1
|
Aloke C, Onisuru OO, Achilonu I. Glutathione S-transferase: A versatile and dynamic enzyme. Biochem Biophys Res Commun 2024; 734:150774. [PMID: 39366175 DOI: 10.1016/j.bbrc.2024.150774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/19/2024] [Accepted: 09/30/2024] [Indexed: 10/06/2024]
Abstract
The dynamic and versatile group of enzymes referred to as glutathione S-transferases (GSTs) play diverse roles in cellular detoxification, safeguarding hosts from oxidative damage, and performing various other functions. This review explores different classes of GST, existence of polymorphisms in GST, functions of GST and utilizations of GST inhibitors in treatment of human diseases. The study indicates that the cytosolic GSTs, mitochondrial GSTs, microsomal GSTs, and bacterial proteins that provide resistance to Fosfomycin are the major classes. Given a GST, variation in its expression and function among individuals is due to the presence of polymorphic alleles that encode it. Genetic polymorphism might result in the modification of GST activity, thereby increasing individuals' vulnerability to harmful chemical compounds. GSTs have been demonstrated to play a regulatory function in cellular signalling pathways through kinases, S-Glutathionylation, and in detoxification processes. Various applications of bacterial GSTs and their potential roles in plants were examined. Targeting GSTs, especially GSTP1-1, is considered a potential therapeutic strategy for treating cancer and diseases linked to abnormal cell proliferation. Their role in cancer cell growth, differentiation, and resistance to anticancer agents makes them promising targets for drug development, offering prospects for the future.
Collapse
Affiliation(s)
- Chinyere Aloke
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa; Department of Medical Biochemistry, Alex Ekwueme Federal University Ndufu-Alike, Ebonyi State, Nigeria.
| | - Olalekan Olugbenga Onisuru
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function and Research Unit, School of Molecular and Cell Biology, Faculty of Science, University of the Witwatersrand, Braamfontein, Johannesburg, 2050, South Africa
| |
Collapse
|
2
|
Zhang T, Zhang S, Zhang C, Liu H, Liu M, Zhang GH, Duan G, Chen S, Ren J. The moderation effect of GSTM1/GSTT1 gene polymorphisms on the association of sperm mitochondrial DNA copy number and sperm mobility. Sci Rep 2024; 14:24790. [PMID: 39433861 PMCID: PMC11493958 DOI: 10.1038/s41598-024-74968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024] Open
Abstract
Oxidative stress (OS) is believed to be a significant factor in the decline of semen quality, with mitochondrial DNA copy number (mtDNAcn) serving as a sensitive biomarker for both semen quality and mitochondrial dysfunction resulting from oxidative stress. While glutathione S-transferases (GSTs) are commonly known as 'antioxidant' enzymes, there is ongoing debate regarding the relationship between GST genotypes and semen quality. In a study involving 568 male volunteers from the outpatient department of Puyang Reproductive Medicine Center, sperm mtDNAcn, semen quality, and GSTM1/GSTT1 genotypes were analyzed to investigate the potential link between GSTM1/GSTT1 gene variations and semen quality, as well as the impact of GSTs gene variations on the connection between sperm mtDNAcn and semen quality. Adjusting for variables such as age, BMI, smoking, and alcohol consumption, it was found that mtDNAcn was significantly correlated with decreased sperm concentration and total sperm count (b = - 0.109, - 0.128, respectively; P = 0.002, 0.001, respectively). GSTM1 was associated with progressive motility (OR 0.390, 95% CI 0.218, 0.697), Straight line velocity (VSL) (OR = 0.606, 95% CI 0.385, 0.953), and Straightness (STR) (OR 0.604, 95% CI 0.367, 0.994), while GSTT1 was linked to progressive motility (OR 0.554, 95% CI 0.324, 0.944) and Beat crossover frequency (OR 0.624, 95% CI 0.397, 0.982). The GSTT1 was found to moderate the relationship between mtDNAcn and sperm motility parameters linearity (LIN), STR, and Wobble (WOB), with additive interaction effects observed between GSTT1 and mtDNAcn on LIN, STR, and WOB (P for interaction = 0.008, 0.034, 0.010, respectively). Overall, this study suggests that GSTT1 and GSTM1 gene variations may play a role in sperm motility, with GSTT1 potentially influencing the impact of oxidative stress on sperm motility.
Collapse
Affiliation(s)
- Tingting Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shengnan Zhang
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chen Zhang
- Institute of Reproduction and Development, Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, 200032, China
| | - Huan Liu
- Henan International Collaborative Laboratory for Health Effects and Intervention of Air Pollution, School of Public Health, Xinxiang Medical University, Xinxiang, 453003, China
| | - Mingming Liu
- Department of Cardiology, PLA Northern Theater Command General Hospital, Shenyang, 110000, China
| | - Guang-Hui Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, 400038, China
| | - Guangcai Duan
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Shuaiyin Chen
- School of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingchao Ren
- School of Public Health, Chongqing Medical University, Chongqing, 400038, China.
| |
Collapse
|
3
|
Lee J, Do SD, Rhee JS. Acute and multigenerational effects of short-chain chlorinated paraffins on the harpacticoid copepod Tigriopus japonicus. Comp Biochem Physiol C Toxicol Pharmacol 2024; 287:110055. [PMID: 39437872 DOI: 10.1016/j.cbpc.2024.110055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/05/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Although the measurement of short-chain chlorinated paraffins (SCCPs) in aquatic ecosystems has increased, limited information is available on their toxic effects on aquatic animals. To evaluate the harmful effects of SCCPs, we assessed their acute impact on 24-h survival and biochemical parameters, as well as their chronic effects on growth and reproduction over three generations in the harpacticoid copepod Tigriopus japonicus. Dose-dependent increases in mortality were observed, with an LC50 value of 74.6 μg L-1 for 24 h. Acute exposure to the LC10 value for 24 h significantly reduced feeding behavior, accompanied by a notable decrease in acetylcholinesterase enzymatic activity. Simultaneously, the intracellular levels of reactive oxygen species increased, along with elevated malondialdehyde contents. Glutathione level was increased by the LC10 value of SCCPs with the induction of enzymatic activities of antioxidant defense components, including glutathione S-transferase, catalase, superoxide dismutase, glutathione peroxidase, and glutathione reductase. When T. japonicus was continuously exposed to 1/10 of the NOEC and NOEC values for 12 days across three generations (F0-F2), growth retardation was observed in the F2 generation, with delay in the developmental periods from nauplius to adult. Although the total number of nauplii per brood was not significantly altered across generations, a significant delay in the onset of reproduction was observed in the F2 generation. Our findings suggest that even sublethal concentrations of SCCPs can negatively affect the health of copepod populations with consistent exposure.
Collapse
Affiliation(s)
- Jihyun Lee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Seong Duk Do
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea
| | - Jae-Sung Rhee
- Department of Marine Science, College of Natural Sciences, Incheon National University, Incheon 22012, Republic of Korea; Research Institute of Basic Sciences, Core Research Institute, Incheon National University, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon 22012, Republic of Korea.
| |
Collapse
|
4
|
Cunha M, Petrillo V, Madeira M, He Y, Coppola F, Meucci V, De Marchi L, Soares AMVM, Freitas R. The influence of temperature on the impacts of caffeine in mussels: Evaluating subcellular impacts and model predictions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173453. [PMID: 38802017 DOI: 10.1016/j.scitotenv.2024.173453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/23/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
In aquatic ecosystems, the presence of pharmaceuticals, particularly caffeine (CAF), has been linked to wastewater discharge, hospital waste, and the disposal of expired pharmaceutical products containing CAF. Additionally, rising temperatures due to climate change are anticipated in aquatic environments. This study aimed to assess the toxicity of various CAF concentrations under current (17 °C) and projected (21 °C) temperature conditions, using the mussel Mytilus galloprovincialis as a bioindicator species. Subcellular impacts were evaluated following 28 days of exposure to four CAF concentrations (0.5; 1.0; 5.0; 10.0 μg/L) at the control temperature (17 °C). Only effects at an environmentally relevant CAF concentration (5.0 μg/L) were assessed at the highest temperature (21 °C). The overall biochemical response of mussels was evaluated using non-metric Multidimensional Scaling (MDS) and the Integrated Biomarker Response (IBR) index, while the Independent Action (IA) model was used to compare observed and predicted responses. Results showed that at 17 °C, increased CAF concentrations were associated with higher metabolism and biotransformation capacity, accompanied by cellular damage at the highest concentration. Conversely, under warming conditions (21 °C), the induction of antioxidant enzymes was observed, although insufficient to prevent cellular damage compared to the control temperature. Regarding neurotoxicity, at 17 °C, the activity of the acetylcholinesterase enzyme was inhibited up to 5.0 μg/L; however, at 10.0 μg/L, activity increased, possibly due to CAF competition for adenosine receptors. The IA model identified a synergistic response for most parameters when CAF and warming acted together, aligning with observed results, albeit with slightly lower magnitudes.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vincenzo Petrillo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Madalena Madeira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, PR China; Sino-portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816 Jiangsu Province, China
| | - Francesca Coppola
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
5
|
Semprasert N, Maneethorn P, Kooptiwut S. The protective effect of imatinib against pancreatic β-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress. Sci Rep 2024; 14:17691. [PMID: 39085384 PMCID: PMC11291718 DOI: 10.1038/s41598-024-68429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Glucocorticoids (GCs) are known to stimulate pancreatic beta (β)-cell apoptosis via several mechanisms, including oxidative stress. Our previous study suggested an increase in dexamethasone-induced pancreatic β-cell apoptosis via a reduction of glutathione S-transferase P1 (GSTP1), which is an antioxidant enzyme. Imatinib, which is a tyrosine kinase inhibitor, also exerts antioxidant effect. This study aims to test our hypothesis that imatinib would prevent pancreatic β-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress. Our results revealed that dexamethasone significantly increased apoptosis in INS-1 cells when compared to the control, and that imatinib significantly decreased INS-1 cell apoptosis induced by dexamethasone. Moreover, dexamethasone significantly increased superoxide production in INS-1 cells when compared to the control; however, imatinib, when combined with dexamethasone, significantly reduced superoxide production in INS-1 cells. Dexamethasone significantly decreased GSTP1, p-ERK1/2, and BCL2 protein expression, but significantly increased p-JNK, p-p38, and BAX protein expression in INS-1 cells-all compared to control. Importantly, imatinib significantly ameliorated the effect of dexamethasone on the expression of GSTP1, p-ERK1/2, p-JNK, p-p38 MAPK, BAX, and BCL2. Furthermore-6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX), which is a GSTP1 inhibitor, neutralized the protective effect of imatinib against pancreatic β-cell apoptosis induced by dexamethasone. In conclusion, imatinib decreases pancreatic β-cell apoptosis induced by dexamethasone via increased GSTP1 expression and reduced oxidative stress.
Collapse
Affiliation(s)
- Namoiy Semprasert
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Petcharee Maneethorn
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Suwattanee Kooptiwut
- Department of Physiology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
6
|
Huljev Frkovic S, Jelusic M, Crkvenac Gornik K, Rogic D, Frkovic M. Glutathione S-Transferase Gene Polymorphisms as Predictors of Methotrexate Efficacy in Juvenile Idiopathic Arthritis. Biomedicines 2024; 12:1642. [PMID: 39200106 PMCID: PMC11351239 DOI: 10.3390/biomedicines12081642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024] Open
Abstract
Because of the unpredictable efficacy of methotrexate (MTX) in the treatment of juvenile idiopathic arthritis (JIA), the possibility of a favourable outcome is reduced in more than 30% of patients. To investigate the possible influence of glutathione S-transferase M1 (GSTM1) and T1 (GSTT1) gene deletion polymorphisms on MTX efficacy in patients with JIA, we determined these polymorphisms in 63 patients with JIA who did not achieve remission and 46 patients with JIA who achieved remission during MTX therapy. No significant differences were observed in the distribution of single GSTM1 or GSTT1 deletion polymorphisms or their combination between the two groups: 58.7% to 63.5%; p = 0.567, 17.4% to 22.2%; p = 0.502, and 13% to 12.7%; p = 0.966, respectively. Our results suggest that GSTM1 and GSTT1 deletion polymorphisms do not influence the efficacy of MTX in patients with JIA. Additional studies are required to determine the possible influence of GST deletion polymorphisms on MTX efficacy in patients with JIA.
Collapse
Affiliation(s)
- Sanda Huljev Frkovic
- Department of Paediatrics, University Hospital Centre Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (S.H.F.); (M.J.)
| | - Marija Jelusic
- Department of Paediatrics, University Hospital Centre Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (S.H.F.); (M.J.)
| | - Kristina Crkvenac Gornik
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (K.C.G.); (D.R.)
| | - Dunja Rogic
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, 10000 Zagreb, Croatia; (K.C.G.); (D.R.)
| | - Marijan Frkovic
- Department of Paediatrics, University Hospital Centre Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia; (S.H.F.); (M.J.)
| |
Collapse
|
7
|
Ma X, Zhao H, Song JK, Zhang Z, Gao CJ, Luo Y, Ding XJ, Xue TT, Zhang Y, Zhang MJ, Zhou M, Wang RP, Kuai L, Li B. Retracing from Outcomes to Causes: NRF2-Driven GSTA4 Transcriptional Regulation Controls Chronic Inflammation and Oxidative Stress in Atopic Dermatitis Recurrence. J Invest Dermatol 2024:S0022-202X(24)01735-4. [PMID: 38879155 DOI: 10.1016/j.jid.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 07/14/2024]
Abstract
Atopic dermatitis (AD), a chronic and recurrent inflammatory skin disorder, presents a high incidence and imposes a substantial economic burden. Preventing its recurrence remains a significant challenge in dermatological therapy owing to poorly understood underlying mechanisms. In our study, we adopted a strategy of tracing the mechanisms of recurrence from clinical outcomes. We developed a mouse model of recurrent AD and applied clinically validated treatment regimens. Transcriptomic analyses revealed a pronounced enrichment in the glutathione metabolic pathway in the treated group. Through integrated bioinformatics and in vivo validation, we identified glutathione S-transferase alpha 4 (GSTA4) as a pivotal mediator in AD recurrence. Immunohistochemical analysis demonstrated decreased GSTA4 expression in lesions from patients with AD. Functionally, in vitro overexpression of GSTA4 significantly curtailed AD-like inflammatory responses and ROS production. Moreover, we discovered that NRF2 transcriptional activity regulates GSTA4 expression and function. Our treatment notably augmented NRF2-mediated GSTA4 transcription, yielding pronounced anti-inflammatory and ROS-neutralizing effects. Conclusively, our findings implicate GSTA4 as a critical factor in the recurrence of AD, particularly in the context of oxidative stress and chronic inflammation. Targeting the NRF2-GSTA4 axis emerges as a promising anti-inflammatory and antioxidative strategy for preventing AD recurrence.
Collapse
Affiliation(s)
- Xin Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hang Zhao
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Kun Song
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Zhan Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Jie Gao
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Ying Luo
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Xiao-Jie Ding
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ting-Ting Xue
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ying Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Meng-Jie Zhang
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Mi Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Rui-Ping Wang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Institute of Dermatology, School of Medicine, Tongji University, Shanghai, China
| | - Le Kuai
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China; Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| | - Bin Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Mottola F, Palmieri I, Carannante M, Barretta A, Roychoudhury S, Rocco L. Oxidative Stress Biomarkers in Male Infertility: Established Methodologies and Future Perspectives. Genes (Basel) 2024; 15:539. [PMID: 38790168 PMCID: PMC11121722 DOI: 10.3390/genes15050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
Male fertility can be affected by oxidative stress (OS), which occurs when an imbalance between the production of reactive oxygen species (ROS) and the body's ability to neutralize them arises. OS can damage cells and influence sperm production. High levels of lipid peroxidation have been linked to reduced sperm motility and decreased fertilization ability. This literature review discusses the most commonly used biomarkers to measure sperm damage caused by ROS, such as the high level of OS in seminal plasma as an indicator of imbalance in antioxidant activity. The investigated biomarkers include 8-hydroxy-2-deoxyguanosine acid (8-OHdG), a marker of DNA damage caused by ROS, and F2 isoprostanoids (8-isoprostanes) produced by lipid peroxidation. Furthermore, this review focuses on recent methodologies including the NGS polymorphisms and differentially expressed gene (DEG) analysis, as well as the epigenetic mechanisms linked to ROS during spermatogenesis along with new methodologies developed to evaluate OS biomarkers. Finally, this review addresses a valuable insight into the mechanisms of male infertility provided by these advances and how they have led to new treatment possibilities. Overall, the use of biomarkers to evaluate OS in male infertility has supplied innovative diagnostic and therapeutic approaches, enhancing our understanding of male infertility mechanisms.
Collapse
Affiliation(s)
- Filomena Mottola
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Ilaria Palmieri
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Maria Carannante
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | - Angela Barretta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| | | | - Lucia Rocco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy; (F.M.); (I.P.); (M.C.); (A.B.)
| |
Collapse
|
9
|
Wan G, Zhang Z, Chen J, Li M, Li J. GenX caused liver injury and potential hepatocellular carcinoma of mice via drinking water even at environmental concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123574. [PMID: 38365076 DOI: 10.1016/j.envpol.2024.123574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
Hexafluoropropylene oxide dimer acid (GenX) is an alternative to perfluorooctanoic acid (PFOA), whose environmental concentration is close to its maximum allowable value established by the US Environmental Protection Agency, so its effects on human health are of great concern. The liver is one of the most crucial target organ for GenX, but whether GenX exposure induces liver cancer still unclear. In this research project, male C57 mice were disposed to GenX in drinking water at environmental concentrations (0.1 and 10 μg/L) and higher concentrations (1 and 100 mg/L) for 14 weeks to explore its effects on liver injury and potential carcinogenicity in mice. GenX was found to cause a dose-dependent increase in the serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), total cholesterol (TC), and triglyceride (TG). As the content of GenX in drinking water increased, so did the concentrations of Glypican-3 (GPC-3) and detachment gamma-carboxyprothrombin (DCP), indicators of early hepatocellular cancer. GenX destroyed the boundaries and arrangements of hepatocytes, in which monocyte infiltration, balloon-like transformation, and obvious lipid vacuoles were observed between cells. Following exposure to GenX, Masson sections revealed a significant quantity of collagen deposition in the liver. Alpha-feto protein (AFP), vascular endothelial growth factor (VEGF), Ki67, matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) gene expression increased in a dose-dependent manner in the treatment group relative to the control group. In general, drinking water GenX exposure induced liver function impairment, elevated blood lipid level, caused liver pathological structure damage and liver fibrosis lesions, changed the liver inflammatory microenvironment, and increased the concentration of liver-related tumor indicator even in the environmental concentration, suggesting GenX is a potential carcinogen.
Collapse
Affiliation(s)
- Guojun Wan
- Department of Occupational and Environmental Health, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, China
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, China
| | - Jingsi Chen
- Department of Occupational and Environmental Health, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, China
| | - Mei Li
- School of Civil Engineering, Suzhou University of Science and Technology, 215011, China
| | - Jiafu Li
- Department of Occupational and Environmental Health, School of Public Health, MOE Key Laboratory of Geriatric Diseases and Immunology, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
10
|
Bouhniz OE, Kenani A. Potential role of genetic polymorphisms in neoadjuvant chemotherapy response in breast cancer. J Chemother 2024:1-15. [PMID: 38511398 DOI: 10.1080/1120009x.2024.2330241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
Chemoresistance leads to treatment failure, which can arise through different mechanisms including patients' characteristics. Searching for genetic profiles as a predictor for drug response and toxicity has been extensively studied in pharmacogenomics, thus contributing to personalized medicine and providing alternative treatments. Numerous studies have demonstrated significant evidence of association between genetic polymorphisms and response to neoadjuvant chemotherapy (NAC) in breast cancer. In this review, we explored the potential impact of genetic polymorphisms in NAC primary resistance through selecting a specific clinical profile. The genetic variability within pharmacokinetics, pharmacodynamics, DNA synthesis and repair, and oncogenic signaling pathways genes could be predictive or prognostic markers for NAC resistance. The clinical implication of these results can help provide individualized treatment plans in the early stages of breast cancer treatment. Further studies are needed to determine the genetic hosts of primary chemoresistance mechanisms in order to further emphasize the implementation of genotypic approaches in personalized medicine.
Collapse
Affiliation(s)
- Om Elez Bouhniz
- Research Laboratory "Environment, Inflammation, Signaling and Pathologies" (LR18ES40), Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
| | - Abderraouf Kenani
- Research Laboratory "Environment, Inflammation, Signaling and Pathologies" (LR18ES40), Faculty of Medicine of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
11
|
Chen P, Li Y, Dai Y, Wang Z, Zhou Y, Wang Y, Li G. Advances in the Pathogenesis of Metabolic Liver Disease-Related Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:581-594. [PMID: 38525158 PMCID: PMC10960512 DOI: 10.2147/jhc.s450460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/13/2024] [Indexed: 03/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer globally and the primary cause of death in cancer cases, with significant public health concern worldwide. Despite the overall decline in the incidence and mortality rates of HCC in recent years in recent years, the emergence of metabolic liver disease-related HCC is causing heightened concern, especially in countries like the United States, the United Kingdom, and P.R. China. The escalation of metabolic liver disease-related HCC is attributed to a combination of factors, including genetic predisposition, lifestyle choices, and changes in the living environment. However, the pathogenesis of metabolic liver disease-associated HCC remains imperfect. In this review, we encapsulate the latest advances and essential aspects of the pathogenesis of metabolic liver disease-associated HCC, including alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and inherited metabolic liver diseases.
Collapse
Affiliation(s)
- Pinggui Chen
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yaoxuan Li
- Department of School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, People’s Republic of China
| | - Yunyan Dai
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Zhiming Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yunpeng Zhou
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Yi Wang
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| | - Gaopeng Li
- Department of Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, Shanxi, People’s Republic of China
| |
Collapse
|
12
|
Pei S, Wei Y, Li Z, Zhong H, Dong J, Yi Z, Hou R, Kong W, Xiao J, Xu Z, Feng H. GSTP1 is a negative regulator of MAVS in the antiviral signaling against SVCV infection. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109426. [PMID: 38316349 DOI: 10.1016/j.fsi.2024.109426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Glutathione S-transferase P1 (GSTP1), the most ubiquitous member of the GST superfamily, plays vital roles in the detoxification, antioxidant defense, and modulation of inflammatory responses. However, limited studies have been conducted on the function of GSTP1 in antiviral innate immunity. In this study, we have cloned the homolog of GSTP1 in triploid hybrid crucian carp (3nGSTP1) and investigated its regulatory role in the interferon signaling pathway. The open reading frame of 3nGSTP1 is composed of 627 nucleotides, encoding 209 amino acids. In response to spring viremia of carp virus (SVCV) infection, the mRNA level of 3nGSTP1 was up-regulated in the liver, kidney, and caudal fin cell lines (3 nF C) of triploid fish. The knockdown of 3nGSTP1 in 3 nF C improved host cell's antiviral capacity and attenuated SVCV replication. Additionally, overexpression of 3nGSTP1 inhibited the activation of IFN promoters induced by SVCV infection, poly (I:C) stimulation, or the RLR signaling factors. The co-immunoprecipitation assays further revealed that 3nGSTP1 interacts with 3nMAVS. In addition, 3nGSTP1 dose-dependently inhibited 3nMAVS-mediated antiviral activity and reduced 3nMAVS protein level. Mechanistically, 3nGSTP1 promoted ubiquitin-proteasome degradation of MAVS by promoting its K48-linked polyubiquitination. To conclude, our results indicate that GSTP1 acts as a novel inhibitor of MAVS, which negatively regulates the IFN signaling.
Collapse
Affiliation(s)
- Shuaibin Pei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Yingbing Wei
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhenghao Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Huijuan Zhong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Jinyang Dong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zewen Yi
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ruixin Hou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Weiguang Kong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zhen Xu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China.
| |
Collapse
|
13
|
Watanabe A, Shimada M, Maeda H, Narumi T, Ichita J, Itoku K, Nakajima A. Apple Pomace Extract Improves MK-801-Induced Memory Impairment in Mice. Nutrients 2024; 16:194. [PMID: 38257087 PMCID: PMC10818464 DOI: 10.3390/nu16020194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/28/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that involves progressive cognitive decline accompanied by synaptic degeneration and impaired neurotransmission. Recent studies revealed that apple pomace, a waste byproduct of the apple processing industry, has beneficial health properties, but its potential to prevent and treat AD has not been determined. Herein, we examined the effects of apple pomace extract on N-methyl-D-aspartate receptor antagonist MK-801-induced memory impairment in mice. Repeated treatment with apple pomace extract for 7 days reversed the MK-801-induced impairment of associative memory and recognition memory. RNA sequencing revealed that repeated treatment with apple pomace extract altered the gene expression profile in the hippocampus of mice. Real-time PCR showed that apple pomace extract induced upregulation of the mRNA expression for Zfp125 and Gstp1. Furthermore, gene sets related to synapse and neurotransmission were upregulated by apple pomace extract. These findings indicate that apple pomace extract may be useful for the prevention and treatment of AD.
Collapse
Affiliation(s)
- Ayako Watanabe
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
- Department of Industry Development Sciences, Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Minori Shimada
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
| | - Hayato Maeda
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
- Department of Industry Development Sciences, Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| | - Tsuyoshi Narumi
- Nihon Haruma Co., Ltd., 398 Kanda, Hirosaki 036-8052, Japan; (T.N.); (J.I.); (K.I.)
| | - Junji Ichita
- Nihon Haruma Co., Ltd., 398 Kanda, Hirosaki 036-8052, Japan; (T.N.); (J.I.); (K.I.)
| | - Koh Itoku
- Nihon Haruma Co., Ltd., 398 Kanda, Hirosaki 036-8052, Japan; (T.N.); (J.I.); (K.I.)
| | - Akira Nakajima
- Department of Applied Biology and Food Sciences, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan (H.M.)
- Department of Industry Development Sciences, Graduate School of Sustainable Community Studies, Hirosaki University, 3 Bunkyo-cho, Hirosaki 036-8561, Japan
| |
Collapse
|
14
|
Singh E, Shivwanshi LR, Kumar A. A positive correlation between mutated gene of sickle cell anemia and glucose-6-phosphate dehydrogenase among gond tribes of Chhattisgarh, India. Mutat Res 2024; 828:111849. [PMID: 38134753 DOI: 10.1016/j.mrfmmm.2023.111849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 10/06/2022] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy affecting millions of individuals worldwide. It is believed that the prevalence of G6PD deficiency in different ethnic populations increases its association with other pathological conditions especially sickle cell anemia (SCA), as they both are well-known adaptations against malaria. Thus, the present study aims to determine the frequency of G6PD deficiency among SCA patients and the association between them in the tribal community (Gond) of Chhattisgarh, India. METHOD A total of 810 samples from three different age groups i.e., 10-20, 21-30, and 31-40 years were collected from the tribal community (Gond) of Kabirdham district of Chhattisgarh. The frequency of SCA was determined by a slide test followed by cellulose acetate paper electrophoresis and G6PD deficiency by methemoglobin reduction test. Glutathione-S-Transferase (GST) gene polymorphism in sickle celled individuals and variant analysis in G6PD deficient individuals were analyzed by RT-PCR. RESULTS The frequency of SCA and G6PD deficiency was reported at 9.75% and 17.16% respectively and a high degree of positive correlation between SCA and G6PD deficiency was also found (HbSS-G6PD deficient: r = 0.84, p = .356; HbAS-G6PD deficient: r = 0.89, p = .345). Results of the GST gene revealed that GSTM1 and GSTT1 genes are present in almost all sickled individuals while GSTP1 and GSTP1a exist in the mutated form in a maximum percentage of individuals. G6PD variant analysis also showed that 70% and 60% of individuals have mutated Mahidol and Union variants respectively, while none of the individuals have mutated Chinese variants. CONCLUSION A high degree of correlation between SCA and G6PD was reported among Gond tribes of Chhattisgarh, India with a high degree of mutated GSTP1, GSTP1a, Mahidol, and Union variants. The study makes it possible to take specific preventive measures concerning the medication of anti-oxidizing drugs.
Collapse
Affiliation(s)
- Ekta Singh
- Department of Biotechnology,Govt. V.Y.T.PG. Autonomous College, Durg, Chhattisgarh 491001, India
| | - Lohit Raj Shivwanshi
- Department of Biotechnology,Govt. V.Y.T.PG. Autonomous College, Durg, Chhattisgarh 491001, India
| | - Anil Kumar
- Department of Biotechnology,Govt. V.Y.T.PG. Autonomous College, Durg, Chhattisgarh 491001, India.
| |
Collapse
|
15
|
Khan A, Jahan F, Zahoor M, Ullah R, Albadrani GM, Mohamed HRH, Khisroon M. Association of genetic polymorphism of glutathione S-transferases with colorectal cancer susceptibility in snuff (Naswar) addicts. BRAZ J BIOL 2024; 84:e261509. [DOI: 10.1590/1519-6984.261509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract The current study aimed to investigate the relationship between polymorphisms in detoxifying (GSTM1, GSTT1, and GSTP1) genes and their association with colorectal cancer (CRC) in tobacco addicts of Pashtun ethnicity. Polymorphisms in the selected genes were genotyped in a case-control study consisting of 100 histologically confirmed male CRC patients and 100 birth-year and gender-matched healthy controls using the PCR−RFLP method. The GSTM1 null, and GSTT1 null genotypes were significantly contributed to the risk of CRC in the cases (OR= 3.131, 95% CI: 1.451−6.758, P = 0.004, and OR= 3.541, 95% CI: 1.716−7.306, P = 0.001, respectively), whereas the association observed for GSTP1 Val/Val (1.139, 95% CI: 0.356−3.644, P = 0.826) did not show statistical significance. The combined GSTM1 null and GSTT1 null showed a 41-fold increased risk (95% CI: 4.945−351.950, P = 0.001), while, the combined GSTM1 null and GSTP1 Ile/Val or Val/Val variant genotypes exhibited about 3-fold (95% CI: 1.196−7.414, P = 0.019) increased risk to CRC. Similarly, the combined GSTT1 null and GSTP1 Ile/Val or Val/Val variant genotypes showed about a 3-fold (95% CI: 1.285−8.101, P = 0.013) increased risk of CRC. In the combination of three GST genotypes, the GSTM1 null, GSTT1 null, and GSTP1 Ile/Val or Val/Val variant genotypes demonstrated a more than a 22-fold (95% CI: 2.441−212.106, P = 0.006) increased risk of CRC. Our findings suggest that GSTM1 and GSTT1 polymorphism and its combination with GSTP1 may be associated with CRC susceptibility in the Naswar addicted Pashtun population of Khyber Pakhtunkhwa, Pakistan.
Collapse
Affiliation(s)
- A. Khan
- University of Peshawar, Pakistan
| | - F. Jahan
- Shaheed Benazir Bhutto Women University Peshawar, Pakistan
| | | | - R. Ullah
- King Saud University, Saudi Arabia
| | | | | | | |
Collapse
|
16
|
Shi H, Yuan X, Liu G, Fan W. Identifying and Validating GSTM5 as an Immunogenic Gene in Diabetic Foot Ulcer Using Bioinformatics and Machine Learning. J Inflamm Res 2023; 16:6241-6256. [PMID: 38145013 PMCID: PMC10748866 DOI: 10.2147/jir.s442388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Background A diabetic foot ulcer (DFU) is a serious, long-term condition associated with a significant risk of disability and mortality. However, research on its biomarkers is still limited. This study utilizes bioinformatics and machine learning methods to identify immune-related biomarkers for DFU and validates them through external datasets and animal experiments. Methods This study used bioinformatics and machine learning to analyze microarray data from the Gene Expression Omnibus (GEO) database to identify key genes associated with DFU. Animal experiments were conducted to validate these findings. This research employs the datasets GSE68183 and GSE80178 retrieved from the GEO database as the training dataset for building a gene machine learning model, and after conducting differential analysis on the data, this study used package glmnet and package e1071 to construct LASSO and SVM-RFE machine learning models, respectively. Subsequently, we validated the model using the training set and validation set (GSE134431). We conducted enrichment analysis, including GSEA and GSVA, on the model genes. We also performed immune functional analysis and immune-related analysis on the model genes. Finally, we conducted immunohistochemistry (IHC) validation on the model genes. Results This study identifies GSTM5 as a potential immune-related key target in DFU using machine learning and bioinformatics methods. Subsequent validation through external datasets and IHC experiments also confirms GSTM5 as a critical biomarker for DFU. The gene may be associated with T cells regulatory (Tregs) and T cells follicular helper, and it influences the NF-κB, GnRH, and MAPK signaling pathway. Conclusion This study identified and validated GSTM5 as a biomarker for DFU. This finding may potentially provide a target for immune therapy for DFU.
Collapse
Affiliation(s)
- Hongshuo Shi
- Department of Peripheral Vascular Surgery, Institute of Surgery of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xin Yuan
- Department of Peripheral Vascular Surgery, Institute of Surgery of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Guobin Liu
- Department of Peripheral Vascular Surgery, Institute of Surgery of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Weijing Fan
- Department of Peripheral Vascular Surgery, Institute of Surgery of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
17
|
Li L, Wang A, Ke Y. GSTM1 and GSTT1 polymorphisms and risk of preeclampsia: a system review and meta-analysis. J Matern Fetal Neonatal Med 2023; 36:2237623. [PMID: 37469043 DOI: 10.1080/14767058.2023.2237623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/15/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Objective: Oxidative stress is thought to play an important role in the pathophysiology of pre-eclampsia. The glutathione S-transferases (GST) are a group of enzymes that protect cells from oxidative stress. Published data on the association between the GSTT1 and GSTM1 polymorphisms and pre-eclampsia risk are controversial. A meta-analysis was performed to assess whether the polymorphisms of GSTT1 and GSTM1 are associated with pre-eclampsia risk.Methods: Medline, Embase, China National Knowledge Infrastructure, and Chinese Biomedicine Databases were searched to identify eligible studies. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) for GSTT1 and GSTM1 polymorphisms and pre-eclampsia were appropriately derived from fixed-effects or random effects models.Results: A total of 11 studies were enrolled in this meta-analysis. The pooled analyses revealed that polymorphisms of GSTT1 and GSTM1 was not associated with pre-eclampsia risk. Heterogeneity among studies was founded in GSTT1 polymorphism. Galbraith plot analyses were performed to assess the source of heterogeneity and one study was found to be contributor of heterogeneity. The heterogeneity decreased significantly after excluding that study.Conclusion: Present meta-analysis reveals that GSTT1 and GSTM1 polymorphisms may be not correlated to pre-eclampsia risk.
Collapse
Affiliation(s)
- Lin Li
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P.R. China
| | - Ao Wang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P.R. China
| | - Yi Ke
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
18
|
Wang Z, Li X, Wang T, Liao G, Gu J, Hou R, Qiu J. Lipidomic profiling study on neurobehavior toxicity in zebrafish treated with aflatoxin B1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165553. [PMID: 37459993 DOI: 10.1016/j.scitotenv.2023.165553] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Mycotoxin aflatoxin B1 (AFB1) has been proven to cause neurotoxicity, but its potential interference with the normal function of brain tissue is not fully defined. As the indispensable role of lipids in maintaining the normal function of brain tissue, the aim of this study is to clarify the effect of AFB1 short-term (7 days) exposure on brain tissue from the perspective of lipid metabolism. In this study, zebrafish were exposed to two concentrations (5, 20 μg/L). Through quantitative analysis of AFB1, the detection of AFB1 in zebrafish brain tissue was discovered for the first time, combined with the changes in zebrafish neurobehavior, the occurrence of brain injury was deduced. Subsequently, 1734 lipids in zebrafish brain tissue were mapped using ion mobility time-of-flight mass spectrometry (UPLC-QTOF-IMS-MS), which has great advantages in lipid detection. Comparative analysis of the abnormal lipid metabolism in zebrafish brain revealed 114 significantly changed lipids, mainly involving two pathways of sphingolipid metabolism and fatty acid degradation. This study discovered the detection of AFB1 in the brain and revealed a potential link between AFB1-induced behavioral abnormalities and lipid metabolism disorders in brain tissue, providing reliable evidence for elucidating the neurotoxicity of AFB1.
Collapse
Affiliation(s)
- Zishuang Wang
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Xiabing Li
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Tiancai Wang
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Guangqin Liao
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Jingyi Gu
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China
| | - Ruyan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, College of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Jing Qiu
- Key Laboratory of Argo-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Argo-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhong-guan-cun South Street, Haidian District, Beijing 100081, China.
| |
Collapse
|
19
|
Rezaeeyan H, Arabfard M, Rasouli HR, Shahriary A, Gh BFNM. Evaluation of common protein biomarkers involved in the pathogenesis of respiratory diseases with proteomic methods: A systematic review. Immun Inflamm Dis 2023; 11:e1090. [PMID: 38018577 PMCID: PMC10659759 DOI: 10.1002/iid3.1090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023] Open
Abstract
AIM Respiratory disease (RD) is one of the most common diseases characterized by lung dysfunction. Many diagnostic mechanisms have been used to identify the pathogenic agents of responsible for RD. Among these, proteomics emerges as a valuable diagnostic method for pinpointing the specific proteins involved in RD pathogenesis. Therefore, in this study, for the first time, we examined the protein markers involved in the pathogenesis of chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), asthma, bronchiolitis obliterans (BO), and chemical warfare victims exposed to mustard gas, using the proteomics method as a systematic study. MATERIALS AND METHODS A systematic search was performed up to September 2023 on several databases, including PubMed, Scopus, ISI Web of Science, and Cochrane. In total, selected 4246 articles were for evaluation according to the criteria. Finally, 119 studies were selected for this systematic review. RESULTS A total of 13,806 proteins were identified, 6471 in COPD, 1603 in Asthma, 5638 in IPF, three in BO, and 91 in mustard gas exposed victims. Alterations in the expression of these proteins were observed in the respective diseases. After evaluation, the results showed that 31 proteins were found to be shared among all five diseases. CONCLUSION Although these 31 proteins regulate different factors and molecular pathways in all five diseases, they ultimately lead to the regulation of inflammatory pathways. In other words, the expression of some proteins in COPD and mustard-exposed patients increases inflammatory reactions, while in IPF, they cause lung fibrosis. Asthma, causes allergic reactions due to T-cell differentiation toward Th2.
Collapse
Affiliation(s)
- Hadi Rezaeeyan
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion MedicineIranian Blood Transfusion Organization (IBTO)TehranIran
| | - Masoud Arabfard
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Hamid R. Rasouli
- Trauma Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - B. Fatemeh Nobakht M. Gh
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| |
Collapse
|
20
|
Camacho-Jiménez L, González-Ruiz R, Yepiz-Plascencia G. Persistent organic pollutants (POPs) in marine crustaceans: Bioaccumulation, physiological and cellular responses. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106184. [PMID: 37769555 DOI: 10.1016/j.marenvres.2023.106184] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/23/2023] [Accepted: 09/15/2023] [Indexed: 10/03/2023]
Abstract
Persistent organic pollutants (POPs) are ubiquitous in marine ecosystems. These compounds can be accumulated in water, sediments and organisms, persist in time, and have toxic effects in human and wildlife. POPs can be uptaken and bioaccumulated by crustaceans, affecting different physiological processes, including energy metabolism, immunity, osmoregulation, excretion, growth, and reproduction. Nonetheless, animals have evolved sub-cellular mechanisms for detoxification and protection from chemical stress. POPs induce the activity of enzymes involved in xenobiotic metabolism and antioxidant systems, that in vertebrates are importantly regulated at gene expression (transcriptional) level. However, the activation and control of these enzyme systems upon the exposure to POPs have been scarcely studied in invertebrate species, including crustaceans. Herein, we summarize various aspects of the bioaccumulation of POPs in marine crustaceans and their physiological effects. We specially focus on the regulation of xenobiotics metabolism and antioxidant enzymes as key sub-cellular mechanisms for detoxification and protection from chemical stress.
Collapse
Affiliation(s)
- Laura Camacho-Jiménez
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico.
| | - Ricardo González-Ruiz
- Instituto Potosino de Investigación Científica y Tecnológica A.C. (IPICYT A.C.), Camino a La Presa de San José 2055, San Luis Potosí, San Luis Potosí, 78216, Mexico
| | - Gloria Yepiz-Plascencia
- Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD, A.C.), Carretera Gustavo Enrique Astiazarán Rosas 46, Hermosillo, Sonora, 83304, Mexico
| |
Collapse
|
21
|
Grussy K, Łaska M, Moczurad W, Król-Kulikowska M, Ściskalska M. The importance of polymorphisms in the genes encoding glutathione S-transferase isoenzymes in development of selected cancers and cardiovascular diseases. Mol Biol Rep 2023; 50:9649-9661. [PMID: 37819495 PMCID: PMC10635984 DOI: 10.1007/s11033-023-08894-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
Glutathione S-transferases are a family of enzymes, whose main role is to detoxify cells from many exogenous factors, such as xenobiotics or carcinogens. It has also been proven that changes in the genes encoding these enzymes may affect the incidence of selected cancers and cardiovascular diseases. The aim of this study was to review the most important reports related to the role of glutathione S-transferases in the pathophysiology of two of the most common diseases in modern society - cancers and cardiovascular diseases. It was shown that polymorphisms in the genes encoding glutathione S-transferases are associated with the development of these diseases. However, depending on the ethnic group, the researchers obtained divergent results related to this field. In the case of the GSTP1 A/G gene polymorphism was shown an increased incidence of breast cancer in Asian women, while this relationship in European and African women was not found. Similarly. In the case of cardiovascular diseases, the differences in the influence of GSTM1, GSTT1, GSTP1 and GSTA1 polymorphisms on their development or lack of it depending on the continent were shown. These examples show that the development of the above-mentioned diseases is not only influenced by genetic changes, but their pathophysiology is more complex. The mere presence of a specific genotype within a studied polymorphism may not predispose to cancer, but in combination with environmental factors, which often depend on the place of residence, it may elevate the chance of developing the selected disease.
Collapse
Affiliation(s)
- Katarzyna Grussy
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Magdalena Łaska
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Wiktoria Moczurad
- Student Society of Laboratory Diagnosticians, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| | - Magdalena Król-Kulikowska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland.
| | - Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556, Wroclaw, Poland
| |
Collapse
|
22
|
Zhou Y, Yao L, Huang X, Li Y, Wang C, Huang Q, Yu L, Pan C. Transcriptomics and metabolomics association analysis revealed the responses of Gynostemma pentaphyllum to cadmium. FRONTIERS IN PLANT SCIENCE 2023; 14:1265971. [PMID: 37877087 PMCID: PMC10591085 DOI: 10.3389/fpls.2023.1265971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Gynostemma pentaphyllum an important medicinal herb, can absorb high amounts of cadmium (Cd) which can lead to excessive Cd contamination during the production of medicines and tea. Hence, it is crucial to investigate the response mechanism of G. pentaphyllum under Cd stress to develop varieties with low Cd accumulation and high tolerance. Physiological response analysis, transcriptomics and metabolomics were performed on G. pentaphyllum seedlings exposed to Cd stress. Herein, G. pentaphyllum seedlings could significantly enhance antioxidant enzyme activities (POD, CAT and APX), proline and polysaccharide content subject to Cd stress. Transcriptomics analysis identified the secondary metabolites, carbohydrate metabolism, amino acid metabolism, lipid metabolism, and signal transduction pathways associated with Cd stress, which mainly involved the XTH, EXP and GST genes. Metabolomics analysis identified 126 differentially expressed metabolites, including citric acid, flavonoid and amino acids metabolites, which were accumulated under Cd stress. Multi-omics integrative analysis unraveled that the phenylpropanoid biosynthesis, starch, and sucrose metabolism, alpha-linolenic acid metabolism, and ABC transporter were significantly enriched at the gene and metabolic levels in response to Cd stress in G. pentaphyllum. In conclusion, the genetic regulatory network sheds light on Cd response mechanisms in G. pentaphyllum.
Collapse
Affiliation(s)
- Yunyi Zhou
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Lixiang Yao
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Xueyan Huang
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Ying Li
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chunli Wang
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Qinfen Huang
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Liying Yu
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Chunliu Pan
- Guangxi Traditional Chinese Medicine (TCM) Resources General Survey and Data Collection Key Laboratory, the Center for Phylogeny and Evolution of Medicinal Plants, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| |
Collapse
|
23
|
Aristide L, Fernández R. Genomic Insights into Mollusk Terrestrialization: Parallel and Convergent Gene Family Expansions as Key Facilitators in Out-of-the-Sea Transitions. Genome Biol Evol 2023; 15:evad176. [PMID: 37793176 PMCID: PMC10581543 DOI: 10.1093/gbe/evad176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/06/2023] Open
Abstract
Animals abandoned their marine niche and successfully adapted to life on land multiple times throughout evolution, providing a rare opportunity to study the mechanisms driving large scale macroevolutionary convergence. However, the genomic factors underlying this process remain largely unknown. Here, we investigate the macroevolutionary dynamics of gene repertoire evolution during repeated transitions out of the sea in mollusks, a lineage that has transitioned to freshwater and terrestrial environments multiple independent times. Through phylogenomics and phylogenetic comparative methods, we examine ∼100 genomic data sets encompassing all major molluskan lineages. We introduce a conceptual framework for identifying and analyzing parallel and convergent evolution at the orthogroup level (groups of genes derived from a single ancestral gene in the species in question) and explore the extent of these mechanisms. Despite deep temporal divergences, we found that parallel expansions of ancient gene families played a major role in facilitating adaptation to nonmarine habitats, highlighting the relevance of the preexisting genomic toolkit in facilitating adaptation to new environments. The expanded functions primarily involve metabolic, osmoregulatory, and defense-related systems. We further found functionally convergent lineage-exclusive gene gains, while family contractions appear to be driven by neutral processes. Also, genomic innovations likely contributed to fuel independent habitat transitions. Overall, our study reveals that various mechanisms of gene repertoire evolution-parallelism, convergence, and innovation-can simultaneously contribute to major evolutionary transitions. Our results provide a genome-wide gene repertoire atlas of molluskan terrestrialization that paves the way toward further understanding the functional and evolutionary bases of this process.
Collapse
Affiliation(s)
- Leandro Aristide
- Metazoa Phylogenomics Laboratory Biodiversity Program, Institute of Evolutionary Biology (Spanish Research Council-University Pompeu Fabra), BarcelonaSpain
| | - Rosa Fernández
- Metazoa Phylogenomics Laboratory Biodiversity Program, Institute of Evolutionary Biology (Spanish Research Council-University Pompeu Fabra), BarcelonaSpain
| |
Collapse
|
24
|
Cai P, Zhang W, Jiang S, Xiong Y, Yuan H, Gao Z, Gao X, Ma C, Zhou Y, Gong Y, Qiao H, Jin S, Fu H. Insulin-like Androgenic Gland Hormone Induced Sex Reversal and Molecular Pathways in Macrobrachium nipponense: Insights into Reproduction, Growth, and Sex Differentiation. Int J Mol Sci 2023; 24:14306. [PMID: 37762609 PMCID: PMC10531965 DOI: 10.3390/ijms241814306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This study investigated the potential to use double-stranded RNA insulin-like androgenic gland hormone (dsIAG) to induce sex reversal in Macrobrachium nipponense and identified the molecular mechanisms underlying crustacean reproduction and sex differentiation. The study aimed to determine whether dsIAG could induce sex reversal in PL30-male M. nipponense during a critical period. The sex-related genes were selected by performing the gonadal transcriptome analysis of normal male (dsM), normal female (dsFM), neo-female sex-reversed individuals (dsRM), and unreversed males (dsNRM). After six injections, the experiment finally resulted in a 20% production of dsRM. Histologically, dsRM ovaries developed slower than dsFM, but dsNRM spermathecae developed normally. A total of 1718, 1069, and 255 differentially expressed genes were identified through transcriptome sequencing of the gonads in three comparison groups, revealing crucial genes related to reproduction and sex differentiation, such as GnRHR, VGR, SG, and LWS. Principal Component Analysis (PCA) also distinguished dsM and dsRM very well. In addition, this study predicted that the eyestalks and the "phototransduction-fly" photoperiodic pathways of M. nipponense could play an important role in sex reversal. The enrichment of related pathways and growth traits in dsNRM were combined to establish that IAG played a significant role in reproduction, growth regulation, and metabolism. Finally, complete sex reversal may depend on specific stimuli at critical periods. Overall, this study provides valuable findings for the IAG regulation of sex differentiation, reproduction, and growth of M. nipponense in establishing a monoculture.
Collapse
Affiliation(s)
- Pengfei Cai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Huwei Yuan
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Zijian Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Xuanbing Gao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Cheng Ma
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Yongkang Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; (P.C.); (H.Y.); (Z.G.); (X.G.); (C.M.); (Y.Z.)
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; (W.Z.); (S.J.); (Y.X.); (Y.G.); (H.Q.)
| |
Collapse
|
25
|
Galiciolli MEA, Silva JF, Prodocimo MM, Laureano HA, Calado SLDM, Oliveira CS, Guiloski IC. Toxicological Effects of Thimerosal and Aluminum in the Liver, Kidney, and Brain of Zebrafish ( Danio rerio). Metabolites 2023; 13:975. [PMID: 37755255 PMCID: PMC10537066 DOI: 10.3390/metabo13090975] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023] Open
Abstract
Vaccination programs in the first years of a child's life are effective and extremely important strategies for the successful eradication of diseases. However, as no intervention is without risks, the metal-based components of some vaccines, such as thimerosal (TMS), a preservative composed of ethylmercury, and aluminum (Al), have begun to generate distrust on the part of the population. Therefore, this study evaluated the effects of exposure to thimerosal and aluminum hydroxide (alone or in mixture) on Danio rerio (zebrafish) specimens. The fish were exposed to thimerosal and/or aluminum hydroxide intraperitoneally. The liver, kidney, and brain were removed for a biochemical biomarker analysis, histopathological analysis, and metal quantification. As a result, we observed changes in the activity of the analyzed enzymes (SOD, GST, GPx) in the kidney and brain of the zebrafish, a reduction in GSH levels in all analyzed tissues, and a reduction in MT levels in the kidney and liver as well as in the brain. Changes in AChE enzyme activity were observed. The biochemical results corroborate the changes observed in the lesion index and histomorphology sections. We emphasize the importance of joint research on these compounds to increase the population's safety against their possible toxic effects.
Collapse
Affiliation(s)
- Maria Eduarda Andrade Galiciolli
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Juliana Ferreira Silva
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Maritana Mela Prodocimo
- Departamento de Biologia Celular e Molecular, Universidade Federal do Paraná, Centro Politécnico, Avenida Cel. Francisco H. dos Santos, 100—Jardim das Américas, Curitiba—PR, Curitiba 81531-980, PR, Brazil;
| | - Henrique Aparecido Laureano
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | | | - Claudia Sirlene Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| | - Izonete Cristina Guiloski
- Instituto de Pesquisa Pelé Pequeno Príncipe, Avenida Silva Jardim, 1632, Água Verde, Curitiba 80250-200, PR, Brazil; (M.E.A.G.); (J.F.S.)
- Faculdades Pequeno Príncipe, Curitiba 80230-020, PR, Brazil
| |
Collapse
|
26
|
Ismail NH, Mussa A, Al-Khreisat MJ, Mohamed Yusoff S, Husin A, Johan MF. Proteomic Alteration in the Progression of Multiple Myeloma: A Comprehensive Review. Diagnostics (Basel) 2023; 13:2328. [PMID: 37510072 PMCID: PMC10378430 DOI: 10.3390/diagnostics13142328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/30/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy. Most MM patients are diagnosed at a late stage because the early symptoms of the disease can be uncertain and nonspecific, often resembling other, more common conditions. Additionally, MM patients are commonly associated with rapid relapse and an inevitable refractory phase. MM is characterized by the abnormal proliferation of monoclonal plasma cells in the bone marrow. During the progression of MM, massive genomic alterations occur that target multiple signaling pathways and are accompanied by a multistep process involving differentiation, proliferation, and invasion. Moreover, the transformation of healthy plasma cell biology into genetically heterogeneous MM clones is driven by a variety of post-translational protein modifications (PTMs), which has complicated the discovery of effective treatments. PTMs have been identified as the most promising candidates for biomarker detection, and further research has been recommended to develop promising surrogate markers. Proteomics research has begun in MM, and a comprehensive literature review is available. However, proteomics applications in MM have yet to make significant progress. Exploration of proteomic alterations in MM is worthwhile to improve understanding of the pathophysiology of MM and to search for new treatment targets. Proteomics studies using mass spectrometry (MS) in conjunction with robust bioinformatics tools are an excellent way to learn more about protein changes and modifications during disease progression MM. This article addresses in depth the proteomic changes associated with MM disease transformation.
Collapse
Affiliation(s)
- Nor Hayati Ismail
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Ali Mussa
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
- Department of Biology, Faculty of Education, Omdurman Islamic University, Omdurman P.O. Box 382, Sudan
| | - Mutaz Jamal Al-Khreisat
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Shafini Mohamed Yusoff
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Azlan Husin
- Department of Internal Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Muhammad Farid Johan
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
27
|
Orgel E, Knight KR, Chi YY, Malvar J, Rushing T, Mena V, Eisenberg LS, Rassekh SR, Ross CJD, Scott EN, Neely M, Neuwelt EA, Muldoon LL, Freyer DR. Intravenous N-Acetylcysteine to Prevent Cisplatin-Induced Hearing Loss in Children: A Nonrandomized Controlled Phase I Trial. Clin Cancer Res 2023; 29:2410-2418. [PMID: 37134194 PMCID: PMC10330342 DOI: 10.1158/1078-0432.ccr-23-0252] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/29/2023] [Accepted: 05/01/2023] [Indexed: 05/05/2023]
Abstract
PURPOSE Cisplatin-induced hearing loss (CIHL) is common and permanent. As compared with earlier otoprotectants, we hypothesized N-acetylcysteine (NAC) offers potential for stronger otoprotection through stimulation of glutathione (GSH) production. This study tested the optimal dose, safety, and efficacy of NAC to prevent CIHL. PATIENTS AND METHODS In this nonrandomized, controlled phase Ia/Ib trial, children and adolescents newly diagnosed with nonmetastatic, cisplatin-treated tumors received NAC intravenously 4 hours post-cisplatin. The trial performed dose-escalation across three dose levels to establish a safe dose that exceeded the targeted peak serum NAC concentration of 1.5 mmol/L (as identified from preclinical models). Patients with metastatic disease or who were otherwise ineligible were enrolled in an observation-only/control arm. To evaluate efficacy, serial age-appropriate audiology assessments were performed. Integrated biology examined genes involved in GSH metabolism and post-NAC GSH concentrations. RESULTS Of 52 patients enrolled, 24 received NAC and 28 were in the control arm. The maximum tolerated dose was not reached; analysis of peak NAC concentration identified 450 mg/kg as the recommended phase II dose (RP2D). Infusion-related reactions were common. No severe adverse events occurred. Compared with the control arm, NAC decreased likelihood of CIHL at the end of cisplatin therapy [OR, 0.13; 95% confidence interval (CI), 0.021-0.847; P = 0.033] and recommendations for hearing intervention at end of study (OR, 0.082; 95% CI, 0.011-0.60; P = 0.014). NAC increased GSH; GSTP1 influenced risk for CIHL and NAC otoprotection. CONCLUSIONS NAC was safe at the RP2D, with strong evidence for efficacy to prevent CIHL, warranting further development as a next-generation otoprotectant.
Collapse
Affiliation(s)
- Etan Orgel
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Kristin R. Knight
- Department of Pediatric Audiology, Doernbecher Children’s Hospital, Oregon Health & Science University, Portland, Oregon
| | - Yueh-Yun Chi
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jemily Malvar
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Teresa Rushing
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Victoria Mena
- Department of Rehabilitation Services-Pediatric Audiology, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Laurie S. Eisenberg
- Caruso Department of Otolaryngology-Head and Neck Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Shahrad R. Rassekh
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Colin JD Ross
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Erika N. Scott
- British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael Neely
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
- Laboratory of Applied Pharmacokinetics and Bioinformatics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, California
| | - Edward A. Neuwelt
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Leslie L. Muldoon
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - David R Freyer
- Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, CA
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
28
|
Carvalho LM, Rocha TC, Delgado J, Díaz-Velasco S, Madruga MS, Estévez M. Deciphering the underlying mechanisms of the oxidative perturbations and impaired meat quality in Wooden breast myopathy by label-free quantitative MS-based proteomics. Food Chem 2023; 423:136314. [PMID: 37167669 DOI: 10.1016/j.foodchem.2023.136314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/13/2023]
Abstract
The study aimed to investigate biochemical mechanisms occurred in Wooden breast (WB) chicken meat, with attention to the impact on meat quality. Commercial chicken breasts were classified as Normal (N, n = 12), WB-M (moderate degree; focal hardness on cranial region, n = 12) and WB-S (severe degree; extreme and diffused hardness over the entire surface, n = 12). Samples were analyzed for physico-chemical properties, oxidative damage to lipids and proteins, and discriminating sarcoplasmic proteins by using a Q-Exactive mass spectrometer. WB meat presented impaired composition and functionality and higher levels of lipid and protein oxidation markers than N meat. The proteomic profile of WB-S presents a dynamic regulation of the relevant proteins involved in redox homeostasis, carbohydrate, protein and lipid metabolisms. Proteomics results demonstrate that the physiological and metabolic processes of muscles affected by WB myopathy are involved in combating the inflammatory process and in repairing the damaged tissue by oxidative stress.
Collapse
Affiliation(s)
- Leila M Carvalho
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Thayse C Rocha
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Josué Delgado
- Higiene y Seguridad Alimentaria, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Silvia Díaz-Velasco
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain
| | - Marta S Madruga
- Postgraduate Program in Food Science and Technology. Department of Food Engineering, Federal University of Paraiba, João Pessoa, Paraíba, Brazil
| | - Mario Estévez
- Tecnología de los Alimentos, Instituto Universitario de Investigación de Carne y Productos Cárnicos, Facultad de Veterinaria, Universidad de Extremadura, Avda. de las Ciencias s/n, 10003 Cáceres, Spain.
| |
Collapse
|
29
|
Wei L, Hongping H, Chufang L, Cuomu M, Jintao L, Kaiyin C, Lvyi C, Weiwu C, Zuguang Y, Nanshan Z. Effects of Shiwei Longdanhua formula on LPS induced airway mucus hypersecretion, cough hypersensitivity, oxidative stress and pulmonary inflammation. Biomed Pharmacother 2023; 163:114793. [PMID: 37121151 DOI: 10.1016/j.biopha.2023.114793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023] Open
Abstract
Shiwei Longdanhua Granule (SWLDH) is a classic Tibetan medicine (TM) ranking in the top 20 Chinese patent medicines in prescription rate to treat respiratory diseases like pneumonia, acute and chronic tracheobronchitis, acute exacerbation of COPD and bronchial asthma in solution of inflammation, cough and phlegm obstruction in clinical practice. However, its systematic pharmacological mechanisms have not been elucidated yet. Here, we studied the therapeutic efficacy of SWLDH in treatment of acute respiratory diseases in BALB/c mice by comprehensive analysis of airway inflammation, oxidative stress, mucus hypersecretion, cough hypersensitivities and indicators associated with the development of chronic diseases. Our results show that SWLDH might exhibit its inhibitory effects on pulmonary inflammation by interference with arachidonic acid (AA) metabolism pathways. Oxidative stress that highly related to the degree of tissue injury could be alleviated by enhancing the reductive activities of glutathione redox system, thioredoxin system and the catalytic activities of catalase and superoxide dismutase (SOD) after SWLDH treatment. In addition, SWLDH could significantly abrogate the mucus hypersecretion induced bronchiole obstruction by inactivate the globlet cells and decrease the secretion of gel-forming mucins (MUC5AC and MUC5B) under pathological condition, demonstrating its mucoactive potency. SWLDH also showed reversed effects on the release of neuropeptides that are responsible for airway sensory hypersensitivity. Simultaneously observed inhibition of calcium influx, reduction in in vivo biosynthesis of acetylcholine and the recovery of the content of cyclic adenosine monophosphate (cAMP) might collaboratively contribute to cause airway smooth muscle cells (ASMCs) relexation. These findings indicated that SWLDH might exhibited antitussive potency via suppression of the urge to cough and ASMCs contraction. Moreover, SWLDH might affect airway remodeling. We found SWLDH could retard the elevation of TGF-β1 and α-SMA, which are important indicators for hyperplasia and contraction during the progression of the chronic airway inflammatory diseases like COPD and asthma.
Collapse
Affiliation(s)
- Liu Wei
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Hou Hongping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | | | - Mingji Cuomu
- The University of Tibetan Medicine, Lhasa, China
| | - Li Jintao
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing University of Technology, Beijing, China
| | - Cai Kaiyin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China; Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Chen Lvyi
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, China
| | - Chen Weiwu
- Tibet Cheezheng Tibet Medicine Co.,Ltd., Beijing, China
| | - Ye Zuguang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| | - Zhong Nanshan
- Guangzhou Laboratory, Guangzhou, China; State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
30
|
Freitas R, Arrigo F, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. Combined effects of temperature rise and sodium lauryl sulfate in the Mediterranean mussel. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104132. [PMID: 37088267 DOI: 10.1016/j.etap.2023.104132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Personal care products (PCPs) are those compounds used daily (e.g., soaps, shampoos, deodorants, and toothpaste), explaining their frequent detection in aquatic systems. Still, scarce information is available on their effects on inhabiting wildlife. Among the most commonly used PCPs is the surfactant Sodium Lauryl Sulfate (SLS). The present study investigated the influence of temperature (CTL 17 ºC vs 22 ºC) on the effects of SLS (0 mg/L vs 4 mg/L) in the mussel species Mytilus galloprovincialis. Mussels' general health status was investigated, assessing their metabolic and oxidative stress responses. Higher biochemical alterations were observed in SLS-exposed mussels and warming enhanced the impacts, namely in terms of biotransformation capacity and loss of redox homeostasis, which may result in consequences to population maintenance, especially if under additional environmental stressors. These results confirm M. galloprovincialis as an excellent bioindicator of PCPs pollution, and the need to consider actual and predicted climate changes.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Federica Arrigo
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy
| |
Collapse
|
31
|
Zhang T, Niu Z, He J, Pu P, Meng F, Xi L, Tang X, Ding L, Ma M, Chen Q. Potential Effects of High Temperature and Heat Wave on Nanorana pleskei Based on Transcriptomic Analysis. Curr Issues Mol Biol 2023; 45:2937-2949. [PMID: 37185716 PMCID: PMC10136961 DOI: 10.3390/cimb45040192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
In the context of climate change, understanding how indigenous amphibians of the Qinghai-Tibet plateau react to stresses and their coping mechanisms could be crucial for predicting their fate and successful conservation. A liver transcriptome for Nanorana pleskei was constructed using high-throughput RNA sequencing, and its gene expression was compared with frogs acclimated under either room temperature or high temperature and also heat wave exposed ones. A total of 126,465 unigenes were produced, with 66,924 (52.92%) of them being annotated. Up to 694 genes were found to be differently regulated as a result of abnormal temperature acclimatization. Notably, genes belonging to the heat shock protein (HSP) family were down-regulated in both treated groups. Long-term exposure to high-temperature stress may impair the metabolic rate of the frog and trigger the body to maintain a hypometabolic state in an effort to survive challenging times. During heat waves, unlike the high-temperature group, mitochondrial function was not impaired, and the energy supply was largely normal to support the highly energy-consuming metabolic processes. Genes were more transcriptionally suppressed when treated with high temperatures than heat waves, and the body stayed in low-energy states for combating these long-term adverse environments to survive. It might be strategic to preserve initiation to executive protein activity under heat wave stress. Under both stress conditions, compromising the protection of HSP and sluggish steroid activity occurred in frogs. Frogs were more affected by high temperatures than by heat waves.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Zhiyi Niu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Jie He
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Peng Pu
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Fei Meng
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Lu Xi
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Xiaolong Tang
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Li Ding
- Department of Animal Science, School of Life Sciences and Engineering, Southwest University of Science and Technology, Mianyang 621010, China
| | - Miaojun Ma
- State Key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiang Chen
- Department of Animal and Biomedical Sciences, School of Life Science, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
32
|
Florek E, Witkowska M, Szukalska M, Richter M, Trzeciak T, Miechowicz I, Marszałek A, Piekoszewski W, Wyrwa Z, Giersig M. Oxidative Stress in Long-Term Exposure to Multi-Walled Carbon Nanotubes in Male Rats. Antioxidants (Basel) 2023; 12:464. [PMID: 36830022 PMCID: PMC9952213 DOI: 10.3390/antiox12020464] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Multi-walled carbon nanotubes (MWCNTs) serve as nanoparticles due to their size, and for that reason, when in contact with the biological system, they can have toxic effects. One of the main mechanisms responsible for nanotoxicity is oxidative stress resulting from the production of intracellular reactive oxygen species (ROS). Therefore, oxidative stress biomarkers are important tools for assessing MWCNTs toxicity. The aim of this study was to evaluate the oxidative stress of multi-walled carbon nanotubes in male rats. Our animal model studies of MWCNTs (diameter ~15-30 nm, length ~15-20 μm) include measurement of oxidative stress parameters in the body fluid and tissues of animals after long-term exposure. Rattus Norvegicus/Wistar male rats were administrated a single injection to the knee joint at three concentrations: 0.03 mg/mL, 0.25 mg/mL, and 0.5 mg/mL. The rats were euthanized 12 and 18 months post-exposure by drawing blood from the heart, and their liver and kidney tissues were removed. To evaluate toxicity, the enzymatic activity of total protein (TP), reduced glutathione (GSH), glutathione S-transferase (GST), thiobarbituric acid reactive substances (TBARS), Trolox equivalent antioxidant capacity (TEAC), nitric oxide (NO), and catalase (CAT) was measured and histopathological examination was conducted. Results in rat livers showed that TEAC level was decreased in rats receiving nanotubes at higher concentrations. Results in kidneys report that the level of NO showed higher concentration after long exposure, and results in animal serums showed lower levels of GSH in rats exposed to nanotubes at higher concentrations. The 18-month exposure also resulted in a statistically significant increase in GST activity in the group of rats exposed to nanotubes at higher concentrations compared to animals receiving MWCNTs at lower concentrations and compared to the control group. Therefore, an analysis of oxidative stress parameters can be a key indicator of the toxic potential of multi-walled carbon nanotubes.
Collapse
Affiliation(s)
- Ewa Florek
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Marta Witkowska
- Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznan, Poland
- Centre for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Marta Szukalska
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Magdalena Richter
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Izabela Miechowicz
- Department of Computer Science and Statistics, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Andrzej Marszałek
- Oncologic Pathology and Prophylaxis, Greater Poland Cancer Centre, Poznan University of Medical Sciences, 61-866 Poznan, Poland
| | - Wojciech Piekoszewski
- Department of Analytical Chemistry, Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland
| | - Zuzanna Wyrwa
- Laboratory of Environmental Research, Department of Toxicology, Poznan University of Medical Sciences, 60-631 Poznan, Poland
| | - Michael Giersig
- Centre for Advanced Technologies, Adam Mickiewicz University, 61-614 Poznan, Poland
- Department of Theory of Continuous Media and Nanostructures, Institute of Fundamental Technological Research, Polish Academy of Sciences, 02-106 Warsaw, Poland
| |
Collapse
|
33
|
A Review of the GSTM1 Null Genotype Modifies the Association between Air Pollutant Exposure and Health Problems. Int J Genomics 2023; 2023:4961487. [PMID: 36793931 PMCID: PMC9925255 DOI: 10.1155/2023/4961487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 02/08/2023] Open
Abstract
Air pollution is one of the significant environmental risks known as the cause of premature deaths. It has deleterious effects on human health, including deteriorating respiratory, cardiovascular, nervous, and endocrine functions. Exposure to air pollution stimulates reactive oxygen species (ROS) production in the body, which can further cause oxidative stress. Antioxidant enzymes, such as glutathione S-transferase mu 1 (GSTM1), are essential to prevent oxidative stress development by neutralizing excess oxidants. When the antioxidant enzyme function is lacking, ROS can accumulate and, thus, cause oxidative stress. Genetic variation studies from different countries show that GSTM1 null genotype dominates the GSTM1 genotype in the population. However, the impact of the GSTM1 null genotype in modifying the association between air pollution and health problem is not yet clear. This study will elaborate on GSTM1's null genotype role in modifying the relationship between air pollution and health problems.
Collapse
|
34
|
Buschur KL, Riley C, Saferali A, Castaldi P, Zhang G, Aguet F, Ardlie KG, Durda P, Craig Johnson W, Kasela S, Liu Y, Manichaikul A, Rich SS, Rotter JI, Smith J, Taylor KD, Tracy RP, Lappalainen T, Graham Barr R, Sciurba F, Hersh CP, Benos PV. Distinct COPD subtypes in former smokers revealed by gene network perturbation analysis. Respir Res 2023; 24:30. [PMID: 36698131 PMCID: PMC9875487 DOI: 10.1186/s12931-023-02316-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) varies significantly in symptomatic and physiologic presentation. Identifying disease subtypes from molecular data, collected from easily accessible blood samples, can help stratify patients and guide disease management and treatment. METHODS Blood gene expression measured by RNA-sequencing in the COPDGene Study was analyzed using a network perturbation analysis method. Each COPD sample was compared against a learned reference gene network to determine the part that is deregulated. Gene deregulation values were used to cluster the disease samples. RESULTS The discovery set included 617 former smokers from COPDGene. Four distinct gene network subtypes are identified with significant differences in symptoms, exercise capacity and mortality. These clusters do not necessarily correspond with the levels of lung function impairment and are independently validated in two external cohorts: 769 former smokers from COPDGene and 431 former smokers in the Multi-Ethnic Study of Atherosclerosis (MESA). Additionally, we identify several genes that are significantly deregulated across these subtypes, including DSP and GSTM1, which have been previously associated with COPD through genome-wide association study (GWAS). CONCLUSIONS The identified subtypes differ in mortality and in their clinical and functional characteristics, underlining the need for multi-dimensional assessment potentially supplemented by selected markers of gene expression. The subtypes were consistent across cohorts and could be used for new patient stratification and disease prognosis.
Collapse
Affiliation(s)
- Kristina L Buschur
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
- Division of General Medicine, Columbia University Medical Center, New York, NY, USA
- New York Genome Center, New York, NY, USA
| | - Craig Riley
- Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aabida Saferali
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Grace Zhang
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Francois Aguet
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Peter Durda
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - W Craig Johnson
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Silva Kasela
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Yongmei Liu
- Department of Medicine, Division of Cardiology, Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Ani Manichaikul
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Josh Smith
- Northwest Genome Center, University of Washington, Seattle, WA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Russell P Tracy
- Department of Pathology and Laboratory Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden
| | - R Graham Barr
- Division of General Medicine, Columbia University Medical Center, New York, NY, USA
| | - Frank Sciurba
- Division of Pulmonary Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA.
- Department of Epidemiology, University of Florida, 2004 Mowry Rd, Gainesville, FL, 32603, USA.
| |
Collapse
|
35
|
Bhat A, Abu R, Jagadesan S, Vellichirammal NN, Pendyala VV, Yu L, Rudebush TL, Guda C, Zucker IH, Kumar V, Gao L. Quantitative Proteomics Identifies Novel Nrf2-Mediated Adaptative Signaling Pathways in Skeletal Muscle Following Exercise Training. Antioxidants (Basel) 2023; 12:151. [PMID: 36671013 PMCID: PMC9854705 DOI: 10.3390/antiox12010151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Exercise training (ExT) improves skeletal muscle health via multiple adaptative pathways. Nrf2 is a principal antioxidant transcription factor responsible for maintaining intracellular redox homeostasis. In this study, we hypothesized that Nrf2 is essential for adaptative responses to ExT and thus beneficial for muscle. Experiments were carried out on male wild type (WT) and iMS-Nrf2flox/flox inducible muscle-specific Nrf2 (KO) mice, which were randomly assigned to serve as sedentary controls (Sed) or underwent 3 weeks of treadmill ExT thus generating four groups: WT-Sed, WT-ExT, KO-Sed, and KO-ExT groups. Mice were examined for exercise performance and in situ tibialis anterior (TA) contractility, followed by mass spectrometry-based proteomics and bioinformatics to identify differentially expressed proteins and signaling pathways. We found that maximal running distance was significantly longer in the WT-ExT group compared to the WT-Sed group, whereas this capacity was impaired in KO-ExT mice. Force generation and fatigue tolerance of the TA were enhanced in WT-ExT, but reduced in KO-ExT, compared to Sed controls. Proteomic analysis further revealed that ExT upregulated 576 proteins in WT but downregulated 207 proteins in KO mice. These proteins represent pathways in redox homeostasis, mitochondrial respiration, and proteomic adaptation of muscle to ExT. In summary, our data suggest a critical role of Nrf2 in the beneficial effects of SkM and adaptation to ExT.
Collapse
Affiliation(s)
- Anjali Bhat
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Rafay Abu
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Biochemistry, Glocal University, Saharanpur 247121, Uttar Pradesh, India
| | | | | | - Ved Vasishtha Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Li Yu
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Tara L. Rudebush
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Irving H. Zucker
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Genetics, Cell Biology & Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lie Gao
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
36
|
Jiang Q, Palombo V, Sherlock DN, Vailati-Riboni M, D’Andrea M, Yoon I, Loor JJ. Alterations in ileal transcriptomics during an intestinal barrier challenge in lactating Holstein cows fed a Saccharomyces cerevisiae fermentation product identify potential regulatory processes. J Anim Sci 2023; 101:skad277. [PMID: 37616596 PMCID: PMC10576520 DOI: 10.1093/jas/skad277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
Stressors such as lack of access to feed, hot temperatures, transportation, and pen changes can cause impairment of ruminal and intestinal barrier function, also known as "leaky gut". Despite the known benefits of some nutritional approaches during periods of stress, little is understood regarding the underlying mechanisms, especially in dairy cows. We evaluated the effect of feeding a Saccharomyces cerevisiae fermentation product (SCFP; NutriTek, Diamond V, Cedar Rapids, IA) on the ileal transcriptome in response to feed restriction (FR), an established model to induce intestinal barrier dysfunction. Multiparous cows [97.1 ± 7.6 days in milk (DIM); n = 5/group] fed a control diet or control plus 19 g/d SCFP for 9 wk were subjected to an FR challenge for 5 d during which they were fed 40% of their ad libitum intake from the 7 d before FR. All cows were slaughtered at the end of FR, and ileal scrapping RNA was used for RNAseq (NovaSeq 6000, 100 bp read length). Statistical analysis was performed in R and bioinformatics using the KEGG (Kyoto Encyclopedia of Genes and Genomes) and GO databases. One thousand six hundred and ninety-six differentially expressed genes (DEG; FDR-adjusted P ≤ 0.10) were detected in SCFP vs. control, with 451 upregulated and 1,245 downregulated. "Mucin type O-glycan biosynthesis" was the top downregulated KEGG pathway due to downregulation of genes catalyzing glycosylation of mucins (GCNT3, GALNT5, B3GNT3, GALNT18, and GALNT14). An overall downregulation of cell and tissue structure genes (e.g., extracellular matrix proteins) associated with collagen (COL6A1, COL1A1, COL4A1, COL1A2, and COL6A2), laminin (LAMB2), and integrins (ITGA8, ITGA2, and ITGA5) also were detected with SCFP. A subset of DEG enriched in the GO term "extracellular exosome" and "extracellular space". Chemokines within "Cytokine-cytokine receptor interaction pathways" such as CCL16, CCL21, CCL14, CXCL12, and CXCL14 were downregulated by SCFP. The "Glutathione metabolism" pathway was upregulated by SCFP, including GSTA1 and RRM2B among the top upregulated genes, and GSTM1 and GPX8 as top downregulated genes. There were 9 homeobox transcription factors among the top 50 predicted transcription factors using the RNAseq DEG dataset, underscoring the importance of cell differentiation as a potential target of dietary SCFP. Taken together, SCFP downregulated immune-, ECM-, and mucin synthesis-related genes during FR. Homeobox transcription factors appear important for the transcriptional response of SCFP.
Collapse
Affiliation(s)
- Qianming Jiang
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | - Danielle N Sherlock
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| | | | | | | | - Juan J Loor
- Department of Animal Sciences, University of Illinois, Urbana 61801, IL, USA
| |
Collapse
|
37
|
Vrettou S, Wirth B. S-Glutathionylation and S-Nitrosylation in Mitochondria: Focus on Homeostasis and Neurodegenerative Diseases. Int J Mol Sci 2022; 23:15849. [PMID: 36555492 PMCID: PMC9779533 DOI: 10.3390/ijms232415849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022] Open
Abstract
Redox post-translational modifications are derived from fluctuations in the redox potential and modulate protein function, localization, activity and structure. Amongst the oxidative reversible modifications, the S-glutathionylation of proteins was the first to be characterized as a post-translational modification, which primarily protects proteins from irreversible oxidation. However, a growing body of evidence suggests that S-glutathionylation plays a key role in core cell processes, particularly in mitochondria, which are the main source of reactive oxygen species. S-nitrosylation, another post-translational modification, was identified >150 years ago, but it was re-introduced as a prototype cell-signaling mechanism only recently, one that tightly regulates core processes within the cell’s sub-compartments, especially in mitochondria. S-glutathionylation and S-nitrosylation are modulated by fluctuations in reactive oxygen and nitrogen species and, in turn, orchestrate mitochondrial bioenergetics machinery, morphology, nutrients metabolism and apoptosis. In many neurodegenerative disorders, mitochondria dysfunction and oxidative/nitrosative stresses trigger or exacerbate their pathologies. Despite the substantial amount of research for most of these disorders, there are no successful treatments, while antioxidant supplementation failed in the majority of clinical trials. Herein, we discuss how S-glutathionylation and S-nitrosylation interfere in mitochondrial homeostasis and how the deregulation of these modifications is associated with Alzheimer’s, Parkinson’s, amyotrophic lateral sclerosis and Friedreich’s ataxia.
Collapse
Affiliation(s)
- Sofia Vrettou
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
| | - Brunhilde Wirth
- Institute of Human Genetics, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, 50931 Cologne, Germany
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
38
|
Santativongchai P, Srisuksai K, Parunyakul K, Thiendedsakul P, Lertwatcharasarakul P, Fungfuang W, Tulayakul P. Effects of Crocodile Oil ( Crocodylus siamensis) on Liver Enzymes: Cytochrome P450 and Glutathione S-Transferase Activities in High-fat DietFed Rats. Vet Med Int 2022; 2022:9990231. [PMID: 36457890 PMCID: PMC9708360 DOI: 10.1155/2022/9990231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/06/2022] [Accepted: 11/08/2022] [Indexed: 07/30/2023] Open
Abstract
Crocodile oil is a highly effective treatment for ailments ranging from skin conditions to cancer. However, the effects of the oil on liver detoxification pathways are not well studied. This study aimed to investigate the effects of crocodile oil on the detoxification enzyme activities and the mRNA expressions of cytochrome P450 1A2 (CYP1A2), cytochrome P450 2E1 (CYP2E1), and glutathione S-transferase (GST) in rats. The rats were divided into four groups (n = 7/group): rats received a standard diet (C), a high-fat diet or HFD (H), and HFD with 1 ml (HCO1) and 3 ml (HCO3) of the oil per kg body weight. Interestingly, the oil yields from this study presented alpha-linolenic acid (0.96%) at similar levels compared with fish oil. The results revealed that HFD significantly increased the activity and relative gene expression of CYP1A2 in the H group (P < 0.05), whereas 3% crocodile oil normalized the enzyme activities compared to the C group. This suggested inhibiting the HFD-induced expression of CYP1A2 mediated by the omega-3 fatty acids found in the oil. Also, crocodile oil supplementation did not reduce the activities of GST. However, the relative gene expression of GSTA1 was significantly decreased (P < 0.05) in the HCO1 and HCO3 groups compared to the H group, which might be attributed to the lower lipid peroxidation that occurred in the liver tissues. Therefore, it could be suggested that using crocodile oil could help in liver detoxification through the CYP1A2 even when offered with a HFD.
Collapse
Affiliation(s)
- Pitchaya Santativongchai
- Bio-Veterinary Sciences (International Program), Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Krittika Srisuksai
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kongphop Parunyakul
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Piriyaporn Thiendedsakul
- Animal Health and Biomedical Science, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Preeda Lertwatcharasarakul
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Wirasak Fungfuang
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Kasetsart University Research and Development Institute (KURDI), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
39
|
Bahadur A, Li T, Sajjad W, Nasir F, Zia MA, Wu M, Zhang G, Liu G, Chen T, Zhang W. Transcriptional and biochemical analyses of Planomicrobium strain AX6 from Qinghai-Tibetan Plateau, China, reveal hydrogen peroxide scavenging potential. BMC Microbiol 2022; 22:265. [PMID: 36335290 PMCID: PMC9636757 DOI: 10.1186/s12866-022-02677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The bacterial mechanisms responsible for hydrogen peroxide (H2O2) scavenging have been well-reported, yet little is known about how bacteria isolated from cold-environments respond to H2O2 stress. Therefore, we investigated the transcriptional profiling of the Planomicrobium strain AX6 strain isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China, in response to H2O2 stress aiming to uncover the molecular mechanisms associated with H2O2 scavenging potential. METHODS We investigated the H2O2-scavenging potential of the bacterial Planomicrobium strain AX6 isolated from the cold-desert ecosystem in the Qaidam Basin, Qinghai-Tibet Plateau, China. Furthermore, we used high-throughput RNA-sequencing to unravel the molecular aspects associated with the H2O2 scavenging potential of the Planomicrobium strain AX6 isolate. RESULTS In total, 3,427 differentially expressed genes (DEGs) were identified in Planomicrobium strain AX6 isolate in response to 4 h of H2O2 (1.5 mM) exposure. Besides, Kyoto Encyclopedia of Genes and Genomes pathway and Gene Ontology analyses revealed the down- and/or up-regulated pathways following H2O2 treatment. Our study not only identified the H2O2 scavenging capability of the strain nevertheless also a range of mechanisms to cope with the toxic effect of H2O2 through genes involved in oxidative stress response. Compared to control, several genes coding for antioxidant proteins, including glutathione peroxidase (GSH-Px), Coproporphyrinogen III oxidase, and superoxide dismutase (SOD), were relatively up-regulated in Planomicrobium strain AX6, when exposed to H2O2. CONCLUSIONS Overall, the results suggest that the up-regulated genes responsible for antioxidant defense pathways serve as essential regulatory mechanisms for removing H2O2 in Planomicrobium strain AX6. The DEGs identified here could provide a competitive advantage for the existence of Planomicrobium strain AX6 in H2O2-polluted environments.
Collapse
Affiliation(s)
- Ali Bahadur
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
| | - Ting Li
- School of Ecology and Environmental Science, Yunnan University, Kunming, 650091, China
| | - Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences (CAS), Changchun, 130102, Jilin Province, China
| | - Muhammad Amir Zia
- National Institute for Genomics and Advanced Biotechnology (NIGAB), National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Minghui Wu
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu Province, Lanzhou, 730000, China.
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
40
|
Zhao Y, Wang D, Zhang CY, Liu YJ, Wang XH, Shi MY, Wang W, Shen XL, He XF. Individual and combined effects of the GSTM1, GSTT1, and GSTP1 polymorphisms on leukemia risk: An updated meta-analysis. Front Genet 2022; 13:976673. [DOI: 10.3389/fgene.2022.976673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Several meta-analyses have analyzed the association of GSTM1 present/null, GSTT1 present/null, and GSTP1 IIe105Val polymorphisms with leukemia risk. However, the results of these meta-analyses have been conflicting. Moreover, they did not evaluate the combined effects of the three aforementioned gene polymorphisms. Furthermore, they did not appraise the credibility of the positive results. Finally, many new studies have been published. Therefore, an updated meta-analysis was conducted.Objectives: To further explore the relationship of the three aforementioned gene polymorphisms with leukemia risk.Methods: The crude odds ratios (ORs) and 95% confidence intervals (CIs) were applied to evaluate the association of the individual and combined effects of the three aforementioned genes. Moreover, the false-positive report probability (FPRP) and Bayesian false discovery probability (BFDP) were applied to verify the credibility of these statistically significant associations.Results: Overall, the individual GSTM1, GSTT1, and GSTP1 IIe105Val polymorphisms added leukemia risk. On combining GSTM1 and GSTT1, GSTM1 and GSTP1, and GSTT1 and GSTP1 polymorphisms, positive results were also observed. However, no significant association was observed between the combined effects of these three polymorphisms with leukemia risk in the overall analysis. Moreover, when only selecting Hardy–Weinberg equilibrium (HWE) and medium- and high-quality studies, we came to similar results. However, when the FPRP and BFDP values were applied to evaluate the credibility of positive results, the significant association was only observed for the GSTT1 null genotype with leukemia risk in Asians (BFDP = 0.367, FPRP = 0.009).Conclusion: This study strongly suggests a significant increase in the risk of leukemia in Asians for the GSTT1 null genotype.
Collapse
|
41
|
Hurben AK, Tretyakova NY. Role of Protein Damage Inflicted by Dopamine Metabolites in Parkinson's Disease: Evidence, Tools, and Outlook. Chem Res Toxicol 2022; 35:1789-1804. [PMID: 35994383 PMCID: PMC10225972 DOI: 10.1021/acs.chemrestox.2c00193] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine is an important neurotransmitter that plays a critical role in motivational salience and motor coordination. However, dysregulated dopamine metabolism can result in the formation of reactive electrophilic metabolites which generate covalent adducts with proteins. Such protein damage can impair native protein function and lead to neurotoxicity, ultimately contributing to Parkinson's disease etiology. In this Review, the role of dopamine-induced protein damage in Parkinson's disease is discussed, highlighting the novel chemical tools utilized to drive this effort forward. Continued innovation of methodologies which enable detection, quantification, and functional response elucidation of dopamine-derived protein adducts is critical for advancing this field. Work in this area improves foundational knowledge of the molecular mechanisms that contribute to dopamine-mediated Parkinson's disease progression, potentially assisting with future development of therapeutic interventions.
Collapse
Affiliation(s)
- Alexander K. Hurben
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Natalia Y. Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Molecular interplay promotes amelioration by quercetin during experimental hepatic inflammation in rodents. Int J Biol Macromol 2022; 222:2936-2947. [DOI: 10.1016/j.ijbiomac.2022.10.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
43
|
Siddique YH, Naz F, Rahul, Varshney H. Comparative study of rivastigmine and galantamine on the transgenic Drosophila model of Alzheimer's disease. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2022; 3:100120. [PMID: 35992376 PMCID: PMC9389239 DOI: 10.1016/j.crphar.2022.100120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's Disease (AD) is characterized as a progressive neurodegenerative disease most commonly associated with memory deficits and cognitive decline. The formation of amyloid plaques and neurofibrillary tangles are important pathological markers of AD. The accumulation of amyloid plaques and neurofibrillary tangles leads to the loss of neurons including the cholinergic neurons thus decreasing the levels of acetylcholine (a neurotransmitter). To reduce the AD symptoms cholinesterase inhibitors are widely used to decrease the hydrolysis of acetylcholine released from presynaptic neurons. In the present study we have studied the effect of rivastigmine and galantamine (commonly used cholinesterase inhibitors) on the transgenic Drosophila model of AD expressing human Aβ-42 in the neurons. The effect of similar doses of rivastigmine and galantamine (i.e. 0.1,1 and 10 mM) was studied on the climbing ability, lifespan, oxidative stress markers, caspase 9 and 3, acetylcholinesterase activity and on the formation of Aβ-42 aggregates. The results suggest that the rivastigmine is more potent in reducing the oxidative stress and improving climbing ability of AD flies. Both the drugs were found to be effective in increasing the lifespan of AD flies. Galantamine was found to be a more potent inhibitor of acetylcholinesterase compared to rivastigmine. Galantamine prevents the formation of Aβ-42 aggregates more effectively compared to rivastigmine.
Collapse
Affiliation(s)
- Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Falaq Naz
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Rahul
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| | - Himanshi Varshney
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh, India
| |
Collapse
|
44
|
Tilsed CM, Fisher SA, Nowak AK, Lake RA, Lesterhuis WJ. Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of action. Front Oncol 2022; 12:960317. [PMID: 35965519 PMCID: PMC9372369 DOI: 10.3389/fonc.2022.960317] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Chemotherapy has historically been the mainstay of cancer treatment, but our understanding of what drives a successful therapeutic response remains limited. The diverse response of cancer patients to chemotherapy has been attributed principally to differences in the proliferation rate of the tumor cells, but there is actually very little experimental data supporting this hypothesis. Instead, other mechanisms at the cellular level and the composition of the tumor microenvironment appear to drive chemotherapy sensitivity. In particular, the immune system is a critical determinant of chemotherapy response with the depletion or knock-out of key immune cell populations or immunological mediators completely abrogating the benefits of chemotherapy in pre-clinical models. In this perspective, we review the literature regarding the known mechanisms of action of cytotoxic chemotherapy agents and the determinants of response to chemotherapy from the level of individual cells to the composition of the tumor microenvironment. We then summarize current work toward the development of dynamic biomarkers for response and propose a model for a chemotherapy sensitive tumor microenvironment.
Collapse
Affiliation(s)
- Caitlin M. Tilsed
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Scott A. Fisher
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - Anna K. Nowak
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- Medical School, University of Western Australia, Crawley, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, Nedlands, WA, Australia
| | - Richard A. Lake
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
| | - W. Joost Lesterhuis
- National Centre for Asbestos Related Diseases, Institute for Respiratory Health, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, University of Western Australia, West Perth, WA, Australia
- *Correspondence: W. Joost Lesterhuis,
| |
Collapse
|
45
|
Wu J, Liu H, Wang H, Wang Y, Cheng Q, Zhao R, Gao H, Fang L, Zhu F, Xue B. iTRAQ-based quantitative proteomic analysis of the liver regeneration termination phase after partial hepatectomy in mice. J Proteomics 2022; 267:104688. [PMID: 35914716 DOI: 10.1016/j.jprot.2022.104688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/09/2022] [Accepted: 07/25/2022] [Indexed: 01/17/2023]
Abstract
Liver regeneration (LR) is an important biological process after liver injury. As the "brake" in the process of LR, the termination phase of LR not only suppresses the continuous increase in liver volume but also effectively promotes the recovery of liver function. However, the mechanisms underlying the termination phase of LR are still not clear. In our study, we used isobaric tags for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis to determine the protein expression profiles of livers in the termination phase of mouse LR after partial hepatectomy (PH). We found that the expression of 197 proteins increased gradually during LR; in addition, 187 proteins were upregulated and 264 proteins were downregulated specifically in the termination phase of LR. The GO analysis of the proteins revealed the upregulation of "cell-cell adhesion" and "translation" and the downregulation of the "oxidation-reduction process". The KEGG pathway analysis showed that "biosynthesis of antibiotics" and "ribosomes" were significantly upregulated, while "metabolic pathways" were significantly downregulated. These analyses indicated that the termination phase of LR mainly focuses on restoring cellular structure and function. Differentially expressed proteins such as SNX5 were also screened out from biological processes. SIGNIFICANCE: The key regulatory factors in the termination phase of LR were studied by iTRAQ-based proteomics to lay a foundation for further study of the molecular mechanism and biomarkers of the termination phase of LR. This study will guide the clinical perioperative management of patients after hepatectomy.
Collapse
Affiliation(s)
- Jing Wu
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - He Liu
- General surgery Department, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Haiquan Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Yuqi Wang
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Qi Cheng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Ruochen Zhao
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Hongliang Gao
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.
| | - Feng Zhu
- General surgery Department, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China.
| | - Bin Xue
- Core Laboratory, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
46
|
Anetor GO, Nwobi NL, Igharo GO, Sonuga OO, Anetor JI. Environmental Pollutants and Oxidative Stress in Terrestrial and Aquatic Organisms: Examination of the Total Picture and Implications for Human Health. Front Physiol 2022; 13:931386. [PMID: 35936919 PMCID: PMC9353710 DOI: 10.3389/fphys.2022.931386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
There is current great international concern about the contribution of environmental pollution to the global burden of disease particularly in the developing, low- and medium-income countries. Industrial activities, urbanization, developmental projects as well as various increased anthropogenic activities involving the improper generation, management and disposal of pollutants have rendered today's environment highly polluted with various pollutants. These pollutants include toxic metals (lead, cadmium, mercury, arsenic), polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and diesel exhaust particles most of which appear to be ubiquitous as well as have long-term environmental persistence with a wide range of toxicities such as oxidative stress among others. Oxidative stress, which may arise from increased production of damaging free radicals emanating from increased pollutant burden and depressed bioavailability of antioxidant defenses causes altered biochemical and physiological mechanisms and has been implicated in all known human pathologies most of which are chronic. Oxidative stress also affects both flora and fauna and plants are very important components of the terrestrial environment and significant contributors of nutrients for both man and animals. It is also remarkable that the aquatic environment in which sea animals and creatures are resident is also highly polluted, leading to aquatic stress that may affect the survival of the aquatic animals, sharing in the oxidative stress. These altered terrestrial and aquatic environments have an overarching effect on human health. Antioxidants neutralize the damaging free radicals thus, they play important protective roles in the onset, progression and severity of the unmitigated generation of pollutants that ultimately manifest as oxidative stress. Consequently, human health as well as that of aquatic and terrestrial organisms may be protected from environmental pollution by mitigating oxidative stress and employing the principles of nutritional medicine, essentially based on antioxidants derived mainly from plants, which serve as the panacea of the vicious state of environmental pollutants consequently, the health of the population. Understanding the total picture of oxidative stress and integrating the terrestrial and aquatic effects of environmental pollutants are central to sustainable health of the population and appear to require multi-sectoral collaborations from diverse disciplinary perspectives; basically the environmental, agricultural and health sectors.
Collapse
Affiliation(s)
- Gloria Oiyahumen Anetor
- Department of Human Kinetics and Health Education, National Open University of Nigeria, Abuja, Nigeria
| | - Nnenna Linda Nwobi
- Department of Chemical Pathology, BenCarson School of Medicine, Babcock University, Ilishan, Nigeria
| | - Godwin Osaretin Igharo
- Department of Medical Laboratory Science, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin, Nigeria
| | | | - John Ibhagbemien Anetor
- Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
47
|
Bortolli APR, Vieira VK, Treco IC, Pascotto CR, Wendt GW, Lucio LC. GSTT1 and GSTM1 polymorphisms with human papillomavirus infection in women from southern Brazil: a case-control study. Mol Biol Rep 2022; 49:6467-6474. [PMID: 35507115 PMCID: PMC9065665 DOI: 10.1007/s11033-022-07475-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Important risk factors for the most common sexually transmitted infection (STI) in the world, human papillomavirus (HPV), include early sexual activity, use of contraceptives, tobacco smoking, and immunological and genetic factors. This study aimed to investigate the relationship between GSTM1 and GSTT1 polymorphisms and HPV infection and associated risk factors in a group of women assisted in the public health system of southwestern Paraná, Brazil. METHODS AND RESULTS A case-control study was designed with 21 women with HPV matched by age in the case group and 84 women without the virus in the control group. Viral detection was conducted via polymerase chain reaction (PCR) and GSTM1 and GSTT1 genotyping by Multiplex PCR. The results showed that the GSTT1 null allele was a protective factor against infection (ORadj 0.219; 95% CI 0.078-0.618; p = 0.004). No relationship was observed for the GSTM1 gene. Smoking was defined as a risk factor (ORadj 3.678; 95% CI 1.111-12.171; p = 0.033), increasing the chances of HPV by up to 3.6 times. CONCLUSION This study showed, for the first time, the relationship between GSTM1 and GSTT1 genetic polymorphisms and HPV. We found that this relationship protected women from southern Brazil from viral infection, but not from susceptibility.
Collapse
Affiliation(s)
- Ana Paula Reolon Bortolli
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Valquíria Kulig Vieira
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Indianara Carlotto Treco
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Claudicéia Risso Pascotto
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Guilherme Welter Wendt
- Centro de Ciências da Saúde, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
| | - Léia Carolina Lucio
- Graduate Courses in Sciences Applied to Health, Universidade Estadual do Oeste do Paraná, Francisco Beltrão, Paraná, Brazil
- Department of Health Sciences, Universidade Estadual do Oeste do Paraná, PR-182 Km 02, Bairro Água Branca, Francisco Beltrão, Paraná, Brazil
| |
Collapse
|
48
|
Chen X, Luo Y. Association of GSTM1, GSTT1, and GSTP1 Ile105Val polymorphisms with risk of age-related macular degeneration: a meta-analysis. Ophthalmic Genet 2022; 43:615-621. [PMID: 35730167 DOI: 10.1080/13816810.2022.2090009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND This study determined to evaluate the association between glutathione S-transferase (GST) polymorphisms, namely, GSTM1 (rs1183423000, presence/absence), GSTT1 (rs1601993659, presence/absence), and GSTP1 Ile105Val (rs1695, A>G) polymorphisms, and AMD risk. METHODS We searched PubMed, Embase, and Web of Science databases from January 2000 to June 2021. The odds ratio (OR) and 95% confidence interval (95% CI) were used as effect sizes. Heterogeneity was assessed using the heterogeneity metric I2. RESULTS Five relevant studies involving 875 patients with AMD and 966 healthy controls were included in this meta-analysis, four studies concerning GSTM1 null polymorphism, four studies regarding GSTT1 null polymorphism, and four studies on GSTP1 Ile105Val polymorphism. The GSTM1 null polymorphism, GSTT1 null polymorphism and GSTP1 Ile105Val polymorphism were not significantly associated with AMD risk (OR 1.13, 95% CI 0.73-1.75, p = 0.59; OR 1.05, 95% CI 0.81-1.36, p = 0.69; OR 1.20, 95% CI 0.97-1.47, p = 0.09, respectively). There was no association between the combined GSTM1 null genotype and GSTT1 null genotype and AMD risk (OR 1.16, 95% CI 0.42-3.17, p = 0.77). Subgroup analyses revealed that the GSTM1 null genotype was associated with an increased risk of AMD in the Turkish population (OR 1.67, 95% CI 1.13-2.47, p = 0.01) and the GSTM1 null genotype was associated with a decreased incidence of non-exudative AMD (OR 0.72, 95% CI 0.52-0.99, p = 0.01). There was no obvious risk of publication bias found. CONCLUSIONS This meta-analysis indicated that there were no significant associations between GSTM1, GSTT1, and GSTP1 Ile105Val polymorphisms and AMD risk.
Collapse
Affiliation(s)
- Xiaodong Chen
- Department of Ophthalmology and Optometry, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yunfeng Luo
- Jiangxi Research Institute of Ophthalmology and Visual Sciences, Jiangxi Clinical Research Center for Ophthalmic Disease, Jiangxi Provincial Key Laboratory for Ophthalmology, Affiliated Eye Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
49
|
Han X, Wang Y, Huang Y, Wang X, Choo J, Chen L. Fluorescent probes for biomolecule detection under environmental stress. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128527. [PMID: 35231812 DOI: 10.1016/j.jhazmat.2022.128527] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The use of fluorescent probes in visible detection has been developed over the last several decades. Biomolecules are essential in the biological processes of organisms, and their distribution and concentration are largely influenced by environmental factors. Significant advances have occurred in the applications of fluorescent probes for the detection of the dynamic localization and quantity of biomolecules during various environmental stress-induced physiological and pathological processes. Herein, we summarize representative examples of small molecule-based fluorescent probes that provide bimolecular information when the organism is under environmental stress. The discussion includes strategies for the design of smart small-molecule fluorescent probes, in addition to their applications in biomolecule imaging under environmental stresses, such as hypoxia, ischemia-reperfusion, hyperthermia/hypothermia, organic/inorganic chemical exposure, oxidative/reductive stress, high glucose stimulation, and drug treatment-induced toxicity. We believe that comprehensive insight into the beneficial applications of fluorescent probes in biomolecule detection under environmental stress should enable the further development and effective application of fluorescent probes in the biochemical and biomedical fields.
Collapse
Affiliation(s)
- Xiaoyue Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Present: Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, UK; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Huang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; School of Pharmacy, Binzhou Medical University, Yantai 264003, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
50
|
Hemlata, Singh J, Bhardwaj A, Kumar A, Singh G, Priya K, Giri SK. Comparative frequency distribution of glutathione S-transferase mu (GSTM1) and theta (GSTT1) allelic forms in Himachal Pradesh population. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00298-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Glutathione S-transferases (GSTs) are a class of important Phase II detoxification enzymes that catalyze the conjugation of glutathione and xenobiotic compounds (environmental carcinogens, pollutants and drugs) to protect against oxidative stress. GSTT1 and GSTM1 genetic polymorphisms have been extensively studied, and null genotypes or homozygous deletions have been reported in various populations. Previous studies have suggested that those who are homozygous null at the GSTM1 or GSTT1 loci are more susceptible and have a higher risk of cancers linked to environmental pollutants and drug-induced toxicity. Our study focused on GSTM1 and GSTT1 null allele frequency in the Doon population of Himachal Pradesh (India) with a comparison across other Inter and Intra-Indian ethnic groups to predict variation in the possible susceptible status.
Material and methods
Genomic DNA samples were extracted from 297 healthy unrelated individuals by a ReliaPrep™ Blood gDNA Miniprep kit (Promega, USA), and genotyped for allelic variation in GSTM1 and GSTT1 genotypes by multiplex polymerase chain reaction. Fisher's exact test was applied using SPSS.20 to analyze the genotypic distribution of GSTM1 and GSTT1 null alleles in male and female of Doon region (Solan) Himachal Pradesh.
Results
In our study, the frequency distribution of the homozygous null genotypes of GSTM1, GSTT1 individually as well as combined was found as 33.3%, 32% and 9%, respectively. Upon gender-wise comparison, a non-significant distribution (p > 0.05) for null genotypes of GSTM1 (32.8% and 35.4%, OR-0.77, 95% CI 0.42–1.41), GSTT1 (33.2% and 27.7%, OR-1.12, 95% CI 0.63–2.0) individually and combined GSTM1 and GSTT1 (10.8% and 3.7%, OR-0.31, 95% CI 0.07–1.42) were observed in studied population.
Conclusions
In our studied population, the frequency of GSTM1 null genotypes was found deviated from Inter- and Intra-Indian ethnic groups. However, the frequency of homozygous null type of GSTT1 was not significantly different, when compared to previous Indian studies, comparison with global ethnic groups showed deviation. Thus, our study has highlighted possible susceptibility risk to various xenobiotics in the Doon population of Himachal Pradesh, India.
Collapse
|