1
|
Zalay O, Bontempi D, Bitterman DS, Birkbak N, Shyr D, Haugg F, Qian JM, Roberts H, Perni S, Prudente V, Pai S, Dekker A, Haibe-Kains B, Guthier C, Balboni T, Warren L, Krishan M, Kann BH, Swanton C, Ruysscher DD, Mak RH, Aerts HJWL. Decoding biological age from face photographs using deep learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295132. [PMID: 37745558 PMCID: PMC10516042 DOI: 10.1101/2023.09.12.23295132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Because humans age at different rates, a person's physical appearance may yield insights into their biological age and physiological health more reliably than their chronological age. In medicine, however, appearance is incorporated into medical judgments in a subjective and non-standardized fashion. In this study, we developed and validated FaceAge, a deep learning system to estimate biological age from easily obtainable and low-cost face photographs. FaceAge was trained on data from 58,851 healthy individuals, and clinical utility was evaluated on data from 6,196 patients with cancer diagnoses from two institutions in the United States and The Netherlands. To assess the prognostic relevance of FaceAge estimation, we performed Kaplan Meier survival analysis. To test a relevant clinical application of FaceAge, we assessed the performance of FaceAge in end-of-life patients with metastatic cancer who received palliative treatment by incorporating FaceAge into clinical prediction models. We found that, on average, cancer patients look older than their chronological age, and looking older is correlated with worse overall survival. FaceAge demonstrated significant independent prognostic performance in a range of cancer types and stages. We found that FaceAge can improve physicians' survival predictions in incurable patients receiving palliative treatments, highlighting the clinical utility of the algorithm to support end-of-life decision-making. FaceAge was also significantly associated with molecular mechanisms of senescence through gene analysis, while age was not. These findings may extend to diseases beyond cancer, motivating using deep learning algorithms to translate a patient's visual appearance into objective, quantitative, and clinically useful measures.
Collapse
Affiliation(s)
- Osbert Zalay
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Division of Radiation Oncology, Queen’s University, Kingston, Canada
| | - Dennis Bontempi
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
- Department of Radiation Oncology (MAASTRO), Maastricht University, Maastricht, The Netherlands
| | - Danielle S Bitterman
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Nicolai Birkbak
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Bioinformatics Research Center, Aarhus University, Aarhus, Denmark
| | - Derek Shyr
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston
| | - Fridolin Haugg
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Jack M Qian
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Hannah Roberts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Subha Perni
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Vasco Prudente
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| | - Suraj Pai
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology (MAASTRO), Maastricht University, Maastricht, The Netherlands
| | - Benjamin Haibe-Kains
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Christian Guthier
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Tracy Balboni
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Laura Warren
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Monica Krishan
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Benjamin H Kann
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Dirk De Ruysscher
- Department of Radiation Oncology (MAASTRO), Maastricht University, Maastricht, The Netherlands
| | - Raymond H Mak
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
| | - Hugo JWL Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, United States of America
- Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, United States of America
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, United States of America
| |
Collapse
|
2
|
Yang T, Niu J, Chen H, Wei P. Estimation of total mediation effect for high-dimensional omics mediators. BMC Bioinformatics 2021; 22:414. [PMID: 34425752 PMCID: PMC8381496 DOI: 10.1186/s12859-021-04322-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/10/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Environmental exposures can regulate intermediate molecular phenotypes, such as gene expression, by different mechanisms and thereby lead to various health outcomes. It is of significant scientific interest to unravel the role of potentially high-dimensional intermediate phenotypes in the relationship between environmental exposure and traits. Mediation analysis is an important tool for investigating such relationships. However, it has mainly focused on low-dimensional settings, and there is a lack of a good measure of the total mediation effect. Here, we extend an R-squared (R[Formula: see text]) effect size measure, originally proposed in the single-mediator setting, to the moderate- and high-dimensional mediator settings in the mixed model framework. RESULTS Based on extensive simulations, we compare our measure and estimation procedure with several frequently used mediation measures, including product, proportion, and ratio measures. Our R[Formula: see text]-based second-moment measure has small bias and variance under the correctly specified model. To mitigate potential bias induced by non-mediators, we examine two variable selection procedures, i.e., iterative sure independence screening and false discovery rate control, to exclude the non-mediators. We establish the consistency of the proposed estimation procedures and introduce a resampling-based confidence interval. By applying the proposed estimation procedure, we found that 38% of the age-related variations in systolic blood pressure can be explained by gene expression profiles in the Framingham Heart Study of 1711 individuals. An R package "RsqMed" is available on CRAN. CONCLUSION R-squared (R[Formula: see text]) is an effective and efficient measure for total mediation effect especially under high-dimensional setting.
Collapse
Affiliation(s)
- Tianzhong Yang
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA
- Department of Biostatistics and Data Science, School of Public Health, The University of Texas Health Science Center at Houston, Houston, USA
- Division of Biostatistics, University of Minnesota, Minneapolis, USA
| | - Jingbo Niu
- Section of Nephrology, Baylor College of Medicine, Houston, USA
| | - Han Chen
- Human Genetics Center, Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, USA
- Center for Precision Health, School of Public Health and School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, USA
| | - Peng Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, USA.
| |
Collapse
|
3
|
Szczurek-Janicka P, Ropka-Molik K, Oczkowicz M, Orczewska-Dudek S, Pietras M, Pieszka M. Expression Profile of Brain Aging and Metabolic Function are Altered by Resveratrol or α-Ketoglutarate Supplementation in Rats Fed a High-Fat Diet. POL J FOOD NUTR SCI 2021. [DOI: 10.31883/pjfns/139081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Xie K, Kapetanou M, Sidiropoulou K, Bano D, Gonos ES, Djordjevic AM, Ehninger D. Signaling pathways of dietary energy restriction and metabolism on brain physiology and in age-related neurodegenerative diseases. Mech Ageing Dev 2020; 192:111364. [PMID: 32991920 DOI: 10.1016/j.mad.2020.111364] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/17/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
Several laboratory animal models have shown that dietary energy restriction (ER) can promote longevity and improve various health aspects in old age. However, whether the entire spectrum of ER-induced short- and long-term physiological and metabolic adaptions is translatable to humans remains to be determined. In this review article, we present recent evidence towards the elucidation of the impact of ER on brain physiology and in age-related neurodegenerative diseases. We also discuss modulatory influences of ER on metabolism and overall on human health, limitations of current experimental designs as well as future perspectives for ER trials in humans. Finally, we summarize signaling pathways and processes known to be affected by both aging and ER with a special emphasis on the link between ER and cellular proteostasis.
Collapse
Affiliation(s)
- Kan Xie
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marianna Kapetanou
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | | | - Daniele Bano
- Aging and Neurodegeneration Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Efstathios S Gonos
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., Athens, 11635, Greece
| | - Aleksandra Mladenovic Djordjevic
- Department of Neurobiology, Institute for Biological Research 'Sinisa Stankovic', University of Belgrade, National Institute of Republic of Serbia, Boulevard Despota Stefana 142, 11000 Belgrade, Serbia
| | - Dan Ehninger
- Molecular and Cellular Cognition Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany.
| |
Collapse
|
5
|
Ren X, Kuan PF. RNAAgeCalc: A multi-tissue transcriptional age calculator. PLoS One 2020; 15:e0237006. [PMID: 32750074 PMCID: PMC7402472 DOI: 10.1371/journal.pone.0237006] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Biological aging reflects decline in physiological functions and is an effective indicator of morbidity and mortality. Numerous epigenetic age calculators are available, however biological aging calculators based on transcription remain scarce. Here, we introduce RNAAgeCalc, a versatile across-tissue and tissue-specific transcriptional age calculator. By performing a meta-analysis of transcriptional age signature across multi-tissues using the GTEx database, we identify 1,616 common age-related genes, as well as tissue-specific age-related genes. Based on these genes, we develop new across-tissue and tissue-specific age predictors. We show that our transcriptional age calculator outperforms other prior age related gene signatures as indicated by the higher correlation with chronological age as well as lower median and median error. Our results also indicate that both racial and tissue differences are associated with transcriptional age. Furthermore, we demonstrate that the transcriptional age acceleration computed from our within-tissue predictor is significantly correlated with mutation burden, mortality risk and cancer stage in several types of cancer from the TCGA database, and offers complementary information to DNA methylation age. RNAAgeCalc is available at http://www.ams.sunysb.edu/~pfkuan/softwares.html#RNAAgeCalc, both as Bioconductor and Python packages, accompanied by a user-friendly interactive Shiny app.
Collapse
Affiliation(s)
- Xu Ren
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| | - Pei Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
6
|
Costs of exploratory behavior: the energy trade-off hypothesis and the allocation model tested under caloric restriction. Sci Rep 2020; 10:4156. [PMID: 32139739 PMCID: PMC7058060 DOI: 10.1038/s41598-020-61102-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 12/20/2019] [Indexed: 11/30/2022] Open
Abstract
In order to maintain the energy balance, animals often exhibit several physiological adjustments when subjected to a decrease in resource availability. Specifically, some rodents show increases in behavioral activity in response to food restriction; a response regarded as a paradox because it would imply an investment in locomotor activity, despite the lack of trophic resources. Here, we aim to explore the possible existence of trade-offs between metabolic variables and behavioral responses when rodents are faced to stochastic deprivation of food and caloric restriction. Adult BALB/c mice were acclimatized for four weeks to four food treatments: two caloric regimens (ad libitum and 60% restriction) and two periodicities (continuous and stochastic). In these mice, we analyzed: exploratory behavior and home-cage behavior, basal metabolic rate, citrate synthase and cytochrome oxidase c enzyme activity (in liver and skeletal muscle), body temperature and non-shivering thermogenesis. Our results support the model of allocation, which indicates commitments between metabolic rates and exploratory behavior, in a caloric restricted environment. Specifically, we identify the role of thermogenesis as a pivotal budget item, modulating the reallocation of energy between behavior and basal metabolic rate. We conclude that brown adipose tissue and liver play a key role in the development of paradoxical responses when facing decreased dietary availability.
Collapse
|
7
|
Vaidyanathan V, Karunasinghe N, Jabed A, Pallati R, Kao CHJ, Wang A, Marlow G, Ferguson LR. Prostate Cancer: Is It a Battle Lost to Age? Geriatrics (Basel) 2016; 1:E27. [PMID: 31022820 PMCID: PMC6371152 DOI: 10.3390/geriatrics1040027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 10/10/2016] [Accepted: 10/31/2016] [Indexed: 01/08/2023] Open
Abstract
Age is often considered an important non-modifiable risk factor for a number of diseases, including prostate cancer. Some prominent risk factors of prostate cancer include familial history, ethnicity and age. In this review, various genetic and physiological characteristics affected due to advancing age will be analysed and correlated with their direct effect on prostate cancer.
Collapse
Affiliation(s)
- Venkatesh Vaidyanathan
- Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Auckland 1023, New Zealand.
| | | | - Anower Jabed
- Department of Molecular Medicine and Pathology, FM & HS, University of Auckland, Auckland 1023, New Zealand.
| | - Radha Pallati
- Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Auckland 1023, New Zealand.
| | - Chi Hsiu-Juei Kao
- Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Auckland 1023, New Zealand.
| | - Alice Wang
- Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Auckland 1023, New Zealand.
| | - Gareth Marlow
- Experimental Cancer Medicine Centre, Cardiff University, Cardiff CF14 4XN, UK.
| | - Lynnette R Ferguson
- Discipline of Nutrition and Dietetics, FM & HS, University of Auckland, Auckland 1023, New Zealand.
- Auckland Cancer Society Research Centre, Auckland 1023, New Zealand.
| |
Collapse
|
8
|
Newman AB, Sanders JL, Kizer JR, Boudreau RM, Odden MC, Zeki Al Hazzouri A, Arnold AM. Trajectories of function and biomarkers with age: the CHS All Stars Study. Int J Epidemiol 2016; 45:1135-1145. [PMID: 27272182 PMCID: PMC5841627 DOI: 10.1093/ije/dyw092] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Multimorbidity is a major driver of physical and cognitive impairment, but rates of decline are also related to ageing. We sought to determine trajectories of decline in a large cohort by disease status, and examined their correspondence with biomarkers of ageing processes including growth hormone, sex steroid, inflammation, visceral adiposity and kidney function pathways. METHODS We have followed the 5888 participants in the Cardiovascular Health Study (CHS) for healthy ageing and longevity since 1989-90. Gait speed, grip strength, modified mini-mental status examination (3MSE) and the digit symbol substitution test (DSST) were assessed annually to 1998-99 and again in 2005-06. Insulin-like growth hormone (IGF-1), dehydroepiandrosterone sulphate (DHEAS), interleukin-6 (IL-6), adiponectin and cystatin-C were assessed 3-5 times from stored samples. Health status was updated annually and dichotomized as healthy vs not healthy. Trajectories for each function measure and biomarker were estimated using generalized estimating equations as a function of age and health status using standardized values. RESULTS Trajectories of functional decline showed strong age acceleration late in life in healthy older men and women as well as in chronically ill older adults. Adiponectin, IL-6 and cystatin-C tracked with functional decline in all domains; cystatin-C was consistently associated with functional declines independent of other biomarkers. DHEAS was independently associated with grip strength and IL-6 with grip strength and gait speed trajectories. CONCLUSIONS Functional decline in late life appears to mark a fundamental ageing process in that it occurred and was accelerated in late life regardless of health status. Cystatin C was most consistently associated with these functional declines.
Collapse
Affiliation(s)
- Anne B Newman
- Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason L Sanders
- Harvard Affiliated Emergency Medicine Residency, Massachusetts General Hospital, and Brigham and Women's Hospital Department of Emergency Medicine, Boston, MA, USA
| | - Jorge R Kizer
- Albert Einstein College of Medicine, Jack and Pearl Resnick Campus, Bronx, NY, USA
| | - Robert M Boudreau
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Michelle C Odden
- Department of Epidemiology, Oregon State University, Corvallis, OR, USA
| | | | - Alice M Arnold
- Collaborative Health Studies Coordinating Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Smita S, Lange F, Wolkenhauer O, Köhling R. Deciphering hallmark processes of aging from interaction networks. Biochim Biophys Acta Gen Subj 2016; 1860:2706-15. [PMID: 27456767 DOI: 10.1016/j.bbagen.2016.07.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/18/2016] [Accepted: 07/20/2016] [Indexed: 12/18/2022]
Abstract
BACKGROUND Aging is broadly considered to be a dynamic process that accumulates unfavourable structural and functional changes in a time dependent fashion, leading to a progressive loss of physiological integrity of an organism, which eventually leads to age-related diseases and finally to death. SCOPE OF REVIEW The majority of aging-related studies are based on reductionist approaches, focusing on single genes/proteins or on individual pathways without considering possible interactions between them. Over the last few decades, several such genes/proteins were independently analysed and linked to a role that is affecting the longevity of an organism. However, an isolated analysis on genes and proteins largely fails to explain the mechanistic insight of a complex phenotype due to the involvement and integration of multiple factors. MAJOR CONCLUSIONS Technological advance makes it possible to generate high-throughput temporal and spatial data that provide an opportunity to use computer-based methods. These techniques allow us to go beyond reductionist approaches to analyse large-scale networks that provide deeper understanding of the processes that drive aging. GENERAL SIGNIFICANCE In this review, we focus on systems biology approaches, based on network inference methods to understand the dynamics of hallmark processes leading to aging phenotypes. We also describe computational methods for the interpretation and identification of important molecular hubs involved in the mechanistic linkage between aging related processes. This article is part of a Special Issue entitled "System Genetics" Guest Editor: Dr. Yudong Cai and Dr. Tao Huang.
Collapse
Affiliation(s)
- Suchi Smita
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, Germany; Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany.
| | - Falko Lange
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany.
| | - Olaf Wolkenhauer
- Department of Systems Biology & Bioinformatics, University of Rostock, Rostock, Germany; Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University, Stellenbosch, South Africa.
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
10
|
Leovsky C, Fabian C, Naaldijk Y, Jäger C, Jang HJ, Böhme J, Rudolph L, Stolzing A. Biodistribution of in vitro-derived microglia applied intranasally and intravenously to mice: effects of aging. Cytotherapy 2016; 17:1617-26. [PMID: 26432561 DOI: 10.1016/j.jcyt.2015.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 07/13/2015] [Accepted: 07/30/2015] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS The age of both the donor and the recipient has a potential influence on the efficacy of various cell therapies, but the underlying mechanisms are still being charted. We studied the effect of donor and recipient age in the context of microglia migration. METHODS Microglia were in vitro--differentiated from bone marrow of young (3 months) and aged (12 months) mice and transplanted into young (∼ 3 months) and aged (∼ 17 months) C57BL/6 mice (n = 25) through intravenous and intranasal application routes. Recipients were not immune-suppressed or irradiated. Transplanted microglia were tracked through the use of a sex-mismatched setup or histologically with the use of cells from enhanced green fluorescent protein enhanced green fluorescent protein transgenic mice. RESULTS No acute rejections or transplant-associated toxicity was observed. After 10 days, both intravenously and intranasally transplanted cells were detected in the brain. Transplanted cells were also found in the blood and the lymph system. The applied cells were also tracked in lungs and kidney but only after intravenous injection subjected to a "pulmonary first-pass effect." After 28 days, intravenously delivered cells were also found in the bone marrow and other organs, especially in aged recipients. Whereas in young recipients the transplanted microglia did not appear to persist, in aged brains the transplanted cells could still be identified up to 28 days after transplantation. However, when cells from aged donors were used, no signals of transplanted cells could be detected in the recipients. CONCLUSIONS This study establishes proof of principle that in vitro--derived microglia from young but not from aged donors, intravenously or intranasally transplanted, migrate to the brain in young and aged recipients.
Collapse
Affiliation(s)
| | - Claire Fabian
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Yahaira Naaldijk
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany; Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Carsten Jäger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Hwa Jin Jang
- Korea Ministry of Food and Drug Safety (MFDS), Hangul, Korea
| | - Josephine Böhme
- Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany
| | - Lukas Rudolph
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany
| | - Alexandra Stolzing
- Translational Centre for Regenerative Medicine (TRM), University of Leipzig, Leipzig, Germany; University of Loughborough, Centre for Biological Engineering, Wolfson School of Material and Manufacturing Engineering, Loughborough, United Kingdom.
| |
Collapse
|
11
|
Mangold CA, Masser DR, Stanford DR, Bixler GV, Pisupati A, Giles CB, Wren JD, Ford MM, Sonntag WE, Freeman WM. CNS-wide Sexually Dimorphic Induction of the Major Histocompatibility Complex 1 Pathway With Aging. J Gerontol A Biol Sci Med Sci 2016; 72:16-29. [PMID: 26786204 DOI: 10.1093/gerona/glv232] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 12/09/2015] [Indexed: 01/01/2023] Open
Abstract
The major histocompatibility complex I (MHCI) pathway, which canonically functions in innate immune viral antigen presentation and detection, is functionally pleiotropic in the central nervous system (CNS). Alternative roles include developmental synapse pruning, regulation of synaptic plasticity, and inhibition of neuronal insulin signaling; all processes altered during brain aging. Upregulation of MHCI components with aging has been reported; however, no systematic examination of MHCI cellular localization, expression, and regulation across CNS regions, life span, and sexes has been reported. In the mouse, MHCI is expressed by neurons and microglia, and MHCI components and receptors (H2-K1, H2-D1, β2M, Lilrb3, Klra2, CD247) display markedly different expression profiles across the hippocampus, cortex, cerebellum, brainstem, and retina. MHCI components, receptors, associated inflammatory transcripts (IL1α, IL1β, IL6, TNFα), and TAP (transporter associated with antigen processing) components are induced with aging and to a greater degree in female than male mice across CNS regions. H2-K1 and H2-D1 expression is associated with differential CG and non-CG promoter methylation across CNS regions, ages, and between sexes, and concomitant increased expression of proinflammatory genes. Meta-analysis of human brain aging data also demonstrates age-related increases in MHCI. Induction of MHCI signaling could contribute to altered synapse regulation and impaired synaptic plasticity with aging.
Collapse
Affiliation(s)
- Colleen A Mangold
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey
| | - Dustin R Masser
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey.,Department of Physiology, University of Oklahoma Health Sciences Center.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - David R Stanford
- Department of Physiology, University of Oklahoma Health Sciences Center.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Georgina V Bixler
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey
| | - Aditya Pisupati
- MD/PhD Program, College of Medicine, Pennsylvania State University, Hershey
| | - Cory B Giles
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation
| | - Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton
| | - William E Sonntag
- Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| | - Willard M Freeman
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey. .,Department of Physiology, University of Oklahoma Health Sciences Center.,Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center
| |
Collapse
|
12
|
Holly AC, Grellscheid S, van de Walle P, Dolan D, Pilling LC, Daniels DJ, von Zglinicki T, Ferrucci L, Melzer D, Harries LW. Comparison of senescence-associated miRNAs in primary skin and lung fibroblasts. Biogerontology 2015; 16:423-34. [PMID: 25700689 DOI: 10.1007/s10522-015-9560-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/17/2015] [Indexed: 12/31/2022]
Abstract
MicroRNAs are non-coding RNAs with roles in many cellular processes. Tissue-specific miRNA profiles associated with senescence have been described for several cell and tissue types. We aimed to characterise miRNAs involved in core, rather than tissue-specific, senescence pathways by assessment of common miRNA expression differences in two different cell types, with follow-up of predicted targets in human peripheral blood. MicroRNAs were profiled in early and late passage primary lung and skin fibroblasts to identify commonly-deregulated miRNAs. Expression changes of their bioinformatically-predicted mRNA targets were then assessed in both cell types and in human peripheral blood from elderly participants in the InCHIANTI study. 57/178 and 26/492 microRNAs were altered in late passage skin and lung cells respectively. Three miRNAs (miR-92a, miR-15b and miR-125a-3p) were altered in both tissues. 14 mRNA targets of the common miRNAs were expressed in lung and skin fibroblasts, of which two demonstrated up-regulation in late passage skin and lung cells (LYST; p = 0.02 [skin] and 0.02 [lung] INMT; p = 0.03 [skin] and 0.04 [lung]). ZMPSTE24 and LHFPL2 demonstrated altered expression in late passage skin cells only (p = 0.01 and 0.05 respectively). LHFPL2 was also positively correlated with age in peripheral blood (p value = 6.6 × 10(-5)). We find that the majority of senescence-associated miRNAs demonstrate tissue-specific effects. However, miRNAs showing common effects across tissue types may represent those associated with core, rather than tissue-specific senescence processes.
Collapse
Affiliation(s)
- Alice C Holly
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, University of Exeter, Barrack Road, Exeter, Devon, EX1 2LU, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Bodnar AG. Cellular and molecular mechanisms of negligible senescence: insight from the sea urchin. INVERTEBR REPROD DEV 2015; 59:23-27. [PMID: 26136616 PMCID: PMC4463994 DOI: 10.1080/07924259.2014.938195] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 05/23/2014] [Indexed: 02/05/2023]
Abstract
Sea urchins exhibit a very different life history from humans and short-lived model animals and therefore provide the opportunity to gain new insight into the complex process of aging. Sea urchins grow indeterminately, regenerate damaged appendages, and reproduce throughout their lifespan. Some species show no increase in mortality rate at advanced ages. Nevertheless, different species of sea urchins have very different reported lifespans ranging from 4 to more than 100 years, thus providing a unique model to investigate the molecular, cellular, and physiological mechanisms underlying both lifespan determination and negligible senescence. Studies to date have demonstrated maintenance of telomeres, maintenance of antioxidant and proteasome enzyme activities, and little accumulation of oxidative cellular damage with age in tissues of sea urchin species with different lifespans. Gene expression studies indicate that key cellular pathways involved in energy metabolism, protein homeostasis, and tissue regeneration are maintained with age. Taken together, these studies suggest that long-term maintenance of mechanisms that sustain tissue homeostasis and regenerative capacity is essential for indeterminate growth and negligible senescence, and a better understanding of these processes may suggest effective strategies to mitigate the degenerative decline in human tissues with age.
Collapse
|
14
|
We are ageing. BIOMED RESEARCH INTERNATIONAL 2014; 2014:808307. [PMID: 25045704 PMCID: PMC4090574 DOI: 10.1155/2014/808307] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Revised: 05/27/2014] [Accepted: 05/27/2014] [Indexed: 02/01/2023]
Abstract
Ageing and longevity is unquestioningly complex. Several thoughts and mechanisms of ageing such as pathways involved in oxidative stress, lipid and glucose metabolism, inflammation, DNA damage and repair, growth hormone axis and insulin-like growth factor (GH/IGF), and environmental exposure have been proposed. Also, some theories of ageing were introduced. To date, the most promising leads for longevity are caloric restriction, particularly target of rapamycin (TOR), sirtuins, hexarelin and hormetic responses. This review is an attempt to analyze the mechanisms and theories of ageing and achieving longevity.
Collapse
|
15
|
Zhavoronkov A, Buzdin AA, Garazha AV, Borisov NM, Moskalev AA. Signaling pathway cloud regulation for in silico screening and ranking of the potential geroprotective drugs. Front Genet 2014; 5:49. [PMID: 24624136 PMCID: PMC3940060 DOI: 10.3389/fgene.2014.00049] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 02/16/2014] [Indexed: 12/24/2022] Open
Abstract
The major challenges of aging research include absence of the comprehensive set of aging biomarkers, the time it takes to evaluate the effects of various interventions on longevity in humans and the difficulty extrapolating the results from model organisms to humans. To address these challenges we propose the in silico method for screening and ranking the possible geroprotectors followed by the high-throughput in vivo and in vitro validation. The proposed method evaluates the changes in the collection of activated or suppressed signaling pathways involved in aging and longevity, termed signaling pathway cloud, constructed using the gene expression data and epigenetic profiles of young and old patients' tissues. The possible interventions are selected and rated according to their ability to regulate age-related changes and minimize differences in the signaling pathway cloud. While many algorithmic solutions to simulating the induction of the old into young metabolic profiles in silico are possible, this flexible and scalable approach may potentially be used to predict the efficacy of the many drugs that may extend human longevity before conducting pre-clinical work and expensive clinical trials.
Collapse
Affiliation(s)
- Alex Zhavoronkov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology Dolgoprudny, Russia ; First Oncology Research and Advisory Center Moscow, Russia ; The Biogerontology Research Foundation London, UK ; Department of Experimental and Molecular Medicine, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology Moscow, Russia
| | - Anton A Buzdin
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology Dolgoprudny, Russia ; First Oncology Research and Advisory Center Moscow, Russia ; Department of Experimental and Molecular Medicine, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology Moscow, Russia ; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow, Russia
| | - Andrey V Garazha
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology Dolgoprudny, Russia ; First Oncology Research and Advisory Center Moscow, Russia ; Department of Experimental and Molecular Medicine, D. Rogachyov Federal Research Center of Pediatric Hematology, Oncology and Immunology Moscow, Russia ; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences Moscow, Russia
| | - Nikolay M Borisov
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology Dolgoprudny, Russia ; First Oncology Research and Advisory Center Moscow, Russia ; Burnasyan Federal Medical Biophysical Center Moscow, Russia
| | - Alexey A Moskalev
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology Dolgoprudny, Russia ; Department of Ecology, Syktyvkar State University Syktyvkar, Russia ; Laboratory of Molecular Radiobiology and Gerontology, Institute of Biology of Komi Science Center of Ural Branch of Russian Academy of Sciences Syktyvkar, Russia
| |
Collapse
|
16
|
Kadakkuzha BM, Akhmedov K, Capo TR, Carvalloza AC, Fallahi M, Puthanveettil SV. Age-associated bidirectional modulation of gene expression in single identified R15 neuron of Aplysia. BMC Genomics 2013; 14:880. [PMID: 24330282 PMCID: PMC3909179 DOI: 10.1186/1471-2164-14-880] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 12/05/2013] [Indexed: 01/06/2023] Open
Abstract
Background Despite the advances in our understanding of aging-associated behavioral decline, relatively little is known about how aging affects neural circuits that regulate specific behaviors, particularly the expression of genes in specific neural circuits during aging. We have addressed this by exploring a peptidergic neuron R15, an identified neuron of the marine snail Aplysia californica. R15 is implicated in reproduction and osmoregulation and responds to neurotransmitters such as acetylcholine, serotonin and glutamate and is characterized by its action potential bursts. Results We examined changes in gene expression in R15 neurons during aging by microarray analyses of RNAs from two different age groups, mature and old animals. Specifically we find that 1083 ESTs are differentially regulated in mature and old R15 neurons. Bioinformatics analyses of these genes have identified specific biological pathways that are up or downregulated in mature and old neurons. Comparison with human signaling networks using pathway analyses have identified three major networks [(1) cell signaling, cell morphology, and skeletal muscular system development (2) cell death and survival, cellular function maintenance and embryonic development and (3) neurological diseases, developmental and hereditary disorders] altered in old R15 neurons. Furthermore, qPCR analysis of single R15 neurons to quantify expression levels of candidate regulators involved in transcription (CREB1) and translation (S6K) showed that aging is associated with a decrease in expression of these regulators, and similar analysis in three other neurons (L7, L11 and R2) showed that gene expression change during aging could be bidirectional. Conclusions We find that aging is associated with bidirectional changes in gene expression. Detailed bioinformatics analyses and human homolog searches have identified specific biological processes and human-relevant signaling pathways in R15 that are affected during aging. Evaluation of gene expression changes in different neurons suggests specific transcriptomic signature of single neurons during aging.
Collapse
|
17
|
Nikas JB. Inflammation and immune system activation in aging: a mathematical approach. Sci Rep 2013; 3:3254. [PMID: 24247109 PMCID: PMC3832874 DOI: 10.1038/srep03254] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 11/04/2013] [Indexed: 01/07/2023] Open
Abstract
Memory and learning declines are consequences of normal aging. Since those functions are associated with the hippocampus, I analyzed the global gene expression data from post-mortem hippocampal tissue of 25 old (age ≥ 60 yrs) and 15 young (age ≤ 45 yrs) cognitively intact human subjects. By employing a rigorous, multi-method bioinformatic approach, I identified 36 genes that were the most significant in terms of differential expression; and by employing mathematical modeling, I demonstrated that 7 of the 36 genes were able to discriminate between the old and young subjects with high accuracy. Remarkably, 90% of the known genes from those 36 most significant genes are associated with either inflammation or immune system activation. This suggests that chronic inflammation and immune system over-activity may underlie the aging process of the human brain, and that potential anti-inflammatory treatments targeting those genes may slow down this process and alleviate its symptoms.
Collapse
Affiliation(s)
- Jason B Nikas
- 1] Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, Minnesota, USA [2] Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
18
|
Wang L, Jiang Q, Chu J, Lin L, Li XG, Chai GS, Wang Q, Wang JZ, Tian Q. Expression of Tau40 induces activation of cultured rat microglial cells. PLoS One 2013; 8:e76057. [PMID: 24146816 PMCID: PMC3795725 DOI: 10.1371/journal.pone.0076057] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/20/2013] [Indexed: 12/13/2022] Open
Abstract
Accumulation of microtubule-associated protein tau has been observed in the brain of aging and tauopathies. Tau was observed in microglia, but its role is not illustrated. By immunofluorescence staining and the fractal dimension value assay in the present study, we observed that microglia were activated in the brains of rats and mice during aging, simultaneously, the immunoreactivities of total tau and the phosphorylated tau were significantly enhanced in the activated microglia. Furtherly by transient transfection of tau40 (human 2N/4R tau) into the cultured rat microglia, we demonstrated that expression of tau40 increased the level of Iba1, indicating activation of microglia. Moreover, expression of tau40 significantly enhanced the membranous localization of the phosphorylated tau at Ser396 in microglia possibly by a mechanism involving protein phosphatase 2A, extracellular signal-regulated kinase and glycogen synthase kinase-3β. It was also found that expression of tau40 promoted microglial migration and phagocytosis, but not proliferation. And we observed increased secretion of several cytokines, including interleukin (IL)-1β, IL-6, IL-10, tumor necrosis factor-α and nitric oxide after the expression of tau40. These data suggest a novel role of human 2N/4R tau in microglial activation.
Collapse
Affiliation(s)
- Lu Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology and Neurobiology, Xinxiang Medical University, Xinxiang, China
| | - Qian Jiang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chu
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Lin
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Guang Li
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gao-Shang Chai
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JZW); (QT)
| | - Qing Tian
- Department of Pathophysiology, Key Laboratory of Ministry of Education of Neurological Diseases, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- * E-mail: (JZW); (QT)
| |
Collapse
|
19
|
Arfanakis K, Fleischman DA, Grisot G, Barth CM, Varentsova A, Morris MC, Barnes LL, Bennett DA. Systemic inflammation in non-demented elderly human subjects: brain microstructure and cognition. PLoS One 2013; 8:e73107. [PMID: 23991174 PMCID: PMC3753267 DOI: 10.1371/journal.pone.0073107] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 07/24/2013] [Indexed: 11/23/2022] Open
Abstract
The purpose of this study was to test the hypothesis that higher levels of systemic inflammation in a community sample of non-demented subjects older than seventy years of age are associated with reduced diffusion anisotropy in brain white matter and lower cognition. Ninety-five older persons without dementia underwent detailed clinical and cognitive evaluation and magnetic resonance imaging, including diffusion tensor imaging. Systemic inflammation was assessed with a composite measure of commonly used circulating inflammatory markers (C-reactive protein and tumor necrosis factor-alpha). Tract-based spatial statistics analyses demonstrated that diffusion anisotropy in the body and isthmus of the corpus callosum was negatively correlated with the composite measure of systemic inflammation, controlling for demographic, clinical and radiologic factors. Visuospatial ability was negatively correlated with systemic inflammation, and diffusion anisotropy in the body and isthmus of the corpus callosum was shown to mediate this association. The findings of the present study suggest that higher levels of systemic inflammation may be associated with lower microstructural integrity in the corpus callosum of non-demented elderly individuals, and this may partially explain the finding of reduced higher-order visual cognition in aging.
Collapse
Affiliation(s)
- Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Glass D, Viñuela A, Davies MN, Ramasamy A, Parts L, Knowles D, Brown AA, Hedman ÅK, Small KS, Buil A, Grundberg E, Nica AC, Di Meglio P, Nestle FO, Ryten M, Durbin R, McCarthy MI, Deloukas P, Dermitzakis ET, Weale ME, Bataille V, Spector TD. Gene expression changes with age in skin, adipose tissue, blood and brain. Genome Biol 2013; 14:R75. [PMID: 23889843 PMCID: PMC4054017 DOI: 10.1186/gb-2013-14-7-r75] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/13/2013] [Accepted: 07/26/2013] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. RESULTS Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. CONCLUSIONS Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases.
Collapse
Affiliation(s)
- Daniel Glass
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, Westminster Bridge Road, London SE1 7EH, UK
- North West London Hospitals NHS Trust, Northwick Park Hospital, Watford Road, Harrow HA1 3UJ, UK
| | - Ana Viñuela
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, Westminster Bridge Road, London SE1 7EH, UK
| | - Matthew N Davies
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, Westminster Bridge Road, London SE1 7EH, UK
| | - Adaikalavan Ramasamy
- Department of Medical ƒ Molecular Genetics, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | | | - David Knowles
- Stanford University, 450 Serra MallStanford, CA 94305, USA
| | | | - Åsa K Hedman
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Kerrin S Small
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, Westminster Bridge Road, London SE1 7EH, UK
- Wellcome Trust Sanger Institute, HinxtonCB10 1SA,UK
| | - Alfonso Buil
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 Rue Michel-Servet (CMU office 9088), Geneva 1211, Switzerland
| | - Elin Grundberg
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, Westminster Bridge Road, London SE1 7EH, UK
- Wellcome Trust Sanger Institute, HinxtonCB10 1SA,UK
| | - Alexandra C Nica
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 Rue Michel-Servet (CMU office 9088), Geneva 1211, Switzerland
| | - Paola Di Meglio
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Frank O Nestle
- St. John's Institute of Dermatology, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Mina Ryten
- Department of Medical ƒ Molecular Genetics, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - the UK Brain Expression consortium
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, Westminster Bridge Road, London SE1 7EH, UK
| | | | | | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Oxford Centre for Diabetes, Endocrinology ƒ Metabolism, University of Oxford, Churchill Hospital, Oxford, Headington OX3 7LJ,UK
| | | | - Emmanouil T Dermitzakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1 Rue Michel-Servet (CMU office 9088), Geneva 1211, Switzerland
| | - Michael E Weale
- Department of Medical ƒ Molecular Genetics, King's College London, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Veronique Bataille
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, Westminster Bridge Road, London SE1 7EH, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, St Thomas' Campus, Westminster Bridge Road, London SE1 7EH, UK
| |
Collapse
|
21
|
Holly AC, Melzer D, Pilling LC, Henley W, Hernandez DG, Singleton AB, Bandinelli S, Guralnik JM, Ferrucci L, Harries LW. Towards a gene expression biomarker set for human biological age. Aging Cell 2013; 12:324-6. [PMID: 23311345 DOI: 10.1111/acel.12044] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have previously described a statistical model capable of distinguishing young (age <65 years) from old (age ≥75 years) individuals. Here we studied the performance of a modified model in three populations and determined whether individuals predicted to be biologically younger than their chronological age had biochemical and functional measures consistent with a younger biological age. Those with 'younger' gene expression patterns demonstrated higher muscle strength and serum albumin, and lower interleukin-6 and blood urea concentrations relative to 'biologically older' individuals (odds ratios 2.09, 1.64, 0.74, 0.74; P = 2.4 × 10(-2) , 3.5 × 10(-4) , 1.8 × 10(-2) , 1.5 × 10(-2) , respectively). We conclude that our expression signature of age is robust across three populations and may have utility for estimation of biological age.
Collapse
Affiliation(s)
- Alice C. Holly
- Institute of Biomedical and Clinical Science; Exeter Medical School; University of Exeter; Exeter; EX2 5DW; UK
| | - David Melzer
- Epidemiology and Public Health; Exeter Medical School; University of Exeter; Exeter; EX2 5DW; UK
| | - Luke C. Pilling
- Epidemiology and Public Health; Exeter Medical School; University of Exeter; Exeter; EX2 5DW; UK
| | - William Henley
- Institute of Health Service Research; Exeter Medical School; University of Exeter; Exeter; EX2 4SG; UK
| | - Dena G. Hernandez
- Laboratory of Neurogenetics; National Institute on Aging; National Institutes of Health; Bethesda; MD; USA
| | - Andrew B. Singleton
- Laboratory of Neurogenetics; National Institute on Aging; National Institutes of Health; Bethesda; MD; USA
| | | | - Jack M. Guralnik
- Laboratory of Epidemiology, Demography and Biometry; National Institute on Aging; Bethesda; MD; USA
| | | | - Lorna W. Harries
- Institute of Biomedical and Clinical Science; Exeter Medical School; University of Exeter; Exeter; EX2 5DW; UK
| |
Collapse
|
22
|
Effect of aging on calcium signaling in C57Bl6J mouse cerebral arteries. Pflugers Arch 2012; 465:829-38. [DOI: 10.1007/s00424-012-1195-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 01/08/2023]
|
23
|
Heilbronn LK, Civitarese AE, Bogacka I, Smith SR, Hulver M, Ravussin E. Glucose Tolerance and Skeletal Muscle Gene Expression in Response to Alternate Day Fasting. ACTA ACUST UNITED AC 2012; 13:574-81. [PMID: 15833943 DOI: 10.1038/oby.2005.61] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE Alternate day fasting may extend lifespan in rodents and is feasible for short periods in nonobese humans. The aim of this study was to examine the effects of 3 weeks of alternate day fasting on glucose tolerance and skeletal muscle expression of genes involved in fatty acid transport/oxidation, mitochondrial biogenesis, and stress response. RESEARCH METHODS AND PROCEDURES Glucose and insulin responses to a standard meal were tested in nonobese subjects (eight men and eight women; BMI, 20 to 30 kg/m(2)) at baseline and after 22 days of alternate day fasting (36 hour fast). Muscle biopsies were obtained from a subset of subjects (n = 11) at baseline and on day 21 (12-hour fast). RESULTS Glucose response to a meal was slightly impaired in women after 3 weeks of treatment (p < 0.01), but insulin response was unchanged. However, men had no change in glucose response and a significant reduction in insulin response (p < 0.03). There were no significant changes in the expression of genes involved in mitochondrial biogenesis or fatty acid transport/oxidation, although a trend toward increased CPT1 expression was observed (p < 0.08). SIRT1 mRNA expression was increased after alternate day fasting (p = 0.01). DISCUSSION Alternate day fasting may adversely affect glucose tolerance in nonobese women but not in nonobese men. The gene expression results indicate that fatty acid oxidation and mitochondrial biogenesis are unaffected by alternate day fasting. However, the increased expression in SIRT1 suggests that alternate day fasting may improve stress resistance, a commonly observed feature of calorie-restricted rodents.
Collapse
|
24
|
Chouliaras L, van den Hove DL, Kenis G, Keitel S, Hof PR, van Os J, Steinbusch HW, Schmitz C, Rutten BP. Prevention of age-related changes in hippocampal levels of 5-methylcytidine by caloric restriction. Neurobiol Aging 2012; 33:1672-81. [PMID: 21764481 PMCID: PMC3355211 DOI: 10.1016/j.neurobiolaging.2011.06.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/24/2011] [Accepted: 06/04/2011] [Indexed: 11/15/2022]
Abstract
Aberrant DNA methylation patterns have been linked to molecular and cellular alterations in the aging brain. Caloric restriction (CR) and upregulation of antioxidants have been proposed as interventions to prevent or delay age-related brain pathology. Previously, we have shown in large cohorts of aging mice, that age-related increases in DNA methyltransferase 3a (Dnmt3a) immunoreactivity in the mouse hippocampus were attenuated by CR, but not by overexpression of superoxide dismutase 1 (SOD1). Here, we investigated age-related alterations of 5-methylcytidine (5-mC), a marker of DNA methylation levels, in a hippocampal subregion-specific manner. Examination of 5-mC immunoreactivity in 12- and 24-month-old wild type (WT) mice on control diet, mice overexpressing SOD1 on control diet, wild type mice on CR, and SOD1 mice on CR, indicated an age-related increase in 5-mC immunoreactivity in the hippocampal dentate gyrus, CA3, and CA1-2 regions, which was prevented by CR but not by SOD1 overexpression. Moreover, positive correlations between 5-mC and Dnmt3a immunoreactivity were observed in the CA3 and CA1-2. These findings suggest a crucial role for DNA methylation in hippocampal aging and in the mediation of the beneficial effects of CR on aging.
Collapse
Affiliation(s)
- Leonidas Chouliaras
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Daniel L.A. van den Hove
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Gunter Kenis
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stella Keitel
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, NY, USA
| | - Jim van Os
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
- King’s College London, King’s Health Partners, Department of Psychosis Studies, Institute of Psychiatry, London, UK
| | - Harry W.M. Steinbusch
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Christoph Schmitz
- Department of Anatomy II, Institute of Anatomy, Ludwig-Maximilians-University Munich, Germany
| | - Bart P.F. Rutten
- School for Mental Health and Neuroscience (MHeNS), Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
25
|
Loram J, Bodnar A. Age-related changes in gene expression in tissues of the sea urchin Strongylocentrotus purpuratus. Mech Ageing Dev 2012; 133:338-47. [PMID: 22475988 DOI: 10.1016/j.mad.2012.03.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 03/09/2012] [Accepted: 03/19/2012] [Indexed: 10/28/2022]
Abstract
The life history of sea urchins is fundamentally different from that of traditional models of aging and therefore they provide the opportunity to gain new insight into this complex process. Sea urchins grow indeterminately, reproduce throughout their life span and some species exhibit negligible senescence. Using a microarray and qRT-PCR, age-related changes in gene expression were examined in three tissues (muscle, esophagus and nerve) of the sea urchin species Strongylocentrotus purpuratus. The results indicate age-related changes in gene expression involving many key cellular functions such as the ubiquitin-proteasome pathway, DNA metabolism, signaling pathways and apoptosis. Although there are tissue-specific differences in the gene expression profiles, there are some characteristics that are shared between tissues providing insight into potential mechanisms that promote lack of senescence in these animals. As an example, there is an increase in expression of genes encoding components of the Notch signaling pathway with age in all three tissues and a decrease in expression of the Wnt1 gene in both muscle and nerve. The interplay between the Notch and Wnt pathways may be one mechanism that ensures continued regeneration of tissues with advancing age contributing to the general lack of age-related decline in these animals.
Collapse
Affiliation(s)
- Jeannette Loram
- Bermuda Institute of Ocean Sciences, St. George's GE 01, Bermuda
| | | |
Collapse
|
26
|
Head E. Neurobiology of the aging dog. AGE (DORDRECHT, NETHERLANDS) 2011; 33:485-496. [PMID: 20845082 PMCID: PMC3168593 DOI: 10.1007/s11357-010-9183-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/02/2010] [Indexed: 05/29/2023]
Abstract
Aged canines naturally accumulate several types of neuropathology that may have links to cognitive decline. On a gross level, significant cortical atrophy occurs with age along with an increase in ventricular volume based on magnetic resonance imaging studies. Microscopically, there is evidence of select neuron loss and reduced neurogenesis in the hippocampus of aged dogs, an area critical for intact learning and memory. The cause of neuronal loss and dysfunction may be related to the progressive accumulation of toxic proteins, oxidative damage, cerebrovascular pathology, and changes in gene expression. For example, aged dogs naturally accumulate human-type beta-amyloid peptide, a protein critically involved with the development of Alzheimer's disease in humans. Further, oxidative damage to proteins, DNA/RNA and lipids occurs with age in dogs. Although less well explored in the aged canine brain, neuron loss, and cerebrovascular pathology observed with age are similar to human brain aging and may also be linked to cognitive decline. Interestingly, the prefrontal cortex appears to be particularly vulnerable early in the aging process in dogs and this may be reflected in dysfunction in specific cognitive domains with age.
Collapse
Affiliation(s)
- Elizabeth Head
- Sanders-Brown Center on Aging, Department of Molecular and Biomedical Pharmacology, University of Kentucky, 800 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
27
|
Vasilopoulos T, Kremen WS, Kim K, Panizzon MS, Stein PK, Xian H, Grant MD, Lyons MJ, Toomey R, Eaves LJ, Franz CE, Jacobson KC. Untreated hypertension decreases heritability of cognition in late middle age. Behav Genet 2011; 42:107-20. [PMID: 21688193 DOI: 10.1007/s10519-011-9479-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 06/01/2011] [Indexed: 10/18/2022]
Abstract
Hypertension is a risk factor for cognitive decline, but the mechanisms underlying the effects of hypertension on cognition, particularly in midlife, are unclear. We examined whether hypertension modifies genetic influences on individual differences in cognition. Nine cognitive domains and general cognitive ability were assessed in a sample of 1,237 male twins aged 51-60 who were divided into three blood pressure groups: non-hypertensive; medicated hypertensive; and unmedicated hypertensive. Heritability was significantly lower among unmedicated hypertensives compared to medicated hypertensives and non-hypertensives for visual-spatial ability (p = 0.013) and episodic memory (p = 0.004). There were no heritability differences between non-hypertensives and medicated hypertensives. In addition, there were no significant differences in mean level cognition across the three blood pressure groups. These results suggest that in middle-aged men, untreated hypertension suppresses normal genetic influences on individual differences in certain domains of cognition prior to the emergence of hypertension-related effects on cognitive performance. These results further suggest that antihypertensive medication may protect against or reverse this effect.
Collapse
Affiliation(s)
- Terrie Vasilopoulos
- Department of Psychiatry & Behavioral Neuroscience, University of Chicago, 5841 S Maryland Ave, MC 3077, rm 603, Chicago, IL 60637, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
|
29
|
|
30
|
Montano M, Long K. RNA surveillance-an emerging role for RNA regulatory networks in aging. Ageing Res Rev 2011; 10:216-24. [PMID: 20170753 DOI: 10.1016/j.arr.2010.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 02/03/2010] [Accepted: 02/04/2010] [Indexed: 11/16/2022]
Abstract
In this review, we describe recent advances in the field of RNA regulatory biology and relate these advances to aging science. We introduce a new term, RNA surveillance, an RNA regulatory process that is conserved in metazoans, and describe how RNA surveillance represents molecular cross-talk between two emerging RNA regulatory systems-RNA interference and RNA editing. We discuss how RNA surveillance mechanisms influence mRNA and microRNA expression and activity during lifespan. Additionally, we summarize recent data from our own laboratory linking the RNA editor, ADAR, with exceptional longevity in humans and lifespan in Caenorhabditis elegans. We present data showing that transcriptional knockdown of RNA interference restores lifespan losses in the context of RNA editing defects, further suggesting that interaction between these two systems influences lifespan. Finally, we discuss the implications of RNA surveillance for sarcopenia and muscle maintenance, as frailty is a universal feature of aging. We end with a discussion of RNA surveillance as a robust regulatory system that can change in response to environmental stressors and represents a novel axis in aging science.
Collapse
Affiliation(s)
- Monty Montano
- Department of Medicine, Boston University School of Medicine, MA, USA.
| | | |
Collapse
|
31
|
Paban V, Chambon C, Manrique C, Touzet C, Alescio-Lautier B. Neurotrophic signaling molecules associated with cholinergic damage in young and aged rats: Environmental enrichment as potential therapeutic agent. Neurobiol Aging 2011; 32:470-85. [DOI: 10.1016/j.neurobiolaging.2009.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Revised: 03/16/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022]
|
32
|
Cytokines and neuronal channels: A molecular basis for age-related decline of neuronal function? Exp Gerontol 2011; 46:199-206. [DOI: 10.1016/j.exger.2010.09.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 01/09/2023]
|
33
|
Zeier Z, Madorsky I, Xu Y, Ogle WO, Notterpek L, Foster TC. Gene expression in the hippocampus: regionally specific effects of aging and caloric restriction. Mech Ageing Dev 2010; 132:8-19. [PMID: 21055414 DOI: 10.1016/j.mad.2010.10.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 10/13/2010] [Accepted: 10/21/2010] [Indexed: 10/18/2022]
Abstract
We measured changes in gene expression, induced by aging and caloric restriction (CR), in three hippocampal subregions. When analysis included all regions, aging was associated with expression of genes linked to mitochondrial dysfunction, inflammation, and stress responses, and in some cases, expression was reversed by CR. An age-related increase in ubiquintination was observed, including increased expression of ubiquitin conjugating enzyme genes and cytosolic ubiquitin immunoreactivity. CR decreased cytosolic ubiquitin and upregulated deubiquitinating genes. Region specific analyses indicated that CA1 was more susceptible to aging stress, exhibiting a greater number of altered genes relative to CA3 and the dentate gyrus (DG), and an enrichment of genes related to the immune response and apoptosis. CA3 and the DG were more responsive to CR, exhibiting marked changes in the total number of genes across diet conditions, reversal of age-related changes in p53 signaling, glucocorticoid receptor signaling, and enrichment of genes related to cell survival and neurotrophic signaling. Finally, CR differentially influenced genes for synaptic plasticity in CA1 and CA3. It is concluded that regional disparity in response to aging and CR relates to differences in vulnerability to stressors, the availability of neurotrophic, and cell survival mechanisms, and differences in cell function.
Collapse
Affiliation(s)
- Zane Zeier
- Department of Neuroscience, McKnight Brain Institute, University of Florida, P.O. Box 100244, Gainesville, FL 32610-0244, USA
| | | | | | | | | | | |
Collapse
|
34
|
Lui JC, Chen W, Barnes KM, Baron J. Changes in gene expression associated with aging commonly originate during juvenile growth. Mech Ageing Dev 2010; 131:641-9. [PMID: 20816690 DOI: 10.1016/j.mad.2010.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 07/22/2010] [Accepted: 08/25/2010] [Indexed: 01/06/2023]
Abstract
In mammals, proliferation is rapid in many tissues during early postnatal life, causing rapid somatic growth. This robust proliferation is then suppressed as the animal approaches adult size, bringing many tissues to a quiescent state where proliferation occurs only as needed to replace dying cells. Recent evidence suggests that the mechanism responsible for this decline in proliferation involves a multi-organ genetic program. We hypothesized that this genetic program continues to progress into later adult life, eventually suppressing proliferation to levels below those needed for tissue renewal, thus contributing to aging. We therefore used expression microarray to compare the temporal changes in gene expression that occur in adult mouse organs during aging to those occurring as juvenile proliferation slows. We found that many of the changes in gene expression that occur during the aging process originate during the period of juvenile growth deceleration. Bioinformatic analyses of the genes that show persistent decline in expression throughout postnatal life indicated that cell-cycle-related genes are strongly over-represented. Thus, the findings support the hypothesis that the genetic program that slows juvenile growth to limit body size persists into adulthood and thus may eventually hamper tissue maintenance and repair, contributing to the aging process.
Collapse
Affiliation(s)
- Julian C Lui
- Developmental Endocrinology Branch, Program in Developmental Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1103, USA.
| | | | | | | |
Collapse
|
35
|
Jayakumar T. An extract of the oyster mushroom, Pleurotus ostreatus, increases catalase gene expression and reduces protein oxidation during aging in rats. ACTA ACUST UNITED AC 2010; 8:774-80. [DOI: 10.3736/jcim20100808] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
36
|
Smith DL, Nagy TR, Allison DB. Calorie restriction: what recent results suggest for the future of ageing research. Eur J Clin Invest 2010; 40:440-50. [PMID: 20534066 PMCID: PMC3073505 DOI: 10.1111/j.1365-2362.2010.02276.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Calorie Restriction (CR) research has expanded rapidly over the past few decades and CR remains the most highly reproducible, environmental intervention to improve health and extend lifespan in animal studies. Although many model organisms have consistently demonstrated positive responses to CR, it remains to be shown whether CR will extend lifespan in humans. Additionally, the current environment of excess caloric consumption and high incidence of overweight/obesity illustrate the improbable nature of the long-term adoption of a CR lifestyle by a significant proportion of the human population. Thus, the search for substances that can reproduce the beneficial physiologic responses of CR without a requisite calorie intake reduction, termed CR mimetics (CRMs), has gained momentum. MATERIAL AND METHODS Recent articles describing health and lifespan results of CR in nonhuman primates and short-term human studies are discussed. Additional consideration is given to the rapidly expanding search for CRMs. RESULTS The first results from a long-term, randomized, controlled CR study in nonhuman primates showing statistically significant benefits on longevity have now been reported. Additionally, positive results from short-term, randomized, controlled CR studies in humans are suggestive of potential health and longevity gains, while test of proposed CRMs (including rapamycin, resveratrol, 2-deoxyglucose and metformin) have shown both positive and mixed results in rodents. CONCLUSION Whether current positive results will translate into longevity gains for humans remains an open question. However, the apparent health benefits that have been observed with CR suggest that regardless of longevity gains, the promotion of healthy ageing and disease prevention may be attainable.
Collapse
Affiliation(s)
- Daniel L Smith
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | | |
Collapse
|
37
|
Wang YY, Smith P, Murphy M, Cook M. Global expression profiling in epileptogenesis: does it add to the confusion? Brain Pathol 2010; 20:1-16. [PMID: 19243383 PMCID: PMC2805866 DOI: 10.1111/j.1750-3639.2008.00254.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 10/23/2008] [Accepted: 10/28/2008] [Indexed: 12/14/2022] Open
Abstract
Since the inception of global gene expression profiling platforms in the mid-1990s, there has been a significant increase in publications of differentially expressed genes in the process of epileptogenesis. In particular for mesial temporal lobe epilepsy, the presence of a latency period between the first manifestation of seizures to chronic epilepsy provides the opportunity for therapeutic interventions at the molecular biology level. Using global expression profiling techniques, approximately 2000 genes have been published demonstrating differential expression in mesial temporal epilepsy. The majority of these changes, however, are specific to laboratory or experimental conditions with only 53 genes demonstrating changes in more than two publications. To this end, we review the current status of gene expression profiling in epileptogenesis and suggest standard guidelines to be followed for greater accuracy and reproducibility of results.
Collapse
Affiliation(s)
- Yi Yuen Wang
- Centre for Clinical Neuroscience and Neurological Research, St Vincent's Hospital, Melbourne, Australia.
| | | | | | | |
Collapse
|
38
|
Hursting SD, Smith SM, Lashinger LM, Harvey AE, Perkins SN. Calories and carcinogenesis: lessons learned from 30 years of calorie restriction research. Carcinogenesis 2009; 31:83-9. [PMID: 19969554 DOI: 10.1093/carcin/bgp280] [Citation(s) in RCA: 155] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calorie restriction (CR) is arguably the most potent, broadly acting dietary regimen for suppressing the carcinogenesis process, and many of the key studies in this field have been published in Carcinogenesis. Translation of the knowledge gained from CR research in animal models to cancer prevention strategies in humans is urgently needed given the worldwide obesity epidemic and the established link between obesity and increased risk of many cancers. This review synthesizes the evidence on key biological mechanisms underlying many of the beneficial effects of CR, with particular emphasis on the impact of CR on growth factor signaling pathways and inflammatory processes and on the emerging development of pharmacological mimetics of CR. These approaches will facilitate the translation of CR research into effective strategies for cancer prevention in humans.
Collapse
Affiliation(s)
- Stephen D Hursting
- Department of Nutritional Sciences, The University of Texas at Austin, 103 West 24th Street, Austin, TX 78712, USA.
| | | | | | | | | |
Collapse
|
39
|
Transcriptional and post-transcriptional regulation of mitochondrial biogenesis in skeletal muscle: effects of exercise and aging. Biochim Biophys Acta Gen Subj 2009; 1800:223-34. [PMID: 19682549 DOI: 10.1016/j.bbagen.2009.07.031] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 07/27/2009] [Accepted: 07/30/2009] [Indexed: 12/18/2022]
Abstract
Acute contractile activity of skeletal muscle initiates the activation of signaling kinases. This promotes the phosphorylation of transcription factors, leading to enhanced DNA binding and transcriptional activation and/or repression. The mRNA products of nuclear genes encoding mitochondrial proteins are translated in the cytosol and imported into pre-existing mitochondria. When contractile activity is repeated, the recapitulation of these cellular events progressively leads to an expansion of the mitochondrial reticulum within muscle. This has physiologically relevant health benefit, including enhanced lipid metabolism and reduced muscle fatigability. In aging skeletal muscle, the response to contractile activity appears to be attenuated, suggesting that a greater contractile stimulus is required to attain a similar phenotype adaptation. This review summarizes our current understanding of the effects of exercise on the gene expression pathway leading to organelle biogenesis in muscle.
Collapse
|
40
|
Park SK, Kim K, Page GP, Allison DB, Weindruch R, Prolla TA. Gene expression profiling of aging in multiple mouse strains: identification of aging biomarkers and impact of dietary antioxidants. Aging Cell 2009; 8:484-95. [PMID: 19555370 DOI: 10.1111/j.1474-9726.2009.00496.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We used DNA microarrays to identify panels of transcriptional markers of aging that are differentially expressed in young (5 month) and old (25 month) mice of multiple inbred strains (129sv, BALB/c, CBA, DBA, B6, C3H and B6C3F(1)). In the heart, age-related changes of five genes were studied throughout the mouse lifespan: complement component 4, chemokine ligand 14, component of Sp100-rs, phenylalanine hydroxylase and src family associated phosphoprotein 2. A similar analysis in the brain (cerebellum) involved complement component 1q (alpha polypeptide), complement component 4, P lysozyme structural, glial fibrillary acidic protein and cathepsin S. Caloric restriction (CR) inhibited age-related expression of these genes in both tissues. Parametric analysis of gene set enrichment identified several biological processes that are induced with aging in multiple mouse strains. We also tested the ability of dietary antioxidants to oppose these transcriptional markers of aging. Lycopene, resveratrol, acetyl-l-carnitine and tempol were as effective as CR in the heart, and alpha-lipoic acid and coenzyme Q(10) were as effective as CR in the cerebellum. These findings suggest that transcriptional biomarkers of aging in mice can be used to estimate the efficacy of aging interventions on a tissue-specific basis.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Genetics and Medical Genetics, University of Wisconsin, Madison, 53706, USA
| | | | | | | | | | | |
Collapse
|
41
|
de Magalhães JP, Curado J, Church GM. Meta-analysis of age-related gene expression profiles identifies common signatures of aging. ACTA ACUST UNITED AC 2009; 25:875-81. [PMID: 19189975 DOI: 10.1093/bioinformatics/btp073] [Citation(s) in RCA: 524] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
MOTIVATION Numerous microarray studies of aging have been conducted, yet given the noisy nature of gene expression changes with age, elucidating the transcriptional features of aging and how these relate to physiological, biochemical and pathological changes remains a critical problem. RESULTS We performed a meta-analysis of age-related gene expression profiles using 27 datasets from mice, rats and humans. Our results reveal several common signatures of aging, including 56 genes consistently overexpressed with age, the most significant of which was APOD, and 17 genes underexpressed with age. We characterized the biological processes associated with these signatures and found that age-related gene expression changes most notably involve an overexpression of inflammation and immune response genes and of genes associated with the lysosome. An underexpression of collagen genes and of genes associated with energy metabolism, particularly mitochondrial genes, as well as alterations in the expression of genes related to apoptosis, cell cycle and cellular senescence biomarkers, were also observed. By employing a new method that emphasizes sensitivity, our work further reveals previously unknown transcriptional changes with age in many genes, processes and functions. We suggest these molecular signatures reflect a combination of degenerative processes but also transcriptional responses to the process of aging. Overall, our results help to understand how transcriptional changes relate to the process of aging and could serve as targets for future studies. AVAILABILITY http://genomics.senescence.info/uarrays/signatures.html. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
|
42
|
Goertzel B, Pennachin C, de Alvarenga Mudado M, de Souza Coelho L. Identifying the genes and genetic interrelationships underlying the impact of calorie restriction on maximum lifespan: an artificial intelligence-based approach. Rejuvenation Res 2008; 11:735-48. [PMID: 18729806 DOI: 10.1089/rej.2007.0627] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Novel artificial intelligence methodologies were applied to analyze gene expression microarray data gathered from mice under a calorie restriction (CR) regimen. The data were gathered from three previously published mouse studies; these datasets were merged together into a single composite dataset for the purpose of conducting a broader-based analysis. The result was a list of genes that are important for the impact of CR on lifespan, not necessarily in terms of their individual actions but in terms of their interactions with other genes. Furthermore, a map of gene interrelationships was provided, suggesting which intergene interactions are most important for the effect of CR on life extension. In particular our analysis showed that the genes Mrpl12, Uqcrh, and Snip1 play central roles regarding the effects of CR on life extension, interacting with many other genes (which the analysis enumerates) in carrying out their roles. This is the first time that the genes Snip1 and Mrpl12 have been identified in the context of aging. In a follow-up analysis aimed at validating these results, the analytic process was rerun with a fourth dataset included, yielding largely comparable results. Broadly, the biological interpretation of these analytical results suggests that the effects of CR on life extension are due to multiple factors, including factors identified in prior theories of aging, such as the hormesis, development, cellular, and free radical theories.
Collapse
Affiliation(s)
- Ben Goertzel
- Biomind LLC, 1405 Bernerd Place, Rockville, ND 20851, USA.
| | | | | | | |
Collapse
|
43
|
Molecular bases of caloric restriction regulation of neuronal synaptic plasticity. Mol Neurobiol 2008; 38:167-77. [PMID: 18759009 DOI: 10.1007/s12035-008-8040-1] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Accepted: 08/14/2008] [Indexed: 12/23/2022]
Abstract
Aging is associated with the decline of cognitive properties. This situation is magnified when neurodegenerative processes associated with aging appear in human patients. Neuronal synaptic plasticity events underlie cognitive properties in the central nervous system. Caloric restriction (CR; either a decrease in food intake or an intermittent fasting diet) can extend life span and increase disease resistance. Recent studies have shown that CR can have profound effects on brain function and vulnerability to injury and disease. Moreover, CR can stimulate the production of new neurons from stem cells (neurogenesis) and can enhance synaptic plasticity, which modulate pain sensation, enhance cognitive function, and may increase the ability of the brain to resist aging. The beneficial effects of CR appear to be the result of a cellular stress response stimulating the production of proteins that enhance neuronal plasticity and resistance to oxidative and metabolic insults; they include neurotrophic factors, neurotransmitter receptors, protein chaperones, and mitochondrial biosynthesis regulators. In this review, we will present and discuss the effect of CR in synaptic processes underlying analgesia and cognitive improvement in healthy, sick, and aging animals. We will also discuss the possible role of mitochondrial biogenesis induced by CR in regulation of neuronal synaptic plasticity.
Collapse
|
44
|
|
45
|
Park SK, Page GP, Kim K, Allison DB, Meydani M, Weindruch R, Prolla TA. alpha- and gamma-Tocopherol prevent age-related transcriptional alterations in the heart and brain of mice. J Nutr 2008; 138:1010-8. [PMID: 18492827 PMCID: PMC2768425 DOI: 10.1093/jn/138.6.1010] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used high-density oligonucleotide arrays to measure transcriptional alterations in the heart and brain (neocortex) of 30-mo-old B6C3F(1) mice supplemented with alpha-tocopherol (alphaT) and gamma-tocopherol (gammaT) since middle age (15 mo). Gene expression profiles were obtained from 5- and 30-mo-old control mice and 30-mo-old mice supplemented with alphaT (1 g/kg) or a mixture of alphaT and gammaT (500 mg/kg of each tocopherol) from middle age (15 mo). In the heart, both tocopherol-supplemented diets were effective in inhibiting the expression of genes previously associated with cardiomyocyte hypertrophy and increased innate immunity. In the brain, induction of genes encoding ribosomal proteins and proteins involved in ATP biosynthesis was observed with aging and was markedly prevented by the mixture of alphaT and gammaT supplementation but not by alphaT alone. These results demonstrate that middle age-onset dietary supplementation with alphaT and gammaT can partially prevent age-associated transcriptional changes and that these effects are tissue and tocopherol specific.
Collapse
Affiliation(s)
- Sang-Kyu Park
- Department of Genetics and Medical Genetics, University of Wisconsin, Madison, WI 53706
| | - Grier P. Page
- Department of Biostatistics, Section on Statistical Genetics and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294
| | - Kyoungmi Kim
- Department of Biostatistics, Section on Statistical Genetics and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294
| | - David B. Allison
- Department of Biostatistics, Section on Statistical Genetics and Clinical Nutrition Research Center, University of Alabama, Birmingham, AL 35294
| | - Mohsen Meydani
- Vascular Biology Laboratory, Jean Mayer USDA HNRCA at Tufts University, Boston, MA 02111
| | - Richard Weindruch
- Veterans Administration Hospital, Department of Medicine and Wisconsin Primate Research Center, University of Wisconsin, Madison, WI 53706
| | - Tomas A. Prolla
- Department of Genetics and Medical Genetics, University of Wisconsin, Madison, WI 53706
| |
Collapse
|
46
|
Sharifi A, Mohseni S, Nekoparvar S, Larijani B, Fakhrzadeh H, Oryan S. Effect of caloric restriction on nitric oxide production, ACE activity, and blood pressure regulation in rats. ACTA ACUST UNITED AC 2008; 95:55-63. [DOI: 10.1556/aphysiol.95.2008.1.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
47
|
Swanson KS, Vester BM, Apanavicius CJ, Kirby NA, Schook LB. Implications of age and diet on canine cerebral cortex transcription. Neurobiol Aging 2008; 30:1314-26. [PMID: 18079023 DOI: 10.1016/j.neurobiolaging.2007.10.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 10/18/2007] [Accepted: 10/27/2007] [Indexed: 01/22/2023]
Abstract
Mechanisms contributing to age-related cognitive decline are poorly defined. Thus, we used canine microarrays to compare gene expression profiles of brain tissue from geriatric and young adult dogs. Cerebral cortex samples were collected from six geriatric (12-year old) and six young adult (1-year old) female beagles after being fed one of two diets (animal protein-based versus plant-protein based) for 12 months. RNA samples were hybridized to Affymetrix GeneChip Canine Genome Arrays. Statistical analyses indicated that the age had the greatest impact on gene expression, with 963 transcripts differentially expressed in geriatric dogs. Although not as robust as age, diet affected mRNA abundance of 140 transcripts. As demonstrated in aged rodents and humans, geriatric dogs had increased expression of genes associated with inflammation, stress response, and calcium homeostasis and decreased expression of genes associated with neuropeptide signaling and synaptic transmission. In addition to its existing strengths, availability of gene sequence information and commercial microarrays make the canine a powerful model for studying the effects of aging on cognitive function.
Collapse
Affiliation(s)
- Kelly S Swanson
- Department of Animal Sciences, University of Illinois, 162 Animal Sciences Laboratory, Urbana, IL 61801, USA.
| | | | | | | | | |
Collapse
|
48
|
Pisalyaput K, Tenner AJ. Complement component C1q inhibits beta-amyloid- and serum amyloid P-induced neurotoxicity via caspase- and calpain-independent mechanisms. J Neurochem 2008; 104:696-707. [PMID: 17986223 DOI: 10.1111/j.1471-4159.2007.05012.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by neuronal loss, beta-amyloid (Abeta) plaques, and neurofibrillary tangles. Complement protein C1q has been found associated with fibrillar Abeta deposits, however the exact contributions of C1q to Alzheimer's disease is still unknown. There is evidence that C1q, as an initiator of the inflammatory complement cascade, may accelerate disease progression. However, neuronal C1q synthesis is induced after injury/infection suggesting that it may be a beneficial response to injury. In this study, we report that C1q enhances the viability of neurons in culture and protects neurons against Abeta- and serum amyloid P (SAP)-induced neurotoxicity. Investigation of potential signaling pathways indicates that caspase and calpain are activated by Abeta, but C1q had no effect on either of these pathways. Interestingly, SAP did not induce caspase and calpain activation, suggesting that C1q neuroprotection is in distinct from caspase and calpain pathways. In contrast to Abeta- and SAP-induced neurotoxicity, neurotoxicity induced by etoposide or FCCP was unaffected by the addition of C1q, indicating pathway selectivity for C1q neuroprotection. These data support a neuroprotective role for C1q which should be further investigated to uncover mechanisms which may be therapeutically targeted to slow neurodegeneration via direct inhibition of neuronal loss.
Collapse
Affiliation(s)
- Karntipa Pisalyaput
- Department of Molecular Biology and Biochemistry, Institute for Brain Aging and Dementia, Center for Immunology, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
49
|
Linford NJ, Beyer RP, Gollahon K, Krajcik RA, Malloy VL, Demas V, Burmer GC, Rabinovitch PS. Transcriptional response to aging and caloric restriction in heart and adipose tissue. Aging Cell 2007; 6:673-88. [PMID: 17874999 DOI: 10.1111/j.1474-9726.2007.00319.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Sustained caloric restriction (CR) extends lifespan in animal models but the mechanism and primary tissue target(s) have not been identified. Gene expression changes with aging and CR were examined in both heart and white adipose tissue (WAT) of Fischer 344 (F344) male rats using Affymetrix RAE 230 arrays and validated by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) on 18 genes. As expected, age had a substantial effect on transcription on both tissues, although only 21% of cardiac age-associated genes were also altered in WAT. Gene set enrichment analysis revealed coordinated small magnitude changes in ribosomal, proteasomal, and mitochondrial genes with similarities in aging between heart and WAT. CR had very different effects on these two tissues at the transcriptional level. In heart, very few age-associated expression changes were affected by CR, while in WAT, CR suppressed a substantial subset of the age-associated changes. Genes unaltered by aging but altered by CR were identified in WAT but not heart. Most interestingly, we identified a gene expression signature associated with mammalian target of rapamycin (mTOR) activity that was down-regulated with age but preserved by CR in both WAT and heart. In addition, lipid metabolism genes, particularly those associated with peroxisome proliferator-activated receptor gamma (PPARgamma)-mediated adipogenesis were reduced with age but preserved with CR in WAT. These results highlight tissue-specific differences in the gene expression response to CR and support a role for CR-mediated preservation of mTOR activity and adipogenesis in aging WAT.
Collapse
Affiliation(s)
- Nancy J Linford
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Candore G, Balistreri CR, Listì F, Grimaldi MP, Vasto S, Colonna-Romano G, Franceschi C, Lio D, Caselli G, Caruso C. Immunogenetics, gender, and longevity. Ann N Y Acad Sci 2007; 1089:516-37. [PMID: 17261795 DOI: 10.1196/annals.1386.051] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In this article we discuss relevant data on aging, longevity, and gender with particular focus on inflammation gene polymorphisms which could affect an individual's chance to reach the extreme limit of human life. The present review is not an extensive revision of the literature, but rather an expert opinion based on selected data from the authors' laboratories. In 2000-2005 in the more developed regions, the life expectancy at birth is 71.9 years for men (78.3 in Japan) and 79.3 years for women (86.3 in Japan). Indeed, gender accounts for important differences in the prevalence of a variety of age-related diseases. Considering people of far-advanced age, demographic data document a clear-cut prevalence of females compared to males, suggesting that sex-specific mortality rates follow different trajectories during aging. In Italy this female/male ratio is relatively lower (about 5/1; F/M ratios are usually 5-6:1 in other developed countries), but significant differences have been observed between Italian regions in the distribution of centenarians by gender--from two women per man in the South to more than eight in certain regions in the North. Thus, a complex interaction of environmental, historical, and genetic factors, differently characterizing the various parts of Italy, likely plays an important role in determining the gender-specific probability of achieving longevity. This can be due to gender-specific cultural and anthropological characteristics of Italian society in the last 100 years. Age-related immunoinflammatory factors increase during proinflammatory status, and the frequency of pro/anti-inflammatory gene variants also show gender differences. There is some suggestion that people genetically predisposed to weak inflammatory activity may be at reduced chance of developing coronary heart disease (CHD) and, therefore, may achieve longer lifespan if they avoid serious life-threatening infectious disease thoroughout life. Thus, the pathogen burden, by interacting with host genotype, could determine the type and intensity of the immune-inflammatory response responsible for both proinflammatory status and CHD. These findings point to a strong relationship between the genetics of inflammation, successful aging, and the control of cardiovascular disease, but seem to suggest that the evidence for men is much stronger. The importance of these studies lies in the fact that half of the population (males) lives approximately 10% shorter lives than the other half (females). Understanding the different strategies that men and women seem to follow to achieve longevity may help us to comprehend better the basic phenomenon of aging and allow us to search for safe ways to increase male lifespan.
Collapse
Affiliation(s)
- Giuseppina Candore
- Gruppo di Studio sull' Immunosenescenza, Dipartimento di Biopatologia e Metodologie Biomediche, Corso Tukory 211, 90134 Palermo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|