1
|
Kitajima S, Maruyama Y, Ishiwatari Y, Kuroda M, Meyerhof W, Behrens M. Involvement of GPR91 in the perception of the umami-like shellfish taste of succinate. Food Chem 2025; 477:143549. [PMID: 40043606 DOI: 10.1016/j.foodchem.2025.143549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 03/27/2025]
Abstract
Succinate is a key component of the characteristic umami-like taste of shellfish, which is similar to the umami taste elicited by glutamate, but is slightly more persistent and astringent. The taste receptors involved in the perception of succinate currently remain unknown. Therefore, we herein attempted to identify the taste receptors for succinate. We investigated whether cells heterologously expressing receptors associated with umami taste or succinate were activated by succinate and selected GPR91 as a candidate receptor. To verify the contribution of GPR91 to taste perception, the relationship between GPR91 activation and sensory activity was assessed using receptor assays and sensory evaluations. Our results suggest that the taste of succinate depends on the activation of GPR91. We propose that GPR91 functions as a gustatory receptor involved in the perception of the umami-like shellfish taste of succinate.
Collapse
Affiliation(s)
- Seiji Kitajima
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan; German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany.
| | - Yutaka Maruyama
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Yutaka Ishiwatari
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Motonaka Kuroda
- Institute of Food Sciences & Technologies, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Wolfgang Meyerhof
- German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany
| | - Maik Behrens
- German Institute of Human Nutrition Potsdam-Rehbruecke, Dept. Molecular Genetics, 14558 Nuthetal, Germany; Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
2
|
Xie H, Jiao Q, Li H, Ye H, Ren G, Huang M, Yang T. Artificial intelligence-assisted identification and screening strategies in sweetener design. Crit Rev Food Sci Nutr 2025:1-16. [PMID: 40491132 DOI: 10.1080/10408398.2025.2516136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The burgeoning consumer demand for healthier and sustainable alternatives to conventional sugars has catalyzed significant innovation for the design of artificial sweeteners. This critical review delves into the transformative role of artificial intelligence (AI) for the research and development of novel sweeteners, offering a multifaceted analysis of the intersection between AI and sweetener design. The review traverses the spectrum of AI applications, and emphasizes critical role of AI in virtual screening, especially in relation to the structures of sweet taste receptor. The synergy between molecular dynamics simulation and structure-based virtual screening (SBVS) is spotlighted as a key strategy to bolster the efficiency and precision in the identification of potential sweeteners. Moreover, the review dedicates the utilization of AI-driven strategies within the realm of quantitative structure-activity relationship (QSAR) modeling, revealing groundbreaking methods that eclipse conventional techniques. The use of AI can predict the ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity) profiles of sweeteners, a crucial component in fully comprehending their pharmacokinetic behaviors. This review highlights the transformational effect of AI on the development and screening of sweeteners, introducing groundbreaking perspectives and techniques poised to dramatically transform the domains of the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Qingbo Jiao
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Hao Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Haoxin Ye
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, China
| | - Tianxi Yang
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, Canada
| |
Collapse
|
3
|
Belloir C, Moitrier L, Karolkowski A, Poirier N, Neiers F, Briand L. Inosine-5'-monophosphate interacts with the TAS1R3 subunit to enhance sweet taste detection. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100246. [PMID: 40034539 PMCID: PMC11872639 DOI: 10.1016/j.fochms.2025.100246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 03/05/2025]
Abstract
Umami and sweet taste detection is mediated by the activation of the TAS1R1/TAS1R3 and TAS1R2/TAS1R3 receptors, respectively. TAS1R2-Venus flytrap domain (VFT) constitutes the primary ligand-binding site for most of the sweeteners whereas TAS1R1-VFT contains the orthosteric binding site for umami compounds. Inosine-5'-monophosphate (IMP), previously known to potentiate umami taste, binds to a site of TAS1R1-VFT adjacent to the L-glutamate site leading to umami synergy. However, the involvement of the TAS1R3 subunit in umami receptor-ligand interactions or in synergy with IMP has never been demonstrated. To elucidate the VFT contribution to umami and sweet detection, we expressed human TAS1R1- and TAS1R3-VFTs in bacteria. Ligand binding studies quantified by intrinsic tryptophan fluorescence revealed that both TAS1R1- and TAS1R3-VFTs are able to interact with umami compounds. Cellular assays revealed that IMP is able, like cyclamate, to modulate the response of TAS1R2/TAS1R3 and TAS1R3 alone stimulated by calcium ions. IMP also acted as an enhancer of TAS1R2/TAS1R3 when stimulated with sucralose, neotame and cyclamate. Taking together, our data demonstrated that IMP modulates sweet compound detection at the receptor level acting via the TAS1R3 subunit. This research suggests more complex receptor interactions between umami and sweet taste qualities and paves the way for development of new sweetness enhancers.
Collapse
Affiliation(s)
- Christine Belloir
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Europe, F-21000 Dijon, France
| | - Lucie Moitrier
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Europe, F-21000 Dijon, France
| | - Adeline Karolkowski
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Europe, F-21000 Dijon, France
| | - Nicolas Poirier
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Europe, F-21000 Dijon, France
| | - Fabrice Neiers
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Europe, F-21000 Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Europe, F-21000 Dijon, France
| |
Collapse
|
4
|
Saito ML, Sasaki T, Saito MR. Discovery of the Aβ receptor that controls the voltage-gated sodium channel activity: unraveling mechanisms underlying neuronal hyperexcitability. J Neurophysiol 2025; 133:1861-1885. [PMID: 40298589 DOI: 10.1152/jn.00530.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 04/10/2025] [Indexed: 04/30/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by a gradual decline in memory and cognitive abilities, often accompanied by personality changes and impairments in motor functions. Increased neuronal activity in AD patients is associated with the symptoms of the disease, suggesting a link between hyperactivity and cognitive decline. In particular, amyloid beta peptides (Aβs), which are implicated in AD, have been found to enhance voltage-gated sodium channels (VGSCs), crucial for generating nerve impulses. However, the exact mechanisms underlying this interaction remain poorly understood. Therefore, it is crucial to identify the membrane receptor that binds to Aβ and regulates VGSC activity. In this report, we employed the patch-clamp method to monitor alterations in VGSCs induced by Aβ. Through gene silencing and antibody treatment, we determined that the receptor responsible for regulating VGSCs corresponds to the type I taste receptor (T1R2/T1R3). Our discovery not only advances the understanding of Aβ's physiological role but also opens avenues for developing molecules that can inhibit or alter Aβ binding, potentially regulating neuronal hyperactivity in AD.NEW & NOTEWORTHY Alzheimer's disease (AD) is marked by memory loss and cognitive decline, with neuronal hyperactivity linked to amyloid beta peptides (Aβs) that enhance sodium channels. Using patch-clamp techniques, we determined that the receptor for Aβ corresponds to the type I taste receptor (T1R2/T1R3). This discovery reveals Aβ's physiological roles and offers a new molecular target for developing therapies to inhibit or modify Aβ binding, potentially regulating neurohyperactivity in AD.
Collapse
Affiliation(s)
| | - Tsutomu Sasaki
- Department of Neurology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | | |
Collapse
|
5
|
Hanselman EC, Harmon CP, Deng D, Sywanycz SM, Caronia L, Jiang P, Breslin PAS. Ibuprofen inhibits human sweet taste and glucose detection implicating an additional mechanism of metabolic disease risk reduction. Br J Pharmacol 2025; 182:2682-2693. [PMID: 39999478 DOI: 10.1111/bph.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/30/2024] [Accepted: 12/26/2024] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND AND PURPOSE The human sweet taste receptor, TAS1R2-TAS1R3, conveys sweet taste in the mouth and may help regulate glucose metabolism throughout the body. Ibuprofen and naproxen are structurally similar to known inhibitors of TAS1R2-TAS1R3 and have been associated with metabolic benefits. Here, we determined if ibuprofen and naproxen inhibited TAS1R2-TAS1R3 responses to sugars in vitro and their elicited sweet taste in vivo, in humans under normal physiological conditions, with implications for effects on glucose metabolism. EXPERIMENTAL APPROACH Human psychophysical taste testing and in vitro cellular calcium assays in HEK293 cells were performed to determine the effects of ibuprofen and naproxen on sugar taste signalling. KEY RESULTS Ibuprofen and naproxen inhibited the sweet taste of sugars and non-nutritive sweeteners in humans, dose-dependently. Ibuprofen reduced cellular signalling of sucrose and sucralose in vitro with heterologously expressed human TAS1R2 (hTAS1R2)-TAS1R3 in human kidney cells. To mirror internal physiology, low concentrations of ibuprofen, which represent human plasma levels after a typical dose, inhibit the sweet taste and oral detection of glucose at concentrations nearing post-prandial plasma glucose levels. CONCLUSION AND IMPLICATIONS Ibuprofen and naproxen inhibit activation of TAS1R2-TAS1R3 by sugar in humans. Long-term ibuprofen intake is associated with preserved metabolic function and reduced risk of metabolic diseases such as Alzheimer's, diabetes and colon cancer. In addition to its anti-inflammatory properties, we present here a novel pathway that could help explain the associations between metabolic function and chronic ibuprofen use.
Collapse
Affiliation(s)
- Emily C Hanselman
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Caroline P Harmon
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Daiyong Deng
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Sarah M Sywanycz
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
| | - Lauren Caronia
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Peihua Jiang
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| | - Paul A S Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, New Jersey, USA
- Monell Chemical Senses Center, Philadelphia, Pennsylvania, USA
| |
Collapse
|
6
|
Soma S, Hayatsu N, Nomura K, Sherwood MW, Murakami T, Sugiyama Y, Suematsu N, Aoki T, Yamada Y, Asayama M, Kaneko M, Ohbayashi K, Arizono M, Ohtsuka M, Hamada S, Matsumoto I, Iwasaki Y, Ohno N, Okazaki Y, Taruno A. Channel synapse mediates neurotransmission of airway protective chemoreflexes. Cell 2025; 188:2687-2704.e29. [PMID: 40187347 DOI: 10.1016/j.cell.2025.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 12/05/2024] [Accepted: 03/05/2025] [Indexed: 04/07/2025]
Abstract
Neural reflexes to chemicals in the throat protect the airway from aspiration and infection. Mechanistic understanding of these reflexes remains premature, exemplified by chronic cough-a sensitized cough reflex-being a prevalent unmet clinical need. Here, in mice, a whole-body search for channel synapses-featuring CALHM1/3 channel-mediated neurotransmitter release-and single-cell transcriptomics uncovered subclasses of the Pou2f3+ chemosensory cell family in the throat communicating with vagal neurons via this synapse. They express G protein-coupled receptors (GPCRs) for noxious chemicals, T2Rs, which upon stimulation trigger swallow and cough-like expulsive reflexes in the hypopharynx and larynx, respectively. These reflexes were abolished by Calhm3 and Pou2f3 knockout and could be triggered by targeted optogenetic stimulation. Furthermore, aeroallergen exposure augmented CALHM3-dependent expulsive reflex. This study identifies Pou2f3+ epithelial cells with channel synapses as chemosensory end organs of airway protective reflexes and sites of their hyperresponsiveness, advancing mechanistic understanding of airway defense programs with distinct therapeutic potential.
Collapse
Affiliation(s)
- Shogo Soma
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Norihito Hayatsu
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Kengo Nomura
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mark W Sherwood
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Tatsuro Murakami
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yoichiro Sugiyama
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan; Department of Otolaryngology-Head and Neck Surgery, Saga University, Saga 849-8501, Japan
| | - Naofumi Suematsu
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Takanori Aoki
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Yu Yamada
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Moe Asayama
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Mami Kaneko
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan
| | - Kento Ohbayashi
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Misa Arizono
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Kyoto 606-8501, Japan; The Hakubi Center for Advanced Research, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Masato Ohtsuka
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, Isehara, Kanagawa 259-1193, Japan
| | - Shun Hamada
- International College of Arts and Sciences, Fukuoka Women's University, Fukuoka 813-8529, Japan
| | | | - Yusaku Iwasaki
- Laboratory of Animal Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Kyoto 606-8522, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan; Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Aichi 444-8585, Japan
| | - Yasushi Okazaki
- Laboratory for Comprehensive Genomic Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Akiyuki Taruno
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Kyoto, Kyoto 602-8566, Japan.
| |
Collapse
|
7
|
Dolgin E. How we taste sweetness: long-sought structure of human receptor mapped at last. Nature 2025:10.1038/d41586-025-01408-1. [PMID: 40335811 DOI: 10.1038/d41586-025-01408-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
|
8
|
Juen Z, Lu Z, Yu R, Chang AN, Wang B, Fitzpatrick AWP, Zuker CS. The structure of human sweetness. Cell 2025:S0092-8674(25)00456-8. [PMID: 40339580 DOI: 10.1016/j.cell.2025.04.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/03/2025] [Accepted: 04/15/2025] [Indexed: 05/10/2025]
Abstract
In humans, the detection and ultimately the perception of sweetness begin in the oral cavity, where taste receptor cells (TRCs) dedicated to sweet-sensing interact with sugars, artificial sweeteners, and other sweet-tasting chemicals. Human sweet TRCs express on their cell surface a sweet receptor that initiates the cascade of signaling events responsible for our strong attraction to sweet stimuli. Here, we describe the cryo-electron microscopy (cryo-EM) structure of the human sweet receptor bound to two of the most widely used artificial sweeteners-sucralose and aspartame. Our results reveal the structural basis for sweet detection, provide insights into how a single receptor mediates all our responses to such a wide range of sweet-tasting compounds, and open up unique possibilities for designing a generation of taste modulators informed by the structure of the human receptor.
Collapse
Affiliation(s)
- Zhang Juen
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Zhengyuan Lu
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Ruihuan Yu
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Andrew N Chang
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Brian Wang
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Anthony W P Fitzpatrick
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Charles S Zuker
- Zuckerman Mind Brain Behavior Institute and Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Howard Hughes Medical Institute, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA; Department of Neuroscience, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
9
|
Fu B, Li M, Chang Z, Yi J, Cheng S, Du M. Identification of novel umami peptides from oyster hydrolysate and the mechanisms underlying their taste characteristics using machine learning. Food Chem 2025; 473:142970. [PMID: 39899925 DOI: 10.1016/j.foodchem.2025.142970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/05/2025]
Abstract
Excessive sodium consumption poses considerable health risks, prompting the exploration of umami peptides as potential alternative for reducing sodium intake. This research investigated umami peptides (PQFAPEED, EEHPVLLTEA and DQAIPNKPEE) using machine learning, determining sensory thresholds to be 0.24, 0.30 and 0.29 mg/mL. Molecular docking studies revealed hydrogen bonds and hydrophobic interactions are vital for their binding to umami receptors T1R1/T1R3, with key residues identified as Val714, Leu852, Gln853 and Glu855. Combination of DQAIPNKPEE with 3 mg/mL sodium chloride (NaCl) closely mimicked the salinity perception of 5 mg/mL NaCl. Additionally, DQAIPNKPEE and PQFAPEED were recognised as salt-enhancing peptides, with Ala283, Glu284, Glu286, Arg294, Arg330 and Arg583 identified as critical amino acid residues of human transmembrane channel-like 4 (TMC4). These peptides substitute chloride ions to activate TMC4, resulting in sensation of saltiness. This study highlights efficacy of machine learning in rapid identification of umami peptides from oysters and taste receptors interactions.
Collapse
Affiliation(s)
- Baifeng Fu
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Minbo Li
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Zhihui Chang
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China
| | - Junjie Yi
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shuzhen Cheng
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Ming Du
- Key Laboratory of Food Nutrition and Health of Liaoning Province, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; SKL of Marine Food Processing & Safety Control, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Anbalagan S. Sugar-sensing swodkoreceptors and swodkocrine signaling. Animal Model Exp Med 2025; 8:944-961. [PMID: 40110750 DOI: 10.1002/ame2.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 02/12/2025] [Indexed: 03/22/2025] Open
Abstract
Sugars are one of the major metabolites and are essential for nucleic acid synthesis and energy production. In addition, sugars can act as signaling molecules. To study sugar signaling at the systemic level, there is an urgent need to systematically identify sugar-sensing proteins and nucleic acids. I propose the terms "swodkoreceptor" and "swodkocrine signaling," derived from the Polish word "słodki" meaning "sweet," to comprise all sugar-sensing proteins and signaling events, respectively, regardless of their cellular location and signaling domains. This proposal is intended to facilitate the inclusion of proteins such as the Escherichia coli LacI repressor as an allolactose receptor, human glucokinase regulatory protein (GCKR) as a fructose receptor, and other sugar-binding based allosterically regulated enzymes and transcription factors as sugar-sensing receptors. In addition, enzyme-interacting proteins whose interaction state is regulated by sugar binding have also been proposed as sugar receptors. The systemic study of protein- and nucleic-acid-based swodkoreceptors may help to identify organelle-specific swodkoreceptors and to also address receptor duality. The study of intra- and inter-organism swodkocrine signaling and its crosstalk with gasocrine signaling may help to understand the etiology of diseases due to dysregulation in sugar homeostasis and signaling.
Collapse
Affiliation(s)
- Savani Anbalagan
- Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
11
|
Moran AW, Alrammahi M, Daly K, Weatherburn D, Ionescu C, Blanchard A, Shirazi-Beechey SP. Luminal Sweet Sensing and Enteric Nervous System Participate in Regulation of Intestinal Glucose Transporter, GLUT2. Nutrients 2025; 17:1547. [PMID: 40362862 PMCID: PMC12073725 DOI: 10.3390/nu17091547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Background/Objectives: Dietary glucose is transported across the intestinal absorptive cell into the systemic circulation by the apically located Na+-dependent glucose transporter 1 (SGLT1, SLC5A1) and basally residing Na+-independent glucose transporter 2 (GLUT2, SLC2A2). Whilst recent experimental evidence has shown that sensing of sweet compounds by the gut-expressed sweet taste receptor T1R2-T1R3 and glucagon-like peptide-2 receptor signalling are components of the pathway controlling SGLT1 expression, little is known about the mechanisms involved in the regulation of GLUT2. In this study, we tested the hypothesis that T1R2-T1R3 and its downstream signalling pathway participate in the regulation of intestinal GLUT2. Methods: We used in vivo and in vitro approaches employing a weaning pig model, a heterologous expression assay, and knockout mice for elucidating the regulation of GLUT2 by luminal sugars. Results: A plant-based sweetener formulation included in piglets' diet led to a marked increase in GLUT2 expression in piglets' intestine, compared to controls. The sweeteners that do not activate pig T1R2-T1R3 failed to upregulate GLUT2. There was a significant increase in GLUT2 expression when the sweetener sucralose, which activates T1R2-T1R3, was included in the drinking water of wild-type mice. However, in knockout mice, in which the genes for the sweet receptor subunit T1R3 and the associated G-protein gustducin were deleted, there was no upregulation of GLUT2 expression in response to sucralose supplementation. There was a notable increase in GLUT2 expression in wild-type mice fed a high-carbohydrate diet compared to when maintained on a low-carbohydrate diet. However, in GLP-2 receptor knockout mice kept on the high-carbohydrate diet, there was no enhancement in GLUT2 expression. Conclusions: The experimental evidence suggests that luminal sweet sensing via T1R2-T1R3 and the enteroendocrine-derived GLP-2 are constituents of the regulatory pathway controlling GLUT2 expression.
Collapse
Affiliation(s)
- Andrew W. Moran
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
| | - Miran Alrammahi
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
- Department of Physiology, Biochemistry and Pharmacology, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Diwaniyah 58002, Iraq
| | - Kristian Daly
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
| | - Darren Weatherburn
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
| | | | | | - Soraya P. Shirazi-Beechey
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZJ, UK; (A.W.M.); (K.D.); (D.W.)
| |
Collapse
|
12
|
Holt RR, Schmitz HH, Mhawish R, Komarnytsky S, Nguyen T, Caveney PM, Munafo JP. Comfort Foods in the Twenty-First Century: Friend or Foe? Annu Rev Food Sci Technol 2025; 16:433-458. [PMID: 39661555 DOI: 10.1146/annurev-food-111523-122109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The comfort food (CF) concept emerged during the latter half of the twentieth century. Although not well defined, CF can be described as familiar foods that elicit feelings of well-being and play a role in social interactions and psychological health. These foods are often calorically dense and nutrient-poor, and overconsumption of some CF may contribute to negative metabolic health outcomes. This is particularly relevant when considering the global increase in obesity, leading to the development of therapeutics for improved weight control and metabolic health. In this review, we aim to (a) provide a historical perspective of the CF concept, (b) detail some genetic, developmental, and cultural factors that determine food preference, (c) discuss the influence of diet on the gut-brain connection, hormones, nutrient absorption, and microbiome diversity, and (d) provide a perspective detailing possible future directions in which food technology may enable a new generation of CF with enhanced palatability and nutrient profiles while contributing to well-being and environmental sustainability.
Collapse
Affiliation(s)
- Roberta R Holt
- Department of Nutrition, University of California, Davis, Davis, California, USA
| | - Harold H Schmitz
- Graduate School of Management, University of California, Davis, Davis, California, USA
- March Capital US, L.L.C., Davis, California, USA
| | - Reham Mhawish
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Slavko Komarnytsky
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, North Carolina, USA
| | - Thien Nguyen
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA;
| | - Patrick M Caveney
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA;
| | - John P Munafo
- Department of Food Science, University of Tennessee, Knoxville, Tennessee, USA;
| |
Collapse
|
13
|
Horie F, Sanematsu K, Yasumatsu K, Hirokawa T, Shigemura N, Yamashita A, Kusakabe Y. Receptor mechanism producing a sweet taste from plant aroma compounds. Sci Rep 2025; 15:6795. [PMID: 40075099 PMCID: PMC11904223 DOI: 10.1038/s41598-025-89711-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 02/07/2025] [Indexed: 03/14/2025] Open
Abstract
Fruits and vegetables contain highly volatile hydrophobic small molecules responsible for their aroma, taste, and pungency. Empirically, we understand that these compounds can evoke a sweet taste; however, their specific interactions with sweet taste receptors are unclear. To address this issue, HEK293 cells expressing human and mouse sweet taste receptors TAS1R2/TAS1R3 were used to identify trans-2-hexenal (a novel sweetener) in human and cinnamyl alcohol (a sweetness inhibitor) in mice. The effects of these compounds on TAS1R2/TAS1R3 in humans and mice were evaluated alongside known hydrophobic sweet compounds, and the results showed that they elicited responses in human TAS1R2/TAS1R3 but not in mice. Conversely, some compounds inhibited the sweetness of sucralose both in vitro and in vivo. Response analysis using human and mouse chimeric TAS1R2 and point mutants of TAS1R2 using docking simulations indicated that these compounds bind to the transmembrane domain of TAS1R2 and that multiple amino acid residues are essential to generate a sweet taste. These results indicate that highly volatile hydrophobic compounds generate aroma and sweetness through a different mechanism than hydrophilic sweeteners, such as sucrose.
Collapse
Affiliation(s)
- Fuyumi Horie
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, 305-8642, Japan
| | - Keisuke Sanematsu
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Oral Health/Brain Health/Total Health Research Center, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | - Keiko Yasumatsu
- Tokyo Dental Junior College, Tokyo, Japan
- Monell Chemical Senses Center, Philadelphia, PA, USA
| | - Takatsugu Hirokawa
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
| | - Noriatsu Shigemura
- Section of Oral Neuroscience, Graduate School of Dental Science, Kyushu University, Fukuoka, Japan
- Research and Development Center for Five-Sense Devices, Kyushu University, Fukuoka, Japan
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Yuko Kusakabe
- Institute of Food Research, National Agriculture and Food Research Organization (NARO), 2-1-12 Kannondai, Tsukuba, 305-8642, Japan.
| |
Collapse
|
14
|
Belloir C, Jeannin M, Karolkowski A, Briand L. TAS1R2/ TAS1R3 Single-Nucleotide Polymorphisms Affect Sweet Taste Receptor Activation by Sweeteners: The SWEET Project. Nutrients 2025; 17:949. [PMID: 40289963 PMCID: PMC11945486 DOI: 10.3390/nu17060949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND/OBJECTIVES Studies have hypothesised that single-nucleotide polymorphisms (SNPs) in the TAS1R2 and TAS1R3 genes may alter sweet compound detection and eating habits, thereby increasing the risk of obesity. This in vitro study aims to measure the impact of human TAS1R2/TAS1R3 polymorphisms, some of which are thought to be involved in obesity, on the response of the sweet taste receptor to various sweeteners. It also aims to identify new SNPs in an obese population associated with a decrease in or loss of TAS1R2/TAS1R3 function. METHODS First, the effects of 12 human TAS1R2-SNPs and 16 human TAS1R3-SNPs, previously identified in the literature, on the response of the sweet taste receptor stimulated by 12 sweeteners were investigated using functional cellular assays. Second, a total of 162 blood samples were collected from an obese population (BMI between 25 and 35 kg/m2) involved in the SWEET project. The TaqMan method for SNP genotyping was carried out using DNA extracted from blood samples to identify new SNPs and predict possible/probable TAS1R2/TAS1R3 loss of function. RESULTS Although certain human TAS1R2/TAS1R3 SNPs showed reduced receptor response, they were not associated with particular phenotypes. Seven SNPs were predicted to severely impair the human TAS1R2/TAS1R3 response to sweeteners. CONCLUSIONS Although some TAS1R2- and TAS1R3-SNPs have previously been associated with obesity, our cellular results do not confirm this association and reinforce the hypothesis, put forward by other researchers, that sweet taste perception and sugar consumption are governed by factors other than the TAS1R2 and TAS1R3 genes.
Collapse
Affiliation(s)
| | | | | | - Loïc Briand
- Centre des Sciences du Goût et de l’Alimentation, The National Centre for Scientific Research (CNRS), National Institute of Agricultural Research (INRAE), Institut Agro, Université Bourgogne Europe, F-21000 Dijon, France; (C.B.); (M.J.); (A.K.)
| |
Collapse
|
15
|
Yoshimura A, Matsubara T, Kodama N, Kakuta Y, Yasuda K, Yoshida R, Kaminuma O, Hosomi S, Shinkawa H, Yuan Q, Kawamoto T, Kokabu S. Taste receptor type 1 member 3 in osteoclasts regulates osteoclastogenesis via detection of glucose. J Biol Chem 2025; 301:108273. [PMID: 39922492 PMCID: PMC11925095 DOI: 10.1016/j.jbc.2025.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/10/2025] Open
Abstract
The taste system extends beyond the oral cavity, with various taste receptors found in extraoral organs. Mice deficient in the taste receptor type 1 (TAS1R) family member, TAS1R3, and fed a high-fat, high-sugar diet showed high bone mass without altering food consumption. However, the underlying mechanisms, including the cell types responsible for TAS1R3 expression, remain unclear. Here, we demonstrate the expression and function of TAS1R3 in osteoclasts, which are responsible for bone resorption. The expression of Tas1r3, but not Tas1r1 or Tas1r2, is evoked during osteoclast differentiation. Osteoclastogenesis-related genes were downregulated in TAS1R3-deficient mice, whereas the opposite phenotypes were elicited by TAS1R3 overexpression. Contrary to the common heterodimerization with TAS1R1 or TAS1R2, TAS1R3 formed a homodimer that functioned to detect glucose, enhance p38 phosphorylation, and induce osteoclastogenesis. These results provide novel insights into the role of TAS1R3 in bone metabolism and suggest that TAS1R3 may be a viable target for therapeutic agents in bone metabolic diseases.
Collapse
Affiliation(s)
- Anna Yoshimura
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan; Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Takuma Matsubara
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| | - Nao Kodama
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Yoshimitsu Kakuta
- Laboratory of Structural Biology, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Kazuma Yasuda
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Osamu Kaminuma
- Department of Disease Model, Research Institute of Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Shuhei Hosomi
- Department of Gastroenterology, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Hiroji Shinkawa
- Department of Hepatobiliary-Pancreatic Surgery, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Kitakyushu, Fukuoka, Japan
| | - Shoichiro Kokabu
- Division of Molecular Signaling and Biochemistry, Kyushu Dental University, Kitakyushu, Fukuoka, Japan.
| |
Collapse
|
16
|
Martin LE, Lim J. Selective increases in taste sensitivity to glucose as a function of hunger status. Appetite 2025; 207:107901. [PMID: 39933656 PMCID: PMC11884995 DOI: 10.1016/j.appet.2025.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/06/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Glucose is critical for normal metabolic function in humans. Accordingly, the ability to sense glucose and glucose-containing saccharides is crucial for maintenance of energy homeostasis. Here, we report the evidence that glucose is perceived relatively stronger compared to fructose or sucralose when subjects are hungry. In the initial experiment, we measured the relative sensitivities between glucose and fructose when subjects were fasted vs. fed. Overnight fasted subjects (n = 22) completed a series of 3-AFC tests comparing one target (glucose from a range of concentrations) and two constants (200 mM fructose) before and after consuming mild-tasting breakfast sandwiches until satiated (738 ± 60 kcal). We found that the relative sensitivity to glucose as compared to fructose was significantly higher when individuals were hungry vs. satiated (p < 0.001). We replicated this finding by comparing the same range of glucose concentrations to a constant sucralose concentration (0.04 mM) (N = 19, p < 0.001). Importantly, when we compared a fixed concentration of sucralose (0.4 mM) to a range of fructose concentrations, we saw no difference in iso-intense concentration before and after eating (N = 19, p > 0.05). These findings support the hypothesis that hunger selectively increases taste sensitivity of glucose compared to other sweeteners.
Collapse
Affiliation(s)
- Laura E Martin
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Juyun Lim
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA; Monell Chemical Senses Center, Philadelphia, PA, USA.
| |
Collapse
|
17
|
Purali N. Mechanosensitive Ion Channels: The Unending Riddle of Mechanotransduction. Bioelectricity 2025; 7:58-70. [PMID: 40342940 PMCID: PMC12054614 DOI: 10.1089/bioe.2024.0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025] Open
Abstract
Sensation begins at the periphery, where distinct transducer proteins, activated by specific physical stimuli, initiate biological events to convert the stimulus into electrical activity. These evoked pulse trains encode various properties of the stimulus and travel to higher centers, enabling perception of the physical environment. Transduction is an essential process in all of the five senses described by Aristotle. A substantial amount of information is already available on how G-protein coupled receptor proteins transduce exposure to light, odors, and tastants. Functional studies have revealed the presence of mechanosensitive (MS) ion channels, which act as force transducers, in a wide range of organisms from archaea to mammals. However, the molecular basis of mechanosensitivity is incompletely understood. Recently, the structure of a few MS channels and the molecular mechanisms linking mechanical force to channel gating have been partially revealed. This article reviews recent developments focusing on the molecular basis of mechanosensitivity and emerging methods to investigate MS channels.
Collapse
Affiliation(s)
- Nuhan Purali
- Faculty of Medicine, Department of Biophysics, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Kong X, Sun J, Zhang H, Yin Y, Liang X, Chen Y, Luo G, Xia H, Wang Y, Liu Z, Tang C. Preferential allosteric modulation of Otop1 channels by small molecule compounds. Commun Biol 2025; 8:314. [PMID: 40011703 PMCID: PMC11865470 DOI: 10.1038/s42003-025-07775-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025] Open
Abstract
The Otopetrin (Otop) proteins, comprising Otop1-3, are proton-gated proton channels with key biological functions. Otop1 acts as a receptor for sour and ammonium salt tastes in mammals, but its gating mechanisms and pharmacology remain poorly understood. Here, we report the functional characterization of three small molecule positive allosteric modulators of Otop1-MFaN, HIMOP, and B2FAMP-that enhance proton gating in a pH-dependent manner, potentiating Otop1 activity under weak acidic but not strong acidic conditions. HIMOP also uniquely enhances Otop1's alkali gating. These modulators preferentially target Otop1, sparing Otop2 and Otop3, and other ion channels. MFaN activates Otop1 while preserving its core biophysical and pharmacological properties by associating with key residues on the channel's S5-6 and S11-12 loops, including a crucial arginine (R554) essential for Zn2+ and alkali activation. This study identifies important Otop1 modulators and structural elements underlying its gating, paving the way for further exploration of this ion channel.
Collapse
Affiliation(s)
- Xiangjin Kong
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Jie Sun
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China
| | - Hanhan Zhang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yuan Yin
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xinyao Liang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yan Chen
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Guoqing Luo
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Huixin Xia
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Zhonghua Liu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China.
| | - Cheng Tang
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, China.
- Peptide and small molecule drug R&D platform, Furong Laboratory, Hunan Normal University, Changsha, China.
| |
Collapse
|
19
|
Melamed M, Asraf H, Livne N, Bogdanovic M, Shendge A, Shamir G, Mero M, Adir O, Schroeder A, Sekler I, Hershfinkel M. The zinc receptor, ZnR/GPR39, modulates taste sensitivity by regulating ion secretion in mouse salivary gland. iScience 2025; 28:111912. [PMID: 40017509 PMCID: PMC11867543 DOI: 10.1016/j.isci.2025.111912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 03/01/2025] Open
Abstract
Reduced saliva secretion, dry mouth, and loss of taste are debilitating symptoms associated with zinc deficiency. A mechanism for zinc regulation of these processes is lacking. Here, we identified the Zn2+ sensing receptor ZnR/GPR39 as a mediator of ion transport in salivary gland epithelium. By monitoring transport of NH4 +, a surrogate for K+, we revealed that Zn2+ upregulates the Na+/K+ ATPase pump activity in parotid and submandibular salivary gland epithelium from wildtype (WT), but not from ZnR/GPR39 knockout (KO), mice. Since Na+/K+ ATPase activity is crucial for solute transport, we compared saliva composition in WT and ZnR/GPR39 KO mice and found impaired ionic concentration and reduced saliva secretion in ZnR/GPR39 KO mice. Moreover, mice deficient in ZnR/GPR39 exhibited decreased sensitivity to appetitive Na+ concentrations. Altogether, we demonstrate that salivary ZnR/GPR39 activity controls saliva ion composition and secretion, and provides a target for therapeutic approaches for dry mouth and taste disorders.
Collapse
Affiliation(s)
- Moran Melamed
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hila Asraf
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Noa Livne
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Milos Bogdanovic
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anil Shendge
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gilad Shamir
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Maayan Mero
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Omer Adir
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Avi Schroeder
- The Louis Family Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies, Department of Chemical Engineering, Technion, Haifa, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, School of Bio Medical Research, and the Zelman School of Brain Sciences and Cognition, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
20
|
Fernandes AG, Poirier AC, Veilleux CC, Melin AD. Contributions and future potential of animal models for geroscience research on sensory systems. GeroScience 2025; 47:61-83. [PMID: 39312151 PMCID: PMC11872837 DOI: 10.1007/s11357-024-01327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 03/04/2025] Open
Abstract
Sensory systems mediate our social interactions, food intake, livelihoods, and other essential daily functions. Age-related decline and disease in sensory systems pose a significant challenge to healthy aging. Research on sensory decline in humans is informative but can often be difficult, subject to sampling bias, and influenced by environmental variation. Study of animal models, including mice, rats, rabbits, pigs, cats, dogs, and non-human primates, plays a complementary role in biomedical research, offering advantages such as controlled conditions and shorter lifespans for longitudinal study. Various species offer different advantages and limitations but have provided key insights in geroscience research. Here we review research on age-related decline and disease in vision, hearing, olfaction, taste, and touch. For each sense, we provide an epidemiological overview of impairment in humans, describing the physiological processes and diseases for each sense. We then discuss contributions made by research on animal models and ideas for future research. We additionally highlight the need for integrative, multimodal research across the senses as well as across disciplines. Long-term studies spanning multiple generations, including on species with longer life spans, are also highly valuable. Overall, integrative studies of appropriate animal models have high translational potential for clinical applications, the development of novel diagnostics, therapies, and medical interventions and future research will continue to close gaps in these areas. Research on animal models to improve understanding of the biology of the aging senses and improve the healthspan and additional research on sensory systems hold special promise for new breakthroughs.
Collapse
Affiliation(s)
- Arthur G Fernandes
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada.
| | - Alice C Poirier
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Carrie C Veilleux
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada.
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
21
|
Tang X, Guo R, Mo Z, Fu W, Qian X. Causality-driven candidate identification for reliable DNA methylation biomarker discovery. Nat Commun 2025; 16:680. [PMID: 39814752 PMCID: PMC11735613 DOI: 10.1038/s41467-025-56054-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025] Open
Abstract
Despite vast data support in DNA methylation (DNAm) biomarker discovery to facilitate health-care research, this field faces huge resource barriers due to preliminary unreliable candidates and the consequent compensations using expensive experiments. The underlying challenges lie in the confounding factors, especially measurement noise and individual characteristics. To achieve reliable identification of a candidate pool for DNAm biomarker discovery, we propose a Causality-driven Deep Regularization framework to reinforce correlations that are suggestive of causality with disease. It integrates causal thinking, deep learning, and biological priors to handle non-causal confounding factors, through a contrastive scheme and a spatial-relation regularization that reduces interferences from individual characteristics and noises, respectively. The comprehensive reliability of the proposed method was verified by simulations and applications involving various human diseases, sample origins, and sequencing technologies, highlighting its universal biomedical significance. Overall, this study offers a causal-deep-learning-based perspective with a compatible tool to identify reliable DNAm biomarker candidates, promoting resource-efficient biomarker discovery.
Collapse
Affiliation(s)
- Xinlu Tang
- The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Guo
- The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zhanfeng Mo
- College of Computing and Data Science, Nanyang Technological University, Singapore, Singapore
| | - Wenli Fu
- The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaohua Qian
- The Medical Image and Health Informatics Lab, the School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
22
|
Park GY, Lee G, Yoon J, Han J, Choi P, Kim M, Lee S, Park C, Wu Z, Li Y, Choi M. Glia-like taste cells mediate an intercellular mode of peripheral sweet adaptation. Cell 2025; 188:141-156.e16. [PMID: 39561773 DOI: 10.1016/j.cell.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
The sense of taste generally shows diminishing sensitivity to prolonged sweet stimuli, referred to as sweet adaptation. Yet, its mechanistic landscape remains incomplete. Here, we report that glia-like type I cells provide a distinct mode of sweet adaptation via intercellular crosstalk with chemosensory type II cells. Using the microfluidic-based intravital tongue imaging system, we found that sweet adaptation is facilitated along the synaptic transduction from type II cells to gustatory afferent nerves, while type I cells display temporally delayed and prolonged activities. We identified that type I cells receive purinergic input from adjacent type II cells via P2RY2 and provide inhibitory feedback to the synaptic transduction of sweet taste. Aligning with our cellular-level findings, purinergic activation of type I cells attenuated sweet licking behavior, and P2RY2 knockout mice showed decelerated adaptation behavior. Our study highlights a veiled intercellular mode of sweet adaptation, potentially contributing to the efficient encoding of prolonged sweetness.
Collapse
Affiliation(s)
- Gha Yeon Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Geehyun Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Jongmin Yoon
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Jisoo Han
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Pyonggang Choi
- Korea Brain Research Institute, Daegu 41062, Republic of Korea
| | - Minjae Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Sungho Lee
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Chaeri Park
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea
| | - Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
| | - Myunghwan Choi
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; The Institute of Molecular Biology and Genetics, Seoul 08826, Republic of Korea.
| |
Collapse
|
23
|
Soengas JL, Comesaña S, Blanco AM, Conde-Sieira M. Feed Intake Regulation in Fish: Implications for Aquaculture. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2025; 33:8-60. [DOI: 10.1080/23308249.2024.2374259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- José L. Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Ayelén M. Blanco
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
24
|
Serrano J, Kondo S, Link GM, Brown IS, Pratley RE, Baskin KK, Goodpaster BH, Coen PM, Kyriazis GA. A partial loss-of-function variant (Ile191Val) of the TAS1R2 glucose receptor is associated with enhanced responses to exercise training in older adults with obesity: A translational study. Metabolism 2025; 162:156045. [PMID: 39393515 PMCID: PMC11637915 DOI: 10.1016/j.metabol.2024.156045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND The TAS1R2 receptor, known for its role in taste perception, has also emerged as a key regulator of muscle physiology. Previous studies have shown that genetic ablation of TAS1R2 in mice enhances muscle fitness mimicking responses to endurance exercise training. However, the translational relevance of these findings to humans remains uncertain. METHODS We explored responses to endurance exercise training in mice and humans with genetic deficiency of TAS1R2. First, we assessed the effects of muscle-specific deletion of TAS1R2 in mice (mKO) or wild type controls (mWT) following 4 weeks of voluntary wheel running (VWR). Next, we investigated the effects of the TAS1R2-Ile191Val (rs35874116) partial loss-of-function variant on responses to a 6-month diet-induced weight loss with exercise training (WLEX), weight loss alone (WL), or education control (CON) interventions in older individuals with obesity. Participants were retrospectively genotyped for the TAS1R2-Ile191Val polymorphism and classified as conventional function (Ile/Ile) or partial loss-of-function (Val carriers: Ile/Val and Val/Val). Body composition, cardiorespiratory fitness, and skeletal muscle mitochondrial function were assessed before and after the intervention. RESULTS In response to VWR, mKO mice demonstrated enhanced running endurance and mitochondrial protein content. Similarly, TAS1R2 Val carriers exhibited distinctive improvements in body composition, including increased muscle mass, along with enhanced cardiorespiratory fitness and mitochondrial function in skeletal muscle following the WLEX intervention compared to Ile/Ile counterparts. Notably, every Val carrier demonstrated substantial responses to exercise training and weight loss, surpassing all Ile/Ile participants in overall performance metrics. CONCLUSIONS Our findings suggest that TAS1R2 partial loss-of-function confers beneficial effects on muscle function and metabolism in humans in response to exercise training, akin to observations in TAS1R2 muscle-deficient mice. Targeting TAS1R2 may help enhancing exercise training adaptations in individuals with compromised exercise tolerance or metabolic disorders, presenting a potential avenue for personalized exercise interventions.
Collapse
Affiliation(s)
- Joan Serrano
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Saki Kondo
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Grace M Link
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Ian S Brown
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Kedryn K Baskin
- Physiology & Cell Biology College of Medicine, The Ohio State University, Columbus, OH, USA
| | | | - Paul M Coen
- Translational Research Institute, Advent Health, Orlando, FL, USA.
| | - George A Kyriazis
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
25
|
Sternini C, Rozengurt E. Bitter taste receptors as sensors of gut luminal contents. Nat Rev Gastroenterol Hepatol 2025; 22:39-53. [PMID: 39468215 DOI: 10.1038/s41575-024-01005-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/30/2024]
Abstract
Taste is important in the selection of food and is orchestrated by a group of distinct receptors, the taste G protein-coupled receptors (GPCRs). Taste 1 receptors (Tas1rs in mice and TAS1Rs in humans; also known as T1Rs) detect sweet and umami tastes, and taste 2 receptors (Tas2rs in mice and TAS2Rs in humans; also known as T2Rs) detect bitterness. These receptors are also expressed in extraoral sites, including the gastrointestinal mucosa. Tas2rs/TAS2Rs have gained interest as potential targets to prevent or treat metabolic disorders. These bitter taste receptors are expressed in functionally distinct types of gastrointestinal mucosal cells, including enteroendocrine cells, which, upon stimulation, increase intracellular Ca2+ and release signalling molecules that regulate gut chemosensory processes critical for digestion and absorption of nutrients, for neutralization and expulsion of harmful substances, and for metabolic regulation. Expression of Tas2rs/TAS2Rs in gut mucosa is upregulated by high-fat diets, and intraluminal bitter 'tastants' affect gastrointestinal functions and ingestive behaviour through local and gut-brain axis signalling. Tas2rs/TAS2Rs are also found in Paneth and goblet cells, which release antimicrobial peptides and glycoproteins, and in tuft cells, which trigger type 2 immune response against parasites, thus providing a direct line of defence against pathogens. This Review will focus on gut Tas2r/TAS2R distribution, signalling and regulation in enteroendocrine cells, supporting their role as chemosensors of luminal content that serve distinct functions as regulators of body homeostasis and immune response.
Collapse
Affiliation(s)
- Catia Sternini
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Enrique Rozengurt
- Division of Digestive Diseases, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
26
|
Ponnusamy V, Subramanian G, Vasanthakumar K, Muthuswamy K, Panneerselvan P, Krishnan V, Subramaniam S. T1R2/T1R3 polymorphism affects sweet and fat perception: Correlation between SNP and BMI in the context of obesity development. Hum Genet 2025; 144:15-30. [PMID: 39107667 DOI: 10.1007/s00439-024-02690-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/12/2024] [Indexed: 01/23/2025]
Abstract
Genetic variations in taste receptors are associated with gustatory perception and obesity, which in turn affects dietary preferences. Given the increasing tendency of people with obesity choosing sweet, high-fat meals, the current study assessed the cross-regulation of two polymorphisms of the sweet taste receptor (T1R2/T1R3), rs35874116 and rs307355, on fat sensitivity in Indian adults. We investigated the association between taste sensitivity and BMI in the T1R2, T1R3, and CD36 polymorphic and non-polymorphic groups. The general labelled magnitude scale (gLMS) was used to assess the taste sensitivity of 249 participants in addition to anthropometric data. TaqMan Probe-based RT-PCR was employed to determine the polymorphisms. Additionally, the colorimetric method utilizing 3, 5-dinitro salicylic acid was used to evaluate the participants' salivary amylase activity. The mean detection thresholds for linoleic acid (LA) and sucrose were greater in individuals with obesity (i.e., 0.97 ± 0.08 mM and 0.22 ± 0.02 M, respectively) than in healthy adults (p < 0.0001), indicating lower sensitivity. Moreover, it was found that a greater proportion of persons with obesity fall into the polymorphic groups (i.e., 52% with genotype CD36 AA, 44% with genotype T1R2 CC, and 40% with genotype T1R3 TT). All three single nucleotide polymorphisms support the Hardy-Weinberg equilibrium (p = 0.78). The Pearson correlation analysis between LA and the sucrose detection threshold revealed a significant (p < 0.0001) positive relationship with an r value of 0.5299. Moreover, salivary amylase activity was significantly (p < 0.05) higher in the polymorphic sub-groups. The results of our study imply that genetic variations in T1R2/T1R3 receptors affect perception of both sweetness and fat, which may have an effect on obesity.
Collapse
Affiliation(s)
- Vinithra Ponnusamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Gowtham Subramanian
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
- Men's Health Research Unit, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India.
| |
Collapse
|
27
|
Mendoza G, Fonseca E, Merchant H, Gutierrez R. Neuronal Sequences and dynamic coding of water-sucrose categorization in rat gustatory cortices. iScience 2024; 27:111287. [PMID: 39640568 PMCID: PMC11617401 DOI: 10.1016/j.isci.2024.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
The gustatory system allows us to perceive and distinguish sweetness from water. We studied this phenomenon by recording neural activity in rats' anterior insular (aIC) and orbitofrontal (OFC) cortices while they categorized varying sucrose concentrations against water. Neurons in both aIC and OFC encoded the categorical distinction between sucrose and water rather than specific sucrose concentrations. Notably, aIC encoded this distinction faster than OFC. Conversely, the OFC slightly preceded the aIC in representing choice information, although both cortices encoded the rat's choices in parallel. Further analyses revealed dynamic and sequential encoding of sensory and categorical decisions, forming brief sequences of encoding neurons throughout the trial rather than long-lasting neuronal representations. Our findings, supported by single-cell, population decoding, and principal-component analysis (PCA), demonstrate that gustatory cortices employ neuronal sequences to compute sensorimotor transformations, from taste detection to categorical decisions, and continuously update this process as new taste information emerges using dynamic coding.
Collapse
Affiliation(s)
- Germán Mendoza
- Laboratory of Systems Neurophysiology, Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla Querétaro 76230, Mexico
| | - Esmeralda Fonseca
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
- Laboratory Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
| | - Hugo Merchant
- Laboratory of Systems Neurophysiology, Institute of Neurobiology, National Autonomous University of Mexico, Juriquilla Querétaro 76230, Mexico
| | - Ranier Gutierrez
- Laboratory Neurobiology of Appetite, Department of Pharmacology, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City 07360, Mexico
- Laboratory Neurobiology of Appetite, Centro de Investigación Sobre el Envejecimiento CIE Cinvestav sede Sur, Mexico City, Mexico
| |
Collapse
|
28
|
Li J, Guo C, Xie M, Wang K, Wang X, Zou B, Hou F, Ran C, Bi S, Xu Y, Hua Y. Genomic signatures of sensory adaptation and evolution in pangolins. BMC Genomics 2024; 25:1176. [PMID: 39633301 PMCID: PMC11616205 DOI: 10.1186/s12864-024-11063-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Pangolin is one of the most endangered mammals with many peculiar characteristics, yet the understanding of its sensory systems is still superficial. Studying the genomic basis of adaptation and evolution of pangolin's sensory system is expected to provide further potential assistance for their conservation in the future. RESULTS In this study, we performed a comprehensive comparative genomic analysis to explore the signature of sensory adaptation and evolution in pangolins. By comparing with the aardvark, Cape golden mole, and short-beaked echidna, 124 and 152 expanded gene families were detected in the genome of the Chinese and Malayan pangolins, respectively. The enrichment analyses showed olfactory-related genomic convergence among five concerned mammals. We found 769 and 733 intact OR genes, and 704 and 475 OR pseudogenes in the Chinese and Malayan pangolin species, respectively. Compared to other mammals, far more intact members of OR6 and OR14 were identified in pangolins, particularly for four genes with large copy numbers (OR6C2, OR14A2, OR14C36, and OR14L1). On the genome-wide scale, 1,523, 1,887, 1,110, and 2,732 genes were detected under positive selection (PSGs), intensified selection (ISGs), rapid evolution (REGs), and relaxed selection (RSGs) in pangolins. GO terms associated with visual perception were enriched in PSGs, ISGs, and REGs. Those related to rhythm and sound perception were enriched in both ISGs and REGs, ear development and morphogenesis were enriched in ISGs, and mechanical stimulus and temperature adaptation were enriched in RSGs. The convergence of two vision-related PSGs (OPN4 and ATXN7), with more than one parallel substituted site, was detected among five concerned mammals. Additionally, the absence of intact genes of PKD1L3, PKD2L1, and TAS1R2 and just six single-copy TAS2Rs (TAS2R1, TAS2R4, TAS2R7, TAS2R38, TAS2R40, and TAS2R46) were found in pangolins. Interestingly, we found two large insertions in TAS1R3, distributed in the N-terminal ectodomain, just in pangolins. CONCLUSIONS We found new features related to the adaptation and evolution of pangolin-specific sensory characteristics across the genome. These are expected to provide valuable and useful genome-wide genetic information for the future breeding and conservation of pangolins.
Collapse
Affiliation(s)
- Jun Li
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Ce Guo
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Meiling Xie
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Xianghe Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Bishan Zou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Fanghui Hou
- Guangdong Wildlife Rescue Monitoring Center, Guangzhou, 510520, China
- Pangolin Conservation Research Center of National Forestry and Grassland Administration, Guangzhou, 510520, China
| | - Chongyang Ran
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Shiman Bi
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China
| | - Yanchun Xu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, China.
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China.
| |
Collapse
|
29
|
Liu Y, Huang Y, Yang W, Hu W, Wu Z, Wu T, Pu Y, Jiang Y, Zhu H, Zhang J, Cheng F, Feng S. Aspartame enhances the scavenging activity of mice to low-dose Escherichia coli infection via strengthening macrophage phagocytosis caused by sweet taste receptor activation. FASEB J 2024; 38:e70170. [PMID: 39535424 DOI: 10.1096/fj.202401396rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Aspartame is the most common artificial sweetener and a famous sweet-taste receptor agonist. Macrophages are essential in the antibacterial system to maintain the stability of the intestinal environment. Recently, the sweet taste receptor has been found in macrophages. However, the effects of aspartame on macrophage phagocytosis in the gastrointestinal tract are little known. The current study sought to assess the influence of aspartame intake on the scavenging activity of mice to low-dose Escherichia coli infection and related mechanisms. Firstly, no inflammatory response or pathological injury was observed in the intestines of mice after oral administration of aspartame (25-100 mg/kg, i.g.) for 2 weeks. Subsequently, aspartame intake was found to enhance the scavenging activity of mice to low-dose E. coli infection. Similarly, aspartame dose-dependent strengthened the ability of RAW264.7 cells to phagocytose GFP-E.coli J96. Further mechanism evaluation reflected that aspartame could enhance macrophage phagocytosis, migration, and rearrangement via PLCβ-2/Ca2+/PKCβ/Rho A/ROCK1 pathway caused by sweet taste receptor activation. In conclusion, the present study, for the first time, demonstrated that aspartame could enhance the scavenging activity of mice to low-dose E. coli infection via strengthening macrophage phagocytic function through activating sweet taste receptor. It is then suggested that aspartame may affect the antibacterial activity of human gastrointestinal macrophages, and further studies need to validate these effects.
Collapse
Affiliation(s)
- Yulin Liu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Yilin Huang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Wei Yang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Weiqing Hu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Zhizhongbin Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Tianyue Wu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Yu Pu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Yunbin Jiang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Huifeng Zhu
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Jifen Zhang
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| | - Fang Cheng
- The Third Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Shan Feng
- Department of Traditional Chinese Medicine, College of Pharmaceutical Sciences and Traditional Chinese Medicine, Southwest University, Chongqing, China
| |
Collapse
|
30
|
Palmer RK, Nechiporenko AB, Ilies MA, Winnig M, Gravina SA, Tiwari R, Prakash I. Sodium-dependent glucose co-transport proteins (SGLTs) are not involved in human glucose taste detection. PLoS One 2024; 19:e0313128. [PMID: 39556551 PMCID: PMC11573166 DOI: 10.1371/journal.pone.0313128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/19/2024] [Indexed: 11/20/2024] Open
Abstract
The sweet taste of saccharides, such as sucrose and glucose, and other sweeteners is known to result from activation of the TAS1R2/R3 receptor expressed in taste receptor cells (TRCs) of the taste bud. Recent reports have suggested the existence of an additional sweet taste signaling pathway for metabolizable saccharides that is dependent on the activity of glucose transporters, especially SGLT1, also expressed in TRCs. We have investigated the potential contribution of SGLT1 to glucose taste signaling in humans. Concentration-response analysis of glucose mediated changes in membrane potential measured in Chinese hamster ovary (CHO) cells transiently expressing the human SGLT1 (hSGLT1) yielded an EC50 value of 452 μM. The SGLT inhibitor phlorizin inhibited the membrane potential response to 10 mM glucose with an IC50 of 3.5 μM. In contrast, EC50 values of 127 and 132 mM were obtained from concentration-response analysis of glucose taste in vehicles of water or 20 mM NaCl, respectively, by rapid throughput taste discrimination with human subjects. Lactisole, an antagonist of TAS1R2/R3, at a concentration of 1 mM completely inhibited taste responses to glucose concentrations of 250 mM and below. Phlorizin (0.2 mM) and the high potency SGLT1-selective inhibitor mizagliflozin (10 μM) failed to inhibit glucose taste detection measured at peri-threshold concentrations in the rapid throughput taste discrimination assay. A Yes/No experiment using the taste discrimination assay revealed that 0.2 mM phlorizin was discriminable from water for some subjects. Taken together the results indicate that agonist activation of TAS1R2/R3 is sufficient to account for all glucose taste without contribution by an alternative SGLT-mediated signaling pathway. Furthermore, the taste of phlorizin could be a confounding variable for studies evaluating a role for SGLTs in taste.
Collapse
Affiliation(s)
- R. Kyle Palmer
- Opertech Bio, Inc., Philadelphia, Pennsylvania, United States of America
| | | | - Marc A. Ilies
- Department of Pharmaceutical Sciences and Moulder Center for Drug Discovery Research, School of Pharmacy, Temple University, Philadelphia, Pennsylvania, United States of America
| | | | | | - Rashmi Tiwari
- The Coca-Cola Company, Atlanta, Georgia, United States of America
| | - Indra Prakash
- The Coca-Cola Company, Atlanta, Georgia, United States of America
| |
Collapse
|
31
|
Juarez G, Alonso ER, Aguado R, León I. Rotational Spectroscopy as a Tool to Characterize Sweet Taste: The Study of Dulcin. ChemistryOpen 2024; 13:e202400159. [PMID: 39051712 PMCID: PMC11564861 DOI: 10.1002/open.202400159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/06/2024] [Indexed: 07/27/2024] Open
Abstract
According to old theories of sweetness, the perception of sweet substances is closely linked to the arrangement of atoms within them. To assess the validity of these theories, we conducted an analysis of the structure of the artificial sweetener dulcin for the first time, utilizing microwave spectroscopy and a laser ablation source. These techniques have enabled the identification of two conformers, which are stabilized by an intramolecular hydrogen bond between the amino group and the phenyl ring. The observed conformations were examined in light of the Shallenberger-Acree-Kier molecular theory of sweet taste, and they align with the hypothesized criteria. Furthermore, the study illustrates how conformational relaxation can alter the equilibrium conformational distribution, resulting in the absence of certain conformers in the conformational landscape.
Collapse
Affiliation(s)
- Gabriela Juarez
- Grupo de Espectroscopia Molecular (GEM)Edificio QuifimaLaboratorios de Espectroscopia y BioespectroscopiaUnidad Asociada CSICParque Científico UvaUniversidad de ValladolidPaseo de Belén 547011ValladolidSpain
| | - Elena R. Alonso
- Grupo de Espectroscopia Molecular (GEM)Edificio QuifimaLaboratorios de Espectroscopia y BioespectroscopiaUnidad Asociada CSICParque Científico UvaUniversidad de ValladolidPaseo de Belén 547011ValladolidSpain
| | - Raúl Aguado
- Grupo de Espectroscopia Molecular (GEM)Edificio QuifimaLaboratorios de Espectroscopia y BioespectroscopiaUnidad Asociada CSICParque Científico UvaUniversidad de ValladolidPaseo de Belén 547011ValladolidSpain
| | - Iker León
- Grupo de Espectroscopia Molecular (GEM)Edificio QuifimaLaboratorios de Espectroscopia y BioespectroscopiaUnidad Asociada CSICParque Científico UvaUniversidad de ValladolidPaseo de Belén 547011ValladolidSpain
| |
Collapse
|
32
|
Allard CAH, Herbert AL, Krueger SP, Liang Q, Walsh BL, Rhyne AL, Gourlay AN, Seminara A, Baldwin MW, Kingsley DM, Bellono NW. Evolution of novel sensory organs in fish with legs. Curr Biol 2024; 34:4349-4356.e7. [PMID: 39332400 PMCID: PMC11552235 DOI: 10.1016/j.cub.2024.08.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/13/2024] [Indexed: 09/29/2024]
Abstract
How do animals evolve new traits? Sea robins are fish that possess specialized leg-like appendages used to "walk" along the sea floor. Here, we show that legs are bona fide sense organs that localize buried prey. Legs are covered in sensory papillae that receive dense innervation from touch-sensitive neurons, express non-canonical epithelial taste receptors, and mediate chemical sensitivity that drives predatory digging behavior. A combination of developmental analyses, crosses between species with and without papillae, and interspecies comparisons of sea robins from around the world demonstrate that papillae represent a key evolutionary innovation associated with behavioral niche expansion on the sea floor. These discoveries provide unique insight into how molecular-, cellular-, and tissue-scale adaptations integrate to produce novel organismic traits and behavior.
Collapse
Affiliation(s)
- Corey A H Allard
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Amy L Herbert
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Stephanie P Krueger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Qiaoyi Liang
- Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - Brittany L Walsh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | - Agnese Seminara
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, 16145 Genoa, Italy
| | - Maude W Baldwin
- Max Planck Institute for Biological Intelligence, 82319 Seewiesen, Germany
| | - David M Kingsley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
33
|
Thorens B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion. Physiol Rev 2024; 104:1461-1486. [PMID: 38661565 DOI: 10.1152/physrev.00038.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/16/2024] [Accepted: 04/20/2024] [Indexed: 04/26/2024] Open
Abstract
Glucose homeostasis is mainly under the control of the pancreatic islet hormones insulin and glucagon, which, respectively, stimulate glucose uptake and utilization by liver, fat, and muscle and glucose production by the liver. The balance between the secretions of these hormones is under the control of blood glucose concentrations. Indeed, pancreatic islet β-cells and α-cells can sense variations in glycemia and respond by an appropriate secretory response. However, the secretory activity of these cells is also under multiple additional metabolic, hormonal, and neuronal signals that combine to ensure the perfect control of glycemia over a lifetime. The central nervous system (CNS), which has an almost absolute requirement for glucose as a source of metabolic energy and thus a vital interest in ensuring that glycemic levels never fall below ∼5 mM, is equipped with populations of neurons responsive to changes in glucose concentrations. These neurons control pancreatic islet cell secretion activity in multiple ways: through both branches of the autonomic nervous system, through the hypothalamic-pituitary-adrenal axis, and by secreting vasopressin (AVP) in the blood at the level of the posterior pituitary. Here, we present the autonomic innervation of the pancreatic islets; the mechanisms of neuron activation by a rise or a fall in glucose concentration; how current viral tracing, chemogenetic, and optogenetic techniques allow integration of specific glucose sensing neurons in defined neuronal circuits that control endocrine pancreas function; and, finally, how genetic screens in mice can untangle the diversity of the hypothalamic mechanisms controlling the response to hypoglycemia.
Collapse
Affiliation(s)
- Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Valencia-Montoya WA, Pierce NE, Bellono NW. Evolution of Sensory Receptors. Annu Rev Cell Dev Biol 2024; 40:353-379. [PMID: 38985841 PMCID: PMC11526382 DOI: 10.1146/annurev-cellbio-120123-112853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Sensory receptors are at the interface between an organism and its environment and thus represent key sites for biological innovation. Here, we survey major sensory receptor families to uncover emerging evolutionary patterns. Receptors for touch, temperature, and light constitute part of the ancestral sensory toolkit of animals, often predating the evolution of multicellularity and the nervous system. In contrast, chemoreceptors exhibit a dynamic history of lineage-specific expansions and contractions correlated with the disparate complexity of chemical environments. A recurring theme includes independent transitions from neurotransmitter receptors to sensory receptors of diverse stimuli from the outside world. We then provide an overview of the evolutionary mechanisms underlying sensory receptor diversification and highlight examples where signatures of natural selection are used to identify novel sensory adaptations. Finally, we discuss sensory receptors as evolutionary hotspots driving reproductive isolation and speciation, thereby contributing to the stunning diversity of animals.
Collapse
Affiliation(s)
- Wendy A Valencia-Montoya
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, USA
| | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA; ,
| |
Collapse
|
35
|
Korn LL, Kutyavin VI, Bachtel ND, Medzhitov R. Adverse Food Reactions: Physiological and Ecological Perspectives. Annu Rev Nutr 2024; 44:155-178. [PMID: 38724028 DOI: 10.1146/annurev-nutr-061021-022909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
While food is essential for survival, it can also cause a variety of harmful effects, ranging from intolerance to specific nutrients to celiac disease and food allergies. In addition to nutrients, foods contain myriads of substances that can have either beneficial or detrimental effects on the animals consuming them. Consequently, all animals evolved defense mechanisms that protect them from harmful food components. These "antitoxin" defenses have some parallels with antimicrobial defenses and operate at a cost to the animal's fitness. These costs outweigh benefits when defense responses are exaggerated or mistargeted, resulting in adverse reactions to foods. Additionally, pathological effects of foods can stem from insufficient defenses, due to unabated toxicity of harmful food components. We discuss the structure of antitoxin defenses and how their failures can lead to a variety of adverse food reactions.
Collapse
Affiliation(s)
- Lisa L Korn
- Department of Medicine, Section of Rheumatology, Allergy, and Clinical Immunology, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Vassily I Kutyavin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Nathaniel D Bachtel
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Ruslan Medzhitov
- Tananbaum Center for Theoretical and Analytical Human Biology, Yale University School of Medicine, New Haven, Connecticut, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| |
Collapse
|
36
|
Glendinning JI, Archambeau A, Brouwer LR, Dennis A, Georgiou K, Ivanov J, Vayntrub R, Sclafani A. Mice Condition Cephalic-Phase Insulin Release to Flavors Associated with Postoral Actions of Concentrated Glucose. Nutrients 2024; 16:2250. [PMID: 39064693 PMCID: PMC11279997 DOI: 10.3390/nu16142250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Rats can condition cephalic-phase insulin responses (CPIRs) to specific sounds or times of the day that predict food availability. The present study asked whether mice can condition a CPIR to the flavor of sapid solutions that produce postoral glucose stimulation. To this end, we subjected C57BL/6 mice to one of six experimental protocols. We varied both the duration of the five training sessions (i.e., 23 h or 1 h) and the nature of the training solution. In Experiment 1, consumption of a 0.61% saccharin solution was paired with IG co-infusion of a 16% glucose solution. In Experiments 2-6, the mice consumed a training solution containing a mixture of 0.61% saccharin + 16% glucose, 32% sucrose, 32% maltodextrin, flavored 32% maltodextrin, or 16% maltodextrin. We subsequently asked whether consumption of any of these fluids conditioned a CPIR to a test solution that produced a similar flavor, but which did not elicit a CPIR in naïve mice. The mice did condition a CPIR, but only to the solutions containing 32% maltodextrin. We attribute this conditioning to postoral actions of the concentrated maltodextrin solutions.
Collapse
Affiliation(s)
- John I. Glendinning
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA; (A.A.); (R.V.)
| | - Alix Archambeau
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA; (A.A.); (R.V.)
| | - Lillian R. Brouwer
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Alyson Dennis
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Kiriaki Georgiou
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Jessica Ivanov
- Department of Biology, Barnard College, Columbia University, New York, NY 10027, USA; (L.R.B.); (A.D.); (K.G.); (J.I.)
| | - Rochelle Vayntrub
- Department of Neuroscience & Behavior, Barnard College, Columbia University, New York, NY 10027, USA; (A.A.); (R.V.)
| | - Anthony Sclafani
- Department of Psychology, Brooklyn College of City University of New York, Brooklyn, NY 11210, USA;
| |
Collapse
|
37
|
Yoshida R, Ninomiya Y. Mechanisms and Functions of Sweet Reception in Oral and Extraoral Organs. Int J Mol Sci 2024; 25:7398. [PMID: 39000505 PMCID: PMC11242429 DOI: 10.3390/ijms25137398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The oral detection of sugars relies on two types of receptor systems. The first is the G-protein-coupled receptor TAS1R2/TAS1R3. When activated, this receptor triggers a downstream signaling cascade involving gustducin, phospholipase Cβ2 (PLCβ2), and transient receptor potential channel M5 (TRPM5). The second type of receptor is the glucose transporter. When glucose enters the cell via this transporter, it is metabolized to produce ATP. This ATP inhibits the opening of KATP channels, leading to cell depolarization. Beside these receptor systems, sweet-sensitive taste cells have mechanisms to regulate their sensitivity to sweet substances based on internal and external states of the body. Sweet taste receptors are not limited to the oral cavity; they are also present in extraoral organs such as the gastrointestinal tract, pancreas, and brain. These extraoral sweet receptors are involved in various functions, including glucose absorption, insulin release, sugar preference, and food intake, contributing to the maintenance of energy homeostasis. Additionally, sweet receptors may have unique roles in certain organs like the trachea and bone. This review summarizes past and recent studies on sweet receptor systems, exploring the molecular mechanisms and physiological functions of sweet (sugar) detection in both oral and extraoral organs.
Collapse
Affiliation(s)
- Ryusuke Yoshida
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan
| | - Yuzo Ninomiya
- Department of Oral Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Graduate School of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| |
Collapse
|
38
|
Hartley C, Keast RSJ, Carr AJ, Roberts SSH, Bredie WLP. Investigating Taste Perception of Maltodextrins Using Lactisole and Acarbose. Foods 2024; 13:2130. [PMID: 38998636 PMCID: PMC11240887 DOI: 10.3390/foods13132130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Previous research has demonstrated that complex carbohydrates (maltodextrins) can be perceived in the oral cavity. However, little research has been conducted to thoroughly investigate complex carbohydrate taste perception and contributing factors. This study explored the effects of the degree of polymerization and the concentration of complex carbohydrates on taste perception. Additionally, the impact of lactisole and acarbose on carbohydrate taste perception was investigated. Using a blinded, Latin Square design, participants (n = 40) received samples (control) or samples with acarbose (5 mM) or lactisole (1.4 mM). Per visit, participants received solutions: (1) short chain maltodextrin (average DP 6) (SCM), (2) long chain maltodextrin (average DP 24) (LCM), (3) maltose, and (4) glucose. Samples were evaluated in duplicate, both at low concentration and high concentration. Participants tasted the samples and rated sweetness, starchiness, and viscosity (mouthfeel) perceived on a 10 cm continuous line scale and perceived intensity on a Labelled Magnitude Scale. There was a significant effect of degree of polymerisation on sweetness (p = 0.001) and intensity (p = 0.001). For low concentration samples, no significant differences were found between LCM and acarbose LCM or SCM and acarbose SCM for sweetness, starchiness, or mouthfeel (all p > 0.05). Significant differences were observed between LCM and lactisole LCM for sweetness (1.1 ± 0.1 vs. 2.5 ± 0.3, p = 0.001), starchiness (1.4 ± 0.2 vs. 2.3 ± 0.3, p = 0.005), and mouthfeel (1.4 ± 0.2 vs. 2.3 ± 0.3, p = 0.013). In conclusion, the taste perception of maltodextrins is influenced by the degree of polymerisation. Furthermore, for this study, the sweet taste receptor was not involved in maltodextrin taste perception. While salivary α-amylase did not appear to influence taste perception with low concentration maltodextrins, further investigation is necessary.
Collapse
Affiliation(s)
- Claudia Hartley
- CASS Food Research Centre, Deakin University, Burwood Highway, Burwood, VIC 3125, Australia
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| | - Russell S J Keast
- CASS Food Research Centre, Deakin University, Burwood Highway, Burwood, VIC 3125, Australia
| | - Amelia J Carr
- Centre for Sport Research, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC 3220, Australia
| | - Spencer S H Roberts
- Centre for Sport Research, Institute for Physical Activity and Nutrition, Deakin University, Geelong, VIC 3220, Australia
| | - Wender L P Bredie
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958 Frederiksberg, Denmark
| |
Collapse
|
39
|
Yu S, Xu C, Tang X, Wang L, Hu L, Li L, Zhou X, Li Q. Exendin-4 blockade of T1R2/T1R3 activation improves Pseudomonas aeruginosa-related pneumonia in an animal model of chemically induced diabetes. Inflamm Res 2024; 73:1185-1201. [PMID: 38748233 PMCID: PMC11214611 DOI: 10.1007/s00011-024-01891-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
OBJECTIVE Poorly controlled diabetes frequently exacerbates lung infection, thereby complicating treatment strategies. Recent studies have shown that exendin-4 exhibits not only hypoglycemic but also anti-inflammatory properties. This study aimed to explore the role of exendin-4 in lung infection with diabetes, as well as its association with NOD1/NF-κB and the T1R2/T1R3 sweet taste receptor. METHODS 16HBE human bronchial epithelial cells cultured with 20 mM glucose were stimulated with lipopolysaccharide (LPS) isolated from Pseudomonas aeruginosa (PA). Furthermore, Sprague‒Dawley rats were fed a high-fat diet, followed by intraperitoneal injection of streptozotocin and intratracheal instillation of PA. The levels of TNF-α, IL-1β and IL-6 were evaluated using ELISAs and RT‒qPCR. The expression of T1R2, T1R3, NOD1 and NF-κB p65 was assayed using western blotting and immunofluorescence staining. Pathological changes in the lungs of the rats were observed using hematoxylin and eosin (H&E) staining. RESULTS At the same dose of LPS, the 20 mM glucose group produced more proinflammatory cytokines (TNF-α, IL-1β and IL-6) and had higher levels of T1R2, T1R3, NOD1 and NF-κB p65 than the normal control group (with 5.6 mM glucose). However, preintervention with exendin-4 significantly reduced the levels of the aforementioned proinflammatory cytokines and signaling molecules. Similarly, diabetic rats infected with PA exhibited increased levels of proinflammatory cytokines in their lungs and increased expression of T1R2, T1R3, NOD1 and NF-κB p65, and these effects were reversed by exendin-4. CONCLUSIONS Diabetic hyperglycemia can exacerbate inflammation during lung infection, promote the increase in NOD1/NF-κB, and promote T1R2/T1R3. Exendin-4 can ameliorate PA-related pneumonia with diabetes and overexpression of NOD1/NF-κB. Additionally, exendin-4 suppresses T1R2/T1R3, potentially through its hypoglycemic effect or through a direct mechanism. The correlation between heightened expression of T1R2/T1R3 and an intensified inflammatory response in lung infection with diabetes requires further investigation.
Collapse
Affiliation(s)
- Shanjun Yu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Chaoqun Xu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Emergency and Trauma College, Hainan Medical University, Haikou, Hainan, 579199, China
| | - Xiang Tang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lijun Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Lihua Hu
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Liang Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China
| | - Xiangdong Zhou
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| | - Qi Li
- Department of Respiratory Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan, 570102, China.
- Hainan Province Clinical Medical Center of Respiratory Disease, Haikou, Hainan, 570102, China.
| |
Collapse
|
40
|
Hu X, Ao W, Gao M, Wu L, Pei Y, Liu S, Wu Y, Zhao F, Sun Q, Liu J, Jiang L, Wang X, Li Y, Tan Q, Cheng J, Yang F, Yang C, Sun J, Hua T, Liu ZJ. Bitter taste TAS2R14 activation by intracellular tastants and cholesterol. Nature 2024; 631:459-466. [PMID: 38776963 DOI: 10.1038/s41586-024-07569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Bitter taste receptors, particularly TAS2R14, play central roles in discerning a wide array of bitter substances, ranging from dietary components to pharmaceutical agents1,2. TAS2R14 is also widely expressed in extragustatory tissues, suggesting its extra roles in diverse physiological processes and potential therapeutic applications3. Here we present cryogenic electron microscopy structures of TAS2R14 in complex with aristolochic acid, flufenamic acid and compound 28.1, coupling with different G-protein subtypes. Uniquely, a cholesterol molecule is observed occupying what is typically an orthosteric site in class A G-protein-coupled receptors. The three potent agonists bind, individually, to the intracellular pockets, suggesting a distinct activation mechanism for this receptor. Comprehensive structural analysis, combined with mutagenesis and molecular dynamic simulation studies, elucidate the broad-spectrum ligand recognition and activation of the receptor by means of intricate multiple ligand-binding sites. Our study also uncovers the specific coupling modes of TAS2R14 with gustducin and Gi1 proteins. These findings should be instrumental in advancing knowledge of bitter taste perception and its broader implications in sensory biology and drug discovery.
Collapse
Affiliation(s)
- Xiaolong Hu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weizhen Ao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mingxin Gao
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Fei Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Qianqian Sun
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Longquan Jiang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xin Wang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yan Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital and College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China
| | - Qiwen Tan
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Jie Cheng
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fan Yang
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital and College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- National Center for Stomatology and National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Research Unit of Oral and Maxillofacial Regenerative Medicine, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Jinpeng Sun
- NHC Key Laboratory of Otorhinolaryngology, Qilu hospital and School of Basic Medical Sciences, Shandong University, Jinan, China.
| | - Tian Hua
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Zhi-Jie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
41
|
Belkacemi K, Rondard P, Pin JP, Prézeau L. Heterodimers Revolutionize the Field of Metabotropic Glutamate Receptors. Neuroscience 2024:S0306-4522(24)00270-7. [PMID: 38936459 DOI: 10.1016/j.neuroscience.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Identified 40 years ago, the metabotropic glutamate (mGlu) receptors play key roles in modulating many synapses in the brain, and are still considered as important drug targets to treat various brain diseases. Eight genes encoding mGlu subunits have been identified. They code for complex receptors composed of a large extracellular domain where glutamate binds, connected to a G protein activating membrane domain. They are covalently linked dimers, a quaternary structure needed for their activation by glutamate. For many years they have only been considered as homodimers, then limiting the number of mGlu receptors to 8 subtypes composed of twice the same subunit. Twelve years ago, mGlu subunits were shown to also form heterodimers with specific subunits combinations, increasing the family up to 19 different potential dimeric receptors. Since then, a number of studies brought evidence for the existence of such heterodimers in the brain, through various approaches. Structural and molecular dynamic studies helped understand their peculiar activation process. The present review summarizes the approaches used to study their activation process and their pharmacological properties and to demonstrate their existence in vivo. We will highlight how the existence of mGlu heterodimers revolutionizes the mGlu receptor field, opening new possibilities for therapeutic intervention for brain diseases. As illustrated by the number of possible mGlu heterodimers, this study will highlight the need for further research to fully understand their role in physiological and pathological conditions, and to develop more specific therapeutic tools.
Collapse
Affiliation(s)
- Kawthar Belkacemi
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Philippe Rondard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France
| | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France.
| | - Laurent Prézeau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, Inserm, Montpellier, France.
| |
Collapse
|
42
|
Sood S, Methven L, Cheng Q. Role of taste receptors in salty taste perception of minerals and amino acids and developments in salt reduction strategies: A review. Crit Rev Food Sci Nutr 2024:1-15. [PMID: 38907620 DOI: 10.1080/10408398.2024.2365962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Salt (sodium chloride) plays a key role in maintaining the textural, microbiological, and sensorial aspects of the foods. However high dietary salt intake in the population has led to a series of health problems. Currently manufacturers are under pressure to reduce the sodium levels in foods without compromising the consumer experience. Because of the clean salty taste produced by sodium chloride, it has been challenging for the food industry to develop a suitable salt substitute. Studies have shown that different components within a food matrix can influence the perception of saltiness. This review aims to comprehend the potential synergistic effect of compounds such as minerals and amino acids on the perception of saltiness and covers the mechanism of perception where relevant to taste resulting from sodium ions and other metallic ions (such as K, Mg, Ca), as well as various amino acids and their derivatives. Finally, the review summarizes various salt reduction strategies explored by researchers, government organizations and food industry, including the potential use of plant-based extracts.
Collapse
Affiliation(s)
- Saumya Sood
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Lisa Methven
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | - Qiaofen Cheng
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| |
Collapse
|
43
|
Skapinker E, Aldbai R, Aucoin E, Clarke E, Clark M, Ghokasian D, Kombargi H, Abraham MJ, Li Y, Bunsick DA, Baghaie L, Szewczuk MR. Artificial and Natural Sweeteners Biased T1R2/T1R3 Taste Receptors Transactivate Glycosylated Receptors on Cancer Cells to Induce Epithelial-Mesenchymal Transition of Metastatic Phenotype. Nutrients 2024; 16:1840. [PMID: 38931195 PMCID: PMC11206856 DOI: 10.3390/nu16121840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the role of biased taste T1R2/T1R3 G protein-coupled receptors (GPCR) agonists on glycosylated receptor signaling may provide insights into the opposing effects mediated by artificial and natural sweeteners, particularly in cancer and metastasis. Sweetener-taste GPCRs can be activated by several active states involving either biased agonism, functional selectivity, or ligand-directed signaling. However, there are increasing arrays of sweetener ligands with different degrees of allosteric biased modulation that can vary dramatically in binding- and signaling-specific manners. Here, emerging evidence proposes the involvement of taste GPCRs in a biased GPCR signaling crosstalk involving matrix metalloproteinase-9 (MMP-9) and neuraminidase-1 (Neu-1) activating glycosylated receptors by modifying sialic acids. The findings revealed that most natural and artificial sweeteners significantly activate Neu-1 sialidase in a dose-dependent fashion in RAW-Blue and PANC-1 cells. To confirm this biased GPCR signaling crosstalk, BIM-23127 (neuromedin B receptor inhibitor, MMP-9i (specific MMP-9 inhibitor), and oseltamivir phosphate (specific Neu-1 inhibitor) significantly block sweetener agonist-induced Neu-1 sialidase activity. To assess the effect of artificial and natural sweeteners on the key survival pathways critical for pancreatic cancer progression, we analyzed the expression of epithelial-mesenchymal markers, CD24, ADLH-1, E-cadherin, and N-cadherin in PANC-1 cells, and assess the cellular migration invasiveness in a scratch wound closure assay, and the tunneling nanotubes (TNTs) in staging the migratory intercellular communication. The artificial and natural sweeteners induced metastatic phenotype of PANC-1 pancreatic cancer cells to promote migratory intercellular communication and invasion. The sweeteners also induced the downstream NFκB activation using the secretory alkaline phosphatase (SEAP) assay. These findings elucidate a novel taste T1R2/T1R3 GPCR functional selectivity of a signaling platform in which sweeteners activate downstream signaling, contributing to tumorigenesis and metastasis via a proposed NFκB-induced epigenetic reprogramming modeling.
Collapse
Affiliation(s)
- Elizabeth Skapinker
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Rashelle Aldbai
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| | - Emilyn Aucoin
- Faculty of Science, Biology (Biomedical Science), York University, Toronto, ON M3J 1P3, Canada;
| | - Elizabeth Clarke
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Mira Clark
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (M.C.); (Y.L.)
| | - Daniella Ghokasian
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Haley Kombargi
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Merlin J. Abraham
- Faculty of Health Sciences, Queen’s University, Kingston, ON K7L 3N9, Canada; (E.S.); (R.A.); (E.C.); (D.G.); (H.K.); (M.J.A.)
| | - Yunfan Li
- Faculty of Arts and Science, Queen’s University, Kingston, ON K7L 3N9, Canada; (M.C.); (Y.L.)
| | - David A. Bunsick
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| | - Leili Baghaie
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| | - Myron R. Szewczuk
- Department of Biomedical & Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada; (D.A.B.); (L.B.)
| |
Collapse
|
44
|
Serrano J, Boyd J, Brown IS, Mason C, Smith KR, Karolyi K, Maurya SK, Meshram NN, Serna V, Link GM, Gardell SJ, Kyriazis GA. The TAS1R2 G-protein-coupled receptor is an ambient glucose sensor in skeletal muscle that regulates NAD homeostasis and mitochondrial capacity. Nat Commun 2024; 15:4915. [PMID: 38851747 PMCID: PMC11162498 DOI: 10.1038/s41467-024-49100-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
The bioavailability of nicotinamide adenine dinucleotide (NAD) is vital for skeletal muscle health, yet the mechanisms or signals regulating NAD homeostasis remain unclear. Here, we uncover a pathway connecting peripheral glucose sensing to the modulation of muscle NAD through TAS1R2, the sugar-sensing G protein-coupled receptor (GPCR) initially identified in taste perception. Muscle TAS1R2 receptor stimulation by glucose and other agonists induces ERK1/2-dependent phosphorylation and activation of poly(ADP-ribose) polymerase1 (PARP1), a major NAD consumer in skeletal muscle. Consequently, muscle-specific deletion of TAS1R2 (mKO) in male mice suppresses PARP1 activity, elevating NAD levels and enhancing mitochondrial capacity and running endurance. Plasma glucose levels negatively correlate with muscle NAD, and TAS1R2 receptor deficiency enhances NAD responses across the glycemic range, implicating TAS1R2 as a peripheral energy surveyor. These findings underscore the role of GPCR signaling in NAD regulation and propose TAS1R2 as a potential therapeutic target for maintaining muscle health.
Collapse
Affiliation(s)
- Joan Serrano
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Jordan Boyd
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Ian S Brown
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Carter Mason
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Kathleen R Smith
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Katalin Karolyi
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Santosh K Maurya
- Physiology and Cell Biology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Nishita N Meshram
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Vanida Serna
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Grace M Link
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA
| | - Stephen J Gardell
- Translational Research Institute, Advent Health, Orlando, 32804, USA
| | - George A Kyriazis
- Biological Chemistry & Pharmacology, College of Medicine, The Ohio State University; Columbus, Columbus, 43210, USA.
| |
Collapse
|
45
|
Zhou Z, Li W, Wang H, Xia Y. A Computational Approach to Understanding and Predicting the Edulcorant Profile of Glucosyl Steviol Glycosides. Foods 2024; 13:1798. [PMID: 38928740 PMCID: PMC11202765 DOI: 10.3390/foods13121798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the edulcorant profile of synthetic glucosyl steviol glycosides (GSGs) and rare natural steviol glycosides (SGs) is challenging due to their numerous species and rareness. This study developed a computational model based on the interactions of SG molecules with human sweet and bitter taste receptors (hSTR/hBTR). The models demonstrated a high correlation between the cumulative interaction energies and the perceived sweetness of SGs (R2 = 0.97), elucidating the mechanism of the diverse sweetness of SGs. It also revealed that more (within three) glucose residues at the C-13 position of the SG molecule yield stronger sweetness and weaker bitterness. Furthermore, the computational prediction was consistently validated with the known sweetness of GSG and also aligned well with that of several natural mogrosides. Thus, this model possesses a potential to predict the sweetness of SGs, GSGs, and mogrosides, facilitating the application or targeted synthesis of GSGs with desired sensory profiles.
Collapse
Affiliation(s)
- Zhuoyu Zhou
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Z.Z.); (W.L.); (H.W.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Wei Li
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Z.Z.); (W.L.); (H.W.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Haijun Wang
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Z.Z.); (W.L.); (H.W.)
| | - Yongmei Xia
- Key Laboratory of Synthetic and Biological Colloids (Ministry of Education), School of Chemical and Materials Engineering, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Z.Z.); (W.L.); (H.W.)
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
46
|
Schmidt P, Perniss A, Bodenbenner-Tuerich M, Wiegand S, Briand L, Deckmann K. Tas1R3 Dependent and Independent Recognition of Sugars in the Urethra and the Role of Tuft Cells in this Process. Adv Biol (Weinh) 2024; 8:e2400117. [PMID: 38548667 DOI: 10.1002/adbi.202400117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Indexed: 06/16/2024]
Abstract
Increased sugar concentrations on mucosal surfaces display risk factors for infections. This study aims to clarify sugar monitoring in the urethra. Urethral tuft cells (UTC) are known sentinels monitoring the urethral lumen for potentially harmful substances and initiating protective mechanisms. Next-generation sequencing (NGS), RT-PCR, and immunohistochemistry show expression of the taste receptor Tas1R3 in murine UTC, a crucial component of the classical sweet detection pathway. Isolated UTC respond to various sugars with an increase of intracellular [Ca2+]. The Tas1R3 inhibitor gurmarin and Tas1R3 deletion reduces these responses. Utilizing mice lacking UTC, glibenclamide, a K+-ATP channel antagonist, and phlorizin, a SGLT1 inhibitor, reveal an additional Tas1R3 independent sweet detection pathway. Inhibition of both pathways abrogates the sugar responses. Rat cystometry shows that intraurethral application of sucrose and glucose increases detrusor muscle activity Tas1R3 dependently. Sugar monitoring in the urethra occurs via two distinct pathways. A Tas1R3 dependent pathway, exclusive to UTC, and a Tas1R3 independent sweet detection pathway, which can be found both in UTC and in other urethral epithelial cells.
Collapse
Affiliation(s)
- Patricia Schmidt
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
- Leibniz Institute on Aging-Fritz Lipmann Institute, 07745, Jena, Germany
| | - Alexander Perniss
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
- Division of Allergy and Clinical Immunology, Brigham and Women's Hospital and Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Silke Wiegand
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
| | - Loic Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, Dijon, F-21000, France
| | - Klaus Deckmann
- Institute for Anatomy and Cell Biology, Justus-Liebig-University Giessen, 35385, Giessen, Germany
| |
Collapse
|
47
|
Moribayashi T, Nakao Y, Ohtubo Y. Characteristics of A-type voltage-gated K + currents expressed on sour-sensing type III taste receptor cells in mice. Cell Tissue Res 2024; 396:353-369. [PMID: 38492001 PMCID: PMC11144136 DOI: 10.1007/s00441-024-03887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/06/2024] [Indexed: 03/18/2024]
Abstract
Sour taste is detected by type III taste receptor cells that generate membrane depolarization with action potentials in response to HCl applied to the apical membranes. The shape of action potentials in type III cells exhibits larger afterhyperpolarization due to activation of transient A-type voltage-gated K+ currents. Although action potentials play an important role in neurotransmitter release, the electrophysiological features of A-type K+ currents in taste buds remain unclear. Here, we examined the electrophysiological properties of A-type K+ currents in mouse fungiform taste bud cells using in-situ whole-cell patch clamping. Type III cells were identified with SNAP-25 immunoreactivity and/or electrophysiological features of voltage-gated currents. Type III cells expressed A-type K+ currents which were completely inhibited by 10 mM TEA, whereas IP3R3-immunoreactive type II cells did not. The half-maximal activation and steady-state inactivation of A-type K+ currents were 17.9 ± 4.5 (n = 17) and - 11.0 ± 5.7 (n = 17) mV, respectively, which are similar to the features of Kv3.3 and Kv3.4 channels (transient and high voltage-activated K+ channels). The recovery from inactivation was well fitted with a double exponential equation; the fast and slow time constants were 6.4 ± 0.6 ms and 0.76 ± 0.26 s (n = 6), respectively. RT-PCR experiments suggest that Kv3.3 and Kv3.4 mRNAs were detected at the taste bud level, but not at single-cell levels. As the phosphorylation of Kv3.3 and Kv3.4 channels generally leads to the modulation of cell excitability, neuromodulator-mediated A-type K+ channel phosphorylation likely affects the signal transduction of taste.
Collapse
Affiliation(s)
- Takeru Moribayashi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan
| | - Yoshiki Nakao
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan
| | - Yoshitaka Ohtubo
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Hibikino 2-4, Kitakyushu, 808-0196, Japan.
| |
Collapse
|
48
|
Zhang SS, Wang PC, Ning C, Yang K, Li GC, Cao LL, Huang LQ, Wang CZ. The larva and adult of Helicoverpa armigera use differential gustatory receptors to sense sucrose. eLife 2024; 12:RP91711. [PMID: 38814697 PMCID: PMC11139476 DOI: 10.7554/elife.91711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Almost all herbivorous insects feed on plants and use sucrose as a feeding stimulant, but the molecular basis of their sucrose reception remains unclear. Helicoverpa armigera as a notorious crop pest worldwide mainly feeds on reproductive organs of many plant species in the larval stage, and its adult draws nectar. In this study, we determined that the sucrose sensory neurons located in the contact chemosensilla on larval maxillary galea were 100-1000 times more sensitive to sucrose than those on adult antennae, tarsi, and proboscis. Using the Xenopus expression system, we discovered that Gr10 highly expressed in the larval sensilla was specifically tuned to sucrose, while Gr6 highly expressed in the adult sensilla responded to fucose, sucrose and fructose. Moreover, using CRISPR/Cas9, we revealed that Gr10 was mainly used by larvae to detect lower sucrose, while Gr6 was primarily used by adults to detect higher sucrose and other saccharides, which results in differences in selectivity and sensitivity between larval and adult sugar sensory neurons. Our results demonstrate the sugar receptors in this moth are evolved to adapt toward the larval and adult foods with different types and amounts of sugar, and fill in a gap in sweet taste of animals.
Collapse
Affiliation(s)
- Shuai-Shuai Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Pei-Chao Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Ke Yang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Guo-Cheng Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Lin-Lin Cao
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Chinese Academy of Sciences Center for Excellence in Biotic Interactions, University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
49
|
Gomes JV, Singh-Bhagania S, Cenci M, Chacon Cordon C, Singh M, Butterwick JA. The molecular basis of sugar detection by an insect taste receptor. Nature 2024; 629:228-234. [PMID: 38447670 PMCID: PMC11062906 DOI: 10.1038/s41586-024-07255-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/08/2024]
Abstract
Animals crave sugars because of their energy potential and the pleasurable sensation of tasting sweetness. Yet all sugars are not metabolically equivalent, requiring mechanisms to detect and differentiate between chemically similar sweet substances. Insects use a family of ionotropic gustatory receptors to discriminate sugars1, each of which is selectively activated by specific sweet molecules2-6. Here, to gain insight into the molecular basis of sugar selectivity, we determined structures of Gr9, a gustatory receptor from the silkworm Bombyx mori (BmGr9), in the absence and presence of its sole activating ligand, D-fructose. These structures, along with structure-guided mutagenesis and functional assays, illustrate how D-fructose is enveloped by a ligand-binding pocket that precisely matches the overall shape and pattern of chemical groups in D-fructose. However, our computational docking and experimental binding assays revealed that other sugars also bind BmGr9, yet they are unable to activate the receptor. We determined the structure of BmGr9 in complex with one such non-activating sugar, L-sorbose. Although both sugars bind a similar position, only D-fructose is capable of engaging a bridge of two conserved aromatic residues that connects the pocket to the pore helix, inducing a conformational change that allows the ion-conducting pore to open. Thus, chemical specificity does not depend solely on the selectivity of the ligand-binding pocket, but it is an emergent property arising from a combination of receptor-ligand interactions and allosteric coupling. Our results support a model whereby coarse receptor tuning is derived from the size and chemical characteristics of the pocket, whereas fine-tuning of receptor activation is achieved through the selective engagement of an allosteric pathway that regulates ion conduction.
Collapse
Affiliation(s)
- João Victor Gomes
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Matthew Cenci
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Chacon Cordon
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Manjodh Singh
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA
| | - Joel A Butterwick
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
50
|
Kochem MC, Hanselman EC, Breslin PAS. Activation and inhibition of the sweet taste receptor TAS1R2-TAS1R3 differentially affect glucose tolerance in humans. PLoS One 2024; 19:e0298239. [PMID: 38691547 PMCID: PMC11062524 DOI: 10.1371/journal.pone.0298239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/19/2024] [Indexed: 05/03/2024] Open
Abstract
The sweet taste receptor, TAS1R2-TAS1R3, is expressed in taste bud cells, where it conveys sweetness, and also in intestinal enteroendocrine cells, where it may facilitate glucose absorption and assimilation. In the present study, our objective was to determine whether TAS1R2-TAS1R3 influences glucose metabolism bidirectionally via hyperactivation with 5 mM sucralose (n = 12) and inhibition with 2 mM sodium lactisole (n = 10) in mixture with 75 g glucose loads during oral glucose tolerance tests (OGTTs) in healthy humans. Plasma glucose, insulin, and glucagon were measured before, during, and after OGTTs up to 120 minutes post-prandially. We also assessed individual participants' sweet taste responses to sucralose and their sensitivities to lactisole sweetness inhibition. The addition of sucralose to glucose elevated plasma insulin responses to the OGTT (F(1, 11) = 4.55, p = 0.056). Sucralose sweetness ratings were correlated with early increases in plasma glucose (R2 = 0.41, p<0.05), as well as increases in plasma insulin (R2 = 0.38, p<0.05) when sucralose was added to the OGTT (15 minute AUC). Sensitivity to lactisole sweetness inhibition was correlated with decreased plasma glucose (R2 = 0.84, p<0.01) when lactisole was added to the OGTT over the whole test (120 minute AUC). In summary, stimulation and inhibition of the TAS1R2-TAS1R3 receptor demonstrates that TAS1R2-TAS1R3 helps regulate glucose metabolism in humans and may have translational implications for metabolic disease risk.
Collapse
Affiliation(s)
- Matthew C. Kochem
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Emily C. Hanselman
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States of America
| | - Paul A. S. Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, United States of America
- Monell Chemical Senses Center, Philadelphia, PA, United States of America
| |
Collapse
|