1
|
Bu X, Peng X, Huang L, Zhao Y, Jiao J, Zhu J, Chen J, Huang X, Zheng A, Qu H, Yao J. Effect of ectoparasite Ichthyophthirius multifiliis on the histopathology and gill and gut microbiota of goldfish ( Carassius auratus). Front Vet Sci 2025; 12:1539446. [PMID: 39968107 PMCID: PMC11834160 DOI: 10.3389/fvets.2025.1539446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction The ectoparasite Ichthyophthirius multifiliis, is the pathogen of white spot disease in freshwater fish, which parasitizes on gills, fins, and skins of fish, causing tissue damage and death of host. However, whether it influences gill and gut microbiota is still unknow. Methods In this study, H&E staining was used to show the gill and gut histopathological characteristics of I. multifiliis-infected and uninfected goldfish (Carassius auratus). Meanwhile, 16S rRNA gene amplicon sequencing was conducted to analyze the difference of gill and gut microbiota between I. multifiliis-infected and uninfected goldfish. Results Histopathological examination revealed that I. multifiliis has induced significant damage to the gills of goldfish, characterized by lamellae fusion, cell hyperplasia, cell hyperaemia, inflammatory infiltration, necrosis and desquamation. 16S rRNA gene sequencing result showed that alpha and beta diversity of gill microbiota was significantly reduced in the I. multifiliis-infected group, while no significant changes were observed in gut microbiota. Genus Candidatus Megaira exhibited the highest relative abundance in the I. multifiliis-infected group. Meanwhile, the abundance of opportunistic pathogens Aeromonas and Achromobacter were increased in the intestines of I. multifiliis-infected goldfish. Discussion The increased presence of Candidatus Megaira may originate from within the cells of I. multifiliis. The increase of opportunistic pathogens Aeromonas and Achromobacter may pose a threat to the health of goldfish. In summary, this study laid a foundation for further research on the interaction between I. multifiliis and host microbiota.
Collapse
Affiliation(s)
- Xialian Bu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xianqi Peng
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Lei Huang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Yu Zhao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
| | - Jinbiao Jiao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Jian Zhu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
| | - Jing Chen
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Xiaohong Huang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Aqin Zheng
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| | - Huantao Qu
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
| | - Jiayun Yao
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, China
- Key Laboratory of Healthy Freshwater Aquaculture, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fish Health and Nutrition of Zhejiang Province, Key Laboratory of Fishery Environment and Aquatic Product Quality and Safety of Huzhou City, Zhejiang Institute of Freshwater Fisheries, Huzhou, China
| |
Collapse
|
2
|
Guo SQ, Fu YW, Hou TL, Huang SL, Zhang QZ. Establishment and application of TaqMan probe-based quantitative real-time PCR for rapid detection and quantification of Ichthyophthirius multifiliis in farming environments and fish tissues. Vet Parasitol 2025; 334:110381. [PMID: 39742554 DOI: 10.1016/j.vetpar.2024.110381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/03/2025]
Abstract
Ichthyophthirius multifiliis, a pathogenic ciliate, is a crucial pathogen of freshwater fish and can result in severe economic loss in the aquaculture industry worldwide. It is necessary to develop a sensitive and accurate method for detecting I. multifiliis in farming environments and fish skin and gills to protect fishes from infection of the parasite due to a lack of both safe and effective treatment drugs. The present study established a new TaqMan probe-based quantitative PCR (qPCR) detection method targeting the coding region of the cathepsin L cysteine protease (ICP2) gene of I. multifiliis. The sensitivity, specificity, reproducibility and application for detection and diagnosis of the TaqMan probe-based qPCR method were evaluated. In addition, the linear model between the cycle threshold (Ct) and the logarithmic starting quantity (SQ) of the number of theronts per 1 L of sterile water was developed as Ct = -3.312lg(SQ)+ 34.47 with an R2 of 0.9636 and a minimum detection limit of 4 theronts per 1 L of water and could be employed to determine the theront number based on Ct value. The results of the detection of trial infection samples with the TaqMan probe-based qPCR method showed that the tissues of fish individuals infected with I. multifiliis and the tank water samples were positive detection signals. In contrast, the tissues and water samples from uninfected fish individuals and tanks containing healthy fish showed no signals. The detection results demonstrated the reliability of this detection method. Overall, the novel TaqMan probe-based qPCR method with high sensitivity and specificity as well as repeatability for detection of I. multifiliis was a valuable tool in detecting the parasite in farming water, pond sediments, and fish tissues and could provide early warning for prevention of the disease caused by I. multifiliis.
Collapse
Affiliation(s)
- Shu-Quan Guo
- Department of Ecology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, PR China
| | - Yao-Wu Fu
- Department of Ecology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, PR China
| | - Ting-Long Hou
- Department of Ecology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, PR China
| | - Shi-Lu Huang
- Department of Ecology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, PR China
| | - Qi-Zhong Zhang
- Department of Ecology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering, Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou 510632, PR China.
| |
Collapse
|
3
|
Larcombe E, Alexander ME, Snellgrove D, Henriquez FL, Sloman KA. Current disease treatments for the ornamental pet fish trade and their associated problems. REVIEWS IN AQUACULTURE 2025; 17. [DOI: 10.1111/raq.12948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/21/2024] [Indexed: 01/05/2025]
Abstract
AbstractThe trade in live ornamental fishes to be held as companion animals or displayed in public aquaria has an estimated global annual value of US$15–20 billion. Supply chains for ornamental pet fishes often involve many more parties than for fish farmed as food fishes, and at each stage, fishes are exposed to stressors including handling, confinement, crowding, mechanical disturbance, and poor water quality. If chronic, these stressors can compromise their immune system, making fishes more susceptible to pathogens. Mortality and morbidity from infectious disease can result in considerable welfare impacts and massive economic losses for the industry, and the range of infective agents seen in ornamental species is well documented. However, treating these diseases is not straightforward with practices varying greatly across the trade and with several approaches having unintended consequences, such as the emergence of resistant strains of pathogens. While disease treatments for a handful of fish species (e.g., koi, goldfish) have received focused research attention, for the home aquarium owner, there is an increasing reliance on products based on natural compounds which have received far less scientific attention. This review aims to highlight the gaps in our knowledge surrounding the range of disease treatments used across the ornamental pet fish trade, with a particular focus on freshwater tropical species destined for home aquaria. Consideration is given to the potential problems arising from these treatments, including microbial resistance and effects of treatments themselves on fish health and welfare.
Collapse
Affiliation(s)
- E. Larcombe
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - M. E. Alexander
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - D. Snellgrove
- Waltham Petcare Science Institute Waltham‐on‐the‐Wolds Leicestershire UK
| | - F. L. Henriquez
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| | - K. A. Sloman
- Institute of Biomedical and Environmental Health Research, School of Health and Life Sciences University of the West of Scotland Lanarkshire UK
| |
Collapse
|
4
|
Wang L, Xi B, Chen K, Xie J, Pan L. In-Situ Investigation of Copepod Predators of Ichthyophthirius multifiliis Theronts from Fish-Farming Pond. Microorganisms 2024; 13:38. [PMID: 39858806 PMCID: PMC11767253 DOI: 10.3390/microorganisms13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Ichthyophthirius multifiliis, a parasitic ciliate, causes "white spot disease" in freshwater fish and poses a significant threat to global freshwater aquaculture. Eliminating the free-swimming theront stage from the aquaculture environment is a critical measure for controlling I. multifiliis infections. The natural predator of I. multifiliis theronts in fish-farming ponds were identified using fluorescent dye-labelled live theronts and quantitative PCR; meanwhile, the zooplankton community composition in the positive ponds of I. multifiliis detected by quantitative PCR were analyzed by eDNA metabarcoding assay. The results revealed predation on theronts by cyclopoid copepods, including Cyclops vicinus, Thermocyclops taihokuensis, Cyclops sp., Thermocyclops sp., Eucyclops sp., and Mesocyclops sp. from the in-situ predation aquatic ecosystem, and among these copepods, C. vicinus was identified as a natural dominant predator of I. multifiliis. This study provides a scientific basis for further exploration and utilization of natural predators to enhance sustainable and environmentally friendly control strategies against I. multifiliis.
Collapse
Affiliation(s)
- Lijun Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (K.C.); (J.X.); (L.P.)
| | - Bingwen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China;
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (K.C.); (J.X.); (L.P.)
| | - Kai Chen
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (K.C.); (J.X.); (L.P.)
| | - Jun Xie
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (K.C.); (J.X.); (L.P.)
| | - Liangkun Pan
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China; (K.C.); (J.X.); (L.P.)
| |
Collapse
|
5
|
Paredes-Trujillo A, Cano Rufino L, Hernández-Pérez A. Parasites of veterinary importance of ornamental fish commercialized in Mexico. Vet Parasitol Reg Stud Reports 2024; 56:101134. [PMID: 39550201 DOI: 10.1016/j.vprsr.2024.101134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 11/18/2024]
Abstract
The wild and farm-raised ornamental fish trade is an industry that generates substantial economic profits worldwide. We report the parasitic fauna of imported marine and freshwater ornamental fish from ten aquarium wholesaler shops from two important localities in Mexico: Morelos Market in Mexico City and Merida in the state of Yucatan. Between February 2016 and March 2020, a total of 631 fish were examined for parasites, of which 66 species belong to 19 families of marine ornamental fish and 22 species from 9 families of freshwater ornamental fish. Twelve parasite species were recovered in marine fish belonging to three taxa: 7 Digenea, 3 Monogenea and 2 Nematoda. In freshwater fish, four parasite species belonging to four taxa were found: Protozoa, Digenea, Nematoda and Cestoda. Infection of individual fish species by specific parasites ranged from 0.20 to 4.55 %. The monogeneans Neobenedenia girellae and Pseudempleurosoma haywardi were the most prevalent parasites. Spearman's rank correlation test showed a significant association between various aquarium biosecurity practices, such as the absence of a quarantine area, low water exchange rates, lack of prophylactic treatments, inadequate removal of dead fish, and insufficient disinfection of water and equipment with the prevalence of N. girellae and P. haywardi. This knowledge can aid in the development of effective management strategies to promote the health of ornamental fish populations imported, minimize disease outbreaks and ensure the sustainable growth of this industry in Mexico.
Collapse
Affiliation(s)
- Amelia Paredes-Trujillo
- Laboratorio de Sanidad Acuícola, Instituto de Ecología, Pesquerías y Oceanografía (EPOMEX) de la Universidad Autónoma de Campeche, Campus 6 de investigación, Av. Héroe de Nacozari 466, C.P. 24070, Campeche, Campeche, Mexico.
| | - Luisa Cano Rufino
- Laboratorio de Parasitología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Unidad Mérida, Carretera Antigua a Progreso Km. 6, Mérida, Yucatán, C.P. 97310, Mexico
| | - Ariadne Hernández-Pérez
- Departamento de Medicina y Zootecnia de Abejas, Conejos y Organismos Acuaticos, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito de la Investigación Científica s/n, 04510, Mexico
| |
Collapse
|
6
|
Huang K, Wang R, Hu G, Zhou W, Li W, Zou H, Wang G, Li M. Immune response of Rhinogobio ventralis to Ichthyophthirius multifiliis infection: Insights from histopathological and real-time gene expression analyses. FISH & SHELLFISH IMMUNOLOGY 2024; 153:109801. [PMID: 39096983 DOI: 10.1016/j.fsi.2024.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Ichthyophthirius multifiliis is a parasite that poses a considerable threat to aquaculture and the ornamental fish industry, but with limited effective treatment options available. This study employed RT-qPCR to detect and analyze the expression changes of partial toll-like receptor (TLR) genes (TLR1 and TLR21), adapter protein and signal transduction molecule genes (MyD88, TRIF, NF-κB, IRAK4, and IRF3), and cytokines (IL-6, IL-8, IL-13, CXC-α and CXCR1), as well as complement C3, in the skin, gill, fin, liver, head kidney and spleen of Rhinogobio ventralis under different infection conditions. Additionally, tissue sections and scanning electron microscopy were utilized to observe the pathological changes in the gills and fins of R. ventralis after infection with I. multifiliis. The expression patterns of TLR-related DEGs (differentially expressed genes) in diseased wild fish were analyzed, revealing upregulation of TLR1, TLR21, MyD88, NF-κB, IRAK4, TRIF, IRF3, IL-6, IL-8, IL-13, CXC-α, CXCR1, and C3 genes in various tissues, indicating that these genes may be involved in the immune response of R. ventralis to I. multifiliis infection. To further analyze the gene expression of sampled from the field, an artificial infection model of R. ventralis was established under laboratory conditions, with additional sampling from the skin and fins. These genes continued to show varying degrees of upregulation, but the results were not entirely consistent with those from Wudongde samples, which may be due to the more complex environment in the wild or differences in the degree of I. multifiliis infection in wild fish. The infection of I. multifiliis caused severe damage to the gills and fins of R. ventralis, characterized by extensive secretions on the gill and fin surfaces, with the presence of attached I. multifiliis trophonts, including damage and loss of gill filaments, swollen gill lamellae, and deformed gill plates, as well as cell proliferation and necrosis of gill epithelial cells. This study sheds light on the role of the TLR signaling pathway in resisting I. multifiliis infection and its associated histopathological changes in R. ventralis, providing valuable insights for the prevention and treatment of I. multifiliis infection in R. ventralis.
Collapse
Affiliation(s)
- Ke Huang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Runqiu Wang
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang 443100, China
| | - Guangran Hu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weitian Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenxiang Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hong Zou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Guitang Wang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Ming Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), and Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
7
|
Henard C, Li H, Nowak BF, von Gersdorff Jørgensen L. Unpredictable Repeated Stress in Rainbow Trout ( Oncorhynchus mykiss) Shifted the Immune Response against a Fish Parasite. BIOLOGY 2024; 13:769. [PMID: 39452078 PMCID: PMC11504028 DOI: 10.3390/biology13100769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
Farmed fish are regularly subjected to various stressors due to farming practices, and their effect in the context of a disease outbreak is uncertain. This research evaluated the effects of unpredictable repeated stress in rainbow trout challenged with the ciliate Ichthyophthirius multifiliis, known to cause white spot disease in freshwater fish. Before and after the pathogen exposure, fish were handled with a random rotation of three procedures. At 7 days post-infection (dpi), the parasite burden was evaluated in fish and in the tank's water, and the local and systemic immune responses were investigated in the gill and spleen, respectively. The fish mortality was recorded until 12 dpi, when all the fish from the infected groups died. There was no statistical difference in parasite burden (fish and tank's water) and infection severity between the two infected fish groups. The immune gene expression analysis suggested a differential immune response between the gill and the spleen. In gills, a T helper cell type 2 immune response was initiated, whereas in spleen, a T helper cell type 1 immune response was observed. The stress has induced mainly upregulations of immune genes in the gill (cat-1, hep, il-10) and downregulations in the spleen (il-2, il-4/13a, il-8). Our results suggested that the unpredictable repeated stress protocol employed did not impair the fish immune system.
Collapse
Affiliation(s)
- Cyril Henard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 7 Frederiksberg C, 1870 Frederiksberg, Denmark;
| | - Hanxi Li
- Department of Health Technology, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Launceston 7248, Tasmania, Australia;
| | - Louise von Gersdorff Jørgensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 7 Frederiksberg C, 1870 Frederiksberg, Denmark;
| |
Collapse
|
8
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
9
|
Araújo BDL, Serantoni Moyses CR, Spadacci-Morena DD, Xavier JG, Lallo MA. White spots amidst the gold: ultrastructural and histological aspects of the chronic inflammatory response of goldfish with ichthyophthiriasis. J Comp Pathol 2024; 211:21-25. [PMID: 38759508 DOI: 10.1016/j.jcpa.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 04/18/2024] [Indexed: 05/19/2024]
Abstract
Ichthyophthirius multifiliis, the causative agent of white spot disease, is a ciliated protozoan parasite that infects freshwater fish and induces high mortality. Outbreaks occur both in natural and production sites. The aim of the present study was to describe the lesions caused by chronic infection by I. multifiliis in goldfish (Carassius auratus) from an ornamental fish farm, highlighting important ultrastructural aspects of this protozoan. Damaged skin and gills, collected from fish with white or ulcerative skin lesions, were routinely processed for histological analysis and transmission electron microscopy. The parasitic forms present in the skin were associated with an inflammatory infiltrate consisting of macrophages, lymphocytes and other polymorphonuclear cells. The lesions associated with the presence of the parasite were organized in the form of granulomas, with macrophages in the layers closest to the parasites. A trophont-thickened membrane and induction of granulomatous inflammation were identified in this study as mechanisms for evasion of the immune response. We concluded that the presence of I. multifiliis trophonts resulted in the formation of granulomatous inflammation, whether associated or not with pathogen lysis, suggesting that the parasite can use an inflammatory response to evade the immune response.
Collapse
Affiliation(s)
- Bruno de Lima Araújo
- Programa de Pós Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Doutor Bacelar 902, São Paulo, Brazil.
| | - Carla Renata Serantoni Moyses
- Programa de Pós Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Doutor Bacelar 902, São Paulo, Brazil
| | | | - José Guilherme Xavier
- Programa de Pós Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Doutor Bacelar 902, São Paulo, Brazil
| | - Maria Anete Lallo
- Programa de Pós Graduação em Patologia Ambiental e Experimental, Universidade Paulista - Unip, Rua Doutor Bacelar 902, São Paulo, Brazil
| |
Collapse
|
10
|
Liu S, Xu M, Chen B, Li F, Deng Y, Zhang Y, Lin G, Chen D, Geng Y, Ou Y, Huang X. The potential mechanism of concentrated mannan-oligosaccharide promoting goldfish's (Carassius auratus Linnaeus) resistance to Ichthyophthirius multifiliis invasion. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109290. [PMID: 38104695 DOI: 10.1016/j.fsi.2023.109290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Because of the low host specificity, Ichthyophthirius multifiliis (Ich) can widely cause white spot disease in aquatic animals, which is extremely difficult to treat. Prior research has demonstrated a considerable impact of concentrated mannan-oligosaccharide (cMOS) on the prevention of white spot disease in goldfish, but the specific mechanism is still unknown. In this study, transcriptome sequencing, histological analysis, immunofluorescence analysis, phagocytosis activity assay and qRT-PCR assay were used to systematically reveal the potential mechanism of cMOS in supporting the resistance of goldfish (Carrasius auratus) to Ich invasion. According to the transcriptome analysis, the gill tissue of goldfish receiving the cMOS diet showed greater expression of mannose-receptor (MRC) related genes, higher phagocytosis activity, up-regulated expression of phagocytosis-related genes and inflammatory-related genes compared with the control, indicating that cMOS can have an effect on phagocytosis and non-specific immunity of goldfish. After the Ich challenge, transcriptome analysis revealed that cMOS fed goldfish displayed a higher level of phagocytic response, whereas non-cMOS fed goldfish displayed a greater inflammatory reaction. Besides, after Ich infection, cMOS-fed goldfish displayed greater phagocytosis activity, a stronger MRC positive signal, higher expression of genes associated with phagocytosis (ABCB2, C3, MRC), and lower expression of genes associated with inflammation (IL-1β, IL-17, IL-8, TNF-α, NFKB). In conclusion, our experimental results suggest that cMOS may support phagocytosis by binding to MRC on the macrophage cell membrane and change the non-specific immunity of goldfish by stimulating cytokine expression. The results of this study provide new insights for the mechanism of cMOS on parasitic infection, and also suggest phagocytosis-related pathways may be potential targets for prevention of Ich infection.
Collapse
Affiliation(s)
- Senyue Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ming Xu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Baipeng Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Fulong Li
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yongqiang Deng
- Fisheries Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 611731, Sichuan, China
| | - Yufan Zhang
- Beijing Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Gang Lin
- Beijing Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
11
|
Okon EM, Okocha RC, Taiwo AB, Michael FB, Bolanle AM. Dynamics of co-infection in fish: A review of pathogen-host interaction and clinical outcome. FISH AND SHELLFISH IMMUNOLOGY REPORTS 2023; 4:100096. [PMID: 37250211 PMCID: PMC10213192 DOI: 10.1016/j.fsirep.2023.100096] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 04/09/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Co-infections can affect the transmission of a pathogen within a population and the pathogen's virulence, ultimately affecting the disease's dynamics. In addition, co-infections can potentially affect the host's immunological responses, clinical outcomes, survival, and disease control efficacy. Co-infections significantly impact fish production and can change several fish diseases' progression and severity. However, the effect of co-infection has only recently garnered limited attention in aquatic animals such as fish, and there is currently a dearth of studies on this topic. This study, therefore, presents an in-depth summary of the dynamics of co-infection in fish. This study reviewed the co-infection of fish pathogens, the interaction of pathogens and fish, clinical outcomes and impacts on fish immune responses, and fish survival. Most studies described the prevalence of co-infections in fish, with various parameters influencing their outcomes. Bacterial co-infection increased fish mortality, ulcerative dermatitis, and intestinal haemorrhage. Viral co-infection resulted in osmoregulatory effects, increased mortality and cytopathic effect (CPE). More severe histological alterations and clinical symptoms were related to the co-infection of fish than in single-infected fish. In parasitic co-infection, there was increased mortality, high kidney swelling index, and severe necrotic alterations in the kidney, liver, and spleen. In other cases, there were more severe kidney lesions, cartilage destruction and displacement. There was a dearth of information on mitigating co-infections in fish. Therefore, further studies on the mitigation strategies of co-infections in fish will provide valuable insights into this research area. Also, more research on the immunology of co-infection specific to each fish pathogen class (bacteria, viruses, fungi, and parasites) is imperative. The findings from such studies would provide valuable information on the relationship between fish immune systems and targeted responses.
Collapse
Affiliation(s)
| | - Reuben Chukwuka Okocha
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Climate Action Research Group, Landmark University SDG 13, Nigeria
| | | | - Falana Babatunde Michael
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
- Life Below Water Research Group, Landmark University SDG 14, Nigeria
| | - Adeniran Moji Bolanle
- Department of Animal Science, College of Agricultural Sciences, Landmark University, P.M.B. 1001 Omu-Aran, Kwara State, Nigeria
| |
Collapse
|
12
|
Yang H, Wang Z, Xiao J, Hu J, Tu X, Gu Z. Integrated morphological and transcriptome profiles reveal a highly-developed extrusome system associated to virulence in the notorious fish parasite, Ichthyophthirius multifiliis. Virulence 2023; 14:2242622. [PMID: 37551042 PMCID: PMC10411306 DOI: 10.1080/21505594.2023.2242622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Ichthyophthirius multifiliis is an obligate parasitic ciliate that causes severe economic damage in aquaculture. The parasite contains numerous extrusive organelles (extrusomes) that assist in its pathogenesis and reproduction. However, the structure of these extrusomes and the molecular profiles involved in exocytosis remain unclear. In the present study, through comparative ultrastructural observations across the life cycle of I. multifiliis, we demonstrated that all three of its life stages (theront, trophont, and tomont) exhibited an abundance of extrusomes. In addition, two different types of extrusomes were identified according to their unique structures. Type I extrusomes (mucocysts) are crystalline, oval-shaped, 0.7-1.4 × 0.6-1.1 μm, and distributed as "rosettes" below the trophont membrane. Type II extrusomes, 2.0-3.0 × 0.2-0.3 μm, are rod-shaped with tubular cores and identified as toxicysts, the aggregation of which in the anterior part of the theront and cortex of the trophont revealed their potential roles in I. multifiliis invasion. This was confirmed by our transcriptome investigations of the three stages of I. multifiliis, which revealed that a set of genes involved in proteolysis and DNA/protein biogenesis was highly expressed in the theront and trophont. Furthermore, to map the molecular mechanisms of extrusome release, we characterized 25 Rab family genes in I. multifiliis and determined their expression profiles across the life cycle, reflecting the distribution patterns of the two extrusomes. Collectively, our data revealed that a highly developed extrusome system could play a potential role in the virulence of I. multifiliis, which facilitates a better understanding of the parasite's development.
Collapse
Affiliation(s)
- Hao Yang
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
| | - Zhe Wang
- Marine College, Shandong University, Weihai, China
| | - Jieyin Xiao
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
| | - Jingbo Hu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
| | - Xiao Tu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
| | - Zemao Gu
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan, China
- National Aquatic Animal Diseases Para-Reference Laboratory (HZAU), Wuhan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
13
|
Chen F, Zhang W, Xu X, Gui L, Lin Y, Wu M, Li J, Shen Y. Identification of Genes Related to Resistance to Ichthyophthirius multifiliis Based on Co-expression Network Analysis in Grass Carp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:824-836. [PMID: 37610535 DOI: 10.1007/s10126-023-10243-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
The ciliate protozoan Ichthyophthirius multifiliis is an essential parasite causing white spot disease in grass carp, leading to significant economic losses. Understanding the molecular basis of grass carp's response to I. multifiliis has important scientific and environmental values. The transcriptional network analysis offers a valuable strategy to decipher the changes in gene expression in grass carp infected with I. multifiliis. Our goal was to screen the genes and pathways involved in resistance to I. multifiliis in grass carp. The different traits exhibited by grass carp infected with I. multifiliis may be caused by the differences in gene expression among grass carp individuals. Herein, to reveal those resistance-associated genes against I. multifiliis infection, we performed RNA sequencing using weighted gene co-expression network analysis (WGCNA). The biological function analysis and hub gene annotation for highly relevant modules revealed that different pathogen recognition and clearance responses resulted in different resistance to I. multifiliis infection. Furthermore, gene enrichment analysis revealed that I. multifiliis invasion in the disease-resistant group mainly activated immune pathways, including scavenger receptor activity and kappa B kinase/NF-kappa B signaling. By the annotation of the highly correlated module of the hub gene, we revealed that the apoptosis and ribosome biogenesis-related genes were enriched in the disease-resistant grass carp. The results of the dark grey module showed that several genes were mainly enriched in the two-component system (ko02020) and steroid biosynthesis (ko00100), suggesting that they are resistance-associated and energy metabolism-associated genes. In the disease resistance group, hub genes mainly included Nlrc3, fos, AAP8, HAP2, HAX, cho2, and zgc:113,036. This study revealed the gene network associated with disease resistance after I. multifiliis infection. The disease resistance-related pathways and central genes identified in this study are candidate references for breeders breeding disease-resistant. The results of this study may also provide some references for the development of drugs to antagonize I. multifiliis infection.
Collapse
Affiliation(s)
- Feng Chen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Zhang
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China
| | - Yanfeng Lin
- Fisheries Station of Xiuning County, Huangshan, 245400, China
| | - Minglin Wu
- Fisheries Station of Xiuning County, Huangshan, 245400, China
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, 201306, China.
- Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China.
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
14
|
Cao ZY, Xi BW, Zhou QJ, Chen K, Xie J. Predation of Cyclopoid Copepods on the Theronts of Ichthyophthirius multifiliis: Shedding Light on Biocontrol of White Spot Disease. Pathogens 2023; 12:860. [PMID: 37513707 PMCID: PMC10386215 DOI: 10.3390/pathogens12070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
White spot disease, caused by the parasitic ciliate Ichthyophthirius multifiliis, is a significant threat to the freshwater fish farming industry worldwide, resulting in massive mortality and economic losses. Eliminating the free-swimming theronts from the culture environment is considered crucial for the control of I. multifiliis infection. It is well-documented that planktonic ciliates are valuable food resources for macro-zooplankton in aquatic ecosystems. In this study, we developed a fluorescence labeling method for alive theronts and found that cyclopoid copepods Thermocyclops taihokuensis, Mesocyclops spp., Macrocyclops sp., and Paracyclopina sp. present predation on the theronts in co-culture experiments. Laboratory challenge tests further confirmed that the presence of zooplankton in the culture water body significantly reduced the infection of I. multifiliis in goldfish (p < 0.01). Results from this study revealed that cyclopoid copepods have the potential to be used as biological control agents against white spot disease in aquaculture.
Collapse
Affiliation(s)
- Ze-Yi Cao
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Bing-Wen Xi
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Qing-Jie Zhou
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Kai Chen
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| | - Jun Xie
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
- Key Laboratory of Aquatic Animal Nutrition and Health, Freshwater Fisheries Research Center, Chinese Academy of Fishery Science, Wuxi 214081, China
| |
Collapse
|
15
|
Saleh M, Abdel-Baki AAS, Dkhil MA, El-Matbouli M, Al-Quraishy S. Silencing of heat shock protein 90 (hsp90): Effect on development and infectivity of Ichthyophthirius multifiliis. BMC Vet Res 2023; 19:62. [PMID: 36932404 PMCID: PMC10024447 DOI: 10.1186/s12917-023-03613-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/23/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Recently, an increasing number of ichthyophthiriasis outbreaks has been reported, leading to high economic losses in fisheries and aquaculture. Although several strategies, including chemotherapeutics and immunoprophylaxis, have been implemented to control the parasite, no effective method is available. Hence, it is crucial to discover novel drug targets and vaccine candidates against Ichthyophthirius multifiliis. For this reason, understanding the parasite stage biology, host-pathogen interactions, molecular factors, regulation of major aspects during the invasion, and signaling pathways of the parasite can promote further prospects for disease management. Unfortunately, functional studies have been hampered in this ciliate due to the lack of robust methods for efficient nucleic acid delivery and genetic manipulation. In the current study, we used antisense technology to investigate the effects of targeted gene knockdown on the development and infectivity of I. multifiliis. Antisense oligonucleotides (ASOs) and their gold nanoconjugates were used to silence the heat shock protein 90 (hsp90) of I. multifiliis. Parasite stages were monitored for motility and development. In addition, the ability of the treated parasites to infect fish and cause disease was evaluated. RESULTS We demonstrated that ASOs were rapidly internalized by I. multifiliis and distributed diffusely throughout the cytosol. Knocking down of I. multifiliis hsp90 dramatically limited the growth and development of the parasite. In vivo exposure of common carp (Cyprinus carpio) showed reduced infectivity of ASO-treated theronts compared with the control group. No mortalities were recorded in the fish groups exposed to theronts pre-treated with ASOs compared with the 100% mortality observed in the non-treated control fish. CONCLUSION This study presents a gene regulation approach for investigating gene function in I. multifiliis in vitro. In addition, we provide genetic evidence for the crucial role of hsp90 in the growth and development of the parasite, suggesting hsp90 as a novel therapeutic target for successful disease management. Further, this study introduces a useful tool and provides a significant contribution to the assessing and understanding of gene function in I. multifiliis.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria.
| | | | - Mohamed A Dkhil
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
- Scchool of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Genome-wide association study of host resistance to the ectoparasite Ichthyophthirius multifiliis in the Amazon fish Colossoma macropomum. Mol Biol Rep 2023; 50:599-607. [PMID: 36367660 DOI: 10.1007/s11033-022-08062-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/26/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Tambaqui, Colossoma macropomum, is the most important native fish species farmed in South America, particularly in Brazil, where its production is limited in the southern and southeastern regions due to disease outbreaks caused by the parasite Ichthyophthirius multifiliis. Therefore, genome level analysis to understand the genetic architecture of the host resistance against I. multifiliis is fundamental to improve this trait in tambaqui. The objective of the present study was to map QTL (quantitative trait loci) associated with resistance to I. multifiliis in tambaqui by GWAS (genome-wide association study). METHODS AND RESULTS Individuals belonging to seven families, which were previously submitted to an experimental challenge to assess the natural resistance to the parasite I. multifiliis, were used for genomic analysis. A total of 7717 SNPs were identified in this population by ddRAD (double digest restriction site associated DNA). GWAS revealed four SNPs significantly associated in the LGs (linkage groups) 2, 9, 11 and 20 for the traits time of death and parasite load. The SNPs explained a low proportion of the variance to I. multifiliis resistance for time of death and parasite load (about 0.622% and 0.375%, respectively). The SNPs were close to 11 genes related to the immune system: abcf3, znf830, ccr9, gli3, ackr4, tbata, ndr2, tgfbr3, nhej1, znf644b, and cldn10a. CONCLUSIONS In conclusion, the resistance to I. multifiliis is probably under polygenic control in tambaqui, in which different QTLs of low variance can be involved in the immune responses against this ectoparasite.
Collapse
|
17
|
In Vitro Assessment of Berberine against Ichthyophthirius multifiliis in Goldfish. Pathogens 2022; 11:pathogens11101207. [PMID: 36297264 PMCID: PMC9609421 DOI: 10.3390/pathogens11101207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022] Open
Abstract
Ichthyophthirius multifiliis is a pathogenic ciliate parasite, which infects almost all freshwater teleost fish and leads to significant economic losses. The present study aimed to evaluate the acute toxicity of berberine to the free-living stages of I. multifiliis, that is, theronts and tomonts. Our results indicated that 99.30% of I. multifiliis theronts were killed by a concentration of 15 mg/L berberine during the 4 h exposure time, while berberine had no effect on protomonts. Nevertheless, berberine at a concentration of 5 mg/L could effectively reduce the release of theronts from tomonts treated for 4 h. Additionally, according to the transmission electron microscopy results, berberine at 15 mg/L could strongly change the shape of protomonts, destroy their organelles, and significantly decrease the number of ribosomes. The median lethal concentration (LC50) of berberine for goldfish at 96 h was 528.44 mg/L, which was almost 67 times the median effective concentration (EC50) of berberine for killing theronts (7.86 mg/L). The results demonstrated that berberine could be an effective and safe potential parasiticide for killing I. multifiliis.
Collapse
|
18
|
Mun SJ, Cho E, Kim JS, Yang CS. Pathogen-derived peptides in drug targeting and its therapeutic approach. J Control Release 2022; 350:716-733. [PMID: 36030988 DOI: 10.1016/j.jconrel.2022.08.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 02/06/2023]
Abstract
Peptides, short stretches of amino acids or small proteins that occupy a strategic position between proteins and amino acids, are readily accessible by chemical and biological methods. With ideal properties for forming high-affinity and specific interactions with host target proteins, they have established an important niche in the drug development spectrum complementing small molecule and biological therapeutics. Among the most successful biomedicines in use today, peptide-based drugs show great promise. This, coupled with recent advances in synthetic and nanochemical biology, has led to the creation of tailor-made peptide therapeutics for improved biocompatibility. This review presents an overview of the latest research on pathogen-derived, host-cell-interacting peptides. It also highlights strategies for using peptide-based therapeutics that address cellular transport challenges through the introduction of nanoparticles that serve as platforms to facilitate the delivery of peptide biologics and therapeutics for treating various inflammatory diseases. Finally, this paper describes future perspectives, specific pathogen-based peptides that can enhance specificity, efficiency, and capacity in functional peptide-based therapeutics, which are in the spotlight as new treatment alternatives for various diseases, and also presents verified sequences and targets that can increase chemical and pharmacological value.
Collapse
Affiliation(s)
- Seok-Jun Mun
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Euni Cho
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea
| | - Jae-Sung Kim
- Department of Bionano Technology, Hanyang University, Seoul 04673, Republic of Korea; Institute of Natural Science & Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Chul-Su Yang
- Center for Bionano Intelligence Education and Research, Ansan 15588, Republic of Korea; Department of Molecular and Life Science, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
19
|
Kumar V, Das BK, Swain HS, Chowdhury H, Roy S, Bera AK, Das R, Parida SN, Dhar S, Jana AK, Behera BK. Outbreak of Ichthyophthirius multifiliis associated with Aeromonas hydrophila in Pangasianodon hypophthalmus: The role of turmeric oil in enhancing immunity and inducing resistance against co-infection. Front Immunol 2022; 13:956478. [PMID: 36119096 PMCID: PMC9478419 DOI: 10.3389/fimmu.2022.956478] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023] Open
Abstract
Ichthyophthirius multifiliis, a ciliated parasite causing ichthyophthiriasis (white spot disease) in freshwater fishes, results in significant economic loss to the aquaculture sector. One of the important predisposing factors for ichthyophthiriasis is low water temperature (i.e., below 20°C), which affects the health and makes freshwater fishes more susceptible to parasitic infections. During ichthyophthiriasis, fishes are stressed and acute immune reactions are compromised, which enables the aquatic bacterial pathogens to simultaneously infect the host and increase the severity of disease. In the present work, we aimed to understand the parasite–bacteria co-infection mechanism in fish. Later, Curcuma longa (turmeric) essential oil was used as a promising management strategy to improve immunity and control co-infections in fish. A natural outbreak of I. multifiliis was reported (validated by 16S rRNA PCR and sequencing method) in Pangasianodon hypophthalmus from a culture facility of ICAR-CIFRI, India. The fish showed clinical signs including hemorrhage, ulcer, discoloration, and redness in the body surface. Further microbiological analysis revealed that Aeromonas hydrophila was associated (validated by 16S rRNA PCR and sequencing method) with the infection and mortality of P. hypophthalmus, confirmed by hemolysin and survival assay. This created a scenario of co-infections, where both infectious agents are active together, causing ichthyophthiriasis and motile Aeromonas septicemia (MAS) in P. hypophthalmus. Interestingly, turmeric oil supplementation induced protective immunity in P. hypophthalmus against the co-infection condition. The study showed that P. hypophthalmus fingerlings supplemented with turmeric oil, at an optimum concentration (10 ppm), exhibited significantly increased survival against co-infection. The optimum concentration induced anti-stress and antioxidative response in fingerlings, marked by a significant decrease in cortisol and elevated levels of superoxide dismutase (SOD) and catalase (CAT) in treated animals as compared with the controls. Furthermore, the study indicated that supplementation of turmeric oil increases both non-specific and specific immune response, and significantly higher values of immune genes (interleukin-1β, transferrin, and C3), HSP70, HSP90, and IgM were observed in P. hypophthalmus treatment groups. Our findings suggest that C. longa (turmeric) oil modulates stress, antioxidant, and immunological responses, probably contributing to enhanced protection in P. hypophthalmus. Hence, the application of turmeric oil treatment in aquaculture might become a management strategy to control co-infections in fishes. However, this hypothesis needs further validation.
Collapse
Affiliation(s)
- V. Kumar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - B. K. Das
- Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
- *Correspondence: B. K. Das, ; B. K. Behera,
| | - H. S. Swain
- Fisheries Enhancement and Management (FEM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - H. Chowdhury
- Reservoir and Wetland Fisheries (RWF) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. Roy
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - A. K. Bera
- Fisheries Resource Assessment and Informatics (FRAI) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - R. Das
- Fisheries Enhancement and Management (FEM) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. N. Parida
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - S. Dhar
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - A. K. Jana
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
| | - B. K. Behera
- Aquatic Environmental Biotechnology and Nanotechnology (AEBN) Division, Indian Council of Agricultural Research (ICAR)-Central Inland Fisheries Research Institute (CIFRI), Barrackpore, India
- *Correspondence: B. K. Das, ; B. K. Behera,
| |
Collapse
|
20
|
Transcriptomic Differences between Free-Living and Parasitic Chilodonella uncinata (Alveolata, Ciliophora). Microorganisms 2022; 10:microorganisms10081646. [PMID: 36014062 PMCID: PMC9416717 DOI: 10.3390/microorganisms10081646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Chilodonella uncinata is a facultatively parasitic ciliate, which can opportunistically parasitize on fish gills and fins, and sometimes even cause host mortality. Previous molecular studies of C. uncinata mainly focused on genetic diversity and molecular evolution. There are currently no transcriptome reports studying differences between free-living and parasitic C. uncinata. We addressed this by sequencing transcriptomes of these two C. uncinata lifestyle types using Smart-seq2 and Illumina HiSeq technologies. In total, 1040 differentially expressed genes (DEGs) were identified. Compared with the free-living type, 494 genes of the parasitic type were downregulated and 546 genes were upregulated. These DEGs were identified through BLAST with NCBI-nr, Swiss-Port, and Pfam databases and then annotated by GO enrichment and KEGG pathway analysis. The results showed that parasitism-related genes such as heat shock proteins (HSPs), actin I, and leishmanolysin were significantly upregulated in parasitic C. uncinata. The ciliary-related dynein heavy chain also had a higher expression in parasitic C. uncinata. Furthermore, there were significant differences in the amino acid metabolism, fatty acid metabolism, lipid metabolism, and TCA cycle. This study increases the volume of molecular data available for C. uncinata and contributes to our understanding of the mechanisms underlying the transition from a free-living to a parasitic lifestyle.
Collapse
|
21
|
Huang X, Liu S, Zuo F, Luo L, Chen D, Ou Y, Geng Y, Zhang Y, Lin G, Yang S, Luo W, Yin L, He Z. cMOS enhanced the mucosal immune function of skin and gill of goldfish (Carassius auratus Linnaeus) to improve the resistance to Ichthyophthirius multifiliis infection. FISH & SHELLFISH IMMUNOLOGY 2022; 126:1-11. [PMID: 35595060 DOI: 10.1016/j.fsi.2022.05.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/10/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
of supporting mucosal immune barrier integrity and prevention of some pathogenic infections in aquatic species, are key areas of active study, often focusing on feed additives. The objectives of this study were to explore the effects of feeding cMOS (concentrated mannan oligosaccharide) on the gill and skin mucosal barriers of goldfish (Carassius auratus Linnaeus) and evaluate health status during Ichthyophthirius multifiliis infection. After feeding the cMOS-containing diet for 60 days, Hematoxylin and eosin (H&E) staining showed greater length of gill lamella and thicker dermal dense layer, while Alcian Blue and Periodic acid-Schiff (AB-PAS) staining showed higher numbers of mucin cells in cMOS fed fish. Chemical analysis showed that fish fed cMOS had greater enzyme activity of lysozyme (LZM) and alkaline phosphatase (AKP) in gill and skin tissues, while qRT-PCR revealed higher expression of Muc-2 and IL-1β, as well as lower expression of IL-10. After Ichthyophthirius multifiliis challenge, goldfish fed the cMOS diet had lower mortality and infection rates, as well as fewer visible white spots on the body surfaces. Histologically, the gill and skin of these fish presented less tissue damage and fewer parasites, and had a greater number of mucus cells. In addition, the expression of Muc-2 and IL-10 were notably higher while the expression of IL-1β was significantly lower in cMOS fed goldfish than control fed fish. In this study, cMOS fed goldfish had stronger immune barrier function of skin and gill mucous, and better survival following Ichthyophthirius multifiliis infection.
Collapse
Affiliation(s)
- Xiaoli Huang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Senyue Liu
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Fengyuan Zuo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lin Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Defang Chen
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yangping Ou
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, 611130, Sichuan, China
| | - Yi Geng
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, 611130, Sichuan, China.
| | - Yufan Zhang
- Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Gang Lin
- Alltech Biological Products (China) Co. Ltd, 100060, Beijing, China
| | - Shiyong Yang
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Wei Luo
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Lizi Yin
- Department of Basic Veterinary, College of Veterinary Medicine, Sichuan Agricultural University, Chendu, 611130, Sichuan, China
| | - Zhi He
- Department of Aquaculture, College of Animal Science & Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
22
|
Fu YW, Liu WD, Chen HZ, Lin DJ, Hou TL, Guo SQ, Zhang QZ. Antiparasitical efficacy of sophoraflavanone G isolated from Sophora flavescens against parasitic protozoa Ichthyophthirius multifiliis. Vet Parasitol 2022; 306:109731. [DOI: 10.1016/j.vetpar.2022.109731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/30/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
23
|
Haites RE, Watt AE, Russell DA, Billman-Jacobe H. Infection of Slugs with Theronts of the Ciliate Protozoan, Tetrahymena rostrata. Microorganisms 2021; 9:1970. [PMID: 34576866 PMCID: PMC8467718 DOI: 10.3390/microorganisms9091970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/26/2022] Open
Abstract
Tetrahymena rostrata is a free-living ciliated protozoan and is a facultative parasite of some species of terrestrial mollusks. It is a potential biopesticide of pest slugs, such as the grey field slug, which cause considerable damage to crops. T. rostrata has several developmental forms. Homogeneous preparations of the feeding stage cells (trophonts) and excysted stage cells (theronts) were compared for their ability to infect and kill Deroceras reticulatum slugs. Theronts were more effective and remained viable and infective, even after prolonged starvation.
Collapse
Affiliation(s)
| | | | | | - Helen Billman-Jacobe
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne 3010, Australia; (R.E.H.); (A.E.W.); (D.A.R.)
| |
Collapse
|
24
|
Irnidayanti Y, Reforina A, Andriyanto S. Effects of Extract of Betel Leaf (Piperaceae) against Ectoparasite "Ich" on Pangasius Catfish. Pak J Biol Sci 2021; 24:905-912. [PMID: 34486358 DOI: 10.3923/pjbs.2021.905.912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Freshwater fish aquaculture in Indonesia has grown rapidly, especially the aquaculture of catfish (<i>Pangasianodon hypophthalmus</i>). This species is very good because it is fast-growing and very popular in the market and is important for national food security in many Asian countries. One of the problems faced by freshwater fish aquaculture is ectoparasite <i>Ichthyophthirius multifiliis</i> infection, which often results in significant economic losses to freshwater fish aquaculture. This study aimed to check the effect extract of betel leaf against the ectoparasite, <i>Ichthyophthirius multifiliis</i> in pangasius catfish in an eco-friendly manner. <b>Materials and Methods:</b> A total of 120 fishes with a mean weight of 4.17±0.96 g and a length of 8.5±0.67 cm were examined. Preliminary research was carried out to detect ectoparasites in fish. All fish was infected with ectoparasitic Ich (100%) and were identified as a salt-like granule white spot and a large C-shaped macronucleus. Infected fishes were transferred and equally distributed to the tank (20 L water) which had previously been treated with betel leaf extract for 24 hrs, 3 days, at doses 2.5, 5 and 7.5 g L<sup></sup><sup>1</sup> and control. <b>Results:</b> The results showed that the betel leaf extract solution effect decreased significantly to the number of ectoparasites <i>Ichthyophthirius multifiliis</i>, both in mucus and pangasius catfish and a dose of 7.5 g L<sup></sup><sup>1</sup> was the optimum dose. <b>Conclusion:</b> Betel leaf extract has the potential to control the decrease in the number of ectoparasites, though further phytochemical studies will need to be performed.
Collapse
|
25
|
Roh H, Kim N, Lee Y, Park J, Kim BS, Lee MK, Park CI, Kim DH. Dual-Organ Transcriptomic Analysis of Rainbow Trout Infected With Ichthyophthirius multifiliis Through Co-Expression and Machine Learning. Front Immunol 2021; 12:677730. [PMID: 34305907 PMCID: PMC8296305 DOI: 10.3389/fimmu.2021.677730] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/31/2021] [Indexed: 01/16/2023] Open
Abstract
Ichthyophthirius multifiliis is a major pathogen that causes a high mortality rate in trout farms. However, systemic responses to the pathogen and its interactions with multiple organs during the course of infection have not been well described. In this study, dual-organ transcriptomic responses in the liver and head kidney and hemato-serological indexes were profiled under I. multifiliis infection and recovery to investigate systemic immuno-physiological characteristics. Several strategies for massive transcriptomic interpretation, such as differentially expressed genes (DEGs), Poisson linear discriminant (PLDA), and weighted gene co-expression network analysis (WGCNA) models were used to investigate the featured genes/pathways while minimizing the disadvantages of individual methods. During the course of infection, 6,097 and 2,931 DEGs were identified in the head kidney and liver, respectively. Markers of protein processing in the endoplasmic reticulum, oxidative phosphorylation, and the proteasome were highly expressed. Likewise, simultaneous ferroptosis and cellular reconstruction was observed, which is strongly linked to multiple organ dysfunction. In contrast, pathways relevant to cellular replication were up-regulated in only the head kidney, while endocytosis- and phagosome-related pathways were notably expressed in the liver. Moreover, interestingly, most immune-relevant pathways (e.g., leukocyte trans-endothelial migration, Fc gamma R-mediated phagocytosis) were highly activated in the liver, but the same pathways in the head kidney were down-regulated. These conflicting results from different organs suggest that interpretation of co-expression among organs is crucial for profiling of systemic responses during infection. The dual-organ transcriptomics approaches presented in this study will greatly contribute to our understanding of multi-organ interactions under I. multifiliis infection from a broader perspective.
Collapse
Affiliation(s)
- HyeongJin Roh
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Nameun Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Yoonhang Lee
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Jiyeon Park
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| | - Bo Seong Kim
- Aquatic Disease Control Division, National Institute of Fisheries Science (NIFS), Busan, South Korea
| | - Mu Kun Lee
- Korean Aquatic Organism Disease Inspector Association, Busan, South Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, Tongyeong, South Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, South Korea
| |
Collapse
|
26
|
da Silva Costa F, Júnio Pedroso Dias R, Fonseca Rossi M. Macroevolutionary analyses of ciliates associated with hosts support high diversification rates. Int J Parasitol 2021; 51:967-976. [PMID: 33991568 DOI: 10.1016/j.ijpara.2021.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 11/17/2022]
Abstract
Ciliophora is a phylum that is comprised of extremely diverse microorganisms with regard to their morphology and ecology. They may be found in various environments, as free-living organisms or associated with metazoans. Such associations range from relationships with low metabolic dependence such as epibiosis, to more intimate relationships such as mutualism and parasitism. We know that symbiotic relationships occur along the whole phylogeny of the group, however, little is known about their evolution. Theoretical studies show that there are two routes for the development of parasitism, yet few authors have investigated the evolution of these characteristics using molecular tools. In the present study, we inferred a wide dated molecular phylogeny, based on the 18S rDNA gene, for the entire Ciliophora phylum, mapped life habits throughout the evolutionary time, and evaluated whether symbiotic relationships were linked to the variation in diversification rates and to the mode of evolution of ciliates. Our results showed that the last common ancestor for Ciliophora was likely a free-living organism, and that parasitism is a recent adaptation in ciliates, emerging more than once and independently via two distinct routes: (i) a free-living ciliate evolved into a mutualistic organism and, later, into a parasitic organism, and (ii) a free-living ciliate evolved directly into a parasitic organism. Furthermore, we have found a significant increase in the diversification rate of parasitic and mutualistic ciliates compared with their free-living conspecifics. The evolutionary success in different lineages of symbiont ciliates may be associated with many factors including type and colonization placement on their host, as well as physical and physiological conditions made available by the hosts.
Collapse
Affiliation(s)
- Fabiola da Silva Costa
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Roberto Júnio Pedroso Dias
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Mariana Fonseca Rossi
- Protozoology Laboratory (LabProto), Biological Sciences Institute, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Biodiversity and Nature Conservation Post-Graduation Program, Biological Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil.
| |
Collapse
|
27
|
Abu-Elala NM, Attia MM, Abd-Elsalam RM, Gamal A, Younis NA. Peracetic acid treatment of Ichthyophthirius multifiliis (Ciliophora: Ichthyophthiriidae) and Trichodina spp. reduces the infection by Aeromonas hydrophila and improves survival in Nile tilapia (Oreochromis niloticus). AQUACULTURE 2021; 538:736591. [DOI: 10.1016/j.aquaculture.2021.736591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
28
|
Mangus LM, França MS, Shivaprasad HL, Wolf JC. Research-Relevant Background Lesions and Conditions in Common Avian and Aquatic Species. ILAR J 2021; 62:169-202. [PMID: 33782706 DOI: 10.1093/ilar/ilab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022] Open
Abstract
Non-mammalian vertebrates including birds, fish, and amphibians have a long history of contributing to ground-breaking scientific discoveries. Because these species offer several experimental advantages over higher vertebrates and share extensive anatomic and genetic homology with their mammalian counterparts, they remain popular animal models in a variety of fields such as developmental biology, physiology, toxicology, drug discovery, immunology, toxicology, and infectious disease. As with all animal models, familiarity with the anatomy, physiology, and spontaneous diseases of these species is necessary for ensuring animal welfare, as well as accurate interpretation and reporting of study findings. Working with avian and aquatic species can be especially challenging in this respect due to their rich diversity and array of unique adaptations. Here, we provide an overview of the research-relevant anatomic features, non-infectious conditions, and infectious diseases that impact research colonies of birds and aquatic animals, including fish and Xenopus species.
Collapse
Affiliation(s)
- Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Monique S França
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, Georgia, USA
| | - H L Shivaprasad
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Tulare, California, USA
| | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| |
Collapse
|
29
|
Shivam S, El-Matbouli M, Kumar G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines (Basel) 2021; 9:179. [PMID: 33672552 PMCID: PMC7923790 DOI: 10.3390/vaccines9020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Globally, parasites are increasingly being recognized as catastrophic agents in both aquaculture sector and in the wild aquatic habitats leading to an estimated annual loss between 1.05 billion and 9.58 billion USD. The currently available therapeutic and control measures are accompanied by many limitations. Hence, vaccines are recommended as the "only green and effective solution" to address these concerns and protect fish from pathogens. However, vaccine development warrants a better understanding of host-parasite interaction and parasite biology. Currently, only one commercial parasite vaccine is available against the ectoparasite sea lice. Additionally, only a few trials have reported potential vaccine candidates against endoparasites. Transcriptome, genome, and proteomic data at present are available only for a limited number of aquatic parasites. Omics-based interventions can be significant in the identification of suitable vaccine candidates, finally leading to the development of multivalent vaccines for significant protection against parasitic infections in fish. The present review highlights the progress in the immunobiology of pathogenic parasites and the prospects of vaccine development. Finally, an approach for developing a multivalent vaccine for parasitic diseases is presented. Data sources to prepare this review included Pubmed, google scholar, official reports, and websites.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| |
Collapse
|
30
|
Jaafar R, Ødegård J, Mathiessen H, Karami AM, Marana MH, von Gersdorff Jørgensen L, Zuo S, Nielsen T, Kania PW, Buchmann K. Quantitative trait loci (QTL) associated with resistance of rainbow trout Oncorhynchus mykiss against the parasitic ciliate Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2020; 43:1591-1602. [PMID: 32944955 PMCID: PMC7692903 DOI: 10.1111/jfd.13264] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/20/2020] [Accepted: 08/23/2020] [Indexed: 06/11/2023]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis has a low host specificity eliciting white spot disease (WSD) in a wide range of freshwater fishes worldwide. The parasite multiplies rapidly whereby the infection may reach problematic levels in a host population within a few days. The parasite targets both wild and cultured fish but the huge economic impact of the protozoan is associated with mortality, morbidity and treatment in aquacultural enterprises. We have investigated the potential for genetic selection of WSD-resistant strains of rainbow trout. Applying the DNA typing system Affymetrix® and characterizing the genome of the individual fish by use of 57,501 single nucleotide polymorphisms (SNP) and their location on the rainbow trout chromosomes, we have genetically characterized rainbow trout with different levels of natural resistance towards WSD. Quantitative trait loci (QTL) used for the selection of breeders with specific markers for resistance are reported. We found a significant association between resistance towards I. multifiliis infection and SNP markers located on the two specific rainbow trout chromosomes Omy 16 and Omy 17. Comparing the expression of immune-related genes in fish-with and without clinical signs-we recorded no significant difference. However, trout surviving the infection showed high expression levels of genes encoding IgT, T-cell receptor TCRβ, C3, cathelicidins 1 and 2 and SAA, suggesting these genes to be associated with protection.
Collapse
Affiliation(s)
- R Jaafar
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | | | - H Mathiessen
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - A M Karami
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - M H Marana
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - L von Gersdorff Jørgensen
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - S Zuo
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | | | - P W Kania
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| | - K Buchmann
- Laboratory of Aquatic PathobiologyDepartment of Veterinary and Animal SciencesFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg C.Denmark
| |
Collapse
|
31
|
Xu DH, Zhang D, Shoemaker C, Beck B. Dose effects of a DNA vaccine encoding immobilization antigen on immune response of channel catfish against Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:1031-1041. [PMID: 32805416 DOI: 10.1016/j.fsi.2020.07.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 07/21/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Channel catfish (Ictalurus punctatus) vaccinated with pcDNA3.1-IAg52b plasmid DNA vaccine encoding immobilization antigen genes of Ichthyophthirius multifiliis (Ich) produced anti-Ich antibodies and were partially protected (20% survival) in a previous study. Here we evaluated whether a higher dose or two doses of pcDNA3.1-IAg52b vaccine could provide better protection for catfish against Ich. Fish were distributed into 6 groups and vaccinated using following schemes: 1.10 μg pcDNA3.1-IAg52b fish-1, 2.20 μg pcDNA3.1-IAg52b fish-1, 3. two doses of 10 μg pcDNA3.1-IAg52b fish-1 with 7 days between doses, 4.20 μg pcDNA3.1 fish-1 (mock-vaccinated control), 5.15,000 live theronts fish-1 (positive control), and 6. non-vaccinated and non-challenge control. Parasite infection levels, serum anti-Ich antibody levels, fish mortality and immune-related gene expression were determined during the trial. Fish vaccinated with a single dose of 20 μg pcDNA3.1-IAg52b fish-1 or two doses of 10 μg fish-1 had higher anti-Ich antibody levels than fish receiving a single dose of 10 μg fish-1. Survival was significantly higher in fish receiving 20 μg vaccine fish-1 (35.6%) or 2 doses of 10 μg fish-1 (48.9%) than fish injected with a single dose of 10 μg fish-1 (15.6%) or mock-vaccinated control (0%). Fish vaccinated at the dose 20 μg fish-1 had higher expression of vaccine DNA in muscle than fish vaccinated with 10 μg fish-1. Fish vaccinated with the DNA vaccine showed higher up-regulation than mock-vaccinated control in the expression of IgM, CD4, MHC I and TcR-α genes during most of time points after vaccination. Further studies are needed to improve efficacy of DNA vaccines by using multiple antigens in the DNA vaccines.
Collapse
Affiliation(s)
- De-Hai Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA.
| | - Dunhua Zhang
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| | - Craig Shoemaker
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| | - Benjamin Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| |
Collapse
|
32
|
First Captive Breeding Program for the Endangered Pyrenean Sculpin (Cottus hispaniolensis Bacescu-Master, 1964). WATER 2020. [DOI: 10.3390/w12112986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The strong decline of freshwater fish species in Europe implies that further ex-situ conservation plans should be implemented in the near future. The present study reflects our experience with the Pyrenean sculpin (Cottus hispaniolensis Bacescu-Mester, 1964)—a small cottid endemic to the Hispano-French Garona River basin. In recent years, the Spanish Pyrenean sculpin population has reached a limit situation. Because of that, the non-profit association ADEFFA—with support from the public administration—started the first captive breeding program for this species in 2006. Fourteen years later, this study presents the results and evaluates the different steps of the program, with the aim of discussing and improving the ex-situ conservation plans for this and other cold freshwater species. There is a description and a comparison between six consecutive phases during the captive breeding process: nesting behaviour, courtship, egg fixation, parental care (incubation), hatching and survival during juvenile development. The purposes of this project are to: (1) identify the most determining phases for a successful captive breeding; (2) identify the factors that had a major influence to the success of the critical phases; and (3) increase the number of the offspring. This study is based on thirty-three wild individuals collected from Garona River (Val d’Aran, Spanish Pyrenees). During the program, twelve couples spawned in captive conditions, with around 2300 eggs laid. Eight couples bred successfully, with 751 hatched individuals and 608 juveniles reared. The analysis of each step of the captive breeding does not reveal significant differences between phases, so it can be concluded that they are all critical at the same level. In the literature, similar study-cases of captive breeding programs identify incubation and survival phases as the most critical. Consequently, the management made for this project has probably allowed to overcome in part the main impediments described in other similar programs.
Collapse
|
33
|
Buchmann K. Immune response to Ichthyophthirius multifiliis and role of IgT. Parasite Immunol 2020; 42:e12675. [PMID: 31587318 PMCID: PMC7507210 DOI: 10.1111/pim.12675] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/19/2019] [Accepted: 10/02/2019] [Indexed: 12/24/2022]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis causes white spot disease in freshwater fish worldwide. The theront penetrates external surfaces of the naïve fish where it develops into the feeding trophont stage and elicits a protective immune response both at the affected site as well as at the systemic level. The present work compiles data and presents an overall model of the protective reactions induced. A wide spectrum of inflammatory reactions are established upon invasion but the specific protection is provided by adaptive factors. Immunoglobulin IgT is involved in protection of surfaces in several fish species and is thereby one of the first adaptive immune molecules reacting with the penetrating theront. IgT producing lymphocytes occur in epithelia, dispersed or associated with lymphoid cell aggregations (skin epidermis, fins, gills, nostrils and buccal cavities) but they are also present in central immune organs such as the head kidney, spleen and liver. When theronts invade immunized fish skin, they are encountered by host factors which opsonize the parasite and may result in complement activation, phagocytosis or cell-mediated killing. However, antibody (IgT, IgM and IgD) binding to parasite cilia has been suggested to alter parasite behaviour and induce an escape reaction, whereby specific IgT (or other classes of immunoglobulin in fish surfaces) takes a central role in protection against the parasite.
Collapse
Affiliation(s)
- Kurt Buchmann
- Department of Veterinary and Animal ScienceFaculty of Health and Medical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
34
|
Nguyen VV, Dong HT, Senapin S, Kayansamruaj P, Pirarat N, Rung-Ruangkijkrai T, Tiawsirisup S, Rodkhum C. Synergistic infection of Ichthyophthirius multifiliis and Francisella noatunensis subsp. orientalis in hybrid red tilapia (Oreochromis sp.). Microb Pathog 2020; 147:104369. [PMID: 32634614 DOI: 10.1016/j.micpath.2020.104369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 11/28/2022]
Abstract
Francisella noatunensis subsp. orientalis (Fno) and Ichthyophthirius multifiliis (Ich) are deadly infectious pathogens in farmed tilapia, particularly during cold season when the water temperature drops to under 25 °C. We hypothesized that infection of the ectoparasite Ich might enhance susceptibility of hybrid red tilapia (Oreochromis sp.) to the facultative intracellular bacterium Fno. To prove the hypothesis, the experiment was designed as follows. Hybrid red tilapia naturally infected by Ich at 9 ± 6 theronts/fish gills and 4 ± 3 theronts/fish skin were distributed into 5 distinct groups exposed to different concentrations of Fno. In parallel, the same number of Ich-free tilapia were challenged to only Fno in the same manner. The results showed that cumulative mortality in the Fno single infection with 2.88 × 106 CFU mL-1 of water was 25 ± 7%, whereas 100% mortality was found in the coinfection treatment at dose of 1.93 × 105 CFU mL-1 of water. No mortality was observed in both control groups (Ich-infected and Ich-free fish). The coinfected fish revealed typical clinical signs and histopathological manifestations of francisellosis and ichthyophthiriasis. This study revealed synergistic effect of the Ich and Fno infection in hybrid red tilapia leading to the exacerbated mortality. Thus, farming management of fish to be free from the Ich ectoparasite might reduce risk of francisellosis and probably other bacterial diseases in farmed tilapia.
Collapse
Affiliation(s)
- Vuong Viet Nguyen
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand; Research Institute of Aquaculture No. 1 (RIA1), Bac Ninh, Viet Nam
| | - Ha Thanh Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, Thailand
| | - Saengchan Senapin
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand; Fish Health Platform, Center of Excellence for Shrimp Molecular Biology and Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Nopadon Pirarat
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Tilladit Rung-Ruangkijkrai
- Department of Veterinary Anatomy, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Sonthaya Tiawsirisup
- The Veterinary Parasitology Unit, Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Channarong Rodkhum
- Fish Infectious Diseases Research Unit (FID RU), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
35
|
Tange EØ, Mathiessen H, Jørgensen LVG. Effects of pH on free-living stages of a Nordic strain of the economically important freshwater fish parasite Ichthyophthirius multifiliis. Int J Parasitol 2020; 50:859-864. [PMID: 32622689 DOI: 10.1016/j.ijpara.2020.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 03/06/2020] [Accepted: 04/18/2020] [Indexed: 11/18/2022]
Abstract
Ichthyophthirius multifiliis is a unicellular freshwater fish parasite and the causative agent of the globally distributed white spot disease. The fitness of the parasite depends on available hosts and abiotic factors such as temperature, salinity and pH. With climatic change these abiotic factors may be altered, thereby influencing the health of the parasite. In this study, the tolerance towards different pH values (2-11) was investigated on a Nordic strain of the parasite by recording tomont survival, release of theronts, theront size and theront survival. Tomonts were able to survive and release theronts in pH 5-10, however the number of released theronts was significantly lower at high and low pH. Theronts produced at pH 8 and exposed to the different pH values survived at pH 4-10 for 1 h, which may be sufficient time for the parasite to locate and infect new hosts. The release of theronts was slower at pH 10, and the size of theronts developed at higher pH was significantly increased (up to 73.5 µm in length). In conclusion, our study showed that the free-living stages of I. multifiliis were capable of surviving at a pH from 5 to10, and that high pH had an effect on the morphology and release of the parasites.
Collapse
Affiliation(s)
- Esther Ørgård Tange
- Department of Veterinary and Animal Sciences, Section of Parasitology and Aquatic Pathobiology, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Heidi Mathiessen
- Department of Veterinary and Animal Sciences, Section of Parasitology and Aquatic Pathobiology, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Louise von Gersdorff Jørgensen
- Department of Veterinary and Animal Sciences, Section of Parasitology and Aquatic Pathobiology, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
36
|
Models suggest pathogen risks to wild fish can be mitigated by acquired immunity in freshwater aquaculture systems. Sci Rep 2020; 10:7513. [PMID: 32372052 PMCID: PMC7200699 DOI: 10.1038/s41598-020-64023-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/08/2020] [Indexed: 11/08/2022] Open
Abstract
The interaction of pathogens between wild and farmed aquatic animal populations is a concern that remains unclear and controversial. Ichthyophthirius multifiliis, a ciliated protozoan parasite, is a pathogen of freshwater finfish species with geographic and host range that causes significant economic losses in aquaculture. Flow-through farming systems may facilitate the transfer of such a parasite with free-living stages between farmed and wild stocks. Here, experimental and field study infection data are used to describe the infection dynamics of Ichthyophthirius multifiliis in rainbow trout using a simple macroparasite model by including host resistance. The study considered flow-through farming systems with a single or two age-class compartments and simulated the transfer of the parasite between farmed and wild fish populations. Results suggest that aquaculture can promote the prevalence of the resistance in wild stocks by increasing the parasite population in the wild environment. At the same time, acquired resistance in the farmed fish population may protect the wild fish population from lethal effects of the parasite by reducing the total parasite population. This study offers a promising mathematical basis for understanding the effects of freshwater aquaculture in disease spread in wildlife, developing risk assessment modeling, and exploring new ways of aquaculture management.
Collapse
|
37
|
Xu DH, Zhang D, Shoemaker C, Beck B. Immune response of channel catfish (Ictalurus punctatus) against Ichthyophthirius multifiliis post vaccination using DNA vaccines encoding immobilization antigens. FISH & SHELLFISH IMMUNOLOGY 2019; 94:308-317. [PMID: 31470140 DOI: 10.1016/j.fsi.2019.08.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
The channel catfish (Ictalurus punctatus) immune response against Ichthyophthirius multifiliis (Ich) after vaccination using plasmid DNA vaccines pcDNA3.1-IAg52a and pcDNA3.1-IAg52b, encoding Ich immobilization antigen genes was studied. Parasite infection level, serum anti-Ich antibodies level, fish mortality after theront challenge, and immune-related gene expression were measured. After in vitro transfection of walking catfish gill cells (G1b) with both pcDNA3.1-IAg52a and pcDNA3.1-IAg52b, antigens IAG52A and IAG52B were detected. During the vaccination trial, 76-fold increase in the Iag52b gene expression was observed in the vaccinated fish group h4 post vaccination. Administration of DNA vaccines by IM injection induced significant gene up-regulation in the head kidney, including immunoglobulin M (IgM), cluster of differentiation 4 (CD4), major histocompatibility I (MHC I), and T cell receptor α (TcR-α) from h4 to d5 post immunization. Fish vaccinated with DNA vaccines or theronts showed increased gene expression of the cytokine interferon (IFN-γ), complement component 3 (C3), and toll-like receptor-1 (TLR-1). Anti-Ich antibodies were detected in fish received pcDNA3.1-IAg52a, pcDNA3.1-IAg52b and the combination of both vaccines d10 post vaccination. Fish vaccinated with pcDNA3.1-IAg52b showed mild parasite infection level, partial survival (20%) and longer mean day to death (MDD) after theront challenge. By contrast, a heavy parasite load, 0% survival and short MDD were observed in the sham vaccinated control fish that received pcDNA3.1 (plasmid without genes encoding Ich immobilization antigen). Further research is needed to improve DNA vaccines for Ich that can induce strong protective immunity in fish. Suggested studies include improved transfection efficiency, use of appropriate adjuvants and including additional parasite antigen genes in the plasmid.
Collapse
Affiliation(s)
- De-Hai Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA.
| | - Dunhua Zhang
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| | - Craig Shoemaker
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| | - Benjamin Beck
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| |
Collapse
|
38
|
Syahputra K, Kania PW, Al-Jubury A, Marnis H, Setyawan AC, Buchmann K. Differential immune gene response in gills, skin, and spleen of rainbow trout Oncorhynchus mykiss infected by Ichthyophthirius multifiliis. PLoS One 2019; 14:e0218630. [PMID: 31220151 PMCID: PMC6586319 DOI: 10.1371/journal.pone.0218630] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/05/2019] [Indexed: 01/14/2023] Open
Abstract
Infection of rainbow trout with the parasitic ciliate Ichthyopthirius multifiliis induces differential responses in gills, skin and spleen. A controlled experimental infection was performed and expression of immune-relevant genes in skin, gills, and spleen were recorded by qPCR at day 1 and 8 after parasite exposure. Infection induced a marked reaction involving regulation of innate and adaptive immune genes in rainbow trout at day 8 post-infection. The expression level of a total of 22 out of 24 investigated genes was significantly higher in gills compared to skin reflecting the more sensitive and delicate structure of gills. Especially pro-inflammatory cytokines IL-6, IL-17 C1, regulatory cytokines IL-4/13A, IL-10, TGFβ, complement factor C5, chemokines CK10, CK12, acute phase proteins (precerebellin, hepcidin) and immunoglobulins (IgM, IgT) displayed differential expression levels. The spleen, a central immune organ with no trace of the parasite, showed elevated expression of IgM, IgT, complement factor C5 and chemokine CK10 (compared to skin and gills directly exposed to the parasite), indicating an interaction between the infected surface sites and central immune organs. This communication could be mediated by chemokines CK10 and CK12 and cytokine IL-4/13A and may at least partly explain the establishment of a systemic response in rainbow trout against the parasite.
Collapse
Affiliation(s)
- Khairul Syahputra
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| | - Per W. Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Huria Marnis
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Agung Cahyo Setyawan
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
39
|
Howell CK, Atkinson SD, Bartholomew JL, Hallett SL. Development and application of a qPCR assay targeting Ichthyophthirius multifiliis in environmental water samples. DISEASES OF AQUATIC ORGANISMS 2019; 134:43-55. [PMID: 32132272 DOI: 10.3354/dao03351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ichthyophthirius multifiliis (Ich) is a globally distributed, freshwater parasitic ciliate that infects wild and cultured fishes. It has a direct, temperature-dependent life cycle that enables rapid multiplication when hosts are plentiful and environmental conditions are favorable. Accurate detection is central to the control of Ich infections and prevention of host mortality, particularly in wild systems where chemical treatments are not feasible. In the Klamath River, California, USA, the parasite threatens pre-spawning adult salmon Oncorhynchus spp. Currently, Ich is monitored by lethal sampling of fish hosts and visual quantification of parasite load. This method is insensitive to light infections, contributes to pre-spawn mortality of wild salmon, and does not allow for population-level disease risk assessments. We developed and applied an alternate sampling method based on molecular analysis of water samples for parasite DNA. We sequenced the small subunit ribosomal DNA (ssrDNA) of Ich isolates collected from the Klamath River, and then developed and validated a novel qPCR assay (SYTO9) that targets Ich ssrDNA. Our assay has better specificity than previously published assays, with strong linearity, efficiency and repeatability. The limit of detection was 50 copies of ssrDNA, equivalent to ~2 theronts in a sample. We found that Ich abundance in environmental water samples collected from the lower Klamath River from July to October, 2014 through 2016, related to observed parasite load on salmon sampled concurrently, indicating that the qPCR assay could be a useful monitoring tool for Ich in the Klamath River, with applications beyond the region.
Collapse
Affiliation(s)
- Claire K Howell
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | | | |
Collapse
|
40
|
Wang Q, Yu Y, Zhang X, Xu Z. Immune responses of fish to Ichthyophthirius multifiliis (Ich): A model for understanding immunity against protozoan parasites. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 93:93-102. [PMID: 30630003 DOI: 10.1016/j.dci.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/05/2019] [Accepted: 01/05/2019] [Indexed: 06/09/2023]
Abstract
The parasitic ciliate Ichthyophthirius multifiliis (Ich), which infects almost all freshwater fish species, provides an optimal model for the study of immunity against extracellular protozoa. Ich invades the epithelia of mucosal tissues, forms white spots covering the whole body, and induces high mortality, while survivor fish develop both innate and adaptive immunity against Ich attack in systemic and mucosal tissues. Besides the protective roles of the Toll-like receptor (TLR)-mediated innate immune response, the critical immune functions of novel IgT in the skin, gut, gill, and olfactory organ of teleosts have been demonstrated in recent years, and all this information contributes to the ontogeny of the mucosal immune response in vertebrates. Especially in rainbow trout, Ich-infected fish exhibited higher IgT concentrations and titers in the mucosa and increased IgT+ B-lymphocyte proliferation in mucosal tissues. IgM mainly functions in the adaptive immune response in the systemic tissues of rainbow trout, accompanied with increased IgM+ B-lymphocyte proliferation in the head kidney of Ich-infected trout. However, little is known about the interaction between these mucosal tissues and systemic immune organs and the interaction between the inductive immune organs and functional immune organs. Immobilization antigens (Iags), located on the parasite cell and ciliary membranes, have been characterized to be targeted by specific antibodies produced in the host. The crosslinking of antigens mediated by antibodies triggers either an escape response or the immobilization of Ich. With more knowledge about the Iags of Ich and the immunity of teleosts, a more targeted vaccine, even a DNA vaccine, can be developed for the immune control strategy of Ich. Due to the high frequency of clinical fish ichthyophthiriasis, the study of fish immune responses to Ich provides an optimal experimental model for understanding immunity against extracellular protozoa.
Collapse
Affiliation(s)
- Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yongyao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiaoting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
41
|
Syahputra K, Kania PW, Al-Jubury A, Jafaar RM, Dirks RP, Buchmann K. Transcriptomic analysis of immunity in rainbow trout (Oncorhynchus mykiss) gills infected by Ichthyophthirius multifiliis. FISH & SHELLFISH IMMUNOLOGY 2019; 86:486-496. [PMID: 30513380 DOI: 10.1016/j.fsi.2018.11.075] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/22/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The parasite Ichthyophthirius multifiliis infecting skin, fins and gills of a wide range of freshwater fish species, including rainbow trout, is known to induce a protective immune response in the host. Although a number of studies have reported activation of several immune genes in infected fish host, the immune response picture is still considered incomplete. In order to address this issue, a comparative transcriptomic analysis was performed on infected versus uninfected rainbow trout gills and it showed that a total of 3352 (7.2%) out of 46,585 identified gene sequences were significantly regulated after parasite infection. Of differentially expressed gene sequences, 1796 genes were up-regulated and 1556 genes were down-regulated. These were classified into 61 Gene Ontology (GO) terms and mapped to 282 reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Infection of I. multifiliis induced a clear differential expression of immune genes, related to both innate and adaptive immunity. A total of 268 (6.86%) regulated gene sequences were known to take part in 16 immune-related pathways. These involved pathways related to the innate immunity such as the Chemokine signaling pathway, Platelet activation, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and Leukocyte transendothelial migration. Elevated transcription of genes encoding the TLR 8 gene and chemokines (CCL4, CCL19, CCL28, CXCL8, CXCL11, CXCL13, CXCL14) was recorded indicating their roles in recognition of I. multifiliis and subsequent induction of the inflammatory response, respectively. A number of upregulated genes in infected gills were associated with antigen processing/presentation and T and B cell receptor signaling (including B cell marker CD22 involved in B cell development). Overall the analysis supports the notion that I. multifiliis induces a massive and varied innate response upon which a range of adaptive immune responses are established which may contribute to the long lasting protection of immunized rainbow trout.
Collapse
Affiliation(s)
- Khairul Syahputra
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark.
| | - Per W Kania
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Azmi Al-Jubury
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Rzgar M Jafaar
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, the Netherlands
| | - Kurt Buchmann
- Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
42
|
Fu YW, Wang B, Zhang QZ, Xu DH, Liu YM, Hou TL, Guo SQ. Efficacy and antiparasitic mechanism of 10-gingerol isolated from ginger Zingiber officinale against Ichthyophthirius multifiliis in grass carp. Vet Parasitol 2019; 265:74-84. [PMID: 30638524 DOI: 10.1016/j.vetpar.2018.11.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/23/2018] [Accepted: 11/26/2018] [Indexed: 10/27/2022]
Abstract
Ichthyophthirius multifiliis is a ciliate parasite of freshwater fish with a global distribution and results in severe economic losses in aquaculture. The present study aimed to investigate the efficacy and antiparasitic mechanism of active compounds isolated from Zingiber officinale against I. multifiliis. Three compounds were isolated from the Z. officinale extract and identified as 10-gingerol, 6-dehydroshogaol, and 6-dehydro-10-gingerol. 10-gingerol demonstrated the greatest antiparasitic efficacy in vitro. 10-gingerol resulted in 100% mortalities of theronts, nonencysted tomonts, and encysted tomonts at concentrations of 2, 8, and 16 mg/L, respectively. 10-gingerol significantly reduced theronts infectivity (p < 0.05) at a concentration of 1 mg/L, and it was effective in treating infected grass carp and protecting naïve fish from I. multifiliis infestation at a concentration of 4 mg/L. The antiparasitic mechanism might be attributed to the increase of intracellular osmotic pressure, accumulation of free radicals, and membrane damage of I. multifiliis post 10-gingerol treatment. The study demonstrated that 10-gingerol had the potential as a therapeutic agent against I. multifiliis.
Collapse
Affiliation(s)
- Yao-Wu Fu
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Bin Wang
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Qi-Zhong Zhang
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China.
| | - De-Hai Xu
- United States Department of Agriculture, Agricultural Research Service, Aquatic Animal Health Research Unit, 990 Wire Road, Auburn, AL, 36832-4352, USA
| | - Yan-Meng Liu
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Ting-Long Hou
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| | - Shu-Quan Guo
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, West 601 Huangpu Avenue, Tianhe District, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
43
|
Saleh M, Kumar G, Abdel-Baki AAS, Dkhil MA, El-Matbouli M, Al-Quraishy S. Quantitative proteomic profiling of immune responses to Ichthyophthirius multifiliis in common carp skin mucus. FISH & SHELLFISH IMMUNOLOGY 2019; 84:834-842. [PMID: 30385245 DOI: 10.1016/j.fsi.2018.10.078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/23/2018] [Accepted: 10/28/2018] [Indexed: 06/08/2023]
Abstract
Ichthyophthirius multifiliis, a ciliated protozoan parasite, causes ichthyophthiriasis and leads to considerable economic losses to the aquaculture industry. Understanding the fish immune response and host-parasite interactions could support developing novel strategies for better disease management and control. Fish skin mucus is the first line of defence against infections through the epidermis. Yet, the common carp, Cyprinus carpio, protein-based defence strategies against infection with I. multifiliis at this barrier remain elusive. The skin mucus proteome of common carp was investigated at 1 day and 9 days post-exposure with I. multifiliis. Using nano-LC ESI MS/MS and statistical analysis, the abundance of 19 immune related and signal transduction proteins was found to be differentially regulated in skin mucus of common carp in response to I. multifiliis. The analysis revealed increased abundance values of epithelial chloride channel protein, galactose-specific lectin nattection, high choriolytic enzyme 1 (nephrosin), lysozyme C, granulin and protein-glutamine gamma-glutamyltransferase 2 in I. multifiliis-exposed carp skin mucus. Multiple lectins and a diverse array of distinct serpins with protease inhibitor activity were identified likely implicated in lectin pathway activation and regulation of proteolysis, indicating that these proteins contribute to the carp innate immune system and the protective properties of skin mucus. The results obtained from this proteomic analysis enables a better understanding of fish host response to parasitic infection and gives insights into the key role skin mucus plays in protecting fish against deleterious effects of I. multifiliis.
Collapse
Affiliation(s)
- Mona Saleh
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria.
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Abdel-Azeem S Abdel-Baki
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Dkhil
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia; Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, Vienna, Austria
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
44
|
Alavinia SJ, Mirzargar SS, Rahmati-Holasoo H, Mousavi HE. The in vitro and in vivo effect of tannic acid on Ichthyophthirius multifiliis in zebrafish (Danio rerio) to treat ichthyophthiriasis. JOURNAL OF FISH DISEASES 2018; 41:1793-1802. [PMID: 30168579 DOI: 10.1111/jfd.12886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
The in vitro antiparasitic effect of polyphenol tannic acid (TA) on Ichthyophthirius multifiliis theronts and tomonts was evaluated. In vitro antiparasitic assays revealed that TA in a dose- and time-dependent pattern through the damage of parasite plasma membrane could be 100% effective against I. multifiliis theronts at concentrations of 8 and 11 ppm during all the exposure times (45-270 min). The tomonts proliferation was completely inhibited by penetrating TA (at least 15 ppm for 22-hr exposure) into encysted tomont across the cyst wall. However, 10 ppm TA could result in a ninefold decrease in the population of live tomonts compared to the control group (p < 0.05). Although at theront concentrations of over 6,000 per zebrafish (Danio rerio), a 100% prevalence of ichthyophthiriasis during a 5-day exposure was recorded, results of in vivo tests showed that the parasite that pretreated up to 10 ppm TA for 70 min had not any capability to infect the studied zebrafish population. The acute toxicity (96 hr-LC50 ) of TA for zebrafish was 19.51 ppm. Thus, TA can be considered as a natural therapeutant to safely and efficiently improve the health of aquatic systems by controlling ichthyophthiriasis.
Collapse
Affiliation(s)
- Seyed Jalil Alavinia
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Seyed Saeed Mirzargar
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | |
Collapse
|
45
|
Evaluation of salinomycin isolated from Streptomyces albus JSY-2 against the ciliate, Ichthyophthirius multifiliis. Parasitology 2018; 146:521-526. [PMID: 30427300 DOI: 10.1017/s0031182018001919] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study was undertaken to investigate the antiparasitic activity of extracellular products of Streptomyces albus. Bioactivity-guided isolation of chloroform extracts affording a compound showing potent activity. The structure of the compound was elucidated as salinomycin (SAL) by EI-MS, 1H NMR and 13C NMR. In vitro test showed that SAL has potent anti-parasitic efficacy against theronts of Ichthyophthirius multifiliis with 10 min, 1, 2, 3 and 4 h (effective concentration) EC50 (95% confidence intervals) of 2.12 (2.22-2.02), 1.93 (1.98-1.88), 1.42 (1.47-1.37), 1.35 (1.41-1.31) and 1.11 (1.21-1.01) mg L-1. In vitro antiparasitic assays revealed that SAL could be 100% effective against I. multifiliis encysted tomonts at a concentration of 8.0 mg L-1. In vivo test demonstrated that the number of I. multifiliis trophonts on Erythroculter ilishaeformis treated with SAL was markedly lower than that of control group at 10 days after exposed to theronts (P < 0.05). In the control group, 80% mortality was observed owing to heavy I. multifiliis infection at 10 days. On the other hand, only 30.0% mortality was recorded in the group treated with 8.0 mg L-1 SAL. The median lethal dose (LD50) of SAL for E. ilishaeformis was 32.9 mg L-1.
Collapse
|
46
|
Yu YY, Kong W, Yin YX, Dong F, Huang ZY, Yin GM, Dong S, Salinas I, Zhang YA, Xu Z. Mucosal immunoglobulins protect the olfactory organ of teleost fish against parasitic infection. PLoS Pathog 2018; 14:e1007251. [PMID: 30395648 PMCID: PMC6237424 DOI: 10.1371/journal.ppat.1007251] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/15/2018] [Accepted: 10/08/2018] [Indexed: 01/12/2023] Open
Abstract
The olfactory organ of vertebrates receives chemical cues present in the air or water and, at the same time, they are exposed to invading pathogens. Nasal-associated lymphoid tissue (NALT), which serves as a mucosal inductive site for humoral immune responses against antigen stimulation in mammals, is present also in teleosts. IgT in teleosts is responsible for similar functions to those carried out by IgA in mammals. Moreover, teleost NALT is known to contain B-cells and teleost nasal mucus contains immunoglobulins (Igs). Yet, whether nasal B cells and Igs respond to infection remains unknown. We hypothesized that water-borne parasites can invade the nasal cavity of fish and elicit local specific immune responses. To address this hypothesis, we developed a model of bath infection with the Ichthyophthirius multifiliis (Ich) parasite in rainbow trout, Oncorhynchus mykiss, an ancient bony fish, and investigated the nasal adaptive immune response against this parasite. Critically, we found that Ich parasites in water could reach the nasal cavity and successfully invade the nasal mucosa. Moreover, strong parasite-specific IgT responses were detected in the nasal mucus, and the accumulation of IgT+ B-cells was noted in the nasal epidermis after Ich infection. Strikingly, local IgT+ B-cell proliferation and parasite-specific IgT generation were found in the trout olfactory organ, providing new evidence that nasal-specific immune responses were induced locally by a parasitic challenge. Overall, our findings suggest that nasal mucosal adaptive immune responses are similar to those reported in other fish mucosal sites and that an antibody system with a dedicated mucosal Ig performs evolutionary conserved functions across vertebrate mucosal surfaces. The olfactory organ is a vitally important chemosensory organ in vertebrates but it is also continuously stimulated by pathogenic microorganisms in the external environment. In mammals and birds, nasopharynx-associated lymphoid tissue (NALT) is considered one of the first lines of immune defense against inhaled antigens and in bony fish, protecting against water-borne infections. However, although B-cells and immunoglobulins (Igs) have been found in teleost NALT, the defensive mechanisms of parasite-specific immune responses after pathogen challenge in the olfactory organ of teleost fish remain poorly understood. Considering that the NALT of all vertebrates has been subjected to similar evolutionary forces, we hypothesize that mucosal Igs play a critical role in the defense of olfactory systems against parasites. To confirm this hypothesis, we show the local proliferation of IgT+ B-cells and production of pathogen-specific IgT within the nasal mucosa upon parasite infection, indicating that parasite-specific IgT is the main Ig isotype specialized for nasal-adaptive immune responses. From an evolutionary perspective, our findings contribute to expanding our view of nasal immune systems and determining the fate of the host–pathogen interaction.
Collapse
Affiliation(s)
- Yong-Yao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weiguang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ya-Xing Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen-Yu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Guang-Mei Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Yong-An Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
47
|
Al-Jubury A, Lu C, Kania PW, von Gersdorff Jørgensen L, Liu Y, de Bruijn I, Raaijmakers J, Buchmann K. Impact of Pseudomonas H6 surfactant on all external life cycle stages of the fish parasitic ciliate Ichthyophthirius multifiliis. JOURNAL OF FISH DISEASES 2018; 41:1147-1152. [PMID: 29671884 DOI: 10.1111/jfd.12810] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
A bacterial biosurfactant isolated from Pseudomonas (strain H6) has previously been shown to have a lethal effect on the oomycete Saprolegnia diclina infecting fish eggs. The present work demonstrates that the same biosurfactant has a strong in vitro antiparasitic effect on the fish pathogenic ciliate Ichthyophthirius multifiliis. Three life cycle stages (the infective theront stage, the tomont and the tomocyst containing tomites) were all susceptible to the surfactant. Theronts were the most sensitive showing 100% mortality in as low concentrations as 10 and 13 μg/ml within 30 min. Tomonts were the most resistant but were killed in concentrations of 100 μg/ml. Tomocysts, which generally are considered resistant to chemical and medical treatment, due to the surrounding protective cyst wall, were also sensitive. The surfactant, in concentrations of 10 and 13 μg/ml, penetrated the cyst wall and killed the enclosed tomites within 60 min. Rainbow trout fingerlings exposed to the biosurfactant showed no adverse immediate or late signs following several hours incubation in concentrations effective for killing the parasite. This bacterial surfactant may be further developed for application as an antiparasitic control agent in aquaculture.
Collapse
Affiliation(s)
- A Al-Jubury
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - C Lu
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - P W Kania
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - L von Gersdorff Jørgensen
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| | - Y Liu
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - I de Bruijn
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - J Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - K Buchmann
- Faculty of Health and Medical Sciences, Department of Veterinary and Animal Science, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
48
|
Li JP, Fu YW, Zhang QZ, Xu DH, Liu YM, Zhou SY, Lin DJ. Grass carp which survive Dactylogyrus ctenopharyngodonid infection also gain partial immunity against Ichthyophthirius multifiliis. DISEASES OF AQUATIC ORGANISMS 2018; 129:63-70. [PMID: 29916393 DOI: 10.3354/dao03223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Dactylogyrus ctenopharyngodonid and Ichthyophthirius multifiliis are 2 important ectoparasites of fish. Both parasites can induce an immune response in fish that leads to a decrease in parasitic infection intensity and the development of resistance against parasitic reinfection. The present study evaluated whether grass carp Ctenopharyngodon idella that survived a D. ctenopharyngodonid infection could develop immunity against infection by D. ctenopharyngodonid and I. multifiliis. The results demonstrated that when grass carp were infected with D. ctenopharyngodonid, the number of red blood cells and the percentages of thrombocytes, monocytes, and neutrophils in the white blood cells increased significantly in the early stage of infection. The percentage of lymphocytes increased over time following parasitic infection. The mean infection intensity of D. ctenopharyngodonid decreased to 0 on Day 28. The activities of serum acid phosphatase, alkaline phosphatase, lysozyme, and superoxide dismutase increased significantly after D. ctenopharyngodonid infection. In addition, the grass carp that survived a previous D. ctenopharyngodonid infection could completely resist D. ctenopharyngodonid reinfection and partially resist I. multifiliis infection.
Collapse
Affiliation(s)
- Jian-Pei Li
- Institute of Hydrobiology, Jinan University, Engineering Research Center of Tropical and Subtropical Aquatic Ecological Engineering Ministry of Education, Guangzhou 510632, PR China
| | | | | | | | | | | | | |
Collapse
|
49
|
Gotesman M, Menanteau-Ledouble S, Saleh M, Bergmann SM, El-Matbouli M. A new age in AquaMedicine: unconventional approach in studying aquatic diseases. BMC Vet Res 2018; 14:178. [PMID: 29879957 PMCID: PMC5992843 DOI: 10.1186/s12917-018-1501-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/24/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Marine and aquaculture industries are important sectors of the food production and global trade. Unfortunately, the fish food industry is challenged with a plethora of infectious pathogens. The freshwater and marine fish communities are rapidly incorporating novel and most up to date techniques for detection, characterization and treatment strategies. Rapid detection of infectious diseases is important in preventing large disease outbreaks. MAIN TEXT One hundred forty-six articles including reviews papers were analyzed and their conclusions evaluated in the present paper. This allowed us to describe the most recent development research regarding the control of diseases in the aquatic environment as well as promising avenues that may result in beneficial developments. For the characterization of diseases, traditional sequencing and histological based methods have been augmented with transcriptional and proteomic studies. Recent studies have demonstrated that transcriptional based approaches using qPCR are often synergistic to expression based studies that rely on proteomic-based techniques to better understand pathogen-host interactions. Preventative therapies that rely on prophylactics such as vaccination with protein antigens or attenuated viruses are not always feasible and therefore, the development of therapies based on small nucleotide based medicine is on the horizon. Of those, RNAi or CRISPR/Cas- based therapies show great promise in combating various types of diseases caused by viral and parasitic agents that effect aquatic and fish medicine. CONCLUSIONS In our modern times, when the marine industry has become so vital for feed and economic stability, even the most extreme alternative treatment strategies such as the use of small molecules or even the use of disease to control invasive species populations should be considered.
Collapse
Affiliation(s)
- Michael Gotesman
- Department of Biology, New York City College of Technology of the City University of New York, Brooklyn, New York, USA
| | - Simon Menanteau-Ledouble
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Mona Saleh
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Sven M Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
50
|
Garver KA, Leskisenoja K, Macrae R, Hawley LM, Subramaniam K, Waltzek TB, Richard J, Josefsson C, Valtonen ET. An alloherpesvirus infection of European perch Perca fluviatilis in Finland. DISEASES OF AQUATIC ORGANISMS 2018; 128:175-185. [PMID: 29862976 DOI: 10.3354/dao03228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The order Herpesvirales includes viruses that infect aquatic and terrestrial vertebrates and several aquatic invertebrates (i.e. mollusks), and share the commonality of possessing a double-stranded DNA core surrounded by an icosahedral capsid. Herpesviruses of the family Alloherpesviridae that infect fish and amphibians, including channel catfish virus and koi herpesvirus, negatively impact aquaculture. Here, we describe a novel herpesvirus infection of wild European perch from lakes in Finland. Infected fish exhibited white nodules on the skin and fins, typically in the spring when prevalence reached nearly 40% in one of the sampled lakes. Transmission electron microscopic examination of affected tissues revealed abundant nuclear and cytoplasmic virus particles displaying herpesvirus morphology. Degenerate PCR targeting a conserved region of the DNA polymerase gene of large DNA viruses amplified a 520 bp product in 5 of 5 affected perch skin samples tested. Phylogenetic analysis of concatenated partial DNA polymerase and terminase (exon 2) gene sequences produced a well-supported tree grouping the European perch herpesvirus with alloherpesviruses infecting acipenserid, esocid, ictalurid, and salmonid fishes. The phenetic analysis of the European perch herpesvirus partial DNA polymerase and terminase nucleotide gene sequences ranged from 34.6 to 63.9% and 39.6 to 59.6% to other alloherpesviruses, respectively. These data support the European perch herpesvirus as a new alloherpesvirus, and we propose the formal species designation of Percid herpesvirus 2 (PeHV2) to be considered for approval by the International Committee on Taxonomy of Viruses.
Collapse
Affiliation(s)
- Kyle A Garver
- Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, British Columbia V9T 6N7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|