1
|
Bui Thi TM, Chen T, Luo T, Leroux Y, Hanna K, Boily JF. Ligand-limited oxidation of ciprofloxacin by Mn(III). JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138373. [PMID: 40306247 DOI: 10.1016/j.jhazmat.2025.138373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/04/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
Mn(III) species play critical roles in determining the environmental fate of antibiotics released into natural systems. However, their reactivity is strongly influenced by complexation reactions with (in)organic ligands. This study investigates the impact of Mn(III) complexation with pyrophosphate (PP), a model environmental ligand, on the redox-driven degradation of ciprofloxacin (CIP), a widely used antibiotic and environmental contaminant. Spectroscopic analysis and thermodynamic modeling revealed that Mn(III)-PP complexes initially dissociate into MnOH2+ species, which can then disproportionate and form MnO2 colloids. Both dissociation and disproportionation reactions had comparable trends at pH 4 and 7, with reactivities that were strongly dependent on Mn(III):PP ratios. The progress of CIP oxidation following direct coordination with Mn compounds over time was sigmoidal, with an initial lag phase attributed to Mn(III)-PP complex dissociation and disproportionation. CIP degradation was predominantly governed by pH, with maximal rate constants decreasing from k = 0.390 h-1 at pH 3 to k = 0.065 h-1 at pH 5, and no CIP removal under circumneutral to alkaline conditions. Cyclic voltammetry also confirmed that the strongly pH-dependent redox potential of the Mn(III)/Mn(II) couple aligned with facile CIP oxidation under acidic conditions. These collective findings indicated that ligand complexation, such as with PP, enhanced Mn(III) stability and mitigated dissociation and disproportionation reactions. The new insight provided by this work on the speciation and redox activity of Mn(III) should thereby be considered for understanding ciprofloxacin degradation in contaminated water systems.
Collapse
Affiliation(s)
- Tra My Bui Thi
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Tao Chen
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Tao Luo
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Yann Leroux
- Univ. Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | - Khalil Hanna
- Univ. Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Rennes F-35000, France
| | | |
Collapse
|
2
|
Pimentão AR, Ribeiro R, Silva BA, Cuco AP, Castro BB. Ecological impacts of agrochemical and pharmaceutical antifungals on a non-target aquatic host-parasite model. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107356. [PMID: 40311400 DOI: 10.1016/j.aquatox.2025.107356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/21/2025] [Accepted: 04/05/2025] [Indexed: 05/03/2025]
Abstract
Agrochemical fungicides and their pharmaceutical counterparts are a major anthropogenic threat to the biodiversity of freshwater ecosystems as they affect non-target organisms (including aquatic fungi) and disrupt the processes in which they intervene. The goal of this work was to assess the effects of four common agricultural fungicides differing in their modes of action (azoxystrobin, carbendazim, folpet, and mancozeb) and an antifungal pharmaceutical (clotrimazole) on a host × parasite experimental model. We conducted 21-day life history experiments with Daphnia magna (the host) in the absence or presence of Metschnikowia bicuspidata (a microparasitic yeast) to evaluate the effect of each fungicide on the outcome of this relationship (disease) and the fitness of both host and parasite. Interactive but context-dependent effects were observed in D. magna life history responses upon concomitant exposure to parasite and toxicant. The parasite had a drastic negative effect on host survival and reproduction. Carbendazim, clotrimazole and folpet significantly decreased host fitness. In some cases (depending on the combination of toxicant and measured endpoint), simultaneous exposure of the host to the parasite and fungicides led to a slight decrease in host reproduction, which was absent when only the fungicide was present. In two other cases, the fungicide interfered with the host-parasite relationship: azoxystrobin had an impact on infection intensity (decreasing spore load per host), whereas clotrimazole demonstrated a strong antiparasitic effect, clearing all signs of infection (0 % prevalence). These findings emphasize the context-dependent nature of the interaction between pollution and disease.
Collapse
Affiliation(s)
- A R Pimentão
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal
| | - R Ribeiro
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal
| | - B A Silva
- Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal
| | - A P Cuco
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal
| | - B B Castro
- Centre of Molecular and Environmental Biology (CBMA)/Aquatic Research Network (ARNET), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), School of Sciences of the University of Minho, Braga, Portugal.
| |
Collapse
|
3
|
Qu Y, Zhang T, Wang X, Liu Y, Zhao J. Synergistic effects of ocean acidification and sulfamethoxazole on immune function, energy allocation, and oxidative stress in Trochus niloticus. ENVIRONMENTAL RESEARCH 2025; 266:120533. [PMID: 39638028 DOI: 10.1016/j.envres.2024.120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Ocean acidification, a major consequence of climate change, poses significant threats to marine organisms, particularly when combined with other environmental stressors such as chemical pollution. This study investigated the physiological responses of Trochus niloticus to a 28-day exposure of ocean acidification and/or sulfamethoxazole, a commonly detected antibiotic in the South China Sea. Exposure to either acidification or sulfamethoxazole individually triggered adaptive responses through immune activation, antioxidant reactions, and metabolic adjustments. However, concurrent exposure resulted in significant adverse effects, including compromised immunity, oxidative damage, and disrupted energy budget. These findings provide new insights into how ocean acidification interacts with antibiotic pollution to synergistically impact marine gastropods, suggesting that multiple stressors may pose greater threats to T. niloticus populations than single stressors alone.
Collapse
Affiliation(s)
- Yi Qu
- Guangxi Key Laboratory of Beibu Gulf Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, MNR, Beihai, 536000, PR China
| | - Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China
| | - Yongliang Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264117, PR China.
| |
Collapse
|
4
|
Studziński W, Gackowska A, Kudlek E, Przybyłek M. Environmental and toxicological aspects of sulfamethoxazole photodegradation in the presence of oxidizing agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:4733-4753. [PMID: 39890762 DOI: 10.1007/s11356-025-36000-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
Sulfamethoxazole (SMX) is a popular active substance, which is extensively applied to treat bacterial infections in humans and animals. Due to its widespread use, SMX enters the natural environment, where it can undergo degradation. Similarly to other emerging contaminants, SMX photodegradation and the use of oxidants in wastewater treatment processes can lead to the formation of potentially adverse transformation products for ecosystems. This study investigated the efficiency of SMX photodegradation in the presence of oxidizing agents (H2O2 and Fenton reagent). The potential environmental consequences of degradation product formation were analyzed based on experimental toxicity characterization. Standardized tests employing diverse organisms were utilized: Alivibrio fischeri (Microtox®), Daphnia magna (Daphtoxkit F®), and Lemna minor (Lemna sp. GIT). The potential environmental impact of the products identified in the reaction mixtures was evaluated using parameters describing aqueous solubility, hydrophobicity, toxicity, bioconcentration, persistence, and mobility. The analysis revealed that photodegradation produces transformation products with higher toxicity than SMX, as confirmed by in vitro tests of the reaction mixtures. Most of the detected compounds were found to have low mobility potential. The formation rates of key environmentally relevant transformation products, such as 1,4-benzoquinone, aniline, and phenol, were also discussed. The changes in total organic carbon (TOC) affected by photodegradation under the influence of the considered oxidizing agents were characterized.
Collapse
Affiliation(s)
- Waldemar Studziński
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Alicja Gackowska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, Seminaryjna 3, 85-326, Bydgoszcz, Poland
| | - Edyta Kudlek
- Department of Water and Wastewater Engineering, Faculty of Energy And Environmental Engineering, Silesian University of Technology, Konarskiego 18, 44-100, Gliwice, Poland
| | - Maciej Przybyłek
- Department of Physical Chemistry, Faculty of Pharmacy, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Kurpińskiego 5, 85-950, Bydgoszcz, Poland.
| |
Collapse
|
5
|
Jojoa-Sierra SD, Serna-Galvis EA, García-Rubio I, Ormad MP, Torres-Palma RA, Mosteo R. The Photocatalytic Degradation of Enrofloxacin Using an Ecofriendly Natural Iron Mineral: The Relationship Between the Degradation Routes, Generated Byproducts, and Antimicrobial Activity of Treated Solutions. Molecules 2024; 29:5982. [PMID: 39770071 PMCID: PMC11676763 DOI: 10.3390/molecules29245982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
The use of ecofriendly natural minerals in photocatalytic processes to deal with the antimicrobial activity (AA) associated with antibiotics in aqueous systems is still incipient. Therefore, in this work, the capacity of a natural iron material (NIM) in photo-treatments, generating reactive species, to remove the antibiotic enrofloxacin and decrease its associated AA from water is presented. Initially, the fundamental composition, oxidation states, bandgap, point of zero charge, and morphological characteristics of the NIM were determined, denoting the NIM's feasibility for photocatalytic processes. Consequently, the effectiveness of different advanced processes such as using solar light with the NIM (Light-NIM) and solar light with the NIM and H2O2 (Light-NIM-H2O2) to reduce AA was evaluated. The NIM acts as a semiconductor under solar light, effectively degrading enrofloxacin (ENR) and reducing its AA, although complete elimination was not achieved. The addition of hydrogen peroxide (NIM-Light-H2O2) enhanced the generation of reactive oxygen species (ROS), thereby increasing the elimination of ENR and AA. The role of ROS, specifically O2•- and HO●, in the degradation of enrofloxacin was distinguished using scavenger species and electron paramagnetic resonance (EPR) analysis. Additionally, the five primary degradation products generated during the advanced processes were elucidated. Furthermore, the relationship between the structure of these products and the persistence or elimination of AA, which was differentiated against E. coli but not against S. aureus, was discussed. The effects of the matrix during the process and the extent of the treatments, including their capacity to promote disinfection, were also studied. The reusability of the natural iron material was examined, and it was found that the NIM-Light-H2O2 system showed an effective reduction of 5 logarithmic units in microbiological contamination in an EWWTP and can be reused for up to three cycles while maintaining 100% efficiency in reducing AA.
Collapse
Affiliation(s)
- Sindy D. Jojoa-Sierra
- Grupo de Investigación Agua y Salud Ambiental, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.D.J.-S.)
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin 050010, Colombia;
| | - Efraím A. Serna-Galvis
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin 050010, Colombia;
- Grupo Catalizadores y Adsorbentes (CATALAD), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin 050010, Colombia
| | - Inés García-Rubio
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Departamento de Física de la Materia Condensada, Facultad de Ciencias, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Maria P. Ormad
- Grupo de Investigación Agua y Salud Ambiental, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.D.J.-S.)
| | - Ricardo A. Torres-Palma
- Grupo de Investigación en Remediación Ambiental y Biocatálisis (GIRAB), Instituto de Química, Facultad de Ciencias Exactas y Naturales, Universidad de Antioquia UdeA, Medellin 050010, Colombia;
| | - Rosa Mosteo
- Grupo de Investigación Agua y Salud Ambiental, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, 50018 Zaragoza, Spain; (S.D.J.-S.)
| |
Collapse
|
6
|
Prasad DK, Shukla R, Ahammad SZ. Pharmaceuticals and personal care products and heavy metals in the Ganga River, India: Distribution, ecological and human health risk assessment. ENVIRONMENTAL RESEARCH 2024; 263:119993. [PMID: 39276830 DOI: 10.1016/j.envres.2024.119993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/17/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In the present study, pharmaceuticals and personal care products (PPCPs), endocrine disrupting compounds (EDCs), and heavy metals (HMs), were measured in water and sediment of the Ganga River during summer and winter seasons for two consecutive years. Additionally, this study estimated the ecological and human health risks associated with PPCPs, EDCs, and HMs. HMs detected in the range of not detected (n.d.) to 23.59 μg/L and 0.01-391.44 μg/g in water and sediment samples, respectively. All studied HMs were within the permissible limits, except for As in water, and Cr and Ni in sediment. The geo-accumulation index (Igeo) indicated that Cr (0.71-5.98) and Pb (0.90-3.90) had high Igeo compared to other metals in sediment samples. Pb showed the highest ecological risk, followed by Cd, Co, Ni, Cu, Cr, As, and Zn. The maximum potential ecological risk index was observed at site G8. The hazard index (HI) value for water (0.08-0.89) and sediment (0.02-0.29) intake by adults remained within the acceptable limits, except at sites G8 (1.27) and G9 (1.34) for water intake. However, for children, the HI value was above the acceptable limit for water intake at sites G4 to G13 and for sediment at site G8. Among the studied compounds, metformin, triclosan, triclocarban, diclofenac, and methylparaben were the most abundant compounds present in the Ganga River. PPCPs and EDCs detected in the range of n.d. to 5850.04 ng/L and n.d. to 1080.41 ng/g in water and sediment samples, respectively. The environmental risk assessment identifies the maximum ecological risk in water exhibited by triclocarban followed by 17α-ethinylestradiol (EE2), diclofenac, and triclosan, while in sediment, the maximum ecological risk exhibited by triclocarban, followed by EE2, 17 β-estradiol (E2), triclosan, and diclofenac. However, none of the compounds showed human health risk, except for EE2, E2, and atenolol.
Collapse
Affiliation(s)
- Deepak Kumar Prasad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Rishabh Shukla
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
7
|
Herrera-Muñoz J, Ibáñez M, Calzadilla W, Cabrera-Reina A, García V, Salazar-González R, Hernández F, Campos-Mañas M, Miralles-Cuevas S. Assessment of contaminants of emerging concern and antibiotic resistance genes in the Mapocho River (Chile): A comprehensive study on water quality and municipal wastewater impact. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176198. [PMID: 39278476 DOI: 10.1016/j.scitotenv.2024.176198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
The primary objective of this study was to evaluate the persistence and elimination of Contaminants of Emerging Concern (CECs) in municipal wastewater treatment plants (MWWTPs) and their presence in the Mapocho River within the metropolitan area of Santiago, Chile. The use of advanced analytical techniques, based on liquid chromatography coupled to both low and high-resolution mass spectrometry, allowed a comprehensive overview on the presence of CECs in samples. Additionally, a preliminary assessment of the microbiological aspects aimed to determine the presence of indicator microorganisms of fecal contamination, such as Escherichia coli and total coliforms was conducted. Furthermore, a qualitative assessment of Antibiotic Resistant Genes (ARGs) was performed. No CECs were detected upstream to the MWWTPs. However, the results from various wastewater samples (influent, secondary, and tertiary effluents) revealed significant diversity, with 73 CECs detected alongside prevalent ARGs including sulI, sulfII, qnrB, and blaTEM. The presence of CECs and ARGs downstream of the MWWTP in the Mapocho River was mainly attributed to effluent discharge. On the other hand, typical values for a healthy river and a MWWTP with a final disinfection stage were found in terms of fecal contamination. Consequently, the imperative for developing tertiary or quaternary treatments capable of degrading CECs and ARGs to minimize environmental impact is underscored. These findings hold public health significance, offering insights into potential risks and influencing future legislative measures in Chile.
Collapse
Affiliation(s)
- José Herrera-Muñoz
- Facultad de Química y Biología, Universidad de Santiago de Chile, USACH, Casilla 40, Correo 33, Santiago, Chile; Grupo de Investigación de Análisis, Tratamiento, Electroquímica, Recuperación y Reúso de Agua (WATER(b)), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile; Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Wendy Calzadilla
- Grupo de Investigación de Análisis, Tratamiento, Electroquímica, Recuperación y Reúso de Agua (WATER(b)), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile
| | - Alejandro Cabrera-Reina
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile
| | - Verónica García
- Departamento de Ciencia y Tecnología de los Alimentos, Universidad de Santiago de Chile, Alameda 3363, Estación Central, Santiago, Chile; Centro de Estudio en Ciencia y Tecnología de los Alimentos (CECTA-USACH), Obispo Manuel Umaña 050, Estación Central, Santiago, Chile
| | - Ricardo Salazar-González
- Grupo de Investigación de Análisis, Tratamiento, Electroquímica, Recuperación y Reúso de Agua (WATER(b)), Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Chile.
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Marina Campos-Mañas
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water (IUPA), University Jaume I, Avda. Sos Baynat s/n, 12071 Castellón, Spain
| | - Sara Miralles-Cuevas
- Instituto Universitario de Investigación y Desarrollo Tecnológico (IDT), Universidad Tecnológica Metropolitana, Ignacio Valdivieso 2409, San Joaquín, Santiago, Chile.
| |
Collapse
|
8
|
Albarano L, Padilla Suarez EG, Maggio C, La Marca A, Iovine R, Lofrano G, Guida M, Vaiano V, Carotenuto M, Libralato G. Assessment of ecological risks posed by veterinary antibiotics in European aquatic environments: A comprehensive review and analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176280. [PMID: 39278491 DOI: 10.1016/j.scitotenv.2024.176280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The extensive use of antibiotics in human and veterinary medicine has led to the emergence of antibiotic contaminants in the environment, posing significant risks to ecosystems and public health. This contamination arises from the persistence of antibiotics in aquatic environments, particularly in aquifer systems, where they contribute to the growing threat of antibiotic resistance. Despite increasing research, the understanding of the ecological and human health implications of these contaminants remains incomplete. Since these compounds are only partially removed by conventional wastewater treatment plants (WWTPs), they are continuously released into the environment. Antibiotics enter the environment mainly through human and animal excretions, improper drug disposal, wastewater treatment plants, and waste streams from antibiotic production. Recent research has focused on antibiotic metabolites and transformation products, which can affect aquatic ecosystems and the food chain, posing long-term risks to human health. This critical review provides a comprehensive analysis of the risk assessment of veterinary antibiotics (VAs) in European aquatic environments, where VAs concentrations ranging from micrograms to milligrams per liter. By examining toxicity data from freshwater and saltwater species, the study evaluates acute and chronic effects across different antibiotic classes. The review also assesses the sensitivity of various taxonomic groups and species to different antibiotics, providing insights into potential ecological risks. Species sensitivity distributions and hazard concentrations affecting a given percentage of species are calculated to assess the overall ecological risk. The findings reveal varying proportions of toxicity data across antibiotic classes, with Aminoglycosides, β-lactams, Fluoroquinolones, Macrolides, and Tetracyclines classes demonstrating higher toxicity levels than others towards certain cyanobacteria and chlorophyta species. Macrolides and Fluoroquinolones emerge as particularly concerning due to their high toxicological risks across various aquatic environments. The analysis underscores the urgent need for further research to fill knowledge gaps and develop effective strategies to mitigate the harmful effects of VAs on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy.
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Chiara Maggio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Annamaria La Marca
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Rosalba Iovine
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maurizio Carotenuto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
9
|
Sharkey M, Stubbings WA, Harrad S, Healy MG, Wang S, Jin J, Coggins AM. Antibiotics residues in inland and transitional sediments. CHEMOSPHERE 2024; 369:143793. [PMID: 39580089 DOI: 10.1016/j.chemosphere.2024.143793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 11/25/2024]
Abstract
This study assesses the concentrations of a range of antibiotics in riverine and transitional sediments in Ireland. A selection of 12 macrolide, fluoroquinolone, sulphonamide, and diaminopyrimidine antibiotics were quantified in 80 grab surficial sediment samples from around Ireland, selected to investigate areas of potentially higher pollution risk (agriculture, aquaculture, industrial emissions, and wastewater emission points) as well as isolated areas where there are no known pollution sources. Several of the macrolides and sulphonamides/trimethoprim were generally detected more frequently above limits of quantification (LoQ). Fluoroquinolones, while frequently detected above limits of detection (LoD), concentrations were mostly below method LOQs. The most prevalent antibiotic detected was clarithromycin, found at the highest mean concentration (6.65 ng/g) and detected in ∼90 % of samples. Comparing levels of quantified antibiotics to levels reported internationally, Ireland is at the lower end for all quantified antibiotics. This is with the notable exception of clarithromycin, which is higher than levels found in comparable studies in Italy, Spain, France, and Argentina. Higher levels of total antibiotics (49.3 ± 24.7 ng/g) were found to be present immediately adjacent to wastewater emission points while moderate degrees of contamination (9.0 ± 9.7 ng/g) were also linked to wastewater, aquaculture, or agricultural pressures. Based on risk quotients calculated from available sediment PNECs taken from the NORMAN ecotoxicology database, clarithromycin was also the only compound to be present at concentrations indicative of a "moderate" degree of environmental risk, with most of the remaining falling below this threshold. Ciprofloxacin was ostensibly found to be of a "high" degree of environmental risk; however, this is based on only a single sample quantified above the LoQ. Overall, antibiotic sediment concentrations suggest a low ecotoxicological risk for most of the target antibiotics, although clarithromycin, ciprofloxacin, and sulfamethoxazole warrant further monitoring in sediments. A final notable finding is the differences in partitioning behaviour of antibiotics between water and sediment: clarithromycin is more likely to be detected in sediment while sulfamethoxazole partitions more to water. Such partitioning behaviour should therefore be taken into consideration for any subsequent monitoring programmes.
Collapse
Affiliation(s)
- Martin Sharkey
- Physics, School of Natural Sciences, University of Galway, Galway City, H91 CF50, Republic of Ireland.
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - Stuart Harrad
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Mark G Healy
- Civil Engineering, College of Engineering and Informatics, University of Galway, Galway City, H91 HX31, Republic of Ireland
| | - Shijie Wang
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jingxi Jin
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Ann Marie Coggins
- Physics, School of Natural Sciences, University of Galway, Galway City, H91 CF50, Republic of Ireland
| |
Collapse
|
10
|
Dai Z, Zhang W, Li J, Wu Y, Fu H. Study on prediction model of TCH degradation by three -dimensional electrocatalysis based on XGBoost and MLP. JOURNAL OF WATER PROCESS ENGINEERING 2024; 68:106420. [DOI: 10.1016/j.jwpe.2024.106420] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Ezzariai A, Jimenez J, Barret M, Riboul D, Lacroix MZ, Fels LE, Kouisni L, Bousquet-Melou A, Pinelli E, Hafidi M, Patureau D. Potentialities of semi-continuous anaerobic digestion for mitigating antibiotics in sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:66067-66078. [PMID: 39613995 DOI: 10.1007/s11356-024-35664-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
The behavior and removal of roxithromycin (ROX), oxytetracycline (OTC), chlortetracycline (CTC), and enrofloxacin (ENR) were investigated during the steady state of sludge anaerobic digestion (AD) in semi-continuous mode (37 °C). Sludge was spiked at realistic concentrations (50 μg/L of each antibiotic) and then used to feed the bioreactor for 80 days. Antibiotics were extracted from the substrate and digested sludge samples by accelerated solvent extraction (ASE). Accurate determination of antibiotics was obtained by the standard addition method (SAM) associated with the liquid chromatography-tandem mass spectrometry (LC-MS/MS). The presence of antibiotics at a concentration of 2.5 μg/g TS had no inhibitory effects on methane (CH4) production, total and volatile solids (TS and VS) removal as well as chemical oxygen demand (COD) removal. During the steady-state, antibiotics were removed significantly by 50, 100, and 59% respectively for the ROX, OTC, and CTC. Furthermore, ENR removal was not statistically significant and was estimated at 36%. This study highlighted that AD process could partially remove parent compounds, but ROX, CTC, and ENR persisted in the digested sludge. Hence, AD could be considered as a sludge treatment for mitigating, but not suppressing, the release of antibiotics through sludge application.
Collapse
Affiliation(s)
- Amine Ezzariai
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France.
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco.
| | - Julie Jimenez
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France
| | - Maialen Barret
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | - David Riboul
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | | | - Loubna El Fels
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMagE), Labelled Research Unit CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
| | | | - Eric Pinelli
- Laboratoire Ecologie Fonctionnelle Et Environnement, CNRS, INPT, UPS, Université de Toulouse, Avenue de L'Agrobiopôle, 31326, Castanet-Tolosan, France
| | - Mohamed Hafidi
- African Sustainable Agriculture Research Institute (ASARI), Mohammed VI Polytechnic University (UM6P), Laayoune, Morocco
- Laboratory of Microbial Biotechnologies, Agrosciences and Environment (BioMagE), Labelled Research Unit CNRST N°4, Faculty of Science Semlalia, Cadi Ayyad University (UCA), Marrakesh, Morocco
| | - Dominique Patureau
- INRAE, Univ. Montpellier, LBE, 102 Avenue Des Étangs, 11100, Narbonne, France
| |
Collapse
|
12
|
Zhao G, Li W, Xu C, Qin Q, Fan W, Li X, Zhao D. Adsorption mechanism of cefradine on three microplastics: A combined molecular dynamics simulation and density functional theory calculation study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175690. [PMID: 39173748 DOI: 10.1016/j.scitotenv.2024.175690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/30/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
Microplastics and antibiotics are receiving increasing attention as two emerging pollutants in the aquatic ecosystem. The absorption of antibiotics by microplastics can potentially intensify their impact on marine organisms and human health. However, the detailed mechanisms underlying this interaction remain to be elucidated. Through molecular dynamics (MD) simulations and density functional theory (DFT) calculations, this study investigated the adsorption of cefradine (CED) onto three typical microplastics (MPs)-polyethylene (PE), polypropylene (PP), and polyamide (PA). The results of the molecular dynamics simulations showed that the interaction energy between CED and microplastics followed the order of PA-CED > PP-CED > PE-CED, indicating that PA microplastics had the highest adsorption capacity for CED antibiotics. The total energy contribution of the microplastics-cefradine (MPs-CED) systems suggested that the van der Waals and electrostatic interactions were the two primary mechanisms for the adsorption of CED by these three microplastics. In DFT calculations, the adsorption of CED on PA was found to be significantly influenced by both electrostatic and van der Waals effects, while the main driving force in the adsorption of PE and PP is van der Waals effect. In addition, IGMH analysis and AIM topological analysis confirmed that the adsorption of CED on PA relied heavily on the synergistic effect of hydrogen bonding and the van der Waals effect. The findings of this study validate the results obtained from molecular dynamics simulations, laying a foundation for a comprehensive exploration of the interaction mechanisms between microplastics and organic pollutants by integrating MD simulations and DFT calculations.
Collapse
Affiliation(s)
- Gaolu Zhao
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Wanting Li
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Chuanhao Xu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Qingsong Qin
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Wenjie Fan
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, College of environmental science and engineering, Dalian University of Technology, Dalian 116023, China
| | - Dan Zhao
- College of Marine Technology and Environment, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
13
|
Manbohi A, Rahnama R, Taheri M, Hamzeh MA, Hamzehpour A. Antibiotics in surface waters of the south caspian sea: Occurrence, spatial distribution and ecological risks. ENVIRONMENTAL RESEARCH 2024; 261:119709. [PMID: 39084508 DOI: 10.1016/j.envres.2024.119709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/14/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
Marine environments play a crucial role in absorbing land-based pollutants. While the presence of pharmaceuticals in various marine settings worldwide is well-documented, there is a lack of data regarding pharmaceutical occurrence in the south Caspian Sea. This study examined the presence and spatial distribution of 14 antibiotics in the surface waters of the south Caspian Sea during summer of 2020. Our findings revealed that antibiotics were widespread in this region, with total concentrations reaching up to 3499.9 ng/L. The detection frequencies of the studied antibiotics ranging from 22.0% to 67.0%. Trimethoprim, ofloxacin, and sulfamethoxazole were commonly detected, with detection frequencies exceeding 56.0%. Ofloxacin (235.8 ng/L) and Erythromycin-H2O (2.3 ng/L) had the highest and lowest detected concentrations among the studied antibiotics. Furthermore, fluoroquinolones exhibited notably higher concentrations compared to other antibiotic groups. The highest concentrations of most antibiotics were found in surface waters collected from Ramsar and Chalus stations, located in the middle section of the coastline. Across all transects, the distribution of antibiotics exhibited a decreasing trend towards the sea, indicating that coastal and inland aquaculture, as well as municipal wastewaters, were probably the primary sources of antibiotics in this area. Multivariate analysis revealed that antibiotics, phosphate, nitrate, and COD were all positively correlated with stations Ram-1, Ram-20, Cha-1, Cha-20, and Tor-1, where the highest antibiotic levels were recorded. Risk assessment indicated that clarithromycin, ofloxacin and enrofloxacin posed medium to high risks to aquatic organisms. These findings offer essential baseline information and valuable insights for the comparative assessment of future antibiotic data in the south Caspian Sea.
Collapse
Affiliation(s)
- Ahmad Manbohi
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran.
| | - Reza Rahnama
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Mehrshad Taheri
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Mohammad Ali Hamzeh
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| | - Ali Hamzehpour
- Iranian National Institute for Oceanography and Atmospheric Science, Tehran, 1411813389, Iran
| |
Collapse
|
14
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
15
|
Boukhchina S, Berling D, Bousselmi L, El-Bassi L, Vidal L, Karkouch I, Akrout H. Zirconium-doped lead dioxide anodes prepared by sol-gel method for ampicillin removal from simulated pharmaceutical polluted wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:61451-61468. [PMID: 39422864 DOI: 10.1007/s11356-024-35282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
New anodes consisting of zirconium-doped PbO2 coating, growth on titanium dioxide interlayer, were deposited on titanium substrates using spin coating method and have been tested for the removal of ampicillin, a β-lactam antibiotic, from water. Morphological, structural, and electrochemical properties of the prepared coatings were characterized by scanning electron microscopy (SEM), atomic force microscope (AFM), X-ray diffraction (XRD), and electrochemical impendence spectroscopy (EIS). Results showed that the incorporation of zirconium dopant had a noticeable modification in the morphology of anodes. An increase in the surface roughness and the specific active area were observed with Ti/TiO2/PbO2- 10% Zr electrode compared to other anodes. The electrochemical measurements indicated that the anode doped with 10% Zr showed a more protective coating performance than the undoped and 20% Zr-doped PbO2 electrodes. The experiments on ampicillin degradation revealed that doped lead dioxide anodes have excellent electrocatalytic activity. The major byproduct generated during anodic oxidation treatment has been identified as ampicilloic acid by liquid chromatography-mass spectroscopy (LC-MS) analysis. Results demonstrated that Ti/TiO2/PbO2- 10% Zr anode presents the best removal rate of ampicillin with a minimum intermediate amount, which leads to conclude that 10% is the optimum percentage of zirconium dopant for antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Sahar Boukhchina
- Laboratory of Wastewater and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria PB 273, 8020, Soliman, Tunisia
- National Institute of Applied Sciences and Technology (INSAT), University of Carthage, Tunis, Tunisia
| | - Dominique Berling
- Institute of Materials Science of Mulhouse (IS2M), UMR 7361, Université de Haute Alsace, 68100, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| | - Latifa Bousselmi
- Laboratory of Wastewater and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria PB 273, 8020, Soliman, Tunisia
| | - Leila El-Bassi
- Laboratory of Wastewater and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria PB 273, 8020, Soliman, Tunisia
| | - Loic Vidal
- Institute of Materials Science of Mulhouse (IS2M), UMR 7361, Université de Haute Alsace, 68100, Mulhouse, France
- Université de Strasbourg, Strasbourg, France
| | - Ines Karkouch
- Biotechnology Center of Borj-Cedria, Bioactive Substances Laboratory, BP 901, 2050, Hammam-Lif, Tunisia
| | - Hanene Akrout
- Laboratory of Wastewater and Environment, Center of Water Researches and Technologies (CERTE) Technopark of Borj Cédria PB 273, 8020, Soliman, Tunisia.
| |
Collapse
|
16
|
Johnston AL, Lester E, Williams O, Gomes RL. Interactions between antibiotic removal, water matrix characteristics and layered double hydroxide sorbent material. CHEMOSPHERE 2024; 367:143546. [PMID: 39428020 DOI: 10.1016/j.chemosphere.2024.143546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/22/2024]
Abstract
Sorption by layered double hydroxides (LDH) is gaining substantial interest for remediating emerging contaminants, including pharmaceuticals from wastewaters. Findings from a sorbent material performing successfully in lab-based studies using non-environmental (laboratory-sourced) water cannot be assumed to translate to equal performance under environmental downstream applications. However, studies evaluating sorbent material performance for removal of pollutants and understanding material interactions with environmental waters are limited. This study evaluates the removal of the antibiotic amoxicillin (AMX) using a Mg2Al-NO3-LDH sorbent material from laboratory-grade water and wastewater effluent (WWE). AMX is successfully removed (94.53 ± 4.30 % within 24 h) in laboratory-grade water (under batch sorption conditions: 100 μg/L AMX, 0.2 g/L LDH, 20 °C). The comparison of LDH removal performance in laboratory grade and WWE shows a decreased maximum removal of AMX in WWE (13.39 ± 5.53 %). A lower final AMX concentration is observed in the WWE without the presence of LDH, compared to the 'removal' experiments in WWE with the presence of LDH, indicating a contribution of non-sorption removal pathways of AMX. This is proposed to be due to the difference in metal concentrations in the WWE with and without LDH present. The presence of LDH is found to decrease concentrations of metal pollutants in WWE, such as Zn concentration decreasing by 85 % over 24 h, changing water characteristics. Overall, this paper reports that an LDH performs differently in laboratory-sourced water and a wastewater effluent. This provides evidence that sorbent material performance needs to be evaluated in complex water matrices to ensure that it is representative of how a sorbent material will perform in an environmental application, which is the end goal of developing such technologies. Finally, good practice recommendations are provided for future lab-scale sorption experiments evaluating the performance of any new sorbent materials for water treatment applications.
Collapse
Affiliation(s)
- Amy-Louise Johnston
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2R, UK; Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2R, UK
| | - Edward Lester
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2R, UK
| | - Orla Williams
- Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2R, UK
| | - Rachel L Gomes
- Food Water Waste Research Group, Faculty of Engineering, University of Nottingham, Nottingham, NG7 2R, UK.
| |
Collapse
|
17
|
Nordin AH, Yusoff AH, Husna SMN, Noor SFM, Norfarhana AS, Paiman SH, Ilyas RA, Nordin ML, Osman MS, Abdullah N. Recent advances in nanocellulose-based adsorbent for sustainable removal of pharmaceutical contaminants from water bodies: A review. Int J Biol Macromol 2024; 280:135799. [PMID: 39307484 DOI: 10.1016/j.ijbiomac.2024.135799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The long-term presence of pharmaceutical pollution in water bodies has raised public awareness. Nanocellulose is often used in adsorption to remove pollutants from wastewater since it is an abundant, green and sustainable material. This paper offers an extensive overview of the recent works reporting the potential of nanocellulose-based adsorbents to treat pharmaceutical wastewater. This study distinguishes itself by not only summarizing recent research findings but also critically integrating discussions on the improvements in nanocellulose production and sorts of alterations based on the type of pharmaceutical contaminants. Commonly, charged, or hydrophobic characteristics are introduced onto nanocellulose surfaces to accelerate and enhance the removal of pharmaceutical compounds. Although adsorbents based on nanocellulose have considerable potential, several significant challenges impede their practical application, particularly concerning cost and scalability. Large-scale synthesis of nanocellulose is technically challenging and expensive, which prevents its widespread use in wastewater treatment plants. Continued innovation in this area could lead to breakthroughs in the practical application of nanocellulose as a superior adsorbent. The prospects of utilization of nanocellulose are explained, providing a sustainable way to address the existing restriction and maximize the application of the modified nanocellulose in the field of pharmaceutical pollutants removal.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia; EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh Campus, Pulau Pinang, Malaysia
| | - Abdul Hafidz Yusoff
- Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia.
| | - Siti Muhamad Nur Husna
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Siti Fadilla Md Noor
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Abdul Samad Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Syafikah Huda Paiman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Mohamed Syazwan Osman
- EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh Campus, Pulau Pinang, Malaysia
| | - Norfazliana Abdullah
- Oil and Gas Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
18
|
Telgmann L, Horn H. The behavior of pharmaceutically active compounds and contrast agents during wastewater treatment - Combining sampling strategies and analytical techniques: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174344. [PMID: 38964417 DOI: 10.1016/j.scitotenv.2024.174344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Increasing consumption of pharmaceuticals and the respective consequences for the aquatic environment have been the focus of many studies over the last thirty years. Various aspects in this field were investigated, considering diverse pharmaceutical groups and employing a wide range of research methodologies. Various questions from the perspectives of different research areas were devised and answered, resulting in a large mix of individual findings and conclusions. Collectively, the results of the studies offer a comprehensive overview. The large variety of methods and strategies, however, demands close attention when comparing and combining information from heterogeneous projects. This review critically examines the application of diverse sampling techniques as well as analytical methods in investigations concerning the behavior of pharmaceutically active compounds (PhACs) and contrast agents (CAs) in wastewater treatment plants (WWTPs). The combination of sampling and analysis is discussed with regard to its suitability for specific scientific problems. Different research focuses need different methods and answer different questions. An overview of studies dealing with the fate and degradation of PhACs and CAs in WWTPs is presented, discussing their strategic approaches and findings. This review includes surveys of anticancer drugs, antibiotics, analgesics and anti-inflammatory drugs, antidiabetics, beta blockers, hormonal contraceptives, lipid lowering agents, antidepressants as well as contrast agents for X-ray and magnetic resonance imaging.
Collapse
Affiliation(s)
- Lena Telgmann
- Department of Chemistry and Pharmacy, University of Münster, Münster, Germany
| | - Harald Horn
- Department Water Chemistry and Water Technology, Engler-Bunte-Institut, Karlsruher Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
19
|
Grzesiuk M, Grabska M, Malinowska A, Świderska B, Grzesiuk E, Garbicz D, Gorecki A. Daphnia stress response to environmental concentrations of chloramphenicol-multi-omics approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58876-58888. [PMID: 39317899 PMCID: PMC11513740 DOI: 10.1007/s11356-024-35045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Commonly used medicines, when discarded or improperly disposed of, are known to contaminate freshwater ecosystems. Pharmaceuticals can be toxic and mutagenic, and can modify freshwater organisms, even at environmentally relevant concentrations. Chloramphenicol (CAP) is an antibiotic banned in Europe. However, it is still found in surface waters around the world. The aim of this study was to evaluate the impact of chloramphenicol contamination in freshwater on the model organism Daphnia magna. Specific life history parameters, proteome, and host-associated microbiome of four D. magna clones were analyzed during a three-generation exposure to CAP at environmental concentrations (32 ng L-1). In the first generation, no statistically significant CAP effect at the individual level was detected. After three generations, exposed animals were smaller at first reproduction and on average produced fewer offspring. The differences in D. magna's life history after CAP treatment were in accordance with proteome changes. D. magna's response to CAP presence indicates the high stress that the tested organisms are under, e.g., male production, upregulation of ubiquitin-conjugating enzyme E2 and calcium-binding protein, and downregulation of glutathione transferase. The CAP-exposed D. magna proteome profile confirms that CAP, being reactive oxygen species (ROS)-inducing compounds, contributes to structural changes in mitochondria. Microbiome analysis showed a significant difference in the Shannon index between control and CAP-exposed animals, the latter having a more diverse microbiome. Multilevel analyses, together with long exposure in the laboratory imitating conditions in a polluted environment, allow us to obtain a more complete picture of the impact of CAP on D. magna.
Collapse
Affiliation(s)
- Malgorzata Grzesiuk
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland.
| | - Marta Grabska
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland
| | - Agata Malinowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Elzbieta Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
| | - Damian Garbicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, 02-106, Warsaw, Poland
- Maria Sklodowska-Curie National Research Institute of Oncology, Roentgena 5, Warsaw, Poland
| | - Adrian Gorecki
- Department of Biochemistry and Microbiology, Institute of Biology; Warsaw, University of Life Sciences (SGGW), Warsaw, Poland
| |
Collapse
|
20
|
Pawłowska B, Biczak R. Drugs in the environment - Impact on plants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104557. [PMID: 39245245 DOI: 10.1016/j.etap.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Medicines, like food, are necessities. Many of the commonly used pharmaceuticals, especially antibiotics and NSAIDs end up in the environment and are detected in it (especially in water) at concentrations in the ng·L-1- μg·L-1 range. Although the concentrations of individual drugs in the environment are low, their high biological activity can cause them to be toxic to the environment. This review analyzes and summarizes the effects of drugs, primarily antibiotics and NSAIDs on photosynthesizing organisms, i.e., algae, aquatic and terrestrial plants. Acute drug toxicity to algae and plants occurs most often at high, often non-existent environmental concentrations, while sublethal effects occur at low drug concentrations. The review also points out the problems associated with ecotoxicological studies and the lack of systemic solutions to better assess the risks associated with the presence of drugs in the environment.
Collapse
Affiliation(s)
- Barbara Pawłowska
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland.
| | - Robert Biczak
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland
| |
Collapse
|
21
|
Mazur-Marzec H, Andersson AF, Błaszczyk A, Dąbek P, Górecka E, Grabski M, Jankowska K, Jurczak-Kurek A, Kaczorowska AK, Kaczorowski T, Karlson B, Kataržytė M, Kobos J, Kotlarska E, Krawczyk B, Łuczkiewicz A, Piwosz K, Rybak B, Rychert K, Sjöqvist C, Surosz W, Szymczycha B, Toruńska-Sitarz A, Węgrzyn G, Witkowski A, Węgrzyn A. Biodiversity of microorganisms in the Baltic Sea: the power of novel methods in the identification of marine microbes. FEMS Microbiol Rev 2024; 48:fuae024. [PMID: 39366767 PMCID: PMC11500664 DOI: 10.1093/femsre/fuae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/21/2024] [Accepted: 10/03/2024] [Indexed: 10/06/2024] Open
Abstract
Until recently, the data on the diversity of the entire microbial community from the Baltic Sea were relatively rare and very scarce. However, modern molecular methods have provided new insights into this field with interesting results. They can be summarized as follows. (i) Although low salinity causes a reduction in the biodiversity of multicellular species relative to the populations of the North-East Atlantic, no such reduction occurs in bacterial diversity. (ii) Among cyanobacteria, the picocyanobacterial group dominates when considering gene abundance, while filamentous cyanobacteria dominate in means of biomass. (iii) The diversity of diatoms and dinoflagellates is significantly larger than described a few decades ago; however, molecular studies on these groups are still scarce. (iv) Knowledge gaps in other protistan communities are evident. (v) Salinity is the main limiting parameter of pelagic fungal community composition, while the benthic fungal diversity is shaped by water depth, salinity, and sediment C and N availability. (vi) Bacteriophages are the predominant group of viruses, while among viruses infecting eukaryotic hosts, Phycodnaviridae are the most abundant; the Baltic Sea virome is contaminated with viruses originating from urban and/or industrial habitats. These features make the Baltic Sea microbiome specific and unique among other marine environments.
Collapse
Affiliation(s)
- Hanna Mazur-Marzec
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Anders F Andersson
- Department of Gene Technology, KTH Royal Institute of Technology, Science for Life Laboratory, Tomtebodavägen 23A, SE-171 65 Solna, Stockholm, Sweden
| | - Agata Błaszczyk
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Przemysław Dąbek
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Ewa Górecka
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Michał Grabski
- International Centre for Cancer Vaccine Science, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| | - Katarzyna Jankowska
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Agata Jurczak-Kurek
- Department of Evolutionary Genetics and Biosystematics, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Anna K Kaczorowska
- Collection of Plasmids and Microorganisms, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Bengt Karlson
- Swedish Meteorological and Hydrological Institute
, Research and Development, Oceanography, Göteborgseskaderns plats 3, Västra Frölunda SE-426 71, Sweden
| | - Marija Kataržytė
- Marine Research Institute, Klaipėda University, Universiteto ave. 17, LT-92294 Klaipeda, Lithuania
| | - Justyna Kobos
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Ewa Kotlarska
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Beata Krawczyk
- Department of Biotechnology and Microbiology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Aneta Łuczkiewicz
- Department of Environmental Engineering Technology, Gdansk University of Technology, Narutowicza 11/12, PL-80-233 Gdansk, Poland
| | - Kasia Piwosz
- National Marine Fisheries Research Institute, Kołłątaja 1, PL-81-332 Gdynia, Poland
| | - Bartosz Rybak
- Department of Environmental Toxicology, Faculty of Health Sciences with Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Dębowa 23A, PL-80-204 Gdansk, Poland
| | - Krzysztof Rychert
- Pomeranian University in Słupsk, Arciszewskiego 22a, PL-76-200 Słupsk, Poland
| | - Conny Sjöqvist
- Environmental and Marine Biology, Åbo Akademi University, Henriksgatan 2, FI-20500 Åbo, Finland
| | - Waldemar Surosz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Beata Szymczycha
- Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL-81-712 Sopot, Poland
| | - Anna Toruńska-Sitarz
- Department of Marine Biology and Biotechnology, University of Gdansk, Al. Piłsudskiego 46, PL-81-378 Gdynia, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdansk, Wita Stwosza 59, PL-80-308 Gdansk, Poland
| | - Andrzej Witkowski
- Institute of Marine and Environmental Sciences, University of Szczecin, Mickiewicza 16a, PL-70-383 Szczecin, Poland
| | - Alicja Węgrzyn
- University Center for Applied and Interdisciplinary Research, University of Gdansk, Kładki 24, 80-822 Gdansk, Poland
| |
Collapse
|
22
|
Dube N, Smolarz K, Sokołowski A, Świeżak J, Øverjordet IB, Ellingsen I, Wielogórska E, Sørensen L, Walecka D, Kwaśniewski S. Human pharmaceuticals in the arctic - A review. CHEMOSPHERE 2024; 364:143172. [PMID: 39182731 DOI: 10.1016/j.chemosphere.2024.143172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/27/2024]
Abstract
Pharmaceuticals have been deemed as 'contaminants of emerging concern' within the Arctic and are a potentially perennial form of pollution. With recent innovations in detection technology for organic compounds, researchers have been able to find substantial evidence of the presence and accumulation of pharmaceutical pollution within the Arctic marine ecosystem. The pharmaceuticals, which are biologically active substances used in diagnosis, treatment or prevention of diseases, may persist in the Arctic environment and may have an impact on the resident marine biota. Thus, to understand the standing of current research on the origin, transport, bioaccumulation and impacts of pharmaceutical pollution on the Arctic marine ecosystem, this study collates research from the early 2000s to the end of 2023 to act as a baseline for future research. The study highlights the fact that there is an evident threat to the Arctic marine ecosystem due to pharmaceutical pollution. It also shows that the impacts of pharmaceuticals within the Arctic ocean are not well studied.
Collapse
Affiliation(s)
- Neil Dube
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland.
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Adam Sokołowski
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Justyna Świeżak
- Department of Marine Ecosystems Functioning, Faculty of Oceanography and Geography, University of Gdańsk, Al. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Ida Beathe Øverjordet
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Ingrid Ellingsen
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Ewa Wielogórska
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Lisbet Sørensen
- Department of Climate and Environment, SINTEF Ocean AS, Brattørkaia 17 C, NO 7010, Trondheim, Norway
| | - Dominika Walecka
- Polish Academy of Sciences (IO PAN) Ul, Powstańców Warszawy 55, 81-712, Sopot, Poland
| | - Sławomir Kwaśniewski
- Polish Academy of Sciences (IO PAN) Ul, Powstańców Warszawy 55, 81-712, Sopot, Poland
| |
Collapse
|
23
|
Patyra E, Osiński Z, Kwiatek K. Residues of veterinary antibiotics in solid natural and organic fertilizers-method development and sample analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33956-w. [PMID: 38886273 DOI: 10.1007/s11356-024-33956-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Livestock excrement is used around the world as natural fertilizers or, after processing, as organic fertilizers for crops and grasslands. But due to the presence of veterinary antibiotics in them, they may pose a threat not only to the natural environment, mainly to soil microorganisms, but also to human and animal health. This article describes a method for detecting 21 antibacterial substances in solid natural and organic fertilizers. Antibiotics from fertilizers were extracted with a mixture of acetonitrile and McIlvain-Na2EDTA buffer, twice. The extracts were purified by solid phase extraction technique on Strata-X cartridges and analyzed with the use UHPLC-MS/MS technique. The method was validated in accordance with EU Commission Implementing Regulation 2021/808; the obtained recovery ranged from 93.6 to 116.6% (depending on the analytes), and the linearity ranged from 50 to 1000 µg/kg. The developed method was used to analyze 73 samples of solid natural and organic fertilizers. Our research has shown that over 38% of natural fertilizers were contaminated with antibiotics, mainly doxycycline in concentrations reaching several dozen milligrams per kilogram of fertilizers. In the case of processed organic fertilizers, the presence of antibiotics was found in over 37% of the analyzed samples. The research results showed that the developed and validated analytical method may be useful for assessing the presence and content of antibacterial substances in solid natural and organic fertilizers.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene of Animal Feedingstufs, National Veterinary Research Institute, Pulawy, Poland.
| | - Zbigniew Osiński
- Department of Hygiene of Animal Feedingstufs, National Veterinary Research Institute, Pulawy, Poland
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feedingstufs, National Veterinary Research Institute, Pulawy, Poland
| |
Collapse
|
24
|
Pala-Ozkok I, Katipoglu-Yazan T, Olmez-Hanci T, Jonas D, Ubay-Cokgor E, Orhon D. Impact of acute and chronic exposure to sulfamethoxazole on the kinetics and microbial structure of an activated sludge community. FRONTIERS IN ANTIBIOTICS 2024; 3:1335654. [PMID: 39816257 PMCID: PMC11732045 DOI: 10.3389/frabi.2024.1335654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/05/2024] [Indexed: 01/18/2025]
Abstract
The aim of this study was to reveal the microbial and kinetic impacts of acute and chronic exposure to one of the frequently administered antibiotics, i.e., sulfamethoxazole, on an activated sludge biomass. Respirometric analysis and model evaluation of the oxygen utilization rate profiles were the backbone of this study. The results showed that continuous exposure to sulfamethoxazole resulted in the inhibition of substrate storage and an increase in the endogenous decay rates by twofold, which was supported by analysis of the resistance genes. A mild inhibition on the growth and hydrolysis kinetics was also observed. Moreover, sulfamethoxazole had a binding impact with available organic carbon, resulting in a slightly less oxygen consumption. DNA sequencing and antibiotic resistance gene analyses showed that continuous exposure to sulfamethoxazole caused a change in the community structure at the species level. Resistant bacteria including Arthrobacter sp. and members of the Chitinophagaceae and Intrasporangiaceae families were found to have dominated the bacterial community. The impact of intermittent exposure was also investigated, and the results indicated a drop in the severity of the impact after 20 days of intermittence.
Collapse
Affiliation(s)
- Ilke Pala-Ozkok
- Department of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Stavanger, Norway
| | - Tugce Katipoglu-Yazan
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Tugba Olmez-Hanci
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Daniel Jonas
- Institute for Infection Prevention and Hospital Epidemiology, University Medical Center Freiburg, Freiburg, Germany
| | - Emine Ubay-Cokgor
- Environmental Engineering Department, Faculty of Civil Engineering, Istanbul Technical University, Istanbul, Türkiye
| | | |
Collapse
|
25
|
Antos J, Piosik M, Ginter-Kramarczyk D, Zembrzuska J, Kruszelnicka I. Tetracyclines contamination in European aquatic environments: A comprehensive review of occurrence, fate, and removal techniques. CHEMOSPHERE 2024; 353:141519. [PMID: 38401860 DOI: 10.1016/j.chemosphere.2024.141519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Tetracyclines are among the most commonly used antibiotics for the treatment of bacterial infections and the improvement of agricultural growth and feed efficiency. All compounds in the group of tetracyclines (tetracycline, chlorotetracycline, doxycycline, and oxytetracycline) are excreted in an unchanged form in urine at a rate of more than 70%. They enter the aquatic environment in altered and unaltered forms which affect aquatic micro- and macroorganisms. This study reviews the occurrence, fate, and removal techniques of tetracycline contamination in Europe. The average level of tetracycline contamination in water ranged from 0 to 20 ng/L. However, data regarding environmental contamination by tetracyclines are still insufficient. Despite the constant presence and impact of tetracyclines in the environment, there are no legal restrictions regarding the discharge of tetracyclines into the aquatic environment. To address these challenges, various removal techniques, including advanced oxidation, adsorption, and UV treatment, are being critically evaluated and compared. The summarized data contributes to a better understanding of the current state of Europe's waters and provides insight into potential strategies for future environmental management and policy development. Further research on the pollution and effects of tetracyclines in aquatic environments is therefore required.
Collapse
Affiliation(s)
- Joanna Antos
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland.
| | - Marianna Piosik
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Dobrochna Ginter-Kramarczyk
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Joanna Zembrzuska
- Faculty of Chemical Technology, Institute of Chemistry and Technical Electrochemistry, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| | - Izabela Kruszelnicka
- Department of Water Supply and Bioeconomy, Faculty of Environmental Engineering and Energy, Poznan University of Technology, Berdychowo 4, 60-965, Poznan, Poland
| |
Collapse
|
26
|
Sun D, Hou Z, Yan H, Yang Y, Wang G, Wu J, Ma J. An all-fiber system biosensor for trace β-lactam antibiotics detection enhanced by functionalized microfiber and fiber bragg grating. J Colloid Interface Sci 2024; 658:903-912. [PMID: 38157614 DOI: 10.1016/j.jcis.2023.12.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
An all-fiber-optic system for rapid detection of antibiotic concentration, based on an optical enzyme biosensor with microfiber interferometer (MFI) and fiber gratings (FBGs) power variation, is proposed and experimentally validated. During the experiment, β-lactamase(β-LS) is fixed on the polyaniline (PANI)-coated optical fiber by cross-linking through glutaraldehyde (GA) covalent bonding. β-LS can hydrolyze β-lactam antibiotics to generate acidic by-products that transform polyaniline from the form of the emerald base to emerald salt, which results in the surface refractive index (RI) variation of MFI, to convert MFI wavelength and FBGs power macroscopic change for feedbackingly detecting the concentration of β-lactam antibiotics. The detection of amoxicillin (AMX) in deionized water at concentrations in the range of 0.01-100 nM resulted in a wavelength change sensitivity of 0.6 nm/nM, and FBGs power difference change sensitivity of 1.3 dB/nM, with a detection limit LOD = 0.04 nM in real food and urine samples. The sensing system by the same calibration technique can detect antibiotic concentrations in different substances (tap water, milk and artificial urine). This developed all-fiber-optic system can be used as a rapid solution for the measurement of β-lactam antibiotic residues in food and the environment.
Collapse
Affiliation(s)
- Dandan Sun
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China.
| | - Zifan Hou
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China
| | - He Yan
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China
| | - Yukun Yang
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Guanjun Wang
- School of Information and Communication Engineering, Hainan University, Haikou 570228, China
| | - Jizhou Wu
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China
| | - Jie Ma
- School of Physics and Electronic Engineering, Shanxi University, Taiyuan, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, China.
| |
Collapse
|
27
|
Wang CF, Li YY, Li AH, Yang N, Wang XW, Li YM, Zhang Y. Degradation of COD in antibiotic wastewater by a combination process of electrochemistry, hydroxyl-functionalized ball-milled zero-valent iron/Fe 3O 4 and Oxone. ENVIRONMENTAL TECHNOLOGY 2024; 45:1259-1270. [PMID: 36301731 DOI: 10.1080/09593330.2022.2141661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
In this study, the significant iron-based material, hydroxyl-functionalized ball-milled zero-valent iron/Fe3O4 (HFB-ZVI/Fe3O4) was employed for the experiments. The performance of the Electro + HFB-ZVI/Fe3O4 + Oxone system for the degradation of chemical oxygen demand (COD) in antibiotic wastewater was investigated. A direct current was applied between a graphite plate anode and two iron plate cathodes, and a series of operational parameters, such as applied electric current, the dosage of HFB-ZVI/Fe3O4 composite, the dosage of Oxone, and initial solution pH, were explored to evaluate the oxidation process. The application of electric current enhanced the gradual degradation of COD and the increase of current intensity accelerated COD degradation. The neutral condition was favourable for the rapid degradation of COD in a short reaction time by the Electro + HFB-ZVI/Fe3O4 + Oxone process and promoted the degradation efficiency of COD. An increase of electric current gradually decreased the reaction solution pH, the larger the electric current applied in the reaction process, the lower the final pH of the reaction solution. Under the optimal experimental conditions (1 g/L HFB-ZVI/Fe3O4 composite, 0.3 g/L Oxone, current intensity = 500 mA, initial solution pH = 7.85), Electro + HFB-ZVI/Fe3O4 + Oxone achieved 99% COD degradation in antibiotic wastewater. Radicals quenching experiments indicated the contribution to COD degradation by hydroxyl radicals (HO•), sulphate radicals (SO4•-) and other oxidants were 66.03%, 24.014% and 9.756%, respectively. The possible mechanism of COD degradation in the Electro + HFB-ZVI/Fe3O4 + Oxone system was also discussed in this study. The findings in this work provided useful information for the treatment of wastewater.
Collapse
Affiliation(s)
- Chun-Feng Wang
- Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of EnvironmentHenan Normal University, Xingxiang, People's Republic of China
| | - Yue-Yi Li
- Henan Key Laboratory for Environmental Pollution Control and Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of EnvironmentHenan Normal University, Xingxiang, People's Republic of China
| | - Ai-Hong Li
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing, People's Republic of China
| | - Nan Yang
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing, People's Republic of China
| | - Xiao-Wen Wang
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing, People's Republic of China
| | - Yin-Ming Li
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing, People's Republic of China
| | - Ye Zhang
- State Key Laboratory of Solid Waste Reuse for Building Materials, Beijing Building Materials Academy of Sciences Research, Beijing, People's Republic of China
| |
Collapse
|
28
|
Xia J, Bao Y, Gao Y, Li J. The effects of temperature and sulfamethoxazole on the growth and photosynthetic characteristics of Phaeodactylum tricornutum. MARINE POLLUTION BULLETIN 2024; 200:116122. [PMID: 38340373 DOI: 10.1016/j.marpolbul.2024.116122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/29/2023] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
The misuse of antibiotics has brought potential ecological risks to marine ecosystems, especially under a changing climate. Laboratory experiments were conducted to understand the impact of rising temperatures and antibiotic sulfamethoxazole (SMX) abuse on marine diatom Phaeodactylum tricornutum. Temperatures of 21 and 24 °C were optimal for the growth and photosynthetic characteristics of P. tricornutum. When exposed to higher temperatures (≥27 °C), the growth and photosynthesis were inhibited. High concentrations of SMX (≥100 mg/L) caused rapid and acute toxicological effects on the phytoplankton. In contrast, low concentrations of SMX (1 mg/L) exhibited hormesis. When P. tricornutum was exposed to SMX at high temperatures, the stress on the phytoplankton was even more pronounced. This suggests that the combination of rising temperatures and antibiotic pollution may have a more significant negative impact on marine phytoplankton than either stressor alone. Neglecting the interaction between these stressors may lead to underestimating their combined effects on marine ecosystems.
Collapse
Affiliation(s)
- Jing Xia
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yalin Bao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Yonghui Gao
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Ji Li
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
29
|
Fan WJ, Shi H, Chen J, Tan D. Novel conjugated microporous polymers for efficient tetracycline adsorption: insights from theoretical investigations. J Mol Graph Model 2024; 126:108655. [PMID: 37907057 DOI: 10.1016/j.jmgm.2023.108655] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
This paper presents a detailed theoretical understanding of the noncovalent interactions between antibiotics tetracycline and conjugated microporous polymer (CMP), which is important to understand the recent experimental finding of efficient removal of antibiotics by CMP materials. We show that the co-work of π-π and H-π interactions determines the final equilibrium structures, when a tetracycline molecule spontaneously adsorbs to the surface or within the pores of the CMP network at physisorption distances. The binding energies for tetracycline/CMP systems are calculated to be -0.31 ∼ -1.15 eV, demonstrating the reliability of the adsorption. The electronic structures of CMP nanostructures remain basically undamaged upon the tetracycline adsorption. The replacement of benzothiadiazole unit with S and N heteroatoms to the phenyl moiety in the linker effectively enhanced the molecular polarity of CMP molecule and increases the interaction area between tetracycline and CMP network, consequently enhancing the average binding energies notably. Our calculations provide useful theoretical guidance for design of novel carbon-based porous adsorbents with good adsorption performance to remove residual tetracycline and other antibiotics in water.
Collapse
Affiliation(s)
- Wen-Jie Fan
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, PR China.
| | - Hua Shi
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, PR China
| | - Jinghe Chen
- College of Marine Science and Environment Engineering, Dalian Ocean University, Dalian, 116023, PR China
| | - Dazhi Tan
- Experimental Center of Chemistry, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
30
|
Liu Y, Wang S, Fu D, Fu Y. Effect of bicarbonate on nitrate-induced photosensitive degradation of sulfamethoxazole under UV irradiation. ENVIRONMENTAL TECHNOLOGY 2024; 45:170-179. [PMID: 35838616 DOI: 10.1080/09593330.2022.2102937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
In this study, the influence of HCO3- on NO3--induced photosensitive degradation of sulfamethoxazole (SMX) under UV irradiation was investigated. It was found that the removal of SMX by UV in the presence of NO3- improved significantly compared to its photolysis, which was confirmed to be due to the role of hydroxyl radical (HO•) formed through UV-activated NO3-. However, the addition of HCO3- in UV/NO3- system could further enhance SMX degradation, which was verified to be ascribed to the formed carbonate radical (CO3•-) through the reaction of HCO3- with HO•. The second-order rate constant of CO3•- with SMX was determined to be 2.58 × 108 M-1 s-1. In UV/NO3-/HCO3- system, the reactive species for SMX removal were HO• and CO3•-, and the contribution of CO3•- to SMX degradation might be much higher than that of HO•. The concentration of NO3- was almost unchanged after reaction in UV/NO3- and UV/NO3-/HCO3- systems because of its regeneration. Based on the detected four transformation products, the possible degradation pathways of SMX in UV/NO3-/HCO3- system were proposed including hydroxylation, amino-oxidation and bond cleavage.
Collapse
Affiliation(s)
- Yiqing Liu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Shixiang Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Dongbin Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| | - Yongsheng Fu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, People's Republic of China
| |
Collapse
|
31
|
Villota N, Jankelevitch S, Lomas JM. Kinetic modelling of colour and turbidity formation in aqueous solutions of sulphamethoxazole degraded by UV/H 2O 2. ENVIRONMENTAL TECHNOLOGY 2024; 45:349-359. [PMID: 35938359 DOI: 10.1080/09593330.2022.2109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
The oxidation of sulphamethoxazole medicine (SMX) has been studied by means of UV/H2O2 conducting at a controlled pH between 2.0 and 12.0 and oxidant ratios of 500 mol H2O2/mol SMX. It is verified that operating at pH = 2.0 the highest rates of SMX degradation (74%) and loss of aromaticity (64%) are obtained. During the process, a strong brown tint and high turbidity are generated in the water depending on the pH, as it affects the chemical speciation of the dissociable compounds. The colour intensity of the water increases from pH = 2.0 (light brown, 3.5 NTU) to a maximum value at pH = 4.0 (dark brown, 42 NTU), when the neutral SMX species is almost 100%. Under these conditions, the formation of carboxylic acids (acetic and oxalic) and nitrate ion are minor. Conducting at higher pH, hue decreases, obtaining at pH = 12.0 a light yellow water (5 NTU) when the anionic SMX predominates. Thus, the maximum formation of nitrate ion occurs under these conditions. A pseudo-first order kinetic modelling is proposed for the loss of aromaticity and colour and turbidity formation in water, where the kinetic parameters are expressed as a function of the applied pH, being the pseudo-first-order rate constants (min-1): k a r o m = 0.0005 p H 2 - 0.0106 p H + 0.0707 ; k c o l o u r = 0.0011 p H 2 - 0.02 p H + 0.1125 and kNTU = 0.06 min-1.
Collapse
Affiliation(s)
- Natalia Villota
- Department of Chemical and Environmental Engineering, College of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Vitoria, Spain
| | - Sebastien Jankelevitch
- Department of Chemical Engineering, Faculty of Engineering Technology, University Hasselt & University of Leuven, Diepenbeek, Belgium
| | - Jose M Lomas
- Department of Chemical and Environmental Engineering, College of Engineering of Vitoria-Gasteiz, University of the Basque Country, UPV/EHU, Vitoria, Spain
| |
Collapse
|
32
|
Cho S, Hiott LM, Read QD, Damashek J, Westrich J, Edwards M, Seim RF, Glinski DA, Bateman McDonald JM, Ottesen EA, Lipp EK, Henderson WM, Jackson CR, Frye JG. Distribution of Antibiotic Resistance in a Mixed-Use Watershed and the Impact of Wastewater Treatment Plants on Antibiotic Resistance in Surface Water. Antibiotics (Basel) 2023; 12:1586. [PMID: 37998788 PMCID: PMC10668835 DOI: 10.3390/antibiotics12111586] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
The aquatic environment has been recognized as a source of antibiotic resistance (AR) that factors into the One Health approach to combat AR. To provide much needed data on AR in the environment, a comprehensive survey of antibiotic-resistant bacteria (ARB), antibiotic resistance genes (ARGs), and antibiotic residues was conducted in a mixed-use watershed and wastewater treatment plants (WWTPs) within the watershed to evaluate these contaminants in surface water. A culture-based approach was used to determine prevalence and diversity of ARB in surface water. Low levels of AR Salmonella (9.6%) and Escherichia coli (6.5%) were detected, while all Enterococcus were resistant to at least one tested antibiotic. Fewer than 20% of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (17.3%) and carbapenem-resistant Enterobacteriaceae (CRE) (7.7%) were recovered. Six ARGs were detected using qPCR, primarily the erythromycin-resistance gene, ermB. Of the 26 antibiotics measured, almost all water samples (98.7%) had detectable levels of antibiotics. Analysis of wastewater samples from three WWTPs showed that WWTPs did not completely remove AR contaminants. ARGs and antibiotics were detected in all the WWTP effluent discharges, indicating that WWTPs are the source of AR contaminants in receiving water. However, no significant difference in ARGs and antibiotics between the upstream and downstream water suggests that there are other sources of AR contamination. The widespread occurrence and abundance of medically important antibiotics, bacteria resistant to antibiotics used for human and veterinary purposes, and the genes associated with resistance to these antibiotics, may potentially pose risks to the local populations exposed to these water sources.
Collapse
Affiliation(s)
- Sohyun Cho
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
| | - Lari M. Hiott
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Quentin D. Read
- Agricultural Research Service, U.S. Department of Agriculture, Southeast Area, Raleigh, NC 27606, USA;
| | - Julian Damashek
- Department of Biology, Utica University, Utica, NY 13502, USA;
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Jason Westrich
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Martinique Edwards
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - Roland F. Seim
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA;
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Donna A. Glinski
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Jacob M. Bateman McDonald
- Lewis F. Rogers Institute for Environmental and Spatial Analysis, University of North Georgia, Oakwood, GA 30566, USA;
| | - Elizabeth A. Ottesen
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA; (J.W.); (E.A.O.)
| | - Erin K. Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA 30602, USA; (M.E.); (E.K.L.)
| | - William Matthew Henderson
- Center for Environmental Measurement and Modeling, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA 30605, USA; (D.A.G.); (W.M.H.)
| | - Charlene R. Jackson
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| | - Jonathan G. Frye
- Poultry Microbiological Safety and Processing Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA; (S.C.); (L.M.H.); (C.R.J.)
| |
Collapse
|
33
|
Feng G, Liu J, Li H, Liu JS, Duan Z, Wu L, Gao Y, Meng XZ. Insights from colony formation: The necessity to consider morphotype when assessing the effect of antibiotics on cyanobacteria. WATER RESEARCH 2023; 246:120704. [PMID: 37827036 DOI: 10.1016/j.watres.2023.120704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 10/14/2023]
Abstract
Colonial cyanobacteria have been identified as the primary contributor to the global occurrence of cyanobacterial harmful algal blooms (cyanoHABs), which are further intensified by the presence of "pseudo-persistent" antibiotics. Nevertheless, the impact of antibiotics on the growth and size of colonial cyanobacteria remains unclear. In this study, the response of cyanobacterium Microcystis to varying doses of antibiotics was assessed (0, 0.1, 0.5, 1, 10, and 50 μg L-1) by comparing the unicellular and colonial morphotypes. Interestingly, the morphological structure of cyanobacteria plays a significant role in their reaction to antibiotics. In comparison to the unicellular morphotype, the colonial morphotype exhibited a greater promotion in growth rate (11 %-22 %) to low doses of antibiotics and was less inhibited (-121 %--62 %) under high doses. Furthermore, antibiotics may affect the size of cyanobacterial colonies by disrupting the secretion of algal organic matter, which also exhibited a two-phase pattern. This work sheds light on the significance of methodology research involving both unicellular and colonial cyanobacteria. Future research and lake management should prioritize studying the morphological traits of cyanobacteria under different levels of antibiotic exposure. This approach may lead to novel strategies for predicting cyanoHABs under antibiotic pollution more effectively.
Collapse
Affiliation(s)
- Ganyu Feng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Jianbin Liu
- Shanghai Qingpu District Environmental Monitoring Station, 15 Xidayinggang Road, Shanghai 201799, China
| | - Hongbo Li
- Beijing ENFI Environmental Protection Co., Ltd., 12 Fuxing Road, Beijing 100038, China
| | - Jin-Song Liu
- College of Advanced Materials Engineering, Jiaxing Nanhu University, 572 South Yuexiu Road, Jiaxing 314001, Zhejiang Province, China
| | - Zhipeng Duan
- College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, Jiangsu Province, China
| | - Liang Wu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yunze Gao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiang-Zhou Meng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China; Jiaxing-Tongji Environmental Research Institute, 1994 Linggongtang Road, Jiaxing 314051, Zhejiang Province, China.
| |
Collapse
|
34
|
Zhang XP, Zhang S, Xu CY, Li WW, Ling HB, Luo Y, Jian K, Li T, Yi C. Liquid Chromatography-Tandem Mass Spectrometry Detection of Human and Veterinary Drugs and Pesticides in Surface Water. Int J Anal Chem 2023; 2023:6350669. [PMID: 37877028 PMCID: PMC10593548 DOI: 10.1155/2023/6350669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/26/2023] Open
Abstract
Antibiotics and pesticides are widespread in most rivers and lakes due to the overuse of antibiotics and pesticides, but there are few methods for simultaneous analysis of antibiotics and pesticides in aquatic environments. To address this knowledge gap, a concise and sensitive analytical method is proposed in which three classes of human and veterinary drugs (sulfonamides, macrolides, and hormones) and two classes of pesticides (organophosphorus and neonicotinoids) are simultaneously extracted and determined in surface water. The solid-phase extraction column with Cleanert PEP-2 was preconditioned sequentially with 6 mL of methanol, ultrapure water, and citric acid buffer (pH 3.0) each for simultaneous extraction and further purification. The forty-seven target analytes were analysed by LC-MS/MS in positive and negative ion modes. The LC separation was performed using a Sigma-Aldrich C18 column with 0.1% formic acid in water and acetonitrile as a gradient eluting mobile phase in positive ion mode. The internal standard method was used to overcome the inevitable matrix effects in LC-MS/MS analysis. The matrix effects of most target analytes were in the range of 27-151%. The recoveries of forty analytes in the three concentrations (10, 50, and 100 ng L-1) of surface water spiked samples ranged from 41 to 127%. The method quantitative limits of the analytes were in the range of 0.40-5.49 ng L-1. Application of the method to analyze samples in the eight runoff outlets of the Pearl River Delta showed that some antibiotics and pesticides were detected, and the concentration of parathion was as high as 154 ng L-1. A powerful tool for quickly and efficiently screening for contaminants in surface water has been presented.
Collapse
Affiliation(s)
- Xiang-Pu Zhang
- National Key Laboratory of Environmental Health Risk Assessment for Environmental Protection, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China
| | - Shu Zhang
- National Key Laboratory of Environmental Health Risk Assessment for Environmental Protection, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China
| | - Chun-Yan Xu
- National Key Laboratory of Environmental Health Risk Assessment for Environmental Protection, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China
| | - Wei-Wei Li
- National Key Laboratory of Environmental Health Risk Assessment for Environmental Protection, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China
| | - Hai-Bo Ling
- National Key Laboratory of Environmental Health Risk Assessment for Environmental Protection, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China
| | - Yang Luo
- National Key Laboratory of Environmental Health Risk Assessment for Environmental Protection, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China
| | - Kang Jian
- National Key Laboratory of Environmental Health Risk Assessment for Environmental Protection, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China
| | - Tao Li
- Wuhan Ecological Environmental Monitoring Center, Department of Ecology and Environment of Hubei Province, Wuhan 430070, China
| | - Chuan Yi
- National Key Laboratory of Environmental Health Risk Assessment for Environmental Protection, Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan 430070, China
| |
Collapse
|
35
|
Shen M, Yu B, Hu Y, Liu Z, Zhao K, Li C, Li M, Lyu C, Lu H, Zhong S, Cheng J. Occurrence and Health Risk Assessment of Sulfonamide Antibiotics in Different Freshwater Fish in Northeast China. TOXICS 2023; 11:835. [PMID: 37888687 PMCID: PMC10610842 DOI: 10.3390/toxics11100835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/24/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
This study aimed to investigate the levels of 12 sulfonamide antibiotics in freshwater fish species obtained from three cities in northeastern China (Harbin, Changchun, and Shenyang). The analysis was conducted using HPLC-MS/MS to accurately quantify the antibiotic concentrations in the fish samples. The results showed that the average levels of sulfonamide antibiotics in fish samples from Harbin, Changchun, and Shenyang were 1.83 ng/g ww, 0.98 ng/g ww, and 1.60 ng/g ww, respectively. Sulfamethoxazole displayed the highest levels and detection rates in all three cities, whereas sulphapyridine exhibited the lowest concentrations in all the fish samples. The levels of sulfonamide antibiotic residues in the different fish species varied widely among the cities, and the highest level of antibiotic residues was found in the muscle of carnivorous fish. The results from a health risk evaluation on the consumption of these fish indicated that the risk from long-term antibiotic exposure to local residents from the intake of the sampled fish was small and not sufficient to pose a significant health risk to consumers.
Collapse
Affiliation(s)
- Mengnan Shen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Bowen Yu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Yi Hu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Zhi Liu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Chenyang Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Chen Lyu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Hai Lu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (M.S.); (B.Y.); (Y.H.); (Z.L.); (K.Z.); (C.L.); (M.L.)
| | - Shuang Zhong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China;
| | - Jie Cheng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China;
| |
Collapse
|
36
|
Zhang W, Guan A, Peng Q, Qi W, Qu J. Microbe-mediated simultaneous nitrogen reduction and sulfamethoxazole/N-acetylsulfamethoxazole removal in lab-scale constructed wetlands. WATER RESEARCH 2023; 242:120233. [PMID: 37352676 DOI: 10.1016/j.watres.2023.120233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023]
Abstract
Constructed wetlands (CWs) are increasingly used to treat complex pollution such as nitrogen and emerging organic micropollutants from anthropogenic sources. In this study, the denitrification, anaerobic ammonium oxidation, dissimilatory nitrate reduction to ammonium, and nitrous oxide release rates following exposure to the frequently detected sulfonamides sulfamethoxazole (SMX) and its human metabolite, N-acetylsulfamethoxazole (N-SMX), were investigated in lab-scale CWs. Over a period of 190 d, the denitrification rates were noticeably inhibited in the SMX and N-SMX groups at week 5. Subsequently, the denitrification rates recovered, accompanied by an increase in the relevant nitrogen reduction and antibiotic resistance genes (ARGs). The composition of the microbial community also changed during this process. After the denitrification rates recovered, Burkholderia_Paraburkholderia and Gordonia exhibited a significant positive correlation with SMX exposure, which simultaneously reduced nitrate concentrations and degraded antibiotics. Burkholderia_Paraburkholderia is a key carrier of ARGs. Finally, nitrogen reduction (> 90%) and antibiotic removal (> 80%) also recovered in both SMX- and N-SMX-exposed lab-scale CWs during the operation, which revealed the interaction of SMX or N-SMX removal and nitrogen reduction.
Collapse
Affiliation(s)
- Weihang Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aomei Guan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Peng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Kashyap A, Nishil B, Thatikonda S. Experimental and numerical elucidation of the fate and transport of antibiotics in aquatic environment: A review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:942. [PMID: 37436551 DOI: 10.1007/s10661-023-11482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
This review highlights various experimental and mathematical modeling strategies to investigate the fate and transport of antibiotics that elucidate antimicrobial selective pressure in aquatic environments. Globally, the residual antibiotic concentrations in effluents from bulk drug manufacturing industries were 30- and 1500-fold greater than values reported in municipal and hospital effluents, respectively. The antibiotic concentration from different effluents enters the waterbodies that usually get diluted as they go downstream and undergo various abiotic and biotic reactive processes. In aquatic systems, photolysis is the predominant process for antibiotic reduction in the water matrix, while hydrolysis and sorption are frequently reported in the sediment compartment. The rate of antibiotic reduction varies widely with influencing factors such as the chemical properties of the antibiotics and hydrodynamic conditions of river streams. Among all, tetracycline was found to more unstable (log Kow = - 0.62 to - 1.12) that can readily undergo photolysis and hydrolysis; whereas macrolides were more stable (log Kow = 3.06 to 4.02) that are prone to biodegradation. The processes like photolysis, hydrolysis, and biodegradation followed first-order reaction kinetics while the sorption followed a second-order kinetics for most antibiotic classes with reaction rates occurring in the decreasing order of Fluoroquinolones and Sulphonamides. The reports from various experiments on abiotic and biotic processes serve as input parameters for an integrated mathematical modeling to predict the fate of the antibiotics in the aquatic environment. Various mathematical models viz. Fugacity level IV, RSEMM, OTIS, GREAT-ER, SWAT, QWASI, and STREAM-EU are discussed for their potential capabilities. However, these models do not account for microscale interactions of the antibiotics and microbial community under real-field conditions. Also, the seasonal variations for contaminant concentrations that exert selective pressure for antimicrobial resistance has not been accounted. Addressing these aspects collectively is the key to exploring the emergence of antimicrobial resistance. Therefore, a comprehensive model involving antimicrobial resistance parameters like fitness cost, bacterial population dynamics, conjugation transfer efficiency, etc. is required to predict the fate of antibiotics.
Collapse
Affiliation(s)
- Arun Kashyap
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Benita Nishil
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
38
|
Orimolade BO, Oladipo AO, Idris AO, Usisipho F, Azizi S, Maaza M, Lebelo SL, Mamba BB. Advancements in electrochemical technologies for the removal of fluoroquinolone antibiotics in wastewater: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163522. [PMID: 37068672 DOI: 10.1016/j.scitotenv.2023.163522] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/24/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
In recent times, the need to make water safer and cleaner through the elimination of recalcitrant pharmaceutical residues has been the aim of many studies. Fluoroquinolone antibiotics such as ciprofloxacin, norfloxacin, enrofloxacin, and levofloxacin are among the commonly detected pharmaceuticals in wastewater. Since the presence of these pharmaceuticals in water bodies poses serious risks to living organisms, it is vital to adopt effective wastewater treatment techniques for their complete removal. Electrochemical technologies such as photoelectrocatalysis, electro-Fenton, electrocoagulation, and electrochemical oxidation have been established as techniques capable of the complete removal of organics including pharmaceuticals from wastewater. Hence, this review presents discussions on the recent progress (literature within 2018-2022) in the applications of common electrochemical processes for the degradation of fluoroquinolone antibiotics from wastewater. The fundamentals of these processes are highlighted while the results obtained using the processes are critically discussed. Furthermore, the inherent advantages and limitations of these processes in the mineralization of fluoroquinolone antibiotics are clearly emphasized. Additionally, appropriate recommendations are made toward improving electrochemical technologies for the complete removal of these pharmaceuticals with minimal energy consumption. Therefore, this review will serve as a bedrock for future researchers concerned with wastewater treatments to make informed decisions in the selection of suitable electrochemical techniques for the removal of pharmaceuticals from wastewater.
Collapse
Affiliation(s)
- Benjamin O Orimolade
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa.
| | - Adewale O Oladipo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Azeez O Idris
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Feleni Usisipho
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| | - Shohreh Azizi
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Malik Maaza
- UNESCO-UNISA Africa Chair in Nanoscience and Nanotechnology College of Graduates Studies, University of South Africa, Pretoria 392, South Africa; Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, Somerset West 7129, Western Cape, South Africa
| | - Sogolo L Lebelo
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X06, Florida 1710, South Africa
| | - Bhekie B Mamba
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida Science Campus, 1709 Johannesburg, South Africa
| |
Collapse
|
39
|
Yang J, Ahmed W, Mehmood S, Ou W, Li J, Xu W, Wang L, Mahmood M, Li W. Evaluating the Combined Effects of Erythromycin and Levofloxacin on the Growth of Navicula sp. and Understanding the Underlying Mechanisms. PLANTS (BASEL, SWITZERLAND) 2023; 12:2547. [PMID: 37447108 DOI: 10.3390/plants12132547] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023]
Abstract
Navicula sp., a type of benthic diatom, plays a crucial role in the carbon cycle as a widely distributed algae in water bodies, making it an essential primary producer in the context of global carbon neutrality. However, using erythromycin (ERY) and levofloxacin (LEV) in medicine, livestock, and aquaculture has introduced a new class of pollutants known as antibiotic pollutants, which pose potential threats to human and animal health. This study aimed to investigate the toxic effects of ERY and LEV, individually or in combination, on the growth, antioxidant system, chlorophyll synthesis, and various cell osmotic pressure indexes (such as soluble protein, proline, and betaine) of Navicula sp. The results indicated that ERY (1 mg/L), LEV (320 mg/L), and their combined effects could inhibit the growth of Navicula sp. Interestingly, the combination of these two drugs exhibited a time-dependent effect on the chlorophyll synthesis of Navicula sp., with ERY inhibiting the process while LEV promoted it. Furthermore, after 96 h of exposure to the drugs, the activities of GSH-Px, POD, CAT, and the contents of MDA, proline, and betaine increased. Conversely, the actions of GST and the contents of GSH and soluble protein decreased in the ERY group. In the LEV group, the activities of POD and CAT and the contents of GSH, MDA, proline, and betaine increased, while the contents of soluble protein decreased. Conversely, the mixed group exhibited increased POD activity and contents of GSH, MDA, proline, betaine, and soluble protein. These findings suggest that antibiotics found in pharmaceutical and personal care products (PPCPs) can harm primary marine benthic eukaryotes. The findings from the research on the possible hazards linked to antibiotic medications in aquatic ecosystems offer valuable knowledge for ensuring the safe application of these drugs in environmental contexts.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Waqas Ahmed
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Sajid Mehmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Wenjie Ou
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jiannan Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Wenxin Xu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Lu Wang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Mohsin Mahmood
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| | - Weidong Li
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, Hainan University, Haikou 570228, China
- Collaborative Innovation Center of Ecological Civilization, Hainan University, Haikou 570228, China
| |
Collapse
|
40
|
Huo WB, Jia PP, Li WG, Xie XY, Yang G, Pei DS. Sulfonamides (SAs) exposure causes neurobehavioral toxicity at environmentally relevant concentrations (ERCs) in early development of zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106614. [PMID: 37390778 DOI: 10.1016/j.aquatox.2023.106614] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 07/02/2023]
Abstract
Antibiotics, due to their stability and persistence in the environment, can have chronic impacts on various ecosystems and organisms. However, the molecular mechanisms underlying antibiotic toxicity at environmental concentrations, particularly the neurotoxic effects of sulfonamides (SAs), remain poorly understood. In this study, we assessed the neurotoxicity of six SAs including the sulfadiazine (SD), sulfathiazole (ST), sulfamethoxazole (SMX), sulfisoxazole (SIZ), sulfapyridine (SPD), and sulfadimethoxine (SDM) by exposing zebrafish to environmentally relevant concentrations (ERCs). The SAs exhibited concentration-dependent effects on zebrafish behavior, including spontaneous movement, heartbeat, survival rate, and body metrics, ultimately leading to depressive-like symptoms and sublethal toxicity during early life stages. Notably, even the lowest SA concentration (0.05 μg/L) induced neurotoxicity and behavioral impairment in zebrafish. We observed a dose-dependent increase in melancholy behavior as indicated by increased resting time and decreased motor activity in zebrafish larvae. Following exposure to SAs from 4 to 120 h post-fertilization (hpf), key genes involved in folate synthesis [sepiapterin reductase a (spra), phenylalanine hydroxylase (pah), tyrosine hydroxylase (th), and tryptophan hydroxylase 1 (tryptophan 5-monooxygenase) a tryptophan hydroxylase (tph1a)] and carbonic anhydrase (CA) metabolism [carbonic anhydrase II (ca2), carbonic anhydrase IV a (ca4a), carbonic anhydrase VII (ca7), and carbonic anhydrase XIV (ca14)] were significantly downregulated or inhibited at different concentrations. Our findings demonstrate that acute exposure to six SAs at environmentally relevant concentrations induces developmental and neurotoxic effects in zebrafish, impacting folate synthesis pathways and CA metabolism. These results provide valuable insights into the potential role of antibiotics in depressive disorders and neuroregulatory pathways.
Collapse
Affiliation(s)
- Wen-Bo Huo
- College of Life Science, Henan Normal University, Xinxiang 453007, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Wei-Guo Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Xiao-Yu Xie
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Guan Yang
- Environmental Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
41
|
Löffler P, Escher BI, Baduel C, Virta MP, Lai FY. Antimicrobial Transformation Products in the Aquatic Environment: Global Occurrence, Ecotoxicological Risks, and Potential of Antibiotic Resistance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37335844 DOI: 10.1021/acs.est.2c09854] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The global spread of antimicrobial resistance (AMR) is concerning for the health of humans, animals, and the environment in a One Health perspective. Assessments of AMR and associated environmental hazards mostly focus on antimicrobial parent compounds, while largely overlooking their transformation products (TPs). This review lists antimicrobial TPs identified in surface water environments and examines their potential for AMR promotion, ecological risk, as well as human health and environmental hazards using in silico models. Our review also summarizes the key transformation compartments of TPs, related pathways for TPs reaching surface waters and methodologies for studying the fate of TPs. The 56 antimicrobial TPs covered by the review were prioritized via scoring and ranking of various risk and hazard parameters. Most data on occurrences to date have been reported in Europe, while little is known about antibiotic TPs in Africa, Central and South America, Asia, and Oceania. Occurrence data on antiviral TPs and other antibacterial TPs are even scarcer. We propose evaluation of structural similarity between parent compounds and TPs for TP risk assessment. We predicted a risk of AMR for 13 TPs, especially TPs of tetracyclines and macrolides. We estimated the ecotoxicological effect concentrations of TPs from the experimental effect data of the parent chemical for bacteria, algae and water fleas, scaled by potency differences predicted by quantitative structure-activity relationships (QSARs) for baseline toxicity and a scaling factor for structural similarity. Inclusion of TPs in mixtures with their parent increased the ecological risk quotient over the threshold of one for 7 of the 24 antimicrobials included in this analysis, while only one parent had a risk quotient above one. Thirteen TPs, from which 6 were macrolide TPs, posed a risk to at least one of the three tested species. There were 12/21 TPs identified that are likely to exhibit a similar or higher level of mutagenicity/carcinogenicity, respectively, than their parent compound, with tetracycline TPs often showing increased mutagenicity. Most TPs with increased carcinogenicity belonged to sulfonamides. Most of the TPs were predicted to be mobile but not bioaccumulative, and 14 were predicted to be persistent. The six highest-priority TPs originated from the tetracycline antibiotic family and antivirals. This review, and in particular our ranking of antimicrobial TPs of concern, can support authorities in planning related intervention strategies and source mitigation of antimicrobials toward a sustainable future.
Collapse
Affiliation(s)
- Paul Löffler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research, UZ, 04318 Leipzig, Germany
- Eberhard Karls University Tübingen, Environmental Toxicology, Department of Geosciences, 72076 Tübingen, Germany
| | - Christine Baduel
- Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, 38 050 Grenoble, France
| | - Marko P Virta
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00014 Helsinki, Finland
- Multidisciplinary Center of Excellence in Antimicrobial Resistance Research, Helsinki 00100, Finland
| | - Foon Yin Lai
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Uppsala SE-75007, Sweden
| |
Collapse
|
42
|
Wang X, Liu C, Cao Y, Cai L, Wang H, Fang G. A Turn-Off Fluorescent Biomimetic Sensor Based on a Molecularly Imprinted Polymer-Coated Amino-Functionalized Zirconium (IV) Metal-Organic Framework for the Ultrasensitive and Selective Detection of Trace Oxytetracycline in Milk. Foods 2023; 12:foods12112255. [PMID: 37297499 DOI: 10.3390/foods12112255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Developing sensitive and effective methods to monitor oxytetracycline residues in food is of great significance for maintaining public health. Herein, a fluorescent sensor (NH2-UIO-66 (Zr)@MIP) based on a molecularly imprinted polymer-coated amino-functionalized zirconium (IV) metal-organic framework was successfully constructed and first used for the ultrasensitive determination of oxytetracycline. NH2-UIO-66 (Zr), with a maximum emission wavelength of 455 nm under 350 nm excitation, was prepared using a microwave-assisted heating method. The NH2-UIO-66 (Zr)@MIP sensor with specific recognition sites for oxytetracycline was then acquired by modifying a molecularly imprinted polymer on the surface of NH2-UIO-66 (Zr). The introduction of NH2-UIO-66 (Zr) as both a signal tag and supporter can strengthen the sensitivity of the fluorescence sensor. Thanks to the combination of the unique characteristics of the molecularly imprinted polymer and NH2-UIO-66 (Zr), the prepared sensor not only exhibited a sensitive fluorescence response, specific identification capabilities and a high selectivity for oxytetracycline, but also showed good fluorescence stability, satisfactory precision and reproducibility. The fabricated sensor displayed a fluorescent linear quenching in the OTC concentration range of 0.05-40 μg mL-1, with a detection limit of 0.012 μg mL-1. More importantly, the fluorescence sensor was finally applied for the detection of oxytetracycline in milk, and the results were comparable to those obtained using the HPLC approach. Hence, the NH2-UIO-66 (Zr)@MIP sensor possesses great application potential for the accurate evaluation of trace oxytetracycline in dairy products.
Collapse
Affiliation(s)
- Xiaohui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chang Liu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Yichuan Cao
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lin Cai
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Haiyang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Guozhen Fang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
43
|
Ben Attig J, de Lourdes Souza F, Latrous L, Cañizares P, Sáez C, Ríos Á, Zougagh M, Rodrigo MA. Advanced oxidation and a metrological strategy based on CLC-MS for the removal of pharmaceuticals from pore & surface water. CHEMOSPHERE 2023; 333:138847. [PMID: 37187374 DOI: 10.1016/j.chemosphere.2023.138847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 05/17/2023]
Abstract
In this work, it is studied the photolysis, electrolysis, and photo-electrolysis of a mixture of pharmaceutics (sulfadiazine, naproxen, diclofenac, ketoprofen and ibuprofen) contained in two very different types of real water matrices (obtained from surface and porewater reservoirs), trying to clarify the role of the matrix on the degradation of the pollutants. To do this, a new metrological approach was also developed for screening of pharmaceuticals in waters by capillary liquid chromatography mass spectrometry (CLC-MS). This allows the detection at concentrations lower than 10 ng mL-1. Results obtained in the degradation tests demonstrate that inorganic composition of the water matrix directly influences on the efficiency of the drugs removal by the different EAOPs and better degradation results were obtained for experiments carried out with surface water. The most recalcitrant drug studied was ibuprofen for all processes evaluated, while diclofenac and ketoprofen were found to be the easiest drugs for being degraded. Photo-electrolysis was found to be more efficient than photolysis and electrolysis, and the increase in the current density was found to attain a slight improvement in the removal although with an associated huge increase in the energy consumption. The main reaction pathways for each drug and technology were also proposed.
Collapse
Affiliation(s)
- Jihène Ben Attig
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain; Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain; Laboratoire de Chimie Analytique et Electrochimie, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University Campus of El Manar II, 2092, Tunis, Tunisia
| | - Fernanda de Lourdes Souza
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, Universidad de Castilla - La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Latifa Latrous
- Laboratoire de Chimie Minérale Appliquée, Department of Chemistry, Faculty of Sciences of Tunis, University of Tunis El Manar, University Campus of El Manar II, 2092, Tunis, Tunisia
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, Universidad de Castilla - La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, Universidad de Castilla - La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain
| | - Ángel Ríos
- Department of Analytical Chemistry and Food Technology, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Campus Universitario, 13071, Ciudad Real, Spain; Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain
| | - Mohammed Zougagh
- Regional Institute for Applied Scientific Research, IRICA, Camilo José Cela Avenue, E-13005, Ciudad Real, Spain; Department of Analytical Chemistry and Food Technology, Faculty of Pharmacy, University of Castilla-La Mancha, 02071, Albacete, Spain
| | - Manuel Andrés Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, Universidad de Castilla - La Mancha, Campus Universitario S/n, 13071, Ciudad Real, Spain.
| |
Collapse
|
44
|
Ikizoglu B, Turkdogan FI, Kanat G, Aydiner C. Seasonal analysis of commonly prescribed antibiotics in Istanbul city. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:566. [PMID: 37058249 DOI: 10.1007/s10661-023-11203-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Antibiotics are among the most common medicine groups since they are used to treat infectious diseases, as nutritional supplements in livestock breeding, and for preservation in the food industry. Turkey is among the highest antibiotic consumers in the world. In the present study, the most popular 14 antibiotics available in Turkey were monitored in one hospital sewage and two urban wastewater treatment plant influents and effluents seasonally in Istanbul province, the largest metropolitan center in Turkey. The present research aimed to develop a robust analytical method to determine 14 antibiotics, including six chemical groups, in environmental matrices which are considered significant antibiotic pollution sources, namely hospital sewage and urban wastewater. Solid-phase extraction (SPE) and UPLC-MS/MS analysis parameters included optimized column temperature, eluent, mobile phase, and flow rate. Three SPE cartridges were employed in recovery studies. The antibiotic recovery rates varied between 40 and 100%, and all analytes were identified within 3 min with UPLC-MS/MS under optimal conditions. It was determined that method detection limits (MDLs) varied between 0.07 and 2.72 µg/L for the antibiotics. In all seasons, the highest beta-lactam group antibiotic concentrations were identified in hospital sewage. The season with the greatest variety of antibiotics in urban wastewater was spring. Clarithromycin and ciprofloxacin were the antibiotics determined at the highest concentration in the influent and effluent of the wastewater treatment plant in all seasons. This study showed that the most widely used beta-lactam group antibiotics were found in high amounts in hospital sewage wastewater but in low concentrations in the treatment plants, and hence, it is seen that the degradability of beta-lactam group antibiotics was high. The presence of clarithromycin, ciprofloxacin, lincomycin, levofloxacin, and trimethoprim antibiotics in hospital sewage in higher amounts and also in inlet and outlet of wastewater treatment plants proves that those are resistant antibiotics.
Collapse
Affiliation(s)
- Bahar Ikizoglu
- Department of Environmental Engineering, Faculty of Engineering, Suleyman Demirel University, Bati Campus, 32260, Cunur, Isparta, Turkey.
| | - Fatma Ilter Turkdogan
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
| | - Gurdal Kanat
- Department of Environmental Engineering, Faculty of Civil Engineering, Yildiz Technical University, Davutpasa Campus, 34220, Esenler, Istanbul, Turkey
| | - Coskun Aydiner
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| |
Collapse
|
45
|
Feng L, Aryal N, Li Y, Horn SJ, Ward AJ. Developing a biogas centralised circular bioeconomy using agricultural residues - Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161656. [PMID: 36669668 DOI: 10.1016/j.scitotenv.2023.161656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) can be used as a stand-alone process or integrated as part of a larger biorefining process to produce biofuels, biochemicals and fertiliser, and has the potential to play a central role in the emerging circular bioeconomy (CBE). Agricultural residues, such as animal slurry, straw, and grass silage, represent an important resource and have a huge potential to boost biogas and methane yields. Under the CBE concept, there is a need to assess the long-term impact and investigate the potential accumulation of specific unwanted substances. Thus, a comprehensive literature review to summarise the benefits and environmental impacts of using agricultural residues for AD is needed. This review analyses the benefits and potential adverse effects related to developing biogas-centred CBE. The identified potential risks/challenges for developing biogas CBE include GHG emission, nutrient management, pollutants, etc. In general, the environmental risks are highly dependent on the input feedstocks and resulting digestate. Integrated treatment processes should be developed as these could both minimise risks and improve the economic perspective.
Collapse
Affiliation(s)
- Lu Feng
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway.
| | - Nabin Aryal
- Department of Microsystems, University of South-Eastern Norway, Borre, Norway
| | - Yeqing Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Biogas Upgrading Utilization, College of New Energy and Materials, China University of Petroleum Beijing (CUPB), Beijing 102249, PR China
| | - Svein Jarle Horn
- NIBIO, Norwegian Institute of Bioeconomy Research, P.O. Box 115, 1431 Ås, Norway; Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, 1432 Ås, Norway
| | - Alastair James Ward
- Department of Biological and Chemical Engineering, Aarhus University, Denmark
| |
Collapse
|
46
|
Fessler M, Madsen JS, Zhang Y. Conjugative plasmids inhibit extracellular electron transfer in Geobacter sulfurreducens. Front Microbiol 2023; 14:1150091. [PMID: 37007462 PMCID: PMC10063792 DOI: 10.3389/fmicb.2023.1150091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Geobacter sulfurreducens is part of a specialized group of microbes with the unique ability to exchange electrons with insoluble materials, such as iron oxides and electrodes. Therefore, G. sulfurreducens plays an essential role in the biogeochemical iron cycle and microbial electrochemical systems. In G. sulfurreducens this ability is primarily dependent on electrically conductive nanowires that link internal electron flow from metabolism to solid electron acceptors in the extracellular environment. Here we show that when carrying conjugative plasmids, which are self-transmissible plasmids that are ubiquitous in environmental bacteria, G. sulfurreducens reduces insoluble iron oxides at much slower rates. This was the case for all three conjugative plasmids tested (pKJK5, RP4 and pB10). Growth with electron acceptors that do not require expression of nanowires was, on the other hand, unaffected. Furthermore, iron oxide reduction was also inhibited in Geobacter chapellei, but not in Shewanella oneidensis where electron export is nanowire-independent. As determined by transcriptomics, presence of pKJK5 reduces transcription of several genes that have been shown to be implicated in extracellular electron transfer in G. sulfurreducens, including pilA and omcE. These results suggest that conjugative plasmids can in fact be very disadvantageous for the bacterial host by imposing specific phenotypic changes, and that these plasmids may contribute to shaping the microbial composition in electrode-respiring biofilms in microbial electrochemical reactors.
Collapse
Affiliation(s)
- Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Yifeng Zhang,
| |
Collapse
|
47
|
Su Q, Huang S, Zhang H, Wei Z, Ng HY. Abiotic transformations of sulfamethoxazole by hydroxylamine, nitrite and nitric oxide during wastewater treatment: Kinetics, mechanisms and pH effects. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130328. [PMID: 36402107 DOI: 10.1016/j.jhazmat.2022.130328] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/10/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Hydroxylamine (NH2OH), nitrite (NO2-) and nitric oxide (NO), intermediates enzymatically formed during biological nitrogen removal processes, can engage in chemical (abiotic) transformations of antibiotics. This study determined the kinetics, mechanisms and pathways of abiotic transformations of the antibiotic sulfamethoxazole (SMX) by NH2OH, NO2- and NO in a series of batch tests under different pH and oxygen conditions. While NH2OH was not able to directly transform SMX, NO2- (with HNO2 as the actual reactant) and NO can chemically transform SMX primarily through hydroxylation, nitration, deamination, nitrosation, cleavage of S-N, N-C and C-S bonds, and coupling reactions. There were substantial overlaps in transformation product formations during abiotic transformations by HNO2- and NO. The second order rate constants of SMX with NO2- and NO were determined in the range of 1.5 × 10-1 - 4.8 × 103 M-1 s-1 and 1.0 × 102 - 3.1 × 104 M-1 s-1, respectively, under varying pH (4 - 9) and anoxic or oxic conditions. Acidic pH significantly enhanced abiotic transformation kinetics, and facilitated nitration, nitrosation, and cleavage of S-N and N-C bonds. The findings advance our understanding of the fate of antibiotics during biological nitrogen removal, and highlight the role of enzymatically formed reactive nitrogen species in the antibiotic degradation.
Collapse
Affiliation(s)
- Qingxian Su
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore; Department of Environmental and Resource Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, China
| | - Hui Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, Sichuan 610225, China
| | - Zongsu Wei
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000 Aarhus C, Denmark
| | - How Yong Ng
- National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|
48
|
Monahan C, Morris D, Nag R, Cummins E. Risk ranking of macrolide antibiotics - Release levels, resistance formation potential and ecological risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160022. [PMID: 36368382 DOI: 10.1016/j.scitotenv.2022.160022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/16/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Antibiotic resistance (AR) development in natural water bodies is a significant source of concern. Macrolide antibiotics in particular have been identified as pollutants of concern for AR development throughout the literature, as well as by state and international authorities. This study utilises a probabilistic model to examine the risk of AR development arising from human-use macrolide residues, utilising administration rates from Ireland as a case study. Stages modelled included level of administration, excretion, degradation in wastewater, removal in wastewater treatment, assuming conventional activated sludge (CAS) treatment, and dilution. Release estimates per day, as well as risk quotient values for antibiotic resistance development and ecological impact, are generated for erythromycin, clarithromycin, and azithromycin. In the modelled scenario in which conventional activated sludge treatment is utilised in wastewater treatment, this model ranks risk of resistance development for each antibiotic in the order clarithromycin > azithromycin > erythromycin, with mean risk quotient values of 0.50, 0.34 and 0.12, respectively. A membrane bioreactor scenario was also modelled, which reduced risk quotient values for all three macrolides by at least 50 %. Risk of ecological impact for each antibiotic was also examined, by comparing environmental concentrations predicted to safety limits based on toxicity data for cyanobacteria and other organisms from the literature, with azithromycin being identified as the macrolide of highest risk. This study compares and quantifies the risk of resistance development and ecological impact for a high-risk antibiotic group in the Irish context, and demonstrates the potential for risk reduction achieved by adoption of alternative (e.g. membrane bioreactor) technology.
Collapse
Affiliation(s)
- Ciaran Monahan
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland.
| | - Dearbhaile Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine, National University of Ireland, Galway, Ireland
| | - Rajat Nag
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| | - Enda Cummins
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
49
|
Du L, Ahmad S, Liu L, Wang L, Tang J. A review of antibiotics and antibiotic resistance genes (ARGs) adsorption by biochar and modified biochar in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159815. [PMID: 36328262 DOI: 10.1016/j.scitotenv.2022.159815] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/15/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics have been used in massive quantities for human and animal medical treatment, and antibiotic resistance genes (ARGs) are of great concern worldwide. Antibiotics and ARGs are exposed to the natural environment through the discharge of medical wastewater, causing great harm to the environment and human health. Biochar has been widely used as a green and efficient adsorbent to remove pollutants. However, pristine and unmodified biochars are not considered sufficient and efficient to cope with the current serious water pollution. Therefore, researchers have chosen to improve the adsorption capacity of biochar through different modification methods. To have a better understanding of the application of modified biochar, this review summarizes the biochar modification methods and their performance, particularly, molecular imprinting and biochar aging are outlined as new modification methods, influencing factors of biochar and modified biochar in adsorption of antibiotics and ARGs and adsorption mechanisms, wherein adsorption mechanism of ARGs on biochar is found to be different than that of antibiotics. After that, the directions of biochar and modified biochar worthy of research and the issues that need attention are proposed. It can be noted that under the current dual carbon policy, biochar may have wider application prospects in future.
Collapse
Affiliation(s)
- Linqing Du
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Shakeel Ahmad
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Linan Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lan Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingchun Tang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
50
|
Host Dependent-Transposon for a Plasmid Found in Aeromonas salmonicida subsp. salmonicida That Bears a catB3 Gene for Chloramphenicol Resistance. Antibiotics (Basel) 2023; 12:antibiotics12020257. [PMID: 36830168 PMCID: PMC9952659 DOI: 10.3390/antibiotics12020257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Plasmids that carry antibiotic resistance genes occur frequently in Aeromonas salmonicida subsp. salmonicida, an aquatic pathogen with severe consequences in salmonid farming. Here, we describe a 67 kb plasmid found in the A. salmonicida subsp. salmonicida Strain SHY15-2939 from Quebec, Canada. This new plasmid, named pAsa-2939 and identified by high throughput sequencing, displays features never found before in this bacterial species. It contains a transposon related to the Tn21 family, but with an unusual organization. This transposon bears a catB3 gene (chloramphenicol resistance) that has not been detected yet in A. salmonicida subsp. salmonicida. The plasmid is transferable by conjugation into Aeromonas hydrophila, but not into Escherichia coli. Based on PCR analysis and genomic sequencing (Illumina and PacBio), we determined that the transposon is unstable in A. salmonicida subsp. salmonicida Strain SHY15-2939, but it is stable in A. hydrophila trans-conjugants, which explains the chloramphenicol resistance variability observed in SHY15-2939. These results suggest that this bacterium is likely not the most appropriate host for this plasmid. The presence of pAsa-2939 in A. salmonicida subsp. salmonicida also strengthens the reservoir role of this bacterium for antibiotic resistance genes, even those that resist antibiotics not used in aquaculture in Québec, such as chloramphenicol.
Collapse
|