1
|
Ariturk LA, Cilingir S, Kolgazi M, Elmas M, Arbak S, Yapislar H. Docosahexaenoic acid (DHA) alleviates inflammation and damage induced by experimental colitis. Eur J Nutr 2024; 63:2801-2813. [PMID: 39105785 PMCID: PMC11490523 DOI: 10.1007/s00394-024-03468-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/05/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are chronic gastrointestinal disorders associated with significant morbidity and complications. This study investigates the therapeutic potential of docosahexaenoic acid (DHA) in a trinitrobenzene sulfonic acid (TNBS) induced colitis model, focusing on inflammation, oxidative stress, and intestinal membrane permeability. METHODS Wistar albino rats were divided into Control, Colitis, and Colitis + DHA groups (n = 8-10/group). The Colitis and Colitis + DHA groups received TNBS intrarectally, while the Control group received saline. DHA (600 mg/kg/day) or saline was administered via gavage for six weeks. Macroscopic and microscopic evaluations of colon tissues were conducted. Parameters including occludin and ZO-1 expressions, myeloperoxidase (MPO) activity, malondialdehyde (MDA), glutathione (GSH), total antioxidant status (TAS), total oxidant status (TOS), Interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α) levels were measured in colon tissues. RESULTS Colitis induction led to significantly higher macroscopic and microscopic damage scores, elevated TOS levels, reduced occludin and ZO-1 intensity, decreased mucosal thickness, and TAS levels compared to the Control group (p < 0.001). DHA administration significantly ameliorated these parameters (p < 0.001). MPO, MDA, TNF-α, and IL-6 levels were elevated in the Colitis group but significantly reduced in the DHA-treated group (p < 0.001 for MPO, MDA; p < 0.05 for TNF-α and IL-6). CONCLUSION DHA demonstrated antioxidant and anti-inflammatory effects by reducing reactive oxygen species production, enhancing TAS capacity, preserving GSH content, decreasing proinflammatory cytokine levels, preventing neutrophil infiltration, reducing shedding in colon epithelium, and improving gland structure and mucosal membrane integrity. DHA also upregulated the expressions of occludin and ZO-1, critical for barrier function. Thus, DHA administration may offer a therapeutic strategy or supplement to mitigate colitis-induced adverse effects.
Collapse
Affiliation(s)
- Leman Arslan Ariturk
- Faculty of Medicine, Department of Physiology, Marmara University, Istanbul, Turkey
| | - Sumeyye Cilingir
- Faculty of Medicine, Department of Physiology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Meltem Kolgazi
- Faculty of Medicine, Department of Physiology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Merve Elmas
- Faculty of Medicine, Department of Histology&Embriology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Serap Arbak
- Faculty of Medicine, Department of Histology&Embriology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey
| | - Hande Yapislar
- Faculty of Medicine, Department of Physiology, Acibadem Mehmet Ali Adinlar University, Istanbul, Turkey.
| |
Collapse
|
2
|
Poo C, Agarwal G, Bonacchi N, Mainen Z. Spatial maps in piriform cortex during olfactory navigation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614771. [PMID: 39386694 PMCID: PMC11463389 DOI: 10.1101/2024.09.25.614771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Odors are a fundamental part of the sensory environment used by animals to inform behaviors such as foraging and navigation1,2. Primary olfactory (piriform) cortex is thought to be dedicated to encoding odor identity3-8. Here, using neural ensemble recordings in freely moving rats performing a novel odor-cued spatial choice task, we show that posterior piriform cortex neurons also carry a robust spatial map of the environment. Piriform spatial maps were stable across behavioral contexts independent of olfactory drive or reward availability, and the accuracy of spatial information carried by individual neurons depended on the strength of their functional coupling to the hippocampal theta rhythm. Ensembles of piriform neurons concurrently represented odor identity as well as spatial locations of animals, forming an "olfactory-place map". Our results reveal a previously unknown function for piriform cortex in spatial cognition and suggest that it is well-suited to form odor-place associations and guide olfactory cued spatial navigation.
Collapse
Affiliation(s)
- Cindy Poo
- Champalimaud Foundation, Lisbon, Portugal
| | - Gautam Agarwal
- Redwood Center for Theoretical Neuroscience, University of California, Berkeley, CA, USA
| | | | | |
Collapse
|
3
|
Mashimo M, Fujii T, Ono S, Moriwaki Y, Misawa H, Azami T, Kasahara T, Kawashima K. GTS-21 Enhances Regulatory T Cell Development from T Cell Receptor-Activated Human CD4 + T Cells Exhibiting Varied Levels of CHRNA7 and CHRFAM7A Expression. Int J Mol Sci 2023; 24:12257. [PMID: 37569633 PMCID: PMC10418795 DOI: 10.3390/ijms241512257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/22/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Immune cells such as T cells and macrophages express α7 nicotinic acetylcholine receptors (α7 nAChRs), which contribute to the regulation of immune and inflammatory responses. Earlier findings suggest α7 nAChR activation promotes the development of regulatory T cells (Tregs) in mice. Using human CD4+ T cells, we investigated the mRNA expression of the α7 subunit and the human-specific dupα7 nAChR subunit, which functions as a dominant-negative regulator of ion channel function, under resting conditions and T cell receptor (TCR)-activation. We then explored the effects of the selective α7 nAChR agonist GTS-21 on proliferation of TCR-activated T cells and Treg development. Varied levels of mRNA for both the α7 and dupα7 nAChR subunits were detected in resting human CD4+ T cells. mRNA expression of the α7 nAChR subunit was profoundly suppressed on days 4 and 7 of TCR-activation as compared to day 1, whereas mRNA expression of the dupα7 nAChR subunit remained nearly constant. GTS-21 did not alter CD4+ T cell proliferation but significantly promoted Treg development. These results suggest the potential ex vivo utility of GTS-21 for preparing Tregs for adoptive immunotherapy, even with high expression of the dupα7 subunit.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (T.F.)
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women’s College of Liberal Arts, Kyotanabe 610-0395, Japan; (M.M.); (T.F.)
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Tondabayashi 584-8540, Japan;
| | - Yasuhiro Moriwaki
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan; (Y.M.); (H.M.)
| | - Hidemi Misawa
- Department of Pharmacology, Faculty of Pharmacy, Keio University, Minato-ku, Tokyo 105-8512, Japan; (Y.M.); (H.M.)
| | - Tetsushi Azami
- Division of Gastroenterology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Yokohama 227-8502, Japan;
| | - Tadashi Kasahara
- Division of Inflammation Research, Jichi Medical University, Shimotsukeshi 324-0498, Japan;
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Minato-ku, Tokyo 108-8641, Japan
| |
Collapse
|
4
|
Chen J, Lin KC, Prasad S, Schmidtke DW. Label free impedance based acetylcholinesterase enzymatic biosensors for the detection of acetylcholine. Biosens Bioelectron 2023; 235:115340. [PMID: 37216844 DOI: 10.1016/j.bios.2023.115340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 05/24/2023]
Abstract
Realtime monitoring of neurotransmitters is of great interest for understanding their fundamental role in a wide range of biological processes in the central and peripheral nervous system, as well as their role, in several degenerative brain diseases. The measurement of acetylcholine in the brain is particularly challenging due to the complex environment of the brain and the low concentration and short lifetime of acetylcholine. In this paper, we demonstrated a novel, label-free biosensor for the detection of Ach using a single enzyme, acetylcholinesterase (ACHE), and electrochemical impedance spectroscopy (EIS). Acetylcholinesterase was covalently immobilized onto the surface of gold microelectrodes through an amine-reactive crosslinker dithiobis(succinimidyl propionate) (DSP). Passivation of the gold electrode with SuperBlock eliminated or reduced any non-specific response to other major interfering neurotransmitter molecules such as dopamine (DA), norepinephrine (NE) and epinephrine (EH). The sensors were able to detect acetylcholine over a wide concentration range (5.5-550 μM) in sample volumes as small as 300 μL by applying a 10 mV AC voltage at a frequency of 500 Hz. The sensors showed a linear relationship between Ach concentration and ΔZmod(R2 = 0.99) in PBS. The sensor responded to acetylcholine not only when evaluated in a simple buffer (PBS buffer) but in several more complex environments such as rat brain slurry and rat whole blood. The sensor remained responsive to acetylcholine after being implanted ex vivo in rat brain tissue. These results bode well for the future application of these novel sensors for real time in vivo monitoring of acetylcholine.
Collapse
Affiliation(s)
- Jie Chen
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75083, USA
| | - Kai-Chun Lin
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75083, USA
| | - Shalini Prasad
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75083, USA.
| | - David W Schmidtke
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Rd, Richardson, TX, 75083, USA.
| |
Collapse
|
5
|
Zivkovic AR, Paul GM, Hofer S, Schmidt K, Brenner T, Weigand MA, Decker SO. Increased Enzymatic Activity of Acetylcholinesterase Indicates the Severity of the Sterile Inflammation and Predicts Patient Outcome following Traumatic Injury. Biomolecules 2023; 13:biom13020267. [PMID: 36830636 PMCID: PMC9952955 DOI: 10.3390/biom13020267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
Traumatic injury induces sterile inflammation, an immune response often associated with severe organ dysfunction. The cholinergic system acts as an anti-inflammatory in injured patients. Acetylcholinesterase (AChE), an enzyme responsible for the hydrolysis of acetylcholine, plays an essential role in controlling cholinergic activity. We hypothesized that a change in the AChE activity might indicate the severity of the traumatic injury. This study included 82 injured patients with an Injury Severity Score (ISS) of 4 or above and 40 individuals without injuries. Bedside-measured AChE was obtained on hospital arrival, followed by a second measurement 4-12 h later. C-reactive protein (CRP), white blood cell count (WBCC), and Sequential Organ Failure Assessment (SOFA) score were simultaneously collected. Injured patients showed an early and sustained increase in AChE activity. CRP remained unaffected at hospital admission and increased subsequently. Initially elevated WBCC recovered 4-12 h later. AChE activity directly correlated with the ISS and SOFA scores and predicted the length of ICU stay when measured at hospital admission. An early and sustained increase in AChE activity correlated with the injury severity and could predict the length of ICU stay in injured patients, rendering this assay a complementary diagnostic and prognostic tool at the hand of the attending clinician in the emergency unit.
Collapse
Affiliation(s)
- Aleksandar R. Zivkovic
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence: (A.R.Z.); (S.O.D.); Tel.: +49-(0)-62-21-56-36-843 (A.R.Z.); +49-(0)-62-21-56-36-380 (S.O.D.); Fax: +49-(0)-62-21-56-53-45 (A.R.Z. & S.O.D.)
| | - Georgina M. Paul
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Stefan Hofer
- Clinic for Anesthesiology, Intensive Care, Emergency Medicine I and Pain Therapy, Westpfalz Hospital, 67661 Kaiserslautern, Germany
| | - Karsten Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Markus A. Weigand
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sebastian O. Decker
- Department of Anesthesiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Correspondence: (A.R.Z.); (S.O.D.); Tel.: +49-(0)-62-21-56-36-843 (A.R.Z.); +49-(0)-62-21-56-36-380 (S.O.D.); Fax: +49-(0)-62-21-56-53-45 (A.R.Z. & S.O.D.)
| |
Collapse
|
6
|
Mashimo M, Kawashima K, Fujii T. Non-neuronal Cholinergic Muscarinic Acetylcholine Receptors in the Regulation of Immune Function. Biol Pharm Bull 2022; 45:675-683. [PMID: 35650095 DOI: 10.1248/bpb.b21-01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immune cells such as T and B cells, monocytes and macrophages all express most of the cholinergic components of the nervous system, including acetylcholine (ACh), choline acetyltransferase (ChAT), high affinity choline transporter, muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively), and acetylcholinesterase (AChE). Because of its efficient cleavage by AChE, ACh synthesized and released from immune cells acts only locally in an autocrine and/or paracrine fashion at mAChRs and nAChRs on themselves and other immune cells located in close proximity, leading to modification of immune function. Immune cells generally express all five mAChR subtypes (M1-M5) and neuron type nAChR subunits α2-α7, α9, α10, β2-β4. The expression pattern and levels of mAChR subtypes and nAChR subunits vary depending on the tissue involved and its immunological status. Immunological activation of T cells via T-cell receptor-mediated pathways and cell adhesion molecules upregulates ChAT expression, which facilitates the synthesis and release of ACh. At present, α7 nAChRs expressed in macrophages are receiving much attention because they play a central role in anti-inflammatory cholinergic pathways. However, it now appears that through modification of cytokine synthesis, Gq/11-coupled mAChRs play a prominent role in regulation of T cell proliferation and differentiation and B cell immunoglobulin class switching. It is anticipated that greater understanding of Gq/11-coupled mAChRs on immune cells will provide an opportunity to develop new and effective treatments for immunological disorders.
Collapse
Affiliation(s)
- Masato Mashimo
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences
| | - Takeshi Fujii
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Doshisha Women's College of Liberal Arts
| |
Collapse
|
7
|
Organophosphorus Pesticides as Modulating Substances of Inflammation through the Cholinergic Pathway. Int J Mol Sci 2022; 23:ijms23094523. [PMID: 35562914 PMCID: PMC9104626 DOI: 10.3390/ijms23094523] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 01/27/2023] Open
Abstract
Organophosphorus pesticides (OPs) are widespread insecticides used for pest control in agricultural activities and the control of the vectors of human and animal diseases. However, OPs’ neurotoxic mechanism involves cholinergic components, which, beyond being involved in the transmission of neuronal signals, also influence the activity of cytokines and other pro-inflammatory molecules; thus, acute and chronic exposure to OPs may be related to the development of chronic degenerative pathologies and other inflammatory diseases. The present article reviews and discusses the experimental evidence linking inflammatory process with OP-induced cholinergic dysregulation, emphasizing the molecular mechanisms related to the role of cytokines and cellular alterations in humans and other animal models, and possible therapeutic targets to inhibit inflammation.
Collapse
|
8
|
Xia Y, Wu Q, Mak S, Liu EYL, Zheng BZY, Dong TTX, Pi R, Tsim KWK. Regulation of acetylcholinesterase during the lipopolysaccharide-induced inflammatory responses in microglial cells. FASEB J 2022; 36:e22189. [PMID: 35129858 DOI: 10.1096/fj.202101302rr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/06/2022] [Accepted: 01/18/2022] [Indexed: 01/04/2023]
Abstract
The non-classical function of acetylcholine (ACh) has been reported in neuroinflammation that represents the modulating factor in immune responses via activation of α7 nicotinic acetylcholine receptor (α7 nAChR), i.e., a cholinergic anti-inflammatory pathway (CAP). Acetylcholinesterase (AChE), an enzyme for ACh hydrolysis, has been proposed to have a non-classical function in immune cells. However, the involvement of AChE in neuroinflammation is unclear. Here, cultured BV2 cell, a microglial cell line, and primary microglia from rats were treated with lipopolysaccharide (LPS) to induce inflammation and to explore the regulation of AChE during this process. The expression profiles of AChE, α7 nAChR, and choline acetyltransferase (ChAT) were revealed in BV2 cells. The expression of AChE (G4 form) was induced significantly in LPS-treated BV2 cells: the induction was triggered by NF-κB and cAMP signaling. Moreover, ACh or α7 nAChR agonist suppressed the LPS-induced production of pro-inflammatory cytokines, as well as the phagocytosis of microglia, by activating α7 nAChR and followed by the regulation of NF-κB and CREB signaling. The ACh-induced suppression of inflammation was abolished in AChE overexpressed cells, but did not show a significant change in AChE mutant (enzymatic activity knockout) transfected cells. These results indicate that the neuroinflammation-regulated function of AChE may be mediated by controlling the ACh level in the brain system.
Collapse
Affiliation(s)
- Yingjie Xia
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Qiyun Wu
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Shinghung Mak
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Etta Y L Liu
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Brody Z Y Zheng
- Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tina T X Dong
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Karl W K Tsim
- Shenzhen Key Laboratory of Edible and Medicinal Bioresources, SRI, The Hong Kong University of Science and Technology, Shenzhen, China.,Division of Life Science, Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
9
|
Liang Y, Li H, Gan Y, Tu H. Shedding Light on the Role of Neurotransmitters in the Microenvironment of Pancreatic Cancer. Front Cell Dev Biol 2021; 9:688953. [PMID: 34395421 PMCID: PMC8363299 DOI: 10.3389/fcell.2021.688953] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/13/2021] [Indexed: 01/05/2023] Open
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of less than 8%. The fate of PC is determined not only by the malignant behavior of the cancer cells, but also by the surrounding tumor microenvironment (TME), consisting of various cellular (cancer cells, immune cells, stromal cells, endothelial cells, and neurons) and non-cellular (cytokines, neurotransmitters, and extracellular matrix) components. The pancreatic TME has the unique characteristic of exhibiting increased neural density and altered microenvironmental concentration of neurotransmitters. The neurotransmitters, produced by both neuron and non-neuronal cells, can directly regulate the biological behavior of PC cells via binding to their corresponding receptors on tumor cells and activating the intracellular downstream signals. On the other hand, the neurotransmitters can also communicate with other cellular components such as the immune cells in the TME to promote cancer growth. In this review, we will summarize the pleiotropic effects of neurotransmitters on the initiation and progression of PC, and particularly discuss the emerging mechanisms of how neurotransmitters influence the innate and adaptive immune responses in the TME in an autocrine or paracrine manner. A better understanding of the interplay between neurotransmitters and the immune cells in the TME might facilitate the development of new effective therapies for PC.
Collapse
Affiliation(s)
| | | | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong Tu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Simões JLB, de Araújo JB, Bagatini MD. Anti-inflammatory Therapy by Cholinergic and Purinergic Modulation in Multiple Sclerosis Associated with SARS-CoV-2 Infection. Mol Neurobiol 2021; 58:5090-5111. [PMID: 34247339 PMCID: PMC8272687 DOI: 10.1007/s12035-021-02464-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/17/2021] [Indexed: 02/07/2023]
Abstract
The virus "acute respiratory syndrome coronavirus 2" (SARS-CoV-2) is the etiologic agent of coronavirus disease 2019 (COVID-19), initially responsible for an outbreak of pneumonia in Wuhan, China, which, due to the high level of contagion and dissemination, has become a pandemic. The clinical picture varies from mild to critical cases; however, all of these signs already show neurological problems, from sensory loss to neurological diseases. Thus, patients with multiple sclerosis (MS) infected with the new coronavirus are more likely to develop severe conditions; in addition to worsening the disease, this is due to the high level of pro-inflammatory cytokines, which is closely associated with increased mortality both in COVID-19 and MS. This increase is uncontrolled and exaggerated, characterizing the cytokine storm, so a possible therapy for this neuronal inflammation is the modulation of the cholinergic anti-inflammatory pathway, since acetylcholine (ACh) acts to reduce pro-inflammatory cytokines and acts directly on the brain for being released by cholinergic neurons, as well as acting on other cells such as immune and blood cells. In addition, due to tissue damage, there is an exacerbated release of adenosine triphosphate (ATP), potentiating the inflammatory process and activating purinergic receptors which act directly on neuroinflammation and positively modulate the inflammatory cycle. Associated with this, in neurological pathologies, there is greater expression of P2X7 in the cells of the microglia, which positively activates the immune inflammatory response. Thus, the administration of blockers of this receptor can act in conjunction with the action of ACh in the anticholinergic inflammatory pathway. Finally, there will be a reduction in the cytokine storm and triggered hyperinflammation, as well as the level of mortality in patients with multiple sclerosis infected with SARS-CoV-2 and the development of possible neurological damage.
Collapse
|
11
|
Yue-Chun L, Gu XH, Li-Sha G, Zhou DP, Xing C, Guo XL, Pan LL, Song SY, Yu LL, Chen GY, Lin JF, Chu MP. Vagus nerve plays a pivotal role in CD4+ T cell differentiation during CVB3-induced murine acute myocarditis. Virulence 2021; 12:360-376. [PMID: 33380272 PMCID: PMC7834089 DOI: 10.1080/21505594.2020.1869384] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abnormalities in CD4+ T cell (Th cell) differentiation play an important role in the pathogenesis of viral myocarditis (VMC). Our previous studies demonstrated that activation of the cholinergic anti-inflammatory pathway (CAP) alleviated the inflammatory response. In addition, we observed that right cervical vagotomy aggravates VMC by inhibiting CAP. However, the vagus nerve’s effect on differentiation of CD4+ T cells has not been studied in VMC mice to date. In this study, we investigated the effects of cervical vagotomy and the α7nAChR agonist pnu282987 on CD4+ T cell differentiation in a murine myocarditis model (BALB/c) infected with coxsackievirus B3 (CVB3). Splenic CD4+ T cells from CVB3-induced mice obtained and cultured to investigate the potential mechanism of CD4+ T cell differentiation. Each Th cell subset was analyzed by flow cytometry. Our results showed that right cervical vagotomy increased proportions of Th1 and Th17 cells and decreased proportions of Th2 and Treg cells in the spleen. Vagotomy-induced upregulation of T-bet, Ror-γ, IFN-γ, and IL-17 expression while downregulating the expression of Gata3, Foxp3, and IL-4 in the heart. In addition, we observed upregulated levels of proinflammatory cytokines, aggravated myocardial lesions and cellular infiltration, and worsened cardiac function in VMC mice. Pnu282987 administration reversed these outcomes. Furthermore, vagotomy inhibited JAK2-STAT3 activation and enhanced NF-κB activation in splenic CD4+ T cells. The CD4+ T cell differentiation was related to JAK2-STAT3 and NF-κB signal pathways. In conclusion, vagus nerve modulates the inflammatory response by regulating CD4+ T cell differentiation in response to VMC.
Collapse
Affiliation(s)
- Li Yue-Chun
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Xiao-Hong Gu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Ge Li-Sha
- Department of Pediatric Emergency, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - De-Pu Zhou
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Chao Xing
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Xiao-Ling Guo
- Center of Scientific Research, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Lu-Lu Pan
- Child Health Manage Department, Maternal and Child Health Care Institution , Wenzhou, China
| | - Shi-Yang Song
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Li-Li Yu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Guang-Yi Chen
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Jia-Feng Lin
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| | - Mao-Ping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou, China
| |
Collapse
|
12
|
Rocha-Dias PF, Simao-Silva DP, Silva SSLD, Piovezan MR, Souza RKM, Darreh-Shori T, Furtado-Alle L, Souza RLR. Influence of a genetic variant of CHAT gene over the profile of plasma soluble ChAT in Alzheimer disease. Genet Mol Biol 2020; 43:e20190404. [PMID: 33306773 PMCID: PMC7783728 DOI: 10.1590/1678-4685-gmb-2019-0404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 09/21/2020] [Indexed: 11/22/2022] Open
Abstract
The choline acetyltransferase (ChAT) and vesicular acetylcholine transporter (VAChT) are fundamental to neurophysiological functions of the central cholinergic system. We confirmed and quantified the presence of extracellular ChAT protein in human plasma and also characterized ChAT and VAChT polymorphisms, protein and activity levels in plasma of Alzheimer's disease patients (AD; N = 112) and in cognitively healthy controls (EC; N = 118). We found no significant differences in plasma levels of ChAT activity and protein between AD and EC groups. Although no differences were observed in plasma ChAT activity and protein concentration among ChEI-treated and untreated AD patients, ChAT activity and protein levels variance in plasma were higher among the rivastigmine-treated group (ChAT protein: p = 0.005; ChAT activity: p = 0.0002). Moreover, AD patients homozygous for SNP rs1880676 A allele exhibited higher levels of ChAT activity. Considering this is the first study to report the influence of genetic variability of CHAT locus over ChAT activity in AD patients plasma, it opens a new set of important questions on peripheral cholinergic signaling in AD.
Collapse
Affiliation(s)
- Patricia Fernanda Rocha-Dias
- Universidade Federal do Paraná (UFPR), Centro Politécnico, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
| | - Daiane Priscila Simao-Silva
- Instituto de Pesquisa do Câncer (IPEC), Guarapuava, PR, Brazil.,Karolinska Institutet, Care Sciences and Society, Department of Neurobiology, Stockholm, Sweden
| | - Saritha Suellen Lopes da Silva
- Universidade Federal do Paraná (UFPR), Centro Politécnico, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
| | - Mauro Roberto Piovezan
- Universidade Federal do Paraná (UFPR), Departamento de Neurologia, Hospital de Clínicas, Curitiba, PR, Brazil
| | - Ricardo Krause M Souza
- Instituto de Neurologia de Curitiba (INC), Ambulatório de Distúrbios da Memória e Comportamento, Demência e Outros Transtornos Cognitivos e Comportamentais, Curitiba, PR, Brazil
| | - Taher Darreh-Shori
- Karolinska Institutet, Care Sciences and Society, Department of Neurobiology, Stockholm, Sweden
| | - Lupe Furtado-Alle
- Universidade Federal do Paraná (UFPR), Centro Politécnico, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
| | - Ricardo Lehtonen Rodrigues Souza
- Universidade Federal do Paraná (UFPR), Centro Politécnico, Programa de Pós-Graduação em Genética, Departamento de Genética, Curitiba, PR, Brazil
| |
Collapse
|
13
|
Madison MC, Landers CT, Gu BH, Chang CY, Tung HY, You R, Hong MJ, Baghaei N, Song LZ, Porter P, Putluri N, Salas R, Gilbert BE, Levental I, Campen MJ, Corry DB, Kheradmand F. Electronic cigarettes disrupt lung lipid homeostasis and innate immunity independent of nicotine. J Clin Invest 2020; 129:4290-4304. [PMID: 31483291 DOI: 10.1172/jci128531] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 07/23/2019] [Indexed: 12/13/2022] Open
Abstract
Electronic nicotine delivery systems (ENDS) or e-cigarettes have emerged as a popular recreational tool among adolescents and adults. Although the use of ENDS is often promoted as a safer alternative to conventional cigarettes, few comprehensive studies have assessed the long-term effects of vaporized nicotine and its associated solvents, propylene glycol (PG) and vegetable glycerin (VG). Here, we show that compared with smoke exposure, mice receiving ENDS vapor for 4 months failed to develop pulmonary inflammation or emphysema. However, ENDS exposure, independent of nicotine, altered lung lipid homeostasis in alveolar macrophages and epithelial cells. Comprehensive lipidomic and structural analyses of the lungs revealed aberrant phospholipids in alveolar macrophages and increased surfactant-associated phospholipids in the airway. In addition to ENDS-induced lipid deposition, chronic ENDS vapor exposure downregulated innate immunity against viral pathogens in resident macrophages. Moreover, independent of nicotine, ENDS-exposed mice infected with influenza demonstrated enhanced lung inflammation and tissue damage. Together, our findings reveal that chronic e-cigarette vapor aberrantly alters the physiology of lung epithelial cells and resident immune cells and promotes poor response to infectious challenge. Notably, alterations in lipid homeostasis and immune impairment are independent of nicotine, thereby warranting more extensive investigations of the vehicle solvents used in e-cigarettes.
Collapse
Affiliation(s)
- Matthew C Madison
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine
| | - Cameron T Landers
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine
| | | | - Cheng-Yen Chang
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine
| | | | - Ran You
- Department of Pathology and Immunology
| | - Monica J Hong
- Department of Medicine.,Department of Pathology and Immunology
| | | | | | | | | | | | - Brian E Gilbert
- Department of Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Ilya Levental
- Department of Integrative Biology and Molecular Pharmacology, University of Texas Health Science Center, Houston, Texas, USA
| | - Matthew J Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, New Mexico, USA
| | - David B Corry
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine.,Department of Pathology and Immunology.,Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| | - Farrah Kheradmand
- Department of Medicine.,Interdepartmental Program in Translational Biology and Molecular Medicine.,Department of Pathology and Immunology.,Biology of Inflammation Center, Baylor College of Medicine, Houston, Texas, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas, USA
| |
Collapse
|
14
|
Jarczyk J, Yard BA, Hoeger S. The Cholinergic Anti-Inflammatory Pathway as a Conceptual Framework to Treat Inflammation-Mediated Renal Injury. Kidney Blood Press Res 2020; 44:435-448. [PMID: 31307039 DOI: 10.1159/000500920] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/12/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The cholinergic anti-inflammatory pathway, positioned at the interface of the nervous and immune systems, is the efferent limb of the "inflammatory reflex" which mainly signals through the vagus nerve. As such, the brain can modulate peripheral inflammatory responses by the activation of vagal efferent fibers. Importantly, immune cells in the spleen express most cholinergic system components such as acetylcholine (ACh), choline acetyltransferase, acetylcholinesterase, and both muscarinic and nicotinic ACh receptors, making communication between both systems possible. In general, this communication down-regulates the inflammation, achieved through different mechanisms and depending on the cells involved. SUMMARY With the awareness that the cholinergic anti-inflammatory pathway serves to prevent or limit inflammation in peripheral organs, vagus nerve stimulation has become a promising strategy in the treatment of several inflammatory conditions. Both pharmacological and non-pharmacological methods have been used in many studies to limit organ injury as a consequence of inflammation. Key Messages: In this review, we will highlight our current knowledge of the cholinergic anti-inflammatory pathway, with emphasis on its potential clinical use in the treatment of inflammation-triggered kidney injury.
Collapse
Affiliation(s)
- Jonas Jarczyk
- Department of Urology, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Benito A Yard
- Vth Medical Department, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany
| | - Simone Hoeger
- Vth Medical Department, University Medical Center Mannheim, Medical Faculty Mannheim, Ruprecht-Karls-University Heidelberg, Mannheim, Germany, .,Bioassay GmbH, Heidelberg, Germany,
| |
Collapse
|
15
|
Rizzi A, Saccia M, Benagiano V. Is the Cerebellum Involved in the Nervous Control of the Immune System Function? Endocr Metab Immune Disord Drug Targets 2019; 20:546-557. [PMID: 31729296 DOI: 10.2174/1871530319666191115144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/30/2019] [Accepted: 10/10/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND According to the views of psychoneuroendocrinoimmunology, many interactions exist between nervous, endocrine and immune system the purpose of which is to achieve adaptive measures restoring an internal equilibrium (homeostasis) following stress conditions. The center where these interactions converge is the hypothalamus. This is a center of the autonomic nervous system that controls the visceral systems, including the immune system, through both the nervous and neuroendocrine mechanisms. The nervous mechanisms are based on nervous circuits that bidirectionally connect hypothalamic neurons and neurons of the sympathetic and parasympathetic system; the neuroendocrine mechanisms are based on the release by neurosecretory hypothalamic neurons of hormones that target the endocrine cells and on the feedback effects of the hormones secreted by these endocrine cells on the same hypothalamic neurons. Moreover, the hypothalamus is an important subcortical center of the limbic system that controls through nervous and neuroendocrine mechanisms the areas of the cerebral cortex where the psychic functions controlling mood, emotions, anxiety and instinctive behaviors take place. Accordingly, various studies conducted in the last decades have indicated that hypothalamic diseases may be associated with immune and/or psychic disorders. OBJECTIVE Various researches have reported that the hypothalamus is controlled by the cerebellum through a feedback nervous circuit, namely the hypothalamocerebellar circuit, which bi-directionally connects regions of the hypothalamus, including the immunoregulatory ones, and related regions of the cerebellum. An objective of the present review was to analyze the anatomical bases of the nervous and neuroendocrine mechanisms for the control of the immune system and, in particular, of the interaction between hypothalamus and cerebellum to achieve the immunoregulatory function. CONCLUSION Since the hypothalamus represents the link through which the immune functions may influence the psychic functions and vice versa, the cerebellum, controlling several regions of the hypothalamus, could be considered as a primary player in the regulation of the multiple functional interactions postulated by psychoneuroendocrinoimmunology.
Collapse
Affiliation(s)
- Anna Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Matteo Saccia
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| | - Vincenzo Benagiano
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari, Policlinico, Piazza Giulio Cesare, 70124 Bari, Italy
| |
Collapse
|
16
|
Yi TG, Cho YK, Lee HJ, Kim J, Jeon MS, Ham DS, Kim WC, Song SU. A Novel Immunomodulatory Mechanism Dependent on Acetylcholine Secreted by Human Bone Marrow-derived Mesenchymal Stem Cells. Int J Stem Cells 2019; 12:315-330. [PMID: 31242717 PMCID: PMC6657938 DOI: 10.15283/ijsc18098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/15/2019] [Accepted: 04/07/2019] [Indexed: 12/29/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) are used to treat autoimmune or inflammatory diseases. Our aim was to determine the immunomodulatory mechanisms elicited by MSCs during inflammation. Methods and Results We cocultured MSCs with peripheral blood mononuclear cells for a mixed lymphocyte reaction or stimulated them by phytohemagglutinin. Morphological changes of MSCs and secretion of acetylcholine (ACh) from MSCs were measured. The effects of an ACh antagonist and ACh agonist on lymphocyte proliferation and proinflammatory-cytokine production were determined. The inflammatory milieu created by immune-cell activation caused MSCs to adopt a neuronlike phenotype and induced them to release ACh. Additionally, nicotinic acetylcholine receptors (nAChRs) were upregulated in activated peripheral blood mononuclear cells. We observed that ACh bound to nAChR on activated immune cells and led to the inhibition of lymphocyte proliferation and of proinflammatory-cytokine production. MSC-mediated immunosuppression through ACh activity was reversed by an ACh antagonist called α-bungarotoxin, and lymphocyte proliferation was inhibited by an ACh agonist, ACh chloride. Conclusions Our findings point to a novel immunomodulatory mechanism in which ACh secreted by MSCs under inflammatory conditions might modulate immune cells. This study may provide a novel method for the treatment of autoimmune diseases by means of MSCs.
Collapse
Affiliation(s)
- Tac-Ghee Yi
- Department of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon, Korea.,SCM Lifescience Co., Ltd., Incheon, Korea.,SunCreate Co., Ltd., Yangju, Korea
| | | | | | | | - Myung-Shin Jeon
- Department of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon, Korea
| | | | - Woo Cheol Kim
- Department of Radiooncology, Inha University School of Medicine, Incheon, Korea
| | - Sun U Song
- Department of Integrated Biomedical Sciences, Inha University School of Medicine, Incheon, Korea.,SCM Lifescience Co., Ltd., Incheon, Korea
| |
Collapse
|
17
|
Liao Z, Jaular LM, Soueidi E, Jouve M, Muth DC, Schøyen TH, Seale T, Haughey NJ, Ostrowski M, Théry C, Witwer KW. Acetylcholinesterase is not a generic marker of extracellular vesicles. J Extracell Vesicles 2019; 8:1628592. [PMID: 31303981 PMCID: PMC6609367 DOI: 10.1080/20013078.2019.1628592] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 05/21/2019] [Accepted: 06/04/2019] [Indexed: 02/08/2023] Open
Abstract
Acetylcholinesterase (AChE) activity is found in abundance in reticulocytes and neurons and was developed as a marker of reticulocyte EVs in the 1970s. Easily, quickly, and cheaply assayed, AChE activity has more recently been proposed as a generic marker for small extracellular vesicles (sEV) or exosomes, and as a negative marker of HIV-1 virions. To evaluate these proposed uses of AChE activity, we examined data from different EV and virus isolation methods using T-lymphocytic (H9, PM1 and Jurkat) and promonocytic (U937) cell lines grown in culture conditions that differed by serum content. When EVs were isolated by differential ultracentrifugation, no correlation between AChE activity and particle count was observed. AChE activity was detected in non-conditioned medium when serum was added, and most of this activity resided in soluble fractions and could not be pelleted by centrifugation. The serum-derived pelletable AChE protein was not completely eliminated from culture medium by overnight ultracentrifugation; however, a serum "extra-depletion" protocol, in which a portion of the supernatant was left undisturbed during harvesting, achieved near-complete depletion. In conditioned medium also, only small percentages of AChE activity could be pelleted together with particles. Furthermore, no consistent enrichment of AChE activity in sEV fractions was observed. Little if any AChE activity is produced by the cells we examined, and this activity was mainly present in non-vesicular structures, as shown by electron microscopy. Size-exclusion chromatography and iodixanol gradient separation showed that AChE activity overlaps only minimally with EV-enriched fractions. AChE activity likely betrays exposure to blood products and not EV abundance, echoing the MISEV 2014 and 2018 guidelines and other publications. Additional experiments may be merited to validate these results for other cell types and biological fluids other than blood.
Collapse
Affiliation(s)
- Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Estelle Soueidi
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Mabel Jouve
- Institut Curie, Génétique et biologie du développement, PSL Research University, CNRS UMR3215, Paris, France
| | - Dillon C. Muth
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tine H. Schøyen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tessa Seale
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman J. Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matias Ostrowski
- Instituto INBIRS, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Clotilde Théry
- Institut Curie, INSERM U932, PSL Research University, Paris, France
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Cellular and Molecular Medicine Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
18
|
Suriyo T, Chotirat S, Auewarakul CU, Chaiyot K, Promsuwicha O, Satayavivad J. Variation of nicotinic subtype α7 and muscarinic subtype M3 acetylcholine receptor expression in three main types of leukemia. Oncol Lett 2019; 17:1357-1362. [PMID: 30655906 DOI: 10.3892/ol.2018.9663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 10/26/2018] [Indexed: 01/27/2023] Open
Abstract
Cholinergic receptors, such as α7-nicotinic acetylcholine receptor (α7-nAChR) and M3-muscarinic acetylcholine receptor (M3-mAChR), have been demonstrated to serve a significant role in the proliferation, differentiation and apoptosis of leukemic cells. However, the expression of these receptors in samples from patients with leukemia remains unclear. The present study aimed to determine the expression of M3-mAChR and α7-nAChR in the bone marrow or peripheral blood of 51 patients with leukemia, including acute myeloid leukemia (AML; n=33), acute lymphoblastic leukemia (ALL; n=13), and chronic myeloid leukemia (CML; n=5). Peripheral blood mononuclear cells (PBMCs) were also isolated from healthy subjects (n=5) for comparison. Western blot analysis was performed to determine the protein expression profiles, and a pattern of decreased α7-nAChR levels in patients with leukemia was observed. Among the leukemia types, the lowest expression of α7-nAChR and M3-mAChR were identified in patients with T-cell ALL/lymphoma (T-ALL). CML exhibited the highest level of M3-mAChR, which was significantly different from APL and AML-M4, yet not from healthy subjects (P<0.05). Therefore, different expression profiles of α7-nACR and M3-mAChR were detected amongst the leukemia types. Collectively, the present study supports the potential role of cholinergic signaling in mediating leukemogenesis. However, further studies in larger cohorts are required to validate these findings.
Collapse
Affiliation(s)
- Tawit Suriyo
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand
| | - Sadudee Chotirat
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Chirayu U Auewarakul
- Faculty of Medicine and Public Health, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok 10210, Thailand.,Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Karnjana Chaiyot
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Orathai Promsuwicha
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Jutamaad Satayavivad
- Laboratory of Pharmacology, Chulabhorn Research Institute, Bangkok 10210, Thailand.,Center of Excellence on Environmental Health and Toxicology, Office of Higher Education Commission, Ministry of Education, Bangkok 10400, Thailand.,Environmental Toxicology Program, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| |
Collapse
|
19
|
Polachini CRN, Spanevello RM, Schetinger MRC, Morsch VM. Cholinergic and purinergic systems: A key to multiple sclerosis? J Neurol Sci 2018; 392:8-21. [PMID: 30097157 DOI: 10.1016/j.jns.2018.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/21/2018] [Accepted: 06/24/2018] [Indexed: 12/20/2022]
|
20
|
Quercetin treatment regulates the Na +,K +-ATPase activity, peripheral cholinergic enzymes, and oxidative stress in a rat model of demyelination. Nutr Res 2018; 55:45-56. [PMID: 29914627 DOI: 10.1016/j.nutres.2018.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 03/30/2018] [Accepted: 04/08/2018] [Indexed: 01/13/2023]
Abstract
Quercetin is reported to exert a plethora of health benefits through many different mechanisms of action. This versatility and presence in the human diet has attracted the attention of the scientific community, resulting in a huge output of in vitro and in vivo (preclinical) studies. Therefore, we hypothesized that quercetin can protect Na+,K+-ATPase activity in the central nervous system, reestablish the peripheral cholinesterases activities, and reduce oxidative stress during demyelination events in rats. In line with this expectation, our study aims to find out how quercetin acts on the Na+,K+-ATPase activity in the central nervous system, peripheral cholinesterases, and stress oxidative markers in an experimental model of demyelinating disease. Wistar rats were divided into 4 groups: vehicle, quercetin, ethidium bromide (EB), and EB plus quercetin groups. The animals were treated once a day with vehicle (ethanol 20%) or quercetin 50 mg/kg for 7 (demyelination phase, by gavage) or 21 days (remyelination phase) after EB (0.1%, 10 μL) injection (intrapontine).The encephalon was removed, and the pons, hypothalamus, cerebral cortex, hippocampus, striatum, and cerebellum were dissected to verify the Na+,K+-ATPase activity. Our results showed that quercetin protected against reduction in Na+,K+-ATPase in the pons and cerebellum in the demyelination phase, and it increased the activity of this enzyme in the remyelination phase. During the demyelination, quercetin promoted the increase in acetylcholinesterase activity in whole blood and lymphocytes induced by EB, and it reduced the increase in acetylcholinesterase activity in lymphocytes in the remyelination phase. On day 7, EB increased the superoxide dismutase and decreased catalase activities, as well as increased the thiobarbituric acid-reactive substance levels. Taken together, these results indicated that quercetin regulates the Na+,K+-ATPase activity, affects the alterations of redox state, and participates in the reestablishment of peripheral cholinergic activity during demyelinating and remyelination events.
Collapse
|
21
|
Liu Z, Wang L, Lv Z, Zhou Z, Wang W, Li M, Yi Q, Qiu L, Song L. The Cholinergic and Adrenergic Autocrine Signaling Pathway Mediates Immunomodulation in Oyster Crassostrea gigas. Front Immunol 2018. [PMID: 29535711 PMCID: PMC5834419 DOI: 10.3389/fimmu.2018.00284] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is becoming increasingly clear that neurotransmitters impose direct influence on regulation of the immune process. Recently, a simple but sophisticated neuroendocrine-immune (NEI) system was identified in oyster, which modulated neural immune response via a "nervous-hemocyte"-mediated neuroendocrine immunomodulatory axis (NIA)-like pathway. In the present study, the de novo synthesis of neurotransmitters and their immunomodulation in the hemocytes of oyster Crassostrea gigas were investigated to understand the autocrine/paracrine pathway independent of the nervous system. After hemocytes were exposed to lipopolysaccharide (LPS) stimulation, acetylcholine (ACh), and norepinephrine (NE) in the cell supernatants, both increased to a significantly higher level (2.71- and 2.40-fold, p < 0.05) comparing with that in the control group. The mRNA expression levels and protein activities of choline O-acetyltransferase and dopamine β-hydroxylase in hemocytes which were involved in the synthesis of ACh and NE were significantly elevated at 1 h after LPS stimulation, while the activities of acetylcholinesterase and monoamine oxidase, two enzymes essential in the metabolic inactivation of ACh and NE, were inhibited. These results demonstrated the existence of the sophisticated intracellular machinery for the generation, release and inactivation of ACh and NE in oyster hemocytes. Moreover, the hemocyte-derived neurotransmitters could in turn regulate the mRNA expressions of tumor necrosis factor (TNF) genes, the activities of superoxide dismutase, catalase and lysosome, and hemocyte phagocytosis. The phagocytic activities of hemocytes, the mRNA expressions of TNF and the activities of key immune-related enzymes were significantly changed after the block of ACh and NE receptors with different kinds of antagonists, suggesting that autocrine/paracrine self-regulation was mediated by transmembrane receptors on hemocyte. The present study proved that oyster hemocyte could de novo synthesize and release cholinergic and adrenergic neurotransmitters, and the hemocyte-derived ACh/NE could then execute a negative regulation on hemocyte phagocytosis and synthesis of immune effectors with similar autocrine/paracrine signaling pathway identified in vertebrate macrophages. Findings in the present study demonstrated that the immune and neuroendocrine system evolved from a common origin and enriched our knowledge on the evolution of NEI system.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhao Lv
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhi Zhou
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Meijia Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China
| | - Limei Qiu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
22
|
Valdés-Ferrer SI, Crispín JC, Belaunzarán-Zamudio PF, Rodríguez-Osorio CA, Cacho-Díaz B, Alcocer-Varela J, Cantú-Brito C, Sierra-Madero J. Add-on Pyridostigmine Enhances CD4 + T-Cell Recovery in HIV-1-Infected Immunological Non-Responders: A Proof-of-Concept Study. Front Immunol 2017; 8:1301. [PMID: 29093707 PMCID: PMC5651246 DOI: 10.3389/fimmu.2017.01301] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/27/2017] [Indexed: 01/14/2023] Open
Abstract
Background In human immunodeficiency virus (HIV)-infection, persistent T-cell activation leads to rapid turnover and increased cell death, leading to immune exhaustion and increased susceptibility to opportunistic infections. Stimulation of the vagus nerve increases acetylcholine (ACh) release and modulates inflammation in chronic inflammatory conditions, a neural mechanism known as the cholinergic anti-inflammatory pathway (CAP). Pyridostigmine (PDG), an ACh-esterase inhibitor, increases the half-life of endogenous ACh, therefore mimicking the CAP. We have previously observed that PDG reduces ex vivo activation and proliferation of T-cells obtained from people living with HIV. Methods We conducted a 16-week proof-of-concept open trial using PDG as add-on therapy in seven HIV-infected patients with discordant immune response receiving combined antiretroviral therapy, to determine whether PDG would promote an increase in total CD4+ T-cells. The trial was approved by the Institutional Research and Ethics Board and registered in ClinicalTrials.gov (NCT00518154). Results Seven patients were enrolled after signing informed consent forms. We observed that addition of PDG induced a significant increase in total CD4+ T-cells (baseline = 153.1 ± 43.1 vs. week-12 = 211.9 ± 61.1 cells/µL; p = 0.02). Post hoc analysis showed that in response to PDG, four patients (57%) significantly increased CD4+ T-cell counts (responders = 257.8 ± 26.6 vs. non-responders = 150.6 ± 18.0 cells/µL; p = 0.002), and the effect persisted for at least 1 year after discontinuation of PDG. Conclusion Our data indicate that in patients with HIV, add-on PDG results in a significant and persistent increase in circulating CD4+ T-cells.
Collapse
Affiliation(s)
- Sergio I Valdés-Ferrer
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Center for Biomedical Science, Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - José C Crispín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Pablo F Belaunzarán-Zamudio
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos A Rodríguez-Osorio
- Departamento de Medicina Crítica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, United States
| | - Bernardo Cacho-Díaz
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico.,Departamento de Neurología, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Jorge Alcocer-Varela
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Carlos Cantú-Brito
- Departamento de Neurología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Sierra-Madero
- Departamento de Infectología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
23
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Expression and Function of the Cholinergic System in Immune Cells. Front Immunol 2017; 8:1085. [PMID: 28932225 PMCID: PMC5592202 DOI: 10.3389/fimmu.2017.01085] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 08/21/2017] [Indexed: 12/29/2022] Open
Abstract
T and B cells express most cholinergic system components—e.g., acetylcholine (ACh), choline acetyltransferase (ChAT), acetylcholinesterase, and both muscarinic and nicotinic ACh receptors (mAChRs and nAChRs, respectively). Using ChATBAC-eGFP transgenic mice, ChAT expression has been confirmed in T and B cells, dendritic cells, and macrophages. Moreover, T cell activation via T-cell receptor/CD3-mediated pathways upregulates ChAT mRNA expression and ACh synthesis, suggesting that this lymphocytic cholinergic system contributes to the regulation of immune function. Immune cells express all five mAChRs (M1–M5). Combined M1/M5 mAChR-deficient (M1/M5-KO) mice produce less antigen-specific antibody than wild-type (WT) mice. Furthermore, spleen cells in M1/M5-KO mice produce less tumor necrosis factor (TNF)-α and interleukin (IL)-6, suggesting M1/M5 mAChRs are involved in regulating pro-inflammatory cytokine and antibody production. Immune cells also frequently express the α2, α5, α6, α7, α9, and α10 nAChR subunits. α7 nAChR-deficient (α7-KO) mice produce more antigen-specific antibody than WT mice, and spleen cells from α7-KO mice produce more TNF-α and IL-6 than WT cells. This suggests that α7 nAChRs are involved in regulating cytokine production and thus modulate antibody production. Evidence also indicates that nicotine modulates immune responses by altering cytokine production and that α7 nAChR signaling contributes to immunomodulation through modification of T cell differentiation. Together, these findings suggest the involvement of both mAChRs and nAChRs in the regulation of immune function. The observation that vagus nerve stimulation protects mice from lethal endotoxin shock led to the notion of a cholinergic anti-inflammatory reflex pathway, and the spleen is an essential component of this anti-inflammatory reflex. Because the spleen lacks direct vagus innervation, it has been postulated that ACh synthesized by a subset of CD4+ T cells relays vagal nerve signals to α7 nAChRs on splenic macrophages, which downregulates TNF-α synthesis and release, thereby modulating inflammatory responses. However, because the spleen is innervated solely by the noradrenergic splenic nerve, confirmation of an anti-inflammatory reflex pathway involving the spleen requires several more hypotheses to be addressed. We will review and discuss these issues in the context of the cholinergic system in immune cells.
Collapse
Affiliation(s)
- Takeshi Fujii
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Masato Mashimo
- Faculty of Pharmaceutical Sciences, Department of Pharmacology, Doshisha Women's College of Liberal Arts, Kyoto, Japan
| | - Yasuhiro Moriwaki
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Hidemi Misawa
- Faculty of Pharmacy, Department of Pharmacology, Keio University, Tokyo, Japan
| | - Shiro Ono
- Laboratory of Immunology, Faculty of Pharmacy, Osaka Ohtani University, Osaka, Japan
| | - Kazuhide Horiguchi
- Department of Anatomy, Division of Medicine, University of Fukui Faculty of Medical Sciences, Fukui, Japan
| | - Koichiro Kawashima
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, Tokyo, Japan
| |
Collapse
|
24
|
Fujii T, Mashimo M, Moriwaki Y, Misawa H, Ono S, Horiguchi K, Kawashima K. Physiological functions of the cholinergic system in immune cells. J Pharmacol Sci 2017; 134:1-21. [DOI: 10.1016/j.jphs.2017.05.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/30/2017] [Accepted: 05/08/2017] [Indexed: 02/07/2023] Open
|
25
|
Marshall-Gradisnik S, Huth T, Chacko A, Johnston S, Smith P, Staines D. Natural killer cells and single nucleotide polymorphisms of specific ion channels and receptor genes in myalgic encephalomyelitis/chronic fatigue syndrome. APPLICATION OF CLINICAL GENETICS 2016; 9:39-47. [PMID: 27099524 PMCID: PMC4821384 DOI: 10.2147/tacg.s99405] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
AIM The aim of this paper was to determine natural killer (NK) cytotoxic activity and if single nucleotide polymorphisms (SNPs) and genotypes in transient receptor potential (TRP) ion channels and acetylcholine receptors (AChRs) were present in isolated NK cells from previously identified myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS) patients. SUBJECTS AND METHODS A total of 39 ME/CFS patients (51.69±2 years old) and 30 unfatigued controls (47.60±2.39 years old) were included in this study. Patients were defined according to the 1994 Centers for Disease Control and Prevention criteria. Flow cytometry protocols were used to examine NK cytotoxic activity. A total of 678 SNPs from isolated NK cells were examined for 21 mammalian TRP ion channel genes and for nine mammalian AChR genes via the Agena Bioscience iPlex Gold assay. SNP association and genotype was determined using analysis of variance and Plink software. RESULTS ME/CFS patients had a significant reduction in NK percentage lysis of target cells (17%±4.68%) compared with the unfatigued control group (31%±6.78%). Of the 678 SNPs examined, eleven SNPs for TRP ion channel genes (TRPC4, TRPC2, TRPM3, and TRPM8) were identified in the ME/CFS group. Five of these SNPs were associated with TRPM3, while the remainder were associated with TRPM8, TRPC2, and TRPC4 (P<0.05). Fourteen SNPs were associated with nicotinic and muscarinic AChR genes: six with CHRNA3, while the remainder were associated with CHRNA2, CHRNB4, CHRNA5, and CHRNE (P<0.05). There were sixteen genotypes identified from SNPs in TRP ion channels and AChRs for TRPM3 (n=5), TRPM8 (n=2), TRPC4 (n=3), TRPC2 (n=1), CHRNE (n=1), CHRNA2 (n=2), CHRNA3 (n=1), and CHRNB4 (n=1) (P<0.05). CONCLUSION We identified a number of SNPs and genotypes for TRP ion channels and AChRs from isolated NK cells in patients with ME/CFS, suggesting these SNPs and genotypes may be involved in changes in NK cell function and the development of ME/CFS pathology. These anomalies suggest a role for dysregulation of Ca(2+) in AChR and TRP ion channel signaling in the pathomechanism of ME/CFS.
Collapse
Affiliation(s)
- Sonya Marshall-Gradisnik
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Teilah Huth
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Anu Chacko
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Samantha Johnston
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia; National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Pete Smith
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
26
|
Lima JA, Costa TWR, Silva LL, Miranda ALP, Pinto AC. Antinociceptive and anti-inflammatory effects of a Geissospermum vellosii stem bark fraction. AN ACAD BRAS CIENC 2016; 88:237-48. [PMID: 26840005 DOI: 10.1590/0001-3765201520140374] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 05/13/2015] [Indexed: 01/23/2023] Open
Abstract
Geissospermum vellosii (Pao pereira) is a Brazilian tree whose stem barks are rich in indole alkaloids that present intense anticholinesterase activity. The present study evaluated the effects of a stem bark fraction (PPAC fraction) and ethanolic extract (EE) of Pao pereira in classic murine models of inflammation and pain. The EE and PPAC fraction, both at a dose of 30 mg/kg, significantly reduced mice abdominal constriction induced by acetic acid by 34.8% and 47.5%, respectively. In the formalin test, EE (30 mg/kg) and PPAC fraction (30 and 60 mg/kg) inhibited only the second phase, by 82.8%, 84.9% and 100%, respectively. Compared with indomethacin, similar doses of EE or PPAC fraction were approximately twice as effective in causing antinociception. PPAC fraction was not effective in the hot plate test but reduced the inflammatory response at the second (50.6%) and third (57.8%) hours of rat paw edema induced by carrageenan. Antihyperalgesic activity was observed within 30 min with a peak at 2 h (60.1%). These results demonstrate that compounds in PPAC fraction have anti-inflammatory and antinociceptive activity by a mechanism apparently unrelated to the opioid system. Regardless of similar responses to indomethacin, the effects of PPAC fraction are mainly attributed to acetylcholine actions.
Collapse
Affiliation(s)
- Josélia A Lima
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Thiago W R Costa
- Escola de Ciências da Saúde, Universidade do Grande Rio, Duque de Caxias, RJ, Brazil
| | - Leandro L Silva
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ana Luísa P Miranda
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Angelo C Pinto
- Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Hainke S, Wildmann J, Del Rey A. Deletion of muscarinic type 1 acetylcholine receptors alters splenic lymphocyte functions and splenic noradrenaline concentration. Int Immunopharmacol 2015; 29:135-42. [PMID: 26002586 DOI: 10.1016/j.intimp.2015.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 04/26/2015] [Accepted: 05/07/2015] [Indexed: 11/18/2022]
Abstract
The existence of interactions between the immune and the sympathetic nervous systems is well established. Noradrenaline can promote or inhibit the immune response, and conversely, the immune response itself can affect noradrenaline concentration in lymphoid organs, such as the spleen. It is also well known that acetylcholine released by pre-ganglionic neurons can modulate noradrenaline release by the postsynaptic neuron. The spleen does not receive cholinergic innervation, but it has been reported that lymphocytes themselves can produce acetylcholine, and express acetylcholine receptors and acetylcholinesterase. We found that the spleen of not overtly immunized mice in which muscarinic type 1 acetylcholine receptors have been knocked out (M1KO) has higher noradrenaline concentrations than that of the wildtype mice, without comparable alterations in the heart, in parallel to a decreased number of IgG-producing B cells. Splenic lymphocytes from M1KO mice displayed increased in vitro-induced cytotoxicity, and this was observed only when CD4(+) T cells were present. In contrast, heterozygous acetylcholinesterase (AChE+/-) mice, had no alterations in splenic noradrenaline concentration, but the in vitro proliferation of AChE+/- CD4(+) T cells was increased. It is theoretically conceivable that reciprocal effects between neuronally and non-neuronally derived acetylcholine and noradrenaline might contribute to the results reported. Our results emphasize the need to consider the balance between the effects of these mediators for the final immunoregulatory outcome.
Collapse
Affiliation(s)
- Susanne Hainke
- Research Group Immunophysiology, Division of Neurophysiology, Inst. of Physiology and Pathophysiology, Deutschhausstrasse 2, 35037 Marburg, Germany
| | - Johannes Wildmann
- Research Group Immunophysiology, Division of Neurophysiology, Inst. of Physiology and Pathophysiology, Deutschhausstrasse 2, 35037 Marburg, Germany
| | - Adriana Del Rey
- Research Group Immunophysiology, Division of Neurophysiology, Inst. of Physiology and Pathophysiology, Deutschhausstrasse 2, 35037 Marburg, Germany.
| |
Collapse
|
28
|
Reale M, Di Nicola M, Velluto L, D'Angelo C, Costantini E, Lahiri DK, Kamal MA, Yu QS, Greig NH. Selective acetyl- and butyrylcholinesterase inhibitors reduce amyloid-β ex vivo activation of peripheral chemo-cytokines from Alzheimer's disease subjects: exploring the cholinergic anti-inflammatory pathway. Curr Alzheimer Res 2015; 11:608-22. [PMID: 24359497 DOI: 10.2174/1567205010666131212113218] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/28/2013] [Accepted: 11/02/2013] [Indexed: 12/22/2022]
Abstract
Increasing evidence suggests that elevated production and/or reduced clearance of amyloid-β peptide (Aβ) drives the early pathogenesis of Alzheimer's disease (AD). Aβ soluble oligomers trigger a neurotoxic cascade that leads to neuronal dysfunction, neurodegeneration and, ultimately, clinical dementia. Inflammation, both within brain and systemically, together with a deficiency in the neurotransmitter acetylcholine (ACh) that underpinned the development of anticholinesterases for AD symptomatic treatment, are invariable hallmarks of the disease. The inter-relation between Aβ, inflammation and cholinergic signaling is complex, with each feeding back onto the others to drive disease progression. To elucidate these interactions plasma samples and peripheral blood mononuclear cells (PBMCs) were evaluated from healthy controls (HC) and AD patients. Plasma levels of acetylcholinesterase (AChE), butyrylcholinesterase (BuChE) and Aβ were significantly elevated in AD vs. HC subjects, and ACh showed a trend towards reduced levels. Aβ challenge of PBMCs induced a greater release of inflammatory cytokines interleukin-1β (IL-1β), monocyte chemotactic protein-1 (MCP-1) and tumor necrosis factor-alpha (TNF-α) from AD vs. HC subjects, with IL-10 being similarly affected. THP-1 monocytic cells, a cell culture counterpart of PBMCs and brain microglial cells, responded similarly to Aβ as well as to phytohaemagglutinin (PHA) challenge, to allow preliminary analysis of the cellular and molecular pathways underpinning Aβ-induced changes in cytokine expression. As amyloid-β precursor protein expression, and hence Aβ, has been reported regulated by particular cytokines and anticholinesterases, the latter were evaluated on Aβ- and PHA-induced chemocytokine expression. Co-incubation with selective AChE/BuChE inhibitors, (-)-phenserine (AChE) and (-)-cymserine analogues (BuChE), mitigated the rise in cytokine levels and suggest that augmentation of the cholinergic anti-inflammatory pathway may prove valuable in AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nigel H Greig
- Dept. of Experimental and Clinical Sciences, Unit ofImmunodiagnostic and Molecular Pathology, University "G. D'Annunzio", N.P.D., Ed. C, III lev., Via dei Vestini, 31, 66123 Chieti, Italy.
| |
Collapse
|
29
|
Felton JM, Lucas CD, Rossi AG, Dransfield I. Eosinophils in the lung - modulating apoptosis and efferocytosis in airway inflammation. Front Immunol 2014; 5:302. [PMID: 25071763 PMCID: PMC4076794 DOI: 10.3389/fimmu.2014.00302] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 06/15/2014] [Indexed: 01/09/2023] Open
Abstract
Due to the key role of the lung in efficient transfer of oxygen in exchange for carbon dioxide, a controlled inflammatory response is essential for restoration of tissue homeostasis following airway exposure to bacterial pathogens or environmental toxins. Unregulated or prolonged inflammatory responses in the lungs can lead to tissue damage, disrupting normal tissue architecture, and consequently compromising efficient gaseous exchange. Failure to resolve inflammation underlies the development and/or progression of a number of inflammatory lung diseases including asthma. Eosinophils, granulocytic cells of the innate immune system, are primarily involved in defense against parasitic infections. However, the propagation of the allergic inflammatory response in chronic asthma is thought to involve excessive recruitment and impaired apoptosis of eosinophils together with defective phagocytic clearance of apoptotic cells (efferocytosis). In terms of therapeutic approaches for the treatment of asthma, the widespread use of glucocorticoids is associated with a number of adverse health consequences after long-term use, while some patients suffer from steroid-resistant disease. A new approach for therapeutic intervention would be to promote the resolution of inflammation via modulation of eosinophil apoptosis and the phagocytic clearance of apoptotic cells. This review focuses on the mechanisms underpinning eosinophil-mediated lung damage, currently available treatments and therapeutic targets that might in future be harnessed to facilitate inflammation resolution by the manipulation of cell survival and clearance pathways.
Collapse
Affiliation(s)
- Jennifer M. Felton
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Christopher D. Lucas
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Adriano G. Rossi
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Ian Dransfield
- MRC Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
30
|
Profita M, Albano GD, Riccobono L, Di Sano C, Montalbano AM, Gagliardo R, Anzalone G, Bonanno A, Pieper MP, Gjomarkaj M. Increased levels of Th17 cells are associated with non-neuronal acetylcholine in COPD patients. Immunobiology 2014; 219:392-401. [PMID: 24529390 DOI: 10.1016/j.imbio.2014.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 07/19/2013] [Accepted: 01/09/2014] [Indexed: 11/26/2022]
Abstract
T-lymphocytes, including Th17-cells and T-cells expressing acetylcholine (ACh), are key components of systemic inflammation in chronic obstructive pulmonary disease (COPD). We investigated whether ACh promotes Th17 cells in COPD. ACh, IL-17A, IL-22, RORγt, FOXP3 expression and AChIL-17A, AChIL-22, AChRORγt coexpression was evaluated in peripheral blood mononuclear cells (PBMC) from COPD patients (n=16), healthy smokers (HS) (n=12) and healthy control subjects (HC) (n=13) (cultured for 48 h with PMA) by flow cytometry. Furthermore, we studied the effect of Tiotropium (Spiriva®) (100 nM) and Olodaterol (1nM) alone or in combination, and of hemicholinium-3 (50 μM) on AChIL-17A, AChIL-22, AChRORγt, and FOXP3 expression in CD3+PBT-cells of PBMC from COPD patients (n=6) cultured for 48 h with PMA. CD3+PBT-cells expressing ACh, IL-17A, IL-22 and RORγt together with CD3+PBT-cells co-expressing AChIL-17A, AChIL-22 and AChRORγt were significantly increased in COPD patients compared to HC and HS subjects with higher levels in HS than in HC without a significant difference. CD3+FOXP3+PBT-cells were increased in HS than in HC and COPD. Tiotropium and Olodaterol reduced the percentage of CD3+PBT-cells co-expressing AChIL-17A, AChIL-22, and AChRORγt while increased the CD3+FOXP3+PBT-cells in PBMC from COPD patients, cultured in vitro for 48 h, with an additive effect when used in combination. Hemicholnium-3 reduced the percentage of ACh+IL-17A+, ACh+IL-22+, and ACh+RORγt+ while it did not affect FOXP3+ expression in CD3+PBT-cells from cultured PBMC from COPD patients. We concluded that ACh might promote the increased levels of Th17-cells in systemic inflammation of COPD. Long-acting β2-agonists and anticholinergic drugs might contribute to control this event.
Collapse
Affiliation(s)
- Mirella Profita
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy.
| | - Giusy Daniela Albano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy; Dipartimento Biomedico di Medicina, Interna e Specialistica (Di.Bi.M.I.S.), Sezione di Pneumologia, University of Palermo, Palermo, Italy
| | - Loredana Riccobono
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Caterina Di Sano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Angela Marina Montalbano
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Rosalia Gagliardo
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Giulia Anzalone
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | - Anna Bonanno
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| | | | - Mark Gjomarkaj
- Unit: "Ex vivo/In vitro Models to Study the Immunopathology and the Pharmacology of Airway Diseases", Institute of Biomedicine and Molecular Immunology (IBIM), Italian National Research Council (CNR), Palermo, Italy
| |
Collapse
|
31
|
Polachini CRN, Spanevello RM, Casali EA, Zanini D, Pereira LB, Martins CC, Baldissareli J, Cardoso AM, Duarte MF, da Costa P, Prado ALC, Schetinger MRC, Morsch VM. Alterations in the cholinesterase and adenosine deaminase activities and inflammation biomarker levels in patients with multiple sclerosis. Neuroscience 2014; 266:266-74. [PMID: 24508813 DOI: 10.1016/j.neuroscience.2014.01.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/21/2014] [Accepted: 01/25/2014] [Indexed: 12/20/2022]
Abstract
Multiple sclerosis (MS) is one of the main chronic inflammatory diseases of the CNS that cause functional disability in young adults. It has unknown etiology characterized by the infiltration of lymphocytes and macrophages into the brain. The aim of this study was to evaluate the acetylcholinesterase (AChE) activity in lymphocytes and whole blood, as well as butyrylcholinesterase (BChE) and adenosine deaminase (ADA) activities in serum. We also checked the levels of nucleotides, nucleosides, biomarkers of inflammation such as cytokines (interleukin (IL)-1, IL-6, interferon (IFN)-γ, tumor necrosis factor-alpha (TNF-α) and IL-10) and C-reactive protein (CRP) in serum from 29 patients with the relapsing-remitting form of MS (RRMS) and 29 healthy subjects as the control group. Results showed that AChE in lymphocytes and whole blood as well as BChE, and ADA activities in serum were significantly increased in RRMS patients when compared to the control group (P<0.05). In addition, we observed a decrease in ATP levels and a significant increase in the levels of ADP, AMP, adenosine and inosine in serum from RRMS patients in relation to the healthy subjects (P<0.05). Results also demonstrated an increase in the IFN-γ, TNF-α, IL-1, IL-6 and CRP (P<0.05) and a significant decrease in the IL-10 (P<0.0001) in RRMS patients when compared to control. Our results suggest that alterations in the biomarkers of inflammation and hydrolysis of nucleotides and nucleosides may contribute to the understanding of the neurological dysfunction of RRMS patients.
Collapse
Affiliation(s)
- C R N Polachini
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| | - R M Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário, Capão do Leão, 96010-900 Pelotas, RS, Brazil
| | - E A Casali
- Universidade Federal do Rio Grande do Sul, Instituto de Ciências Básicas da Saúde, Porto Alegre, 90035-003 Porto Alegre, RS, Brazil
| | - D Zanini
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - L B Pereira
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - C C Martins
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - J Baldissareli
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - A M Cardoso
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - M F Duarte
- Centro de Ciências da Saúde, Universidade Luterana do Brazil, Campus Santa Maria, Santa Maria, RS, Brazil
| | - P da Costa
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - A L C Prado
- Departamento de Fisioterapia e Reabilitação, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Campus Universitário, Camobi, 97105-900 Santa Maria, RS, Brazil
| | - M R C Schetinger
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - V M Morsch
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Química, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
32
|
Sun Z, Smyth K, Garcia K, Mattson E, Li L, Xiao Z. Nicotine inhibits memory CTL programming. PLoS One 2013; 8:e68183. [PMID: 23844169 PMCID: PMC3699522 DOI: 10.1371/journal.pone.0068183] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 05/28/2013] [Indexed: 12/21/2022] Open
Abstract
Nicotine is the main tobacco component responsible for tobacco addiction and is used extensively in smoking and smoking cessation therapies. However, little is known about its effects on the immune system. We confirmed that multiple nicotinic receptors are expressed on mouse and human cytotoxic T lymphocytes (CTLs) and demonstrated that nicotinic receptors on mouse CTLs are regulated during activation. Acute nicotine presence during activation increases primary CTL expansion in vitro, but impairs in vivo expansion after transfer and subsequent memory CTL differentiation, which reduces protection against subsequent pathogen challenges. Furthermore, nicotine abolishes the regulatory effect of rapamycin on memory CTL programming, which can be attributed to the fact that rapamycin enhances expression of nicotinic receptors. Interestingly, naïve CTLs from chronic nicotine-treated mice have normal memory programming, which is impaired by nicotine during activation in vitro. In conclusion, simultaneous exposure to nicotine and antigen during CTL activation negatively affects memory development.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Cell Proliferation/drug effects
- Cells, Cultured
- Female
- Flow Cytometry
- Gene Expression/drug effects
- Gene Expression/immunology
- Humans
- Immunologic Memory/drug effects
- Immunologic Memory/immunology
- Immunosuppressive Agents/immunology
- Immunosuppressive Agents/pharmacology
- Lymphocyte Activation/genetics
- Lymphocyte Activation/immunology
- Male
- Mice
- Mice, Congenic
- Mice, Inbred C57BL
- Mice, Transgenic
- Nicotine/immunology
- Nicotine/pharmacology
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/immunology
- Receptors, Nicotinic/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Sirolimus/immunology
- Sirolimus/pharmacology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Zhifeng Sun
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Kendra Smyth
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Karla Garcia
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Elliot Mattson
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
| | - Zhengguo Xiao
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
33
|
Kolgazi M, Uslu U, Yuksel M, Velioglu-Ogunc A, Ercan F, Alican I. The role of cholinergic anti-inflammatory pathway in acetic acid-induced colonic inflammation in the rat. Chem Biol Interact 2013; 205:72-80. [PMID: 23810507 DOI: 10.1016/j.cbi.2013.06.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/23/2013] [Accepted: 06/11/2013] [Indexed: 12/23/2022]
Abstract
The "cholinergic anti-inflammatory pathway" provides neurological modulation of cytokine synthesis to limit the magnitude of the immune response. This study aimed to evaluate the impact of the cholinergic anti-inflammatory pathway on the extent of tissue integrity, oxidant-antioxidant status and neutrophil infiltration to the inflamed organ in a rat model of acetic acid-induced colitis. Colitis was induced by intrarectal administration of 5% acetic acid (1ml) to Sprague-Dawley rats (200-250g; n=7-8 per group). Control group received an equal volume of saline intrarectally. The rats were treated with either nicotine (1mg/kg/day) or huperzine A (0.1mg/kg/day) intraperitoneally for 3 days. After decapitation, the distal colon was scored macroscopically and microscopically. Tissue samples were used for the measurement of malondialdehyde (MDA) and glutathione (GSH) levels, and myeloperoxidase (MPO) activity. Formation of reactive oxygen species was monitored by using chemiluminescence (CL). Nuclear factor (NF)-κB expression was evaluated in colonic samples via immunohistochemical analysis. Trunk blood was collected for the assessment of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-10, resistin and visfatin levels. Both nicotine and huperzine A reduced the extent of colonic lesions, increased colonic MDA level, high MPO activity and NF-κB expression in the colitis group. Elevation of serum IL-1β level due to colitis was also attenuated by both treatments. Additionally, huperzine A was effective to reverse colitis-induced high lucigenin-enhanced CL values and serum TNF-α levels. Colitis group revealed decreased serum visfatin levels compared to control group which was completely reversed by nicotine. In conclusion, modulation of the cholinergic system either by nicotine or ACh esterase inhibition improved acetic acid-induced colonic inflammation as confirmed by macroscopic and microscopic examination and biochemical assays.
Collapse
Affiliation(s)
- Meltem Kolgazi
- Marmara University School of Medicine, Department of Physiology, Istanbul, Turkey
| | | | | | | | | | | |
Collapse
|
34
|
The association of CD81 polymorphisms with alloimmunization in sickle cell disease. Clin Dev Immunol 2013; 2013:937846. [PMID: 23762099 PMCID: PMC3674646 DOI: 10.1155/2013/937846] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 04/17/2013] [Accepted: 04/18/2013] [Indexed: 01/19/2023]
Abstract
The goal of the present work was to identify the candidate genetic markers predictive of alloimmunization in sickle cell disease (SCD). Red blood cell (RBC) transfusion is indicated for acute treatment, prevention, and abrogation of some complications of SCD. A well-known consequence of multiple RBC transfusions is alloimmunization. Given that a subset of SCD patients develop multiple RBC allo-/autoantibodies, while others do not in a similar multiple transfusional setting, we investigated a possible genetic basis for alloimmunization. Biomarker(s) which predicts (predict) susceptibility to alloimmunization could identify patients at risk before the onset of a transfusion program and thus may have important implications for clinical management. In addition, such markers could shed light on the mechanism(s) underlying alloimmunization. We genotyped 27 single nucleotide polymorphisms (SNPs) in the CD81, CHRNA10, and ARHG genes in two groups of SCD patients. One group (35) of patients developed alloantibodies, and another (40) had no alloantibodies despite having received multiple transfusions. Two SNPs in the CD81 gene, that encodes molecule involved in the signal modulation of B lymphocytes, show a strong association with alloimmunization. If confirmed in prospective studies with larger cohorts, the two SNPs identified in this retrospective study could serve as predictive biomarkers for alloimmunization.
Collapse
|
35
|
Rivastigmine alleviates experimentally induced colitis in mice and rats by acting at central and peripheral sites to modulate immune responses. PLoS One 2013; 8:e57668. [PMID: 23469045 PMCID: PMC3585220 DOI: 10.1371/journal.pone.0057668] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/24/2013] [Indexed: 01/14/2023] Open
Abstract
The cholinergic anti-inflammatory system and α7 nicotinic receptors in macrophages have been proposed to play a role in neuroimmunomodulation and in the etiology of ulcerative colitis. We investigated the ability of a cholinesterase (ChE) inhibitor rivastigmine, to improve the pathology of ulcerative colitis by increasing the concentration of extracellular acetylcholine in the brain and periphery. In combination with carbachol (10 µM), rivastigmine (1 µM) significantly decreased the release of nitric oxide, TNF-α, IL-1β and IL-6 from lipopolysaccharide-activated RAW 264.7 macrophages and this effect was abolished by α7 nicotinic receptor blockade by bungarotoxin. Rivastigmine (1 mg/kg) but not (0.5 mg/kg), injected subcutaneously once daily in BALB/c mice with colitis induced by 4% dextran sodium sulphate (DSS), reduced the disease activity index (DAI) by 60% and damage to colon structure. Rivastigmine (1 mg/kg) also reduced myeloperoxidase activity and IL-6 by >60%, and the infiltration of CD11b expressing cells by 80%. These effects were accompanied by significantly greater ChE inhibition in cortex, brain stem, plasma and colon than that after 0.5 mg/kg. Co-administration of rivastigmine (1 mg/kg) with the muscarinic antagonist scopolamine significantly increased the number of CD11b expressing cells in the colon but did not change DAI compared to those treated with rivastigmine alone. Rivastigmine 1 and 2 mg given rectally to rats with colitis induced by rectal administration of 30 mg dintrobezene sulfonic acid (DNBS) also caused a dose related reduction in ChE activity in blood and colon, the number of ulcers and area of ulceration, levels of TNF-α and in MPO activity. The study revealed that the ChE inhibitor rivastigmine is able to reduce gastro-intestinal inflammation by actions at various sites at which it preserves ACh. These include ACh released from vagal nerve endings that activates alpha7 nicotinic receptors on circulating macrophages and in brainstem neurons.
Collapse
|
36
|
Antonelli T, Tomasini MC, Castellazzi M, Sola P, Tamborino C, Ferraro D, Ferraro L, Granieri E. Biological markers in cerebrospinal fluid for axonal impairment in multiple sclerosis: acetylcholinesterase activity cannot be considered a useful biomarker. Neurol Sci 2012; 34:769-71. [PMID: 23247598 DOI: 10.1007/s10072-012-1265-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/04/2012] [Indexed: 11/24/2022]
Abstract
An impairment of the cholinergic system activity has been demonstrated in multiple sclerosis (MS). The correlation between the cholinergic system and the cognitive dysfunction in MS has led to studies on the use of acetylcholinesterase inhibitors (AChEI). The acetylcholinesterase (AChE), essential enzyme for the regulation of turnover of acetylcholine, can be considered the most important biochemical indicator of cholinergic signaling in the nervous system. Besides its catalytic properties, AChE has a crucial role in the regulation of the immune function. Based on the role of the AChe in the regulation of cholinergic signaling in the nervous system, the aim of the present study is to evaluate the activity of AChE in different pathological conditions: MS, other inflammatory neurological disorders (OIND) and non-inflammatory neurological disorders (NIND). We measured AChE activity in CSF samples obtained from 34 relapsing-remitting MS patients and, as controls, 40 patients with other inflammatory neurological disorders (OIND) and 40 subjects with other non-inflammatory neurological disorders (NIND). Fluorimetric detection of the AChE in MS patients and in the controls showed no statistically significant differences: 1.507 ± 0.403 nmol/ml/min in MS patients, 1.484 ± 0.496 nmol/ml/min in OIND and 1.305 ± 0.504 nmol/ml/min in NIND. Similar results were obtained in another recent study, using a different method. Further studies must be conducted on a larger number of patients, with different degrees of cognitive impairment. However, AChE measured in CSF can probably not be considered a useful biomarker for the assessment of the functional alterations of cholinergic system in pathological conditions.
Collapse
Affiliation(s)
- T Antonelli
- Section of Pharmacology, Department of Clinical and Experimental Medicine, Ferrara University, Via Fossato di Mortara 17, 44100 Ferrara, Italy
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Anwar J, Spanevello RM, Thomé G, Stefanello N, Schmatz R, Gutierres J, Vieira J, Baldissarelli J, Carvalho FB, da Rosa MM, Rubin MA, Fiorenza A, Morsch VM, Schetinger MRC. Effects of caffeic acid on behavioral parameters and on the activity of acetylcholinesterase in different tissues from adult rats. Pharmacol Biochem Behav 2012; 103:386-94. [DOI: 10.1016/j.pbb.2012.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 08/10/2012] [Accepted: 09/08/2012] [Indexed: 01/04/2023]
|
38
|
Wessler I, Michel-Schmidt R, Dohle E, Kirkpatrick CJ. Release of acetylcholine from murine embryonic stem cells: Effect of nicotinic and muscarinic receptors and blockade of organic cation transporter. Life Sci 2012; 91:973-6. [DOI: 10.1016/j.lfs.2012.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 03/09/2012] [Accepted: 04/13/2012] [Indexed: 11/26/2022]
|
39
|
Ofek K, Soreq H. Cholinergic involvement and manipulation approaches in multiple system disorders. Chem Biol Interact 2012; 203:113-9. [PMID: 22898318 DOI: 10.1016/j.cbi.2012.07.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/19/2012] [Accepted: 07/25/2012] [Indexed: 11/29/2022]
Abstract
Within the autonomic system, acetylcholine signaling contributes simultaneously and interactively to cognitive, behavioral, muscle and immune functions. Therefore, manipulating cholinergic parameters such as the activities of the acetylcholine hydrolyzing enzymes in body fluids or the corresponding transcript levels in blood leukocytes can change the global status of the autonomic system in treated individuals. Specifically, cholinesterase activities are subject to rapid and effective changes. The enzyme activity baseline increases with age and body mass index and depends on gender and ethnic origin. Also, the corresponding DNA (for detecting mutations) and RNA (for measuring specific mRNA transcripts) of cholinergic genes present individual variability. In leukocytes, acetylcholine inhibits the production of pro-inflammatory cytokines, suggesting relevance of cholinergic parameters to both the basal levels and to disease-induced inflammation. Inversely, acetylcholine levels increase under various stress stimuli, inducing changes in autonomic system molecules (e.g., pro-inflammatory cytokines) which can penetrate the brain; therefore, manipulating these levels can also effect brain reactions, mainly of anxiety, depression and pain. Additionally, neurodegenerative diseases often involve exacerbated inflammation, depression and anxiety, providing a focus interest group for cholinergic manipulations. In Alzheimer's disease, the systemic cholinergic impairments reflect premature death of cholinergic neurons. The decline of cholinesterases in the serum of Parkinson's disease and post- stroke patients, discovery of the relevant microRNAs and the growing range of use of anticholinesterase medications all call for critical re-inspection of established and novel approaches for manipulating cholinergic parameters.
Collapse
Affiliation(s)
- K Ofek
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | |
Collapse
|
40
|
Profita M, Riccobono L, Montalbano AM, Bonanno A, Ferraro M, Albano GD, Gerbino S, Casarosa P, Pieper MP, Gjomarkaj M. In vitro anticholinergic drugs affect CD8+ peripheral blood T-cells apoptosis in COPD. Immunobiology 2012; 217:345-53. [PMID: 21855166 DOI: 10.1016/j.imbio.2011.07.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 12/01/2022]
Abstract
Novel pharmacological strategies are aimed at the resolution of systemic inflammation in COPD potentiating peripheral blood T-cell (PBT-cell) apoptosis. Although muscarinic acetylcholine receptors (mAChRs) M(3) and choline-acetyltransferase (ChAT) participate in the airway inflammation of COPD, their role in PBT-cell apoptosis remains unexplained. We evaluated in PBT-cells from COPD patients, smoker (S) and control (C) subjects: (1) apoptosis (by annexin V binding), (2) mAChR M(3) and ChAT expression, acetylcholine (ACh)-binding; (3) choline levels in serum and PBT-cells extracts. We tested the effects of Tiotropium (Spiriva(®)) and hemicholinium-3 (HCh-3) on apoptosis, NFκB pathway, caspases 3 and 8 activity and choline levels, in PBT-cells from COPD patients. We showed that: (1) apoptosis, mAChR M(3) and ChAT expression and the CD3+ and CD8+ ACh-binding are increased in PBT-cells from COPD patients when compared to C subjects, while CD4+/CD8+ ratio of ACh-binding to PBT cells was reduced in COPD; (2) choline levels are higher in serum and PBT-cells extracts from COPD patients than in S and C; (3) Tiotropium and HCh-3 reduced CD4+ and increased CD8+ apoptosis via caspases 3 and 8 activities and via IκB mediated mechanisms in COPD patients. This study suggests the involvement of non-neuronal components of cholinergic system in the regulation of PBT-cell apoptosis in COPD and demonstrates that Tiotropium regulates CD4+ and CD8+ PBT-cell apoptosis. It provides novel putative pharmacological targets for the resolution of systemic inflammation in COPD.
Collapse
Affiliation(s)
- Mirella Profita
- Institute of Biomedicine and Molecular Immunology A. Monroy (IBIM), Italian National Research Council (CNR), Palermo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The biological role of acetylcholine and the cholinergic system is revisited based particularly on scientific research early and late in the last century. On the one hand, acetylcholine represents the classical neurotransmitter, whereas on the other hand, acetylcholine and the pivotal components of the cholinergic system (high-affinity choline uptake, choline acetyltransferase and its end product acetylcholine, muscarinic and nicotinic receptors and esterase) are expressed by more or less all mammalian cells, i.e. by the majority of cells not innervated by neurons at all. Moreover, it has been demonstrated that acetylcholine and "cholinergic receptors" are expressed in non-neuronal organisms such as plants and protists. Acetylcholine is even synthesized by bacteria and algae representing an extremely old signalling molecule on the evolutionary timescale. The following article summarizes examples, in which non-neuronal acetylcholine is released from primitive organisms as well as from mammalian non-neuronal cells and binds to muscarinic receptors to modulate/regulate phenotypic cell functions via auto-/paracrine pathways. The examples demonstrate that non-neuronal acetylcholine and the non-neuronal cholinergic system are vital for various types of cells such as epithelial, endothelial and immune cells.
Collapse
Affiliation(s)
- Ignaz Karl Wessler
- Institut für Pathologie, Universitätsmedizin Mainz, Johannes-Gutenberg Universität Mainz, Germany.
| | | |
Collapse
|
42
|
Modulation of inflammatory pathways by the immune cholinergic system. Amino Acids 2011; 45:73-85. [PMID: 22194043 DOI: 10.1007/s00726-011-1192-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 11/30/2011] [Indexed: 01/13/2023]
Abstract
Research done in the past years pointed to a novel function of cholinergic transmission. It has been shown that cholinergic transmission can modulate various aspects of the immune function, whether innate or adaptive. Cholinergic transmission affects immune cell proliferation, cytokine production, T helper differentiation and antigen presentation. Theses effects are mediated by cholinergic muscarinic and nicotinic receptors and other cholinergic components present in immune cells, such as acetylcholinesterase (AChE) and cholineacetyltransferase. The α7 nicotinic acetylcholine receptor was designated anti-inflammatory activity and has shown promise in pre-clinical models of inflammatory disorders. We herein describe the various components of the immune cholinergic system, and specifically the immune suppressive effects of α7 activation. This activation can be accomplished either by direct stimulation or indirectly, by inhibition of AChE. Thus, the presence of the immune cholinergic system can pave the way for novel immunomodulatory agents, or to the broadening of use of known cholinergic agents.
Collapse
|
43
|
Maeda S, Jun JG, Kuwahara-Otani S, Tanaka K, Hayakawa T, Seki M. Non-neuronal expression of choline acetyltransferase in the rat kidney. Life Sci 2011; 89:408-14. [PMID: 21798270 DOI: 10.1016/j.lfs.2011.07.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 06/27/2011] [Accepted: 07/09/2011] [Indexed: 01/11/2023]
Abstract
AIMS Acetylcholine (ACh) has been shown to increase ion and water excretion in the kidneys, resulting in hypotension. However, no evidence of renal parasympathetic innervation has been shown, and the source of ACh acting on nephrons is still unknown. The aim of the present study was to identify ACh-producing cells in the rat kidney, by examining the expression of cholinergic agents and localization of an ACh-synthesizing enzyme, choline acetyltransferase (ChAT), in the kidney. MAIN METHODS Adult mail Sprague-Dawley rats were used in this study. Expression of mRNA of cholinergic agents, ChAT, vesicular ACh transporter (VAChT), and high-affinity choline transporter (CHT-1), in the kidney was examined by RT-PCR. Localization of ChAT mRNA and protein was examined by in situ hybridization and tyramide-enhanced immunohistochemistry, respectively. KEY FINDINGS RT-PCR showed the expression of ChAT, VAChT, and CHT-1. In situ hybridization demonstrated that ChAT mRNA is localized to the renal cortical collecting ducts (CCD). Immunohistochemistry showed that the ChAT-positive cells were principal cells, and that they were unevenly distributed in the tubules, and constituted approximately 15.2% of CCD in the cortex, and 3.6% and 1.5% in the outer and inner medulla, respectively. ChAT-positive immunoreactivity was localized to the apical side of principal cells, suggesting that ACh synthesis may occur in the apical compartment of these cells. SIGNIFICANCE These results suggest that the cholinergic effects in the nephron may be mediated at least in part by ACh originating from CCD principal cells and its expression may be locally regulated in the rat kidney.
Collapse
Affiliation(s)
- Seishi Maeda
- Department of Anatomy and Cell Biology, Hyogo College of Medicine, 1-1 Mukogawa, Nishinomiya, Hyogo 663-8501, Japan.
| | | | | | | | | | | |
Collapse
|
44
|
Tian Y, Gunther JR, Liao IH, Liu D, Ander BP, Stamova BS, Lit L, Jickling GC, Xu H, Zhan X, Sharp FR. GABA- and acetylcholine-related gene expression in blood correlate with tic severity and microarray evidence for alternative splicing in Tourette syndrome: a pilot study. Brain Res 2011; 1381:228-36. [PMID: 21241679 DOI: 10.1016/j.brainres.2011.01.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 12/08/2010] [Accepted: 01/10/2011] [Indexed: 10/18/2022]
Abstract
Tourette syndrome (TS) is a complex childhood neurodevelopmental disorder characterized by motor and vocal tics. Recently, altered numbers of GABAergic-parvalbumin (PV) and cholinergic interneurons were observed in the basal ganglia of individuals with TS. Thus, we postulated that gamma-amino butyric acid (GABA)- and acetylcholine (ACh)-related genes might be associated with the pathophysiology of TS. Total RNA isolated from whole blood of 26 un-medicated TS subjects and 23 healthy controls (HC) was processed on Affymetrix Human Exon 1.0 ST arrays. Data were analyzed to identify genes whose expression correlated with tic severity in TS, and to identify genes differentially spliced in TS compared to HC subjects. Many genes (3627) correlated with tic severity in TS (p < 0.05) among which GABA- (p = 2.1 × 10⁻³) and ACh- (p = 4.25 × 10⁻⁸) related genes were significantly over-represented. Moreover, several GABA and ACh-related genes were predicted to be alternatively spliced in TS compared to HC including GABA receptors GABRA4 and GABRG1, the nicotinic ACh receptor CHRNA4 and cholinergic differentiation factor (CDF). This pilot study suggests that at least some of these GABA- and ACh-related genes observed in blood that correlate with tics or are alternatively spliced are involved in the pathophysiology of TS and tics.
Collapse
Affiliation(s)
- Yingfang Tian
- University of California at Davis, M.I.N.D., Institute and Department of Neurology, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Charoenying T, Suriyo T, Thiantanawat A, Chaiyaroj SC, Parkpian P, Satayavivad J. Effects of paraoxon on neuronal and lymphocytic cholinergic systems. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2011; 31:119-128. [PMID: 21787676 DOI: 10.1016/j.etap.2010.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 09/05/2010] [Accepted: 09/21/2010] [Indexed: 05/31/2023]
Abstract
The cholinergic system in lymphocytes is hypothesized to be a key target for neurotoxic organophosphates (OPs). The present study determined the comparative effects of paraoxon, the active metabolite of OP-parathion, which is detected in the human neuroblastoma line, SH-SY5Y, and leukemic T-lymphocytes, MOLT-3, in vitro. Paraoxon induced cytotoxic effects in a dose- and time-dependent manner in both cells. Further, the paraoxon-induced modulatory effects were comparable despite different cell types, including over-expression of N-terminus acetylcholinesterase (N-AChE) protein, a marker of apoptosis, down-regulations of mRNA encoding M1, M2, and M3 muscarinic acetylcholine receptors (mAChRs), and induction in expression of c-Fos gene, an indication of certain mAChR subtype(s) activation. Furthermore, the non-selective cholinergic antagonist atropine partially attenuated the paraoxon-induced N-AChE and c-Fos activations in both types of cells. These results provide initial and additional information that OPs may similarly induce neuro- and immuno-toxic effects through mAChRs activation, and they underline the potential of using lymphocytes for assessing OPs-induced neurotoxicity.
Collapse
Affiliation(s)
- Tanvisith Charoenying
- Inter-University Program in Environmental Toxicology, Technology, and Management, Asian Institute of Technology, Mahidol University, and Chulabhorn Research Institute, Bangkok 10210, Thailand
| | | | | | | | | | | |
Collapse
|
46
|
In vitro and in vivo interactions of aluminum on NTPDase and AChE activities in lymphocytes of rats. Cell Immunol 2010; 265:133-8. [PMID: 20832780 DOI: 10.1016/j.cellimm.2010.08.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 08/06/2010] [Accepted: 08/09/2010] [Indexed: 12/20/2022]
Abstract
Al adjuvants are used in vaccines to increase the immune response. NTPDase and AChE play a pivotal role and act in the regulation of the immune system. The effect of Al exposure in vitro and in vivo on NTPDase and AChE activities in the lymphocytes of rats was determined. In vitro, ATP hydrolysis was decreased by 20.4% and 17.3% and ADP hydrolysis was decreased by 36.5% and 34.8%, in groups D and E, respectively, when compared to the control. AChE activity was increased by 157.3%, 152.5%, 74.7% and 90.8% in groups B, C, D, and E, respectively, when compared to the control. In vivo, ATP hydrolysis was increased by 85% and 86% and ADP hydrolysis was increased by 104.2% and 74%, in Al plus citrate and Al groups, respectively, when compared to the control. AChE activity was increased by 50.7% in Al plus citrate and by 28.6% in Al groups, when compared to the control. Our results show that Al exposure both in vitro and in vivo altered NTPDase and AChE activities in lymphocytes. These results may demonstrate the ability of Al to elicit the immune system, where NTPDase and AChE activities can act as purinergic and cholinergic markers in lymphocytes.
Collapse
|
47
|
Hwang J, Hwang H, Lee HW, Suk K. Microglia signaling as a target of donepezil. Neuropharmacology 2010; 58:1122-9. [PMID: 20153342 DOI: 10.1016/j.neuropharm.2010.02.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 01/02/2023]
Abstract
Donepezil is a reversible and noncompetitive cholinesterase inhibitor. The drug is considered as a first-line treatment in patients with mild to moderate Alzheimer's disease. Recently, anti-inflammatory and neuroprotective effects of the drug have been reported. "Cholinergic anti-inflammation pathway" has major implications in these effects. Here, we present evidence that donepezil at 5-20 microM directly acts on microglial cells to inhibit their inflammatory activation. Our conclusion is based on the measurement of nitric oxide and proinflammatory mediators using purified microglia cultures and microglia cell lines: donepezil attenuated microglial production of nitric oxide and tumor necrosis factor (TNF)-alpha, and suppressed the gene expression of inducible nitric oxide synthase, interleukin-1 beta, and TNF-alpha. Subsequent studies showed that donepezil inhibited a canonical inflammatory NF-kappaB signaling. Microglia/neuroblastoma coculture and animal experiments supported the anti-inflammatory effects of donepezil. Based on the studies using nicotinic acetylcholine receptor antagonists, the donepezil inhibition of microglial activation was independent of acetylcholine and its receptor. Thus, inflammatory activation signaling of microglia may be one of the direct targets of donepezil in the central nervous system. It should be noted, however, that there is a large gap between the therapeutic dose of the drug used clinically and the concentration of the drug that exerts the direct action on microglial cells.
Collapse
Affiliation(s)
- Jaegyu Hwang
- Department of Pharmacology, Brain Science and Engineering Institute, CMRI, Kyungpook National University School of Medicine, 101 Dong-In, Joong-gu, Daegu 700-422, Republic of Korea
| | | | | | | |
Collapse
|
48
|
Nizri E, Irony-Tur-Sinai M, Lory O, Orr-Urtreger A, Lavi E, Brenner T. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:6681-8. [PMID: 19846875 DOI: 10.4049/jimmunol.0902212] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The alpha7 nicotinic acetylcholine receptor (nAChR) was recently described as an anti-inflammatory target in both macrophages and T cells. Its expression by immune cells may explain the epidemiological data claiming a negative link between cigarette smoking and several inflammatory diseases. In this study, we determined the immunological effects of alpha7 nAChR activation by nicotine. Our results indicate that the alpha7 nAChR is expressed on the surface of CD4(+) T cells and that this expression is up-regulated upon immune activation. Nicotine reduced T cell proliferation in response to an encephalitogenic Ag, as well as the production of Th1 (TNF-alpha and IFN-gamma) and Th17 cytokines (IL-17, IL-17F, IL-21, and IL-22). IL-4 production was increased in the same setting. Attenuation of the Th1 and Th17 lineages was accompanied by reduced T-bet (50%) and increased GATA-3 (350%) expression. Overall, nicotine induced a shift to the Th2 lineage. However, alpha7(-/-)-derived T cells were unaffected by nicotine. Furthermore, nicotine reduced NF-kappaB-mediated transcription as measured by IL-2 and IkappaB transcription. In vivo, administration of nicotine (2 mg/kg s.c.) suppressed the severity of CD4(+) T cell-mediated disease experimental autoimmune encephalomyelitis. alpha7(-/-) mice were refractory to nicotine treatment, although disease severity in those animals was reduced, due to impairment in Ag presentation. Accordingly, CD4(+) and CD11b(+) cells infiltration into the CNS, demyelination, and axonal loss were reduced. Our data implicate a role for the alpha7 nAChR in immune modulation and suggest that alpha7 nAChR agonists may be effective in the treatment of inflammatory disorders.
Collapse
MESH Headings
- Animals
- Antigen-Presenting Cells/drug effects
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- CD4-Positive T-Lymphocytes/drug effects
- CD4-Positive T-Lymphocytes/immunology
- Cell Proliferation/drug effects
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Female
- GATA3 Transcription Factor/agonists
- GATA3 Transcription Factor/immunology
- GATA3 Transcription Factor/metabolism
- Glycoproteins/immunology
- Interferon-gamma/antagonists & inhibitors
- Interferon-gamma/immunology
- Interferon-gamma/metabolism
- Interleukin-17/antagonists & inhibitors
- Interleukin-17/immunology
- Interleukin-4/agonists
- Interleukin-4/immunology
- Interleukin-4/metabolism
- Interleukins/antagonists & inhibitors
- Interleukins/immunology
- Interleukins/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Myelin-Oligodendrocyte Glycoprotein
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/immunology
- NF-kappa B/metabolism
- Nicotine/pharmacology
- Peptide Fragments/immunology
- RNA, Messenger/drug effects
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Receptors, Nicotinic/drug effects
- Receptors, Nicotinic/genetics
- Receptors, Nicotinic/immunology
- Spinal Cord/drug effects
- Spinal Cord/immunology
- Spinal Cord/pathology
- T-Box Domain Proteins/antagonists & inhibitors
- T-Box Domain Proteins/immunology
- T-Box Domain Proteins/metabolism
- Th1 Cells/drug effects
- Th1 Cells/immunology
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/immunology
- Tumor Necrosis Factor-alpha/metabolism
- alpha7 Nicotinic Acetylcholine Receptor
- Interleukin-22
Collapse
Affiliation(s)
- Eran Nizri
- Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
49
|
Abstract
Myasthenia gravis (MG) is an autoimmune disorder usually caused by antibodies against either the acetylcholine receptor (AChR) or muscle-specific tyrosine kinase (MuSK) at the neuromuscular junction. Neuromuscular transmission failure results in muscle fatigue and weakness that can be treated symptomatically with acetylcholinesterase inhibitors (AChEIs). Long-term treatment with nonselective AChEIs may have considerable drawbacks; thus, this medication is ideally tapered when strength improves. Patients with AChR antibodies respond beneficially to treatment, whereas patients with MuSK antibodies generally do not. Recently, the selective AChEI EN101, which specifically targets the isoform of "read-through" AChE (AChE-R), has been developed and may be of importance for symptomatic relief in AChR-antibody seropositive MG. This article is a review of the mechanisms, therapeutic effects, and drawbacks, with both old and new AChEIs in MG.
Collapse
Affiliation(s)
- Anna Rostedt Punga
- Department of Clinical Neurophysiology, Uppsala University Hospital, 75185 Uppsala, Sweden.
| | | |
Collapse
|
50
|
Tyagi E, Agrawal R, Nath C, Shukla R. Inhibitory role of cholinergic system mediated via α7 nicotinic acetylcholine receptor in LPS-induced neuro-inflammation. Innate Immun 2009; 16:3-13. [DOI: 10.1177/1753425909104680] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study investigated the influence of the cholinergic system on neuro-inflammation using nicotinic and muscarinic receptor agonists and antagonists. Intracerebroventricular (ICV) injection of lipopolysaccharide (LPS, 50 µg) was used to induce neuro-inflammation in rats and estimations of pro-inflammatory cytokines, α7 nicotinic acetylcholine receptor (nAChR) mRNA expression were done in striatum, cerebral cortex, hippocampus and hypothalamus at 24 h after LPS injection. Nicotine (0.2, 0.4 and 0.8 mg/kg, i.p.) or oxotremorine (0.2, 0.4 and 0.8 mg/kg, i.p.) were administered 2 h prior to sacrifice. We found that only nicotine was able to block the proinflammatory cytokines induced by LPS whereas, oxotremorine was found ineffective. Methyllycaconitine (MLA; 1.25, 2.5 and 5 mg/kg, i.p.), an α7 nAChR antagonist or dihydro-β-erythroidine (DHβE; 1.25, 2.5 and 5 mg/kg, i.p.), an α4β2 nAChR antagonist, was given 20 min prior to nicotine in LPS-treated rats. Methyllycaconitine antagonized the anti-inflammatory effect of nicotine whereas DHβE showed no effect demonstrating that α7 nAChR is responsible for attenuation of LPS-induced pro-inflammatory cytokines. This study suggests that the inhibitory role of the central cholinergic system on neuro-inflammation is mediated via α7 nicotinic acetylcholine receptor and muscarinic receptors are not involved.
Collapse
Affiliation(s)
- Ethika Tyagi
- Division of Pharmacology, Central Drug Research Institute, Lucknow, India
| | - Rahul Agrawal
- Division of Pharmacology, Central Drug Research Institute, Lucknow, India
| | - Chandishwar Nath
- Division of Pharmacology, Central Drug Research Institute, Lucknow, India
| | - Rakesh Shukla
- Division of Pharmacology, Central Drug Research Institute, Lucknow, India,
| |
Collapse
|