1
|
Barko K, Shelton MA, DePoy LM, Gayden-Kozel J, Kim SM, Puig S, Xue X, Parekh PK, Tseng GC, Williams BR, Oliver-Smith J, Zhu X, Freyberg Z, Logan RW. Sex-specific Regulation of Fentanyl Reward by the Circadian Transcription Factor NPAS2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.12.623242. [PMID: 39605449 PMCID: PMC11601467 DOI: 10.1101/2024.11.12.623242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Synthetic opioids like fentanyl are highly potent and prevalent in the illicit drug market, leading to tolerance, dependence, and opioid use disorder (OUD). Chronic opioid use disrupts sleep and circadian rhythms, which persist even during treatment and abstinence, increasing the risk of relapse. The body's molecular clock, regulated by transcriptional and translational feedback loops, controls various physiological processes, including the expression of endogenous opioids and their receptors. The circadian transcription factor NPAS2, highly expressed in the nucleus accumbens, may have a crucial function in opioid-related behaviors. Our study found sex-specific roles for NPAS2-mediated reward behaviors in male and female mice, including in fentanyl seeking and craving. We also identified specific cell types and transcriptional targets in the nucleus accumbens of both mice and humans by which NPAS2 may mediate the impact of fentanyl on brain physiology and in opioid reward-related behaviors. Ultimately, our findings begin to uncover the mechanisms underlying circadian rhythm dysfunction and opioid addiction.
Collapse
|
2
|
Nisbett KE, Vendruscolo LF, Koob GF. µ-Opioid receptor antagonism facilitates the anxiolytic-like effect of oxytocin in mice. Transl Psychiatry 2024; 14:125. [PMID: 38413576 PMCID: PMC10899625 DOI: 10.1038/s41398-024-02830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Mood and anxiety disorders are leading causes of disability worldwide and are major contributors to the global burden of diseases. Neuropeptides, such as oxytocin and opioid peptides, are important for emotion regulation. Previous studies have demonstrated that oxytocin reduced depression- and anxiety-like behavior in male and female mice, and opioid receptor activation reduced depression-like behavior. However, it remains unclear whether the endogenous opioid system interacts with the oxytocin system to facilitate emotion regulation in male and female mice. We hypothesized that opioid receptor blockade would inhibit the anxiolytic- and antidepressant-like effects of oxytocin. In this study, we systemically administered naloxone, a preferential μ-opioid receptor antagonist, and then intracerebroventricularly administered oxytocin. We then tested mice on the elevated zero maze and the tail suspension tests, respective tests of anxiety- and depression-like behavior. Contrary to our initial hypothesis, naloxone potentiated the anxiolytic-like, but not the antidepressant-like, effect of oxytocin. Using a selective μ-opioid receptor antagonist, D-Phe-Cys-Tyr-D-Trp-Arg-Thr-Pen-Thr-NH2, and a selective κ-opioid receptor antagonist, norbinaltorphimine, we demonstrate that μ-opioid receptor blockade potentiated the anxiolytic-like effect of oxytocin, whereas κ-opioid receptor blockade inhibited the oxytocin-induced anxiolytic-like effects. The present results suggest that endogenous opioids can regulate the oxytocin system to modulate anxiety-like behavior. Potential clinical implications of these findings are discussed.
Collapse
Affiliation(s)
- Khalin E Nisbett
- Graduate Program in Neuroscience, Graduate College, University of Illinois Chicago, Chicago, IL, 60607, USA.
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA.
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA.
| | - Leandro F Vendruscolo
- Stress & Addiction Neuroscience Unit, National Institute on Drug Abuse Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore, MD, 21224, USA
| | - George F Koob
- Neurobiology of Addiction Section, Integrative Neuroscience Research Branch, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD, 21224, USA
| |
Collapse
|
3
|
Kumar GA, Puthenveedu MA. Diversity and specificity in location-based signaling outputs of neuronal GPCRs. Curr Opin Neurobiol 2022; 76:102601. [PMID: 35797808 PMCID: PMC11474636 DOI: 10.1016/j.conb.2022.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 11/30/2022]
Abstract
The common mechanisms by which members of the G protein-coupled receptor (GPCR) family respond to neurotransmitters in the brain have been well studied. However, it is becoming increasingly clear that GPCRs show great diversity in their intracellular location, interacting partners and effectors, and signaling consequences. Here we will discuss recent studies on the diversity of location, effectors, and signaling of GPCRs, and how these could interact to generate specific spatiotemporal patterns of GPCR signaling in cells.
Collapse
Affiliation(s)
- G Aditya Kumar
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI 48109, USA. https://twitter.com/ityadi_
| | | |
Collapse
|
4
|
Quintana GR, Mac Cionnaith CE, Pfaus JG. Behavioral, Neural, and Molecular Mechanisms of Conditioned Mate Preference: The Role of Opioids and First Experiences of Sexual Reward. Int J Mol Sci 2022; 23:8928. [PMID: 36012194 PMCID: PMC9409009 DOI: 10.3390/ijms23168928] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/20/2022] Open
Abstract
Although mechanisms of mate preference are thought to be relatively hard-wired, experience with appetitive and consummatory sexual reward has been shown to condition preferences for partner related cues and even objects that predict sexual reward. Here, we reviewed evidence from laboratory species and humans on sexually conditioned place, partner, and ejaculatory preferences in males and females, as well as the neurochemical, molecular, and epigenetic mechanisms putatively responsible. From a comprehensive review of the available data, we concluded that opioid transmission at μ opioid receptors forms the basis of sexual pleasure and reward, which then sensitizes dopamine, oxytocin, and vasopressin systems responsible for attention, arousal, and bonding, leading to cortical activation that creates awareness of attraction and desire. First experiences with sexual reward states follow a pattern of sexual imprinting, during which partner- and/or object-related cues become crystallized by conditioning into idiosyncratic "types" that are found sexually attractive and arousing. These mechanisms tie reward and reproduction together, blending proximate and ultimate causality in the maintenance of variability within a species.
Collapse
Affiliation(s)
- Gonzalo R. Quintana
- Departamento de Psicología y Filosofía, Facultad de Ciencias Sociales y Jurídicas, Universidad de Tarapacá, Arica 1000007, Chile
| | - Conall E. Mac Cionnaith
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC H4B1R6, Canada
| | - James G. Pfaus
- Department of Psychology and Life Sciences, Faculty of Humanities, Charles University, 182 00 Prague, Czech Republic
- Division of Sexual Neuroscience, Center for Sexual Health and Intervention, Czech National Institute of Mental Health, 250 67 Klecany, Czech Republic
| |
Collapse
|
5
|
Gopalakrishnan L, Chatterjee O, Ravishankar N, Suresh S, Raju R, Mahadevan A, Prasad TSK. Opioid receptors signaling network. J Cell Commun Signal 2021; 16:475-483. [PMID: 34724150 DOI: 10.1007/s12079-021-00653-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022] Open
Abstract
Opioid receptors belong to the class A G-protein-coupled receptors and are activated by alkaloid opiates such as morphine, and endogenous ligands such as endorphins and enkephalins. Opioid receptors are widely distributed in the human body and are involved in numerous physiological processes through three major classical opioid receptor subtypes; the mu, delta and kappa along with a lesser characterized subtype, opioid receptor-like (ORL1). Opioids are the most potent analgesics and have been extensively used as a therapeutic drug for the treatment of pain and related disorders. Chronic administration of clinically used opioids is associated with adverse effects such as drug tolerance, addiction and constipation. Several investigations attempted to identify the molecular signaling networks associated with endogenous as well as synthetic opiates, however, there is a paucity of a cumulative depiction of these signaling events. Here, we report a systemic collection of downstream molecules pertaining to four subtypes of opioid receptors (MOR, KOR, DOR and ORL1) in the form of a signaling pathway map. We manually curated reactions induced by the activation of opioid receptors from the literature into five categories- molecular association, activation/inhibition, catalysis, transport, and gene regulation. This led to a dataset of 180 molecules, which is collectively represented in the opioid receptor signaling network following NetPath criteria. We believe that the public availability of an opioid receptor signaling pathway map can accelerate biomedical research in this area because of its high therapeutic significance. The opioid receptors signaling pathway map is uploaded to a freely available web resource, WikiPathways enabling ease of access ( https://www.wikipathways.org/index.php/Pathway:WP5093 ).
Collapse
Affiliation(s)
- Lathika Gopalakrishnan
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Manipal Academy of Higher Education (MAHE), Manipal, 576 104, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575 018, India
| | - Oishi Chatterjee
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India.,Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575 018, India.,Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, 690 525, India
| | - Namitha Ravishankar
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | - Sneha Suresh
- Institute of Bioinformatics, International Tech Park, Bangalore, 560 066, India
| | - Rajesh Raju
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575 018, India.
| | - Anita Mahadevan
- Department of Neuropathology, National Institute of Mental Health and Neurosciences, Bangalore, 560 029, India.,Human Brain Tissue Repository, National Institute of Mental Health and Neurosciences, Neurobiology Research Centre, Bangalore, 560 029, India
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed To Be University), Mangalore, 575 018, India.
| |
Collapse
|
6
|
Khalid E, Chang JP. β-Arrestin-dependent signaling in GnRH control of hormone secretion from goldfish gonadotrophs and somatotrophs. Gen Comp Endocrinol 2020; 287:113340. [PMID: 31778712 DOI: 10.1016/j.ygcen.2019.113340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022]
Abstract
In goldfish, two native isoforms of gonadotropin-releasing hormone (GnRH2 and GnRH3) stimulate luteinizing hormone (LH) and growth hormone (GH) release from pituitary cells through activation of cell-surface GnRH-receptors (GnRHRs) on gonadotrophs and somatotrophs. Interestingly, GnRH2 and GnRH3 induce LH and GH release via non-identical post-receptor signal transduction pathways in a ligand- and cell-type-selective manner. In this study, we examined the involvement of β-arrestins in the control of GnRH-induced LH and GH secretion from dispersed goldfish pituitary cells. Treatment with Barbadin, which interferes with β-arrestin and β2-adaptin subunit interaction, reduced LH responses to GnRH2 and GnRH3, as well as GH responses to GnRH2; but enhanced GnRH3-induced GH secretion. Barbadin also had positive influences on basal hormone release, and basal GH release in particular, as well as basal activity of extracellular signal-regulated kinase (ERK) and GnRH-induced ERK activation. These findings indicate that β-arrestins play permissive roles in the control of GnRH-stimulated LH release. However, in somatotrophs, β-arrestins, perhaps by mediating agonist-selective endosomal trafficking of engaged GnRHRs, participate in GnRH-isoform-specific GH release responses (stimulatory and inhibitory for GnRH2-GnRHR and GnRH3-GnRHR activation, respectively). The correlative stimulatory influences of Barbadin on basal hormone release and ERK activation suggest that β-arrestins may negatively regulate basal secretion through modulation of basal ERK activity. These results provide the first direct evidence of a role for β-arrestins in hormone secretion from an untransformed primary pituitary cell model, and establish these proteins as important receptor-proximal players in mediating functional selectivity downstream of goldfish GnRHRs.
Collapse
Affiliation(s)
- Enezi Khalid
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada.
| |
Collapse
|
7
|
Puryear CB, Brooks J, Tan L, Smith K, Li Y, Cunningham J, Todtenkopf MS, Dean RL, Sanchez C. Opioid receptor modulation of neural circuits in depression: What can be learned from preclinical data? Neurosci Biobehav Rev 2020; 108:658-678. [DOI: 10.1016/j.neubiorev.2019.12.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022]
|
8
|
Nam H, Chandra R, Francis TC, Dias C, Cheer JF, Lobo MK. Reduced nucleus accumbens enkephalins underlie vulnerability to social defeat stress. Neuropsychopharmacology 2019; 44:1876-1885. [PMID: 31132785 PMCID: PMC6784997 DOI: 10.1038/s41386-019-0422-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/24/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Enkephalins, endogenous ligands for delta opioid receptors (DORs), are highly enriched in the nucleus accumbens (NAc). They are implicated in depression but their role in the NAc, a critical brain region for motivated behavior, is not fully investigated. To provide insight into enkephalin function we used a chronic social defeat stress paradigm, where animals are either categorized as susceptible or resilient to stress based on their performance in a social interaction test. Compared to controls, susceptible animals showed reduced enkephalin levels in the NAc. Such decrease in enkephalin levels is not due to a change in mRNA of its precursor protein, proenkephalin, in susceptible mice but is consistent with increased mRNA levels of enkephalinases in the NAc of susceptible animals. Systemic administration of enkephalinase inhibitors or NAc infusion of the DOR agonist, SNC80, caused a resilient outcome to CSDS. Both treatments increased phosphorylation of ERK, which was downregulated by social defeat stress. To further validate these results, we also used Q175 knock-in mice, an animal model of Huntington's disease in which enkephalin levels are reduced in striatum and comorbidity with mood disorders is common. Consistent with data in wild-type mice, Q175 animals showed reduced enkephalin levels in the NAc and enhanced susceptibility to a social defeat stress. Overall, our data implicate that depression-like behavior induced by social defeat stress arises from disrupted DOR signaling resulting from lowered levels of enkephalins, which is partly mediated through elevated expression of enkephalinases.
Collapse
Affiliation(s)
- Hyungwoo Nam
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ramesh Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - T Chase Francis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
- Synaptic Plasticity Section, National Institute on Drug Abuse Intramural Research Program, Baltimore, MD, USA
| | - Caroline Dias
- Department of Neuroscience, ICAHN School of Medicine at Mount Sinai, New York, NY, USA
- Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mary Kay Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
9
|
Randesi M, Contoreggi NH, Zhou Y, Rubin BR, Bellamy JR, Yu F, Gray JD, McEwen BS, Milner TA, Kreek MJ. Sex Differences in Neuroplasticity- and Stress-Related Gene Expression and Protein Levels in the Rat Hippocampus Following Oxycodone Conditioned Place Preference. Neuroscience 2019; 410:274-292. [PMID: 31071414 DOI: 10.1016/j.neuroscience.2019.04.047] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/29/2019] [Accepted: 04/24/2019] [Indexed: 12/13/2022]
Abstract
Prescription opioid abuse is a serious public health issue. Recently, we showed that female and male Sprague-Dawley rats acquire conditioned place preference (CPP) to the mu opioid receptor agonist oxycodone. Anatomical analysis of the hippocampus from these rats unveiled sex differences in the opioid system in a way that would support excitation and opiate associative learning processes especially in females. In this study, we examined the expression and protein densities of opioid, plasticity, stress and related kinase and signaling molecules in the hippocampus of female and male rats following oxycodone CPP. Oxycodone CPP females have: a) increases in ARC (activity regulated cytoskeletal-associated protein)-immunoreactivity (ir) in CA3 pyramidal cells; b) decreases in Npy (neuropeptide Y) gene expression in the medial hippocampus but higher numbers of NPY-containing hilar interneurons compared to males; c) increases in Crhr2 (corticotropin releasing factor receptor 2) expression in CA2/3; d) increases in Akt1 (AKT serine/threonine kinase 1) expression in medial hippocampus; and e) decreases in phosphorylated MAPK (mitogen activated protein kinase)-ir in CA1 and dentate gyrus. Oxycodone CPP males have: a) increases in Bdnf (brain derived-neurotrophic factor) expression, which is known to be produced in granule cells, relative to females; b) elevated Mapk1 expression and pMAPK-ir in the dentate hilus which harbors newly generated granule cells; and c) increases in CRHR1-ir in CA3 pyramidal cell soma. These sex-specific changes in plasticity, stress and kinase markers in hippocampal circuitry parallel previously observed sex differences in the opioid system after oxycodone CPP.
Collapse
Affiliation(s)
- Matthew Randesi
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Natalina H Contoreggi
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Yan Zhou
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Batsheva R Rubin
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Julia R Bellamy
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Fangmin Yu
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY 10065, United States of America; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America.
| | - Mary Jeanne Kreek
- The Laboratory of the Biology of Addictive Diseases, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| |
Collapse
|
10
|
Abstract
We previously developed a model of opioid-induced neuroplasticity in the peripheral terminal of the nociceptor that could contribute to opioid-induced hyperalgesia, type II hyperalgesic priming. Repeated administration of mu-opioid receptor (MOR) agonists, such as DAMGO, at the peripheral terminal of the nociceptor, induces long-lasting plasticity expressed, prototypically as opioid-induced hyperalgesia and prolongation of prostaglandin E2-induced hyperalgesia. In this study, we evaluated the mechanisms involved in the maintenance of type II priming. Opioid receptor antagonist, naloxone, induced hyperalgesia in DAMGO-primed paws. When repeatedly injected, naloxone-induced hyperalgesia, and hyperalgesic priming, supporting the suggestion that maintenance of priming involves changes in MOR signaling. However, the knockdown of MOR with oligodeoxynucleotide antisense did not reverse priming. Mitogen-activated protein kinase and focal adhesion kinase, which are involved in the Src signaling pathway, previously implicated in type II priming, also inhibited the expression, but not maintenance of priming. However, when Src and mitogen-activated protein kinase inhibitors were coadministered, type II priming was reversed, in male rats. A second model of priming, latent sensitization, induced by complete Freund's adjuvant was also reversed, in males. In females, the inhibitor combination was only able to inhibit the expression and maintenance of DAMGO-induced priming when knockdown of G-protein-coupled estrogen receptor 30 (GPR30) in the nociceptor was performed. These findings demonstrate that the maintenance of DAMGO-induced type II priming, and latent sensitization is mediated by an interaction between, Src and MAP kinases, which in females is GPR30 dependent.
Collapse
|
11
|
Ghosh E, Srivastava A, Baidya M, Kumari P, Dwivedi H, Nidhi K, Ranjan R, Dogra S, Koide A, Yadav PN, Sidhu SS, Koide S, Shukla AK. A synthetic intrabody-based selective and generic inhibitor of GPCR endocytosis. NATURE NANOTECHNOLOGY 2017; 12:1190-1198. [PMID: 28967893 PMCID: PMC5722207 DOI: 10.1038/nnano.2017.188] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 08/13/2017] [Indexed: 05/06/2023]
Abstract
Beta-arrestins (βarrs) critically mediate desensitization, endocytosis and signalling of G protein-coupled receptors (GPCRs), and they scaffold a large number of interaction partners. However, allosteric modulation of their scaffolding abilities and direct targeting of their interaction interfaces to modulate GPCR functions selectively have not been fully explored yet. Here we identified a series of synthetic antibody fragments (Fabs) against different conformations of βarrs from phage display libraries. Several of these Fabs allosterically and selectively modulated the interaction of βarrs with clathrin and ERK MAP kinase. Interestingly, one of these Fabs selectively disrupted βarr-clathrin interaction, and when expressed as an intrabody, it robustly inhibited agonist-induced endocytosis of a broad set of GPCRs without affecting ERK MAP kinase activation. Our data therefore demonstrate the feasibility of selectively targeting βarr interactions using intrabodies and provide a novel framework for fine-tuning GPCR functions with potential therapeutic implications.
Collapse
Affiliation(s)
- Eshan Ghosh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ashish Srivastava
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Mithu Baidya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Punita Kumari
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Hemlata Dwivedi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Kumari Nidhi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Ravi Ranjan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| | - Shalini Dogra
- CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Akiko Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York 10016, USA
- Department of Medicine, New York University School of Medicine, New York 10016, USA
| | - Prem N Yadav
- CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Sachdev S Sidhu
- Department of Molecular Genetics, University of Toronto, Ontario MSS1A8, Canada
| | - Shohei Koide
- Laura and Isaac Perlmutter Cancer Center, New York University Langone Medical Center, New York 10016, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York 10016, USA
| | - Arun K Shukla
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
| |
Collapse
|
12
|
Macey TA, Bobeck EN, Suchland KL, Morgan MM, Ingram SL. Change in functional selectivity of morphine with the development of antinociceptive tolerance. Br J Pharmacol 2014; 172:549-61. [PMID: 24666417 DOI: 10.1111/bph.12703] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 03/14/2014] [Accepted: 03/18/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Opioids, such as morphine, are the most effective treatment for pain but their efficacy is diminished with the development of tolerance following repeated administration. Recently, we found that morphine activated ERK in opioid-tolerant but not in naïve rats, suggesting that morphine activation of μ-opioid receptors is altered following repeated morphine administration. Here, we have tested the hypothesis that μ-opioid receptor activation of ERK in the ventrolateral periaqueductal gray (vlPAG) is dependent on dynamin, a protein implicated in receptor endocytosis. EXPERIMENTAL APPROACH Rats were made tolerant to repeated microinjections of morphine into the vlPAG. The effects of dynamin on ERK activation and antinociception were assessed by microinjecting myristoylated dominant-negative dynamin peptide (Dyn-DN) or a scrambled control peptide into the vlPAG. Microinjection of a fluorescent dermorphin analogue (DERM-A594) into the vlPAG was used to monitor μ-opioid receptor internalization. KEY RESULTS Morphine did not activate ERK and Dyn-DN administration had no effect on morphine-induced antinociception in saline-pretreated rats. In contrast, morphine-induced ERK activation in morphine-pretreated rats that was blocked by Dyn-DN administration. Dyn-DN also inhibited morphine antinociception. Finally, morphine reduced DERM-A594 internalization only in morphine-tolerant rats indicating that μ-opioid receptors were internalized and unavailable to bind DERM-A594. CONCLUSIONS AND IMPLICATIONS Repeated morphine administration increased μ-opioid receptor activation of ERK signalling via a dynamin-dependent mechanism. These results demonstrate that the balance of agonist signalling to G-protein and dynamin-dependent pathways is altered, effectively changing the functional selectivity of the agonist-receptor complex. LINKED ARTICLES This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.
Collapse
Affiliation(s)
- T A Macey
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR, USA
| | | | | | | | | |
Collapse
|
13
|
Sun YL, Zhang XY, Sun T, He N, Li JY, Zhuang Y, Zeng Q, Yu J, Fang Q, Wang R. The anti-inflammatory potential of neuropeptide FF in vitro and in vivo. Peptides 2013; 47:124-32. [PMID: 23856454 DOI: 10.1016/j.peptides.2013.07.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 07/03/2013] [Accepted: 07/03/2013] [Indexed: 01/22/2023]
Abstract
Neuropeptide FF (NPFF) has many functions in regulating various biological processes. However, little attention has been focused on the anti-inflammatory effect of this peptide. In the present study, the in vitro anti-inflammatory activity of NPFF in both primary peritoneal macrophages and RAW 264.7 macrophages was investigated. Our data showed that NPFF suppressed the nitric oxide (NO) production of macrophages in the inflammation process. RF9, a reported antagonist of NPFF receptors, completely blocked the NPFF-induced NO suppression, suggesting a NPFF receptors-mediated pathway is mainly involved. Down-regulation of the nitric oxide synthases significantly inhibited the NPFF-induced NO reduction, indicating the involvement of nitric oxide synthases. However, the nitric oxide synthases were not the only route by which NPFF modulated the NO levels of macrophages. Pharmacological antagonists of the NF-κB signal pathway also completely suppressed the NPFF-induced NO decline. Moreover, we also observed that NPFF is capable of blocking the LPS-induced nuclear translocation of p65 in macrophages, implying the involvement of the NF-κB signal pathway. Finally, we observed that NPFF markedly attenuated the carrageenan-induced mouse paw edema, indicating that NPFF is capable of exerting anti-inflammatory potency in vivo. Collectively, our findings reveal the potential role of NPFF in the anti-inflammatory field both in vitro and in vivo, which will be helpful for the further exploitation of NPFF utility therapeutically.
Collapse
Affiliation(s)
- Yu-Long Sun
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Physiology & Psychology, School of Basic Medical Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, Gansu 730000, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Panova TI, Kazakov VM, Shevchenko TO. Mechanism of the Action of Comenic Acid on Opioid Receptors. NEUROPHYSIOLOGY+ 2012. [DOI: 10.1007/s11062-012-9303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Dang VC, Chieng BC, Christie MJ. Prolonged stimulation of μ-opioid receptors produces β-arrestin-2-mediated heterologous desensitization of α(2)-adrenoceptor function in locus ceruleus neurons. Mol Pharmacol 2012; 82:473-80. [PMID: 22689562 DOI: 10.1124/mol.112.079350] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Prolonged agonist stimulation of the μ-opioid receptor (MOR) initiates receptor regulatory events that rapidly attenuate receptor-mediated signaling (homologous desensitization). Emerging evidence suggests that persistent MOR stimulation can also reduce responsiveness of effectors to other G-protein-coupled receptors, termed heterologous desensitization. However, the mechanisms by which heterologous desensitization is triggered by MOR stimulation are unclear. This study used whole-cell patch-clamp recordings of ligand activated G-protein-activated inwardly rectifying potassium channel currents in mouse brain slices containing locus ceruleus (LC) neurons to determine the effects of prolonged stimulation of MOR on α(2)-adrenoceptor (α(2)-AR) function. The results show distinct and sequential development of homologous and heterologous desensitization during persistent stimulation of MOR in LC neurons with Met(5)-enkephalin (ME). ME stimulation of MOR promoted rapid homologous desensitization that reached a steady state after 5 min and partially recovered over 30 min. Longer stimulation of MOR (10 min) induced heterologous desensitization of α(2)-AR function that exhibited slower recovery than homologous desensitization. Heterologous (but not homologous) desensitization required β-arrestin-2 (βarr-2) because it was nearly abolished in βarr-2-knockout (ko) mice. Heterologous (but not homologous) desensitization was also prevented by inhibition of ERK1/2 and c-Src signaling in wild-type (wt) mouse LC neurons. Heterologous desensitization may be physiologically relevant during exposure to high doses of opioids because α(2)-AR-mediated slow inhibitory postsynaptic currents were depressed in wt but not βarr-2 ko LC neurons after prolonged exposure to opioids. Together, these findings demonstrate a novel mechanism by which βarr-2 can regulate postsynaptic responsiveness to neurotransmitter release.
Collapse
Affiliation(s)
- Vu C Dang
- Discipline of Pharmacology and Brain and Mind Research Institute, University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
16
|
Bian JM, Wu N, Su RB, Li J. Opioid receptor trafficking and signaling: what happens after opioid receptor activation? Cell Mol Neurobiol 2012; 32:167-84. [PMID: 21947865 PMCID: PMC11498414 DOI: 10.1007/s10571-011-9755-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/04/2011] [Indexed: 01/14/2023]
Abstract
Prolonged opioid treatment leads to a comprehensive cellular adaptation mediated by opioid receptors, a basis to understand the development of opioid tolerance and dependence. However, the molecular mechanisms underlying opioid-induced cellular adaptation remain obscure. Recent advances in opioid receptor trafficking and signaling in cells have extensively increased our insight into the network of intracellular signal integration. This review focuses on those important intracellular biochemical processes that play critical roles in the development of opioid tolerance and dependence after opioid receptor activation, and tries to explain what happens after opioid receptor activation, and how the cellular adaptation develops from cell membrane to nucleus. Decades of research have delineated a network on opioid receptor trafficking and signaling, but the challenge remains to explain opioid tolerance and dependence from a single cellular signal network.
Collapse
Affiliation(s)
- Jia-Ming Bian
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850 China
- General Hospital of Beijing Military Command, 5th Nanmencang Road, Beijing, 100700 China
| | - Ning Wu
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850 China
| | - Rui-Bin Su
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850 China
| | - Jin Li
- Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850 China
| |
Collapse
|
17
|
Abstract
Opioid receptors have been targeted for the treatment of pain and related disorders for thousands of years and remain the most widely used analgesics in the clinic. Mu (μ), kappa (κ), and delta (δ) opioid receptors represent the originally classified receptor subtypes, with opioid receptor like-1 (ORL1) being the least characterized. All four receptors are G-protein coupled and activate inhibitory G proteins. These receptors form homo- and heterodimeric complexes and signal to kinase cascades and scaffold a variety of proteins.The authors discuss classic mechanisms and developments in understanding opioid tolerance and opioid receptor signaling and highlight advances in opioid molecular pharmacology, behavioral pharmacology, and human genetics. The authors put into context how opioid receptor signaling leads to the modulation of behavior with the potential for therapeutic intervention. Finally, the authors conclude there is a continued need for more translational work on opioid receptors in vivo.
Collapse
|
18
|
Proteau-Gagné A, Bournival V, Rochon K, Dory YL, Gendron L. Exploring the Backbone of Enkephalins To Adjust Their Pharmacological Profile for the δ-Opioid Receptor. ACS Chem Neurosci 2010; 1:757-69. [PMID: 22778812 DOI: 10.1021/cn1000759] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 09/08/2010] [Indexed: 12/23/2022] Open
Abstract
The role of each of the four amide bonds in Leu(5)-enkephalin was investigated by systematically and sequentially replacing each with its corresponding trans-alkene. Six Leu(5)-enkephalin analogs based on six dipeptide surrogates and two Met(5)-enkephalin analogs were synthesized and thoroughly tested using a δ-opioid receptor internalization assay, an ERK1/2 activation assay, and a competition binding assay to evaluate their biological properties. We observed that an E-alkene can efficiently replace the first amide bond of Leu(5)- and Met(5)-enkephalin without significantly affecting biological activity. By contrast, the second amide bond was found to be highly sensitive to the same modification, suggesting that it is involved in biologically essential intra- or intermolecular interactions. Finally, we observed that the affinity and activity of analogs containing an E-alkene at either the third or fourth position were partially reduced, indicating that these amide bonds are less important for these intra- or intermolecular interactions. Overall, our study demonstrates that the systematic and sequential replacement of amide bonds by E-alkene represents an efficient way to explore peptide backbones.
Collapse
Affiliation(s)
| | | | | | - Yves L. Dory
- Laboratoire de synthèse supramoléculaire, Département de chimie,
| | | |
Collapse
|
19
|
Opioid receptor internalization contributes to dermorphin-mediated antinociception. Neuroscience 2010; 168:543-50. [PMID: 20394808 DOI: 10.1016/j.neuroscience.2010.04.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 03/31/2010] [Accepted: 04/02/2010] [Indexed: 02/04/2023]
Abstract
Microinjection of opioids into the ventrolateral periaqueductal gray (vlPAG) produces antinociception in part by binding to mu-opioid receptors (MOPrs). Although both high and low efficacy agonists produce antinociception, low efficacy agonists such as morphine produce limited MOPr internalization suggesting that MOPr internalization and signaling leading to antinociception are independent. This hypothesis was tested in awake, behaving rats using DERM-A594, a fluorescently labeled dermorphin analog, and internalization blockers. Microinjection of DERM-A594 into the vlPAG produced both antinociception and internalization of DERM-A594. Administration of the irreversible opioid receptor antagonist beta-chlornaltrexamine (beta-CNA) prior to DERM-A594 microinjection reduced both the antinociceptive effect and the number of DERM-A594 labeled cells demonstrating that both effects are opioid receptor-mediated. Pretreatment with the internalization blockers dynamin dominant-negative inhibitory peptide (dynamin-DN) and concanavalinA (ConA) attenuated both DERM-A594 internalization and antinociception. Microinjection of dynamin-DN and ConA also decreased the antinociceptive potency of the unlabeled opioid agonist dermorphin when microinjected into the vlPAG as demonstrated by rightward shifts in the dose-response curves. In contrast, administration of dynamin-DN had no effect on the antinociceptive effect of microinjecting the GABA(A) receptor antagonist bicuculline into the vlPAG. The finding that dermorphin-induced antinociception is attenuated by blocking receptor internalization indicates that key parts of opioid receptor-mediated signaling depend on internalization.
Collapse
|
20
|
Archer-Lahlou E, Audet N, Amraei MG, Huard K, Paquin-Gobeil M, Pineyro G. Src promotes delta opioid receptor (DOR) desensitization by interfering with receptor recycling. J Cell Mol Med 2009; 13:147-63. [PMID: 18363847 PMCID: PMC3823043 DOI: 10.1111/j.1582-4934.2008.00308.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 02/29/2008] [Indexed: 11/29/2022] Open
Abstract
Abstract An important limitation in the clinical use of opiates is progressive loss of analgesic efficacy over time. Development of analgesic tolerance is tightly linked to receptor desensitization. In the case of delta opioid receptors (DOR), desensitization is especially swift because receptors are rapidly internalized and are poorly recycled to the membrane. In the present study, we investigated whether Src activity contributed to this sorting pattern and to functional desensitization of DORs. A first series of experiments demonstrated that agonist binding activates Src and destabilizes a constitutive complex formed by the spontaneous association of DORs with the kinase. Src contribution to DOR desensitization was then established by showing that pre-treatment with Src inhibitor PP2 (20 microM; 1 hr) or transfection of a dominant negative Src mutant preserved DOR signalling following sustained exposure to an agonist. This protection was afforded without interfering with endocytosis, but suboptimal internalization interfered with PP2 ability to preserve DOR signalling, suggesting a post-endocytic site of action for the kinase. This assumption was confirmed by demonstrating that Src inhibition by PP2 or its silencing by siRNA increased membrane recovery of internalized DORs and was further corroborated by showing that inhibition of recycling by monensin or dominant negative Rab11 (Rab11S25N) abolished the ability of Src blockers to prevent desensitization. Finally, Src inhibitors accelerated recovery of DOR-Galphal3 coupling after desensitization. Taken together, these results indicate that Src dynamically regulates DOR recycling and by doing so contributes to desensitization of these receptors.
Collapse
Affiliation(s)
- Elodie Archer-Lahlou
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Canada
- Centre de Recherche Fernand-Seguin, Hôpital Louis-H. Lafontaine, Montréal, Canada
| | - Nicolas Audet
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Canada
- Centre de Recherche Fernand-Seguin, Hôpital Louis-H. Lafontaine, Montréal, Canada
| | | | - Karine Huard
- Centre de Recherche Fernand-Seguin, Hôpital Louis-H. Lafontaine, Montréal, Canada
| | - Mélanie Paquin-Gobeil
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Canada
- Centre de Recherche Fernand-Seguin, Hôpital Louis-H. Lafontaine, Montréal, Canada
| | - Graciela Pineyro
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Canada
- Département de Psychiatrie, Faculté de Médecine, Université de Montréal, Canada
- Centre de Recherche Fernand-Seguin, Hôpital Louis-H. Lafontaine, Montréal, Canada
| |
Collapse
|
21
|
Hong MH, Xu C, Wang YJ, Ji JL, Tao YM, Xu XJ, Chen J, Xie X, Chi ZQ, Liu JG. Role of Src in ligand-specific regulation of delta-opioid receptor desensitization and internalization. J Neurochem 2008; 108:102-14. [PMID: 19014372 DOI: 10.1111/j.1471-4159.2008.05740.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The opioid receptors are a member of G protein-coupled receptors that mediate physiological effects of endogenous opioid peptides and structurally distinct opioid alkaloids. Although it is well characterized that there is differential receptor desensitization and internalization properties following activation by distinct agonists, the underlying mechanisms remain elusive. We investigated the signaling events of delta-opioid receptor (deltaOR) initiated by two ligands, DPDPE and TIPP. We found that although both ligands inhibited adenylyl cyclase (AC) and activated ERK1/2, only DPDPE induced desensitization and internalization of the deltaOR. We further found that DPDPE, instead of TIPP, could activate GRK2 by phosphorylating the non-receptor tyrosine kinase Src and translocating it to membrane receptors. Activation of GRK2 led to the phosphorylation of serine residues in the C-terminal tail, which facilitates beta-arrestin1/2 membrane translocation. Meanwhile, we also found that DPDPE promoted beta-arrestin1 dephosphorylation in a Src-dependent manner. Thus, DPDPE appears to strengthen beta-arrestin function by dual regulations: promoting beta-arrestin recruitment and increasing beta-arrestin dephosphorylation at the plasma membrane in a Src-dependent manner. All effects initiated by DPDPE could be abolished or suppressed by PP2, an inhibitor of Src. Morphine, which has been previously shown to be unable to desensitize or internalize deltaOR, also behaved as TIPP in failure to utilize Src to regulate deltaOR signaling. These findings point to the existence of agonist-specific utilization of Src to regulate deltaOR signaling and reveal the molecular events by which Src modulates deltaOR responsiveness.
Collapse
Affiliation(s)
- Min-Hua Hong
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Onoprishvili I, Ali S, Andria ML, Shpigel A, Simon EJ. Filamin A mutant lacking actin-binding domain restores mu opioid receptor regulation in melanoma cells. Neurochem Res 2008; 33:2054-61. [PMID: 18404377 DOI: 10.1007/s11064-008-9684-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/25/2008] [Indexed: 10/22/2022]
Abstract
We have previously reported that the protein filamin A (FLA) binds to the carboxyl tail of the mu opioid receptor (MOPr). Using human melanoma cells, which do not express filamin A, we showed that receptor down-regulation, functional desensitization and trafficking are deficient in the absence of FLA (Onoprishvili et al. Mol Pharmacol 64:1092-1100, 2003). Since FLA has a binding domain for actin and is a member of the family of actin cytoskeleton proteins, it is usually assumed that FLA functions via the actin cytoskeleton. We decided to test this hypothesis by preparing cDNA coding for mutant FLA lacking the actin binding domain (FLA-ABD) and expressing FLA-ABD in the human melanoma cell line M2 (M2-ABD cell line). We report here that this mutant is capable of restoring almost as well as full length FLA the down-regulation of the human MOPr. It is similarly very effective in restoring functional desensitization of MOPr, as assessed by the decrease in G-protein activation after chronic exposure of M2-ABD cells to the mu agonist DAMGO. We also found that A7 cells, expressing wild type FLA, exhibit rapid activation of the MAP kinases, ERK 1 and 2, by DAMGO, as shown by a rise in the level of phospho-ERK 1 and 2. This is followed by rapid dephosphorylation (inactivation), which reaches basal level between 30 and 60 min after DAMGO treatment. M2 cells show normal activation of ERK 1 and 2 in the presence of DAMGO, but very slow inactivation. The rapid rate of MAPK inactivation is partially restored by FLA-ABD. We conclude that some functions of FLA do not act via the actin cytoskeleton. It is likely that other functions, not studied here, may require functional binding of the MOPr-FLA complex to actin.
Collapse
Affiliation(s)
- Irma Onoprishvili
- Department of Psychiatry, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
23
|
Zheng H, Loh HH, Law PY. Beta-arrestin-dependent mu-opioid receptor-activated extracellular signal-regulated kinases (ERKs) Translocate to Nucleus in Contrast to G protein-dependent ERK activation. Mol Pharmacol 2008; 73:178-90. [PMID: 17947509 PMCID: PMC2253657 DOI: 10.1124/mol.107.039842] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The cellular location of extracellular signal-regulated kinases (ERKs) activated by a G protein-coupled receptor was shown to be dependent on the pathway that mediated their activation. In general, fast activation of ERKs (2 min) mediated by G proteins resulted in the nuclear translocation of phosphorylated ERKs, whereas a slower activation of ERKs (10 min) mediated by beta-arrestins resulted in the cytosolic retention of the phosphorylated ERKs. However, we observed distinct differences from this established ERKs cellular itinerary with the mu-opioid receptor-activated ERKs. Agonists such as morphine and methadone activated ERKs via the protein kinase C-dependent pathway but not the beta-arrestin-dependent pathway. The activated ERKs did not translocate into the nucleus, but phosphorylated 90-kDa ribosomal S6 kinase and induced the activity of transcription factor cAMP response element-binding protein. In contrast, agonists such as etorphine and fentanyl activated ERKs in a beta-arrestin-dependent manner. The phosphorylated ERKs translocated into the nucleus, resulting in increases in Elk-1 activity and GRK2 and beta-arrestin2 transcriptions. Thus, the cellular location of phosphorylated ERKs and subsequent activities on gene transcriptions are dictated by the agonist used to activate the receptor and the subsequent signaling pathway involved.
Collapse
Affiliation(s)
- Hui Zheng
- Department of Pharmacology, Medical School, University of Minnesota. 6-120 Jackson Hall, 321 Church Street S.E., Minneapolis, MN 55455-0217, USA.
| | | | | |
Collapse
|
24
|
Daigle TL, Kearn CS, Mackie K. Rapid CB1 cannabinoid receptor desensitization defines the time course of ERK1/2 MAP kinase signaling. Neuropharmacology 2007; 54:36-44. [PMID: 17681354 PMCID: PMC2277473 DOI: 10.1016/j.neuropharm.2007.06.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Revised: 06/01/2007] [Accepted: 06/01/2007] [Indexed: 02/06/2023]
Abstract
Molecular mechanisms regulating the development of physiological and behavioral tolerance to cannabinoids are not well understood. Two cellular correlates implicated in the development and maintenance of tolerance are CB(1) cannabinoid receptor internalization and uncoupling of receptor signal transduction. Both processes have been proposed as mediators of tolerance because of observations that chronic Delta(9)-tetrahydrocannabinol (THC) treatment causes both region-specific decreases in CB(1) receptors and G-protein coupling in the brain. To determine the balance of these two processes in regulating CB(1) receptor signaling during sustained receptor stimulation, we evaluated the parameters affecting ERK1/2 MAP kinase activity in HEK293 cells stably expressing CB(1) receptors. CB(1) receptor stimulation by the potent CB(1) receptor agonist, CP 55,940 transiently activated ERK1/2. To determine if CB(1) receptor desensitization or internalization was responsible for the transient nature of ERK1/2 activation, we evaluated ERK1/2 phosphorylation in HEK293 cells expressing a desensitization-deficient CB(1) receptor (S426A/S430A CB(1)). Here, the duration of S426A/S430A CB(1) receptor-mediated activation of ERK1/2 was markedly prolonged relative to wild-type receptors, and was dynamically reversed by SR141716A. Interestingly, the S426A/S430A CB(1) receptor was still able to recruit betaarrestin-2, a key mediator of receptor desensitization, to the cell surface following agonist activation. In contrast to a central role for desensitization, pharmacological and genetic approaches suggested CB(1) receptor internalization is dispensable in the transient activation of ERK1/2. This study indicates that the duration of ERK1/2 activation by CB(1) receptors is regulated by receptor desensitization and underscores the importance of G-protein uncoupling in the regulation of CB(1) receptor signaling.
Collapse
Affiliation(s)
- Tanya L. Daigle
- Departments of Physiology and Biophysics, University of Washington, School of Medicine, Seattle, Washington 98195
| | - Christopher S. Kearn
- Department of Anesthesiology, University of Washington, School of Medicine, Seattle, Washington 98195
| | - Ken Mackie
- Departments of Physiology and Biophysics, University of Washington, School of Medicine, Seattle, Washington 98195
- Department of Anesthesiology, University of Washington, School of Medicine, Seattle, Washington 98195
- *Corresponding author. Department of Anesthesiology, University of Washington, 1959 NE Pacific Street, Seattle, WA, 98195-6540. Tel.: (206) 616-2669; fax: (206) 543-2958. E-mail address: (Ken Mackie)
| |
Collapse
|
25
|
Hong SS, Qian H, Zhao P, Bazzy-Asaad A, Xia Y. Anisomycin protects cortical neurons from prolonged hypoxia with differential regulation of p38 and ERK. Brain Res 2007; 1149:76-86. [PMID: 17391655 PMCID: PMC1937507 DOI: 10.1016/j.brainres.2007.02.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/12/2007] [Accepted: 02/15/2007] [Indexed: 11/18/2022]
Abstract
MAP kinase is associated with delta-opioid receptor (DOR) signaling and plays a role in cell survival/death. Since anisomycin may alter MAP kinase activity and affect neuronal survival, we investigated whether anisomycin alters neuronal response to hypoxic stress and DOR inhibition. The experiments were performed in cultured cortical neurons. MAP kinase activities were determined by immunoblotting and neuronal viability was assessed by LDH leakage and live/dead morphological study. DOR inhibition with naltrindole (10 microM) led to significant injury in normoxic neurons after 24 h of treatment and exacerbated hypoxia-induced injury. Along with the injury, either by hypoxia or naltrindole, phosphorylated p38 increased in a major way, while phosphorylated ERK and JNK had no significant change or slightly decreased. Anisomycin (50 ng/ml) prevented the increase in phosphorylated p38 immunoreactivity induced by naltrindole and reduced the neuronal injury. The results suggest that (1) MAP kinases are differentially involved in neuronal response to hypoxia and DOR inhibition in cortical neurons with phosphorylated p38 immunoreactivity being upregulated and (2) anisomycin attenuates the increase in phosphorylated p38 immunoreactivity and reduces neuronal injury induced by hypoxia and DOR inhibition.
Collapse
Affiliation(s)
| | | | | | | | - Ying Xia
- *Send correspondence to: Ying Xia, M.D., Ph.D., Yale University School of Medicine, Department of Pediatrics, 333 Cedar Street, LMP 3107, New Haven, CT 06520, USA, TEL. 203-785-6101, FAX. 203-737-1252, E-MAIL.
| |
Collapse
|
26
|
Sánchez-Cardoso P, Higuera-Matas A, Martín S, del Olmo N, Miguéns M, García-Lecumberri C, Ambrosio E. Modulation of the endogenous opioid system after morphine self-administration and during its extinction: a study in Lewis and Fischer 344 rats. Neuropharmacology 2006; 52:931-48. [PMID: 17161852 DOI: 10.1016/j.neuropharm.2006.10.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2006] [Revised: 10/16/2006] [Accepted: 10/18/2006] [Indexed: 11/29/2022]
Abstract
Lewis (LEW) and Fischer 344 (F344) rats show differential morphine self-administration rates. In this study, after animals of both strains self-administered morphine (1mg/kg) or extinguished this behaviour for 3, 7 or 15days, we measured the binding to, and functional state of mu opioid receptors (MORs) as well as proenkephalin (PENK) mRNA content in several brain regions. The results showed that in most brain areas: 1) LEW rats had less binding to MORs in basal conditions than F344 rats; 2) after morphine self-administration, either one of the strains or both (depending on the brain area) showed increased levels of binding to MORs as compared to basal groups; and 3) these binding levels in morphine self-administration animals came down in each extinction group. Moreover, F344 rats exhibited, in general, an increased functionality of MORs after morphine self-administration, as compared to basal groups, which also went down during extinction. Finally, the basal content of PENK mRNA was lower in LEW rats than in F344 rats and it decreased more after self-administration; during extinction, the levels of PENK mRNA got normalized in this strain. This differential modulation of the endogenous opioid system might be related to the different rates of morphine self-administration behavior exhibited by both inbred rat strains.
Collapse
Affiliation(s)
- Pilar Sánchez-Cardoso
- Departamento de Psicobiología, Facultad de Psicología, UNED, Ciudad Universitaria, Madrid 28040, Spain
| | | | | | | | | | | | | |
Collapse
|
27
|
Navarro V, Martin S, Mazella J. Internalization-dependent regulation of HT29 cell proliferation by neurotensin. Peptides 2006; 27:2502-7. [PMID: 16870305 DOI: 10.1016/j.peptides.2006.04.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 04/13/2006] [Indexed: 11/24/2022]
Abstract
In this study, we have investigated the involvement of the internalization process induced by neurotensin (NT) on MAP kinases Erk1/2 activation, inositol phosphates (IP) accumulation and cell growth in the human colonic cancer cell line HT29. Reversible blocking of NT/neurotensin receptor (NTR) complex endocytosis by hyperosmolar sucrose totally abolished both the phosphorylation of the MAP kinases Erk1/2 and the [3H]-thymidine incorporation induced by the peptide. By contrast, NT-evoked IP formation was not affected by sucrose treatment. These results therefore indicate that NT/NTR complex endocytosis triggers MAP kinase activation and subsequently the growth of HT29 cells. This property could be useful for the development of novel anticancer treatments.
Collapse
Affiliation(s)
- Valérie Navarro
- Institut de Pharmacologie Moléculaire et Cellulaire, Unité Mixte de Recherche 6097 du Centre National de la Recherche Scientifique, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France
| | | | | |
Collapse
|
28
|
Devidze N, Lee AW, Zhou J, Pfaff DW. CNS arousal mechanisms bearing on sex and other biologically regulated behaviors. Physiol Behav 2006; 88:283-93. [PMID: 16769096 DOI: 10.1016/j.physbeh.2006.05.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It now seems possible to move beyond analyzing only the mechanisms for specific sexual behaviors to the analysis of 'generalized arousal' that underlies all motivated behaviors. Our science has advanced sufficiently to attack mechanisms linking specific motivations to these general arousal mechanisms that intrinsically activate all biologically-regulated behaviors including ingestive behaviors. Learning from the well-developed reproductive behavior paradigm, we know that sex hormone effects on hypothalamic neurons have been studied to a point where receptor mechanisms are relatively well understood, a neural circuit for a sex steroid-dependent behavior has been worked out, and several functional genomic regulations have been discovered. Here we focus for the first time on three chemical systems that signal 'generalized arousal' and which impact hormone-dependent hypothalamic neurons of importance to sexual arousal: histamine, norepinephrine and enkephalin. Progress in linking generalized arousal to specific motivational mechanisms is reviewed.
Collapse
Affiliation(s)
- Nino Devidze
- Laboratory of Neurobiology and Behavior, Box 275, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | |
Collapse
|
29
|
Gurevich VV, Gurevich EV. The structural basis of arrestin-mediated regulation of G-protein-coupled receptors. Pharmacol Ther 2006; 110:465-502. [PMID: 16460808 PMCID: PMC2562282 DOI: 10.1016/j.pharmthera.2005.09.008] [Citation(s) in RCA: 361] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2005] [Accepted: 09/22/2005] [Indexed: 12/23/2022]
Abstract
The 4 mammalian arrestins serve as almost universal regulators of the largest known family of signaling proteins, G-protein-coupled receptors (GPCRs). Arrestins terminate receptor interactions with G proteins, redirect the signaling to a variety of alternative pathways, and orchestrate receptor internalization and subsequent intracellular trafficking. The elucidation of the structural basis and fine molecular mechanisms of the arrestin-receptor interaction paved the way to the targeted manipulation of this interaction from both sides to produce very stable or extremely transient complexes that helped to understand the regulation of many biologically important processes initiated by active GPCRs. The elucidation of the structural basis of arrestin interactions with numerous non-receptor-binding partners is long overdue. It will allow the construction of fully functional arrestins in which the ability to interact with individual partners is specifically disrupted or enhanced by targeted mutagenesis. These "custom-designed" arrestin mutants will be valuable tools in defining the role of various interactions in the intricate interplay of multiple signaling pathways in the living cell. The identification of arrestin-binding sites for various signaling molecules will also set the stage for designing molecular tools for therapeutic intervention that may prove useful in numerous disorders associated with congenital or acquired disregulation of GPCR signaling.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | |
Collapse
|
30
|
Milasta S, Pediani J, Appelbe S, Trim S, Wyatt M, Cox P, Fidock M, Milligan G. Interactions between the Mas-related receptors MrgD and MrgE alter signalling and trafficking of MrgD. Mol Pharmacol 2006; 69:479-91. [PMID: 16282220 DOI: 10.1124/mol.105.018788] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
When expressed via an inducible promoter in human embryonic kidney 293 cells, the rat Mas-related gene D (rMrgD) receptor responded to beta-alanine but not L-alanine by elevating intracellular [Ca(2+)], stimulating phosphorylation of the mitogenactivated protein kinases known as extracellular signal-regulated kinase (ERK) 1 and ERK2 and translocating from the plasma membrane to punctate intracellular vesicles. By contrast, the related rat Mas-related gene E (rMrgE) receptor did not respond to beta-alanine. Coexpression of rMrgD with rMrgE, which occurs in peripheral nociceptive neurons, allowed coimmunoprecipitation of the two receptors and resulted in the detection of cell surface rMrgD-rMrgE heterodimers via timeresolved fluorescence resonance energy transfer. These interactions increased the potency of beta-alanine to phosphorylate ERK1 and ERK2 as well as maintaining the capacity of beta-alanine to elevate intracellular [Ca(2+)], which was reduced in magnitude and slowed in response with increasing times of expression of rMrgD in isolation. Associated with these effects, the presence of rMrgE restricted beta-alanine-induced internalization of rMrgD. This is the first report of heterodimeric interactions between members of the Mas-related gene (Mrg) receptor family and indicates that interactions between rMrgD and rMrgE modulate the function of rMrgD. Because the Mrg receptors are potential therapeutic targets in pain, these results suggest that efforts to understand the function and regulation of individual Mrg family receptors may require coexpression of relevant pairs.
Collapse
Affiliation(s)
- Sandra Milasta
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
31
|
McNally GP, Lee BW, Chiem JY, Choi EA. The midbrain periaqueductal gray and fear extinction: opioid receptor subtype and roles of cyclic AMP, protein kinase A, and mitogen-activated protein kinase. Behav Neurosci 2006; 119:1023-33. [PMID: 16187830 DOI: 10.1037/0735-7044.119.4.1023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Four experiments studied the opioid receptor subtype and signal transduction mechanisms mediating fear extinction in the ventrolateral quadrant of the midbrain periaqueductal gray (vlPAG). Microinjection of a mu- but not a delta- or kappa-opioid receptor antagonist into the vlPAG retarded extinction. Extinction was also dose-dependently retarded by vlPAG infusions of a cyclic AMP (cAMP) analog but was unaffected by infusions of a protein kinase A activator or a mitogen-activated protein kinase inhibitor across wide dose ranges. The results show that fear extinction occurs via activation of vlPAG mu-opioid receptors and involves reductions in cAMP. These mechanisms are different from the cellular mechanisms for extinction in the amygdala and from the known cellular mechanisms for opioid analgesia in the vlPAG.
Collapse
Affiliation(s)
- Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, NSW, Australia.
| | | | | | | |
Collapse
|
32
|
Lee AW, Devidze N, Pfaff DW, Zhou J. Functional genomics of sex hormone-dependent neuroendocrine systems: specific and generalized actions in the CNS. PROGRESS IN BRAIN RESEARCH 2006; 158:243-72. [PMID: 17027700 DOI: 10.1016/s0079-6123(06)58012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Sex hormone effects on hypothalamic neurons have been worked out to a point where receptor mechanisms are relatively well understood, a neural circuit for a sex steroid-dependent behavior has been determined, and several functional genomic regulations have been discovered and conceptualized. With that knowledge in hand, we approach deeper problems of explaining sexual arousal and generalized CNS arousal. After a brief summary of arousal mechanisms, we focus on three chemical systems which signal generalized arousal and impact hormone-dependent hypothalamic neurons of behavioral importance: histamine, norepinephrine and enkephalin.
Collapse
Affiliation(s)
- Anna W Lee
- Laboratory of Neurobiology and Behavior, Box 275, The Rockefeller University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
33
|
Lu J, Jeon E, Lee BS, Onyuksel H, Wang ZJ. Targeted drug delivery crossing cytoplasmic membranes of intended cells via ligand-grafted sterically stabilized liposomes. J Control Release 2005; 110:505-13. [PMID: 16356575 DOI: 10.1016/j.jconrel.2005.10.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2005] [Revised: 10/19/2005] [Accepted: 10/25/2005] [Indexed: 11/15/2022]
Abstract
In this study, we tested whether sterically stabilized liposomes (SSL) with surface ligands specific for the mu opioid receptor (MOR) can actively target MOR-expressing cells. Dermorphin, a selective MOR agonist, was conjugated to DSPE-PEG(3400) to obtain DSPE-PEG(3400)-dermorphin. Dermorphin-grafted SSL (dermorphin-SSL) was prepared by thin-film rehydration-extrusion and post-insertion method. DSPE-PEG(3400)-dermorphin and dermorphin-SSL retained the affinity to MOR as determined by receptor binding assay using [(3)H]DAMGO, whereas plain SSL without surface ligands showed no binding to the receptor. Cellular uptake of cholesteryl BODIPY encapsulated dermorphin-SSL was studied by microplate spectrofluorometry as well as fluorescent and confocal microscopy. Significant fluorescence signal was observed inside CHO-hMOR cells after the treatment with dermorphin-SSL, indicative of MOR-mediated endocytosis. In contrast, no uptake of dermorphin-SSL was found in naive CHO cells or CHO-hDOR cells that lack MOR. Taken together, these results demonstrate that dermorphin-SSL delivery system is capable of targeting intracellular components of MOR-expressing cells. Such a system may be applied to carry pharmaceutical agents to achieve region-specific delivery of analgesics and/or to attenuate side effects associated with opioids.
Collapse
Affiliation(s)
- Jian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, University of Illinois, Chicago, IL 60612-7231, USA
| | | | | | | | | |
Collapse
|
34
|
Ankö ML, Panula P. Regulation of endogenous human NPFF2 receptor by neuropeptide FF in SK-N-MC neuroblastoma cell line. J Neurochem 2005; 96:573-84. [PMID: 16336216 DOI: 10.1111/j.1471-4159.2005.03581.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Neuropeptide FF has many functions both in the CNS and periphery. Two G protein-coupled receptors (NPFF1 and NPFF2 receptors) have been identified for neuropeptide FF. The expression analysis of the peptide and receptors, together with pharmacological and physiological data, imply that NPFF2 receptor would be the primary receptor for neuropeptide FF. Here, we report for the first time a cell line endogenously expressing hNPFF2 receptor. These SK-N-MC neuroblastoma cells also express neuropeptide FF. We used the cells to investigate the hNPFF2 receptor function. The pertussis toxin-sensitive inhibition of adenylate cyclase activity upon receptor activation indicated coupling to Gi/o proteins. Upon agonist exposure, the receptors were internalized and the mitogen-activated protein kinase cascade was activated. Upon neuropeptide FF treatment, the actin cytoskeleton was reorganized in the cells. The expression of hNPFF2 receptor mRNA was up-regulated by neuropeptide FF. Concomitant with the receptor mRNA, the receptor protein expression was increased. The homologous regulation of hNPFF2 receptor correlates with our previous results in vivo showing that during inflammation, the up-regulation of neuropeptide FF mRNA precedes that of NPFF2 receptor. The regulation of hNPFF2 receptor by NPFF could also be important in the periphery where neuropeptide FF has been suggested to function as a hormone.
Collapse
Affiliation(s)
- Minna-Liisa Ankö
- Department of Biology, Abo Akademi University, Tykistökatu, Turku, Finland
| | | |
Collapse
|
35
|
Abstract
Opiate addiction is a central nervous system disorder of unknown mechanism. Neuronal basis of positive reinforcement, which is essential to the action of opioids, relies on activation of dopaminergic neurons resulting in an increased dopamine release in the mesolimbic brain structures. Certain aspects of opioid dependence and withdrawal syndrome are also related to the activity of noradrenergic and serotonergic systems, as well as to both excitatory and inhibitory amino acid and peptidergic systems. The latter pathways have been recently proven to be involved both in the development of dependence and in counteracting the states related to relapse. An important role in neurochemical mechanisms of opioid reward, dependence and vulnerability to addiction has been ascribed to endogenous opioid peptides, particularly those acting via the mu- and kappa-opioid receptors. Opiate abuse leads to adaptive reactions in the nervous system which occur at the cellular and molecular levels. Recent research indicates that intracellular mechanisms of signal transmission-from the receptor, through G proteins, cyclic AMP, MAP kinases to transcription factors--also play an important role in opioid tolerance and dependence. The latter link in this chain of reactions may modify synthesis of target genes and in this manner, it may be responsible for opiate-induced long-lasting neural plasticity.
Collapse
Affiliation(s)
- Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
36
|
Peart JN, Gross ER, Gross GJ. Opioid-induced preconditioning: recent advances and future perspectives. Vascul Pharmacol 2005; 42:211-8. [PMID: 15922254 DOI: 10.1016/j.vph.2005.02.003] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Opioids, named by Acheson for compounds with morphine-like actions despite chemically distinct structures, have received much research interest, particularly for their central nervous system (CNS) actions involved in pain management, resulting in thousands of scientific papers focusing on their effects on the CNS and other organ systems. A more recent area which may have great clinical importance concerns the role of opioids, either endogenous or exogenous compounds, in limiting the pathogenesis of ischemia-reperfusion injury in heart and brain. The role of endogenous opioids in hibernation provides tantalizing evidence for the protective potential of opioids against ischemia or hypoxia. Mammalian hibernation, a distinct energy-conserving state, is associated with depletion of energy stores, intracellular acidosis and hypoxia, similar to those which occur during ischemia. However, despite the potentially detrimental cellular state induced with hibernation, the myocardium remains resilient for many months. What accounts for the hypoxia-tolerant state is of great interest. During hibernation, circulating levels of opioid peptides are increased dramatically, and indeed, are considered a "trigger" of hibernation. Furthermore, administration of opioid antagonists can effectively reverse hibernation in mammals. Therefore, it is not surprising that activation of opioid receptors has been demonstrated to preserve cellular status following a hypoxic insult, such as ischemia-reperfusion in many model systems including the intestine [Zhang, Y., Wu, Y.X., Hao, Y.B., Dun, Y. Yang, S.P., 2001. Role of endogenous opioid peptides in protection of ischemic preconditioning in rat small intestine. Life Sci. 68, 1013-1019], skeletal muscle [Addison, P.D., Neligan, P.C., Ashrafpour, H., Khan, A., Zhong, A., Moses, M., Forrest, C.R., Pang, C.Y., 2003. Noninvasive remote ischemic preconditioning for global protection of skeletal muscle against infarction. Am. J. Physiol. Heart Circ. Physiol. 285, H1435-H1443], the CNS [Borlongan, C.V., Wang, Y., Su, T.P., 2005. Delta opioid peptide (d-ala 2, d-leu 5) enkephalin: linking hiberation and neuroprotection. Front Biosci. 9, 3392-3398] and the myocardium [Romano, M.A., Seymour, E.M., Berry, J.A., McNish, R.A., Bolling, S.F., 2004. Relative contribution of endogenous opioids to myocardial ischemic tolerance. J Surg Res. 118, 32-37; Peart, J.N., Gross, G.J., 2004a. Exogenous activation of delta- and kappa-opioid receptors affords cardioprotection in isolated murine heart. Basic Res Cardiol. 99(1), 29-37]. For the purpose of this review, we will focus primarily on the protective effects of opioids against post-reperfusion myocardial stunning and infarction.
Collapse
Affiliation(s)
- Jason N Peart
- Department Pharmacology and Toxicology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, USA.
| | | | | |
Collapse
|
37
|
Gaudreault E, Thompson C, Stankova J, Rola-Pleszczynski M. Involvement of BLT1 Endocytosis and Yes Kinase Activation in Leukotriene B4-Induced Neutrophil Degranulation. THE JOURNAL OF IMMUNOLOGY 2005; 174:3617-25. [PMID: 15749899 DOI: 10.4049/jimmunol.174.6.3617] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
One of the important biological activities of human neutrophils is degranulation, which can be induced by leukotriene B4 (LTB4). Here we investigated the intracellular signaling events involved in neutrophil degranulation mediated by the high affinity LTB4 receptor, BLT1. Peripheral blood neutrophils as well as the promyeloid PLB-985 cell line, stably transfected with BLT1 cDNA and differentiated into a neutrophil-like cell phenotype, were used throughout this study. LTB4-induced enzyme release was inhibited by 50-80% when cells were pretreated with the pharmacological inhibitors of endocytosis sucrose, Con A and NH4Cl. In addition, transient transfection with a dominant negative form of dynamin (K44A) resulted in approximately 70% inhibition of ligand-induced degranulation. Pretreating neutrophils or BLT1-expressing PLB-985 cells with the Src family kinase inhibitor PP1 resulted in a 30-60% inhibition in BLT1-mediated degranulation. Yes kinase, but not c-Src, Fgr, Hck, or Lyn, was found to exhibit up-regulated kinase activity after LTB4 stimulation. Moreover, BLT1 endocytosis was found to be necessary for Yes kinase activation in neutrophils. LTB4-induced degranulation was also sensitive to inhibition of PI3K. In contrast, it was not affected by inhibition of the mitogen-activated protein kinase MEK kinase, the Janus kinases, or the receptor tyrosine kinase epidermal growth factor receptor or platelet-derived growth factor receptor. Taken together, our results suggest an essential role for BLT1 endocytosis and Yes kinase activation in LTB4-mediated degranulation of human neutrophils.
Collapse
Affiliation(s)
- Eric Gaudreault
- Immunology Division, Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | | | | |
Collapse
|
38
|
Tegeder I, Geisslinger G. Opioids as modulators of cell death and survival--unraveling mechanisms and revealing new indications. Pharmacol Rev 2005; 56:351-69. [PMID: 15317908 DOI: 10.1124/pr.56.3.2] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Opioids are powerful analgesics but also drugs of abuse. Because opioid addicts are susceptible to certain infections, opioids have been suspected to suppress the immune response. This was supported by the finding that various immune-competent cells express opioid receptors and undergo apoptosis when treated with opioid alkaloids. Recent evidence suggests that opioids may also effect neuronal survival and proliferation or migrating properties of tumor cells. A multitude of signaling pathways has been suggested to be involved in these extra-analgesic effects of opioids. Growth-promoting effects were found to be mediated through Akt and Erk signaling cascades. Death-promoting effects have been ascribed to inhibition of nuclear factor-kappaB, increase of Fas expression, p53 stabilization, cytokine and chemokine release, and activation of nitric oxide synthase, p38, and c-Jun-N-terminal kinase. Some of the observed effects were inhibited with opioid receptor antagonists or pertussis toxin; others were unaffected. It is still unclear whether these properties are mediated through typical opioid receptor activation and inhibitory G-protein-signaling. The present review tries to unravel controversial findings and provides a hypothesis that may help to integrate diverse results.
Collapse
Affiliation(s)
- Irmgard Tegeder
- Pharmazentrum Frankfurt, Institut für Klinische Pharmakologie, Klinikum der Johann Wolfgang Goethe-Universität Frankfurt, Germany.
| | | |
Collapse
|
39
|
Varga EV, Navratilova E, Stropova D, Jambrosic J, Roeske WR, Yamamura HI. Agonist-specific regulation of the delta-opioid receptor. Life Sci 2005; 76:599-612. [PMID: 15567186 DOI: 10.1016/j.lfs.2004.07.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Accepted: 07/09/2004] [Indexed: 01/28/2023]
Abstract
Delta opioid receptor (DOR) agonists are attractive potential analgesics, since these compounds exhibit strong antinociceptive activity with relatively few side effects. In the past decade, several novel classes of delta-opioid agonists have been synthesized. Recent experimental data indicate that structurally distinct opioid agonists interact differently with the delta-opioid receptor. Consequently, individual agonist-bound DOR conformations may interact differently with intracellular proteins. In the present paper, after a brief review of the cellular processes that contribute to homologous desensitization of the DOR signaling, we shall focus on experimental data demonstrating that chemically different agonists differ in their ability to phosphorylate, internalize, and/or down-regulate the DOR. Homologous regulation of the opioid receptor signaling is thought to play an important role in the development of opioid tolerance. Therefore, agonist-specific differences in DOR regulation suggest that by further chemical modification, delta-selective opioid analgesics can be designed that exhibit a reduced propensity for analgesic tolerance.
Collapse
Affiliation(s)
- Eva V Varga
- Department of Pharmacology, and the Sarver Heart Center, The University of Arizona Health Sciences Center, Tucson, Arizona 85724, USA
| | | | | | | | | | | |
Collapse
|
40
|
Coolen LM, Fitzgerald ME, Yu L, Lehman MN. Activation of μ opioid receptors in the medial preoptic area following copulation in male rats. Neuroscience 2004; 124:11-21. [PMID: 14960335 DOI: 10.1016/j.neuroscience.2003.10.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2003] [Indexed: 10/26/2022]
Abstract
The current study tested the hypothesis that sexual behavior is a biological stimulus for release of endogenous opioid peptides. In particular, activation of mu opioid receptors (MOR) in the medial preoptic area (MPOA), a key area for regulation of male sexual behavior, was studied in male rats. MOR endocytosis or internalization was used as a marker for ligand-induced receptor activation, utilizing confocal, electron, and bright microscopic analysis. Indeed, mating including one ejaculation induced receptor activation in the MPOA, demonstrated by increased immunoreactivity for MOR, increased numbers of endosome-like particles immunoreactive for MOR inside the cytoplasm of neurons, and increased percentage of neurons with three or more endosome-like particles inside the cytosol. Moreover, it was demonstrated that MOR activation occurred within 30 min following mating and was still evident after 6 h. Mating-induced internalization was prevented by treatment with the opioid receptor antagonist naloxone before mating, suggesting that mating-induced receptor activation is a result of action of endogenous MOR ligands. i.c.v. injections of MOR ligand [D-Ala(2), N-Me-Phe(4), Gly(5)-ol]-enkephalin resulted in internalization of the MOR in a similar manner observed following mating. Finally, mating induced Fos expression in MOR containing neurons in the MPOA. However, naloxone pretreatment did not prevent Fos activation of MOR neurons, suggesting that Fos induction was not the result of MOR activation. In summary, these results provide further evidence that endogenous opioid peptides are released in the MPOA during male sexual behavior.
Collapse
Affiliation(s)
- L M Coolen
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Vontz Center for Molecular Studies, 3125 Eden Avenue, Cincinnati, OH 45267-0521, USA.
| | | | | | | |
Collapse
|
41
|
Chen Z, Rola-Pleszczynski M, Stankova J. Activation of ERK1/2 by platelet-activating factor receptor is independent of receptor internalisation and G-protein activation. Cell Signal 2003; 15:843-50. [PMID: 12834809 DOI: 10.1016/s0898-6568(03)00056-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Platelet-activating factor (PAF) is a potent pro-inflammatory phospholipid mediator involved in a broad range of physiological and pathophysiological processes. The receptor of PAF (PAFR) is a heptahelical G-protein-coupled receptor. We have shown previously that upon agonist stimulation, PAFR internalised through clathrin-coated vesicles in an arrestin-dependent, but G-protein-coupling-independent manner. In the current report, we demonstrate that PAF stimulates Erk1/2 phosphorylation and: (1). dominant negative mutants of arrestins and dynamin do not influence Erk1/2 activation, (2). hypertonic conditions do not decrease the extent of Erk1/2 phosphorylation, (3). internalisation-deficient and/or G-protein-coupling-deficient mutants of PAFR activate Erk1/2 as efficiently as the wild-type PAFR, and (4). inhibition of epidermal growth factor receptor (EGFR) does not block Erk1/2 activation. Taken together, our results suggest that PAFR-mediated activation of mitogen-activated protein kinases Erk1/2 does not require receptor endocytosis, receptor tyrosine kinase transactivation or G-protein activation. In addition, our studies reveal that PAFR-mediated signals of G-protein activation, receptor internalisation and MAPK activation are differentially regulated by receptor structure and/or conformation.
Collapse
Affiliation(s)
- Zhangguo Chen
- Department of Pediatrics, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | |
Collapse
|
42
|
Zhang WB, Zhang Z, Ni YX, Wu YL, Pei G. A novel function of Goalpha: mediation of extracellular signal-regulated kinase activation by opioid receptors in neural cells. J Neurochem 2003; 86:1213-22. [PMID: 12911629 DOI: 10.1046/j.1471-4159.2003.01930.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Go is the most abundant G protein expressed in brain but its function is less known. Here we show a novel function of Goalpha as a mediator of opioid receptor-induced extracellular signal-regulated kinase activation in neural cells. The current study found that, in neuroblastoma x glioma NG108-15 hybrid cells, activation of extracellular signal-regulated kinase through delta opioid receptors was mediated by pertussis toxin-sensitive G protein and independent of Gbetagamma subunits, PI3 kinase and receptor internalization. Overexpression of a dominant negative form of Goalpha1, but not Gialpha2, completely blocked delta opioid receptor-induced extracellular signal-regulated kinase activity. Decreasing Goalpha expression by RNA interference greatly reduced delta opioid receptor-induced extracellular signal-regulated kinase activity and extracellular signal-regulated kinase-dependent gene expression, while knocking down Gialpha2 did not. By taking advantage of differences between human and mouse Goalpha gene sequences, we simultaneously knocked down endogenous Goalpha expression and expressed exogenous human Goalpha subunits. We found that both human Goalpha1 and Goalpha2 could mediate delta opioid receptor-induced extracellular signal-regulated kinase activation. This study suggests that one of the functions of Goalpha in the brain is to mediate extracellular signal-regulated kinase activation by G protein-coupled receptors.
Collapse
Affiliation(s)
- Wen-Bo Zhang
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
43
|
Bodner A, Toth PT, Oh SB, Lu M, Tran PB, Chin RK, Ren D, Miller RJ. CD4 dependence of gp120IIIB-CXCR4 interaction is cell-type specific. J Neuroimmunol 2003; 140:1-12. [PMID: 12864967 DOI: 10.1016/s0165-5728(03)00162-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The HIV-1 envelope protein gp120IIIB is selective for the CXCR4 chemokine receptor and has been shown to induce apoptosis in neurons both in vivo and in vitro. We examined the ability of gp120IIIB to signal through the rat CXCR4 (rCXCR4) receptor and its dependence on the presence of the human CD4 (hCD4) protein in a number of cell systems. SDF-1alpha potently inhibited N-type Ca channels in cultured HEK293 cells expressing both the Ca channel subunits and rCXCR4 receptors. However, gp120IIIB was ineffective in producing either Ca channel inhibition or in blocking the effects of SDF-1alpha. However, when hCD4 was coexpressed with rCXCR4 and Ca channel subunits, gp120IIIB also produced Ca channel inhibition. Similarly, in PC12 cells transfected with the rCXCR4, SDF-1alpha produced mobilization of intracellular Ca, while gp120IIIB was only effective when hCD4 was coexpressed. SDF-1alpha induced endocytosis of Yellow Fluorescent Protein (YFP)-tagged rCXCR4 expressed in PC12 cells, as did gp120IIIB, an effect which was enhanced by hCD4 coexpression. When tagged rCXCR4 was expressed in F-11 cells or in rat DRG neurons, SDF-1alpha produced extensive receptor endocytosis. However, the ability of gp120IIIB to produce endocytosis was dependent on the coexpression of hCD4. Our results demonstrate that the degree of hCD4 dependence of the agonist effects of gp120IIIB at the rCXCR4 receptor is cell-type specific.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Apoptosis/immunology
- CD4 Antigens/physiology
- Cell Line
- Cells, Cultured
- Endocytosis/genetics
- Endocytosis/immunology
- Ganglia, Spinal/cytology
- Ganglia, Spinal/immunology
- Ganglia, Spinal/metabolism
- HIV Envelope Protein gp120/genetics
- HIV Envelope Protein gp120/metabolism
- HIV Envelope Protein gp120/physiology
- Humans
- Immunity, Cellular/genetics
- Neurons/cytology
- Neurons/immunology
- Neurons/metabolism
- PC12 Cells
- Rats
- Receptors, CXCR4/genetics
- Receptors, CXCR4/metabolism
- Receptors, CXCR4/physiology
- Receptors, Chemokine
- Signal Transduction/genetics
- Signal Transduction/immunology
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Amos Bodner
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, 303 E. Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Persson AI, Thorlin T, Bull C, Eriksson PS. Opioid-induced proliferation through the MAPK pathway in cultures of adult hippocampal progenitors. Mol Cell Neurosci 2003; 23:360-72. [PMID: 12837621 DOI: 10.1016/s1044-7431(03)00061-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Administration of opioid agonists or antagonists has been reported to regulate proliferation or survival of neural progenitors in vivo. Here we report that beta-endorphin and selective mu-opioid receptor (MOR) and delta-opioid receptor (DOR) agonists stimulate proliferation of isolated rat adult hippocampal progenitors (AHPs). The AHPs were found to express DORs and MORs, but not kappa-opioid receptors. Incubation with beta-endorphin for 48 h increased the number of AHPs found in mitosis, the total DNA content, and the expression of proliferating cell nuclear antigen. This proliferative effect from beta-endorphin on AHPs was antagonized by naloxone. The beta-endorphin-induced proliferation was mediated through phosphorylation of extracellular signal-regulated kinases 1 and 2 and dependent on phosphatidylinositol 3-kinase and both intra- and extracellular calcium. These data suggest a role for the opioid system in the regulation of proliferation in progenitors from the adult hippocampus.
Collapse
Affiliation(s)
- Anders I Persson
- The Arvid Carlsson Institute for Neuroscience at Institute of Clinical Neuroscience, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden
| | | | | | | |
Collapse
|
45
|
Lesscher HMB, Burbach JPH, van Ree JM, Gerrits MAFM. ERK1/2 activation in rat ventral tegmental area by the mu-opioid agonist fentanyl: an in vitro study. Neuroscience 2003; 116:139-44. [PMID: 12535947 DOI: 10.1016/s0306-4522(02)00552-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Opioid receptors in the ventral tegmental area, predominantly the mu-opioid receptors, have been suggested to modulate reinforcement sensitivity for both opioid and non-opioid drugs of abuse. The present study was conducted to study signal transduction proteins, which may mediate the functioning of mu-opioid receptors in the neurons of the ventral tegmental area. Therefore, brain slices of the ventral tegmental area were exposed in vitro to the specific mu-opioid agonist fentanyl and immunohistochemically stained for four different activated proteins using phospho-specific antibodies. Fentanyl dose-dependently activated extracellular signal-regulated protein in brain slices of the ventral tegmental area. This activation was reversible with naloxone. Furthermore, naloxone itself also activated extracellular signal-regulated protein kinase. Under the present conditions fentanyl did not affect extracellular signal-regulated protein kinase 1 and 2, Stat and cyclic AMP-response element-binding protein activity. The direct activation of extracellular signal-regulated protein kinase in ventral tegmental area slices by the mu-opioid agonist fentanyl may suggest a role of extracellular signal-regulated protein kinase in reward processes.
Collapse
Affiliation(s)
- H M B Lesscher
- Division of Pharmacology and Anatomy, Rudolf Magnus Institute for Neurosciences, University Medical Center, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | |
Collapse
|
46
|
Borgland SL, Connor M, Osborne PB, Furness JB, Christie MJ. Opioid agonists have different efficacy profiles for G protein activation, rapid desensitization, and endocytosis of mu-opioid receptors. J Biol Chem 2003; 278:18776-84. [PMID: 12642578 DOI: 10.1074/jbc.m300525200] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The differential ability of various mu-opioid receptor (MOP) agonists to induce rapid receptor desensitization and endocytosis of MOP could arise simply from differences in their efficacy to activate G proteins or, alternatively, be due to differential capacity for activation of other signaling processes. We used AtT20 cells stably expressing a low density of FLAG-tagged MOP to compare the efficacies of a range of agonists to 1) activate G proteins using inhibition of calcium channel currents (ICa) as a reporter before and after inactivation of a fraction of receptors by beta-chlornaltrexamine, 2) produce rapid, homologous desensitization of ICa inhibition, and 3) internalize receptors. Relative efficacies determined for G protein coupling were [Tyr-D-Ala-Gly-MePhe-Glyol]enkephalin (DAMGO) (1) > or = methadone (0.98) > morphine (0.58) > pentazocine (0.15). The same rank order of efficacies for rapid desensitization of MOP was observed, but greater concentrations of agonist were required than for G protein activation. By contrast, relative efficacies for promoting endocytosis of MOP were DAMGO (1) > methadone (0.59) >> morphine (0.07) > or = pentazocine (0.03). These results indicate that the efficacy of opioids to produce activation of G proteins and rapid desensitization is distinct from their capacity to internalize mu-opioid receptors but that, contrary to some previous reports, morphine can produce rapid, homologous desensitization of MOP.
Collapse
Affiliation(s)
- Stephanie L Borgland
- Department of Pharmacology, The University of Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
47
|
Persson AI, Thorlin T, Bull C, Zarnegar P, Ekman R, Terenius L, Eriksson PS. Mu- and delta-opioid receptor antagonists decrease proliferation and increase neurogenesis in cultures of rat adult hippocampal progenitors. Eur J Neurosci 2003; 17:1159-72. [PMID: 12670304 DOI: 10.1046/j.1460-9568.2003.02538.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Opioids have previously been shown to affect proliferation and differentiation in various neural cell types. In the present study, cultured rat adult hippocampal progenitors (AHPs) were shown to release beta-endorphin. Membrane preparations of AHPs were found to bind [125I]beta-endorphin, and immunoreactivity for mu- and delta-opioid receptors (MORs and DORs), but not for kappa-opioid receptors (KORs), was found on cells in culture. Both DNA content and [3H]thymidine incorporation were reduced after a 48-h incubation with 100 microM naloxone, 10 micro m naltrindole or 10 microM beta-funaltrexamine, but not nor-binaltorphimine, suggesting proliferative actions of endogenous opioids against MORs and DORs on AHPs. Furthermore, analysis of gene and protein expression after incubation with MOR and DOR antagonists for 48 h using RT-PCR and Western blotting suggested decreased signalling through the mitogen-activated protein kinase (MAPK) pathway and lowered levels of genes and proteins that are important in cell cycling. Cultures were incubated with naloxone (10 or 100 microM) for 10 days to study the effects on differentiation. This resulted in an approximately threefold increase in neurogenesis, a threefold decrease in astrogliogenesis and a 50% decrease in oligodendrogenesis. In conclusion, this study suggests that reduced signalling through MORs and DORs decreases proliferation in rat AHPs, increases the number of in vitro-generated neurons and reduces the number of astrocytes and oligodendrocytes in culture.
Collapse
Affiliation(s)
- Anders I Persson
- Institute of Clinical Neuroscience, Sahlgrenska University Hospital, Göteborg University, Göteborg, Sweden
| | | | | | | | | | | | | |
Collapse
|
48
|
Thakker DR, Standifer KM. Orphanin FQ/nociceptin blocks chronic morphine-induced tyrosine hydroxylase upregulation. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 105:38-46. [PMID: 12399106 DOI: 10.1016/s0169-328x(02)00390-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The recently discovered endogenous peptide orphanin FQ/nociceptin (OFQ/N) activates the opioid receptor-like 1 (ORL1) receptor and produces diverse effects on pain perception. In addition to producing spinal analgesia, OFQ/N also exhibits an 'anti-opioid activity' against functional (supraspinal analgesia) and behavioral (conditioned place preference and withdrawal) properties of morphine. One manifestation of the behavioral changes resulting from chronic use of morphine is the upregulation of tyrosine hydroxylase (TH, the rate-limiting enzyme in catecholamine biosynthesis), which contributes to the dramatic increases in catecholamine release in the target regions of the locus coeruleus (LC) and the ventral tegmental area (VTA). The present study sought to determine the molecular mechanism(s) by which OFQ/N modulates the chronic actions of morphine by utilizing human neuroblastoma cell lines [BE(2)-C and SH-SY5Y] that endogenously express TH, and mu and ORL1 receptors. Activation of mu or ORL1 receptors in these cells in turn activates extracellular signal-regulated protein kinases (ERKs), ERK1 and ERK2. Chronic activation of mu, but not ORL1, receptors upregulated TH levels in these cells as previously reported in rat brain. Morphine-induced TH upregulation was blocked upon inclusion of a MEK-1 (mitogen-activated protein kinase kinase-1) inhibitor (PD98059), confirming the role for ERKs in this adaptive response to morphine. Inclusion of OFQ/N during chronic morphine exposure also blocked morphine-induced TH upregulation. Furthermore, chronic OFQ/N exposure increased levels of the TH gene repressor, Oct-2, irrespective of the presence or absence of morphine. This report suggests a potential role for Oct-2 in mediating the anti-opioid actions of OFQ/N against the behavioral manifestations resulting from chronic use of morphine.
Collapse
Affiliation(s)
- Deepak R Thakker
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204-5037, USA
| | | |
Collapse
|
49
|
Trujillo KA. The neurobiology of opiate tolerance, dependence and sensitization: mechanisms of NMDA receptor-dependent synaptic plasticity. Neurotox Res 2002; 4:373-91. [PMID: 12829426 DOI: 10.1080/10298420290023954] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Long-term administration of opiates leads to changes in the effects of these drugs, including tolerance, sensitization and physical dependence. There is, as yet, incomplete understanding of the neural mechanisms that underlie these phenomena. Tolerance, sensitization and physical dependence can be considered adaptive processes similar to other experience-dependent changes in the brain, such as learning and neural development. There is considerable evidence demonstrating that N-methyl-D-aspartate (NMDA) receptors and downstream signaling cascades may have an important role in different forms of experience-dependent changes in the brain and behavior. This review will explore evidence indicating that NMDA receptors and downstream messengers may be involved in opiate tolerance, sensitization and physical dependence. This evidence has been used to develop a cellular model of NMDA receptor/opiate interactions. According to this model, mu opioid receptor stimulation leads to a protein kinase C-mediated activation of NMDA receptors. Activation of NMDA receptors leads to influx of calcium and activation of calcium-dependent processes. These calcium-dependent processes have the ability to produce critical changes in opioid-responsive neurons, including inhibition of opioid receptor/second messenger coupling. This model is similar to cellular models of learning and neural development in which NMDA receptors have a central role. Together, the evidence suggests that the mechanisms that underlie changes in the brain and behavior produced by long-term opiate use may be similar to other central nervous system adaptations. The experimental findings and the resulting model may have implications for the treatment of pain and addiction.
Collapse
Affiliation(s)
- Keith A Trujillo
- Department of Psychology, California State University San Marcos, San Marcos, CA 92096-0001, USA.
| |
Collapse
|
50
|
Shah BH, Alberto Olivares-Reyes J, Yesilkaya A, Catt KJ. Independence of angiotensin II-induced MAP kinase activation from angiotensin type 1 receptor internalization in clone 9 hepatocytes. Mol Endocrinol 2002; 16:610-20. [PMID: 11875120 DOI: 10.1210/mend.16.3.0781] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The agonist-induced internalization of several G protein-coupled receptors is an obligatory requirement for their activation of MAPKs. Studies on the relationship between endocytosis of the angiotensin II (Ang II) type 1 receptor (AT1-R) and Ang II-induced ERK1/2 activation were performed in clone 9 (C9) rat hepatic cells treated with inhibitors of endocytosis [sucrose, phenylarsine oxide (PAO), and concanavalin A]. Although Ang II-induced endocytosis of the AT1-R was prevented by sucrose and PAO, and was partially inhibited by concanavalin A, there was no impairment of Ang II-induced ERK activation. However, the specific epidermal growth factor receptor (EGF-R) kinase inhibitor, AG1478, abolished Ang II-induced activation of ERK1/2. Sucrose and PAO also inhibited EGFinduced internalization of the EGF-R in C9 cells, and the inability of these agents to impair EGF-induced ERK activation suggested that the latter is also independent of receptor endocytosis. In COS-7 cells transiently expressing the rat AT1A-R, Ang II also caused ERK activation through EGF-R transactivation. Furthermore, a mutant AT1A-R with truncated carboxyl terminus and impaired internalization retained full ability to activate ERK1/2 in response to Ang II stimulation. These findings demonstrate that Ang II-induced ERK1/2 activation in C9 hepatocytes is independent of both AT1-R and EGF-R endocytosis and is mediated by transactivation of the EGF-R.
Collapse
Affiliation(s)
- Bukhtiar H Shah
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|