1
|
Crippa S, Alberti G, Passerini L, Savoia EO, Mancino M, De Ponti G, Santi L, Berti M, Testa M, Hernandez RJ, Quaranta P, Ceriotti S, Visigalli I, Morrone A, Paoli A, Forni C, Scala S, Degano M, Staiano L, Gregori S, Aiuti A, Bernardo ME. A GLB1 transgene with enhanced therapeutic potential for the preclinical development of ex-vivo gene therapy to treat mucopolysaccharidosis type IVB. Mol Ther Methods Clin Dev 2024; 32:101313. [PMID: 39282079 PMCID: PMC11399592 DOI: 10.1016/j.omtm.2024.101313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/02/2024] [Indexed: 09/18/2024]
Abstract
Mucopolysaccharidosis type IVB (MPSIVB) is a lysosomal storage disorder caused by β-galactosidase (β-GAL) deficiency characterized by severe skeletal and neurological alterations without approved treatments. To develop hematopoietic stem progenitor cell (HSPC) gene therapy (GT) for MPSIVB, we designed lentiviral vectors (LVs) encoding human β-GAL to achieve supraphysiological release of the therapeutic enzyme in human HSPCs and metabolic correction of diseased cells. Transduced HSPCs displayed proper colony formation, proliferation, and differentiation capacity, but their progeny failed to release the enzyme at supraphysiological levels. Therefore, we tested alternative LVs to overexpress an enhanced β-GAL deriving from murine (LV-enhGLB1) and human selectively mutated GLB1 sequences (LV-mutGLB1). Only human HSPCs transduced with LV-enhGLB1 overexpressed β-GAL in vitro and in vivo without evidence of overexpression-related toxicity. Their hematopoietic progeny efficiently released β-GAL, allowing the cross-correction of defective cells, including skeletal cells. We found that the low levels of human GLB1 mRNA in human hematopoietic cells and the improved stability of the enhanced β-GAL contribute to the increased efficacy of LV-enhGLB1. Importantly, the enhanced β-GAL enzyme showed physiological lysosomal trafficking in human cells and was not associated with increased immunogenicity in vitro. These results support the use of LV-enhGLB1 for further HSPC-GT development and future clinical translation to treat MPSIVB multisystem disease.
Collapse
Affiliation(s)
- Stefania Crippa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gaia Alberti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Laura Passerini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Evelyn Oliva Savoia
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marilena Mancino
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Giada De Ponti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ludovica Santi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Margherita Berti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Marialuisa Testa
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Naples, Italy
| | - Raisa Jofra Hernandez
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Pamela Quaranta
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Selene Ceriotti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Ilaria Visigalli
- GLP - San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, 50139 Florence, Italy
| | - Antonella Paoli
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital IRCCS, 50139 Florence, Italy
| | | | - Serena Scala
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Massimo Degano
- Biocrystallography Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Naples, Italy
- Institute for Genetic and Biomedical Research, National Research Council (CNR), 20138 Milan, Italy
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Maria Ester Bernardo
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
- Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| |
Collapse
|
2
|
Valeri E, Breggion S, Barzaghi F, Abou Alezz M, Crivicich G, Pagani I, Forneris F, Sartirana C, Costantini M, Costi S, Marino A, Chiarotto E, Colavito D, Cimaz R, Merelli I, Vicenzi E, Aiuti A, Kajaste-Rudnitski A. A novel STING variant triggers endothelial toxicity and SAVI disease. J Exp Med 2024; 221:e20232167. [PMID: 38953896 PMCID: PMC11217899 DOI: 10.1084/jem.20232167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/18/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Gain-of-function mutations in STING cause STING-associated vasculopathy with onset in infancy (SAVI) characterized by early-onset systemic inflammation, skin vasculopathy, and interstitial lung disease. Here, we report and characterize a novel STING variant (F269S) identified in a SAVI patient. Single-cell transcriptomics of patient bone marrow revealed spontaneous activation of interferon (IFN) and inflammatory pathways across cell types and a striking prevalence of circulating naïve T cells was observed. Inducible STING F269S expression conferred enhanced signaling through ligand-independent translocation of the protein to the Golgi, protecting cells from viral infections but preventing their efficient immune priming. Additionally, endothelial cell activation was promoted and further exacerbated by cytokine secretion by SAVI immune cells, resulting in inflammation and endothelial damage. Our findings identify STING F269S mutation as a novel pathogenic variant causing SAVI, highlight the importance of the crosstalk between endothelial and immune cells in the context of lung disease, and contribute to a better understanding of how aberrant STING activation can cause pathology.
Collapse
Affiliation(s)
- Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Breggion
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Barzaghi
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monah Abou Alezz
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Giovanni Crivicich
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federico Forneris
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Sartirana
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Costantini
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Costi
- Unit of Pediatric Rheumatology, ASST Gaetano Pini-CTO, Milan, Italy
| | - Achille Marino
- Unit of Pediatric Rheumatology, ASST Gaetano Pini-CTO, Milan, Italy
| | | | | | - Rolando Cimaz
- Unit of Pediatric Rheumatology, ASST Gaetano Pini-CTO, Milan, Italy
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Anna Kajaste-Rudnitski
- San Raffaele Telethon Institute for Gene Therapy, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| |
Collapse
|
3
|
Schiroli G, Kartha V, Duarte FM, Kristiansen TA, Mayerhofer C, Shrestha R, Earl A, Hu Y, Tay T, Rhee C, Buenrostro JD, Scadden DT. Cell of origin epigenetic priming determines susceptibility to Tet2 mutation. Nat Commun 2024; 15:4325. [PMID: 38773071 PMCID: PMC11109152 DOI: 10.1038/s41467-024-48508-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 04/30/2024] [Indexed: 05/23/2024] Open
Abstract
Hematopoietic stem cell (HSC) mutations can result in clonal hematopoiesis (CH) with heterogeneous clinical outcomes. Here, we investigate how the cell state preceding Tet2 mutation impacts the pre-malignant phenotype. Using an inducible system for clonal analysis of myeloid progenitors, we find that the epigenetic features of clones at similar differentiation status are highly heterogeneous and functionally respond differently to Tet2 mutation. Cell differentiation stage also influences Tet2 mutation response indicating that the cell of origin's epigenome modulates clone-specific behaviors in CH. Molecular features associated with higher risk outcomes include Sox4 that sensitizes cells to Tet2 inactivation, inducing dedifferentiation, altered metabolism and increasing the in vivo clonal output of mutant cells, as confirmed in primary GMP and HSC models. Our findings validate the hypothesis that epigenetic features can predispose specific clones for dominance, explaining why identical genetic mutations can result in different phenotypes.
Collapse
Affiliation(s)
- Giulia Schiroli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Vinay Kartha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Fabiana M Duarte
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Trine A Kristiansen
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Christina Mayerhofer
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Rojesh Shrestha
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Andrew Earl
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Yan Hu
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Tristan Tay
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Catherine Rhee
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA
| | - Jason D Buenrostro
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, 02114, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
- Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.
| |
Collapse
|
4
|
Liuzzi G, Artimagnella O, Frisari S, Mallamaci A. Foxg1 bimodally tunes L1-mRNA and -DNA dynamics in the developing murine neocortex. Development 2024; 151:dev202292. [PMID: 38655654 PMCID: PMC11190451 DOI: 10.1242/dev.202292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 04/16/2024] [Indexed: 04/26/2024]
Abstract
Foxg1 masters telencephalic development via a pleiotropic control over its progression. Expressed within the central nervous system (CNS), L1 retrotransposons are implicated in progression of its histogenesis and tuning of its genomic plasticity. Foxg1 represses gene transcription, and L1 elements share putative Foxg1-binding motifs, suggesting the former might limit telencephalic expression (and activity) of the latter. We tested such a prediction, in vivo as well as in engineered primary neural cultures, using loss- and gain-of-function approaches. We found that Foxg1-dependent, transcriptional L1 repression specifically occurs in neopallial neuronogenic progenitors and post-mitotic neurons, where it is supported by specific changes in the L1 epigenetic landscape. Unexpectedly, we discovered that Foxg1 physically interacts with L1-mRNA and positively regulates neonatal neopallium L1-DNA content, antagonizing the retrotranscription-suppressing activity exerted by Mov10 and Ddx39a helicases. To the best of our knowledge, Foxg1 represents the first CNS patterning gene acting as a bimodal retrotransposon modulator, limiting transcription of L1 elements and promoting their amplification, within a specific domain of the developing mouse brain.
Collapse
Affiliation(s)
- Gabriele Liuzzi
- Laboratory of Cerebral Cortex Development, SISSA, Trieste 34136, Italy
| | | | - Simone Frisari
- Laboratory of Cerebral Cortex Development, SISSA, Trieste 34136, Italy
| | | |
Collapse
|
5
|
Borroni E, Borsotti C, Cirsmaru RA, Kalandadze V, Famà R, Merlin S, Brown B, Follenzi A. Immune tolerance promotion by LSEC-specific lentiviral vector-mediated expression of the transgene regulated by the stabilin-2 promoter. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102116. [PMID: 38333675 PMCID: PMC10850788 DOI: 10.1016/j.omtn.2024.102116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 01/05/2024] [Indexed: 02/10/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are specialized endocytic cells that clear the body from blood-borne pathogens and waste macromolecules through scavenger receptors (SRs). Among the various SRs expressed by LSECs is stabilin-2 (STAB2), a class H SR that binds to several ligands, among which endogenous coagulation products. Given the well-established tolerogenic function of LSECs, we asked whether the STAB2 promoter (STAB2p) would enable us to achieve LSEC-specific lentiviral vector (LV)-mediated transgene expression, and whether the expression of this transgene would be maintained over the long term due to tolerance induction. Here, we show that STAB2p ensures LSEC-specific green fluorescent protein (GFP) expression by LV in the absence of a specific cytotoxic CD8+ T cell immune response, even in the presence of GFP-specific CD8+ T cells, confirming the robust tolerogenic function of LSECs. Finally, we show that our delivery system can partially and permanently restore FVIII activity in a mouse model of severe hemophilia A without the formation of anti-FVIII antibodies. Overall, our findings establish the suitability of STAB2p for long-term LSEC-restricted expression of therapeutic proteins, such as FVIII, or to achieve antigen-specific immune tolerance in auto-immune diseases.
Collapse
Affiliation(s)
- Ester Borroni
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Chiara Borsotti
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Roberta A. Cirsmaru
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Vakhtang Kalandadze
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Rosella Famà
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
| | - Brian Brown
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York 10029, NY, USA
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy
- Department of Attività Integrate Ricerca Innovazione, Azienda Ospedaliero-Universitaria SS. Antonio e Biagio e C.Arrigo, Alessandria, Italy
| |
Collapse
|
6
|
Daniel JA, Elizarova S, Shaib AH, Chouaib AA, Magnussen HM, Wang J, Brose N, Rhee J, Tirard M. An intellectual-disability-associated mutation of the transcriptional regulator NACC1 impairs glutamatergic neurotransmission. Front Mol Neurosci 2023; 16:1115880. [PMID: 37533751 PMCID: PMC10393139 DOI: 10.3389/fnmol.2023.1115880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 06/14/2023] [Indexed: 08/04/2023] Open
Abstract
Advances in genome sequencing technologies have favored the identification of rare de novo mutations linked to neurological disorders in humans. Recently, a de novo autosomal dominant mutation in NACC1 was identified (NM_052876.3: c.892C > T, NP_443108.1; p.Arg298Trp), associated with severe neurological symptoms including intellectual disability, microcephaly, and epilepsy. As NACC1 had never before been associated with neurological diseases, we investigated how this mutation might lead to altered brain function. We examined neurotransmission in autaptic glutamatergic mouse neurons expressing the murine homolog of the human mutant NACC1, i.e., Nacc1-R284W. We observed that expression of Nacc1-R284W impaired glutamatergic neurotransmission in a cell-autonomous manner, likely through a dominant negative mechanism. Furthermore, by screening for Nacc1 interaction targets in the brain, we identified SynGAP1, GluK2A, and several SUMO E3 ligases as novel Nacc1 interaction partners. At a biochemical level, Nacc1-R284W exhibited reduced binding to SynGAP1 and GluK2A, and also showed greatly increased SUMOylation. Ablating the SUMOylation of Nacc1-R284W partially restored its interaction with SynGAP1 but did not restore binding to GluK2A. Overall, these data indicate a role for Nacc1 in regulating glutamatergic neurotransmission, which is substantially impaired by the expression of a disease-associated Nacc1 mutant. This study provides the first functional insights into potential deficits in neuronal function in patients expressing the de novo mutant NACC1 protein.
Collapse
Affiliation(s)
- James A. Daniel
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sofia Elizarova
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ali H. Shaib
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Abed A. Chouaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, Homburg, Germany
| | - Helge M. Magnussen
- MRC Protein Phosphorylation and Ubiquitination Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Columbia University Irving Medical Center, New York, NY, United States
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - JeongSeop Rhee
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
7
|
Unali G, Crivicich G, Pagani I, Abou‐Alezz M, Folchini F, Valeri E, Matafora V, Reisz JA, Giordano AMS, Cuccovillo I, Butta GM, Donnici L, D'Alessandro A, De Francesco R, Manganaro L, Cittaro D, Merelli I, Petrillo C, Bachi A, Vicenzi E, Kajaste‐Rudnitski A. Interferon-inducible phospholipids govern IFITM3-dependent endosomal antiviral immunity. EMBO J 2023; 42:e112234. [PMID: 36970857 PMCID: PMC10183820 DOI: 10.15252/embj.2022112234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023] Open
Abstract
The interferon-induced transmembrane proteins (IFITM) are implicated in several biological processes, including antiviral defense, but their modes of action remain debated. Here, taking advantage of pseudotyped viral entry assays and replicating viruses, we uncover the requirement of host co-factors for endosomal antiviral inhibition through high-throughput proteomics and lipidomics in cellular models of IFITM restriction. Unlike plasma membrane (PM)-localized IFITM restriction that targets infectious SARS-CoV2 and other PM-fusing viral envelopes, inhibition of endosomal viral entry depends on lysines within the conserved IFITM intracellular loop. These residues recruit Phosphatidylinositol 3,4,5-trisphosphate (PIP3) that we show here to be required for endosomal IFITM activity. We identify PIP3 as an interferon-inducible phospholipid that acts as a rheostat for endosomal antiviral immunity. PIP3 levels correlated with the potency of endosomal IFITM restriction and exogenous PIP3 enhanced inhibition of endocytic viruses, including the recent SARS-CoV2 Omicron variant. Together, our results identify PIP3 as a critical regulator of endosomal IFITM restriction linking it to the Pi3K/Akt/mTORC pathway and elucidate cell-compartment-specific antiviral mechanisms with potential relevance for the development of broadly acting antiviral strategies.
Collapse
Affiliation(s)
- Giulia Unali
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | - Giovanni Crivicich
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Isabel Pagani
- Viral Pathogenesis and Biosafety UnitIRCCS Ospedale San RaffaeleMilanItaly
| | - Monah Abou‐Alezz
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Filippo Folchini
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Erika Valeri
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
- Vita‐Salute San Raffaele UniversityMilanItaly
| | | | - Julie A Reisz
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Anna Maria Sole Giordano
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Ivan Cuccovillo
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Giacomo M Butta
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi"MilanItaly
- Department of Pharmacological and Biomolecular Sciences (DiSFeB)University of MilanMilanItaly
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi"MilanItaly
| | - Angelo D'Alessandro
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Raffaele De Francesco
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi"MilanItaly
- Department of Pharmacological and Biomolecular Sciences (DiSFeB)University of MilanMilanItaly
| | - Lara Manganaro
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi"MilanItaly
- Department of Pharmacological and Biomolecular Sciences (DiSFeB)University of MilanMilanItaly
| | - Davide Cittaro
- Center for Omics SciencesIRCCS Ospedale San RaffaeleMilanItaly
| | - Ivan Merelli
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Carolina Petrillo
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Angela Bachi
- FIRC Institute of Molecular Oncology (IFOM)MilanItaly
| | - Elisa Vicenzi
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| | - Anna Kajaste‐Rudnitski
- San Raffaele Telethon Institute for Gene Therapy (SR‐TIGET), IRCCS Ospedale San RaffaeleMilanItaly
| |
Collapse
|
8
|
Fard D, Testa E, Panzeri V, Rizzolio S, Bianchetti G, Napolitano V, Masciarelli S, Fazi F, Maulucci G, Scicchitano BM, Sette C, Viscomi MT, Tamagnone L. SEMA6C: a novel adhesion-independent FAK and YAP activator, required for cancer cell viability and growth. Cell Mol Life Sci 2023; 80:111. [PMID: 37002363 PMCID: PMC10066115 DOI: 10.1007/s00018-023-04756-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/22/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Transmembrane semaphorins are signaling molecules, controlling axonal wiring and embryo development, which are increasingly implicated in human diseases. Semaphorin 6C (Sema6C) is a poorly understood family member and its functional role is still unclear. Upon targeting Sema6C expression in a range of cancer cells, we observed dramatic growth suppression, decreased ERK phosphorylation, upregulation of cell cycle inhibitor proteins p21, p27 and p53, and the onset of cell senescence, associated with activation of autophagy. These data are consistent with a fundamental requirement for Sema6C to support viability and growth in cancer cells. Mechanistically, we unveiled a novel signaling pathway elicited by Sema6C, and dependent on its intracellular domain, mediated by tyrosine kinases c-Abl and Focal Adhesion Kinase (FAK). Sema6C was found in complex with c-Abl, and induced its phosphorylation, which in turn led to FAK activation, independent of cell-matrix adhesion. Sema6C-induced FAK activity was furthermore responsible for increased nuclear localization of YAP transcriptional regulator. Moreover, Sema6C conferred YAP signaling-dependent long-term cancer cell survival upon nutrient deprivation. In conclusion, our findings demonstrate that Sema6C elicits a cancer promoting-signaling pathway sustaining cell viability and self-renewal, independent of growth factors and nutrients availability.
Collapse
Affiliation(s)
- Damon Fard
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Erika Testa
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Panzeri
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Giada Bianchetti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Virginia Napolitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Silvia Masciarelli
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Francesco Fazi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Histology and Medical Embryology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Maulucci
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Claudio Sette
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Maria Teresa Viscomi
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy
| | - Luca Tamagnone
- Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Gemelli-IRCCS, Rome, Italy.
| |
Collapse
|
9
|
Nousiainen A, Schenkwein D, Ylä-Herttuala S. Characterization of a new IN-I-PpoI fusion protein and a homology-arm containing transgene cassette that improve transgene expression persistence and 28S rRNA gene-targeted insertion of lentiviral vectors. PLoS One 2023; 18:e0280894. [PMID: 36662822 PMCID: PMC9858087 DOI: 10.1371/journal.pone.0280894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023] Open
Abstract
Targeting transgene integration into a safe genomic locus would be very important for gene therapy. We have generated lentivirus vectors containing the ribosomal RNA-recognising I-PpoI endonuclease fused to viral integrase, and transgene cassettes with target site homology arms to enhance insertion targeting. These new vectors were characterised with respect to the persistence of transgene expression, insertion targeting efficiency and chromosomal integrity of the transduced cells. The aim was to find an optimally safe and effective vector for human gene therapy. Fusion protein vectors with high endonuclease activity were the most effective in the accurate targeting of transgene insertion. The homology construct increased the insertion targeting efficiency to 28% in MRC-5 cells. However, karyotyping analysis showed that the high endonuclease activity induced the formation of derivative chromosomes in as many as 24% of the analysed primary T lymphocytes. The persistence of transgene expression was excellent in homology arm-containing fusion protein vectors with reduced endonuclease activity, and these fusion proteins did not cause any detectable chromosomal rearrangements attributable to the endonuclease activity. We thus conclude that instead of the fusion protein vectors that carry a highly active endonuclease, our vectors with the ability to tether the lentivirus preintegration complex to benign loci in the genome without high ribosomal DNA cleavage activity are better suited for lentivirus-based gene therapy applications.
Collapse
Affiliation(s)
- Alisa Nousiainen
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Diana Schenkwein
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute, University of Eastern Finland, Kuopio, Finland
- Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
10
|
Xylaki M, Paiva I, Al-Azzani M, Gerhardt E, Jain G, Islam MR, Vasili E, Wassouf Z, Schulze-Hentrich JM, Fischer A, Outeiro TF. miR-101a-3p Impairs Synaptic Plasticity and Contributes to Synucleinopathy. JOURNAL OF PARKINSON'S DISEASE 2023; 13:179-196. [PMID: 36744345 PMCID: PMC10041420 DOI: 10.3233/jpd-225055] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Synucleinopathies are disorders characterized by the abnormal accumulation of α-synuclein (aSyn). Synaptic compromise is observed in synucleinopathies parallel to aSyn aggregation and is accompanied by transcript deregulation. OBJECTIVE We sought to identify microRNAs associated with synaptic processes that may contribute to synaptic dysfunction and degeneration in synucleinopathies. METHODS We performed small RNA-sequencing of midbrain from 6-month-old transgenic mice expressing A30P mutant aSyn, followed by comparative expression analysis. We then used real-time quantitative polymerase chain reaction (qPCR) for validation. Functional analysis was performed in primary neurons by biochemical assays and imaging. RESULTS We found several deregulated biological processes linked to the synapse. miR-101a-3p was validated as a synaptic miRNA upregulated in aSyn Tg mice and in the cortex of dementia with Lewy bodies patients. Mice and primary cultured neurons overexpressing miR-101a-3p showed downregulation of postsynaptic proteins GABA Ab2 and SAPAP3 and altered dendritic morphology resembling synaptic plasticity impairments and/or synaptic damage. Interestingly, primary cultured neuron exposure to recombinant wild-type aSyn species efficiently increased miR-101a-3p levels. Finally, a dynamic role of miR-101a-3p in synapse plasticity was shown by identifying downregulation of miR-101a-3p in a condition of enhanced synaptic plasticity modelled in Wt animals housed in enriched environment. CONCLUSION To conclude, we correlated pathologic aSyn with high levels of miR-101a-3p and a novel dynamic role of the miRNA in synaptic plasticity.
Collapse
Affiliation(s)
- Mary Xylaki
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Isabel Paiva
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
- Present address: Laboratory of Cognitive and Adaptive Neuroscience, UMR 7364 (CNRS/ Strasbourg University), Strasbourg, France
| | - Mohammed Al-Azzani
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Ellen Gerhardt
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Gaurav Jain
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Eftychia Vasili
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | - Zinah Wassouf
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
| | | | - André Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Centre, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Centre for Biostructural Imaging of Neurodegeneration, University Medical Centre Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
- Scientific employee with an honorary contract at German Centre for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| |
Collapse
|
11
|
Lamanna J, Isotti F, Ferro M, Spadini S, Racchetti G, Musazzi L, Malgaroli A. Occlusion of dopamine-dependent synaptic plasticity in the prefrontal cortex mediates the expression of depressive-like behavior and is modulated by ketamine. Sci Rep 2022; 12:11055. [PMID: 35773275 PMCID: PMC9246912 DOI: 10.1038/s41598-022-14694-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Unpredictable chronic mild stress (CMS) is among the most popular protocols used to induce depressive-like behaviors such as anhedonia in rats. Differences in CMS protocols often result in variable degree of vulnerability, and the mechanisms behind stress resilience are of great interest in neuroscience due to their involvement in the development of psychiatric disorders, including major depressive disorder. Expression of depressive-like behaviors is likely driven by long-term alterations in the corticolimbic system and by downregulation of dopamine (DA) signaling. Although we have a deep knowledge about the dynamics of tonic and phasic DA release in encoding incentive salience and in response to acute/chronic stress, its modulatory action on cortical synaptic plasticity and the following implications on animal behavior remain elusive. Here, we show that the expression of DA-dependent synaptic plasticity in the medial prefrontal cortex (mPFC) is occluded in rats vulnerable to CMS, likely reflecting differential expression of AMPA receptors. Interestingly, such difference is not observed when rats are acutely treated with sub-anesthetic ketamine, possibly through the recruitment of dopaminergic nuclei such as the ventral tegmental area. In addition, by applying the synaptic activity sensor SynaptoZip in vivo, we found that chronic stress unbalances the synaptic drive from the infralimbic and prelimbic subregions of the mPFC toward the basolateral amygdala, and that this effect is counteracted by ketamine. Our results provide novel insights into the neurophysiological mechanisms behind the expression of vulnerability to stress, as well as behind the antidepressant action of ketamine.
Collapse
Affiliation(s)
- Jacopo Lamanna
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy. .,Faculty of Psychology, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Francesco Isotti
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Mattia Ferro
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.,Department of Psychology, Sigmund Freud University, 20143, Milan, Italy
| | - Sara Spadini
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Gabriella Racchetti
- Division of Neuroscience, Scientific Institute Ospedale San Raffaele, 20132, Milan, Italy
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900, Monza, Italy
| | - Antonio Malgaroli
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy. .,Faculty of Psychology, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| |
Collapse
|
12
|
Zhu S, Zhang J, Jiang X, Wang W, Chen YQ. Free fatty acid receptor 4 deletion attenuates colitis by modulating Treg Cells via ZBED6-IL33 pathway. EBioMedicine 2022; 80:104060. [PMID: 35588628 PMCID: PMC9120243 DOI: 10.1016/j.ebiom.2022.104060] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/05/2022] [Accepted: 04/29/2022] [Indexed: 10/26/2022] Open
|
13
|
S327 phosphorylation of the presynaptic protein SEPTIN5 increases in the early stages of neurofibrillary pathology and alters the functionality of SEPTIN5. Neurobiol Dis 2022; 163:105603. [DOI: 10.1016/j.nbd.2021.105603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/02/2021] [Accepted: 12/22/2021] [Indexed: 12/25/2022] Open
|
14
|
Abstract
INTRODUCTION Lentiviral vectors have emerged as powerful vectors for vaccination, due to their high efficiency to transduce dendritic cells and to induce long-lasting humoral immunity, CD8+ T cells, and effective protection in numerous preclinical animal models of infection and oncology. AREAS COVERED Here, we reviewed the literature, highlighting the relevance of lentiviral vectors in vaccinology. We recapitulated both their virological and immunological aspects of lentiviral vectors. We compared lentiviral vectors to the gold standard viral vaccine vectors, i.e. adenoviral vectors, and updated the latest results in lentiviral vector-based vaccination in preclinical models. EXPERT OPINION Lentiviral vectors are non-replicative, negligibly inflammatory, and not targets of preexisting immunity in human populations. These are major characteristics to consider in vaccine development. The potential of lentiviral vectors to transduce non-dividing cells, including dendritic cells, is determinant in their strong immunogenicity. Notably, lentiviral vectors can be engineered to target antigen expression to specific host cells. The very weak inflammatory properties of these vectors allow their use in mucosal vaccination, with particular interest in infectious diseases that affect the lungs or brain, including COVID-19. Recent results in various preclinical models have reinforced the interest of these vectors in prophylaxis against infectious diseases and in onco-immunotherapy.
Collapse
Affiliation(s)
- Min-Wen Ku
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Pierre Charneau
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| | - Laleh Majlessi
- Virology Department, Institut Pasteur-TheraVectys Joint Lab, Paris, France
| |
Collapse
|
15
|
Pontemezzo E, Foglio E, Vernucci E, Magenta A, D’Agostino M, Sileno S, Astanina E, Bussolino F, Pellegrini L, Germani A, Russo MA, Limana F. miR-200c-3p Regulates Epitelial-to-Mesenchymal Transition in Epicardial Mesothelial Cells by Targeting Epicardial Follistatin-Related Protein 1. Int J Mol Sci 2021; 22:4971. [PMID: 34067060 PMCID: PMC8125323 DOI: 10.3390/ijms22094971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/21/2022] Open
Abstract
Recent findings suggest that epithelial to mesenchymal transition (EMT), a key step during heart development, is involved in cardiac tissue repair following myocardial infarction (MI). MicroRNAs (miRNAs) act as key regulators in EMT processes; however, the mechanisms by which miRNAs target epicardial EMT remain largely unknown. Here, by using an in vitro model of epicardial EMT, we investigated the role of miRNAs as regulators of this process and their potential targets. EMT was induced in murine epicardial-mesothelial cells (EMCs) through TGF β1 treatment for 48, 72, and 96 h as indicated by the expression of EMT-related genes by qRT-PCR, WB, and immunofluorescence. Further, enhanced expression of stemness genes was also detected. Among several EMT-related miRNAs, miR-200c-3p expression resulted as the most strongly suppressed. Interestingly, we also found a significant upregulation of Follistatin-related protein 1 (FSTL1), a miR-200c predicted target already identified as a potent cardiogenic factor produced by epicardial cells that promotes regeneration following MI. Dual-luciferase reporter assay demonstrated that miR-200c-3p directly targeted the 3'-untranslated region of FSTL1 in EMCs. Consistently, WB analysis showed that knockdown of miR-200c-3p significantly increased FSTL1 expression, whereas overexpression of miR-200c-3p counteracted TGF β1-mediated FSTL1 upregulation. Importantly, FSTL1 silencing maintained epithelial features in EMCs, despite EMT induction by TGF β1, and attenuated EMT-associated traits, including migration and stemness. In conclusion, epicardial FSTL1, an important cardiogenic factor in its secreted form, induces EMT, stemness, and migration of EMCs in a miR-200c-3p dependent pathway.
Collapse
Affiliation(s)
- Elena Pontemezzo
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (E.F.); (E.V.); (L.P.)
| | - Eleonora Foglio
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (E.F.); (E.V.); (L.P.)
| | - Enza Vernucci
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (E.F.); (E.V.); (L.P.)
| | - Alessandra Magenta
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (A.M.); (M.D.); (S.S.); (A.G.)
- Institute of Translational Pharmacology (IFT), Consiglio Nazionale delle Ricerche (CNR), Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Marco D’Agostino
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (A.M.); (M.D.); (S.S.); (A.G.)
| | - Sara Sileno
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (A.M.); (M.D.); (S.S.); (A.G.)
| | - Elena Astanina
- Department of Oncology, University of Turin, 10060 Candiolo, Italy; (E.A.); (F.B.)
- Candiolo Cancer Institute-FPO-IRCCS, 10060 Candiolo, Italy
| | - Federico Bussolino
- Department of Oncology, University of Turin, 10060 Candiolo, Italy; (E.A.); (F.B.)
- Candiolo Cancer Institute-FPO-IRCCS, 10060 Candiolo, Italy
| | - Laura Pellegrini
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (E.P.); (E.F.); (E.V.); (L.P.)
| | - Antonia Germani
- Experimental Immunology Laboratory, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, Via dei Monti di Creta 104, 00167 Rome, Italy; (A.M.); (M.D.); (S.S.); (A.G.)
| | - Matteo Antonio Russo
- IRCCS San Raffaele Pisana and MEBIC Consortium, 00166 Rome, Italy;
- Department of Human Science and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Federica Limana
- Department of Human Science and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
- Laboratory of Cellular and Molecular Pathology, IRCCS San Raffaele Pisana, 00166 Rome, Italy
| |
Collapse
|
16
|
Goitre L, Fornelli C, Zotta A, Perrelli A, Retta SF. Production of KRIT1-knockout and KRIT1-knockin Mouse Embryonic Fibroblasts as Cellular Models of CCM Disease. Methods Mol Biol 2021; 2152:151-167. [PMID: 32524551 DOI: 10.1007/978-1-0716-0640-7_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The development of distinct cellular and animal models has allowed the identification and characterization of molecular mechanisms underlying the pathogenesis of cerebral cavernous malformation (CCM) disease. This is a major cerebrovascular disorder of proven genetic origin, affecting 0.5% of the population. Three disease genes have been identified: CCM1/KRIT1, CCM2, and CCM3. These genes encode for proteins implicated in the regulation of major cellular structures and mechanisms, such as cell-cell and cell-matrix adhesion, actin cytoskeleton dynamics, and endothelial-to-mesenchymal transition, suggesting that they may act as pleiotropic regulators of cellular homeostasis. Indeed, accumulated evidence in cellular and animal models demonstrates that emerged pleiotropic functions of CCM proteins are mainly due to their ability to modulate redox-sensitive pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, thus contributing to the preservation of cellular homeostasis and stress defenses. In particular, we demonstrated that KRIT1 loss-of-function affects master regulators of cellular redox homeostasis and responses to oxidative stress, including major redox-sensitive transcriptional factors and antioxidant proteins, and autophagy, suggesting that altered redox signaling and oxidative stress contribute to CCM pathogenesis, and opening novel preventive and therapeutic perspectives.In this chapter, we describe materials and methods for isolation of mouse embryonic fibroblast (MEF) cells from homozygous KRIT1-knockout mouse embryos, and their transduction with a lentiviral vector encoding KRIT1 to generate cellular models of CCM disease that contributed significantly to the identification of pathogenetic mechanisms.
Collapse
Affiliation(s)
- Luca Goitre
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino), Italy. .,CCM Italia Research Network, Torino, Italy.
| | - Claudia Fornelli
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino), Italy.,CCM Italia Research Network, Torino, Italy
| | - Alessia Zotta
- Department of Clinical and Biological Science, University of Torino, Orbassano (Torino), Italy.,CCM Italia Research Network, Torino, Italy
| | - Andrea Perrelli
- CCM Italia Research Network, Torino, Italy.,Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy
| | - Saverio Francesco Retta
- CCM Italia Research Network, Torino, Italy. .,Department of Clinical and Biological Science, School of Medicine and Surgery, University of Torino, Orbassano (Torino), Italy.
| |
Collapse
|
17
|
Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. J Virol 2021; 95:JVI.01987-20. [PMID: 33173010 DOI: 10.1128/jvi.01987-20] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic, or prophylactic. As with other betacoronaviruses, attachment and entry of SARS-CoV-2 are mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin-converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third-generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in antiviral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH, and 6-O-desulfated enoxaparin with 50% inhibitory concentrations (IC50s) of 5.99 μg/liter, 1.08 mg/liter, 1.77 μg/liter, and 5.86 mg/liter, respectively. In summary, several sulfated polysaccharides show potent anti-SARS-CoV-2 activity and can be developed for prophylactic as well as therapeutic purposes.IMPORTANCE The emergence of severe acute respiratory syndrome coronavirus (SARS-CoV-2) in Wuhan, China, in late 2019 and its subsequent spread to the rest of the world has created a pandemic situation unprecedented in modern history. While ACE2 has been identified as the viral receptor, cellular polysaccharides have also been implicated in virus entry. The SARS-CoV-2 spike glycoprotein (SGP) binds to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we report structure-based differences in antiviral activity and affinity to SGP for several sulfated polysaccharides, including both well-characterized FDA-approved drugs and novel marine sulfated polysaccharides, which can be developed for prophylactic as well as therapeutic purposes.
Collapse
|
18
|
Marttinen M, Ferreira CB, Paldanius KMA, Takalo M, Natunen T, Mäkinen P, Leppänen L, Leinonen V, Tanigaki K, Kang G, Hiroi N, Soininen H, Rilla K, Haapasalo A, Hiltunen M. Presynaptic Vesicle Protein SEPTIN5 Regulates the Degradation of APP C-Terminal Fragments and the Levels of Aβ. Cells 2020; 9:cells9112482. [PMID: 33203136 PMCID: PMC7696542 DOI: 10.3390/cells9112482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by aberrant amyloid-β (Aβ) and hyperphosphorylated tau aggregation. We have previously investigated the involvement of SEPTIN family members in AD-related cellular processes and discovered a role for SEPTIN8 in the sorting and accumulation of β-secretase. Here, we elucidated the potential role of SEPTIN5, an interaction partner of SEPTIN8, in the cellular processes relevant for AD, including amyloid precursor protein (APP) processing and the generation of Aβ. The in vitro and in vivo studies both revealed that the downregulation of SEPTIN5 reduced the levels of APP C-terminal fragments (APP CTFs) and Aβ in neuronal cells and in the cortex of Septin5 knockout mice. Mechanistic elucidation revealed that the downregulation of SEPTIN5 increased the degradation of APP CTFs, without affecting the secretory pathway-related trafficking or the endocytosis of APP. Furthermore, we found that the APP CTFs were degraded, to a large extent, via the autophagosomal pathway and that the downregulation of SEPTIN5 enhanced autophagosomal activity in neuronal cells as indicated by altered levels of key autophagosomal markers. Collectively, our data suggest that the downregulation of SEPTIN5 increases the autophagy-mediated degradation of APP CTFs, leading to reduced levels of Aβ in neuronal cells.
Collapse
Affiliation(s)
- Mikael Marttinen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Catarina B. Ferreira
- Instituto de Medicina Molecular—João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal;
| | - Kaisa M. A. Paldanius
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Mari Takalo
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Teemu Natunen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Petra Mäkinen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Luukas Leppänen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Ville Leinonen
- Institute of Clinical Medicine–Neurosurgery, University of Eastern Finland, 70210 Kuopio, Finland;
- Neurology of Neuro Center Kuopio University Hospital, 70210 Kuopio, Finland
| | - Kenji Tanigaki
- Research Institute, Shiga Medical Center, Shiga 524-8524, Japan;
| | - Gina Kang
- Department of Pharmacology, Department of Integrative and Systems Physiology, Department of Cell Systems and Anatomy, Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX 77030, USA; (G.K.); (N.H.)
| | - Noboru Hiroi
- Department of Pharmacology, Department of Integrative and Systems Physiology, Department of Cell Systems and Anatomy, Department of Psychiatry, University of Texas Health Science Center, San Antonio, TX 77030, USA; (G.K.); (N.H.)
| | - Hilkka Soininen
- Institute of Clinical Medicine–Neurology, University of Eastern Finland, 70210 Kuopio, Finland;
| | - Kirsi Rilla
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
| | - Annakaisa Haapasalo
- A.I Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
- Correspondence: (A.H.); (M.H.); Tel.: +358-40-355-2768 (A.H.); +358-40-355-2014 (M.H.)
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, 70210 Kuopio, Finland; (M.M.); (K.M.A.P.); (M.T.); (T.N.); (P.M.); (L.L.); (K.R.)
- Correspondence: (A.H.); (M.H.); Tel.: +358-40-355-2768 (A.H.); +358-40-355-2014 (M.H.)
| |
Collapse
|
19
|
Effective screening of SARS-CoV-2 neutralizing antibodies in patient serum using lentivirus particles pseudotyped with SARS-CoV-2 spike glycoprotein. Sci Rep 2020; 10:19076. [PMID: 33154514 PMCID: PMC7645753 DOI: 10.1038/s41598-020-76135-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022] Open
Abstract
Pseuodotyped particles have significant importance and use in virology as tools for studying the biology of highly pathogenic viruses in a lower biosafety environment. The biological, chemical, and serological studies of the recently emerged SARS-CoV-2 will be greatly aided by the development and optimization of a suitable pseudotyping system. Here, we pseudotyped the SARS-CoV-2 Spike glycoprotein (SPG) on a traditional retroviral (MMLV) as well as a third generation lentiviral (pLV) vector and tested the transduction efficiency in several mammalian cell lines expressing SARS-CoV-2 receptor hACE2. While MMLV pseudotyped the vesicular stomatitis virus G glycoprotein (VSV-G) efficiently, it could not pseudotype the full-length SPG. In contrast, pLV pseudotyped both glycoproteins efficiently; however, much higher titers of pLV-G particles were produced. Among all the tested mammalian cells, 293Ts expressing hACE2 were most efficiently transduced using the pLV-S system. The pLV-S particles were efficiently neutralized by diluted serum (>:640) from recently recovered COVID-19 patients who showed high SARS-CoV-2 specific IgM and IgG levels. In summary, pLV-S pseudotyped virus provides a valid screening tool for the presence of anti SARS-CoV-2 specific neutralizing antibodies in convalescent patient serum.
Collapse
|
20
|
Sousa Bomfim A, Corrêa de Freitas MC, Picanço Castro V, Abreu Soares Neto M, Pádua R, Covas DT, Sousa Russo EM. Generation of hyperfunctional recombinant human factor IX variants expressed in human cell line SK-Hep-1. Biotechnol Lett 2020; 43:143-152. [PMID: 33130980 DOI: 10.1007/s10529-020-03040-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 10/27/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To develop recombinant factor IX (FIX) variants with augmented clotting activity. RESULTS We generated three new variants, FIX-YKALW, FIX-ALL and FIX-LLW, expressed in SK-Hep-1 cells and characterized in vitro and in vivo. FIX-YKALW showed the highest antigen expression level among the variants (2.17 µg-mL), followed by FIX-LLW (1.5 µg-mL) and FIX-ALL (0.9 µg-mL). The expression level of FIX variants was two-five fold lower than FIX-wild-type (FIX-WT) (4.37 µg-mL). However, the biological activities of FIX variants were 15-31 times greater than FIX-WT in the chromogenic assay. Moreover, the new variants FIX-YKALW, FIX-LLW and FIX-ALL also presented higher specific activity than FIX-WT (17, 20 and 29-fold higher, respectively). FIX variants demonstrated a better clotting time than FIX-WT. In hemophilia B mice, we observed that FIX-YKALW promoted hemostatic protection. CONCLUSION We have developed three improved FIX proteins with potential for use in protein replacement therapy for hemophilia B.
Collapse
Affiliation(s)
- Aline Sousa Bomfim
- Department of Clinical, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil. .,Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil. .,Department of Clinical, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Café Avenue, Block R, Room 7, Ribeirão Preto, SP, ZIP 14040-903, Brazil.
| | | | - Virgínia Picanço Castro
- Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil
| | - Mario Abreu Soares Neto
- Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil
| | - Ricardo Pádua
- Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil.,Department of Medical Clinic, Faculty of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Elisa Maria Sousa Russo
- Department of Clinical, Toxicological and Food Science Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Laboratory of Biotechnology, Center for Cell-Based Therapy and Regional Blood Center, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Savino E, Cervigni RI, Povolo M, Stefanetti A, Ferrante D, Valente P, Corradi A, Benfenati F, Guarnieri FC, Valtorta F. Proline-rich transmembrane protein 2 (PRRT2) regulates the actin cytoskeleton during synaptogenesis. Cell Death Dis 2020; 11:856. [PMID: 33056987 PMCID: PMC7560900 DOI: 10.1038/s41419-020-03073-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Mutations in proline-rich transmembrane protein 2 (PRRT2) have been recently identified as the leading cause of a clinically heterogeneous group of neurological disorders sharing a paroxysmal nature, including paroxysmal kinesigenic dyskinesia and benign familial infantile seizures. To date, studies aimed at understanding its physiological functions in neurons have mainly focused on its ability to regulate neurotransmitter release and neuronal excitability. Here, we show that PRRT2 expression in non-neuronal cell lines inhibits cell motility and focal adhesion turnover, increases cell aggregation propensity, and promotes the protrusion of filopodia, all processes impinging on the actin cytoskeleton. In primary hippocampal neurons, PRRT2 silencing affects the synaptic content of filamentous actin and perturbs actin dynamics. This is accompanied by defects in the density and maturation of dendritic spines. We identified cofilin, an actin-binding protein abundantly expressed at the synaptic level, as the ultimate effector of PRRT2. Indeed, PRRT2 silencing unbalances cofilin activity leading to the formation of cofilin-actin rods along neurites. The expression of a cofilin phospho-mimetic mutant (cof-S3E) is able to rescue PRRT2-dependent defects in synapse density, spine number and morphology, but not the alterations observed in neurotransmitter release. Our data support a novel function of PRRT2 in the regulation of the synaptic actin cytoskeleton and in the formation of synaptic contacts.
Collapse
Affiliation(s)
- Elisa Savino
- IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Romina Inès Cervigni
- IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Miriana Povolo
- IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | | | - Daniele Ferrante
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132, Genova, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genova, Viale Benedetto XV, 3, 16132, Genova, Italy.,IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Fabio Benfenati
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi 10, 16132, Genova, Italy.,Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genova, Italy
| | - Fabrizia Claudia Guarnieri
- IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy
| | - Flavia Valtorta
- IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy. .,Vita-Salute San Raffaele University, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|
22
|
Schenkwein D, Afzal S, Nousiainen A, Schmidt M, Ylä-Herttuala S. Efficient Nuclease-Directed Integration of Lentivirus Vectors into the Human Ribosomal DNA Locus. Mol Ther 2020; 28:1858-1875. [PMID: 32504545 PMCID: PMC7403359 DOI: 10.1016/j.ymthe.2020.05.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/03/2020] [Accepted: 05/19/2020] [Indexed: 12/30/2022] Open
Abstract
Lentivirus vectors (LVs) are efficient tools for gene transfer, but the non-specific nature of transgene integration by the viral integration machinery carries an inherent risk for genotoxicity. We modified the integration machinery of LVs and harnessed the cellular DNA double-strand break repair machinery to integrate transgenes into ribosomal DNA, a promising genomic safe-harbor site for transgenes. LVs carrying modified I-PpoI-derived homing endonuclease proteins were characterized in detail, and we found that at least 21% of all integration sites localized to ribosomal DNA when LV transduction was coupled to target DNA cleavage. In addition to the primary sequence recognized by the endonuclease, integration was also enriched in chromatin domains topologically associated with nucleoli, which contain the targeted ribosome RNA genes. Targeting of this highly repetitive region for integration was not associated with detectable DNA deletions or negative impacts on cell health in transduced primary human T cells. The modified LVs characterized here have an overall lower risk for insertional mutagenesis than regular LVs and can thus improve the safety of gene and cellular therapy.
Collapse
Affiliation(s)
- Diana Schenkwein
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Saira Afzal
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany
| | - Alisa Nousiainen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120 Heidelberg, Germany; GeneWerk GmbH, Im Neuenheimer Feld 582, 69120 Heidelberg, Germany
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FIN-70211 Kuopio, Finland; Heart Center and Gene Therapy Unit, Kuopio University Hospital, P.O. Box 1777, FIN-70211 Kuopio, Finland.
| |
Collapse
|
23
|
Tandon R, Sharp JS, Zhang F, Pomin VH, Ashpole NM, Mitra D, Jin W, Liu H, Sharma P, Linhardt RJ. Effective Inhibition of SARS-CoV-2 Entry by Heparin and Enoxaparin Derivatives. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.06.08.140236. [PMID: 32577638 PMCID: PMC7302190 DOI: 10.1101/2020.06.08.140236] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) has caused a pandemic of historic proportions and continues to spread globally, with enormous consequences to human health. Currently there is no vaccine, effective therapeutic or prophylactic. Like other betacoronaviruses, attachment and entry of SARS-CoV-2 is mediated by the spike glycoprotein (SGP). In addition to its well-documented interaction with its receptor, human angiotensin converting enzyme 2 (hACE2), SGP has been found to bind to glycosaminoglycans like heparan sulfate, which is found on the surface of virtually all mammalian cells. Here, we pseudotyped SARS-CoV-2 SGP on a third generation lentiviral (pLV) vector and tested the impact of various sulfated polysaccharides on transduction efficiency in mammalian cells. The pLV vector pseudotyped SGP efficiently and produced high titers on HEK293T cells. Various sulfated polysaccharides potently neutralized pLV-S pseudotyped virus with clear structure-based differences in anti-viral activity and affinity to SGP. Concentration-response curves showed that pLV-S particles were efficiently neutralized by a range of concentrations of unfractionated heparin (UFH), enoxaparin, 6-O-desulfated UFH and 6-O-desulfated enoxaparin with an IC50 of 5.99 μg/L, 1.08 mg/L, 1.77 μg/L, and 5.86 mg/L respectively. The low serum bioavailability of intranasally administered UFH, along with data suggesting that the nasal epithelium is a portal for initial infection and transmission, suggest that intranasal administration of UFH may be an effective and safe prophylactic treatment.
Collapse
Affiliation(s)
- Ritesh Tandon
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS 38677
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180
| | - Vitor H. Pomin
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677
| | - Nicole M. Ashpole
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677
| | - Dipanwita Mitra
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Weihua Jin
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180
| | - Hao Liu
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677
| | - Poonam Sharma
- Department of Microbiology and Immunology, University of Mississippi Medical Center, Jackson, MS 39216
| | - Robert J. Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180
| |
Collapse
|
24
|
Manzati M, Sorbo T, Giugliano M, Ballerini L. Foetal neural progenitors contribute to postnatal circuits formation ex vivo: an electrophysiological investigation. Mol Brain 2020; 13:78. [PMID: 32430072 PMCID: PMC7236481 DOI: 10.1186/s13041-020-00619-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/08/2020] [Indexed: 11/10/2022] Open
Abstract
Neuronal progenitor cells (NPC) play an essential role in homeostasis of the central nervous system (CNS). Considering their ability to differentiate into specific lineages, their manipulation and control could have a major therapeutic impact for those CNS injuries or degenerative diseases characterized by neuronal cell loss. In this work, we established an in vitro co-culture and tested the ability of foetal NPC (fNPC) to integrate among post-mitotic hippocampal neurons and contribute to the electrical activity of the resulting networks. We performed extracellular electrophysiological recordings of the activity of neuronal networks and compared the properties of spontaneous spiking in hippocampal control cultures (HCC), fNPC, and mixed circuitries ex vivo. We further employed patch-clamp intracellular recordings to examine single-cell excitability. We report of the capability of fNPC to mature when combined to hippocampal neurons, shaping the profile of network activity, a result suggestive of newly formed connectivity ex vivo.
Collapse
Affiliation(s)
- Matteo Manzati
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, I-34136, Trieste, Italy.,Neuronal Dynamics Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, I-34136, Trieste, Italy
| | - Teresa Sorbo
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, I-34136, Trieste, Italy
| | - Michele Giugliano
- Neuronal Dynamics Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, I-34136, Trieste, Italy. .,Department of Biomedical Sciences and Institute Born-Bunge, Universiteit Antwerpen, B-2610, Wilrijk, Belgium.
| | - Laura Ballerini
- Neuron Physiology and Technology Lab, International School for Advanced Studies (SISSA), Neuroscience, Via Bonomea 265, I-34136, Trieste, Italy.
| |
Collapse
|
25
|
Famà R, Borroni E, Zanolini D, Merlin S, Bruscaggin V, Walker GE, Olgasi C, Babu D, Agnelli Giacchello J, Valeri F, Giordano M, Borchiellini A, Follenzi A. Identification and functional characterization of a novel splicing variant in the F8 coagulation gene causing severe hemophilia A. J Thromb Haemost 2020; 18:1050-1064. [PMID: 32078252 DOI: 10.1111/jth.14779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 01/30/2020] [Accepted: 02/10/2020] [Indexed: 11/27/2022]
Abstract
BACKGROUND We have identified a synonymous F8 variation in a severe hemophilia A (HA) patient who developed inhibitors following factor VIII (FVIII) prophylaxis. The unreported c.6273 G > A variant targets the consensus splicing site of exon 21. OBJECTIVES To determine the impact of c.6273 G > A nucleotide substitution on F8 splicing and its translated protein. METHODS Patient peripheral blood mononuclear cells were isolated and differentiated into monocyte-derived macrophages (MDMs). FVIII distribution in cell compartments was evaluated by immunofluorescence. The splicing of mutated exon 21 was assessed by exon trapping. Identified FVIII splicing variants were generated by site-directed mutagenesis, inserted into a lentiviral vector (LV) to transduce Chinese hamster ovary (CHO) cells, and inject into B6/129 HA-mice. FVIII activity was assessed by activated partial thromboplastin time, whereas anti-FVIII antibodies and FVIII antigen, by ELISA. RESULTS HA-MDMs demonstrated a predominant retention of FVIII around the endoplasmic reticulum. Exon trapping revealed the production of two isoforms: one retaining part of intron 21 and the other skipping exon 21. These variants, predicted to truncate FVIII in the C1 domain, were detected in the patient. CHO cells transduced with the two FVIII transcripts confirmed protein retention and absence of the C2 domain. HA mice injected with LV carrying FVIII mutants, partially recovered FVIII activity without the appearance of anti-FVIII antibodies. CONCLUSIONS Herein, we demonstrate the aberrant impact of a FVIII synonymous mutation on its transcription, activity, and pathological outcomes. Our data underline the importance of increasing the knowledge regarding the functional consequences of F8 mutations and their link to inhibitor development and an effective replacement therapy.
Collapse
Affiliation(s)
- Rosella Famà
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Diego Zanolini
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Gillian E Walker
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Cristina Olgasi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | - Deepak Babu
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Federica Valeri
- Hemostasis and Thrombosis Unit, Città Della Salute e Della Scienza, Molinette, Turin, Italy
| | - Mara Giordano
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
26
|
Ripamonti S, Shomroni O, Rhee JS, Chowdhury K, Jahn O, Hellmann KP, Bonn S, Brose N, Tirard M. SUMOylation controls the neurodevelopmental function of the transcription factor Zbtb20. J Neurochem 2020; 154:647-661. [PMID: 32233089 DOI: 10.1111/jnc.15008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/12/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
SUMOylation is a dynamic post-translational protein modification that primarily takes place in cell nuclei, where it plays a key role in multiple DNA-related processes. In neurons, the SUMOylation-dependent control of a subset of neuronal transcription factors is known to regulate various aspects of nerve cell differentiation, development, and function. In an unbiased screen for endogenous SUMOylation targets in the developing mouse brain, based on a His6 -HA-SUMO1 knock-in mouse line, we previously identified the transcription factor Zinc finger and BTB domain-containing 20 (Zbtb20) as a new SUMO1-conjugate. We show here that the three key SUMO paralogues SUMO1, SUMO2, and SUMO3 can all be conjugated to Zbtb20 in vitro in HEK293FT cells, and we confirm the SUMOylation of Zbtb20 in vivo in mouse brain. Using primary hippocampal neurons from wild-type and Zbtb20 knock-out (KO) mice as a model system, we then demonstrate that the expression of Zbtb20 is required for proper nerve cell development and neurite growth and branching. Furthermore, we show that the SUMOylation of Zbtb20 is essential for its function in this context, and provide evidence indicating that SUMOylation affects the Zbtb20-dependent transcriptional profile of neurons. Our data highlight the role of SUMOylation in the regulation of neuronal transcription factors that determine nerve cell development, and they demonstrate that key functions of the transcription factor Zbtb20 in neuronal development and neurite growth are under obligatory SUMOylation control.
Collapse
Affiliation(s)
- Silvia Ripamonti
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Orr Shomroni
- NGS Integrative Genomics Core Unit, Department of Human Genetics, University Medical Center Göttingen, Göttingen, Germany
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Kamal Chowdhury
- Max Planck Institute of Biophysical Chemistry, Göttingen, Germany
| | - Olaf Jahn
- Proteomics Group, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus Peter Hellmann
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
27
|
FVIII expression by its native promoter sustains long-term correction avoiding immune response in hemophilic mice. Blood Adv 2020; 3:825-838. [PMID: 30862611 DOI: 10.1182/bloodadvances.2018027979] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/04/2019] [Indexed: 12/20/2022] Open
Abstract
Here we describe a successful gene therapy approach for hemophilia A (HA), using the natural F8 promoter (pF8) to direct gene replacement to factor VIII (FVIII)-secreting cells. The promoter sequence and the regulatory elements involved in the modulation of F8 expression are still poorly characterized and biased by the historical assumption that FVIII expression is mainly in hepatocytes. Bioinformatic analyses have highlighted an underestimated complexity in gene expression at this locus, suggesting an activation of pF8 in more cell types than those previously expected. C57Bl/6 mice injected with a lentiviral vector expressing green fluorescent protein (GFP) under the pF8 (lentiviral vector [LV].pF8.GFP) confirm the predominant GFP expression in liver sinusoidal endothelial cells, with a few positive cells detectable also in hematopoietic organs. Therapeutic gene delivery (LV.pF8.FVIII) in hemophilic C57/Bl6 and 129-Bl6 mice successfully corrected the bleeding phenotype, rescuing up to 25% FVIII activity, using a codon-optimized FVIII, with sustained activity for the duration of the experiment (1 year) without inhibitor formation. Of note, LV.pF8.FVIII delivery in FVIII-immunized HA mice resulted in the complete reversion of the inhibitor titer with the recovery of therapeutic FVIII activity. Depletion of regulatory T cells (Tregs) in LV-treated mice allowed the formation of anti-FVIII antibodies, indicating a role for Tregs in immune tolerance induction. The significant blood loss reduction observed in all LV.pF8.FVIII-treated mice 1 year after injection confirmed the achievement of a long-term phenotypic correction. Altogether, our results highlight the potency of pF8-driven transgene expression to correct the bleeding phenotype in HA, as well as potentially in other diseases in which an endothelial-specific expression is required.
Collapse
|
28
|
Valkama AJ, Oruetxebarria I, Lipponen EM, Leinonen HM, Käyhty P, Hynynen H, Turkki V, Malinen J, Miinalainen T, Heikura T, Parker NR, Ylä-Herttuala S, Lesch HP. Development of Large-Scale Downstream Processing for Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:717-730. [PMID: 32346549 PMCID: PMC7177191 DOI: 10.1016/j.omtm.2020.03.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023]
Abstract
The interest in lentiviral vectors (LVs) has increased prominently for gene therapy applications, but few have reached the later stages of clinical trials. The main challenge has remained in scaling up the manufacturing process for the fragile vector to obtain high titers for in vivo usage. We have previously scaled up the LV production to iCELLis 500, being able to produce up to 180 L of harvest material in one run with perfusion. The following challenge considers the purification and concentration of the product to meet titer and purity requirements for clinical use. We have developed a downstream process, beginning with clarification, buffer exchange, and concentration, by tangential flow filtration. This is followed by a purification step using single membrane-based anion exchange chromatography and final formulation with tangential flow filtration. Different materials and conditions were compared to optimize the process, especially for the chromatography step that has been the bottleneck in lentiviral vector purification scale-up. The final infectious titer of the lentiviral vector product manufactured using the optimized scale-up process was determined to be 1.97 × 109 transducing units (TU)/mL, which can be considered as a high titer for lentiviral vectors.
Collapse
Affiliation(s)
- Anniina J Valkama
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Igor Oruetxebarria
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Eevi M Lipponen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Hanna M Leinonen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Piia Käyhty
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Heidi Hynynen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Vesa Turkki
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Joonas Malinen
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| | - Tuukka Miinalainen
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Tommi Heikura
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Nigel R Parker
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Seppo Ylä-Herttuala
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Hanna P Lesch
- Kuopio Center for Gene and Cell Therapy, 70210 Kuopio, Finland
- FinVector, 70210 Kuopio, Finland
| |
Collapse
|
29
|
Park SY, Moon HC, Park HY. Live-cell imaging of single mRNA dynamics using split superfolder green fluorescent proteins with minimal background. RNA (NEW YORK, N.Y.) 2020; 26:101-109. [PMID: 31641028 PMCID: PMC6913125 DOI: 10.1261/rna.067835.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
The MS2 system, with an MS2 binding site (MBS) and an MS2 coat protein fused to a fluorescent protein (MCP-FP), has been widely used to fluorescently label mRNA in live cells. However, one of its limitations is the constant background fluorescence signal generated from free MCP-FPs. To overcome this obstacle, we used a superfolder GFP (sfGFP) split into two or three nonfluorescent fragments that reassemble and emit fluorescence only when bound to the target mRNA. Using the high-affinity interactions of bacteriophage coat proteins with their corresponding RNA binding motifs, we showed that the nonfluorescent sfGFP fragments were successfully brought close to each other to reconstitute a complete sfGFP. Furthermore, real-time mRNA dynamics inside the nucleus as well as the cytoplasm were observed by using the split sfGFPs with the MS2-PP7 hybrid system. Our results demonstrate that the split sfGFP systems are useful tools for background-free imaging of mRNA with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Sung Young Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
- Center for RNA Research, Institute for Basic Science, Seoul, 08826, Korea
| | - Hyungseok C Moon
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
| | - Hye Yoon Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, Korea
- Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
30
|
Bon C, Luffarelli R, Russo R, Fortuni S, Pierattini B, Santulli C, Fimiani C, Persichetti F, Cotella D, Mallamaci A, Santoro C, Carninci P, Espinoza S, Testi R, Zucchelli S, Condò I, Gustincich S. SINEUP non-coding RNAs rescue defective frataxin expression and activity in a cellular model of Friedreich's Ataxia. Nucleic Acids Res 2019; 47:10728-10743. [PMID: 31584077 PMCID: PMC6847766 DOI: 10.1093/nar/gkz798] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/08/2019] [Accepted: 09/28/2019] [Indexed: 12/16/2022] Open
Abstract
Friedreich's ataxia (FRDA) is an untreatable disorder with neuro- and cardio-degenerative progression. This monogenic disease is caused by the hyper-expansion of naturally occurring GAA repeats in the first intron of the FXN gene, encoding for frataxin, a protein implicated in the biogenesis of iron-sulfur clusters. As the genetic defect interferes with FXN transcription, FRDA patients express a normal frataxin protein but at insufficient levels. Thus, current therapeutic strategies are mostly aimed to restore physiological FXN expression. We have previously described SINEUPs, natural and synthetic antisense long non-coding RNAs, which promote translation of partially overlapping mRNAs through the activity of an embedded SINEB2 domain. Here, by in vitro screening, we have identified a number of SINEUPs targeting human FXN mRNA and capable to up-regulate frataxin protein to physiological amounts acting at the post-transcriptional level. Furthermore, FXN-specific SINEUPs promote the recovery of disease-associated mitochondrial aconitase defects in FRDA-derived cells. In summary, we provide evidence that SINEUPs may be the first gene-specific therapeutic approach to activate FXN translation in FRDA and, more broadly, a novel scalable platform to develop new RNA-based therapies for haploinsufficient diseases.
Collapse
Affiliation(s)
- Carlotta Bon
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Riccardo Luffarelli
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Roberta Russo
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Silvia Fortuni
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Bianca Pierattini
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Chiara Santulli
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Cristina Fimiani
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Francesca Persichetti
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Diego Cotella
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Antonello Mallamaci
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| | - Claudio Santoro
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Piero Carninci
- RIKEN Center for Life Science Technologies, Division of Genomic Technologies, Yokohama, Kanagawa, Japan
| | - Stefano Espinoza
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Roberto Testi
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Zucchelli
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
- Department of Health Sciences and Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - Ivano Condò
- Department of Biomedicine and Prevention, Laboratory of Signal Transduction, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Gustincich
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), Genova, Italy
- Area of Neuroscience, International School for Advanced Studies (SISSA), Italy
| |
Collapse
|
31
|
Magic Z, Sandström J, Perez-Tenorio G. Ephrin‑B2 inhibits cell proliferation and motility in vitro and predicts longer metastasis‑free survival in breast cancer. Int J Oncol 2019; 55:1275-1286. [PMID: 31638179 PMCID: PMC6831205 DOI: 10.3892/ijo.2019.4892] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
The tyrosine kinase receptor EphB4 and its ligand ephrin‑B2 interact through cell‑to‑cell contacts. Upon interaction, EphB4 transmits bidirectional signals. A forward signal inside EphB4‑expressing cells is believed to suppress tumor growth, while inside the ephrin‑expressing cells, an oncogenic reverse signal arises. In breast cancer cells with a high EphB4 receptor expression the forward signal is low, in part due to the low expression of the ligand ephrin‑B2. Therefore, we hypothesized that by re‑introducing the ligand in EphB4‑positive cells, tumor suppression could be induced by the stimulation of the forward signal. This question was addressed in vitro by the stable lentiviral infection of breast cancer cells with either wild‑type EFNB2 or with a mutant EFNB2‑5F, unable to transmit reverse signaling. Furthermore, we investigated ephrin‑B and EphB4 protein expression in 216 paraffin‑embedded tumors using immunohistochemistry. The in vitro results indicated that ephrin‑B2 expression was associated with a lower cell proliferation, migration and motility compared with the control cells. These effects were more pronounced when the cells lacked the ability to transmit the reverse signal (B2‑5F). In clinical material, ephrin‑B protein expression was associated with a positive estrogen receptor (ER) status, a low HER‑2 expression and was negatively associated with Nottingham histologic grade (NHG) III. Ephrin‑B expression indicated a good prognosis, whereas EphB4 expression was associated with a shorter metastasis‑free survival in univariate and multivariate analysis. Furthermore, the prognostic value of EFNB2 and EPHB4 was confirmed at the gene expression level in public datasets. Thus, on the whole, the findings of this study suggest that ephrin‑B2 expression is associated with less proliferation and lower motility of breast cancer cells and with a longer patient survival in breast cancer.
Collapse
Affiliation(s)
- Zeljana Magic
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE‑58185 Linköping, Sweden
| | - Josefine Sandström
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE‑58185 Linköping, Sweden
| | - Gizeh Perez-Tenorio
- Department of Clinical and Experimental Medicine and Department of Oncology, Linköping University, SE‑58185 Linköping, Sweden
| |
Collapse
|
32
|
A ghrelin receptor and oxytocin receptor heterocomplex impairs oxytocin mediated signalling. Neuropharmacology 2019; 152:90-101. [DOI: 10.1016/j.neuropharm.2018.12.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/21/2018] [Accepted: 12/18/2018] [Indexed: 12/31/2022]
|
33
|
Merlin S, Follenzi A. Transcriptional Targeting and MicroRNA Regulation of Lentiviral Vectors. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 12:223-232. [PMID: 30775404 PMCID: PMC6365353 DOI: 10.1016/j.omtm.2018.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gene expression regulation is the result of complex interactions between transcriptional and post-transcriptional controls, resulting in cell-type-specific gene expression patterns that are determined by the developmental and differentiation stage of pathophysiological conditions. Understanding the complexity of gene expression regulatory networks is fundamental to gene therapy, an approach which has the potential to treat and cure inherited disorders by delivering the correct gene to patient specific cells or tissues by means of both viral and non-viral vectors. Besides the issues of biosafety, in recent years efforts have focused on achieving a robust and sustained transgene expression, which attains a phenotypic correction in several diseases, while avoiding transgene-related adverse effects, such as overexpression-associated cytotoxicity and/or immune responses to the transgene. In this sense, the use of cell-type-specific promoters and microRNA target sequences (miRTs) in gene transfer expression cassettes have allowed for a restricted expression after gene transfer in several studies. This review will focus on the use of transcriptional and post-transcriptional regulation to achieve a highly specific and safe transgene expression, as well as their application in ex vivo and in vivo gene therapeutic approaches.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, School of Medicine, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
34
|
A Dairy-Derived Ghrelinergic Hydrolysate Modulates Food Intake In Vivo. Int J Mol Sci 2018; 19:ijms19092780. [PMID: 30223587 PMCID: PMC6165545 DOI: 10.3390/ijms19092780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022] Open
Abstract
Recent times have seen an increasing move towards harnessing the health-promoting benefits of food and dietary constituents while providing scientific evidence to substantiate their claims. In particular, the potential for bioactive protein hydrolysates and peptides to enhance health in conjunction with conventional pharmaceutical therapy is being investigated. Dairy-derived proteins have been shown to contain bioactive peptide sequences with various purported health benefits, with effects ranging from the digestive system to cardiovascular circulation, the immune system and the central nervous system. Interestingly, the ability of dairy proteins to modulate metabolism and appetite has recently been reported. The ghrelin receptor (GHSR-1a) is a G-protein coupled receptor which plays a key role in the regulation of food intake. Pharmacological manipulation of the growth hormone secretagogue receptor-type 1a (GHSR-1a) receptor has therefore received a lot of attention as a strategy to combat disorders of appetite and body weight, including age-related malnutrition and the progressive muscle wasting syndrome known as cachexia. In this study, a milk protein-derivative is shown to increase GHSR-1a-mediated intracellular calcium signalling in a concentration-dependent manner in vitro. Significant increases in calcium mobilisation were also observed in a cultured neuronal cell line heterologously expressing the GHS-R1a. In addition, both additive and synergistic effects were observed following co-exposure of GHSR-1a to both the hydrolysate and ghrelin. Subsequent in vivo studies monitored standard chow intake in healthy male and female Sprague-Dawley rats after dosing with the casein hydrolysate (CasHyd). Furthermore, the provision of gastro-protected oral delivery to the bioactive in vivo may aid in the progression of in vitro efficacy to in vivo functionality. In summary, this study reports a ghrelin-stimulating bioactive peptide mixture (CasHyd) with potent effects in vitro. It also provides novel and valuable translational data supporting the potential role of CasHyd as an appetite-enhancing bioactive. Further mechanistic studies are required in order to confirm efficacy as a ghrelinergic bioactive in susceptible population groups.
Collapse
|
35
|
Walker GE, Follenzi A, Bruscaggin V, Manfredi M, Bellone S, Marengo E, Maiuri L, Prodam F, Bona G. Fetuin B links vitamin D deficiency and pediatric obesity: Direct negative regulation by vitamin D. J Steroid Biochem Mol Biol 2018; 182:37-49. [PMID: 29684480 PMCID: PMC6092561 DOI: 10.1016/j.jsbmb.2018.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/30/2018] [Accepted: 04/17/2018] [Indexed: 12/13/2022]
Abstract
Vitamin D (VD) deficiency (VDD) correlates to obesity, with VD a recognized mediator of metabolic diseases. From a previous proteomic study identifying adiponectin as a link between VDD and pediatric obesity, herein we analysed another protein (SSP2301) increased with VDD. A focused 2D-electrophoretic analysis identified 4 corresponding plasma proteins, with one predicted to be fetuin B (FETUB). FETUB was studied due to its emerging role in metabolic diseases and cytogenetic location (3q27.3) with adiponectin. Results were confirmed in obese children, where plasma FETUB was higher with VDD. A direct effect by 1α,25-(OH)2D3 on hepatocellular FETUB synthesis was observed, with a time and dose dependent reduction. Further, we demonstrated the VD-receptor (VDR) is key, with FETUB "released" with VDR silencing. Finally, VD supplementation (6weeks) to juvenile mice fed a standard diet, reduced plasma FETUB. Only at 22weeks did liver FETUB correspond to plasma FETUB, highlighting the contribution of other VD-responsive tissues. Overall, FETUB is a key protein linking VDD to pediatric obesity. With an emerging role in metabolic diseases, we demonstrate that VD/VDR directly regulate FETUB.
Collapse
Affiliation(s)
- Gillian E Walker
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy
| | | | - Marcello Manfredi
- Isalit S.R.L., Department of Science Innovation and Technology, Università del Piemonte Orientale, Novara, Italy
| | - Simonetta Bellone
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Division of Pediatrics, Università del Piemonte Orientale, Novara, Italy
| | - Emilio Marengo
- Isalit S.R.L., Department of Science Innovation and Technology, Università del Piemonte Orientale, Novara, Italy
| | - Luigi Maiuri
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Division of Pediatrics, Università del Piemonte Orientale, Novara, Italy
| | - Flavia Prodam
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Division of Pediatrics, Università del Piemonte Orientale, Novara, Italy
| | - Gianni Bona
- Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy; Division of Pediatrics, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
36
|
Tang M, Liu Y, Zhang QC, Zhang P, Wu JK, Wang JN, Ruan Y, Huang Y. Antitumor efficacy of the Runx2-dendritic cell vaccine in triple-negative breast cancer in vitro. Oncol Lett 2018; 16:2813-2822. [PMID: 30127867 PMCID: PMC6096217 DOI: 10.3892/ol.2018.9001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 04/05/2018] [Indexed: 12/13/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer with a poor prognosis and limited effective treatment. The rise in immunotherapeutic strategies prompted the establishment of a genetic vaccine against TNBC in vitro using a possible biological marker of TNBC. In the present study, different detection methods were used to evaluate the distribution and expression of runt-associated transcription factor 2 (Runx2) in various breast cancer cell lines. Following the development of the Runx2-dendritic cell (DC) vaccine using a lentivirus, the transfection efficacy was recorded. The T lymphocytes co-cultured with the vaccine were collected to assess the antitumor potency. Increased levels of Runx2 were expressed in breast cancer cells; however, different breast cancer cell lines expressed various levels of Runx2. Runx2 demonstrated particularly high expression in TNBC cells, compared with non-TNBC cells. A Runx2 lentivirus transfection system was successfully engineered, and Runx2 was transduced into dendritic cells whilst maintaining stable expression. The sustained and stable cytotoxic T cells induced in the transfected group had higher and more specific antitumor efficacy against TNBC, compared with the other cell lines. Runx2 may be a novel target for TNBC treatment. The Runx2-DC vaccine may induce specific and efficient antitumor effects in TNBC in vitro.
Collapse
Affiliation(s)
- Mi Tang
- Department of General Surgery, Chongqing General Hospital, Chongqing 400010, P.R. China
| | - Yu Liu
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Qiao-Chu Zhang
- Department of VIP, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Peng Zhang
- Department of General Surgery, Lingnan Hospital, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jue-Kun Wu
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Jia-Ni Wang
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Ying Ruan
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| | - Yong Huang
- Department of Thyroid and Breast Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510000, P.R. China
| |
Collapse
|
37
|
Yong LK, Lai S, Liang Z, Poteet E, Chen F, van Buren G, Fisher W, Mo Q, Chen C, Yao Q. Overexpression of Semaphorin-3E enhances pancreatic cancer cell growth and associates with poor patient survival. Oncotarget 2018; 7:87431-87448. [PMID: 27911862 PMCID: PMC5349999 DOI: 10.18632/oncotarget.13704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/17/2016] [Indexed: 01/08/2023] Open
Abstract
Semaphorin-3E (Sema3E) is a member of an axon guidance gene family, and has recently been reported to contribute to tumor progression and metastasis. However, its role in pancreatic cancer is yet unknown and uncharacterized. In this study, we showed that Sema3E is overexpressed in human pancreatic cancer, and that high Sema3E levels are associated with tumor progression and poor survival. Interestingly, we also observed Sema3E expression in the nucleus, even though Sema3E is reported to be a secreted protein. Overexpression of Sema3E in pancreatic cancer cells promoted cell proliferation and migration in vitro, and increased tumor incidence and growth in vivo. Conversely, knockout of Sema3E suppressed cancer cell proliferation and migration in vitro, and reduced tumor incidence and size in vivo. Moreover, Sema3E induced cell proliferation via acting through the MAPK/ERK pathway. Collectively, these results reveal an undiscovered role of Sema3E in promoting pancreatic cancer pathogenesis, suggesting that Sema3E may be a suitable prognostic marker and therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Lin-Kin Yong
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, USA.,Interdepartmental Program in Translational Biology and Molecular Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Syeling Lai
- Department of Pathology, Michael E. DeBakey VA Medical Center and Baylor College of Medicine, Houston, TX, USA
| | - Zhengdong Liang
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, USA
| | - Ethan Poteet
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, USA
| | - Fengju Chen
- Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - George van Buren
- Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of General Surgery, Baylor College of Medicine, Houston, TX, USA
| | - William Fisher
- Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Michael E. DeBakey Department of Surgery, Division of General Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Qianxing Mo
- Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Changyi Chen
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, USA.,Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Qizhi Yao
- Michael E. DeBakey Department of Surgery, Division of Surgical Research, Baylor College of Medicine, Houston, TX, USA.,Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, TX, USA
| |
Collapse
|
38
|
Speck T, Heidbuechel JPW, Veinalde R, Jaeger D, von Kalle C, Ball CR, Ungerechts G, Engeland CE. Targeted BiTE Expression by an Oncolytic Vector Augments Therapeutic Efficacy Against Solid Tumors. Clin Cancer Res 2018; 24:2128-2137. [PMID: 29437789 DOI: 10.1158/1078-0432.ccr-17-2651] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 01/02/2018] [Accepted: 01/31/2018] [Indexed: 02/04/2023]
Abstract
Purpose: Immunotherapy with bispecific T-cell engagers has achieved striking success against hematologic malignancies, but efficacy against solid tumors has been limited. We hypothesized that oncolytic measles viruses encoding bispecific T-cell engagers (MV-BiTEs) represent a safe and effective treatment against solid tumors through local BiTE expression, direct tumor cell lysis and in situ tumor vaccination.Experimental Design: To test this hypothesis, we generated MV-BiTEs from the Edmonston B vaccine strain to target two model antigens. Replicative and oncolytic potential were assessed by infection and cell viability assays, respectively. Functionality of virus-derived BiTEs was tested in vitro by complementary binding and cytotoxicity assays. In vivo efficacy of MV-BiTE was investigated using both syngeneic and xenograft mouse models of solid cancers.Results: We verified secretion of functional BiTE antibodies by MV-BiTE-infected cells. Further, we demonstrated therapeutic efficacy of MV-BiTE against established tumors in fully immunocompetent mice. MV-BiTE efficacy was associated with increased intratumoral T-cell infiltration and induction of protective antitumor immunity. In addition, we showed therapeutic efficacy of MV-BiTE in xenograft models of patient-derived primary colorectal carcinoma spheroids with transfer of peripheral blood mononuclear cells.Conclusions: MV-BiTE treatment was effective in two distinct models of solid tumors without signs of toxicity. This provides strong evidence for therapeutic benefits of tumor-targeted BiTE expression by oncolytic MV. Thus, this study represents proof of concept for an effective strategy to treat solid tumors with BiTEs. Clin Cancer Res; 24(9); 2128-37. ©2018 AACR.
Collapse
Affiliation(s)
- Tobias Speck
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Johannes P W Heidbuechel
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Rūta Veinalde
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Dirk Jaeger
- Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Claudia R Ball
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Guy Ungerechts
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Ottawa Hospital Research Institute, Centre for Innovative Cancer Research, Ottawa, Ontario, Canada
| | - Christine E Engeland
- Department of Translational Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. .,Department of Medical Oncology, University Hospital Heidelberg and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| |
Collapse
|
39
|
Olgun HB, Tasyurek HM, Sanlioglu AD, Sanlioglu S. High-Titer Production of HIV-Based Lentiviral Vectors in Roller Bottles for Gene and Cell Therapy. Methods Mol Biol 2018; 1879:323-345. [PMID: 29797007 DOI: 10.1007/7651_2018_150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lentiviral vectors are becoming preferred vectors of choice for clinical gene therapy trials due to their safety, efficacy, and the long-term gene expression they provide. Although the efficacy of lentiviral vectors is mainly predetermined by the therapeutic genes they carry, they must be produced at high titers to exert therapeutic benefit for in vivo applications. Thus, there is need for practical, robust, and scalable viral vector production methods applicable to any laboratory setting. Here, we describe a practical lentiviral production technique in roller bottles yielding high-titer third-generation lentiviral vectors useful for in vivo gene transfer applications. CaPO4-mediated transient transfection protocol involving the use of a transfer vector and three different packaging plasmids is employed to generate lentivectors in roller bottles. Following clearance of cellular debris via low-speed centrifugation and filtration, virus is concentrated by high-speed ultracentrifugation over sucrose cushion.
Collapse
Affiliation(s)
- Hazal Banu Olgun
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, Antalya, Turkey
| | - Hale M Tasyurek
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, Antalya, Turkey
| | | | - Salih Sanlioglu
- Human Gene and Cell Therapy Center of Akdeniz University Hospitals, Antalya, Turkey.
| |
Collapse
|
40
|
Pyronneau A, He Q, Hwang JY, Porch M, Contractor A, Zukin RS. Aberrant Rac1-cofilin signaling mediates defects in dendritic spines, synaptic function, and sensory perception in fragile X syndrome. Sci Signal 2017; 10:10/504/eaan0852. [PMID: 29114038 DOI: 10.1126/scisignal.aan0852] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Fragile X syndrome (FXS) is the most common inherited cause of intellectual disabilities and a leading cause of autism. FXS is caused by a trinucleotide expansion in the gene FMR1 on the X chromosome. The neuroanatomical hallmark of FXS is an overabundance of immature dendritic spines, a factor thought to underlie synaptic dysfunction and impaired cognition. We showed that aberrantly increased activity of the Rho GTPase Rac1 inhibited the actin-depolymerizing factor cofilin, a major determinant of dendritic spine structure, and caused disease-associated spine abnormalities in the somatosensory cortex of FXS model mice. Increased cofilin phosphorylation and actin polymerization coincided with abnormal dendritic spines and impaired synaptic maturation. Viral delivery of a constitutively active cofilin mutant (cofilinS3A) into the somatosensory cortex of Fmr1-deficient mice rescued the immature dendritic spine phenotype and increased spine density. Inhibition of the Rac1 effector PAK1 with a small-molecule inhibitor rescued cofilin signaling in FXS mice, indicating a causal relationship between PAK1 and cofilin signaling. PAK1 inhibition rescued synaptic signaling (specifically the synaptic ratio of NMDA/AMPA in layer V pyramidal neurons) and improved sensory processing in FXS mice. These findings suggest a causal relationship between increased Rac1-cofilin signaling, synaptic defects, and impaired sensory processing in FXS and uncover a previously unappreciated role for impaired Rac1-cofilin signaling in the aberrant spine morphology and spine density associated with FXS.
Collapse
Affiliation(s)
- Alexander Pyronneau
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Qionger He
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Morgan Porch
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Anis Contractor
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL 60208, USA
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA.
| |
Collapse
|
41
|
Ferro M, Lamanna J, Ripamonti M, Racchetti G, Arena A, Spadini S, Montesano G, Cortese R, Zimarino V, Malgaroli A. Functional mapping of brain synapses by the enriching activity-marker SynaptoZip. Nat Commun 2017; 8:1229. [PMID: 29089485 PMCID: PMC5663910 DOI: 10.1038/s41467-017-01335-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 09/08/2017] [Indexed: 01/27/2023] Open
Abstract
Ideally, elucidating the role of specific brain circuits in animal behavior would require the ability to measure activity at all involved synapses, possibly with unrestricted field of view, thus even at those boutons deeply located into the brain. Here, we introduce and validate an efficient scheme reporting synaptic vesicle cycling in vivo. This is based on SynaptoZip, a genetically encoded molecule deploying in the vesicular lumen a bait moiety designed to capture upon exocytosis a labeled alien peptide, Synbond. The resulting signal is cumulative and stores the number of cycling events occurring at individual synapses. Since this functional signal is enduring and measurable both online and ex post, SynaptoZip provides a unique method for the analysis of the history of synaptic activity in regions several millimeters below the brain surface. We show its broad applicability by reporting stimulus-evoked and spontaneous circuit activity in wide cortical fields, in anesthetized and freely moving animals. Visualization of synaptic activity in the living brain is challenging. This study devises a simple and efficient scheme that reports synaptic vesicle recycling in vivo using SynaptoZip, a genetically encoded sensor of past synaptic activities.
Collapse
Affiliation(s)
- Mattia Ferro
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Jacopo Lamanna
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Maddalena Ripamonti
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Gabriella Racchetti
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Psychiatry and Clinical Psychobiology Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Alessandro Arena
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.,Department of Physiology, Institute of Basal Medical Sciences, University of Oslo, Oslo, 0315, Norway
| | - Sara Spadini
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Giovanni Montesano
- Università Vita-Salute San Raffaele, Milan, 20132, Italy.,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.,Dipartimento Testa-Collo, San Paolo Hospital, University of Milan, Milan, 20122, Italy
| | | | - Vincenzo Zimarino
- Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy
| | - Antonio Malgaroli
- Università Vita-Salute San Raffaele, Milan, 20132, Italy. .,Neurobiology of Learning Unit, Division of Neuroscience, Scientific Institute Ospedale San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
42
|
Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proc Natl Acad Sci U S A 2017; 114:E9873-E9882. [PMID: 29078295 PMCID: PMC5699038 DOI: 10.1073/pnas.1706365114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
mRNA molecules convey genetic information within cells, beginning from genes in the nucleus to ribosomes in the cell body, where they are translated into proteins. Here we show a mode of transferring genetic information from one cell to another. Contrary to previous publications suggesting that mRNAs transfer via extracellular vesicles, we provide visual and quantitative data showing that mRNAs transfer via membrane nanotubes and direct cell-to-cell contact. We predict that this process has a major role in regulating local cellular environments with respect to tissue development and maintenance and cellular responses to stress, interactions with parasites, tissue transplants, and the tumor microenvironment. RNAs have been shown to undergo transfer between mammalian cells, although the mechanism behind this phenomenon and its overall importance to cell physiology is not well understood. Numerous publications have suggested that RNAs (microRNAs and incomplete mRNAs) undergo transfer via extracellular vesicles (e.g., exosomes). However, in contrast to a diffusion-based transfer mechanism, we find that full-length mRNAs undergo direct cell–cell transfer via cytoplasmic extensions characteristic of membrane nanotubes (mNTs), which connect donor and acceptor cells. By employing a simple coculture experimental model and using single-molecule imaging, we provide quantitative data showing that mRNAs are transferred between cells in contact. Examples of mRNAs that undergo transfer include those encoding GFP, mouse β-actin, and human Cyclin D1, BRCA1, MT2A, and HER2. We show that intercellular mRNA transfer occurs in all coculture models tested (e.g., between primary cells, immortalized cells, and in cocultures of immortalized human and murine cells). Rapid mRNA transfer is dependent upon actin but is independent of de novo protein synthesis and is modulated by stress conditions and gene-expression levels. Hence, this work supports the hypothesis that full-length mRNAs undergo transfer between cells through a refined structural connection. Importantly, unlike the transfer of miRNA or RNA fragments, this process of communication transfers genetic information that could potentially alter the acceptor cell proteome. This phenomenon may prove important for the proper development and functioning of tissues as well as for host–parasite or symbiotic interactions.
Collapse
|
43
|
Tartour K, Nguyen XN, Appourchaux R, Assil S, Barateau V, Bloyet LM, Burlaud Gaillard J, Confort MP, Escudero-Perez B, Gruffat H, Hong SS, Moroso M, Reynard O, Reynard S, Decembre E, Ftaich N, Rossi A, Wu N, Arnaud F, Baize S, Dreux M, Gerlier D, Paranhos-Baccala G, Volchkov V, Roingeard P, Cimarelli A. Interference with the production of infectious viral particles and bimodal inhibition of replication are broadly conserved antiviral properties of IFITMs. PLoS Pathog 2017; 13:e1006610. [PMID: 28957419 PMCID: PMC5619827 DOI: 10.1371/journal.ppat.1006610] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 08/28/2017] [Indexed: 12/31/2022] Open
Abstract
IFITMs are broad antiviral factors that block incoming virions in endosomal vesicles, protecting target cells from infection. In the case of HIV-1, we and others reported the existence of an additional antiviral mechanism through which IFITMs lead to the production of virions of reduced infectivity. However, whether this second mechanism of inhibition is unique to HIV or extends to other viruses is currently unknown. To address this question, we have analyzed the susceptibility of a broad spectrum of viruses to the negative imprinting of the virion particles infectivity by IFITMs. The results we have gathered indicate that this second antiviral property of IFITMs extends well beyond HIV and we were able to identify viruses susceptible to the three IFITMs altogether (HIV-1, SIV, MLV, MPMV, VSV, MeV, EBOV, WNV), as well as viruses that displayed a member-specific susceptibility (EBV, DUGV), or were resistant to all IFITMs (HCV, RVFV, MOPV, AAV). The swapping of genetic elements between resistant and susceptible viruses allowed us to point to specificities in the viral mode of assembly, rather than glycoproteins as dominant factors of susceptibility. However, we also show that, contrarily to X4-, R5-tropic HIV-1 envelopes confer resistance against IFITM3, suggesting that viral receptors add an additional layer of complexity in the IFITMs-HIV interplay. Lastly, we show that the overall antiviral effects ascribed to IFITMs during spreading infections, are the result of a bimodal inhibition in which IFITMs act both by protecting target cells from incoming viruses and in driving the production of virions of reduced infectivity. Overall, our study reports for the first time that the negative imprinting of the virion particles infectivity is a conserved antiviral property of IFITMs and establishes IFITMs as a paradigm of restriction factor capable of interfering with two distinct phases of a virus life cycle. IFITMs are interferon-regulated proteins that inhibit a broad range of viruses. Until recently, IFITMs had been described to arrest incoming viral particles in target cells, by inducing their retention in endosomal vesicles. More recently in the case of HIV-1, ours and other laboratories have highlighted the existence of an additional antiviral mechanism with which IFITMs could act in virus-producing cells, leading to the production of virion particles of reduced infectivity. In the present study, we assessed whether the negative imprinting of the virion particles infectivity was a conserved antiviral property of IFITMs by examining a panel of fourteen different DNA or RNA viruses. Our results indicate that a wide spectrum of viruses is susceptible to this antiviral mechanism of inhibition, although some are able to resist it. Swapping of elements between susceptible and resistant viruses strongly suggests that specificities in the mode of virion assembly and not the viral glycoprotein are the dominant factor in the susceptibility of a given virus to this inhibition. However, we also show that HIV-1 strains that engage the CCR5 co-receptor display a notable resistance towards IFITM3, indicating that at least in the case of HIV-1, co-receptor usage is likely to add an additional layer of complexity in the relationship established between IFITMs and the virus, that may or may not extend to other viral families as well. In the context of spreading infections, the results of this study highlight that the overall antiviral effect of IFITMs is mechanistically caused by a previously unappreciated dual mode of action in which they act both in target cells and in virus-producing cells, by respectively forcing endosome trapping of incoming viruses and by commandeering the formation of new virion particles of reduced infectivity. Overall, the results presented here indicate that the negative imprinting of viral particles is a largely conserved antiviral feature of IFITMs and point to IFITMs as a novel paradigm of innate defense proteins capable of interfering with viral replication at two distinct steps of a virus life cycle.
Collapse
Affiliation(s)
- Kevin Tartour
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Xuan-Nhi Nguyen
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Romain Appourchaux
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Sonia Assil
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Véronique Barateau
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Louis-Marie Bloyet
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Julien Burlaud Gaillard
- Plateforme IBiSA de Microscopie Electronique, Université F. Rabelais et CHRU de Tours, Tours, France
- INSERM U966, Université F. Rabelais et CHRU de Tours, Tours, France
| | - Marie-Pierre Confort
- IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon1, EPHE, Lyon, France
| | - Beatriz Escudero-Perez
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Henri Gruffat
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Saw See Hong
- IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon1, EPHE, Lyon, France
| | - Marie Moroso
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Fondation Mérieux, Lyon, France
| | - Olivier Reynard
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Stéphanie Reynard
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Institut Pasteur, Lyon, France
| | - Elodie Decembre
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Najate Ftaich
- IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon1, EPHE, Lyon, France
| | - Axel Rossi
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Nannan Wu
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Institute of BioMedical Science (IBMS), East China Normal University (ECNU), Shanghai, China
| | - Frédérick Arnaud
- IVPC UMR754, INRA, Univ Lyon, Université Claude Bernard Lyon1, EPHE, Lyon, France
| | - Sylvain Baize
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Institut Pasteur, Lyon, France
| | - Marlène Dreux
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Denis Gerlier
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Glaucia Paranhos-Baccala
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- Fondation Mérieux, Lyon, France
| | - Viktor Volchkov
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
| | - Philippe Roingeard
- Plateforme IBiSA de Microscopie Electronique, Université F. Rabelais et CHRU de Tours, Tours, France
- INSERM U966, Université F. Rabelais et CHRU de Tours, Tours, France
| | - Andrea Cimarelli
- CIRI, Centre International de Recherche en Infectiologie, Lyon, France
- INSERM, U1111, Lyon, France
- Université Claude Bernard Lyon1, Lyon, France
- CNRS, UMR5308, Lyon, France
- Ecole Normale Supérieure de Lyon, Lyon, France
- Univ Lyon, Lyon, France, Lyon, France
- * E-mail:
| |
Collapse
|
44
|
Corrêa de Freitas MC, Bomfim ADS, Mizukami A, Picanço-Castro V, Swiech K, Covas DT. Production of coagulation factor VII in human cell lines Sk-Hep-1 and HKB-11. Protein Expr Purif 2017; 137:26-33. [PMID: 28651975 DOI: 10.1016/j.pep.2017.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 06/21/2017] [Indexed: 01/19/2023]
Abstract
Recombinant factor VII (rFVII) is the main therapeutic choice for hemophilia patients who have developed inhibitory antibodies against conventional treatments (FVIII and FIX). Because of the post-translational modifications, rFVII needs to be produced in mammalian cell lines. In this study, for the first time, we have shown efficient rFVII production in HepG2, Sk-Hep-1, and HKB-11 cell lines. Experiments in static conditions for a period of 96 h showed that HepG2-FVII produced the highest amounts of rhFVII, with an average of 1843 ng/mL. Sk-hep-1-FVII cells reached a maximum protein production of 1432 ng/mL and HKB-11-FVII cells reached 1468 ng/mL. Sk-Hep-1-rFVII and HKB-11-rFVII were selected for the first step of scale-up. Over 10 days of spinner flask culture, HKB-11 and SK-Hep-1 cells showed a cumulative production of rFVII of 152 μg and 202.6 μg in 50 mL, respectively. Thus, these human cell lines can be used for an efficient production of recombinant FVII. With more investment in basic research, human cell lines can be optimized for the commercial production of different bio therapeutic proteins.
Collapse
Affiliation(s)
- Marcela Cristina Corrêa de Freitas
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Medical Clinic, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Aline de Sousa Bomfim
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Clinical, Toxicological and Food Science Analysis, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Amanda Mizukami
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Medical Clinic, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Virgínia Picanço-Castro
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy and Regional Blood Center of Ribeirão Preto, Laboratory of Biotechnology, University of São Paulo, Ribeirão Preto, São Paulo, Brazil; Department of Medical Clinic, Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
45
|
Merlin S, Cannizzo ES, Borroni E, Bruscaggin V, Schinco P, Tulalamba W, Chuah MK, Arruda VR, VandenDriessche T, Prat M, Valente G, Follenzi A. A Novel Platform for Immune Tolerance Induction in Hemophilia A Mice. Mol Ther 2017; 25:1815-1830. [PMID: 28552407 DOI: 10.1016/j.ymthe.2017.04.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/27/2017] [Accepted: 04/28/2017] [Indexed: 12/14/2022] Open
Abstract
Hemophilia A (HA) is an X-linked bleeding disease caused by factor VIII (FVIII) deficiency. We previously demonstrated that FVIII is produced specifically in liver sinusoid endothelial cells (LSECs) and to some degree in myeloid cells, and thus, in the present work, we seek to restrict the expression of FVIII transgene to these cells using cell-specific promoters. With this approach, we aim to limit immune response in a mouse model by lentiviral vector (LV)-mediated gene therapy encoding FVIII. To increase the target specificity of FVIII expression, we included miRNA target sequences (miRTs) (i.e., miRT-142.3p, miRT-126, and miRT-122) to silence expression in hematopoietic cells, endothelial cells, and hepatocytes, respectively. Notably, we report, for the first time, therapeutic levels of FVIII transgene expression at its natural site of production, which occurred without the formation of neutralizing antibodies (inhibitors). Moreover, inhibitors were eradicated in FVIII pre-immune mice through a regulatory T cell-dependent mechanism. In conclusion, targeting FVIII expression to LSECs and myeloid cells by using LVs with cell-specific promoter minimized off-target expression and immune responses. Therefore, at least for some transgenes, expression at the physiologic site of synthesis can enhance efficacy and safety, resulting in long-term correction of genetic diseases such as HA.
Collapse
Affiliation(s)
- Simone Merlin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Elvira Stefania Cannizzo
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Ester Borroni
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Valentina Bruscaggin
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Piercarla Schinco
- Azienda Ospedaliera Universitaria Città della Salute e della Scienza, 10126 Torino, Italy
| | - Warut Tulalamba
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Marinee K Chuah
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Valder R Arruda
- The Children's Hospital of Philadelphia, Perelman School of Medicine at University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Free University of Brussels, 1050 Brussels, Belgium; Department of Cardiovascular Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Maria Prat
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Guido Valente
- Department of Translational Medicine, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy
| | - Antonia Follenzi
- Department of Health Sciences, Università del Piemonte Orientale "A. Avogadro", 28100 Novara, Italy.
| |
Collapse
|
46
|
Ali R, Babad J, Follenzi A, Gebe JA, Brehm MA, Nepom GT, Shultz LD, Greiner DL, DiLorenzo TP. Genetically modified human CD4(+) T cells can be evaluated in vivo without lethal graft-versus-host disease. Immunology 2017; 148:339-51. [PMID: 27124592 DOI: 10.1111/imm.12613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/21/2016] [Accepted: 04/08/2016] [Indexed: 12/17/2022] Open
Abstract
Adoptive cell immunotherapy for human diseases, including the use of T cells modified to express an anti-tumour T-cell receptor (TCR) or chimeric antigen receptor, is showing promise as an effective treatment modality. Further advances would be accelerated by the availability of a mouse model that would permit human T-cell engineering protocols and proposed genetic modifications to be evaluated in vivo. NOD-scid IL2rγ(null) (NSG) mice accept the engraftment of mature human T cells; however, long-term evaluation of transferred cells has been hampered by the xenogeneic graft-versus-host disease (GVHD) that occurs soon after cell transfer. We modified human primary CD4(+) T cells by lentiviral transduction to express a human TCR that recognizes a pancreatic beta cell-derived peptide in the context of HLA-DR4. The TCR-transduced cells were transferred to NSG mice engineered to express HLA-DR4 and to be deficient for murine class II MHC molecules. CD4(+) T-cell-depleted peripheral blood mononuclear cells were also transferred to facilitate engraftment. The transduced cells exhibited long-term survival (up to 3 months post-transfer) and lethal GVHD was not observed. This favourable outcome was dependent upon the pre-transfer T-cell transduction and culture conditions, which influenced both the kinetics of engraftment and the development of GVHD. This approach should now permit human T-cell transduction protocols and genetic modifications to be evaluated in vivo, and it should also facilitate the development of human disease models that incorporate human T cells.
Collapse
Affiliation(s)
- Riyasat Ali
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jeffrey Babad
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonia Follenzi
- Department of Health Sciences, University of Piemonte Orientale "A. Avogadro", Novara, Italy
| | - John A Gebe
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Michael A Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence™, University of Massachusetts Medical School, Worcester, MA, USA
| | - Gerald T Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | | | - Dale L Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence™, University of Massachusetts Medical School, Worcester, MA, USA
| | - Teresa P DiLorenzo
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Medicine, Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
47
|
Sawaguchi S, Varshney S, Ogawa M, Sakaidani Y, Yagi H, Takeshita K, Murohara T, Kato K, Sundaram S, Stanley P, Okajima T. O-GlcNAc on NOTCH1 EGF repeats regulates ligand-induced Notch signaling and vascular development in mammals. eLife 2017; 6:e24419. [PMID: 28395734 PMCID: PMC5388531 DOI: 10.7554/elife.24419] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/10/2017] [Indexed: 12/16/2022] Open
Abstract
The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4. EOGT functions were investigated in retinal angiogenesis that depends on Notch signaling. Global or endothelial cell-specific deletion of Eogt resulted in defective retinal angiogenesis, with a mild phenotype similar to that caused by reduced Notch signaling in retina. Combined deficiency of different Notch1 mutant alleles exacerbated the abnormalities in Eogt-/- retina, and Notch target gene expression was decreased in Eogt-/-endothelial cells. Thus, O-GlcNAc on EGF repeats of Notch receptors mediates ligand-induced Notch signaling required in endothelial cells for optimal vascular development.
Collapse
Affiliation(s)
- Shogo Sawaguchi
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shweta Varshney
- Department of Cell Biology, Albert Einstein College of Medicine, New York, United States
| | - Mitsutaka Ogawa
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuta Sakaidani
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hirokazu Yagi
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| | - Kyosuke Takeshita
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toyoaki Murohara
- Department of Cardiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Koichi Kato
- Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
- Institute for Molecular Science and Okazaki Institute for Integrative Bioscience, National Institutes of Natural Sciences, Okazaki, Japan
| | - Subha Sundaram
- Department of Cell Biology, Albert Einstein College of Medicine, New York, United States
| | - Pamela Stanley
- Department of Cell Biology, Albert Einstein College of Medicine, New York, United States
| | - Tetsuya Okajima
- Department of Molecular Biochemistry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
48
|
T-Cell Receptor (TCR) Clonotype-Specific Differences in Inhibitory Activity of HIV-1 Cytotoxic T-Cell Clones Is Not Mediated by TCR Alone. J Virol 2017; 91:JVI.02412-16. [PMID: 28077649 DOI: 10.1128/jvi.02412-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 12/27/2016] [Indexed: 01/11/2023] Open
Abstract
Functional analysis of T-cell responses in HIV-infected individuals has indicated that virus-specific CD8+ T cells with superior antiviral efficacy are well represented in HIV-1 controllers but are rare or absent in HIV-1 progressors. To define the role of individual T-cell receptor (TCR) clonotypes in differential antiviral CD8+ T-cell function, we performed detailed functional and mass cytometric cluster analysis of multiple CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 epitope KK10 (KRWIILGLNK). Effective and ineffective CD8+ T-cell clones segregated based on responses to HIV-1-infected and peptide-loaded target cells. Following cognate peptide stimulation, effective HIV-specific clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained nonlytic cytokine and chemokine secretion than ineffective clones. To evaluate the TCR clonotype contribution to CD8+ T-cell function, we cloned the TCR α and β chain genes from one effective and two ineffective CD8+ T-cell clones from an elite controller into TCR-expressing lentivectors. We show that Jurkat/MA cells and primary CD8+ T cells transduced with lentivirus expressing TCR from one of the ineffective clones exhibited a level of activation by cognate peptide and inhibition of in vitro HIV-1 infection, respectively, that were comparable to those of the effective clonotype. Taken together, these data suggest that the potent antiviral capacity of some HIV-specific CD8+ T cells is a consequence of factors in addition to TCR sequence that modulate functionality and contribute to the increased antiviral capacity of HIV-specific CD8+ T cells in elite controllers to inhibit HIV infection.IMPORTANCE The greater ex vivo antiviral inhibitory activity of CD8+ T cells from elite controllers than from HIV-1 progressors supports the crucial role of effective HIV-specific CD8+ T cells in controlling HIV-1 replication. The contribution of TCR clonotype to inhibitory potency was investigated by delineating the responsiveness of effective and ineffective CD8+ T-cell clones recognizing the identical HLA-B*2705-restricted HIV-1 Gag-derived peptide, KK10 (KRWIILGLNK). KK10-stimulated "effective" CD8+ T-cell clones displayed significantly more rapid TCR signal propagation, more efficient initial lytic granule release, and more sustained cytokine and chemokine secretion than "ineffective" CD8+ T-cell clones. However, TCRs cloned from an effective and one of two ineffective clones conferred upon primary CD8+ T cells the equivalent potent capacity to inhibit HIV-1 infection. Taken together, these data suggest that other factors aside from intrinsic TCR-peptide-major histocompatibility complex (TCR-peptide-MHC) reactivity can contribute to the potent antiviral capacity of some HIV-specific CD8+ T-cell clones.
Collapse
|
49
|
Acquired RAS or EGFR mutations and duration of response to EGFR blockade in colorectal cancer. Nat Commun 2016; 7:13665. [PMID: 27929064 PMCID: PMC5155160 DOI: 10.1038/ncomms13665] [Citation(s) in RCA: 164] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 10/23/2016] [Indexed: 12/15/2022] Open
Abstract
Blockade of the epidermal growth factor receptor (EGFR) with the monoclonal antibodies cetuximab or panitumumab is effective in a subset of colorectal cancers (CRCs), but the emergence of resistance limits the efficacy of these therapeutic agents. At relapse, the majority of patients develop RAS mutations, while a subset acquires EGFR extracellular domain (ECD) mutations. Here we find that patients who experience greater and longer responses to EGFR blockade preferentially develop EGFR ECD mutations, while RAS mutations emerge more frequently in patients with smaller tumour shrinkage and shorter progression-free survival. In circulating cell-free tumour DNA of patients treated with anti-EGFR antibodies, RAS mutations emerge earlier than EGFR ECD variants. Subclonal RAS but not EGFR ECD mutations are present in CRC samples obtained before exposure to EGFR blockade. These data indicate that clonal evolution of drug-resistant cells is associated with the clinical outcome of CRC patients treated with anti-EGFR antibodies.
Collapse
|
50
|
Negre O, Eggimann AV, Beuzard Y, Ribeil JA, Bourget P, Borwornpinyo S, Hongeng S, Hacein-Bey S, Cavazzana M, Leboulch P, Payen E. Gene Therapy of the β-Hemoglobinopathies by Lentiviral Transfer of the β(A(T87Q))-Globin Gene. Hum Gene Ther 2016; 27:148-65. [PMID: 26886832 PMCID: PMC4779296 DOI: 10.1089/hum.2016.007] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
β-globin gene disorders are the most prevalent inherited diseases worldwide and result from abnormal β-globin synthesis or structure. Novel therapeutic approaches are being developed in an effort to move beyond palliative management. Gene therapy, by ex vivo lentiviral transfer of a therapeutic β-globin gene derivative (β(AT87Q)-globin) to hematopoietic stem cells, driven by cis-regulatory elements that confer high, erythroid-specific expression, has been evaluated in human clinical trials over the past 8 years. β(AT87Q)-globin is used both as a strong inhibitor of HbS polymerization and as a biomarker. While long-term studies are underway in multiple centers in Europe and in the United States, proof-of-principle of efficacy and safety has already been obtained in multiple patients with β-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Olivier Negre
- 1 bluebird bio, Cambridge, Massachusetts.,2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France
| | | | - Yves Beuzard
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France
| | | | - Philippe Bourget
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | | | | | - Salima Hacein-Bey
- 6 Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marina Cavazzana
- 4 Necker Hospital , Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Philippe Leboulch
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,5 Mahidol University , Bangkok, Thailand .,7 Harvard Medical School and Genetics Division, Department of Medicine, Brigham & Women's Hospital , Boston, Massachusetts
| | - Emmanuel Payen
- 2 CEA, Institute of Emerging Disease and Innovative Therapies (iMETI) , Fontenay aux Roses, France .,3 UMR 007, University of Paris 11 and CEA , CEA-iMETI, Fontenay aux Roses, France .,8 INSERM , Paris, France
| |
Collapse
|