the striatum, but not in the cortex and hippocampus. However, there were no significant differences in total and M1 muscarinic receptor binding between DFP-treated mu-opioid receptor knockout and wild type mice in the cortex, striatum and hippocampus. These studies indicate that mu-opioid receptors play an important role through the striatal M2 muscarinic receptors to regulate the development of tolerance to DFP-induced tremors.
Collapse
Affiliation(s)
- Lu-Tai Tien
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | | | | | | | | |
Collapse
|
43
|
Johnson DE, Nedza FM, Spracklin DK, Ward KM, Schmidt AW, Iredale PA, Godek DM, Rollema H. The role of muscarinic receptor antagonism in antipsychotic-induced hippocampal acetylcholine release. Eur J Pharmacol 2004; 506:209-19. [PMID: 15627430 DOI: 10.1016/j.ejphar.2004.11.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 10/22/2004] [Accepted: 11/10/2004] [Indexed: 11/30/2022]
Abstract
Olanzapine and clozapine produce robust increases in hippocampal acetylcholine release during acetylcholinesterase inhibition, while other antipsychotics, including thioridazine, have only small effects. Since thioridazine binds with similar high affinities to muscarinic receptors as olanzapine and clozapine, muscarinic autoreceptor blockade was ruled out as a primary mechanism [Neuropsychopharmacology 26 (2002) 583]. This study compared in vitro binding affinities and functional activities of olanzapine, clozapine, thioridazine, ziprasidone, risperidone, chlorpromazine and scopolamine at muscarinic M2 receptors with their in vivo potencies to increase acetylcholine release in the rat hippocampus. We found that scopolamine, olanzapine and clozapine, but also high doses of thioridazine and chlorpromazine, markedly increase acetylcholine release. The reduced in vivo potencies of thioridazine and chlorpromazine are consistent with their significantly weaker functional antagonist activity at human muscarinic M2 receptors, while thioridazine's reduced binding affinity for rat muscarinic M2 receptors and lower brain exposure, may further contribute to its weak in vivo potency compared to olanzapine. The excellent correlation between in vitro antagonist activities of antipsychotics at muscarinic M2 receptors and their in vivo potencies to increase acetylcholine release, suggests that olanzapine, clozapine, as well as thioridazine and chlorpromazine, increase acetylcholine release via blockade of terminal muscarinic M2 autoreceptors.
Collapse
Affiliation(s)
- David E Johnson
- Department of Neuroscience, Pfizer Global Research and Development, Eastern Point Road, Groton, CT 06340, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Tien LT, Fan LW, Ma T, Loh HH, Ho IK. Increased diisopropylfluorophosphate-induced toxicity in ?-opioid receptor knockout mice. J Neurosci Res 2004; 78:259-67. [PMID: 15378609 DOI: 10.1002/jnr.20259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The potential involvement of mu-opioid receptors in mediating the changes of toxic signs and muscarinic receptor bindings after acute administration of irreversible antiacetylcholinesterase diisopropylfluorophosphate (DFP) was investigated. DFP-induced chewing movement and tremors were monitored for a period of 180 min in mu-opioid receptor knockout and wild-type mice. The autoradiographic studies of total, M1, and M2 muscarinic receptors were conducted using [(3)H]quinuclidinyl benzilate, [(3)H]pirenzepine, and [(3)H]AF-DX384 as ligands, respectively. Saline-treated mu-opioid receptor knockout and wild-type mice did not show chewing movement or tremors. Although DFP (1, 2, or 3 mg/kg, subcutaneous injection, s.c.)-induced chewing movement and tremors were shown in a dose-dependent manner, there were no significant differences in tremors induced by 1 or 2 mg/kg of DFP between mu-opioid receptor knockout and wild-type mice. There were also no significant differences in chewing movement induced by all doses of DFP between mu-opioid receptor knockout and wild-type mice. However, DFP (3 mg/kg)-induced tremors in mu-opioid receptor knockout mice were significantly increased over those in wild-type controls. Acetylcholinesterase activity in the striatum of saline-treated mu-opioid receptor knockout mice was significantly higher than that of the wild-type controls. After administration of DFP, acetylcholinesterase activity in the striatum of both mu-opioid receptor knockout and wild-type mice was significantly decreased (more than 36%, 58%, and 94% reduced at the doses of 1, 2, and 3 mg/kg, respectively) than that of their respective saline controls. M2 muscarinic receptor binding in saline-treated mu-opioid receptor knockout mice was significantly lower than that of the wild-type controls in the striatum. However, there were no significant differences in total, M1, or M2 muscarinic receptor binding in the cortex, striatum, or hippocampus of mu-opioid receptor knockout and wild-type mice after DFP administration. Our data show increased DFP-induced tremors, compensatory up-regulation of acetylcholinesterase activity, and compensatory down-regulation of M2 muscarinic receptors in the striatum of mice lacking mu-opioid receptor gene. These results suggest that the enhancement of DFP-induced tremors may be associated with the compensatory up-regulation of acetylcholinesterase activity and compensatory down-regulation of M2 muscarinic receptors in the striatum of mu-opioid receptor knockout mice.
Collapse
Affiliation(s)
- Lu-Tai Tien
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi 39216-4500, USA
| | | | | | | | | |
Collapse
|
45
|
Wess J. Novel insights into muscarinic acetylcholine receptor function using gene targeting technology. Trends Pharmacol Sci 2003; 24:414-20. [PMID: 12915051 DOI: 10.1016/s0165-6147(03)00195-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Muscarinic acetylcholine receptors (mAChRs) modulate the activity of an extraordinarily large number of physiological functions. Individual members of the mAChR family (M(1)-M(5)) are expressed in a complex, overlapping fashion in most tissues and cell types. However, the identification of the precise physiological roles of individual mAChR subtypes remains a challenging task because, with the exception of a few snake toxins, mAChR ligands that can activate or inhibit specific mAChR subtypes with a high degree of selectivity are not yet available. Knowledge of the specific roles of mAChR subtypes is of considerable interest for the development of novel, clinically useful mAChR ligands. In this article, recent studies of mutant mouse strains developed, using gene targeting techniques, to be deficient in one of the three G(q)-coupled mAChR subtypes (M(1), M(3) and M(5)) are discussed. These investigations have led to many important new insights into the physiological roles of these receptor subtypes.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Department of Health and Human Services, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Galeotti N, Bartolini A, Ghelardini C. The phospholipase C-IP3 pathway is involved in muscarinic antinociception. Neuropsychopharmacology 2003; 28:888-97. [PMID: 12736633 DOI: 10.1038/sj.npp.1300111] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The cellular events involved in muscarinic analgesia were investigated in the mouse hot-plate test. Intracerebroventricular (i.c.v.) pretreatment with antisense oligonucleotides (aODNs) against the alpha subunit of G(q) and G(11) proteins prevented the analgesia induced by physostigmine and oxotremorine. Furthermore, administration of the phospholipase C (PLC) inhibitor U-73122, as well as the injection of an aODN complementary to the sequence of PLCbeta(1), antagonized the increase of the pain threshold induced by both cholinomimetic drugs. In mice undergoing treatment with LiCl, which impairs phosphatidylinositol synthesis, or treatment with heparin, an IP(3) receptor antagonist, the antinociception induced by physostigmine and oxotremorine was dose-dependently antagonized. I.c.v. pretreatment with TMB-8, a blocker of Ca(2+) release from intracellular stores, prevented the increase of pain threshold induced by the investigated cholinomimetic drugs. Coadministration of Ca(2+) restored the muscarinic analgesia in LiCl, heparin, and TMB-8-preatreated mice. On the other hand, i.c.v. pretreatment with the selective protein kinase C (PKC) inhibitor calphostin C, resulted in a dose-dependent enhancement of physostigmine- and oxotremorine-induced antinociception. The administration of PKC activators, such as PMA and PDBu, dose dependently prevented the cholinomimetic drug-induced increase of pain threshold. Neither aODNs nor pharmacological treatments employed produced any behavioral impairment of mice as revealed by the rota-rod and hole-board tests. These results indicate a role for the PLC-IP(3) pathway in central muscarinic analgesia in mice. Furthermore, activation of PKC by cholinomimetic drugs may represent a pathway of negative modulation of muscarinic antinociception.
Collapse
Affiliation(s)
- Nicoletta Galeotti
- Department of Preclinical and Clinical Pharmacology, University of Florence, Viale G. Pieraccini 6, I-10539 Florence, Italy
| | | | | |
Collapse
|
47
|
Sagara Y, Kimura T, Fujikawa T, Noguchi K, Ohtake N. Identification of novel muscarinic M(3) selective antagonists with a conformationally restricted Hyp-Pro spacer. Bioorg Med Chem Lett 2003; 13:57-60. [PMID: 12467616 DOI: 10.1016/s0960-894x(02)00843-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The identification of potent and selective muscarinic M(3) antagonists that are based on the recently discovered triphenylpropioamide derivative, 1, and have a unique amino acid spacer group is described. The introduction of a hydroxyproline-proline group to the spacer site and the use of a propyl or cyclopropylmethyl group as the piperidine N-substituent led to the discovery of the novel M(3) selective antagonists [8c, 8g; K(i)<2 nM (M(3)), M(1)/M(3)>700-fold, M(2)/M(3)>180-fold], which have a more rigid structure than 1.
Collapse
Affiliation(s)
- Yufu Sagara
- Banyu Tsukuba Research Institute in collaboration with Merck Research Laboratories, Okubo-3, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
48
|
Hemrick-Luecke SK, Bymaster FP, Evans DC, Wess J, Felder CC. Muscarinic agonist-mediated increases in serum corticosterone levels are abolished in m(2) muscarinic acetylcholine receptor knockout mice. J Pharmacol Exp Ther 2002; 303:99-103. [PMID: 12235238 DOI: 10.1124/jpet.102.036020] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Muscarinic acetylcholine receptors (M(1)-M(5)) regulate many key functions in the central and peripheral nervous system. Due to the lack of receptor subtype-selective ligands, however, the physiological roles of individual muscarinic receptor subtypes remain to be determined. In this study, we examined the effects of the muscarinic M(2)/M(4) receptor-preferring agonist [5R-(exo)]-6-[4-butylthio-1,2,5-thiadiazol-3-yl]-1-azabicyclo-[3.2.1]-octane (BuTAC) on serum corticosterone levels in M(2) and M(4) receptor single knockout (KO) and M(2,4) receptor double KO mice. Responses were compared with those obtained with the corresponding wild-type (WT) mice. BuTAC (0.03-0.3 mg/kg s.c.) dose dependently and significantly increased serum corticosterone concentrations in WT mice to 5-fold or greater levels compared with vehicle controls. In muscarinic M(2) and M(2,4) KO mice, however, BuTAC had no significant effect on corticosterone concentrations at doses of 0.1, 0.3, and 1 mg/kg s.c. In both WT and muscarinic M(4) KO mice increases in serum corticosterone concentrations induced by BuTAC (0.1 and 0.3 mg/kg) were not significantly different and were blocked by scopolamine. In summary, the muscarinic M(2,4)-preferring agonist BuTAC had no effect on corticosterone levels in mice lacking functional muscarinic M(2) receptors. These data suggest that the muscarinic M(2) receptor subtype mediates muscarinic agonist-induced activation of the hypothalamic-pituitary-adrenocortical axis in mice.
Collapse
Affiliation(s)
- S K Hemrick-Luecke
- Neuroscience Division, Lilly Research Laboratories, Eli Lilly and Co., Lilly Corporate Center, Indianapolis, Indiana 46285, USA.
| | | | | | | | | |
Collapse
|
49
|
El-Bakri NK, Adem A, Suliman IA, Mulugeta E, Karlsson E, Lindgren JU, Winblad B, Islam A. Estrogen and progesterone treatment: effects on muscarinic M(4) receptor subtype in the rat brain. Brain Res 2002; 948:131-7. [PMID: 12383964 DOI: 10.1016/s0006-8993(02)02962-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We investigated the effect of ovariectomy (OVX) and hormonal treatment for 10 weeks by estradiol and progesterone on muscarinic M(4) receptor subtype in different brain areas of female rats. Moreover, motor activity of OVX and hormone-treated rats was measured by automated open field exploration boxes. Receptor quantification in the hippocampus, frontal cortex, parietal cortex, amygdala and hypothalamus was done by receptor autoradiography using a selective ligand for muscarinic M(4) receptors. Ovariectomy up-regulated M(4) receptors in the dentate gyrus, CA1, CA3, frontal cortex and hypothalamus whereas the estrogen treatment restored M(4) binding to that of the sham group. Progesterone treatment had no effect on the ovariectomy-induced up-regulation of M(4) receptors. Ovariectomy significantly decreased the exploratory activity of the rats compared to the sham group. Estrogen treatment restored the exploratory behavior of the ovariectomized rats to that of the sham group whereas the progesterone-treated rats were less alert to the surrounding when compared to the sham and estrogen supplemented rats. The effect of estrogen on the hippocampal muscarinic M(4) receptor subtype is a novel finding and may have functional significance for cholinergic receptors especially in relation to postmenopausal memory problems and neurodegenerative disease like Alzheimer's disease.
Collapse
Affiliation(s)
- Nahid K El-Bakri
- Department of Clinical Neuroscience, Karolinska Institute, Huddinge University Hospital, S-141 86 Huddinge, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
|