1
|
Zhao YP, Guo PR, Chen ZL, Cui JL, Wang JX, Chen C, Wei H, Wang C. EDDS application destabilizes soil organic matter in phytoremediation: Insights from quantity and molecular composition of dissolved organic matter. ENVIRONMENTAL RESEARCH 2024; 263:120085. [PMID: 39353530 DOI: 10.1016/j.envres.2024.120085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
The stability of soil organic matter (SOM) is crucial for metal transport and carbon cycling. S,S-ethylenediaminedisuccinic acid (EDDS) is widely used to enhance phytoremediation efficiency for heavy metals in contaminated soils, yet its specific impacts on SOM have been underexplored. This study investigates the effects of EDDS on SOM stability using a rhizobox experiment with ryegrass. Changes in soil dissolved organic matter (DOM) quantity and molecular composition were analyzed via Fourier transform ion cyclotron resonance mass spectrometry. Results showed that the use of EDDS increased the uptake of Cu, Cd and Pb by ryegrass, but simultaneously induced the destabilization and transformation of SOM. After 7 days of EDDS application, dissolved organic carbon (DOC) and nitrogen (DON) concentrations in rhizosphere soils increased significantly by 3.44 and 10.2 times, respectively. In addition, EDDS reduced lipids (56.3%) and proteins/amino sugars-like compounds (52.1%), while increasing tannins (9.11%) and condensed aromatics-like compounds (24.4%) in the rhizosphere DOM. These effects likely stem from EDDS's dual action: extracting Fe/Al from SOM-mineral aggregates, releasing SOM into the DOM pool, and promoting microbial degradation of bioavailable carbon through chain scission and dehydration. Our study firstly revealed that the application of EDDS in phytoremediation increased the mineralization of SOM and release of CO2 from soil to the atmosphere, which is important to assess the carbon budget of phytoremediation and develop climate-smart strategy in future.
Collapse
Affiliation(s)
- Yan-Ping Zhao
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510006, China
| | - Peng-Ran Guo
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510006, China.
| | - Zhi-Liang Chen
- South China Institute of Environmental Sciences, Ministry of Eology and Environment, Guangzhou, 510006, China.
| | - Jin-Li Cui
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jian-Xu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550082, China
| | - Chao Chen
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Online Monitoring of Water Pollution, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou, 510006, China
| | - Hang Wei
- South China Institute of Environmental Sciences, Ministry of Eology and Environment, Guangzhou, 510006, China
| | - Cheng Wang
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
2
|
Baek K, Jang S, Goh J, Choi A. Salmonirosea aquatica gen. nov., sp. nov., a Novel Genus within the Family Spirosomaceae, Was Isolated from Brackish Water in the Republic of Korea. Microorganisms 2024; 12:1671. [PMID: 39203513 PMCID: PMC11356934 DOI: 10.3390/microorganisms12081671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
A Gram-stain-negative, obligately aerobic, non-motile, rod-shaped bacterial strain designated SJW1-29T was isolated from brackish water samples collected from the Seomjin River, Republic of Korea. The purpose of this study was to characterize strain SJW1-29T and determine its taxonomic position as a potential new genus within the family Spirosomaceae. The strain grew within the range of 10-30 °C (optimum, 25 °C), pH 5.0-10.0 (optimum, 7.0), and 1-4% NaCl (optimum, 3%). Phylogenetic analysis based on the 16S rRNA gene revealed that strain SJW1-29T belongs to the family Spirosomaceae and is closely related to Persicitalea jodogahamensis Shu-9-SY12-35CT (91.3% similarity), Rhabdobacter roseus R491T (90.6%), and Arundinibacter roseus DMA-K-7aT (90.0%), while the similarities to strains within the order Cytophagales were lower than 90.0%. The genome is 7.1 Mbp with a G+C content of 50.7 mol%. The use of genome-relatedness indices confirmed that this strain belongs to a new genus. The major polar lipid profile consisted of phosphatidylethanolamine, and MK-7 was the predominant menaquinone. The predominant fatty acids were summed feature 3 (C16:1ω7c and/or C16:1ω6c), iso-C15:0, iso-C17:0 3-OH, and C16:0, representing more than 80% of the total fatty acids. The phenotypic, chemotaxonomic, genetic, and phylogenetic properties suggest that strain SJW1-29T represents a novel species within a new genus in the family Spirosomaceae, for which the name Salmonirosea aquatica gen. nov., sp. nov., is proposed. The type strain of Salmonirosea aquatica is SJW1-29T (=KCTC 72493T = NBRC 114061T = FBCC-B16924T).
Collapse
Affiliation(s)
| | | | | | - Ahyoung Choi
- Biological Resources Research Department, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju 37242, Republic of Korea; (K.B.); (S.J.); (J.G.)
| |
Collapse
|
3
|
Moradi-Choghamarani F, Ghorbani F. Investigating the carcinogenic and non-carcinogenic health hazards of heavy metal ions in Spinacia oleracea grown in agricultural soil treated with biochar and humic acid. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:325. [PMID: 39012586 DOI: 10.1007/s10653-024-02110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
This study addressed the bioaccumulation and human health risk among the consumption of Spinacia oleracea grown in agricultural soil treated with humic acid (189-2310 ppm) and biochars (0.00-5.10%.wt). The biochars came from two local feedstocks of rice-husk (RH) and sugar-beet-pulp (SBP) pyrolyzed at temperatures 300 and 600 °C. Total concentrations of Cu, Cd, and Ni found in both the soil and biomass/biochar exceeded global safety thresholds. The bioaccumulation levels of HMs in spinach leaves varied, with Fe reaching the highest concentration at 765.27 mg kg-1 and Cd having the lowest concentration at 3.31 mg kg-1. Overall, the concentrations of Zn, Cd, Pb, and Ni in spinach leaves exceeded the safety threshold limits, so that its consumption is not recommended. The assessment of hazard quotient (HI) for the HMs indicated potential health hazards for humans (HI > 1) from consuming the edible parts of spinach. The biochar application rates of 4.35%wt and 0.00%.wt resulted in the highest (3.69) and lowest (3.15) HI values, respectively. The cumulative carcinogenic risk (TCR) ranged from 0.0085 to 0.0119, exceeding the cancer risk threshold. Introducing 5.10%wt biomass/biochar resulted in a 36% rise in TCR compared to the control. The utilization of humic acid alongside HMs-polluted biochars results in elevated levels of HMs bioaccumulation exceeding the allowable thresholds in crops (with a maximum increase of 49% at 2000 ppm humic acid in comparison to 189 ppm). Consequently, this raised the HI by 46% and the TCR by 22%. This study demonstrated that the utilization of HMs-polluted biochars could potentially pose supplementary health hazards. Moreover, it is evident that the utilization of HMs-polluted biochars in treating metal-contaminated soil does not effectively stabilize or reduce pollution.
Collapse
Affiliation(s)
- Farzad Moradi-Choghamarani
- Department of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran
| | - Farshid Ghorbani
- Department of Environmental Sciences, Faculty of Natural Resources, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
4
|
da Silva HFO, de Oliveira Torchia DF, van Tol de Castro TA, de Abreu Lopes S, Cantarino RE, Tavares OCH, de Moura OVT, Rodrigues NF, Berbara RLL, Santos LA, García AC. Role of the molecular structure of humified organic matter in rice plant response to environmental lead pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27203-27220. [PMID: 38507164 DOI: 10.1007/s11356-024-32898-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Humified organic matter has been shown to decrease Pb toxicity in plants. However, there are still gaps in our understanding of the mechanism by which this phenomenon occurs. In this study, we aimed to assess the ability of humic substances (HSs), humic acids (HAs), and fulvic acids (FAs) to enhance defense mechanisms in rice plants under lead (Pb)-stressed conditions. HS fractions were isolated from vermicompost using the chemical fractionation methodology established by the International Humic Substances Society. These fractions were characterized by solid-state NMR and FTIR. Chemometric analysis was used to compare humic structures and correlate them with bioactivity. Three treatments were tested to evaluate the protective effect of humic fractions on rice plants. The first experiment involved the application of humic fractions along with Pb. The second comprised pretreatment with humic fractions followed by subsequent exposure to Pb stress. The third experiment involved Pb stress and subsequent treatment with humic fractions. The root morphology and components of the antioxidative defense system were evaluated and quantified. The results showed that HS + Pb, HA + Pb, and FA + Pb treatment preserved root growth and reduced the levels of O2- and malondialdehyde (MDA) in the roots by up to 5% and 2%, respectively. Pretreatment of the plants with humic fractions promoted the maintenance of root growth and reduced the contents of O2-, H2O2, and MDA by up to 48%, 22%, and 20%, respectively. Combined application of humic fractions and Pb reduced the Pb content in plant tissues by up to 60%, while pretreatment reduced it by up to 80%. The protective capacity of humic fractions is related to the presence of peptides, lignin, and carbohydrate fragments in their molecular structures. These results suggest that products could be developed that can mitigate the adverse effects of heavy metals on agricultural crops.
Collapse
Affiliation(s)
- Hellen Fernanda Oliveira da Silva
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | | | - Tadeu Augusto van Tol de Castro
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Samuel de Abreu Lopes
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Raphaella Esterque Cantarino
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Orlando Carlos Huertas Tavares
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Octávio Vioratti Telles de Moura
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Natália Fernandes Rodrigues
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Ricardo Luiz Louro Berbara
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Leandro Azevedo Santos
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil
| | - Andrés Calderin García
- Laboratory of Soil Biological Chemistry, Department of Soils, Federal Rural University of Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil.
| |
Collapse
|
5
|
Li L, Wang C, Wang W, Zhou L, Zhang D, Liao H, Wang Z, Li B, Peng Y, Xu Y, Chen Q. Uncovering the mechanisms of how corn steep liquor and microbial communities minimize cadmium translocation in Chinese cabbage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22576-22587. [PMID: 38411912 DOI: 10.1007/s11356-024-32579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/17/2024] [Indexed: 02/28/2024]
Abstract
Corn steep liquor-assisted microbial remediation has been proposed as a promising strategy to remediate cadmium (Cd)-contaminated soil. In this study, we determined Bacillus subtilis (K2) with a high cadmium (Cd) accumulation ability and Cd resistance. However, studies on this strategy used in the Cd uptake of Chinese cabbage are lacking, and the effect of the combined incorporation of corn steep liquor and K2 on the functions and microbial interactions of soil microbiomes is unclear. Here, we study the Cd uptake and transportation in Chinese cabbage by the combination of K2 and corn steep liquor (K2 + C7) in a Cd-contaminated soil and corresponding microbial regulation mechanisms. Results showed that compared to inoculant K2 treatment alone, a reduction of Cd concentration in the shoots by 14.4% and the dry weight biomass of the shoots and the roots in Chinese cabbage increased by 21.6% and 30.8%, respectively, under K2 + C7 treatment. Meanwhile, hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels were decreased by enhancing POD and SOD activity, thereby reversing Cd-induced oxidative damage. Importantly, inoculation of K2 would decrease the diversity of the microbial community while enhancing the abundance of dominant species. These findings provide a promising strategy for reducing the Cd accumulation in Chinese cabbage and recovering soil ecological functions.
Collapse
Affiliation(s)
- Longcheng Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Chensi Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Wenhao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Lin Zhou
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Donghan Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Hongjie Liao
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zihao Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Bingchen Li
- National Sugar Crop Improvement Centre, College of Advanced Agriculture and Ecological Environment, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Yutao Peng
- School of Agriculture, Sun Yat-Sen University, Shenzhen, 523758, Guangdong, China
| | - Yangping Xu
- ShiFang Anda Chemicals CO., LTD., Deyang, China
| | - Qing Chen
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Sharma V, Yan R, Feng X, Xu J, Pan M, Kong L, Li L. Removal of toxic metals using iron sulfide particles: A brief overview of modifications and mechanisms. CHEMOSPHERE 2024; 346:140631. [PMID: 37939922 DOI: 10.1016/j.chemosphere.2023.140631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Growing mechanization has released higher concentrations of toxic metals in water and sediment, which is a critical concern for the environment and human health. Recent studies show that naturally occurring and synthetic iron sulfide particles are efficient at removing these hazardous pollutants. This review seeks to provide a concise summary of the evolution in the production of iron sulfide particles, specifically nanoparticles, through the years. This review presents an outline of the synthesis process for the most dominant forms of iron sulfide: mackinawite (FeS), pyrite (FeS2), pyrrhotite (Fe1-x S), and greigite (Fe3S4). The review confirms that both natural forms of iron sulfide and modified forms of iron sulfide are highly effective at removing different heavy metals and metalloids from water. Concurrently, this review reveals the interaction mechanism between toxic metals and iron sulfide, along with the impact of conditions for remedy and rectification. None the less, modifications and future investigations into the synthesis of novel iron sulfides, their use to adsorb diverse environmental pollutants, and their fate after injection into polluted aquifers, remain crucial to maximizing pollution control.
Collapse
Affiliation(s)
- Vaishali Sharma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruixin Yan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xiuping Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junqing Xu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Meitian Pan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Shen Q, Wu T, Zhang GB, Ma HE, Wang W, Pan GX, Zhang YF. Synthesis of magnetic bentonite-gelatin hydrogel beads and their applications in Cu 2+ capturing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125702-125717. [PMID: 38001295 DOI: 10.1007/s11356-023-31112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
Heavy metal ions that exist in groundwater and farmland jeopardize the ecological environment and are very difficult to remove because of the complicated actual environment. Raw bentonite-gelatin beads (RB-GT) and magnetic bentonite-gelatin beads (MB-GT) synthesized in this work would be an appropriate tool to solve this problem. Those beads are synthesized by a facile hybrid injection method. Their adsorption behaviors on Cu(II) ions were systematically investigated using the batch adsorption method. The beads were characterized by scan electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), and X-ray photoelectron spectroscopy (XPS). The adsorption isotherm and adsorption kinetic study showed that the Cu2+ adsorption by MB-GT beads fitted the Langmuir model and the pseudo-second model. The adsorption maximum capacities reached 192.5 mg/g and 236.5 mg/g with Cu concentration of 1000 mg/L for RB-GT and MB-GT beads, respectively. The competitive adsorption with other heavy metal ions (Ni(II), Pd(II) and Cd(II)) were compared. The adsorption of Cu(II) mechanisms is also further discussed.
Collapse
Affiliation(s)
- Qiang Shen
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Tao Wu
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China.
| | - Guo-Bang Zhang
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Hao-En Ma
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Wei Wang
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Guo-Xiang Pan
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| | - Yi-Fan Zhang
- Department of Materials Engineering, Huzhou University, Huzhou, 313000, China
| |
Collapse
|
8
|
Laishram RJ, Singh TB, Alam W. A comprehensive health risk assessment associated with bioaccumulation of heavy metals and nutrients in selected macrophytes of Loktak Lake, Manipur, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:105329-105352. [PMID: 37713085 DOI: 10.1007/s11356-023-29606-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/26/2023] [Indexed: 09/16/2023]
Abstract
The Loktak Lake, a Ramsar site in Northeast India, is known for its rich biodiversity that includes a variety of macrophyte species, most of which have not been studied for their phytoremediation capacities and potential toxicity via consumption of the edible species. Therefore, a comprehensive assessment was conducted to evaluate the accumulation of selected heavy metals and nutrients in 10 dominant macrophyte species growing in Loktak Lake and to assess the potential health risks associated with consumption of the edible plants. The concentrations of nutrients such as total phosphorus (TP), total nitrogen (TN), potassium (K), calcium (Ca), magnesium (Mg), and heavy metals such as copper (Cu), manganese (Mn), zinc (Zn), and iron (Fe) were found to be in the order of plant > sediment > water. The bioaccumulation factors (BAFs) revealed high efficiency of most plants to accumulate heavy metals and nutrients in their tissues from the lake water and sediments, indicating their potential to be used as phytoremediators. Translocation factors (TFs) were also estimated to determine the efficiency of the plants to translocate elements from root to shoot. Colocasia esculenta and Polygonum perfoliatum exhibited the highest BAF values, whereas Colocasia esculenta, Hedychium flavum, Phragmites karka, and Oenanthe javanica exhibited the highest TF values for most elements. Target hazard quotients (THQs) revealed potential health risks associated with one or more heavy metals in the plants, except for Zn, whose THQ values were below the level of concern in all the edible plant species. The hazard index (HI) signifying potential non-carcinogenic health risk from the combined effects of all the heavy metals was highest for Polygonum perfoliatum, indicating a potentially higher risk to health if this edible macrophyte is regularly consumed in higher quantities and may pose long-term health effects to the exposed population.
Collapse
Affiliation(s)
- Ranu Jajo Laishram
- Department of Forestry and Environmental Science, Manipur University (A Central University), Canchipur, Indo-Myanmar Road, Imphal, 795003, Manipur, India
| | - Tensubam Basanta Singh
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region (ICAR RC NEH), Manipur Centre, Lamphelpat, Imphal, 795004, Manipur, India
| | - Wazir Alam
- Department of Forestry and Environmental Science, Manipur University (A Central University), Canchipur, Indo-Myanmar Road, Imphal, 795003, Manipur, India.
| |
Collapse
|
9
|
Peng X, Zhao R, Yang Y, Zhou Y, Zhu Y, Qin P, Wang M, Huang H. Effect of the Combination of Phosphate-Solubilizing Bacteria with Orange Residue-Based Activator on the Phytoremediation of Cadmium by Ryegrass. PLANTS (BASEL, SWITZERLAND) 2023; 12:2727. [PMID: 37514342 PMCID: PMC10384834 DOI: 10.3390/plants12142727] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Amendments with activators or microorganisms to enhance phytoremediation in toxic-metal-polluted soils have been widely studied. In this research, the production of indoleacetic acid, siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase by phosphate-solubilizing bacteria was investigated during a pure culture experiment. Pot experiments were performed using Cd-polluted soil with the following treatments: control (CK, only ultrapure water), orange-peel-based activator (OG), and a combination of phosphate-solubilizing bacteria (Acinetobacter pitti) and OG (APOG). Ryegrass plant height and fresh weight, Cd content in ryegrass, total and available Cd soil content, soil enzyme activity, and soil bacterial diversity were determined in this work. The findings showed that the height of ryegrass in OG and APOG increased by 14.78% and 21.23%. In the APOG group, a decreased ratio of Cd was 3.37 times that of CK, and the bioconcentration factor was 1.28 times that of CK. The neutral phosphatase activity of APOG was 1.33 times that of CK and catalase activity was 1.95 times that of CK. The activity of urease was increased by 35.48%. APOG increased the abundance of beneficial bacteria and Proteobacteria was the dominant bacterium, accounting for 57.38% in APOG. Redundancy analysis (RDA) showed that nutrient elements were conducive to the propagation of the dominant bacteria, the secretion of enzymes, and the extraction rate of Cd in the soil. The possible enhancement mechanism of phytoremediation of cadmium by A. pitti combined with OG was that, on the one hand, APOG increased soil nutrient elements and enzyme activities promoted the growth of ryegrass. On the other hand, APOG activated Cd and boosted the movement of Cd from soil to ryegrass. This research offers insight for the combination of phosphate-solubilizing bacteria with an orange-peel-based activator to improve phytoremediation of Cd-contaminated soils and also provides a new way for the resource utilization of fruit residue.
Collapse
Affiliation(s)
- Xin Peng
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Rule Zhao
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yuan Yang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yaoyu Zhou
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yichun Zhu
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Pufeng Qin
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Mi Wang
- Chinalco Environmental Protection and Ecological Technology (Hunan) Co., Ltd., Changsha 410021, China
| | - Hongli Huang
- Hunan International Scientific and Technological Cooperation Base of Agricultural Typical Pollution Remediation and Wetland Protection, College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
10
|
Xu B, Zhou Y, Huang M, Cui P, Wu T, Zhou D, Liu C, Wang Y. Modeling the Interaction and Uptake of Cd-As(V) Mixture to Wheat Roots Affected by Humic Acids, in Terms of root cell Membrane Surface Potential (ψ 0). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:10. [PMID: 37365371 DOI: 10.1007/s00128-023-03765-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
The joint toxicological effects of Cd2+ and As(V) mixture on wheat root as affected by environmental factors, such as pH, coexisting cations, and humic acids etc., were investigated using hydroponic experiments. The interaction and toxicological mechanisms of co-existing Cd2+ and As(V) at the interface of solution and roots in presence of humic acid were further explored by incorporating root cell membrane surface potential ψ0 into a mechanistic model of combined biotic ligand model (BLM)-based Gouy-Chapman-Stern (GCS) model and NICA-DONNAN model. Besides, molecular dynamics (MD) simulations of lipid bilayer equilibrated with solution containing Cd2+ and H2AsO4- further revealed the molecular distribution of heavy metal(loid) ions under different membrane surface potentials. H2AsO4- and Cd2+ can be adsorbed on the surface of the membrane alone or as complexes, which consolidate the limitation of the macroscopic physical models.
Collapse
Affiliation(s)
- Bing Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Academy of Environmental Planning and Design, Co., Ltd., Nanjing University, Nanjing, China
| | - Yiyi Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
11
|
Kumar V, Rout C, Singh J, Saharan Y, Goyat R, Umar A, Akbar S, Baskoutas S. A review on the clean-up technologies for heavy metal ions contaminated soil samples. Heliyon 2023; 9:e15472. [PMID: 37180942 PMCID: PMC10172878 DOI: 10.1016/j.heliyon.2023.e15472] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/19/2023] [Accepted: 04/11/2023] [Indexed: 05/16/2023] Open
Abstract
The soil contamination with heavy metal ions is one of the grave intricacies faced worldwide over the last few decades by the virtue of rapid industrialization, human negligence and greed. Heavy metal ions are quite toxic even at low concentration a swell as non-biodegradable in nature. Their bioaccumulation in the human body leads to several chronic and persistent diseases such as lung cancer, nervous system break down, respiratory problems and renal damage etc. In addition to this, the increased concentration of these metal ions in soil, beyond the permissible limits, makes the soil unfit for further agricultural use. Hence it is our necessity, to monitor the concentration of these metal ions in the soil and water bodies and adopt some better technologies to eradicate them fully. From the literature survey, it was observed that three main types of techniques viz. physical, chemical, and biological were employed to harness the heavy metal ions from metal-polluted soil samples. The main goal of these techniques was the complete removal of the metal ions or the transformation of them into less hazardous and toxic forms. Further the selection of the remediation technology depends upon different factors such as process feasibility/mechanism of the process applied, nature and type of contaminants, type and content of the soil, etc. In this review article, we have studied in detail all the three technologies viz. physical, chemical and biological with their sub-parts, mechanism, pictures, advantages and disadvantages.
Collapse
Affiliation(s)
- Vikas Kumar
- Department of Civil Engineering, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Chadetrik Rout
- Department of Civil Engineering, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
- Corresponding author.
| | - Yajvinder Saharan
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Rohit Goyat
- Department of Chemistry, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133203, Haryana, India
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, And Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
- Corresponding author. Department of Chemistry, Faculty of Science and Arts, and Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - S. Baskoutas
- Department of Materials Science, University of Patras, Patras, Greece
| |
Collapse
|
12
|
Huang S, Wang Z, Song Q, Hong J, Jin T, Huang H, Zheng Z. Potential mechanism of humic acid attenuating toxicity of Pb 2+ and Cd 2+ in Vallisneria natans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160974. [PMID: 36563757 DOI: 10.1016/j.scitotenv.2022.160974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Humic substances are widely present in aquatic environments. Due to the high affinity of humic substances for metals, the interactions have been particularly studied. To assess the effect of humic acid (HA) on submerged macrophytes and biofilms exposed to heavy metal stress, Vallisneria natans was exposed to solutions containing different concentrations of HA (0.5-2.0 mg·L-1), Pb2+ (1 mg·L-1) and Cd2+ (1 mg·L-1). Results suggested that HA positively affected the plant growth and alleviated toxicity by complexing with metals. HA increased the accumulation of metals in plant tissues and effectively induced antioxidant responses and protein synthesis. It was also noted that the exposure of HA and metals promoted the abundance and altered the structure of microbial communities in biofilms. Moreover, the positive effects of HA were considered to be related to the expression of related genes resulting from altered DNA methylation levels, which were mainly reflected in the altered type of demethylation. These results demonstrate that HA has a protective effect against heavy metal stress in Vallisneria natans by inducing effective defense mechanisms, altering biofilms and DNA methylation patterns in aquatic ecosystems.
Collapse
Affiliation(s)
- Suzhen Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zhikai Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Qixuan Song
- School of Life Sciences, Nanjing University, No.163 Xianlin Road, Nanjing 210023, China
| | - Jun Hong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Tianyu Jin
- School of Public Administration, Zhejiang University of Finance &Economics, Hangzhou 310018, China
| | - Haiqing Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
13
|
Nazir A, Sarfraz W, Allah D, Khalid N, Farid M, Shafiq M, Bareen FE, Rizvi ZF, Naeem N. Synergistic impact of two autochthonous saprobic fungi ( A. niger and T. pseudokoningii) on the growth, ionic contents, and metals uptake in Brassica juncea L. and Vigna radiata L. under tannery solid waste contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:1488-1500. [PMID: 36633455 DOI: 10.1080/15226514.2023.2166457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Unrestricted disposal of tannery solid waste (TSW) into agricultural soils has resulted in the contamination of heavy metals (HMs) such as chromium (Cr) cadmium (Cd), Copper (Cu), and Zinc (Zn) along with the severe potential to degrade the environmental quality around the world. In the present study, a combined phyto- and myco-remediation strategy was evaluated to enhance the growth, ionic contents, and phytoextraction potential of Brassica juncea and Vigna radiata for HMs from TSW-contaminated soil. A pot experiment was conducted in the greenhouse using single or combined inoculation of Trichoderma pseudokoningii (Tp) and Aspergillus niger (An) in B. juncea and V. radiata under TSW-contaminated soil at different doses (0, 50, and 100%). The results showed that the growth parameters of both B. juncea and V. radiata were severely affected under 50 and 100% TSW treatment. The combined inoculation of both the fungal species ameliorated the positive impacts of 50 and 100% TSW application on growth and ionic contents accumulation in B. juncea and V. radiata. The combined application of An + Tp at 100% TSW enhanced the shoot length (87.8, 157.2%), root length (123.9, 120.6%), number of leaves (184.2, 175.0%), number of roots (104.7, 438.9%), and dry weight (179.4, 144.8%) of B. juncea and V. radiata, respectively as compared to control with any fungal treatment at 100% TSW. A single application of An at different doses of TSW enhanced the metal concentration in B. juncea, whereas Tp increased the concentration of the metals in V. radiata. The concentration of Cr in roots (196.2, 263.8%), shoots (342.4, 182.2%), Cu in roots (187.6, 137.0%), shoots (26.6, 76.0%), Cd in roots (245.2, 184.6%), shoots (142.1, 73.4%), Zn in roots (73.4, 57.5%), shoots (62.9, 57.6%), in B. juncea were increased by the application of An at 50 and 100% treatment levels of TSW, respectively compared to control (C). Moreover, the HMs (Cr, Cu, Cd, and Zn) uptake was also improved under 50 and 100% TSW with the combined inoculation of Tp + An in both B. juncea and V. radiata. In conclusion, the combined inoculation of Tp + An was more effective in metal removal from TSW-treated soil.NOVELTY STATEMENTLimited studies have been conducted on filamentous fungi systematically under metal-contaminated sites for their diversity, metal tolerance, and their potential in enhancing the phytoremediation potential of different crop plants.In the present study, single and/or combined inoculation of fungal strains was found effective in alleviating different metals stress in tannery solid waste contaminated soil by improving defense mechanisms and plant growth due to the association between fungal strains and plants.The combined application of both fungal strains had an additive effect in enhancing the bioaccumulation capacity of B. juncea and V. radiata compared to their single inoculation.
Collapse
Affiliation(s)
- Aisha Nazir
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | - Wajiha Sarfraz
- Department of Botany, Govt. College Women University, Sialkot, Pakistan
| | - Ditta Allah
- Department of Environmental Sciences, Shaheed Benazir Bhutto University, Sheringal, Pakistan
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Noreen Khalid
- Department of Botany, Govt. College Women University, Sialkot, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Muhammad Shafiq
- Institute of Botany, University of the Punjab, Lahore, Pakistan
| | | | | | - Nayab Naeem
- Department of Botany, Govt. College Women University, Sialkot, Pakistan
| |
Collapse
|
14
|
HAYTA Ş, FIRAT E. Determination of heavy metal concentrations and soil samples of Betula pendula and Populus tremula in Nemrut Crater Lake. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1082781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The concentrations of Cr, Mn, Fe, Ni, Cu, Zn, Cd, Pb and As heavy metals and the heavy metal accumulation levels of these plants were determined in Betula pendula and Populus tremula trees, which are the characteristic trees of Nemrut Crater Lake, the second largest crater lake in the world, and the soil samples surrounding them. Heavy metals are considered to be one of the most dangerous and priority pollutants due to their high persistence and toxicity to plant and animal life in the environment. For this reason, the results obtained will contribute to the studies carried out to determine the uptake of heavy metal pollutants in the environment and the self-healing effort of the polluted environments by applying the phytoremediation method.
Collapse
|
15
|
Li Y, Yan L, Rong Q, Luo J, Zhang H, Jones KC. Assessing the Impact of Atrazine on the Availability of Arsenic in Soils Using DGT Technique. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:616-622. [PMID: 35218373 DOI: 10.1007/s00128-022-03482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Arsenic (As) has been observed to co-exist with atrazine (ATR) in soils worldwide. ATR, as an organic chemical, may affect the availability of As and further influence its uptake by organisms. Here we used a novel passive sampling technique, DGT (diffusive gradients in thin-films), to compare with other two conventional sampling approaches (soil solution extraction and 'Olsen As' measurement) to investigate the influence of ATR addition (normal recommended level and contaminated level) on the availability of As in soils, to further interpret the potential risk of As in soil environment. The effect of adding ATR on the behaviour of As in soils was limited. When the concentration of ATR was much higher, the availability of As in soils was supressed, the labile pool size was also affected, but the R value did not change much. The properties of the soils also played an important role by affecting the states of the compounds.
Collapse
Affiliation(s)
- Yanying Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China.
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Liying Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Qiuyu Rong
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Jun Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Kevin C Jones
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
16
|
Cerqueira B, Covelo EF, Rúa-Díaz S, Marcet P, Forján R, Gallego JLR, Trakal L, Beesley L. Contrasting mobility of arsenic and copper in a mining soil: A comparative column leaching and pot testing approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 318:115530. [PMID: 35752005 DOI: 10.1016/j.jenvman.2022.115530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The remediation of legacy metal(loid) contaminated soils in-situ relies on the addition of [organic] amendments to reduce the mobility and bioavailability of metal(loid)s, improve soil geochemical parameters and restore vegetation growth. Two vermicomposts of food and animal manure waste origin (V1 and V2) were amended to an arsenic (As) and copper (Cu) contaminated mine soil (≤1500 mg kg-1). Leaching columns and pot experiments evaluated copper and arsenic in soil pore waters, as well as pH, dissolved organic carbon (DOC) and phosphate (PO43-) concentrations. The uptake of As and Cu to ryegrass was also measured via the pot experiment, whilst recovered biochars from the column leaching test were measured for metal sorption at the termination of leaching. Vermicompost amendment to soil facilitated ryegrass growth which was entirely absent from the untreated soil in the pot test. All amendment combinations raised pore water pH by ∼4 units. Copper concentrations in pore waters from columns and pots showed steep reductions (∼1 mg L-1), as a result of V1 & V2 compared to untreated soil (∼500 mg L-1). Combined with an increase in DOC and PO43-, As was mobilised an order of magnitude by V1. Biochar furthest reduced Cu in pore waters from the columns to <0.1 mg L-1, as a result of surface sorption. The results of this study indicate that biochar can restrict the mobility of Cu from a contaminated mine soil after other amendment interventions have been used to promote revegetation. However, the case of As, biochar cannot counter the profound impact of vermicompost on arsenic mobility.
Collapse
Affiliation(s)
- Beatriz Cerqueira
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain; Environmental and Geochemical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK.
| | - Emma F Covelo
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Sandra Rúa-Díaz
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Purificación Marcet
- Department of Plant Biology and Soil Science, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Rubén Forján
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, University of Oviedo, Mieres, Spain
| | - José Luis R Gallego
- Environmental Biogeochemistry & Raw Materials Group and INDUROT, University of Oviedo, Mieres, Spain
| | - Lukas Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic
| | - Luke Beesley
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6 Suchdol, Czech Republic; Environmental and Geochemical Sciences Department, The James Hutton Institute, Craigiebuckler, Aberdeen AB158QH, UK
| |
Collapse
|
17
|
Wang W, Lu T, Liu L, Yang X, Li X, Qiu G. Combined remediation effects of biochar, zeolite and humus on Cd-contaminated weakly alkaline soils in wheat farmland. CHEMOSPHERE 2022; 302:134851. [PMID: 35533934 DOI: 10.1016/j.chemosphere.2022.134851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/16/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Threats posed by Cd-contaminated arable soils to food security have attracted increasing attention. The combination of organic and inorganic amendments has been extensively applied to immobilize Cd in paddy soils. However, the regulatory mechanism of Cd fractionation under these combined amendments and the effect on wheat Cd accumulation remain unclear in upland soils. In this work, different combinations of organic and inorganic amendments were prepared with biochar, zeolite and humus, and the Cd-immobilization mechanism was also investigated in field experiments. The results demonstrated that the mixture of biochar, zeolite and humus had excellent Cd immobilization performance in highly Cd-contaminated (4.26 ± 1.25 mg kg-1) weakly alkaline soils, resulting in 76.5-84.8% decreases in soil available Cd. The contribution of single components to Cd immobilization in the combined amendment follows the order of humus > biochar > zeolite. The combined amendment converted the acid soluble Cd to the Cd bound to the reducible fraction with higher stability, thereby decreasing Cd bioavailability. The maximum Cd decrease rate in wheat roots, straw and grains could reach 68.2%, 45.0% and 59.3%, respectively, and the Cd content in grains (0.098 mg kg-1) was lower than the food security standards of China (0.1 mg kg-1). Wheat planting for two successive years in a large-scale field further verified the superior Cd immobilization performance and stability of the combined amendment in moderately to slightly Cd-contaminated soil. The present study provides references for the remediation of Cd-contaminated weakly alkaline upland soils and certain guidance for safe food production.
Collapse
Affiliation(s)
- Weihua Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Tao Lu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Lihu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Xiong Yang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| | - Xuanzhen Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Guohong Qiu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, 430070, Hubei Province, China.
| |
Collapse
|
18
|
Imperiale D, Lencioni G, Marmiroli M, Zappettini A, White JC, Marmiroli N. Interaction of hyperaccumulating plants with Zn and Cd nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152741. [PMID: 34990684 DOI: 10.1016/j.scitotenv.2021.152741] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/27/2023]
Abstract
Metal hyperaccumulating plant species are an interesting example of natural selection and environmental adaptation but they may also be useful to developing new technologies of environmental monitoring and remediation. Noccaea caerulescens and Arabidopsis halleri are both Brassicaceae and are known metal hyperaccumulators. This study evaluated tolerance, uptake and translocation of zinc sulfide quantum dots by N. cearulescens and cadmium sulfide quantum dots by A. halleri in direct comparison with the non-hyperaccumulator, genetically similar T. perfoliatum and A. thaliana. Growth media were supplied with two different concentrations of metal in either salt (ZnSO4 and CdSO4) or nanoscale form (ZnS QDs and CdS QDs). After 30 days of exposure, the concentration of metals in the soil, roots and leaves was determined. Uptake and localization of the metal in both nanoscale and non-nanoscale form inside plant tissues was investigated by Environmental Scanning Electron Microscopy (ESEM) equipped with an X-ray probe. Specifically, the hyperaccumulators in comparison with the non-hyperaccumulators accumulate ionic and nanoscale Zn and Cd in the aerial parts with a BCF ratio of 45.9 for Zn ion, 49.6 for nanoscale Zn, 2.64 for Cd ion and 2.54 for nanoscale Cd. Results obtained with a differential extraction analytical procedure also showed that a significant fraction of nanoscale metals remained inside the plants in a form compatible with the retention of at least a partial initial structure. The molecular consequences of the hyperaccumulation of nanoscale materials are discussed considering data obtained with hyperaccumulation of ionic metal. This is the first report of conventional hyperaccumulating plants demonstrating an ability to hyperaccumulate also engineered nanomaterials (ENMs) and suggests a potential novel strategy for not only understanding plant-nanomaterial interactions but also for potential biomonitoring in the environment to avoid their entering into the food chains.
Collapse
Affiliation(s)
- Davide Imperiale
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parma, Italy; Interdepartmental Center Siteia Parma, University of Parma, Parma, Italy
| | - Giacomo Lencioni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Marta Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Andrea Zappettini
- IMEM-CNR Istituto dei Materiali per l'Elettronica ed il Magnetismo, Parma, Italy
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT, USA
| | - Nelson Marmiroli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy; National Interuniversity Consortium for Environmental Sciences (CINSA), Parma, Italy.
| |
Collapse
|
19
|
Xu J, Hu C, Wang M, Zhao Z, Zhao X, Cao L, Lu Y, Cai X. Changeable effects of coexisting heavy metals on transfer of cadmium from soils to wheat grains. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127182. [PMID: 34537640 DOI: 10.1016/j.jhazmat.2021.127182] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) and other heavy metals usually coexist in soils. Effects of coexisting heavy metals on the accumulation and transfer of Cd in field soils by wheat remain poorly understood. Here we revealed changeable effects of coexisting Pb, Zn and Cu on the Cd transfer from soils to wheat grains. Soil burdens of Cd were found to exhibit positive correlations (r = 0.459-0.946) with those of coexisting Pb, Zn and Cu (particularly Pb). Effects of three coexisting metals on to the uptake of Cd by wheat varied in the directions and/or extents with types of metals and transfer processes of Cd. Coexisting Zn inhibited the uptake of Cd by wheat grains to higher extent than Pb and Cu. Soil Zn, along with soil Cd, soil pH and soil Ca, was used to construct the predictive model of grain Cd (R2 = 0.868). External verifications of the model on 572 datasets of large representation performed well. The predictive accuracy was about 54%, 73% and 89% for a factor of 1, 2 and 5 above and below the ideal fit, respectively. This finding has practical interest in risk assessments and remediation measures of Cd-contaminated soil sites in regional scales.
Collapse
Affiliation(s)
- Jiahui Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Canyang Hu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Maolin Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zongsheng Zhao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Xiaoxue Zhao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Liu Cao
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Yifu Lu
- Key Laboratory of Heavy-metal Pollution Monitoring and Remediation of Henan Province, Jiyuan 459000, China
| | - Xiyun Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
20
|
Venkateswaran MR, Vadivel TE, Jayabal S, Murugesan S, Rajasekaran S, Periyasamy S. A review on network pharmacology based phytotherapy in treating diabetes- An environmental perspective. ENVIRONMENTAL RESEARCH 2021; 202:111656. [PMID: 34265348 DOI: 10.1016/j.envres.2021.111656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
Diabetes has become common lifestyle disorder associated with obesity and cardiovascular diseases. Environmental factors like physical inactivity, polluted surroundings and unhealthy dieting also plays a vital role in diabetes pathogenesis. As the current anti-diabetic drugs possess unprecedented side effects, traditional herbal medicine can be used an alternative therapy. The paramount challenge with the herbal formulation usage is the lack of standardized procedure, entangled with little knowledge on drug safety and mechanism of drug action. Heavy metal contamination is a major environmental hazard where plants tend to accumulate toxic metals like nickel, chromium and lead through industrial and agricultural activities. It becomes inappropriate to use these plants for phytotherapy as it may affect the human health on long term consumption. This review discuss about the environmental risk factors related to diabetes and better implication of medicinal plants in anti-diabetic therapy using network pharmacology. It is an in silico analytical tool that helps to unravel the multi-targeted action of herbal formulations rich in secondary metabolites. Also, a special focus is attempted to pool the databases regarding the medicinal plants for diabetes and associated diseases, their bioactive compounds, possible diabetic targets, drug-target interaction and toxicology reports that may open an aisle in safer, effective and toxicity-free drug discovery.
Collapse
Affiliation(s)
- Meenakshi R Venkateswaran
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Tamil Elakkiya Vadivel
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Sasidharan Jayabal
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Selvakumar Murugesan
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, 620024, Tamil Nadu, India
| | - Subbiah Rajasekaran
- Department of Biochemistry, ICMR-National Institute for Research in Environmental Health, Bhopal, India.
| | - Sureshkumar Periyasamy
- Department of Biotechnology, Anna University, BIT-Campus, Tiruchirappalli, 620024, Tamil Nadu, India.
| |
Collapse
|
21
|
Zhang P, Zhang H, Wu G, Chen X, Gruda N, Li X, Dong J, Duan Z. Dose-Dependent Application of Straw-Derived Fulvic Acid on Yield and Quality of Tomato Plants Grown in a Greenhouse. FRONTIERS IN PLANT SCIENCE 2021; 12:736613. [PMID: 34707627 PMCID: PMC8542715 DOI: 10.3389/fpls.2021.736613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Fulvic acids are organic compounds widely distributed in soils, and the application of fulvic acids is thought to increase crop yield and quality. However, the effects vary among various sources and doses of fulvic acids and environmental and growth conditions of crops. Here, we investigated the effects of bioresource-derived (corn straw) fulvic acids on plant production and quality of tomato plants and soil chemical properties in soil cultures while experiments on seed germination and hydroponics were conducted to explore the underlying mechanism. Base dressing with 2.7 g kg-1 increased the yield of tomato by 35.0% at most as increased fruit number. Fulvic acids increased the concentrations of minerals, such as Ca, Fe, and Zn and the concentrations of citric, malic, and some amino acids in berries of tomato but did not affect the concentrations of soluble sugars and aromatic substances in tomato fruits. Similarly, fulvic acids at 80-160 mg L-1 increased germination rate, growth vigor, and radicle elongation of tomato seeds while it increased plant biomass, concentrations of nutrients, and root length of tomato plants in hydroponics to the greatest extent in general. The increases in yield and quality can be attributed to the improvement in root growth and, thus, increased nutrient uptake. In addition, the base application of fulvic acids improved soil cation exchange capacity and soil organic matter to an extent. In conclusion, base dressing and the addition into solution of fulvic acids at moderate doses facilitate root growth and nutrient uptake and, thus, vegetable production and quality; therefore, fulvic acids can be an effective component for designing new biofertilizers for sustainable agricultural production.
Collapse
Affiliation(s)
- Peijia Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongjia Zhang
- Nutrition and Health Research Institute, COFCO, Beijing, China
| | - Guoqing Wu
- Nutrition and Health Research Institute, COFCO, Beijing, China
| | - Xiaoyuan Chen
- Nutrition and Health Research Institute, COFCO, Beijing, China
| | - Nazim Gruda
- Institute of Crop Science and Resource Conservation, Division of Horticultural Sciences, University of Bonn, Bonn, Germany
| | - Xun Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Jinlong Dong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Zengqiang Duan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
22
|
Maslamani N, Khan SB, Danish EY, Bakhsh EM, Zakeeruddin SM, Asiri AM. Super adsorption performance of carboxymethyl cellulose/copper oxide-nickel oxide nanocomposite toward the removal of organic and inorganic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:38476-38496. [PMID: 33733409 DOI: 10.1007/s11356-021-13304-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
A novel nanocomposite bead based on polymeric matrix of carboxymethyl cellulose and copper oxide-nickel oxide nanoparticles was synthesized, characterized, and applied for adsorptive removal of inorganic and organic contaminants at trace level of part per million (mgL-1) from aqueous sample. Carboxymethyl cellulose/copper oxide-nickel oxide (CMC/CuO-NiO) adsorbent beads were selective toward the removal of Pb(II) among other metal ions. The removal percentage of Pb(II) was more than 99% with 3 mgL-1. The waste beads after Pb (II) adsorption (Pb@CMC/CuO-NiO) and CMC/CuO-NiO nanocomposite beads were employed as adsorbents for removing of various dyes. It was found that Pb@CMC/CuO-NiO can be reused as adsorbent for the removal of Congo Red (CR), while CMC/CuO-NiO nanocomposite beads were more selective for removal of Eosin Yellow (EY) from aqueous media. The adsorption of CR and EY was optimized, and the removal percentages were 93% and 96.4%, respectively. The influence of different parameters was studied on the uptake capacity of Pb(II), CR, and EY, and lastly, the CMC/CuO-NiO beads exhibited responsive performance in relation to pH and other parameters. Thus, the prepared CMC/CuO-NiO beads were found to be a smart material which is effective and played super adsorption performance in the removal of Pb(II), CR, and EY from aqueous solution. These features make CMC/CuO-NiO beads suitable for numerous scientific and industrial applications and may be used as an alternative to high-cost commercial adsorbents.
Collapse
Affiliation(s)
- Nujud Maslamani
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Sher Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Ekram Y Danish
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Esraa M Bakhsh
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| | - Shaik M Zakeeruddin
- Laboratory for Photonics and Interfaces Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
23
|
Li Q, Shi W, Yang Q. Polarization induced covalent bonding: A new force of heavy metal adsorption on charged particle surface. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125168. [PMID: 33524729 DOI: 10.1016/j.jhazmat.2021.125168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/24/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Classically, stable covalent bonding cannot occur between heavy metal cations and clay surface O atoms. However, the classical theory ignores the effect of the electric field arising from clay surface charges on the orbitals of surface O atoms. This article studies the adsorption behavior of heavy metal cations (Pb2+, Cd2+, Cu2+, and Zn2+) on charged montmorillonite surfaces from a new theoretical foundation based on the quantum mechanics analysis of surface O atoms in this electric field, which reveals that polarization-induced covalent bonding is a strong adsorption force. The strength of polarization-induced covalent bonding can be controlled by regulating the energy of the lone-pair electrons of surface O atoms, which depends on solution pH, electrolyte type, electrolyte concentration, temperature or dielectric constant of medium, etc. The mathematic relationship between the energy of lone-pair electrons of surface O atoms and electric field arising from surface charges was established through quantum mechanics analysis; and correspondingly the mathematical relationship between the polarization-induced covalent bonding energy and surface potential also was established for different heavy metal cations. The finding of the new adsorption force will have important impact on both theoretical research and removal/deactivation approaches of heavy metal cations.
Collapse
Affiliation(s)
- Qinyi Li
- School of Geographical Sciences, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Soil Multi-scale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Weiyu Shi
- School of Geographical Sciences, Southwest University, Chongqing 400715, PR China.
| | - Qingyuan Yang
- School of Geographical Sciences, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
24
|
Ornamental Plant Efficiency for Heavy Metals Phytoextraction from Contaminated Soils Amended with Organic Materials. Molecules 2021; 26:molecules26113360. [PMID: 34199536 PMCID: PMC8199650 DOI: 10.3390/molecules26113360] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of heavy metals (HMs) by ornamental plants (OPs) from contaminated agriculture soils is a unique technique that can efficiently reduce the metal load in the food chain. Amaranthus tricolor L. has attractive characteristics acquiring a higher growth rate and large biomass when grown at heavy metal contaminated soils. Site-specific detailed information is not available on the use of A. tricolor plant in metal phytoremediation from the polluted sites. The study aimed to enhance the uptake of HMs (Pb, Zn, and Cu) via amending poultry litter extract (PLE), vinasse sugarcane (VSC), and humic acid (HA) as natural mobilized organic materials compared to ethylene diamine tetraacetic acid (EDTA), as a common mobilized chemical agent by A. tricolor plant. The studied soils collected from Helwan, El-Gabal El-Asfar (Cairo Governorate), Arab El-Madabeg (Assiut Governorate), Egypt, and study have been conducted under pot condition. Our results revealed all organic materials in all studied soils, except EDTA in EL-Gabal El-Asfar soil, significantly increased the dry weight of the A. tricolor plant compared to the control treatment. The uptake of Pb and Zn significantly (p > 0.05) increased due to applying all organic materials to the studied soils. HA application caused the highest uptake as shown in Pb concentration by more than 5 times in Helwan soil and EDTA by 65% in El-Gabal El-Asfar soil while VSC increased it by 110% in El-Madabeg soil. Also, an increase in Zn concentration due to EDTA application was 58, 42, and 56% for Helwan, El-Gabal El-Asfar, and El-Madabeg soil, respectively. In all studied soils, the application of organic materials increased the remediation factor (RF) than the control. El-Madabeg soil treated with vinasse sugarcane gave the highest RF values; 6.40, 3.26, and 4.02% for Pb, Zn, and Cu, respectively, than the control. Thus, we identified A. tricolor as a successful ornamental candidate that, along with organic mobilization amendments, most efficiently develop soil health, reduce metal toxicity, and recommend remediation of heavy metal-contaminated soils. Additionally, long-term application of organic mobilization amendments and continued growth of A. tricolor under field conditions could be recommended for future directions to confirm the results.
Collapse
|
25
|
Piccolo A, De Martino A, Scognamiglio F, Ricci R, Spaccini R. Efficient simultaneous removal of heavy metals and polychlorobiphenyls from a polluted industrial site by washing the soil with natural humic surfactants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25748-25757. [PMID: 33474665 PMCID: PMC8154813 DOI: 10.1007/s11356-021-12484-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/11/2021] [Indexed: 04/16/2023]
Abstract
We evaluated the effectiveness of natural organic surfactants such as humic acids (HA) from lignite to simultaneously wash heavy metals (HM) and polychlorobiphenyls (PCB) from a heavily contaminated industrial soil of northern Italy. Supramolecular HA promote in solution a micelle-like structure, where recalcitrant apolar organic xenobiotics are repartitioned from surfaces of soil particles during soil washing process. Concomitantly, the HA acidic functional groups enable a simultaneous complexation of HM. A single soil washing with HA removed 68 and 75% of PCB congeners for 1:1 and 10:1 solution/soil ratios, respectively. The same HA washing simultaneously and efficiently removed a cumulative average of 47% of total HM, with a maximum of 57 and 67% for Hg and Cu, respectively. We showed that washing a highly polluted soil with HA solution not only is an effective and rapid soil remediation technique but also simultaneously removes both HM and persistent organic pollutants (POP). Soil washing by humic biosurfactants is also a sustainable and eco-friendly technology, since, contrary to synthetic surfactants and solvents used in conventional washing techniques, it preserves soil biodiversity, promotes natural attenuation of unextracted POP, and accelerates further soil reclamation techniques such as bio- or phytoremediation.
Collapse
Affiliation(s)
- Alessandro Piccolo
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Via Universita 100, 80055, Portici, NA, Italy.
| | - Antonio De Martino
- Dipartimento di Agraria, Università di Napoli Federico II, Via Universita 100, 80055, Portici, NA, Italy
| | - Francesco Scognamiglio
- Dipartimento di Agraria, Università di Napoli Federico II, Via Universita 100, 80055, Portici, NA, Italy
| | - Roberto Ricci
- Biosearch Ambiente srl, Via Tetti Gai, 59, 10091, Alpignano, TO, Italy
| | - Riccardo Spaccini
- Centro Interdipartimentale di Ricerca sulla Risonanza Magnetica Nucleare per l'Ambiente, l'Agro-Alimentare ed i Nuovi Materiali (CERMANU), Via Universita 100, 80055, Portici, NA, Italy
| |
Collapse
|
26
|
Urionabarrenetxea E, Garcia-Velasco N, Anza M, Artetxe U, Lacalle R, Garbisu C, Becerril T, Soto M. Application of in situ bioremediation strategies in soils amended with sewage sludges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144099. [PMID: 33421774 DOI: 10.1016/j.scitotenv.2020.144099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Increasing soil loss and the scarcity of useful land requires new reusing strategies. Thus, recovery of polluted soils recovery offers a chance for economic and social regeneration. With this objective, different soil cleaning technologies have been developed during the last few decades. On one hand, classical physical and/or chemical technologies can be found which are efficient, but have high costs and impacts upon ecosystems. On the other hand, biological methods (such as phytoremediation, bioremediation and vermiremediation) are relatively cost effective and eco-friendly, but also more time-consuming. These biological methods and their yields have been widely studied but little is known about the interaction between different soil cleaning methods. The combination of different biological strategies could lead to an improvement in remediation performance. Hence, in the present work, different micro-, vermi- and phyto-remediation combinations are applied in a sewage sludge polluted landfill in Gernika-Lumo (Basque Country) which was used as a disposal point for decades, in search of the treatment (single) or combination (dual or triple) of treatments with best remediation yields. Eight experimental groups were applied (n=3) placing earthworms (E), bacteria (B), plants (P), bacteria+earthworms (B+E), bacteria+plants (B+P), plants+earthworms (P+E) plants+bacteria+earthworms (P+B+E) and a non-treated (N.T.) group in the experimental plot (Landfill 17), for 12 months. In order to assess the efficiency of each treatment, a complete characterization (chemical and ecotoxicological) was carried out before and after remediation. Results showed high removal rates for dieldrin (between 50% and 78%) in all the experimental groups. In contrast, removal rates around 20-25% were achieved for heavy metals (Cd 15%-35%; Ni 24%-37%; Pb 15%-33%; Cr 7%-39%) and benzo(a)pyrene (19.5%-28%). The highest reductions were observed in dual (P+E, B+E) and triple (P+B+E) treatments. The best elimination yields were obtained after P+B+E treatment, as highlighted by the battery of ecotoxicological tests and bioassays performed with earthworms, plants and bacteria.
Collapse
Affiliation(s)
- Erik Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Mikel Anza
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - Unai Artetxe
- Ecofisko Research Group, Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Rafael Lacalle
- Ecofisko Research Group, Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Carlos Garbisu
- NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia, P812, E-48160 Derio, Basque Country, Spain
| | - Txema Becerril
- Ecofisko Research Group, Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), P.O. Box 644, E-48080 Bilbao, Basque Country, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology & Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain.
| |
Collapse
|
27
|
Wang N, Wu X, Liao P, Zhang J, Liu N, Zhou Z, Huang H, Zhang L. Morphological transformation of heavy metals and their distribution in soil aggregates during biotransformation of livestock manure. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Chen D, Meng ZW, Chen YP. Effect of humic acid on seedling growth and trace metal accumulation of pak choi (Brassica chinensis L.) cultivated on molybdenum slag-spiked soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6122-6131. [PMID: 32989699 DOI: 10.1007/s11356-020-10929-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
The growth performance and trace metal accumulation of pak choi (Brassica chinensis L.) were investigated to evaluate the ameliorative effect of humic acid on molybdenum (Mo) slag-spiked calcareous soil. Calcareous soil spiked with 5.0% (w/w) slag was amended with humic acid derived from leonardite from 0 to 5.0% (w/w). With increasing application rate, humic acid enhanced the antioxidative capacity of pak choi seedling, as indicated by increases in the activities of antioxidant enzymes (superoxide dismutase, catalase, and peroxidase) and a decrease in malondialdehyde content; humic acid application also increased total chlorophyll content, leaf area, seedling height, and fresh biomass of pak choi. These stimulation effects started to decrease above 2.5-5.0% application of humic acid. The contents of trace metals (Cu, Mn, Zn, As, Cd, and Pb) in the aboveground part of pak choi seedling generally decreased at low rates (0.5% and 1.0%), and then increased with higher rates (2.5% and 5.0%) of humic acid application. Health risk assessment of trace metals based on target hazard quotient (THQ) suggested that consuming pak choi grown on these soils is safe. Low rate (0.5%) of humic acid reduced the potential health risk, while high rates (2.5% and 5.0%) accumulated trace metals and increased health risk. Humic acid could be added to Mo slag-spiked calcareous soil for the yield and food safety of pak choi, but the overuse of humic acid should be avoided.
Collapse
Affiliation(s)
- Dong Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, No. 97 Yanxiang Road, Xi'an, 710061, Shaanxi, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong-Wen Meng
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, No. 97 Yanxiang Road, Xi'an, 710061, Shaanxi, China
| | - Yi-Ping Chen
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, No. 97 Yanxiang Road, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
29
|
Wu J, Song Q, Zhou J, Wu Y, Liu X, Liu J, Zhou L, Wu Z, Wu W. Cadmium threshold for acidic and multi-metal contaminated soil according to Oryza sativa L. Cadmium accumulation: Influential factors and prediction model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111420. [PMID: 33080421 DOI: 10.1016/j.ecoenv.2020.111420] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
Cadmium (Cd) contamination in soil-rice systems has become a global public concern. However, influencing factors and the contamination threshold of Cd in soils remain largely unknown owing to soil heterogeneity, which limits our ability to assess the risk to human health and to draft appropriate environmental policies. In this study, we selected the soil-rice system of Longtang and Shijiao town in southern China, which was characterized by multi-metal acidic soil contamination due to improper electronic waste recycling activities, as a case to analyze the influence of different soil properties on the Cd threshold in the soil and Cd accumulation in rice. The results showed that soil organic matter (SOM) was the main factor regulating Cd accumulation in the soil-rice system. Moreover, compared with the total Cd concentration, the DTPA-extractable Cd concentration in the soil was a better predictor of Cd transportation in the soil-rice system. According to the prediction model, when SOM was < 35 g kg-1, the CdDTPA threshold was 0.16 mg kg-1 with a 95% likelihood of Cdrice accumulation above the Chinese food standard limit (0.2 mg kg-1). Conversely, when SOM was ≥ 35 g kg-1, the CdDTPA threshold was only 0.03 mg kg-1. This study of the influence of SOM on Cd accumulation in a soil-rice system confirms that SOM is a crucial parameter for better and safer rice production, especially in multi-metal contaminated acidic soils.
Collapse
Affiliation(s)
- Jiahui Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Qingmei Song
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Yingxin Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Xiaowen Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Junjun Liu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Lingli Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Zhuohao Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, 7 West Street, Yuancun, Guangzhou 510655, PR China.
| |
Collapse
|
30
|
Guney B, Gokmen S. Effects of different heat treatment and radiation (microwave and infrared) sources on minerals and heavy metal contents of cow's milk. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bekir Guney
- Technical Vocational School Karamanoglu Mehmetbey University Karaman Turkey
| | - Suleyman Gokmen
- Technical Vocational School Karamanoglu Mehmetbey University Karaman Turkey
| |
Collapse
|
31
|
Saadat F, Zerafat MM, Foorginezhad S. Adsorption of copper ions from aqueous media using montmorillonite-Al2O3 nano-adsorbent incorporated with Fe3O4 for facile separation. KOREAN J CHEM ENG 2020. [DOI: 10.1007/s11814-020-0651-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Duan D, Tong J, Xu Q, Dai L, Ye J, Wu H, Xu C, Shi J. Regulation mechanisms of humic acid on Pb stress in tea plant (Camellia sinensis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115546. [PMID: 32892024 DOI: 10.1016/j.envpol.2020.115546] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Though the interaction between humic acid (HA) and heavy metals has been widely reported, the effects of HA on the toxicity of heavy metals to plants are still in debate. In this study, the regulation mechanisms of HA on Pb stress in tea plant (Camellia sinensis L.) was investigated through hydroponic experiments, and the experimental results were explained by using transmission electron microscope (TEM), scanning transmission X-ray microscopes (STXM) and isobaric tags for relative and absolute quantitation (iTRAQ) differential proteomics. Significant alleviation of Pb stress was found with HA coexistence. TEM results showed that HA greatly mitigated the damage of cells caused by Pb stress. Compared with sole Pb treatment, the addition of HA increased the contents of pectin and pectic acid in the cell wall by 10.5% and 30.5%, while arabinose (Ara) and galactose (Gal) decreased by 20.5% and 15.9%, respectively, which were beneficial for increasing Pb adsorption capacity of the cell wall and promoting cell elongation. Moreover, iTRAQ differential proteomics analysis proved that HA strengthened the antioxidant system, promoted the synthesis of cell wall, and stabilized protein and sulfur-containing substance metabolism in molecular level. Notably, the concentration of calcium (Ca) in the cell wall of HA coexistence treatment was 47.4% higher than Pb treatment. STXM results also indicated that the distribution of Ca in the cell wall was restored with the presence of HA. This might promote the formation of the egg-box model, thus alleviating Pb stress in cells. Our results reveal the regulation mechanisms of HA on Pb detoxification in plants and provide useful information for improving the safety of agricultural products.
Collapse
Affiliation(s)
- Dechao Duan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Towards Environment Co., Ltd, Hangzhou, 310012, China
| | - Jianhao Tong
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiao Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Luying Dai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; CETHIK Research Institute, Hangzhou, 310012, China
| | - Jien Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hanxin Wu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chen Xu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Zhejiang Towards Environment Co., Ltd, Hangzhou, 310012, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
33
|
Agronomic Approaches for Characterization, Remediation, and Monitoring of Contaminated Sites. AGRONOMY-BASEL 2020. [DOI: 10.3390/agronomy10091335] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With a view to conserving or improving soil ecosystem services, environment-friendly techniques, such as bio- and phytoremediation, can effectively be used for the characterization, risk assessment, and remediation of contaminated agricultural sites. Polyannual vegetation (meadows, poplar, and cane stands) is widely considered the most efficient tool for remediation (extraction of bioavailable fraction of contaminants), for undertaking safety measures (reducing the mobility of contaminants towards other environmental compartments), and for restoring the ecosystem services of contaminated agricultural sites (biomass production, groundwater protection, C storage, landscape quality improvement, and cultural and educational services). The roles of agronomic approaches will be reviewed by focusing on the various steps in the whole remediation process: (i) detailed environmental characterization; (ii) phytoremediation for reducing risks for the environment and human health; (iii) agronomic management for improving efficiency of phytoremediation; and (iv) biomass recycling in the win-win perspective of the circular economy.
Collapse
|
34
|
Zhen H, Jia L, Huang C, Qiao Y, Li J, Li H, Chen Q, Wan Y. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114552. [PMID: 32305799 DOI: 10.1016/j.envpol.2020.114552] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/05/2020] [Indexed: 05/08/2023]
Abstract
Heavy metal contamination in protected-field vegetable production has aroused widespread concern and manure is considered to be one of the contamination sources. Little is known about its long-term effects on heavy metal pollution in uncontaminated soils. A 15-year protected-field vegetable production experiment was carried out with three manure treatments (chicken manure: cattle manure = 3:1) with high (HMAR), medium (MMAR) and low (LMAR) application rates to evaluate the long-term risks of heavy metal pollution. It was found that continuous and high manure application rates significantly increased the total concentrations of soil Cd, Zn, Cr, and Cu rather than Pb, Ni or As. The high application rate of manure also increased soil available heavy metals although the soil organic matter was increased as well. Though total soil Cd under the HMAR exceeded the threshold of national soil standard, Cd content in tomato and fennel still complied with the food safety requirements of vegetables. Generally, the accumulation rates of soil Zn, Cu, and Cr with 1 t⋅ha-1 of manure application in three treatments were ranked by HMAR < MMAR < LMAR. Based on the results of the ratio of heavy metal accumulation risk (RAR), Zn, Cu, and Cr under HMAR and Cd and Zn under MMAR would exceed their soil threshold values within 100 years and RAR could be a useful indicator for monitoring the long-term risk of soil heavy metal pollution. Recommended manure application rates to guarantee a 100-year period of clean production were 44, 74, and 63 t⋅ha-1⋅yr-1 for Zn, Cu, and Cr, respectively. Measurements should be taken to minimize the risk of heavy metals (Cd, Zn, Cr, and Cu) pollution sourced from manure to ensure food safety and 'cleaner' protected-field vegetable production.
Collapse
Affiliation(s)
- Huayang Zhen
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Li Jia
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Caide Huang
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Yuhui Qiao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Ji Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Huafen Li
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Qing Chen
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Yanan Wan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
35
|
Han X, Zhang Y, Yu M, Zhang J, Xu D, Lu Z, Qiao G, Qiu W, Zhuo R. Transporters and ascorbate-glutathione metabolism for differential cadmium accumulation and tolerance in two contrasting willow genotypes. TREE PHYSIOLOGY 2020; 40:1126-1142. [PMID: 32175583 DOI: 10.1093/treephys/tpaa029] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 01/14/2020] [Accepted: 03/06/2020] [Indexed: 06/10/2023]
Abstract
Salix matsudana Koidz is a low cadmium (Cd)-accumulating willow, whereas its cultivated variety, Salix matsudana var. matsudana f. umbraculifera Rehd., is a high Cd-accumulating and tolerant willow (HCW). The physiological and molecular mechanisms underlying differential Cd accumulation and tolerance in the two Salix species are poorly understood. Here, we confirmed that the differential Cd translocation capacity from roots to the shoots leads to the differential Cd accumulation in their aboveground parts between these two willow genotypes. Cadmium accumulation happens preferentially in the transport pathway, and Cd is mainly located in the vacuolar, cell wall and intercellular space in HCW bark by cadmium location analysis at tissue and subcellular levels. Comparative transcriptome analysis revealed that higher expressions of several metal transporter genes (ATP-binding cassette transporters, K+ transporters/channels, yellow stripe-like proteins, zinc-regulated transporter/iron-regulated transporter-like proteins, etc.) are involved in root uptake and translocation capacity in HCW; meanwhile, ascorbate-glutathione metabolic pathways play essential roles in Cd detoxification and higher tolerance of the Cd-accumulator HCW. These results lay the foundation for further understanding the molecular mechanisms of Cd accumulation in woody plants and provide new insights into molecular-assisted-screening woody plant varieties for phytoremediation.
Collapse
Affiliation(s)
- Xiaojiao Han
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, P. R. China
| | - Yunxing Zhang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, P. R. China
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan 454000, P. R. China
| | - Miao Yu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, P. R. China
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Dong Xu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, P. R. China
| | - Zhuchou Lu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, P. R. China
| | - Guirong Qiao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, P. R. China
| | - Wenmin Qiu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, P. R. China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, P. R. China
- Key Laboratory of Tree Breeding of Zhejiang Province, The Research Institute of Subtropical of Forestry, Chinese Academy of Forestry, Hangzhou, Zhejiang 311400, P. R. China
| |
Collapse
|
36
|
Eid EM, Galal TM, El-Bebany AF. Prediction models for monitoring heavy-metal accumulation by wheat ( Triticum aestivum L.) plants grown in sewage sludge amended soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2020; 22:1000-1008. [PMID: 32062980 DOI: 10.1080/15226514.2020.1725866] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Prediction of heavy-metal concentration in the edible parts of economic crops, based on their concentration in soil and other environmental factors, is urgently required for human risk assessment. The present investigation aimed to develop regression models for predicting heavy-metal concentration in wheat plants via their contents in sewage sludge amended soil, organic matter (OM) content and soil pH. The concentration of heavy metals in the plant tissues reflected its concentration in the soil with high Fe followed by Al, Mn, Cr, Zn, Ni, Co, Cu, and Pb. Soil OM content had a significant positive correlation with all investigated heavy-metal concentrations in the different tissues of wheat plants, while soil pH was negatively significant with most heavy metals except spike Pb and grain Cr. The bio-concentration factor of Al, Cu, and Zn from soil to wheat root was >1, while that of shoot, spikes, and grains was <1 for all heavy metals. Significantly valid regression models were developed with fluctuated coefficient of determination (R2), high model efficiency (ME) values and low mean normalized average error (MNAE). The significant positive correlations between the concentration of some heavy metals in the soil and the same in wheat tissues indicate the potential of this plant as a biomonitor for these metals in contaminated soils. The significant correlations between heavy-metal concentrations in soil and its properties (pH and OM) with metal concentrations in wheat plants support the prediction model as an appropriate option. This study recommends the use of models with R2 greater than 50% and recommend other researchers to use our models according to their own specific conditions.
Collapse
Affiliation(s)
- Ebrahem M Eid
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
- Department of Botany, Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt
| | - Tarek M Galal
- Department of Botany and Microbiology, Faculty of Science, Helwan University, Cairo, Egypt
- Department of Biology, College of Sciences, Taif University, Taif, Saudi Arabia
| | - Ahmed F El-Bebany
- Department of Plant Pathology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
37
|
Dhaliwal SS, Singh J, Taneja PK, Mandal A. Remediation techniques for removal of heavy metals from the soil contaminated through different sources: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:1319-1333. [PMID: 31808078 DOI: 10.1007/s11356-019-06967-1] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 11/05/2019] [Indexed: 04/16/2023]
Abstract
Heavy metal pollution is one of the serious problems and contaminates the environment by different means with the blow of industries in several countries. Different techniques like physical, chemical, and biological have been used for removal of heavy metal contaminants from the environment. Some of these have limitations such as cost, time consumption, logistical problems, and mechanical involvedness. Nowadays, in situ immobilization of metals, phytoremediation and biological techniques turned out to be best solution for elimination of metal(loid) s from the soil. Here, we reviewed the different remediation techniques for extraction of heavy metals from soil and especially highlighting in situ immobilization technique. The aim of remediation efforts at the contaminant site is to restrict the heavy metal to enter in the environment, food chain, and exposure to humans beings. The type of method used at a given site depends on the various factors like natural processes take place at the contaminated site, soil type, type of chemicals, and the depth of contaminated site.
Collapse
Affiliation(s)
| | - Jaswinder Singh
- Department of Zoology, Khalsa College Amritsar, Amritsar, Punjab, India.
| | - Parminder Kaur Taneja
- Department of Soil and Water Conservation, Government of Punjab, Bathinda, Punjab, India
| | - Agniva Mandal
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| |
Collapse
|
38
|
Li R, Tan W, Wang G, Zhao X, Dang Q, Yu H, Xi B. Nitrogen addition promotes the transformation of heavy metal speciation from bioavailable to organic bound by increasing the turnover time of organic matter: An analysis on soil aggregate level. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113170. [PMID: 31520909 DOI: 10.1016/j.envpol.2019.113170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/13/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen (N) addition can change physicochemical properties and biogeochemical processes in soil, but whether or not these changes further affect the transport and transformation of heavy metal speciation is unknown. Here, a long-term (2004-2016) field experiment was conducted to assess the responses of different heavy metal speciation in three soil aggregate fractions to N additions in a temperate agroecosystem of North China. The organic matter turnover time was quantified based on changes in δ13C following the conversion from C3 (wheat) to C4 crop (corn). Averagely, N addition decreases and increases the heavy metal contents in bioavailable and organic bound fractions by 27.5% and 16.6%, respectively, suggesting N addition promotes the transformation of heavy metal speciation from bioavailable to organic bound, and such a promotion in a small aggregate fraction is more remarkable than that in a large aggregate fraction. The transformations of heavy metal speciation from bioavailable to organic bound in all soil aggregate fractions are largely dependent on the increments in the turnover time of organic matter. The increase in organic matter turnover time induced by N addition may inhibit the desorption of heavy metals from organic matter by prolonging the interaction time between heavy metals and organic matter and enhance the capacity of organic matter to adsorb heavy metals by increasing the humification degree and functional group. Our work can provide insights into the accumulation, migration, and transformation of heavy metals in soils in the context of increasing global soil N input from a microenvironmental perspective.
Collapse
Affiliation(s)
- Renfei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guoan Wang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qiuling Dang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Hanxia Yu
- School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
39
|
Dong Y, Zhao Y, Lin H, Liu C. Effect of physical and chemical properties of vanadium slag from stone coal on the form of vanadium. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:33004-33013. [PMID: 31512123 DOI: 10.1007/s11356-019-06381-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Vanadium mining and smelting activities were increasing extensively and causing serious vanadium pollution in soil around the mining area. Different existing forms of vanadium had different biological effects and the exchangeable state had been recognized as a severe threat to biodiversity and ecosystem functioning. At present, the research on vanadium morphology had not received much attention. In this study, the area that we researched had been severely polluted with vanadium due to mining and smelting activities. The changes in the morphology of vanadium in soil were studied by adjusting the organic matter content, clay mineral content, pH value, and Eh value. The results showed that at pH 8 and for 1% of humic acid added, the exchangeable fraction of vanadium in the slag was 10% and 9%, respectively, which was 5% and 6% lower than the control group. The addition of kaolin and the redox change had little effect on the exchangeable fraction of vanadium, with a change of only about 2%. To control the soil pollution caused by slag and to repair its ecological characteristics, kaolin and humic acid were used for the repair test. The results showed that after 1% humic acid mixed with 8% kaolin was added in soil, the germination rate of ryegrass reached 95% and grew flourishingly which is significantly better than other treatment groups. Our research can provide a reference for future vanadium pollution control, especially in the morphology of vanadium research.
Collapse
Affiliation(s)
- Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yiming Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Chenjing Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory on Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
40
|
Claverie M, Garcia J, Prevost T, Brendlé J, Limousy L. Inorganic and Hybrid (Organic⁻Inorganic) Lamellar Materials for Heavy metals and Radionuclides Capture in Energy Wastes Management-A Review. MATERIALS 2019; 12:ma12091399. [PMID: 31035735 PMCID: PMC6539926 DOI: 10.3390/ma12091399] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023]
Abstract
The energy industry (nuclear, battery, mining industries, etc.) produces a large quantity of hazardous effluents that may contain radionuclides (137Cs and 90Sr in particular) and heavy metals. One of the hardest tasks of environmental safety and sustainable development is the purification of wastewater holding these pollutants. Adsorption is one of the most powerful methods for extracting toxic compounds from wastewater. This study reviews the usefulness of clay minerals as adsorbent for removing these hazardous elements to clean up energy production processes. Phyllosilicates are able to extract several heavy metals from effluent, as widely examined. A particular focus is given to synthetic phyllosilicates and their abilities to entrap heavy metals with a special attention paid to those synthesized by sol-gel route. Indeed, this method is attractive since it allows the development of organic–inorganic hybrids from organosilanes presenting various functions (amino, thiol, etc.) that can interact with pollutants. Regarding these pollutants, a part of this review focuses on the interaction of lamellar materials (natural and synthetic phyllosilicates as well as layered double hydroxide) with heavy metals and another part deals with the adsorption of specific radionuclides, cesium and strontium.
Collapse
Affiliation(s)
- Marie Claverie
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse, Cedex, France.
| | - Justo Garcia
- Orano, Tour Areva, 1 place Jean Millier, 92400 Courbevoie, France.
| | - Thierry Prevost
- Orano, Tour Areva, 1 place Jean Millier, 92400 Courbevoie, France.
| | - Jocelyne Brendlé
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse, Cedex, France.
| | - Lionel Limousy
- Institut de Science des Matériaux de Mulhouse CNRS UMR 7361, Université de Haute-Alsace, Université de Strasbourg, 3b rue Alfred Werner, 68093 Mulhouse, Cedex, France.
| |
Collapse
|
41
|
Inactive Fusarium Fungal strains (ZSY and MJY) isolation and application for the removal of Pb(II) ions from aqueous environment. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.12.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Dong H, Feng L, Qin Y, Luo M. Comparison of different sequential extraction procedures for mercury fractionation in polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9955-9965. [PMID: 30737719 DOI: 10.1007/s11356-019-04433-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/29/2019] [Indexed: 06/09/2023]
Abstract
Three sequential extraction procedures (SEPs), modified Tessier, modified BCR, and CIEMAT, were compared for mercury fractionation in polluted soils. With satisfactory total mercury recovery, the modified Tessier and modified BCR SEPs were comparable with each other in terms of extraction efficiency in equivalent mercury fractions, whereas both SEPs were not as efficient as the CIEMAT SEP. However, the CIEMAT SEP might underestimate the oxidizable mercury fractions due to the humic and fulvic complexes instead of the organic matter of the other two SEPs. For mercury bioavailability identification, based on Pearson correlation analysis, all fractions in each SEP were significantly correlated with mercury uptake in Ipomoea aquatica, causing difficulty in comparison. Partial correlation analysis indicated that the mobile mercury fractions extracted by the first step in all three SEPs had a positive correlation with mercury uptake by plant, while mercury bound to organic matter extracted by both modified Tessier and modified BCR SEPs presented negative correlation with mercury uptake by plant which was in contrast to CIEMAT SEP. Meanwhile, clearly positive correlations between mercury fractions extracted by the former three steps of CIEMAT SEP and mercury uptake in Ipomoea aquatica were observed, demonstrating that CIEMAT SEP provided more accurate results related to Hg bioavailability than did the other two SEPs.
Collapse
Affiliation(s)
- Haochen Dong
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- Division of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 6158540, Japan
| | - Liu Feng
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Yu Qin
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Muxinjian Luo
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| |
Collapse
|
43
|
McGivney E, Gao X, Liu Y, Lowry GV, Casman E, Gregory KB, VanBriesen JM, Avellan A. Biogenic Cyanide Production Promotes Dissolution of Gold Nanoparticles in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1287-1295. [PMID: 30590926 DOI: 10.1021/acs.est.8b05884] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Gold nanoparticles (Au NPs) are often used to study the physiochemical behavior and distribution of nanomaterials in natural systems because they are assumed to be inert under environmental conditions, even though Au can be oxidized and dissolved by a common environmental compound: cyanide. We used the cyanogenic soil bacterium, Chromobacterium violaceum, to demonstrate that quorum-sensing-regulated cyanide production could lead to a high rate of oxidative dissolution of Au NPs in soil. After 7 days of incubation in a pH 7.0 soil inoculated with C. violaceum, labile Au concentration increased from 0 to 15%. There was no observable dissolution when Au NPs were incubated in abiotic soil. In the same soil adjusted to pH 7.5, labile Au concentration increased up to 29% over the same time frame. Furthermore, we demonstrated that Au dissolution required quorum-sensing-regulated cyanide production in soil by inoculating the soil with different cell densities and using a quorum-sensing-deficient mutant of C. violaceum, CV026. Au NP dissolution experiments in liquid media coupled with mass spectrometry analysis confirmed that biogenic cyanide oxidized Au NPs to soluble Au(CN)2-. These results demonstrate under which conditions biologically enhanced metal dissolution can contribute to the overall geochemical transformation kinetics of nanoparticle in soils, even though the materials may be inert in abiotic environments.
Collapse
Affiliation(s)
- Eric McGivney
- Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Xiaoyu Gao
- Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Yijing Liu
- Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Gregory V Lowry
- Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Elizabeth Casman
- Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Kelvin B Gregory
- Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Jeanne M VanBriesen
- Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| | - Astrid Avellan
- Civil and Environmental Engineering , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
44
|
Li X, Cai Y, Liu D, Ai Y, Zhang M, Gao Y, Zhang Y, Zhang X, Yan X, Liu B, Yu H, Mielke HW. Occurrence, fate, and transport of potentially toxic metals (PTMs) in an alkaline rhizosphere soil-plant (Maize, Zea mays L.) system: the role of Bacillus subtilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5564-5576. [PMID: 30612356 DOI: 10.1007/s11356-018-4031-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Utilization of microbes is one of the most promising methods to remediate potentially toxic metals (PTMs) from soil. In this study, a systematic investigation was conducted to study the influence of Bacillus subtilis on PTMs occurrence, fractionation, translocation, and accumulation in the rhizosphere soil of Maize (Zea mays L.) in pot experiments. B. subtilis showed strong effects on the fate and mobility of Pb, Sb, Ni, Zn, Cu, and Cr, and it also affected PTMs' distribution in the rhizosphere soil, maize growth, and microbial community structure. Results showed that it was easier for Zn to accumulate in maize roots than other PTMs. According to chemical fractionation, B. subtilis tended to immobilize Pb, Sb, Ni, Zn, and Cu in the rhizosphere soil. Compared with other PTMs, Cr tended to be more available and more mobile, which indicated a higher health risk to the eco-environment. These findings suggested that B. subtilis could be used as a geomicrobiological stabilizer to immobilize PTMs (Pb, Sb, Ni, Cu, Zn) in alkaline soils and decrease their uptake by plants, thus reducing the risks of a potential transfer into the food chain.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, No.199 Chang'an South Street, Xi'an, Shaanxi, 710062, People's Republic of China.
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China.
| | - Yue Cai
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, No.199 Chang'an South Street, Xi'an, Shaanxi, 710062, People's Republic of China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
| | - Dongying Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, No.199 Chang'an South Street, Xi'an, Shaanxi, 710062, People's Republic of China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
| | - Yuwei Ai
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, No.199 Chang'an South Street, Xi'an, Shaanxi, 710062, People's Republic of China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
| | - Meng Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, No.199 Chang'an South Street, Xi'an, Shaanxi, 710062, People's Republic of China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
| | - Yu Gao
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, No.199 Chang'an South Street, Xi'an, Shaanxi, 710062, People's Republic of China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
| | - Yuchao Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, No.199 Chang'an South Street, Xi'an, Shaanxi, 710062, People's Republic of China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
| | - Xu Zhang
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, No.199 Chang'an South Street, Xi'an, Shaanxi, 710062, People's Republic of China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
| | - Xiangyang Yan
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, People's Republic of China
| | - Bin Liu
- Department of Environmental Science, School of Geography and Tourism, Shaanxi Normal University, No.199 Chang'an South Street, Xi'an, Shaanxi, 710062, People's Republic of China
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
| | - Hongtao Yu
- International Joint Research Centre of Shaanxi Province for Pollutant Exposure and Eco-environmental Health, Xi'an, Shaanxi, 710062, People's Republic of China
- School of Computer, Mathematical and Natural Sciences, Morgan State University, Baltimore, MD, 21251, USA
| | - Howard W Mielke
- Department of Pharmacology, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
45
|
Sun W, Ji B, Khoso SA, Tang H, Liu R, Wang L, Hu Y. An extensive review on restoration technologies for mining tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33911-33925. [PMID: 30324370 DOI: 10.1007/s11356-018-3423-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/08/2018] [Indexed: 06/08/2023]
Abstract
Development of mineral resources and the increasing mining waste emissions have created a series of environmental and health-related issues. Nowadays, the ecological restoration of mining tailings has become one of the urgent tasks for mine workers and environmental engineers all over the world. Aim of the present paper is to highlight the previous restoration techniques and the challenges encountered during the restoration of mine tailings. As it is a common practice that, before restoring of tailings, the site should be evaluated carefully. Studies showed that the mine tailings' adverse properties, including excessive heavy metal concentration, acidification, improper pH value, salinization and alkalization, poor physical structure and inadequate nutrition, etc., are the major challenges of their restoration. Generally, four restoration technologies, including physical, chemical, phytoremediation, and bioremediation, are used to restore the mining tailings. The working mechanism, advantages, and disadvantages of these techniques are described in detail. In addition, selection of the suitable restoration techniques can largely be carried out by considering both the economic factors and time required. Furthermore, the ecosystem restoration is perceived to be a more promising technology for mine tailings. Therefore, this extensive review can act as a valuable reference for the researchers involved in mine tailing restoration.
Collapse
Affiliation(s)
- Wei Sun
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Bin Ji
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Sultan Ahmed Khoso
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Honghu Tang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Runqing Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Li Wang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Yuehua Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| |
Collapse
|
46
|
Impact of Long-Term Reclaimed Water Irrigation on Trace Elements Contents in Agricultural Soils in Beijing, China. WATER 2018. [DOI: 10.3390/w10121716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The rapid increase of reclaimed water irrigation on agricultural soils requires investigation of its impact on soil health. In this study, a simulation experiment for various lengths of long-term reclaimed water irrigation time (98, 196 and 236 years, respectively) was conducted in the southeast suburb of Beijing, China. Unirrigated soil served as the control. The environmental behavior of seven trace elements (As, Cd, Cr, Cu, Hg, Pb and Zn) at different soil depths in 0–600 cm profiles was analyzed. Results showed that the 0–30 and 200–300 cm soil layers were more likely to accumulate trace elements under long-term reclaimed water irrigation, although the accumulation in the 0–600 cm profiles was not particularly obvious. Correlation analysis showed that the trace element concentrations and distribution were significantly related to clay fraction and organic matters (OM), whereas they were not related to redox potential (Eh). The potential ecological risk assessment showed that the long-term reclaimed water irrigation did not result in a significantly increased ecological risk. However, Cd and Hg were identified as the metals with the highest potential ecological risk in the study area and the trace element contents in the top 0–30 cm soil layer should be carefully monitored. Future studies are required to clarify the environmental risks of trace elements under long-term reclaimed water irrigation as they might slowly accumulate in soil with time.
Collapse
|
47
|
Strachel R, Wyszkowska J, Baćmaga M. An Evaluation of the Effectiveness of Sorbents in the Remediation of Soil Contaminated with Zinc. WATER, AIR, AND SOIL POLLUTION 2018; 229:235. [PMID: 30046198 PMCID: PMC6028854 DOI: 10.1007/s11270-018-3882-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 06/20/2018] [Indexed: 05/26/2023]
Abstract
Zinc exerts negative effects on soil and contributing to the degradation of soil ecosystems. New solutions for restoring healthy soil activity are therefore needed. The aim of this study was to evaluate the effectiveness of sorbents in the biological remediation of soil contaminated with zinc. A pot experiment was conducted on loamy sand. The tested plant was maize (Zea mays). Soil was contaminated with zinc chloride doses of 0, 100, 300, and 900 mg Zn2+ kg-1 DM soil (dry matter of soil). Alginate, biochar, sepiolite, calcined halloysite, and a molecular sieve were added to soil in amounts corresponding to 2.5% of soil weight to minimize zinc's potentially toxic effects on the biological properties of soil. The application of zinc stimulated the proliferation of all analyzed microbial groups. Zinc exerted negative effects on the ecophysiological diversity (EP) of fungi and the activity of dehydrogenases, catalase, and acid phosphatase. The applied sorbents modified the microbiological and biochemical properties of soil. In zinc-contaminated soil, alginate, biochar, and molecular sieve increased the counts of organotrophic, oligotrophic, and actinobacteria. Sorbents were not highly effective in promoting fungal growth and exerted varied effects on the activity of soil enzymes. The molecular sieve stimulated the activity of all soil enzymes, excluding β-glucosidase. Alginate minimized the negative influence of zinc on dehydrogenases and acid phosphatase, and biochar-on catalase, sepiolite, and calcined halloysite -on acid phosphatase. By modifying the biological properties of soil, the tested sorbents contributed to an increase in maize yields and a decrease in zinc uptake by maize plants.
Collapse
Affiliation(s)
- Rafał Strachel
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Małgorzata Baćmaga
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|
48
|
Wang YM, Zhou DM, Yuan XY, Zhang XH, Li Y. Modeling the interaction and toxicity of Cu-Cd mixture to wheat roots affected by humic acids, in terms of cell membrane surface characteristics. CHEMOSPHERE 2018; 199:76-83. [PMID: 29433030 DOI: 10.1016/j.chemosphere.2018.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/30/2017] [Accepted: 02/03/2018] [Indexed: 06/08/2023]
Abstract
Responses of wheat (Triticum aestivum L.) seedling roots to the mixtures of copper (Cu), cadmium (Cd) and humic acids (HA) were investigated using the solution culture experiments, focusing on the interaction patterns between multiple metals and their influences on root proton release. A concentration-addition multiplication (CA) model was introduced into the modeling analysis. In comparison with metal ion activities in bulk-phase solutions, the incorporation of ion activities at the root cell membrane surfaces (CMs) (denoted as {Cu2+}0 and {Cd2+}0) into the CA model could significantly improve their correlation with RRE (relative root elongation) from 0.819 to 0.927. Modeling analysis indicated that the co-existence of {Cu2+}0 significantly enhanced the rhizotoxicity of {Cd2+}0, while no significant effect of {Cd2+}0 on the {Cu2+}0 rhizotoxicity. 10 mg/L HA stimulated the root elongation even under metal stress. Although high concentration of metal ions inhibited the root proton release rate (ΔH+), both the low concentration of metal ions and HA treatments increased the values of ΔH+. In HA-Cu-Cd mixtures, actions of metal ions on ΔH+ values were varied intricately among treatments but well modeled by the CA model. We concluded from the CA models that the electrostatic effect is vitally important for explaining the effect of {Cu2+}0 on the rhizotoxicity of {Cd2+}0, while it plays no unique role in understanding the influence of {Cd2+}0 on the rhizotoxicity of {Cu2+}0. Thus our study provide a novel way for modeling multiple metals behaviors in the environment and understanding the mechanisms of ion interactions.
Collapse
Affiliation(s)
- Yi-Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Xu-Yin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xiao-Hui Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
49
|
Ondrasek G, Rengel Z, Romic D. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 151:55-61. [PMID: 29306071 DOI: 10.1016/j.ecoenv.2017.12.055] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 12/21/2017] [Accepted: 12/26/2017] [Indexed: 06/07/2023]
Abstract
Naturally-occurring highly-complexed and polymerised organics such as humic acids (HA), due to their large negative charge, play a crucial role in biogeochemistry of trace metals (TM). Toxic (Cd) as well as essential (Zn, Cu, Mn) TM bind strongly to HA, but how these organo-metalic forms influence metal uptake by plants is poorly understood. A solution culture study was conducted to characterize the effects of different concentrations of HA (0-225mg/L) on the growth and element uptake/distribution in roots, shoots and hypocotyls of radish (Raphanus sativus L.) exposed to Cd (0.5mg/L) contamination. After 10-d-exposure to applied treatments, Cd induced phytotoxicity; in contrast, different concentrations of HA had no influence on biomass, but decreased concentration of most TM in examined tissues (Cu by 4.2-fold, Zn by 2.2-fold, Cd by 1.6-fold and Mn by 34%) and their total plant accumulation (Cu by 73%, Cd by 39%, Zn by 29% and Mn by 22%). HA influenced the transport/distribution of TM, decreasing accumulation in roots and increasing their translocation/deposition in shoots, with no effect on TM content in edible hypocotyls. Chemical speciation modelling of the rooting medium confirmed predominance of free metallic forms in the control (no HA) and the pronounced organo-metal complexation in the HA treatments. The results provide evidence of strong capacity of HA to decrease phytoavailability and uptake of Cd, Zn, Cu and Mn while being non-toxic even at relatively high concentration (225mg/L). Thus, HA, as naturally present soil components, control mobility and phyto-extraction of most TM as well as their phyto-accumulation.
Collapse
Affiliation(s)
- Gabrijel Ondrasek
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia; Faculty of Agriculture, The University of Zagreb, Svetosimunska c. 25, 10000 Zagreb, Croatia.
| | - Zed Rengel
- School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Davor Romic
- Faculty of Agriculture, The University of Zagreb, Svetosimunska c. 25, 10000 Zagreb, Croatia
| |
Collapse
|
50
|
Yu Y, Wan Y, Camara AY, Li H. Effects of the addition and aging of humic acid-based amendments on the solubility of Cd in soil solution and its accumulation in rice. CHEMOSPHERE 2018; 196:303-310. [PMID: 29306783 DOI: 10.1016/j.chemosphere.2018.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/27/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Humic substances can reduce mobility and bio-accessibility of Cd in soil and therefore inhibit its uptake by rice, which is a major source of human Cd intake. Yet, the effects of aging humic substances are not fully understood. A rice pot experiment was conducted to evaluate the effects of humic acid-based amendments on the mobility of Cd in soil solution and its uptake by rice when amendments were freshly added or aged for 130 d. The results showed that the aged and the unaged amendments generally decreased Cd concentration in soil solution, but the effect declined with time. Unaged HA-K (humic-potassium) reduced Cd concentration by 88% for the first sampling, but this dropped to 46% for the last sampling, compared to that of the control. All amendments, whether aged or not, reduced the content of Cd in rice seedlings, as well as in mature plants. Aged and unaged woody peat reduced the Cd content in seedlings by 79% and in grains by 70%, respectively. Aging of amendments caused lower pH and higher Cd concentration in the soil solution for all amendments and accordingly, the Cd content in rice seedlings or each part of mature plants in the aged group was higher than that of the unaged group. The applied amendments might reduce the solubility of Cd through the alteration in soil pH, and thus inhibit the uptake of Cd by rice, but the effects diminished with aging.
Collapse
Affiliation(s)
- Yao Yu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yanan Wan
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, China Agricultural University, Beijing 100193, People's Republic of China
| | - Aboubacar Younoussa Camara
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, China Agricultural University, Beijing 100193, People's Republic of China
| | - Huafen Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of the Ministry of Education, China Agricultural University, Beijing 100193, People's Republic of China.
| |
Collapse
|