1
|
Capper EN, Linton EF, Anders JJ, Kardon RH, Gramlich OW. MOG 35 - 55-induced EAE model of optic nerve inflammation compared to MS, MOGAD and NMOSD related subtypes of human optic neuritis. J Neuroinflammation 2025; 22:102. [PMID: 40197321 PMCID: PMC11977933 DOI: 10.1186/s12974-025-03424-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/19/2025] [Indexed: 04/10/2025] Open
Abstract
Optic neuritis (ON), or inflammation of the optic nerve, is a common presenting symptom of demyelinating neuroinflammatory conditions that result in significant, subacute vision loss. Given its association with visual impairment and varying extent of visual recovery, ON has been recognized as a significant health burden with a need for new therapeutic strategies to improve long-term visual outcomes. Among the resources utilized to study ON, animal models have emerged as powerful tools to examine the underlying pathophysiology and the effectiveness of proposed therapies. In the current review, we discuss the functional and structural phenotypes related to ON in currently used mouse models, and summarize how the pathophysiology and visual phenotype of the myelin oligodendrocyte glycoprotein 35-55 (MOG35 - 55) experimental autoimmune encephalomyelitis (EAE) mouse model recapitulates clinical features of multiple sclerosis (MS), myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD), and neuromyelitis optica spectrum disorder (NMOSD). The location of ON and the amount of visual recovery in the EAE model most closely resembles MS and NMOSD. However, we propose that the MOG35 - 55-induced EAE model of ON is primarily a MOGAD model given its similarity in pathophysiology, spinal cord demyelination pattern, and the degree of vision loss, retinal nerve fiber layer (RNFL) swelling, and disc edema. Overall, the MOG35 - 55-induced EAE animal model demonstrates overlapping features of autoimmune demyelinating conditions and serves as a comprehensive tool to further our understanding of visual impairment in all three conditions.
Collapse
Affiliation(s)
- Erin N Capper
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, 52246, USA
| | - Edward F Linton
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, 52246, USA
| | - Jeffrey J Anders
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, 52246, USA
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA
| | - Randy H Kardon
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, 52246, USA
| | - Oliver W Gramlich
- Department of Ophthalmology and Visual Sciences, University of Iowa, 200 Hawkins Drive, Iowa City, IA, 52242, USA.
- Center for the Prevention and Treatment of Visual Loss, Iowa City VA Health Care System, Iowa City, IA, 52246, USA.
- Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
2
|
Takita S, Harikrishnan H, Miyagi M, Imanishi Y. Transcriptional downregulation of rhodopsin is associated with desensitization of rods to light-induced damage in a murine model of retinitis pigmentosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646684. [PMID: 40236225 PMCID: PMC11996569 DOI: 10.1101/2025.04.03.646684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Class I rhodopsin mutations are known for some of the most severe forms of vision impairments in dominantly inherited rhodopsin retinitis pigmentosa. They disrupt the VxPx transport signal, which is required for the proper localization of rhodopsin to the outer segments. While various studies have focused on the light-dependent toxicity of mutant rhodopsin, it remains unclear whether and how these mutations exert dominant-negative effects. Using the class I Rho Q344X rhodopsin knock-in mouse model, we characterized the expression of rhodopsin and other genes by RNA sequencing and qPCR. Those studies indicated that rhodopsin is the most prominently downregulated photoreceptor-specific gene in Rho Q344X/+ mice. Rhodopsin is downregulated significantly prior to the onset of rod degeneration, whereas downregulation of other phototransduction genes, transducin α , and Pde6α, occurs after the onset and correlate with the degree of rod cell loss. Those studies indicated that the mutant rhodopsin gene causes downregulation of wild-type rhodopsin, imposing an mRNA-level dominant negative effect. Moreover, it causes downregulation of the mutant mRNA itself, mitigating the toxicity. The observed dominant effect is likely common among rhodopsin retinitis pigmentosa as we found a similar rhodopsin downregulation in the major class II rhodopsin mutant model, Rho P23H/+ mice, in which mutant rhodopsin is prone to misfold. Potentially due to mitigated toxicity by reduced rhodopsin expression, Rho Q344X/+ mice did not exhibit light-dependent exacerbation of rod degeneration, even after continuous exposure of mice for 5 days at 3000 lux. Thus, this study describes a novel form of dominant negative effect in inherited neurodegenerative disorders.
Collapse
|
3
|
Galindo-Cabello N, Caballano-Infantes E, Benites G, Pastor-Idoate S, Diaz-Corrales FJ, Usategui-Martín R. Retinal Organoids: Innovative Tools for Understanding Retinal Degeneration. Int J Mol Sci 2025; 26:3263. [PMID: 40244125 PMCID: PMC11990004 DOI: 10.3390/ijms26073263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Retinal degenerative diseases (RDDs) comprise diverse genetic and phenotypic conditions that cause progressive retinal dysfunction and cell loss, leading to vision impairment or blindness. Most RDDs lack appropriate animal models for their study, which affects understanding their disease mechanisms and delays the progress of new treatment development. Recent advances in stem cell engineering, omics, and organoid technology are facilitating research into diseases for which there are no previously existing models. The development of retinal organoids produced from human stem cells has impacted the study of retinal development as well as the development of in vitro models of diseases, opening possibilities for applications in regenerative medicine, drug discovery, and precision medicine. In this review, we recapitulate research in the retinal organoid models for RDD, mentioning some of the main pathways underlying retinal neurodegeneration that can be studied in these new models, as well as their limitations and future challenges in this rapidly advancing field.
Collapse
Affiliation(s)
- Nadia Galindo-Cabello
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Gregorio Benites
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| | - Salvador Pastor-Idoate
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
- Department of Ophthalmology, University Clinical Hospital of Valladolid, 47003 Valladolid, Spain
| | - Francisco J. Diaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain;
| | - Ricardo Usategui-Martín
- Department of Cell Biology, Genetics, Histology and Pharmacology, Faculty of Medicine, University of Valladolid, 47003 Valladolid, Spain;
- Institute of Applied Ophthalmobiology (IOBA), University of Valladolid, 47011 Valladolid, Spain; (G.B.); (S.P.-I.)
| |
Collapse
|
4
|
Lee EJ, Kim M, Park S, Shim JH, Cho HJ, Park JA, Park K, Lee D, Kim JH, Jeong H, Matsuzaki F, Kim SY, Kim J, Yang H, Lee JS, Kim JW. Restoration of retinal regenerative potential of Müller glia by disrupting intercellular Prox1 transfer. Nat Commun 2025; 16:2928. [PMID: 40133314 PMCID: PMC11937340 DOI: 10.1038/s41467-025-58290-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 03/17/2025] [Indexed: 03/27/2025] Open
Abstract
Individuals with retinal degenerative diseases struggle to restore vision due to the inability to regenerate retinal cells. Unlike cold-blooded vertebrates, mammals lack Müller glia (MG)-mediated retinal regeneration, indicating the limited regenerative capacity of mammalian MG. Here, we identify prospero-related homeobox 1 (Prox1) as a key factor restricting this process. Prox1 accumulates in MG of degenerating human and mouse retinas but not in regenerating zebrafish. In mice, Prox1 in MG originates from neighboring retinal neurons via intercellular transfer. Blocking this transfer enables MG reprogramming into retinal progenitor cells in injured mouse retinas. Moreover, adeno-associated viral delivery of an anti-Prox1 antibody, which sequesters extracellular Prox1, promotes retinal neuron regeneration and delays vision loss in a retinitis pigmentosa model. These findings establish Prox1 as a barrier to MG-mediated regeneration and highlight anti-Prox1 therapy as a promising strategy for restoring retinal regeneration in mammals.
Collapse
Affiliation(s)
- Eun Jung Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Celliaz Ltd., Daejeon, South Korea
| | - Museong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Sooyeon Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- Celliaz Ltd., Daejeon, South Korea
| | | | - Hyun-Ju Cho
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School, University of Science and Technology, Daejeon, South Korea
| | | | - Kihyun Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Dongeun Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong Hwan Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Haeun Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Fumio Matsuzaki
- Laboratory for Cell Asymmetry, RIKEN Centre for Biosystems Dynamics Research, Kobe, Hyogo, Japan
- Department of Aging Science and Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seon-Young Kim
- Korea Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Jaehoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hanseul Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jeong-Soo Lee
- Microbiome Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
- KRIBB School, University of Science and Technology, Daejeon, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- KAIST Stem Cell Research Center, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea.
- Celliaz Ltd., Daejeon, South Korea.
| |
Collapse
|
5
|
Bernardo-Colón A, Bighinati A, Parween S, Debnath S, Piano I, Adani E, Corsi F, Gargini C, Vergara N, Marigo V, Patricia Becerra S. H105A peptide eye drops promote photoreceptor survival in murine and human models of retinal degeneration. COMMUNICATIONS MEDICINE 2025; 5:81. [PMID: 40118996 PMCID: PMC11928584 DOI: 10.1038/s43856-025-00789-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 02/27/2025] [Indexed: 03/24/2025] Open
Abstract
BACKGROUND Photoreceptor death leads to inherited blinding retinal diseases, such as retinitis pigmentosa (RP). As disease progression often outpaces therapeutic advances, developing effective treatments is urgent. This study evaluates the efficacy of small peptides derived from pigment epithelium-derived factor (PEDF), which are known to restrict common cell death pathways associated with retinal diseases. METHODS We tested chemically synthesized peptides (17-mer and H105A) with affinity for the PEDF receptor, PEDF-R, delivered as eye drops to two RP mouse models: rd10 (phosphodiesterase 6b mutation) and RhoP23H/+ (rhodopsin P23H mutation). Additionally, we engineered AAV-H105A vectors for intravitreal delivery in RhoP23H/+ mice. To assess peptide effects in human tissue, we used retinal organoids exposed to cigarette smoke extract, a model of oxidative stress. Photoreceptor survival, morphology and function were evaluated. RESULTS Here we show that peptides 17-mer and H105A delivered via eye drops successfully reach the retina, promote photoreceptor survival, and improve retinal function in both RP mouse models. Intravitreal delivery of a AAV-H105A vector delays photoreceptor degeneration in RhoP23H/+ mice up to six months. In human retinal organoids, peptide H105A specifically prevents photoreceptor death induced by oxidative stress, a contributing factor to RP progression. CONCLUSIONS PEDF peptide-based eye drops offer a promising, minimally invasive therapy to prevent photoreceptor degeneration in retinal disorders, with a favorable safety profile.
Collapse
Grants
- Z01 EY000306 Intramural NIH HHS
- Intramural Research Program of the National Eye Institute, National Institutes of Health, United States of America (Project #EY000306, SPB); the Prevention of Blindness Society (SPB); Fondazione Telethon (Project #GGP19113, VM), the National Center for “Gene Therapy and Drugs based on RNA Technology” cod. Progetto CN00000041 and “Health Extended Alliance for Innovative Therapies, Advanced Lab-research, and Integrated Approaches of Precision Medicine - HEAL ITALIA” tematica 6 “Innovative diagnostics and therapies in precision medicine” cod. Progetto PE0000019 PIANO NAZIONALE DI RIPRESA E RESILIENZA (PNRR) – MISSIONE 4 “Istruzione Ricerca” COMPONENTE 2, “Dalla ricerca all’impresa” INVESTIMENTO 1.4, “Potenziamento strutture di ricerca e creazione di "campioni nazionali di R&S” su alcune Key enabling technologies”, finanziato dall’Unione europea – NextGenerationEU (VM and AB); The CellSight Development Fund (NV); and a Challenge Grant to the Department of Ophthalmology at the University of Colorado from Research to Prevent Blindness (NV).
Collapse
Affiliation(s)
- Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Shama Parween
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
| | - Subrata Debnath
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Claudia Gargini
- Department of Pharmacy, University of Pisa, 56126, Pisa, Italy
| | - Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
- Gates Center for Regenerative Medicine, Linda Crnic Institute for Down Syndrome and University of Colorado Alzheimer's and Cognition Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy.
| | - S Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
6
|
Rodgers J, Hughes S, Ebrahimi AS, Allen AE, Storchi R, Lindner M, Peirson SN, Badea TC, Hankins MW, Lucas RJ. Enhanced restoration of visual code after targeting ON bipolar cells compared with retinal ganglion cells with optogenetic therapy. Mol Ther 2025; 33:1264-1281. [PMID: 39825567 PMCID: PMC11897768 DOI: 10.1016/j.ymthe.2025.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/13/2024] [Accepted: 01/14/2025] [Indexed: 01/20/2025] Open
Abstract
Optogenetic therapy is a promising vision restoration method where light-sensitive opsins are introduced to the surviving inner retina following photoreceptor degeneration. The cell type targeted for opsin expression will likely influence the quality of restored vision. However, a like-for-like preclinical comparison of visual responses evoked following equivalent opsin expression in the two major targets, ON bipolar (ON BCs) or retinal ganglion cells (RGCs), is absent. We address this deficit by comparing stimulus-response characteristics at single-unit resolution in the retina and dorsal lateral geniculate nucleus of retinally degenerate mice genetically engineered to express the opsin ReaChR in Grm6- or Brn3c-expressing cells (ON BC vs. RGCs, respectively). For both targeting strategies, we find ReaChR-evoked responses have equivalent sensitivity and can encode contrast across different background irradiances. Compared with ON BCs, targeting RGCs decreased response reproducibility and resulted in more stereotyped responses with reduced diversity in response polarity, contrast sensitivity, and temporal frequency tuning. Recording ReaChR-driven responses in visually intact retinas confirmed that RGC-targeted ReaChR expression disrupts visual feature selectivity of individual RGCs. Our data show that, while both approaches restore visual responses with impressive fidelity, ON BC targeting produces a richer visual code closer to that of wild-type mice.
Collapse
Affiliation(s)
- Jessica Rodgers
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Steven Hughes
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Aghileh S Ebrahimi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Annette E Allen
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Riccardo Storchi
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK
| | - Moritz Lindner
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Institute of Physiology and Pathophysiology, Department of Neurophysiology, Philipps University, 35037 Marburg, Germany; Department of Ophthalmology, University Hospitals of Giessen and Marburg, 35043 Marburg, Germany
| | - Stuart N Peirson
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK
| | - Tudor C Badea
- Neurogenetics Laboratory/ICDT, Transilvania University of Brasov, 500484 Brasov, Romania; National Brain Research Centre/ICIA, Romanian Academy, 050711 Bucharest, Romania
| | - Mark W Hankins
- Nuffield Laboratory of Ophthalmology, Sleep and Circadian Neuroscience Institute, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX1 3QU, UK; Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford OX1 3QU, UK.
| | - Robert J Lucas
- Faculty of Biology, Medicine & Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
7
|
Larbi D, Rief AM, Kang S, Chen S, Batsuuri K, Fuhrmann S, Viswanathan S, Wohl SG. Dicer Loss in Müller Glia Leads to a Defined Sequence of Pathological Events Beginning With Cone Dysfunction. Invest Ophthalmol Vis Sci 2025; 66:7. [PMID: 40035725 DOI: 10.1167/iovs.66.3.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Purpose The loss of Dicer in Müller glia (MG) results in severe photoreceptor degeneration, as it occurs in retinitis pigmentosa or age-related macular degeneration; however, the sequence of events leading to this severe degenerative state is unknown. The aim of this study was to conduct a chronological functional and structural characterization of the pathological events in MG-specific Dicer-conditional knockout (cKO) mice in vivo and histologically. Methods To delete Dicer and mature microRNAs (miRNAs) in MG, two conditional Dicer1 knockout mouse strains (Rlbp-CreER:tdTomato:Dicer-cKOMG and Glast-CreER:tdTomato:Dicer-cKOMG) were created. Optical coherence tomography (OCT), electroretinograms (ERGs), and histological analyses were conducted to investigate structural and functional changes up to 6 months after Dicer deletion. Results Dicer/miRNA loss in MG leads to (1) impairments of the area spanning from the external limiting membrane (ELM) to the retinal pigment epithelium (RPE), (2) cone photoreceptor dysfunction, and (3) retinal remodeling and functional loss of the inner retina at 1, 3, and 6 months after Dicer loss, respectively, in both of the knockout mouse strains. Furthermore, in the Rlbp-CreER:tdTomato:Dicer-cKOMG strain, rod photoreceptor impairment was found 4 months after Dicer depletion (4) accompanied by alteration of RPE integrity (5). Conclusions MG Dicer loss in the adult mouse retina impacts cone function prior to any measurable changes in rod function, suggesting a pivotal role for MG Dicer and miRNAs in supporting cone health. A partially impaired RPE, however, seems to accelerate rod degeneration and overall degenerative events.
Collapse
Affiliation(s)
- Daniel Larbi
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Alexander M Rief
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Seoyoung Kang
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Shaoheng Chen
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Khulan Batsuuri
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| | - Sabine Fuhrmann
- Ophthalmology and Visual Sciences Department, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, Tennessee, United States
| | - Suresh Viswanathan
- Indiana University School of Optometry, Bloomington, Indiana, United States
| | - Stefanie G Wohl
- Department of Biological and Vision Sciences, The State University of New York College of Optometry, New York, New York, United States
| |
Collapse
|
8
|
Lara-López A, Gonzalez-Imaz K, Rodríguez-Hidalgo M, Sarasola-Gastesi M, Escudero-Arrarás L, Milla-Navarro S, de la Villa P, Sagartzazu-Aizpurua M, Miranda JI, Aizpurua JM, de Munain AL, Vallejo-Illarramendi A, Ruiz-Ederra J. Topical Administration of Novel FKBP12 Ligand MP-004 Improves Retinal Function and Structure in Retinitis Pigmentosa Models. Invest Ophthalmol Vis Sci 2025; 66:56. [PMID: 40136284 PMCID: PMC11951062 DOI: 10.1167/iovs.66.3.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/18/2025] [Indexed: 03/27/2025] Open
Abstract
Purpose This study evaluates the therapeutic potential of MP-004, a novel FKBP12 ligand, in the treatment of inherited retinal dystrophies (IRDs). MP-004 targets the FKBP12/RyR interaction, which is disrupted in several neurologic disorders with underlying oxidative stress. Methods The toxicity and efficacy of MP-004 were examined in vitro in 661W cells. Efficacy was evaluated in phototoxic and H2O2-induced damage using impedance assays, calcium imaging, and in situ PLA. In vivo, MP-004 efficacy was evaluated in the rd10 mouse model of retinitis pigmentosa (RP) by topical ocular instillation. Retinal function was assessed by electroretinography (ERG), visual acuity was measured using a water maze test, and retinal structure was analyzed morphometrically. Results MP-004 exhibited low toxicity (LD50: 1.22 mM) and effectively protected 661W cells from phototoxicity (EC50: 30.6 nM). Under oxidative stress conditions, MP-004 preserved the FKBP12.6/RyR2 interaction, restored cytosolic and endoplasmic reticulum calcium levels, and prevented cell death. In vivo, MP-004 significantly preserved retinal function in rd10 mice, with ERG wave amplitude increases of up to 50% in scotopic and 71% in photopic conditions, corresponding to rod and cone functions, respectively. Additionally, MP-004 improved visual acuity for low spatial frequency patterns and preserved retinal structure, with a 23% increase in outer nuclear layer thickness and preservation in the number of rods and cones and their segment length. Conclusions MP-004 shows promise as a therapeutic agent for RP, preserving retinal structure and function, likely through modulation of the FKBP12.6/RyR2 interaction. Further studies are needed to explore its pharmacokinetics and efficacy in other IRD models.
Collapse
Affiliation(s)
- Araceli Lara-López
- Miramoon Pharma, S.L., Donostia-San Sebastian, Spain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Klaudia Gonzalez-Imaz
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - María Rodríguez-Hidalgo
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
| | - Miren Sarasola-Gastesi
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- Department of Dermatology, Ophthalmology and ORL, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Leire Escudero-Arrarás
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
| | - Santiago Milla-Navarro
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
- Visual Neurophysiology Group, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Pedro de la Villa
- Department of System Biology, University of Alcalá, Alcalá de Henares, Spain
- Visual Neurophysiology Group, Instituto Ramon y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Maialen Sagartzazu-Aizpurua
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - José Ignacio Miranda
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Jesús María Aizpurua
- Department of Organic Chemistry-I, Korta Research Center, University of the Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| | - Adolfo López de Munain
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, OSAKIDETZA, Donostia-San Sebastián, Spain
| | - Ainara Vallejo-Illarramendi
- Group of Neurosciences, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- CIBERNED, ISCIII (CIBER, Carlos III Institute, Spanish Ministry of Sciences and Innovation), Madrid, Spain
| | - Javier Ruiz-Ederra
- Miramoon Pharma, S.L., Donostia-San Sebastian, Spain
- Groups of Sensorial Neurodegeneration and Neuromuscular Diseases, Neuroscience Area, Biogipuzkoa Health Research Institute (IIS Biodonostia), Donostia-San Sebastian, Spain
- Department of Dermatology, Ophthalmology and ORL, University of Basque Country (UPV/EHU), Donostia-San Sebastian, Spain
| |
Collapse
|
9
|
Tomczewski S, Curatolo A, Foik A, Węgrzyn P, Bałamut B, Wielgo M, Kulesza W, Galińska A, Kordecka K, Gulati S, Fernandes H, Palczewski K, Wojtkowski M. Photopic flicker optoretinography captures the light-driven length modulation of photoreceptors during phototransduction. Proc Natl Acad Sci U S A 2025; 122:e2421722122. [PMID: 39946535 PMCID: PMC11848411 DOI: 10.1073/pnas.2421722122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/13/2025] [Indexed: 02/26/2025] Open
Abstract
In this study, we used an inhibitor of phosphodiesterase 6 (PDE6) to examine the impact of changes in the conformation of the PDE6 protein on the light-induced process responsible for altering the length of the outer segments of photoreceptor cells in both human and rodent eyes. We employed a imaging method called spatiotemporal optical coherence tomography, which ensures high contrast and phase stability within the strongly scattering photoreceptor- Retinal Pigment Epithelium complex. Using this approach, we recorded nanometer-scale changes in human cones and rods in response to photopic flicker stimulation and observed length changes in rodent rods under scotopic conditions following a single pulse of light, in the absence or presence of sildenafil, which inhibits the catalytic activity of PDE6. Our findings are consistent with the interpretation that during phototransduction conformational changes in PDE6 structure, which occur on an angstrom scale, are amplified to the nanometer scale due to the unique structure of the photoreceptor outer segments and sequential stimulation. This finding opens up possibilities for the informed use of photopic flicker optoretinography measurements as a diagnostic tool, as the observed nanometer-scale changes in rod and cone dimensions as a function of light stimulus can now be directly linked to molecular events involved in the phototransduction pathway.
Collapse
Affiliation(s)
- Sławomir Tomczewski
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Andrea Curatolo
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
- Department of Physics, Politecnico di Milano, Milan20133, Italy
| | - Andrzej Foik
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Piotr Węgrzyn
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
- Faculty of Physics, University of Warsaw, Warsaw02-093, Poland
| | - Bartłomiej Bałamut
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Maciej Wielgo
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Wiktor Kulesza
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Anna Galińska
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Katarzyna Kordecka
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | | | - Humberto Fernandes
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
- Department of Physiology and Biophysics, University of California, Irvine, CA92697
- Department of Chemistry, University of California, Irvine, CA92697
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA92697
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Warsaw01-230, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw01-224, Poland
| |
Collapse
|
10
|
Poboży K, Poboży T, Domański P, Derczyński M, Konarski W, Domańska-Poboża J. Evolution of Light-Sensitive Proteins in Optogenetic Approaches for Vision Restoration: A Comprehensive Review. Biomedicines 2025; 13:429. [PMID: 40002842 PMCID: PMC11853388 DOI: 10.3390/biomedicines13020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/18/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Retinal degenerations, such as age-related macular degeneration and retinitis pigmentosa, present significant challenges due to genetic heterogeneity, limited therapeutic options, and the progressive loss of photoreceptors in advanced stages. These challenges are compounded by difficulties in precisely targeting residual retinal neurons and ensuring the sustained efficacy of interventions. Optogenetics offers a novel approach to vision restoration by inducing light sensitivity in residual retinal neurons through gene delivery of light-sensitive opsins. This review traces the evolution of opsins in optogenetic therapies, highlighting advancements from early research on channelrhodopsin-2 (ChR2) to engineered variants addressing key limitations. Red-shifted opsins, including ReaChR and ChrimsonR, reduced phototoxicity by enabling activation under longer wavelengths, while Chronos introduced superior temporal kinetics for dynamic visual tracking. Further innovations, such as Multi-Characteristic Opsin 1 (MCO1), optimized opsin performance under ambient light, bridging the gap to real-world applications. Key milestones include the first partial vision restoration in a human patient using ChrimsonR with light-amplifying goggles and ongoing clinical trials exploring the efficacy of opsin-based therapies for advanced retinal degeneration. While significant progress has been made, challenges remain in achieving sufficient light sensitivity for functional vision under normal ambient lighting conditions in a manner that is both effective and safe, eliminating the need for external light-enhancing devices. As research progresses, optogenetic therapies are positioned to redefine the management of retinal degenerative diseases, offering new hope for millions affected by vision loss.
Collapse
Affiliation(s)
- Kamil Poboży
- Department of Neurosurgery, Brodnowski Masovian Hospital, 03-242 Warsaw, Poland;
| | - Tomasz Poboży
- Department of Orthopedic Surgery, Ciechanów Hospital, 06-400 Ciechanów, Poland;
| | - Paweł Domański
- Department of Orthopedic Surgery, Ciechanów Hospital, 06-400 Ciechanów, Poland;
| | | | | | - Julia Domańska-Poboża
- Department of Rheumatology, National Institute of Geriatrics, Rheumatology and Rehabilitation, 02-637 Warsaw, Poland;
| |
Collapse
|
11
|
Larbi D, Rief AM, Kang S, Chen S, Batsuuri K, Fuhrmann S, Viswanathan S, Wohl SG. Dicer loss in Müller glia leads to a defined sequence of pathological events beginning with cone dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635744. [PMID: 39975262 PMCID: PMC11838336 DOI: 10.1101/2025.01.30.635744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Purpose The loss of Dicer in Müller glia (MG) results in severe photoreceptor degeneration as it occurs in retinitis pigmentosa or AMD. However, the sequence of events leading to this severe degenerative state is unknown. The aim of this study was to conduct a chronological functional and structural characterization of the pathological events in MG-specific Dicer-cKO mice in vivo and histologically. Methods To delete Dicer and mature microRNAs (miRNAs) in MG, two conditional Dicer1 knock-out mouse strains namely RlbpCre:Dicer-cKO MG and GlastCre:Dicer-cKO MG, were created. Optical coherence tomography (OCT), electroretinograms (ERGs) as well as histological analyses were conducted to investigate structural and functional changes up to six months after Dicer deletion. Results Dicer/miRNA loss in MG leads to 1) impairments of the external limiting membrane (ELM) - retinal pigment epithelium (RPE), 2) cone photoreceptor dysfunction and 3) retinal remodeling and functional loss of the inner retina, 1, 3 and 6 months after Dicer loss, respectively, in both strains. Furthermore, in the Rlbp:Dicer-cKO MG strain, rod photoreceptor impairment was found 4 months after Dicer depletion (4) accompanied by alteration of RPE integrity (5). Conclusions MG Dicer loss in the adult mouse retina impacts cone function prior to any measurable changes in rod function, suggesting a pivotal role for MG Dicer and miRNAs in supporting cone health. A partially impaired RPE however seems to accelerate rod degeneration and overall degenerative events.
Collapse
|
12
|
Ziraldo G, Cupini S, Sesti V, Delfino E, Lanzani G, Bertarelli C, Benfenati F, Di Marco S. A membrane-targeted photoswitch restores physiological ON/OFF responses to light in the degenerate retina. Nat Commun 2025; 16:600. [PMID: 39799138 PMCID: PMC11724966 DOI: 10.1038/s41467-025-55882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
The lack of effective therapies for visual restoration in Retinitis pigmentosa and macular degeneration has led to the development of new strategies, such as optogenetics and retinal prostheses. However, visual restoration is poor due to the massive light-evoked activation of retinal neurons, regardless of the segregation of visual information in ON and OFF channels, which is essential for contrast sensitivity and spatial resolution. Here, we show that Ziapin2, a membrane photoswitch that modulates neuronal capacitance and excitability in a light-dependent manner, is capable of reinstating, in mouse and rat genetic models of photoreceptor degeneration, brisk and sluggish ON, OFF, and ON-OFF responses in retinal ganglion cells evoked by full-field stimuli, with reactivation of their excitatory and inhibitory conductances. Intravitreally injected Ziapin2 in fully blind rd10 mice restores light-driven behavior and optomotor reflexes. The results indicate that Ziapin2 is a promising molecule for reinstating physiological visual responses in the late stages of retinal degeneration.
Collapse
Affiliation(s)
- Gaia Ziraldo
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy
| | - Sara Cupini
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Valentina Sesti
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milano, Italy
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| | - Emanuela Delfino
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Guglielmo Lanzani
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| | - Chiara Bertarelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "Giulio Natta", Politecnico di Milano, Milano, Italy
- Center for Nanoscience and Technology, Istituto Italiano di Tecnologia, Milano, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Stefano Di Marco
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genova, Italy.
- IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| |
Collapse
|
13
|
Werginz P, Király V, Zeck G. Differential Intrinsic Firing Properties in Sustained and Transient Mouse αRGCs Match Their Light Response Characteristics and Persist during Retinal Degeneration. J Neurosci 2025; 45:e1592242024. [PMID: 39516044 PMCID: PMC11714343 DOI: 10.1523/jneurosci.1592-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Retinal ganglion cells (RGCs) are the neuronal connections between the eye and the brain conveying multiple features of the outside world through parallel pathways. While there is a large body of literature on how these pathways arise in the retinal network, the process of converting presynaptic inputs into RGC spiking output is little understood. In this study, we show substantial differences in the spike generator across three types of αRGCs in female and male mice, the αON sustained, αOFF sustained, and αOFF transient RGC. The differences in their intrinsic spiking responses match the differences in the light responses across RGC types. While sustained RGC types have spike generators that are able to generate sustained trains of action potentials at high rates, the transient RGC type fired shortest action potentials enabling it to fire high-frequency transient bursts. The observed differences were also present in late-stage photoreceptor-degenerated retina demonstrating long-term functional stability of RGC responses even when presynaptic circuitry is deteriorated for long periods of time. Our results demonstrate that intrinsic cell properties support the presynaptic retinal computation and are, once established, independent of them.
Collapse
Affiliation(s)
- Paul Werginz
- Institute of Biomedical Electronics, TU Wien, Vienna 1040, Austria
| | - Viktoria Király
- Institute of Biomedical Electronics, TU Wien, Vienna 1040, Austria
| | - Guenther Zeck
- Institute of Biomedical Electronics, TU Wien, Vienna 1040, Austria
| |
Collapse
|
14
|
Beryozkin A, Byrne LC. In Vivo Imaging of Rodent Retina in Retinal Disease. Methods Mol Biol 2025; 2848:151-167. [PMID: 39240522 DOI: 10.1007/978-1-0716-4087-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
High-quality imaging of the retina is crucial to the diagnosis and monitoring of disease, as well as for evaluating the success of therapeutics in human patients and in preclinical animal models. Here, we describe the basic principles and methods for in vivo retinal imaging in rodents, including fundus imaging, fluorescein angiography, optical coherence tomography, fundus autofluorescence, and infrared imaging. After providing a concise overview of each method and detailing the retinal diseases and conditions that can be visualized through them, we will proceed to discuss the advantages and disadvantages of each approach. These protocols will facilitate the acquisition of optimal images for subsequent quantification and analysis. Additionally, a brief explanation will be given regarding the potential results and the clinical significance of the detected abnormalities.
Collapse
Affiliation(s)
- Avigail Beryozkin
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Leah C Byrne
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Liu S, Matsuo T, Matsuo C, Abe T, Chen J, Sun C, Zhao Q. Perspectives of traditional herbal medicines in treating retinitis pigmentosa. Front Med (Lausanne) 2024; 11:1468230. [PMID: 39712182 PMCID: PMC11660805 DOI: 10.3389/fmed.2024.1468230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Medicinal plants, also known as herbs, have been discovered and utilized in traditional medical practice since prehistoric times. Medicinal plants have been proven rich in thousands of natural products that hold great potential for the development of new drugs. Previously, we reviewed the types of Chinese traditional medicines that a Tang Dynasty monk Jianzhen (Japanese: Ganjin) brought to Japan from China in 742. This article aims to review the origin of Kampo (Japanese traditional medicine), and to present the overview of neurodegenerative diseases and retinitis pigmentosa as well as medicinal plants in some depth. Through the study of medical history of the origin of Kampo, we found that herbs medicines contain many neuroprotective ingredients. It provides us a new perspective on extracting neuroprotective components from herbs medicines to treat neurodegenerative diseases. Retinitis pigmentosa (one of the ophthalmic neurodegenerative diseases) is an incurable blinding disease and has become a popular research direction in global ophthalmology. To date, treatments for retinitis pigmentosa are very limited worldwide. Therefore, we intend to integrate the knowledge and skills from different disciplines, such as medical science, pharmaceutical science and plant science, to take a new therapeutic approach to treat neurodegenerative diseases. In the future, we will use specific active ingredients extracted from medicinal plants to treat retinitis pigmentosa. By exploring the potent bioactive ingredients present in medicinal plants, a valuable opportunity will be offered to uncover novel approaches for the development of drugs which target for retinitis pigmentosa.
Collapse
Affiliation(s)
- Shihui Liu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Toshihiko Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
- Department of Ophthalmology, Okayama University Hospital, Okayama, Japan
| | - Chie Matsuo
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan
| | - Takumi Abe
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Jinghua Chen
- Department of Ophthalmology, University of Florida, College of Medicine, Gainesville, FL, United States
| | - Chi Sun
- Department of Ophthalmology and Visual Sciences, Washington University in St. Louis, St. Louis, MO, United States
| | - Qing Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
16
|
Ardon M, Nguyen L, Chen R, Rogers J, Stout T, Thomasy S, Moshiri A. Onset and Progression of Disease in Nonhuman Primates With PDE6C Cone Disorder. Invest Ophthalmol Vis Sci 2024; 65:16. [PMID: 39641747 PMCID: PMC11629912 DOI: 10.1167/iovs.65.14.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose The California National Primate Research Center contains a colony of rhesus macaques with a homozygous missense mutation in PDE6C (R565Q) which causes a cone disorder similar to PDE6C achromatopsia in humans. The purposes of this study are to characterize the phenotype in PDE6C macaques in detail to determine the onset of the cone phenotype, the degree to which the phenotype progresses, if heterozygote animals have an intermediate phenotype, and if rod photoreceptor function declines over time. Methods We analyzed spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF), and electroretinography (ERG) data from 102 eyes of 51 macaques (aged 0.25 to 16 years). Measurements of retinal layers as well as cone and rod function over time were quantitatively compared. Results Homozygotes as young as 3 months postnatal showed absent cone responses on electroretinogram. Infant homozygotes had reduced foveal outer nuclear layer (ONL) thickness compared with wildtype infants (P < 0.0001). Over 4 years of study, no consistent changes in retinal layer thicknesses were found within 5 adult homozygotes. However, comparisons between infants and adults revealed reductions in foveal ONL thickness suggesting that cone cells slowly degenerate as homozygotes age. The oldest homozygote (11 years) had reduced rod responses. Heterozygotes could not be distinguished from wildtypes in any parameters. Conclusions These data suggest that, like humans, macaque PDE6C heterozygotes are normal, and homozygote primates have absent cone function and reduced foveal ONL thickness from infancy. Cone photoreceptors probably degenerate over time and macular atrophy can occur. Rod photoreceptor function may wane in late stages.
Collapse
Affiliation(s)
- Monica Ardon
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Lily Nguyen
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, California, United States
| | - Rui Chen
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States
| | - Jeffrey Rogers
- Human Genome Sequencing Center and Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Tim Stout
- Department of Ophthalmology, Cullen Eye Institute, Baylor College of Medicine, Houston, Texas, United States
| | - Sara Thomasy
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, California, United States
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, California, United States
- California National Primate Research Center, Davis, California, United States
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, California, United States
| |
Collapse
|
17
|
Jiang X, Sun K, Fan Y, Xiang Q, Zou R, Yang Y, Zhu X, Liu W. Mettl3-Mediated m6A Modification is Essential for Visual Function and Retinal Photoreceptor Survival. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 39728691 DOI: 10.1167/iovs.65.14.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Purpose N6-methyladenosine (m6A) modification, one of the most common epigenetic modifications in eukaryotic mRNA, has been shown to play a role in the development and function of the mammalian nervous system by regulating the biological fate of mRNA. METTL3, the catalytically active component of the m6A methyltransferase complex, has been shown to be essential in development of in the retina. However, its role in the mature retina remains elusive. In this study we aim to investigate the in vivo function of Mettl3 in the photoreceptor cells using a conditional knockout allele of Mettl3. Methods Deletion of Mettl3 in rod cells led to progressive retinal degeneration, including progressive retinal thinning, impaired visual function, shortened photoreceptor outer segments (OS), and reduced expression of disk membrane proteins. Similarly, Mettl3 deficiency in cone cells led to the gradual degeneration of cone opsins. Additionally, Mettl3 knockout significantly decreased the expression of the METTL14 subunit and overall m6A methylation levels in the retina. Results Multi-omics analyses revealed that Mettl3 deletion led to the downregulation of mRNA and protein levels of 10 key target genes in rod cells, ultimately resulting in the progressive death of photoreceptors. Mettl3 controls expression of its target genes by regulating their m6A modification, ultimately leading to rod cell death. Conclusions These findings highlight critical roles of METTL3 in maintaining retinal photoreceptor function and further elucidate the mechanisms of m6A modification in photoreceptors.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kuanxiang Sun
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yudi Fan
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Qianchun Xiang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Rong Zou
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yeming Yang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
- Qinghai Key Laboratory of Qinghai Tibet Plateau Biological Resources, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Xining, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Center for Medical Genetics, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Henan Branch of National Clinical Research Center for Ocular Diseases, Henan Eye Hospital, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
18
|
Rappe A, Vihinen HA, Suomi F, Hassinen AJ, Ehsan H, Jokitalo ES, McWilliams TG. Longitudinal autophagy profiling of the mammalian brain reveals sustained mitophagy throughout healthy aging. EMBO J 2024; 43:6199-6231. [PMID: 39367235 PMCID: PMC11612485 DOI: 10.1038/s44318-024-00241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024] Open
Abstract
Mitophagy neutralizes mitochondrial damage, thereby preventing cellular dysfunction and apoptosis. Defects in mitophagy have been strongly implicated in age-related neurodegenerative disorders such as Parkinson's and Alzheimer's disease. While mitophagy decreases throughout the lifespan of short-lived model organisms, it remains unknown whether such a decline occurs in the aging mammalian brain-a question of fundamental importance for understanding cell type- and region-specific susceptibility to neurodegeneration. Here, we define the longitudinal dynamics of basal mitophagy and macroautophagy across neuronal and non-neuronal cell types within the intact aging mouse brain in vivo. Quantitative profiling of reporter mouse cohorts from young to geriatric ages reveals cell- and tissue-specific alterations in mitophagy and macroautophagy between distinct subregions and cell populations, including dopaminergic neurons, cerebellar Purkinje cells, astrocytes, microglia and interneurons. We also find that healthy aging is hallmarked by the dynamic accumulation of differentially acidified lysosomes in several neural cell subsets. Our findings argue against any widespread age-related decline in mitophagic activity, instead demonstrating dynamic fluctuations in mitophagy across the aging trajectory, with strong implications for ongoing theragnostic development.
Collapse
Affiliation(s)
- Anna Rappe
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Helena A Vihinen
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Fumi Suomi
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Antti J Hassinen
- High Content Imaging and Analysis Unit (FIMM-HCA), Institute for Molecular Medicine, Helsinki Institute of Life Science, University of Helsinki, Tukholmankatu 8, Helsinki, 00290, Finland
| | - Homa Ehsan
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland
| | - Eija S Jokitalo
- Electron Microscopy Unit (EMBI), Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Viikinkaari 9, Helsinki, 00790, Finland
| | - Thomas G McWilliams
- Translational Stem Cell Biology and Metabolism Program, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, Helsinki, 00290, Finland.
| |
Collapse
|
19
|
Carleton M, Oesch NW. Bridging the gap of vision restoration. Front Cell Neurosci 2024; 18:1502473. [PMID: 39640234 PMCID: PMC11617155 DOI: 10.3389/fncel.2024.1502473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Retinitis pigmentosa (RP) and Age-Related Macular Degeneration (AMD) are similar in that both result in photoreceptor degeneration leading to permanent progressive vision loss. This affords the possibility of implementing vision restoration techniques, where light signaling is restored to spared retinal circuitry to recreate vision. There are far more AMD patients (Wong et al., 2014), yet more resources have been put towards researching and developing vision restoration strategies for RP despite it rarity, because of the tractability of RP disease models. The hope is that these therapies will extend to the AMD population, however, many questions remain about how the implementation of prosthetic or optogenetic vision restoration technologies will translate between RP and AMD patients. In this review, we discuss the difference and similarities of RP and AMD with a focus on aspects expected to impact vision restoration strategies, and we identify key gaps in knowledge needed to further improve vision restoration technologies for a broad patient population.
Collapse
Affiliation(s)
- Maya Carleton
- Department of Psychology, University of California San Diego, La Jolla, CA, United States
| | - Nicholas W. Oesch
- Department of Psychology, University of California San Diego, La Jolla, CA, United States
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, United States
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
20
|
Engfer ZJ, Palczewski K. The multifaceted roles of retinoids in eye development, vision, and retinal degenerative diseases. Curr Top Dev Biol 2024; 161:235-296. [PMID: 39870435 DOI: 10.1016/bs.ctdb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Vitamin A (all-trans-retinol; at-Rol) and its derivatives, known as retinoids, have been adopted by vertebrates to serve as visual chromophores and signaling molecules, particularly in the eye/retina. Few tissues rely on retinoids as heavily as the retina, and the study of genetically modified mouse models with deficiencies in specific retinoid-metabolizing proteins has allowed us to gain insight into the unique or redundant roles of these proteins in at-Rol uptake and storage, or their downstream roles in retinal development and function. These processes occur during embryogenesis and continue throughout life. This review delves into the role of these genes in supporting retinal function and maps the impact that genetically modified mouse models have had in studying retinoid-related genes. These models display distinct perturbations in retinoid biochemistry, physiology, and metabolic flux, mirroring human ocular diseases.
Collapse
Affiliation(s)
- Zachary J Engfer
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States.
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States; Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States; Department of Chemistry, University of California Irvine, Irvine, CA, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, United States.
| |
Collapse
|
21
|
Fradot V, Augustin S, Fontaine V, Marazova K, Guillonneau X, Sahel JA, Picaud S. Rodent Models of Retinal Degeneration: From Purified Cells in Culture to Living Animals. Cold Spring Harb Perspect Med 2024; 14:a041311. [PMID: 37848250 PMCID: PMC11444255 DOI: 10.1101/cshperspect.a041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Valérie Fradot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - José A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
22
|
Kong Q, Han X, Cheng H, Liu J, Zhang H, Dong T, Chen J, So KF, Mi X, Xu Y, Tang S. Lycium barbarum glycopeptide (wolfberry extract) slows N-methyl-N-nitrosourea-induced degradation of photoreceptors. Neural Regen Res 2024; 19:2290-2298. [PMID: 38488563 PMCID: PMC11034605 DOI: 10.4103/1673-5374.390958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/03/2023] [Accepted: 09/16/2023] [Indexed: 04/24/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202410000-00030/figure1/v/2024-02-06T055622Z/r/image-tiff Photoreceptor cell degeneration leads to blindness, for which there is currently no effective treatment. Our previous studies have shown that Lycium barbarum (L. barbarum) polysaccharide (LBP) protects degenerated photoreceptors in rd1, a transgenic mouse model of retinitis pigmentosa. L. barbarum glycopeptide (LbGP) is an immunoreactive glycoprotein extracted from LBP. In this study, we investigated the potential protective effect of LbGP on a chemically induced photoreceptor-degenerative mouse model. Wild-type mice received the following: oral administration of LbGP as a protective pre-treatment on days 1-7; intraperitoneal administration of 40 mg/kg N-methyl-N-nitrosourea to induce photoreceptor injury on day 7; and continuation of orally administered LbGP on days 8-14. Treatment with LbGP increased photoreceptor survival and improved the structure of photoreceptors, retinal photoresponse, and visual behaviors of mice with photoreceptor degeneration. LbGP was also found to partially inhibit the activation of microglia in N-methyl-N-nitrosourea-injured retinas and significantly decreased the expression of two pro-inflammatory cytokines. In conclusion, LbGP effectively slowed the rate of photoreceptor degeneration in N-methyl-N-nitrosourea-injured mice, possibly through an anti-inflammatory mechanism, and has potential as a candidate drug for the clinical treatment of photoreceptor degeneration.
Collapse
Affiliation(s)
- Qihang Kong
- Department of Ophthalmology, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Xiu Han
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Haiyang Cheng
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
| | - Jiayu Liu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Huijun Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Department of Ophthalmology, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong Province, China
| | - Tangrong Dong
- School of Stomatology, Jinan University, Guangzhou, Guangdong Province, China
| | - Jiansu Chen
- Department of Ophthalmology, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
| | - Kwok-Fai So
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- State Key Laboratory of Brain and Cognitive Sciences, Hong Kong Special Administrative Region, China
| | - Xuesong Mi
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
| | - Ying Xu
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Key Laboratory of CNS Regeneration (Ministry of Education), Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shibo Tang
- Department of Ophthalmology, Aier Eye Hospital, Jinan University, Guangzhou, Guangdong Province, China
- Aier Academician Station, Changsha, Hunan Province, China
| |
Collapse
|
23
|
Batabyal S, Kim S, Carlson M, Narcisse D, Tchedre K, Dibas A, Sharif NA, Mohanty S. Multi-Characteristic Opsin Therapy to Functionalize Retina, Attenuate Retinal Degeneration, and Restore Vision in Mouse Models of Retinitis Pigmentosa. Transl Vis Sci Technol 2024; 13:25. [PMID: 39412768 PMCID: PMC11486081 DOI: 10.1167/tvst.13.10.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/13/2024] [Indexed: 10/19/2024] Open
Abstract
Purpose Retinal degeneration 1 and 10 (rd1 and rd10) mice are useful animal models of retinitis pigmentosa (RP) with rapidly and slowly progressive pathologies, respectively. Our study aims were to determine the effect of adeno-associated viral vector 2 (AAV2)-delivered multi-characteristic opsin (MCO-010; under the control of a metabotropic glutamate receptor-6 promoter enhancer) on the morphological and functional characteristics of vision in both rd1 and rd10 mice. Methods Various retinal measures of MCO-010 transduction and electrophysiological, behavioral, and other routine blood analyses were performed in the rd1 and/or rd10 mice after intravitreal injection of 1 µL of MCO-010 or AAV2 vehicle. Functional tests included electroretinogram, visually evoked potential, and behavior assay (optomotor and water maze). Retinal thickness, intraocular pressure, and plasma cytokine levels were also determined. Results Following intravitreal MCO-010 injection, approximately 80% of bipolar cells were transduced in the retina, and no alterations in retinal thickness were observed at 4 months post-injection. However, retinal thickness significantly decreased in control mice. MCO-010 treatment increased head movements and induced faster navigation of mice to the platform in a water-maze test. The MCO-010 gene therapy helped preserve visually evoked electrical response in the retina and visual cortex. No ocular toxicity, immunotoxicity, or phototoxicity was observed in the MCO-010-treated mice, even under chronic intense light conditions. Conclusions Intravitreal MCO-010 was well tolerated in rd1 and rd10 mice models of RP, and it appeared to attenuate retinal photoreceptor degeneration based on retinal structure and functional outcome measures. Translational Relevance As reported here, optogenetic treatment of the inner retina attenuates further retinal degeneration in addition to photosensitizing higher order neurons, and this disease-modifying aspect should be evaluated in optogenetic clinical trials.
Collapse
Affiliation(s)
| | | | | | | | | | - Adnan Dibas
- Nanoscope Technologies LLC, Bedford, TX, USA
| | | | - Samarendra Mohanty
- Nanoscope Technologies LLC, Bedford, TX, USA
- Nanoscope Therapeutics, Inc., Dallas, TX, USA
| |
Collapse
|
24
|
García-Llorca A, Eysteinsson T. The Microphthalmia-Associated Transcription Factor (MITF) and Its Role in the Structure and Function of the Eye. Genes (Basel) 2024; 15:1258. [PMID: 39457382 PMCID: PMC11508060 DOI: 10.3390/genes15101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/21/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES The microphthalmia-associated transcription factor (Mitf) has been found to play an important role in eye development, structure, and function. The Mitf gene is responsible for controlling cellular processes in a range of cell types, contributing to multiple eye development processes. In this review, we survey what is now known about the impact of Mitf on eye structure and function in retinal disorders. Several mutations in the human and mouse Mitf gene are now known, and the effects of these on eye phenotype are addressed. We discuss the importance of Mitf in regulating ion transport across the retinal pigment epithelium (RPE) and the vasculature of the eye. METHODS The literature was searched using the PubMed, Scopus, and Google Scholar databases. Fundus and Optical Coherence Tomography (OCT) images from mice were obtained with a Micron IV rodent imaging system. RESULTS Defects in neural-crest-derived melanocytes resulting from any Mitf mutations lead to hypopigmentation in the eye, coat, and inner functioning of the animals. While many Mitf mutations target RPE cells in the eye, fewer impact osteoclasts at the same time. Some of the mutations in mice lead to microphthalmia, and ultimately vision loss, while other mice show a normal eye size; however, the latter, in some cases, show hypopigmentation in the fundus and the choroid is depigmented and thickened, and in rare cases Mitf mutations lead to progressive retinal degeneration. CONCLUSIONS The Mitf gene has an impact on the structure and function of the retina and its vasculature, the RPE, and the choroid in the adult eye.
Collapse
Affiliation(s)
- Andrea García-Llorca
- Department of Physiology, Biomedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland;
| | - Thor Eysteinsson
- Department of Physiology, Biomedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland;
- Department of Ophthalmology, Biomedical Center, Faculty of Medicine, University of Iceland, 101 Reykjavík, Iceland
| |
Collapse
|
25
|
Yang M, Yao J, Jia L, Kocab AJ, Zacks DN. Preservation of retinal structure and function in two mouse models of inherited retinal degeneration by ONL1204, an inhibitor of the Fas receptor. Cell Death Dis 2024; 15:576. [PMID: 39117629 PMCID: PMC11310419 DOI: 10.1038/s41419-024-06970-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/10/2024]
Abstract
Due to the large number of genes and mutations that result in inherited retinal degenerations (IRD), there has been a paucity of therapeutic options for these patients. There is a large unmet need for therapeutic approaches targeting shared pathophysiologic pathways in a mutation-independent manner. The Fas receptor is a major activator and regulator of retinal cell death and inflammation in a variety of ocular diseases. We previously reported the activation of Fas-mediated photoreceptor (PR) cell death in two different IRD mouse models, rd10 and P23H, and demonstrated the protective effect of genetic Fas inhibition. The purpose of this study was to examine the effects of pharmacologic inhibition of Fas in these two models by intravitreal injection with a small peptide inhibitor of the Fas receptor, ONL1204. A single intravitreal injection of ONL1204 was given to one eye of rd10 mice at P14. Two intravitreal injections of ONL1204 were given to the P23H mice, once at P14 and again at 2-months of age. The fellow eyes were injected with vehicle alone. Fas activation, rate of PR cell death, retinal function, and the activation of immune cells in the retina were evaluated. In both rd10 and P23H mice, ONL1204 treatment resulted in decreased number of TUNEL (+) PRs, decreased caspase 8 activity, enhanced photoreceptor cell counts, and improved visual function compared with vehicle treated fellow eyes. Treatment with ONL1204 also reduced immune cell activation in the retinas of both rd10 and P23H mice. The protective effect of pharmacologic inhibition of Fas by ONL1204 in two distinct mouse models of retinal degeneration suggests that targeting this common pathophysiologic mechanism of cell death and inflammation represents a potential therapeutic approach to preserve the retina in patients with IRD, regardless of the genetic underpinning.
Collapse
Affiliation(s)
- Mengling Yang
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI, USA
- Eye Center of Xiangya Hospital, Xiangya School of medicine, Central South University, Changsha, Hunan, China
| | - Jingyu Yao
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI, USA
| | - Lin Jia
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI, USA
| | | | - David N Zacks
- Department of Ophthalmology and Visual Sciences, University of Michigan, Kellogg Eye Center, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Kulbay M, Tuli N, Akdag A, Kahn Ali S, Qian CX. Optogenetics and Targeted Gene Therapy for Retinal Diseases: Unravelling the Fundamentals, Applications, and Future Perspectives. J Clin Med 2024; 13:4224. [PMID: 39064263 PMCID: PMC11277578 DOI: 10.3390/jcm13144224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
With a common aim of restoring physiological function of defective cells, optogenetics and targeted gene therapies have shown great clinical potential and novelty in the branch of personalized medicine and inherited retinal diseases (IRDs). The basis of optogenetics aims to bypass defective photoreceptors by introducing opsins with light-sensing capabilities. In contrast, targeted gene therapies, such as methods based on CRISPR-Cas9 and RNA interference with noncoding RNAs (i.e., microRNA, small interfering RNA, short hairpin RNA), consists of inducing normal gene or protein expression into affected cells. Having partially leveraged the challenges limiting their prompt introduction into the clinical practice (i.e., engineering, cell or tissue delivery capabilities), it is crucial to deepen the fields of knowledge applied to optogenetics and targeted gene therapy. The aim of this in-depth and novel literature review is to explain the fundamentals and applications of optogenetics and targeted gene therapies, while providing decision-making arguments for ophthalmologists. First, we review the biomolecular principles and engineering steps involved in optogenetics and the targeted gene therapies mentioned above by bringing a focus on the specific vectors and molecules for cell signalization. The importance of vector choice and engineering methods are discussed. Second, we summarize the ongoing clinical trials and most recent discoveries for optogenetics and targeted gene therapies for IRDs. Finally, we then discuss the limits and current challenges of each novel therapy. We aim to provide for the first time scientific-based explanations for clinicians to justify the specificity of each therapy for one disease, which can help improve clinical decision-making tasks.
Collapse
Affiliation(s)
- Merve Kulbay
- Department of Ophthalmology & Visual Sciences, McGill University, Montreal, QC H4A 3S5, Canada;
| | - Nicolas Tuli
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Arjin Akdag
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada (A.A.)
| | - Shigufa Kahn Ali
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
| | - Cynthia X. Qian
- Centre de Recherche de l’Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada;
- Department of Ophthalmology, Centre Universitaire d’Ophtalmologie (CUO), Hôpital Maisonneuve-Rosemont, Université de Montréal, Montreal, QC H1T 2M4, Canada
| |
Collapse
|
27
|
Bernardo-Colón A, Bighinati A, Parween S, Debnath S, Piano I, Adani E, Corsi F, Gargini C, Vergara N, Marigo V, Becerra SP. H105A peptide eye drops promote photoreceptor survival in murine and human models of retinal degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602890. [PMID: 39109177 PMCID: PMC11302621 DOI: 10.1101/2024.07.10.602890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Photoreceptor death causes blinding inheritable retinal diseases, such as retinitis pigmentosa (RP). As disease progression often outpaces therapeutic advances, finding effective treatments is urgent. This study focuses on developing a targeted approach by evaluating the efficacy of small peptides derived from pigment epithelium-derived factor (PEDF), known to restrict common cell death pathways associated with retinal diseases. Peptides with affinity for the PEDF receptor, PEDF-R, (17-mer and H105A) delivered via eye drops reached the retina, efficiently promoted photoreceptor survival, and improved retinal function in RP mouse models based on both the rd10 mutation and the rhodopsin P23H mutation. Additionally, intravitreal delivery of AAV-H105A vectors delayed photoreceptor degeneration in the latter RP mouse model. Furthermore, peptide H105A specifically prevented photoreceptor death induced by oxidative stress, a contributing factor to RP progression, in human retinal organoids. This promising approach for peptide eye drop delivery holds significant potential as a therapeutic for preventing photoreceptor death in retinal disorders, offering a high safety profile, low invasiveness and multiple delivery options.
Collapse
Affiliation(s)
- Alexandra Bernardo-Colón
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA
| | - Andrea Bighinati
- Department of Life Sciences, University of Modena and Reggio Emilia; 41125 Modena, Italy
| | - Shama Parween
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
| | - Subrata Debnath
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA
| | - Ilaria Piano
- Department of Pharmacy, University of Pisa; 56126 Pisa, Italy
| | - Elisa Adani
- Department of Life Sciences, University of Modena and Reggio Emilia; 41125 Modena, Italy
| | - Francesca Corsi
- Department of Pharmacy, University of Pisa; 56126 Pisa, Italy
| | - Claudia Gargini
- Department of Pharmacy, University of Pisa; 56126 Pisa, Italy
| | - Natalia Vergara
- CellSight Ocular Stem Cell and Regeneration Program, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
- Gates Center for Regenerative Medicine, Linda Crnic Institute for Down Syndrome and University of Colorado Alzheimer’s and Cognition Center, University of Colorado Anschutz Medical Campus; Aurora, Colorado, USA
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia; 41125 Modena, Italy
| | - S. Patricia Becerra
- Section of Protein Structure and Function, Laboratory of Retinal Cell and Molecular Biology, National Eye Institute, National Institutes of Health; Bethesda, MD, USA
| |
Collapse
|
28
|
Mast N, Butts M, Pikuleva IA. Unbiased insights into the multiplicity of the CYP46A1 brain effects in 5XFAD mice treated with low dose-efavirenz. J Lipid Res 2024; 65:100555. [PMID: 38719151 PMCID: PMC11176809 DOI: 10.1016/j.jlr.2024.100555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/12/2024] [Accepted: 05/01/2024] [Indexed: 05/30/2024] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) is the CNS-specific cholesterol 24-hydroxylase that controls cholesterol elimination and turnover in the brain. In mouse models, pharmacologic CYP46A1 activation with low-dose efavirenz or by gene therapy mitigates the manifestations of various brain disorders, neurologic, and nonneurologic, by affecting numerous, apparently unlinked biological processes. Accordingly, CYP46A1 is emerging as a promising therapeutic target; however, the mechanisms underlying the multiplicity of the brain CYP46A1 activity effects are currently not understood. We proposed the chain reaction hypothesis, according to which CYP46A1 is important for the three primary (unifying) processes in the brain (sterol flux through the plasma membranes, acetyl-CoA, and isoprenoid production), which in turn affect a variety of secondary processes. We already identified several processes secondary to changes in sterol flux and herein undertook a multiomics approach to compare the brain proteome, acetylproteome, and metabolome of 5XFAD mice (an Alzheimer's disease model), control and treated with low-dose efavirenz. We found that the latter had increased production of phospholipids from the corresponding lysophospholipids and a globally increased protein acetylation (including histone acetylation). Apparently, these effects were secondary to increased acetyl-CoA production. Signaling of small GTPases due to their altered abundance or abundance of their regulators could be affected as well, potentially via isoprenoid biosynthesis. In addition, the omics data related differentially abundant molecules to other biological processes either reported previously or new. Thus, we obtained unbiased mechanistic insights and identified potential players mediating the multiplicity of the CYP46A1 brain effects and further detailed our chain reaction hypothesis.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA
| | - Makaya Butts
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
29
|
Brotherton C, Megaw R. Molecular Mechanisms Governing Sight Loss in Inherited Cone Disorders. Genes (Basel) 2024; 15:727. [PMID: 38927662 PMCID: PMC11202562 DOI: 10.3390/genes15060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Inherited cone disorders (ICDs) are a heterogeneous sub-group of inherited retinal disorders (IRDs), the leading cause of sight loss in children and working-age adults. ICDs result from the dysfunction of the cone photoreceptors in the macula and manifest as the loss of colour vision and reduced visual acuity. Currently, 37 genes are associated with varying forms of ICD; however, almost half of all patients receive no molecular diagnosis. This review will discuss the known ICD genes, their molecular function, and the diseases they cause, with a focus on the most common forms of ICDs, including achromatopsia, progressive cone dystrophies (CODs), and cone-rod dystrophies (CORDs). It will discuss the gene-specific therapies that have emerged in recent years in order to treat patients with some of the more common ICDs.
Collapse
Affiliation(s)
- Chloe Brotherton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU1, UK;
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Chalmers St., Edinburgh EH3 9HA, UK
| |
Collapse
|
30
|
Seidemann S, Salomon F, Hoffmann KB, Kurth T, Sbalzarini IF, Haase R, Ader M. Automated quantification of photoreceptor outer segments in developing and degenerating retinas on microscopy images across scales. Front Mol Neurosci 2024; 17:1398447. [PMID: 38854587 PMCID: PMC11157083 DOI: 10.3389/fnmol.2024.1398447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 04/17/2024] [Indexed: 06/11/2024] Open
Abstract
The functionality of photoreceptors, rods, and cones is highly dependent on their outer segments (POS), a cellular compartment containing highly organized membranous structures that generate biochemical signals from incident light. While POS formation and degeneration are qualitatively assessed on microscopy images, reliable methodology for quantitative analyses is still limited. Here, we developed methods to quantify POS (QuaPOS) maturation and quality on retinal sections using automated image analyses. POS formation was examined during the development and in adulthood of wild-type mice via light microscopy (LM) and transmission electron microscopy (TEM). To quantify the number, size, shape, and fluorescence intensity of POS, retinal cryosections were immunostained for the cone POS marker S-opsin. Fluorescence images were used to train the robust classifier QuaPOS-LM based on supervised machine learning for automated image segmentation. Characteristic features of segmentation results were extracted to quantify the maturation of cone POS. Subsequently, this quantification method was applied to characterize POS degeneration in "cone photoreceptor function loss 1" mice. TEM images were used to establish the ultrastructural quantification method QuaPOS-TEM for the alignment of POS membranes. Images were analyzed using a custom-written MATLAB code to extract the orientation of membranes from the image gradient and their alignment (coherency). This analysis was used to quantify the POS morphology of wild-type and two inherited retinal degeneration ("retinal degeneration 19" and "rhodopsin knock-out") mouse lines. Both automated analysis technologies provided robust characterization and quantification of POS based on LM or TEM images. Automated image segmentation by the classifier QuaPOS-LM and analysis of the orientation of membrane stacks by QuaPOS-TEM using fluorescent or TEM images allowed quantitative evaluation of POS formation and quality. The assessments showed an increase in POS number, volume, and membrane coherency during wild-type postnatal development, while a decrease in all three observables was detected in different retinal degeneration mouse models. All the code used for the presented analysis is open source, including example datasets to reproduce the findings. Hence, the QuaPOS quantification methods are useful for in-depth characterization of POS on retinal sections in developmental studies, for disease modeling, or after therapeutic interventions affecting photoreceptors.
Collapse
Affiliation(s)
- Suse Seidemann
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Florian Salomon
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Karl B. Hoffmann
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
| | - Thomas Kurth
- Core Facility Electron Microscopy and Histology, Technology Platform, Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| | - Ivo F. Sbalzarini
- Faculty of Computer Science, Technische Universität Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- DFG Cluster of Excellence “Physics of Life”, Technische Universität Dresden, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany
| | - Robert Haase
- DFG Cluster of Excellence “Physics of Life”, Technische Universität Dresden, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence (ScaDS.AI), Leipzig University, Leipzig, Germany
| | - Marius Ader
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Molecular and Cellular Bioengineering (CMCB), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
31
|
Takita S, Jahan S, Imanishi S, Harikrishnan H, LePage D, Mann RJ, Conlon RA, Miyagi M, Imanishi Y. Rhodopsin mislocalization drives ciliary dysregulation in a novel autosomal dominant retinitis pigmentosa knock-in mouse model. FASEB J 2024; 38:e23606. [PMID: 38648465 PMCID: PMC11047207 DOI: 10.1096/fj.202302260rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/25/2024]
Abstract
Rhodopsin mislocalization encompasses various blind conditions. Rhodopsin mislocalization is the primary factor leading to rod photoreceptor dysfunction and degeneration in autosomal dominant retinitis pigmentosa (adRP) caused by class I mutations. In this study, we report a new knock-in mouse model that harbors a class I Q344X mutation in the endogenous rhodopsin gene, which causes rod photoreceptor degeneration in an autosomal dominant pattern. In RhoQ344X/+ mice, mRNA transcripts from the wild-type (Rho) and RhoQ344X mutant rhodopsin alleles are expressed at equal levels. However, the amount of RHOQ344X mutant protein is 2.7 times lower than that of wild-type rhodopsin, a finding consistent with the rapid degradation of the mutant protein. Immunofluorescence microscopy indicates that RHOQ344X is mislocalized to the inner segment and outer nuclear layers of rod photoreceptors in both RhoQ344X/+ and RhoQ344X/Q344X mice, confirming the essential role of the C-terminal VxPx motif in promoting OS delivery of rhodopsin. The mislocalization of RHOQ344X is associated with the concurrent mislocalization of wild-type rhodopsin in RhoQ344X/+ mice. To understand the global changes in proteostasis, we conducted quantitative proteomics analysis and found attenuated expression of rod-specific OS membrane proteins accompanying reduced expression of ciliopathy causative gene products, including constituents of BBSome and axonemal dynein subunit. Those studies unveil a novel negative feedback regulation involving ciliopathy-associated proteins. In this process, a defect in the trafficking signal leads to a reduced quantity of the trafficking apparatus, culminating in a widespread reduction in the transport of ciliary proteins.
Collapse
Affiliation(s)
- Shimpei Takita
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sultana Jahan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sanae Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hemavathy Harikrishnan
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - David LePage
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Rachel J. Mann
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ronald A. Conlon
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Yoshikazu Imanishi
- Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
32
|
Yang H, Zhang H, Li X. Navigating the future of retinitis pigmentosa treatments: A comprehensive analysis of therapeutic approaches in rd10 mice. Neurobiol Dis 2024; 193:106436. [PMID: 38341159 DOI: 10.1016/j.nbd.2024.106436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
Retinitis pigmentosa (RP) is a degenerative disease, caused by genetic mutations that lead to a loss in photoreceptors. For research on RP, rd10 mice, which carry mutations in the phosphodiesterase (PDE) gene, exhibit degenerative patterns comparable to those of patients with RP, making them an ideal model for investigating potential treatments. Although numerous studies have reported the potential of biochemical drugs, gene correction, and stem cell transplantation in decelerating rd10 retinal degeneration, a comprehensive review of these studies has yet to be conducted. Therefore, here, a comparative analysis of rd10 mouse treatment research over the past decade was performed. Our findings suggest that biochemical drugs capable of inhibiting the inflammatory response may be promising therapeutics. Additionally, significant progress has been made in the field of gene therapy; nevertheless, challenges such as strict delivery requirements, bystander editing, and off-target effects still need to be resolved. Nevertheless, secretory function is the only unequivocal protective effect of stem cell transplantation. In summary, this review presents a comprehensive analysis and synthesis of the treatment approaches employing rd10 mice as experimental subjects, describing a clear pathway for future RP treatment research and identifies potential clinical interventions.
Collapse
Affiliation(s)
- Hongli Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China.
| | - Hui Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, No. 251, Fukang Road, Tianjin 300384, China.
| |
Collapse
|
33
|
Kolesnikov AV, Murphy DP, Corbo JC, Kefalov VJ. Germline knockout of Nr2e3 protects photoreceptors in three distinct mouse models of retinal degeneration. Proc Natl Acad Sci U S A 2024; 121:e2316118121. [PMID: 38442152 PMCID: PMC10945761 DOI: 10.1073/pnas.2316118121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 01/17/2024] [Indexed: 03/07/2024] Open
Abstract
Retinitis pigmentosa (RP) is a common form of retinal dystrophy that can be caused by mutations in any one of dozens of rod photoreceptor genes. The genetic heterogeneity of RP represents a significant challenge for the development of effective therapies. Here, we present evidence for a potential gene-independent therapeutic strategy based on targeting Nr2e3, a transcription factor required for the normal differentiation of rod photoreceptors. Nr2e3 knockout results in hybrid rod photoreceptors that express the full complement of rod genes, but also a subset of cone genes. We show that germline deletion of Nr2e3 potently protects rods in three mechanistically diverse mouse models of retinal degeneration caused by bright-light exposure (light damage), structural deficiency (rhodopsin-deficient Rho-/- mice), or abnormal phototransduction (phosphodiesterase-deficient rd10 mice). Nr2e3 knockout confers strong neuroprotective effects on rods without adverse effects on their gene expression, structure, or function. Furthermore, in all three degeneration models, prolongation of rod survival by Nr2e3 knockout leads to lasting preservation of cone morphology and function. These findings raise the possibility that upregulation of one or more cone genes in Nr2e3-deficient rods may be responsible for the neuroprotective effects we observe.
Collapse
Affiliation(s)
- Alexander V. Kolesnikov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| | - Daniel P. Murphy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Joseph C. Corbo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO63110
| | - Vladimir J. Kefalov
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, CA92697
| |
Collapse
|
34
|
Mast N, Li Y, Pikuleva IA. 7,8-Dihydroxy Efavirenz Is Not as Effective in CYP46A1 Activation In Vivo as Efavirenz or Its 8,14-Dihydroxy Metabolite. Int J Mol Sci 2024; 25:2242. [PMID: 38396919 PMCID: PMC10889178 DOI: 10.3390/ijms25042242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
High dose (S)-efavirenz (EFV) inhibits the HIV reverse transcriptase enzyme and is used to lower HIV load. Low-dose EFV allosterically activates CYP46A1, the key enzyme for cholesterol elimination from the brain, and is investigated as a potential treatment for Alzheimer's disease. Simultaneously, we evaluate EFV dihydroxymetabolites for in vivo brain effects to compare with those of (S)-EFV. We have already tested (rac)-8,14dihydroxy EFV on 5XFAD mice, a model of Alzheimer's disease. Herein, we treated 5XFAD mice with (rac)-7,8dihydroxy EFV. In both sexes, the treatment modestly activated CYP46A1 in the brain and increased brain content of acetyl-CoA and acetylcholine. Male mice also showed a decrease in the brain levels of insoluble amyloid β40 peptides. However, the treatment had no effect on animal performance in different memory tasks. Thus, the overall brain effects of (rac)-7,8dihydroxy EFV were weaker than those of EFV and (rac)-8,14dihydroxy EFV and did not lead to cognitive improvements as were seen in treatments with EFV and (rac)-8,14dihydroxy EFV. An in vitro study assessing CYP46A1 activation in co-incubations with EFV and (rac)-7,8dihydroxy EFV or (rac)-8,14dihydroxy EFV was carried out and provided insight into the compound doses and ratios that could be used for in vivo co-treatments with EFV and its dihydroxymetabolite.
Collapse
Affiliation(s)
| | | | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Science, Case Western Reserve University, Cleveland, OH 44106, USA; (N.M.); (Y.L.)
| |
Collapse
|
35
|
Kleiman NJ, Edmondson EF, Weil MM, Fallgren CM, King A, Schmidt C, Hall EJ. Radiation cataract in Heterogeneous Stock mice after γ-ray or HZE ion exposure. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:97-105. [PMID: 38245354 PMCID: PMC10800003 DOI: 10.1016/j.lssr.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024]
Abstract
Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function. Animal models of radiation cataractogenesis have previously utilized inbred mouse or rat strains. These studies were essential for determining morphological changes and dose-response relationships between radiation exposure and cataract. However, the relevance of these studies to human radiosensitivity is limited by the narrow phenotypic range of genetically homogeneous animal models. To model radiation cataract in genetically diverse populations, longitudinal cataract phenotyping was nested within a lifetime carcinogenesis study in male and female heterogeneous stock (HS/Npt) mice exposed to 0.4 Gy HZE ions (n = 609) or 3.0 Gy γ-rays (n = 602) and in unirradiated controls (n = 603). Cataractous change was quantified in each eye for up to 2 years using Merriam-Focht grading criteria by dilated slit lamp examination. Virtual Optomotry™ measurement of visual acuity and contrast sensitivity was utilized to assess visual function in a subgroup of mice. Prevalence and severity of posterior lens opacifications were 2.6-fold higher in HZE ion and 2.3-fold higher in γ-ray irradiated mice compared to unirradiated controls. Male mice were at greater risk for spontaneous and radiation associated cataracts. Risk for cataractogenesis was associated with family structure, demonstrating that HS/Npt mice are well-suited to evaluate genetic determinants of ocular radiosensitivity. Last, mice were extensively evaluated for cataract and tumor formation, which revealed an overlap between individual susceptibility to both cancer and cataract.
Collapse
Affiliation(s)
- Norman J Kleiman
- Department of Environmental Health Sciences, Eye Radiation and Environmental Research Laboratory, Columbia University, Mailman School of Public Health, 722 West 168th St., 11th Floor, New York, NY, 10032, United States.
| | - Elijah F Edmondson
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, 80523, United States; Frederick National Laboratory for Cancer Research, Frederick, Maryland, 21702, United States
| | - Michael M Weil
- Department of Environment and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Christina M Fallgren
- Department of Environment and Radiological Health Sciences, Colorado State University, Fort Collins, CO, 80523, United States
| | - Adam King
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, United States; MedVet Chicago, Chicago, IL, 60618, United States
| | - Catherine Schmidt
- Department of Clinical Sciences, Colorado State University, Fort Collins, CO, 80523, United States; Veterinary Eye Specialists, Thornwood, NY, 10594, , United States
| | - Eric J Hall
- Center for Radiological Research, Columbia University, College of Physicians and Surgeons, 630W. 168th St., New York, NY,10032, , United States
| |
Collapse
|
36
|
Ding J, Kim TH, Ma G, Yao X. Intrinsic signal optoretinography of dark adaptation abnormality due to rod photoreceptor degeneration. Exp Biol Med (Maywood) 2024; 249:10024. [PMID: 38463390 PMCID: PMC10911128 DOI: 10.3389/ebm.2024.10024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/04/2024] [Indexed: 03/12/2024] Open
Abstract
This research aims to investigate the potential of using intrinsic optical signal (IOS) optoretinography (ORG) to objectively detect dark adaptation (DA) abnormalities related to rod photoreceptor degeneration. Functional optical coherence tomography (OCT) was employed in both wild-type (WT) and retinal degeneration 10 (rd10) mice to conduct this assessment. Dynamic OCT measurements captured the changes in retinal thickness and reflectance from light-to-dark transition. Comparative analysis revealed significant IOS alterations within the outer retina. Specifically, a reduction in thickness from external limiting membrane (ELM) peak to retinal pigment epithelium (RPE) peak was observed (WT: 1.13 ± 0.69 µm, 30 min DA; rd10: 2.64 ± 0.86 µm, 30 min DA), as well as a decrease in the intensity of the inner segment ellipsoid zone (EZ) in 30 min DA compared to light adaptation (LA). The reduction of relative EZ intensity was notable in rd10 after 5 min DA and in WT after 15 min DA, with a distinguishable difference between rd10 and WT after 10 min DA. Furthermore, our findings indicated a significant decrease in the relative intensity of the hypo-reflective band between EZ and RPE in rd10 retinas during DA, which primarily corresponds to the outer segment (OS) region. In conclusion, the observed DA-IOS abnormalities, including changes in ELM-RPE thickness, EZ, and OS intensity, hold promise as differentiators between WT and rd10 mice before noticeable morphological abnormalities occur. These findings suggest the potential of this non-invasive imaging technique for the early detection of dysfunction in retinal photoreceptors.
Collapse
Affiliation(s)
- Jie Ding
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Tae-Hoon Kim
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Guangying Ma
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
| | - Xincheng Yao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
37
|
Su E, Kesavamoorthy N, Junge JA, Zheng M, Craft CM, Ameri H. Comparison of Retinal Metabolic Activity and Structural Development between rd10 Mice and Normal Mice Using Multiphoton Fluorescence Lifetime Imaging Microscopy. Curr Issues Mol Biol 2024; 46:612-620. [PMID: 38248341 PMCID: PMC10813981 DOI: 10.3390/cimb46010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/01/2024] [Accepted: 01/04/2024] [Indexed: 01/23/2024] Open
Abstract
Fluorescence lifetime imaging microscopy (FLIM) is a technique that analyzes the metabolic state of tissues based on the spatial distribution of fluorescence lifetimes of certain interacting molecules. We used multiphoton FLIM to study the metabolic state of developing C57BL6/J and rd10 retinas based on the fluorescence lifetimes of free versus bound nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate (NAD(P)H), with free NAD(P)H percentages suggesting increased glycolysis and bound NAD(P)H percentages indicating oxidative phosphorylation. The mice were sacrificed and enucleated at various time points throughout their first 3 months of life. The isolated eyecups were fixed, sectioned using a polyacrylamide gel embedding technique, and then analyzed with FLIM. The results suggested that in both C57BL6/J mice and rd10 mice, oxidative phosphorylation initially decreased and then increased, plateauing over time. This trend, however, was accelerated in rd10 mice, with its turning point occurring at p10 versus the p30 turning point in C57BL6/J mice. There was also a noticeable difference in oxidative phosphorylation rates between the outer and inner retinas in both strains, with greater oxidative phosphorylation present in the latter. A greater understanding of rd10 and WT metabolic changes during retinal development may provide deeper insights into retinal degeneration and facilitate the development of future treatments.
Collapse
Affiliation(s)
- Erin Su
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| | - Niranjana Kesavamoorthy
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| | - Jason A. Junge
- Department of Biological Sciences, David Dornsife College of Letters Arts and Sciences, University of Southern California Dana, Los Angeles, CA 90089, USA;
| | - Mengmei Zheng
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| | - Cheryl Mae Craft
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| | - Hossein Ameri
- Department of Ophthalmology, USC Roski Eye Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; (E.S.); (N.K.); (C.M.C.)
| |
Collapse
|
38
|
Jun JH, Kim JS, Palomera LF, Jo DG. Dysregulation of histone deacetylases in ocular diseases. Arch Pharm Res 2024; 47:20-39. [PMID: 38151648 DOI: 10.1007/s12272-023-01482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
Ocular diseases are a growing global concern and have a significant impact on the quality of life. Cataracts, glaucoma, age-related macular degeneration, and diabetic retinopathy are the most prevalent ocular diseases. Their prevalence and the global market size are also increasing. However, the available pharmacotherapy is currently limited. These diseases share common pathophysiological features, including neovascularization, inflammation, and/or neurodegeneration. Histone deacetylases (HDACs) are a class of enzymes that catalyze the removal of acetyl groups from lysine residues of histone and nonhistone proteins. HDACs are crucial for regulating various cellular processes, such as gene expression, protein stability, localization, and function. They have also been studied in various research fields, including cancer, inflammatory diseases, neurological disorders, and vascular diseases. Our study aimed to investigate the relationship between HDACs and ocular diseases, to identify a new strategy for pharmacotherapy. This review article explores the role of HDACs in ocular diseases, specifically focusing on diabetic retinopathy, age-related macular degeneration, and retinopathy of prematurity, as well as optic nerve disorders, such as glaucoma and optic neuropathy. Additionally, we explore the interplay between HDACs and key regulators of fibrosis and angiogenesis, such as TGF-β and VEGF, highlighting the potential of targeting HDAC as novel therapeutic strategies for ocular diseases.
Collapse
Affiliation(s)
- Jae Hyun Jun
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
- Department of Pharmacology, CKD Research Institute, Chong Kun Dang Pharmaceutical Co., Yongin, 16995, Korea
| | - Jun-Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Leon F Palomera
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Korea.
- Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, 06351, Korea.
- Biomedical Institute for Convergence, Sungkyunkwan University, Suwon, 16419, Korea.
| |
Collapse
|
39
|
Cole JD, McDaniel JA, Nilak J, Ban A, Rodriguez C, Hameed Z, Grannonico M, Netland PA, Yang H, Provencio I, Liu X. Characterization of neural damage and neuroinflammation in Pax6 small-eye mice. Exp Eye Res 2024; 238:109723. [PMID: 37979905 PMCID: PMC10843716 DOI: 10.1016/j.exer.2023.109723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023]
Abstract
Aniridia is a panocular condition characterized by a partial or complete loss of the iris. It manifests various developmental deficits in both the anterior and posterior segments of the eye, leading to a progressive vision loss. The homeobox gene PAX6 plays an important role in ocular development and mutations of PAX6 have been the main causative factors for aniridia. In this study, we assessed how Pax6-haploinsufficiency affects retinal morphology and vision of Pax6Sey mice using in vivo and ex vivo metrics. We used mice of C57BL/6 and 129S1/Svlmj genetic backgrounds to examine the variable severity of symptoms as reflected in human aniridia patients. Elevated intraocular pressure (IOP) was observed in Pax6Sey mice starting from post-natal day 20 (P20). Correspondingly, visual acuity showed a steady age-dependent decline in Pax6Sey mice, though these phenotypes were less severe in the 129S1/Svlmj mice. Local retinal damage with layer disorganization was assessed at P30 and P80 in the Pax6Sey mice. Interestingly, we also observed a greater number of activated Iba1+ microglia and GFAP + astrocytes in the Pax6Sey mice than in littermate controls, suggesting a possible neuroinflammatory response to Pax6 deficiencies.
Collapse
Affiliation(s)
- James D Cole
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA; Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - John A McDaniel
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Joelle Nilak
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Ashley Ban
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Carlos Rodriguez
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Zuhaad Hameed
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Marta Grannonico
- Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Peter A Netland
- Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA
| | - Hu Yang
- Linda and Bipin Doshi Department of Chemical and Biochemical Engineering, Missouri University of Science and Technology, Rolla, MO, USA
| | - Ignacio Provencio
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA.
| | - Xiaorong Liu
- Department of Biology, University of Virginia, Charlottesville, VA, USA; Department of Ophthalmology, University of Virginia, Charlottesville, VA, USA; Program in Fundamental Neuroscience, University of Virginia, Charlottesville, VA, USA; Department of Psychology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
40
|
Kim H, Roh H, Kim SH, Lee K, Im M, Oh SJ. Effective protection of photoreceptors using an inflammation-responsive hydrogel to attenuate outer retinal degeneration. NPJ Regen Med 2023; 8:68. [PMID: 38097595 PMCID: PMC10721838 DOI: 10.1038/s41536-023-00342-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
Retinitis pigmentosa (RP) is an outer retinal degenerative disease that can lead to photoreceptor cell death and profound vision loss. Although effective regulation of intraretinal inflammation can slow down the progression of the disease, an efficient anti-inflammatory treatment strategy is still lacking. This study reports the fabrication of a hyaluronic acid-based inflammation-responsive hydrogel (IRH) and its epigenetic regulation effects on retinal degeneration. The injectable IRH was designed to respond to cathepsin overexpression in an inflammatory environment. The epigenetic drug, the enhancer of zeste homolog 2 (EZH2) inhibitors, was loaded into the hydrogel to attenuate inflammatory factors. On-demand anti-inflammatory effects of microglia cells via the drug-loaded IRH were verified in vitro and in vivo retinal degeneration 10 (rd10) mice model. Therefore, our IRH not only reduced intraretinal inflammation but also protected photoreceptors morphologically and functionally. Our results suggest the IRH reported here can be used to considerably delay vision loss caused by RP.
Collapse
Affiliation(s)
- Hyerim Kim
- Program in Nanoscience and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea
| | - Hyeonhee Roh
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea
- School of Electrical Engineering, College of Engineering, Korea University, Seoul, 02841, South Korea
| | - Sang-Heon Kim
- Center for Biomaterials, Biomedical Research Institute, KIST, Seoul, 02792, South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 08826, South Korea.
- Research Institute for Convergence Science, Seoul National University, Seoul, 08826, South Korea.
| | - Maesoon Im
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, South Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, South Korea.
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447, South Korea.
| | - Seung Ja Oh
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
41
|
Rodgers J, Wright P, Ballister ER, Hughes RB, Storchi R, Wynne J, Martial FP, Lucas RJ. Modulating signalling lifetime to optimise a prototypical animal opsin for optogenetic applications. Pflugers Arch 2023; 475:1387-1407. [PMID: 38036775 PMCID: PMC10730688 DOI: 10.1007/s00424-023-02879-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023]
Abstract
Animal opsins are light activated G-protein-coupled receptors, capable of optogenetic control of G-protein signalling for research or therapeutic applications. Animal opsins offer excellent photosensitivity, but their temporal resolution can be limited by long photoresponse duration when expressed outside their native cellular environment. Here, we explore methods for addressing this limitation for a prototypical animal opsin (human rod opsin) in HEK293T cells. We find that the application of the canonical rhodopsin kinase (GRK1)/visual arrestin signal termination mechanism to this problem is complicated by a generalised suppressive effect of GRK1 expression. This attenuation can be overcome using phosphorylation-independent mutants of arrestin, especially when these are tethered to the opsin protein. We further show that point mutations targeting the Schiff base stability of the opsin can also reduce signalling lifetime. Finally, we apply one such mutation (E122Q) to improve the temporal fidelity of restored visual responses following ectopic opsin expression in the inner retina of a mouse model of retinal degeneration (rd1). Our results reveal that these two strategies (targeting either arrestin binding or Schiff-base hydrolysis) can produce more time-delimited opsin signalling under heterologous expression and establish the potential of this approach to improve optogenetic performance.
Collapse
Affiliation(s)
- Jessica Rodgers
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| | - Phillip Wright
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Edward R Ballister
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
- Department of Biomedical Engineering, Columbia University, New York, NY, 10027, USA
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, 10032, NY, USA
| | - Rebecca B Hughes
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Riccardo Storchi
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan Wynne
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Franck P Martial
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Robert J Lucas
- Centre for Biological Timing, Division of Neuroscience, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK.
| |
Collapse
|
42
|
Xia CH, Liu H, Li M, Zhang H, Xing X, Gong X. Identification and Characterization of Retinitis Pigmentosa in a Novel Mouse Model Caused by PDE6B-T592I. Biomedicines 2023; 11:3173. [PMID: 38137394 PMCID: PMC10740990 DOI: 10.3390/biomedicines11123173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
The cGMP-phosphodiesterase 6 beta subunit (PDE6B) is an essential component in the phototransduction pathway for light responses in photoreceptor cells. PDE6B gene mutations cause the death of rod photoreceptors, named as hereditary retinitis pigmentosa (RP) in humans and retinal degeneration (RD) in rodents. Here, we report a new RD model, identified from a phenotypic screen of N-ethyl-N-nitrosourea (ENU)-induced mutant mice, which displays retinal degeneration caused by a point mutation in the Pde6b gene that results in PDE6B-T592I mutant protein. The homozygous mutant mice show an extensive loss of rod photoreceptors at the age of 3 weeks; unexpectedly, the loss of rod photoreceptors can be partly rescued by dark rearing. Thus, this RD mutant model displays a light-dependent loss of rod photoreceptors. Both western blot and immunostaining results show very low level of mutant PDE6B-T592I protein in the retina. Structure modeling suggests that the T592I mutation probably affects the function and stability of PDE6B protein by changing intramolecular interactions. We further demonstrate that the expression of wild-type PDE6B delivered by subretinally injected adeno-associated virus (rAAV) prevents photoreceptor cell death in this RD model in vivo. The PDE6B-T592I mutant is, therefore, a valuable RD model for evaluating rAAV-mediated treatment and for investigating the molecular mechanism of light-dependent rod photoreceptor cell death that is related to impaired PDE6B function.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Gong
- Herbert Wertheim School of Optometry and Vision Science Program, University of California, Berkeley, CA 94720, USA; (C.-H.X.); (H.L.); (M.L.); (H.Z.); (X.X.)
| |
Collapse
|
43
|
Elbaz-Hayoun S, Rinsky B, Hagbi-Levi S, Grunin M, Chowers I. CCR1 mediates Müller cell activation and photoreceptor cell death in macular and retinal degeneration. eLife 2023; 12:e81208. [PMID: 37903056 PMCID: PMC10615370 DOI: 10.7554/elife.81208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 10/04/2023] [Indexed: 11/01/2023] Open
Abstract
Mononuclear cells are involved in the pathogenesis of retinal diseases, including age-related macular degeneration (AMD). Here, we examined the mechanisms that underlie macrophage-driven retinal cell death. Monocytes were extracted from patients with AMD and differentiated into macrophages (hMdɸs), which were characterized based on proteomics, gene expression, and ex vivo and in vivo properties. Using bioinformatics, we identified the signaling pathway involved in macrophage-driven retinal cell death, and we assessed the therapeutic potential of targeting this pathway. We found that M2a hMdɸs were associated with retinal cell death in retinal explants and following adoptive transfer in a photic injury model. Moreover, M2a hMdɸs express several CCRI (C-C chemokine receptor type 1) ligands. Importantly, CCR1 was upregulated in Müller cells in models of retinal injury and aging, and CCR1 expression was correlated with retinal damage. Lastly, inhibiting CCR1 reduced photic-induced retinal damage, photoreceptor cell apoptosis, and retinal inflammation. These data suggest that hMdɸs, CCR1, and Müller cells work together to drive retinal and macular degeneration, suggesting that CCR1 may serve as a target for treating these sight-threatening conditions.
Collapse
Affiliation(s)
- Sarah Elbaz-Hayoun
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Batya Rinsky
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Shira Hagbi-Levi
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Michelle Grunin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| | - Itay Chowers
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
44
|
Kocherlakota S, Das Y, Swinkels D, Vanmunster M, Callens M, Vinckier S, Vaz FM, Sinha D, Van Veldhoven PP, Fransen M, Baes M. The murine retinal pigment epithelium requires peroxisomal β-oxidation to maintain lysosomal function and prevent dedifferentiation. Proc Natl Acad Sci U S A 2023; 120:e2301733120. [PMID: 37862382 PMCID: PMC10614831 DOI: 10.1073/pnas.2301733120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 08/14/2023] [Indexed: 10/22/2023] Open
Abstract
Retinal pigment epithelium (RPE) cells have to phagocytose shed photoreceptor outer segments (POS) on a daily basis over the lifetime of an organism, but the mechanisms involved in the digestion and recycling of POS lipids are poorly understood. Although it was frequently assumed that peroxisomes may play an essential role, this was never investigated. Here, we show that global as well as RPE-selective loss of peroxisomal β-oxidation in multifunctional protein 2 (MFP2) knockout mice impairs the digestive function of lysosomes in the RPE at a very early age, followed by RPE degeneration. This was accompanied by prolonged mammalian target of rapamycin activation, lipid deregulation, and mitochondrial structural anomalies without, however, causing oxidative stress or energy shortage. The RPE degeneration caused secondary photoreceptor death. Notably, the deterioration of the RPE did not occur in an Mfp2/rd1 mutant mouse line, characterized by absent POS shedding. Our findings prove that peroxisomal β-oxidation in the RPE is essential for handling the polyunsaturated fatty acids present in ingested POS and shed light on retinopathy in patients with peroxisomal disorders. Our data also have implications for gene therapy development as they highlight the importance of targeting the RPE in addition to the photoreceptor cells.
Collapse
Affiliation(s)
- Sai Kocherlakota
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Yannick Das
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Daniëlle Swinkels
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Maarten Vanmunster
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Manon Callens
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Stefan Vinckier
- Laboratory of Angiogenesis and Vascular Metabolism, Center for Cancer Biology, Vlaams Insituut voor Biotechnologie, Leuven3000, Belgium
- Department of Oncology, Leuven Cancer Institute, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Frédéric M. Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam Gastroenterology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, Amsterdam1105AZ, The Netherlands
- Core Facility Metabolomics, Amsterdam University Medical Center, Amsterdam1105AZ, The Netherlands
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
- Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD21287
| | - Paul P. Van Veldhoven
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Marc Fransen
- Laboratory of Peroxisome Biology and Intracellular Communication, Department of Cellular and Molecular Medicine, Katholieke Universiteit Leuven, Leuven3000, Belgium
| | - Myriam Baes
- Laboratory of Cell Metabolism, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit Leuven, Leuven3000, Belgium
| |
Collapse
|
45
|
Eugenín J, Eugenín-von Bernhardi L, von Bernhardi R. Age-dependent changes on fractalkine forms and their contribution to neurodegenerative diseases. Front Mol Neurosci 2023; 16:1249320. [PMID: 37818457 PMCID: PMC10561274 DOI: 10.3389/fnmol.2023.1249320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 09/06/2023] [Indexed: 10/12/2023] Open
Abstract
The chemokine fractalkine (FKN, CX3CL1), a member of the CX3C subfamily, contributes to neuron-glia interaction and the regulation of microglial cell activation. Fractalkine is expressed by neurons as a membrane-bound protein (mCX3CL1) that can be cleaved by extracellular proteases generating several sCX3CL1 forms. sCX3CL1, containing the chemokine domain, and mCX3CL1 have high affinity by their unique receptor (CX3CR1) which, physiologically, is only found in microglia, a resident immune cell of the CNS. The activation of CX3CR1contributes to survival and maturation of the neural network during development, glutamatergic synaptic transmission, synaptic plasticity, cognition, neuropathic pain, and inflammatory regulation in the adult brain. Indeed, the various CX3CL1 forms appear in some cases to serve an anti-inflammatory role of microglia, whereas in others, they have a pro-inflammatory role, aggravating neurological disorders. In the last decade, evidence points to the fact that sCX3CL1 and mCX3CL1 exhibit selective and differential effects on their targets. Thus, the balance in their level and activity will impact on neuron-microglia interaction. This review is focused on the description of factors determining the emergence of distinct fractalkine forms, their age-dependent changes, and how they contribute to neuroinflammation and neurodegenerative diseases. Changes in the balance among various fractalkine forms may be one of the mechanisms on which converge aging, chronic CNS inflammation, and neurodegeneration.
Collapse
Affiliation(s)
- Jaime Eugenín
- Facultad de Química y Biología, Departamento de Biología, Universidad de Santiago de Chile, USACH, Santiago, Chile
| | | | - Rommy von Bernhardi
- Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
46
|
Schilardi G, Kralik J, Kleinlogel S. Selective Block of Upregulated Kv1.3 Potassium Channels in ON-Bipolar Cells of the Blind Retina Enhances Optogenetically Restored Signaling. Int J Mol Sci 2023; 24:14207. [PMID: 37762510 PMCID: PMC10531754 DOI: 10.3390/ijms241814207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/13/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Loss of photoreceptors in retinal degenerative diseases also impacts the inner retina: bipolar cell dendrites retract, neurons rewire, and protein expression changes. ON-bipolar cells (OBCs) represent an attractive target for optogenetic vision restoration. However, the above-described maladaptations may negatively impact the quality of restored vision. To investigate this question, we employed human post-mortem retinas and transgenic rd1_Opto-mGluR6 mice expressing the optogenetic construct Opto-mGluR6 in OBCs and carrying the retinal degeneration rd1 mutation. We found significant changes in delayed rectifier potassium channel expression in OBCs of degenerative retinas. In particular, we found an increase in Kv1.3 expression already in early stages of degeneration. Immunohistochemistry localized Kv1.3 channels specifically to OBC axons. In whole-cell patch-clamp experiments, OBCs in the degenerated murine retina were less responsive, which could be reversed by application of the specific Kv1.3 antagonist Psora-4. Notably, Kv1.3 block significantly increased the amplitude and kinetics of Opto-mGluR6-mediated light responses in OBCs of the blind retina and increased the signal-to-noise ratio of light-triggered responses in retinal ganglion cells. We propose that reduction in Kv1.3 activity in the degenerated retina, either by pharmacological block or by KCNA3 gene silencing, could improve the quality of restored vision.
Collapse
|
47
|
Nguyen M, Sullivan J, Shen W. Retinal vascular remodeling in photoreceptor degenerative disease. Exp Eye Res 2023; 234:109566. [PMID: 37423458 DOI: 10.1016/j.exer.2023.109566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Abnormal vasculature in the retina, specifically tortuous vessels and capillary degeneration, is common in many of the most prevalent retinal degenerative diseases, currently affecting millions of people across the world. However, the formation and development of abnormal vasculature in the context of retinal degenerative diseases are still poorly understood. The FVB/N (rd1) and rd10 mice are well-studied animal models of retinal degenerative diseases, but how photoreceptor degeneration leads to vascular abnormality in the diseases remains to be elucidated. Here, we used advancements in confocal microscopy, immunohistochemistry, and image analysis software to systematically characterize the pathological vasculature in the FVB/N (rd1) and rd10 mice, known as a chronic, rapid and slower retinal degenerative model, respectively. We demonstrated that there was plexus-specific vascular degeneration in the retinal trilaminar vascular network paralleled to photoreceptor degeneration in the diseased retinas. We also quantitatively analyzed the vascular structural architecture in the wild-type and diseased retinas to provide valuable information on vascular remodeling in retinal degenerative disease.
Collapse
Affiliation(s)
- Matthew Nguyen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - James Sullivan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Wen Shen
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA.
| |
Collapse
|
48
|
Tan Y, Huang J, Li D, Zou C, Liu D, Qin B. Single-cell RNA sequencing in dissecting microenvironment of age-related macular degeneration: Challenges and perspectives. Ageing Res Rev 2023; 90:102030. [PMID: 37549871 DOI: 10.1016/j.arr.2023.102030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/29/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause of blindness in individuals over the age of 50 years, yet its etiology and pathogenesis largely remain uncovered. Single-cell RNA sequencing (scRNA-seq) technologies are recently developed and have a number of advantages over conventional bulk RNA sequencing techniques in uncovering the heterogeneity of complex microenvironments containing numerous cell types and cell communications during various biological processes. In this review, we summarize the latest discovered cellular components and regulatory mechanisms during AMD development revealed by scRNA-seq. In addition, we discuss the main challenges and future directions in exploring the pathophysiology of AMD equipped with single-cell technologies. Our review underscores the importance of multimodal single-cell platforms (such as single-cell spatiotemporal multi-omics and single-cell exosome omics) as new approaches for basic and clinical AMD research in identifying biomarker, characterizing cellular responses to drug treatment and environmental stimulation.
Collapse
Affiliation(s)
- Yao Tan
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Jianguo Huang
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Deshuang Li
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China
| | - Chang Zou
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China; School of Life and Health Sciences, The Chinese University of Kong Hong, Shenzhen 518000, Guangdong, China.
| | - Dongcheng Liu
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China.
| | - Bo Qin
- Shenzhen Aier Eye Hospital, Aier Eye Hospital, Jinan University, Shenzhen, China; Shenzhen Aier Ophthalmic Technology Institute, Shenzhen, China; Aier School of Ophthalmology, Central South University, Changsha, China.
| |
Collapse
|
49
|
Fertan E, Wong AA, Montbrun TSGD, Purdon MK, Roddick KM, Yamamoto T, Brown RE. Early postnatal development of the MDGA2 +/- mouse model of synaptic dysfunction. Behav Brain Res 2023; 452:114590. [PMID: 37499910 DOI: 10.1016/j.bbr.2023.114590] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Synaptic dysfunction underlies many neurodevelopmental disorders (NDDs). The membrane-associated mucin domain-containing glycosylphosphatidylinositol anchor proteins (MDGAs) regulate synaptic development by modulating neurexin-neuroligin complex formation. Since understanding the neurodevelopmental profile and the sex-based differences in the manifestation of the symptoms of NDDs is important for their early diagnosis, we tested a mouse model haploinsufficient for MDGA2 (MDGA2+/-) on a neurodevelopmental test battery, containing sensory, motor, and cognitive measures, as well as ultrasonic vocalizations. When male and female MDGA2+/- and wildtype (WT) C57BL/6 J mice were examined from 2 to 23 days of age using this test battery, genotype and sex differences in body weight, sensory-motor processes, and ultrasonic vocalizations were observed. The auditory startle reflex appeared earlier in the MDGA2+/- than in WT mice and the MDGA2+/- mice produced fewer ultrasonic vocalizations. The MDGA2+/- mice showed reduced locomotion and rearing than WT mice in the open field after 17 days of age and spent less time investigating a novel object than WT mice at 21 days of age. Female MDGA2+/- mice weighed less than WT females and showed lower grip strength, indicating a delay in sensory-motor development in MDGA2+/- mice, which appears to be more pronounced in females than males. The behavioural phenotypes resulting from MDGA2 haploinsufficiency suggests that it shows delayed development of motor behaviour, grip strength and exploratory behaviour, non-social phenotypes of NDDs.
Collapse
Affiliation(s)
- Emre Fertan
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Aimée A Wong
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | | | - Michaela K Purdon
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Kyle M Roddick
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Tohru Yamamoto
- Department of Molecular Neurobiology, Faculty of Medicine, Kagawa University, 1750-1 Ikenobe, Miki-cho, Kagawa 761-0793, Japan
| | - Richard E Brown
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
50
|
Frare C, Pitt SK, Hewett SJ. Sex- and age-dependent contribution of System x c- to cognitive, sensory, and social behaviors revealed by comprehensive behavioral analyses of System x c- null mice. Front Behav Neurosci 2023; 17:1238349. [PMID: 37649973 PMCID: PMC10462982 DOI: 10.3389/fnbeh.2023.1238349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023] Open
Abstract
Background System xc- (Sxc-) is an important heteromeric amino acid cystine/glutamate exchanger that plays a pivotal role in the CNS by importing cystine into cells while exporting glutamate. Although certain behaviors have been identified as altered in Sxc- null mutant mice, our understanding of the comprehensive impact of Sxc- on behavior remains incomplete. Methods To address this gap, we compared motor, sensory and social behaviors of male and female mice in mice null for Sxc- (SLC7A11sut/sut) with wildtype littermates (SLC7A11+/+) in a comprehensive and systematic manner to determine effects of genotype, sex, age, and their potential interactions. Results Motor performance was not affected by loss of Sxc- in both males and females, although it was impacted negatively by age. Motor learning was specifically disrupted in female mice lacking Sxc- at both 2 and 6 months of age. Further, female SLC7A11sut/sut mice at both ages exhibited impaired sociability, but normal spatial and recognition memory, as well as sensorimotor gating. Finally, pronounced open-space anxiety was displayed by female SLC7A11sut/sut when they were young. In contrast, young SLC7A11sut/sut male mice demonstrated normal sociability, delayed spatial learning, increased open-space anxiety and heightened sensitivity to noise. As they aged, anxiety and noise sensitivity abated but hyperactivity emerged. Discussion We find that the behavioral phenotypes of female SLC7A11sut/sut are similar to those observed in mouse models of autism spectrum disorder, while behaviors of male SLC7A11sut/sut resemble those seen in mouse models of attention deficit hyperactivity disorder. These results underscore the need for further investigation of SLC7A11 in neurodevelopment. By expanding our understanding of the potential involvement of Sxc-, we may gain additional insights into the mechanisms underlying complex neurodevelopmental conditions.
Collapse
Affiliation(s)
| | | | - Sandra J. Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY, United States
| |
Collapse
|