1
|
Mulligan AA, Lentjes MAH, Skinner J, Welch AA. The Dietary Inflammatory Index and Its Associations with Biomarkers of Nutrients with Antioxidant Potential, a Biomarker of Inflammation and Multiple Long-Term Conditions. Antioxidants (Basel) 2024; 13:962. [PMID: 39199208 PMCID: PMC11351935 DOI: 10.3390/antiox13080962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
We aimed to validate the Dietary Inflammatory Index (DII®) and assess the cross-sectional associations between the DII® and multiple long-term conditions (MLTCs) and biomarker concentrations and MLTCs using data from the European Prospective Investigation into Cancer (EPIC-Norfolk) study (11,113 men and 13,408 women). The development of MLTCs is associated with low-grade chronic inflammation, and ten self-reported conditions were selected for our MLTC score. Data from a validated FFQ were used to calculate energy-adjusted DII® scores. High-sensitivity C-reactive protein (hs-CRP) and circulating vitamins A, C, E, β-carotene and magnesium were available. Micronutrient biomarker concentrations were significantly lower as the diet became more pro-inflammatory (p-trend < 0.001), and hs-CRP concentrations were significantly higher in men (p-trend = 0.006). A lower DII® (anti-inflammatory) score was associated with 12-40% higher odds of MLTCs. Lower concentrations of vitamin C and higher concentrations of hs-CRP were associated with higher odds of MLTCs. The majority of the associations in our study between MLTCs, nutritional biomarkers, hs-CRP and the DII® were as expected, indicating that the DII® score has criterion validity. Despite this, a more anti-inflammatory diet was associated with higher odds of MLTCs, which was unexpected. Future studies are required to better understand the associations between MLTCs and the DII®.
Collapse
Affiliation(s)
- Angela A. Mulligan
- Centre for Population Health Research, Faculty of Health, University of East Anglia, Norwich NR4 7TJ, UK; (M.A.H.L.); (J.S.)
| | - Marleen A. H. Lentjes
- Centre for Population Health Research, Faculty of Health, University of East Anglia, Norwich NR4 7TJ, UK; (M.A.H.L.); (J.S.)
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
| | - Jane Skinner
- Centre for Population Health Research, Faculty of Health, University of East Anglia, Norwich NR4 7TJ, UK; (M.A.H.L.); (J.S.)
| | - Ailsa A. Welch
- Centre for Population Health Research, Faculty of Health, University of East Anglia, Norwich NR4 7TJ, UK; (M.A.H.L.); (J.S.)
| |
Collapse
|
2
|
Silvestrini A, Mancini A. The Double-Edged Sword of Total Antioxidant Capacity: Clinical Significance and Personal Experience. Antioxidants (Basel) 2024; 13:933. [PMID: 39199179 PMCID: PMC11351343 DOI: 10.3390/antiox13080933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/30/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress (OS) could be a condition underlying several human diseases, despite the physiological role of reactive oxygen species (oxidative eustress). Therefore, antioxidant compounds could represent a modulatory mechanism for maintaining a proper redox balance and redox signaling. When antioxidants are insufficient or overwhelmed, OS ensues, causing multiple damages at molecular, tissue, and cellular levels. This study focuses on the role of total antioxidant capacity (TAC) as a biomarker to be interpreted according to several clinical scenarios. After a brief description of various assay methods to elucidate terminology and physiopathological roles, we focus on the hormonal influence on TAC in blood plasma and other biological fluids, as different endocrine systems can modulate the antioxidant response. Furthermore, OS characterizes several endocrinopathies through different mechanisms: an inadequate antioxidant response to an increase in reducing equivalents (reductive distress) or a marked consumption of antioxidants (oxidative distress), which leads to low TAC values. An increased TAC could instead represent an adaptive mechanism, suggesting a situation of OS. Hence, the clinical context is fundamental for a correct interpretation of TAC. This review aims to provide the reader with a general overview of oxidative stress in several clinical examples of endocrine relevance, such as metabolic syndrome, non-thyroid illness syndrome, hypopituitarism, and infertility. Finally, the impact of dietary and surgical interventions on TAC in the model of metabolic syndrome is highlighted, along with personal experience.
Collapse
Affiliation(s)
- Andrea Silvestrini
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Antonio Mancini
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy
| |
Collapse
|
3
|
Wang X, He B. Endothelial dysfunction: molecular mechanisms and clinical implications. MedComm (Beijing) 2024; 5:e651. [PMID: 39040847 PMCID: PMC11261813 DOI: 10.1002/mco2.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Cardiovascular disease (CVD) and its complications are a leading cause of death worldwide. Endothelial dysfunction plays a crucial role in the initiation and progression of CVD, serving as a pivotal factor in the pathogenesis of cardiovascular, metabolic, and other related diseases. The regulation of endothelial dysfunction is influenced by various risk factors and intricate signaling pathways, which vary depending on the specific disease context. Despite numerous research efforts aimed at elucidating the mechanisms underlying endothelial dysfunction, the precise molecular pathways involved remain incompletely understood. This review elucidates recent research findings on the pathophysiological mechanisms involved in endothelial dysfunction, including nitric oxide availability, oxidative stress, and inflammation-mediated pathways. We also discuss the impact of endothelial dysfunction on various pathological conditions, including atherosclerosis, heart failure, diabetes, hypertension, chronic kidney disease, and neurodegenerative diseases. Furthermore, we summarize the traditional and novel potential biomarkers of endothelial dysfunction as well as pharmacological and nonpharmacological therapeutic strategies for endothelial protection and treatment for CVD and related complications. Consequently, this review is to improve understanding of emerging biomarkers and therapeutic approaches aimed at reducing the risk of developing CVD and associated complications, as well as mitigating endothelial dysfunction.
Collapse
Affiliation(s)
- Xia Wang
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ben He
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
4
|
Ottaviani JI, Sagi-Kiss V, Schroeter H, Kuhnle GGC. Reliance on self-reports and estimated food composition data in nutrition research introduces significant bias that can only be addressed with biomarkers. eLife 2024; 13:RP92941. [PMID: 38896457 PMCID: PMC11186626 DOI: 10.7554/elife.92941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (-)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.
Collapse
|
5
|
Mahdavi A, Leclercq M, Droit A, Rudkowska I, Lebel M. Predictive model for vitamin C levels in hyperinsulinemic individuals based on age, sex, waist circumference, low-density lipoprotein, and immune-associated serum proteins. J Nutr Biochem 2024; 125:109538. [PMID: 38030046 DOI: 10.1016/j.jnutbio.2023.109538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Vitamin C (ascorbic acid) is an important water-soluble antioxidant associated with decreased oxidative stress in type 2 diabetes (T2D) patients. A previous targeted plasma proteomic study has indicated that ascorbic acid is associated with markers of the immune system in healthy subjects. However, the association between the levels of ascorbic acid and blood biomarkers in subjects at risk of developing T2D is still unknown. Serum ascorbic acid was measured by ultra-performance liquid chromatography and serum proteins were quantified by untargeted liquid-chromatography mass spectrometry in 25 hyperinsulinemia subjects that were randomly assigned a high dairy intake diet or an adequate dairy intake diet for 6 weeks, then crossed-over after a 6-week washout period. Spearman correlation followed by gene ontology analyses were performed to identify biological pathways associated with ascorbic acid. Finally, machine learning analysis was performed to obtain a specific serum protein signature that could predict ascorbic acid levels. After adjustments for waist circumference, LDL, HDL, fasting insulin, fasting blood glucose, age, gender, and dairy intake; serum ascorbic acid correlated positively with different aspects of the immune system. Machine learning analysis indicated that a signature composed of 21 features that included 17 proteins (mainly from the immune system), age, sex, waist circumference, and LDL could predict serum ascorbic acid levels in hyperinsulinemia subjects. In conclusion, the result reveals a correlation as well as modulation between serum ascorbic acid levels and proteins that play vital roles in regulating different aspects of the immune response in individuals at risk of T2D. The development of a predictive signature for ascorbic acid will further help the assessment of ascorbic acid status in clinical settings.
Collapse
Affiliation(s)
- Atena Mahdavi
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec, Canada
| | - Mickaël Leclercq
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec, Canada
| | - Arnaud Droit
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec, Canada; Proteomics Platform, Centre de recherche du CHU de Québec, Faculty of Medicine, Université Laval, Québec, Canada
| | - Iwona Rudkowska
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec, Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.
| | - Michel Lebel
- Endocrinology and Nephrology Unit, CHU de Québec-Laval University Research Center, Québec, Canada; Department of Molecular Biology, Medical Biochemistry, and Pathology, Université Laval, Québec, Canada.
| |
Collapse
|
6
|
Ou Y, Qiu Z, Geng T, Lu Q, Li R, Li L, Zhu K, Chen X, Lin X, Liu S, Pan A, Liu G. Associations of serum vitamin C concentrations with risk of all-cause and cause-specific mortality among individuals with and without type 2 diabetes. Eur J Nutr 2023; 62:2555-2565. [PMID: 37195485 DOI: 10.1007/s00394-023-03173-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
PURPOSE Compared with people without diabetes, people with type 2 diabetes (T2D) are at higher risk of both subnormal vitamin C status and increased oxidative stress. We aimed to investigate the associations of serum vitamin C concentrations with all-cause and cause-specific mortality among adults with and without T2D. METHODS The current analysis included 20,045 adults (2691 people with T2D and 17,354 without T2D) from the Third National Health and Nutrition Examination Survey (NHANES III) and NHANES 2003-2006. Cox proportional hazards regression models were applied to estimate hazard ratios (HRs) and 95% confidence intervals (CIs). Restricted cubic spline analyses were used to examine the dose-response relationship. RESULTS After a median follow-up of 17.3 years, 5211 deaths were documented. Individuals with T2D had a lower level of serum vitamin C concentrations compared with those without T2D (the median value: 40.1 vs. 44.9 μmol/L). Furthermore, the dose-response relationship between serum vitamin C and mortality showed different patterns between participants with and without T2D. In individuals without T2D, there was a nonlinear association of serum vitamin C concentrations with all-cause, cancer, and CVD mortality, with the lowest risk around a serum vitamin C concentration of 48.0 μmol/L (all Poverall < 0.05, Pnonlinearity < 0.05). In contrast, among those with T2D in the similar concentration range, higher serum vitamin C levels (ranged from 0.46 to 116.26 μmol/L) were linearly associated with lower all-cause and cancer mortality (both Poverall < 0.05, Pnonlinearity > 0.05). Significant additive interaction was observed between diabetes status and serum vitamin C levels with regard to all-cause and cancer mortality (P < 0.001). In addition, C-reactive protein, gamma-glutamyl transpeptidase, and HbA1c explained 14.08, 8.96, and 5.60% of the association between serum vitamin C and all-cause mortality among individuals with T2D, respectively. CONCLUSIONS Higher serum vitamin C concentrations were significantly associated with lower risk of mortality in participants with T2D in a linear dose-response manner, while a nonlinear association was observed in participants without T2D, with an apparent threshold around 48.0 μmol/L. These findings suggest that the optimal vitamin C requirement may differ in individuals with and without T2D.
Collapse
Affiliation(s)
- Yunjing Ou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixin Qiu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingting Geng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Lu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kai Zhu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xue Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Gang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety (Huazhong University of Science and Technology), Ministry of Education Key Lab of Environment and Health, and State Key Laboratory of Environment Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
7
|
McGrath GM. Using social norm nudges in supermarket shopping trolleys to increase fruit and vegetable purchases. NUTR BULL 2023; 48:115-123. [PMID: 36842136 DOI: 10.1111/nbu.12604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 02/27/2023]
Abstract
Fruit and vegetable (F&V) consumption is associated with a reduced risk of developing obesity and chronic diseases: however, only one in twenty Australian adults consume F&Vs at the recommended two servings of fruit and five servings of vegetables per day. What and how much people eat is influenced by their social and physical environments. Supermarkets are a key setting influencing food purchases, and as such, they can shape consumption patterns of F&Vs. Implementing effective strategies to increase F&V intake is crucial. The objective of this research was to test if shopper purchasing behaviour can be modified to purchase more F&Vs using social norm nudge messages (prompts) placed in shopping trolleys. Placards giving the message that the majority of shoppers purchased F&Vs at each shop were placed in shopping trolleys. Applying an intervention research design, 30 out of ~100 trolleys were fitted with the placards and shopper purchases were measured by collecting receipts to measure the quantity (kg), total and F&V spending (Australian dollars) for intervention versus control trolleys. We also conducted a short intercept survey that was administered independently from the research study day. Shoppers who selected trolleys with the social norm nudge placards (n = 109) purchased 1.25 kg more F&Vs (Intervention: mean = 5.45 kg, SD = 4.23 kg, 95% CI 4.65 kg, 6.26 kg vs. Control: mean 4.19 kg, SD = 3.75 kg, 95% CI 3.48 kg, 4.90 kg, p = 0.020, Cohen's d = 0.32) and spent an extra $9.10 more on F&Vs compared to shoppers in the control group (n = 109; Intervention: mean = $36.20, SD = $26.30, 95% CI = $31.24, $41.26 vs. Control: mean $27.10, SD = $24.00, 95% CI = $22.50, $31.67, p = 0.008, Cohen's d = 0.36). The social norm nudge placard shows promise in modifying shoppers' purchases to buy more F&Vs. Larger studies are required to elucidate and confirm these findings over the longer term.
Collapse
|
8
|
Münzel T, Daiber A. Vascular redox signaling, eNOS uncoupling and endothelial dysfunction in the setting of transportation noise exposure or chronic treatment with organic nitrates. Antioxid Redox Signal 2023; 38:1001-1021. [PMID: 36719770 PMCID: PMC10171967 DOI: 10.1089/ars.2023.0006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE Cardiovascular disease and drug-induced health side effects are frequently associated with - or even caused by - an imbalance between the concentrations of reactive oxygen and nitrogen species (RONS) and antioxidants respectively determining the metabolism of these harmful oxidants. RECENT ADVANCES According to the "kindling radical" hypothesis, initial formation of RONS may further trigger the additional activation of RONS formation under certain pathological conditions. The present review will specifically focus on a dysfunctional, uncoupled endothelial nitric oxide synthase (eNOS) caused by RONS in the setting of transportation noise exposure or chronic treatment with organic nitrates, especially nitroglycerin. We will further describe the various "redox switches" that are proposed to be involved in the uncoupling process of eNOS. CRITICAL ISSUES In particular, the oxidative depletion of tetrahydrobiopterin (BH4), and S-glutathionylation of the eNOS reductase domain will be highlighted as major pathways for eNOS uncoupling upon noise exposure or nitroglycerin treatment. In addition, oxidative disruption of the eNOS dimer, inhibitory phosphorylation of eNOS at threonine or tyrosine residues, redox-triggered accumulation of asymmetric dimethylarginine (ADMA) and L-arginine deficiency will be discussed as alternative mechanisms of eNOS uncoupling. FUTURE DIRECTIONS The clinical consequences of eNOS dysfunction due to uncoupling on cardiovascular disease will be summarized also providing a template for future clinical studies on endothelial dysfunction caused by pharmacological or environmental risk factors.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center of the Johannes Gutenberg University Mainz, 39068, Cardiology I, Mainz, Rheinland-Pfalz, Germany;
| | - Andreas Daiber
- University Medical Center of the Johannes Gutenberg University Mainz, 39068, Cardiology I, Mainz, Rheinland-Pfalz, Germany;
| |
Collapse
|
9
|
Li Z, Bi R, Sun S, Chen S, Chen J, Hu B, Jin H. The Role of Oxidative Stress in Acute Ischemic Stroke-Related Thrombosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8418820. [PMID: 36439687 PMCID: PMC9683973 DOI: 10.1155/2022/8418820] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/13/2022] [Accepted: 11/02/2022] [Indexed: 09/22/2023]
Abstract
Acute ischemic stroke is a serious life-threatening disease that affects almost 600 million people each year throughout the world with a mortality of more than 10%, while two-thirds of survivors remain disabled. However, the available treatments for ischemic stroke are still limited to thrombolysis and/or mechanical thrombectomy, and there is an urgent need for developing new therapeutic target. Recently, intravascular oxidative stress, derived from endothelial cells, platelets, and leukocytes, has been found to be tightly associated with stroke-related thrombosis. It not only promotes primary thrombus formation by damaging endothelial cells and platelets but also affects thrombus maturation and stability by modifying fibrin components. Thus, oxidative stress is expected to be a novel target for the prevention and treatment of ischemic stroke. In this review, we first discuss the mechanisms by which oxidative stress promotes stroke-related thrombosis, then summarize the oxidative stress biomarkers of stroke-related thrombosis, and finally put forward an antithrombotic therapy targeting oxidative stress in ischemic stroke.
Collapse
Affiliation(s)
- Zhifang Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Rentang Bi
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shuai Sun
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shengcai Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiefang Chen
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huijuan Jin
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
10
|
Tian T, Shao J, Shen Z, Sun X, Liu Y, Cao L, Geng Y, Song B. Association of serum vitamin C with all-cause and cause-specific death: Data from National Health and Nutrition Examination Survey (NHANES 2003-2006). Nutrition 2022; 101:111696. [DOI: 10.1016/j.nut.2022.111696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 01/04/2022] [Accepted: 04/10/2022] [Indexed: 11/30/2022]
|
11
|
Ohukainen P, Virtanen JK, Ala-Korpela M. Vexed causal inferences in nutritional epidemiology-call for genetic help. Int J Epidemiol 2022; 51:6-15. [PMID: 34387668 PMCID: PMC8856007 DOI: 10.1093/ije/dyab152] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Affiliation(s)
- Pauli Ohukainen
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
| | - Jyrki K Virtanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Mika Ala-Korpela
- Computational Medicine, Faculty of Medicine, University of Oulu and Biocenter Oulu, Oulu, Finland
- Center for Life Course Health Research, University of Oulu, Oulu, Finland
- NMR Metabolomics Laboratory, School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
12
|
Yin X, Chen K, Cheng H, Chen X, Feng S, Song Y, Liang L. Chemical Stability of Ascorbic Acid Integrated into Commercial Products: A Review on Bioactivity and Delivery Technology. Antioxidants (Basel) 2022; 11:153. [PMID: 35052657 PMCID: PMC8773188 DOI: 10.3390/antiox11010153] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
The L-enantiomer of ascorbic acid is commonly known as vitamin C. It is an indispensable nutrient and plays a key role in retaining the physiological process of humans and animals. L-gulonolactone oxidase, the key enzyme for the de novo synthesis of ascorbic acid, is lacking in some mammals including humans. The functionality of ascorbic acid has prompted the development of foods fortified with this vitamin. As a natural antioxidant, it is expected to protect the sensory and nutritional characteristics of the food. It is thus important to know the degradation of ascorbic acid in the food matrix and its interaction with coexisting components. The biggest challenge in the utilization of ascorbic acid is maintaining its stability and improving its delivery to the active site. The review also includes the current strategies for stabilizing ascorbic acid and the commercial applications of ascorbic acid.
Collapse
Affiliation(s)
- Xin Yin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Kaiwen Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Shuai Feng
- Luwei Pharmaceutical Group Co., Ltd., Shuangfeng Industrial Park, Zibo 255195, China;
| | - Yuanda Song
- Colin Raledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China;
| | - Li Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (X.Y.); (K.C.); (H.C.); (X.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Jiang Z, Li H, Schroer SA, Voisin V, Ju Y, Pacal M, Erdmann N, Shi W, Chung PED, Deng T, Chen NJ, Ciavarra G, Datti A, Mak TW, Harrington L, Dick FA, Bader GD, Bremner R, Woo M, Zacksenhaus E. Hypophosphorylated pRb knock-in mice exhibit hallmarks of aging and vitamin C-preventable diabetes. EMBO J 2022; 41:e106825. [PMID: 35023164 PMCID: PMC8844977 DOI: 10.15252/embj.2020106825] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/29/2021] [Accepted: 12/08/2021] [Indexed: 12/25/2022] Open
Abstract
Despite extensive analysis of pRB phosphorylation in vitro, how this modification influences development and homeostasis in vivo is unclear. Here, we show that homozygous Rb∆K4 and Rb∆K7 knock‐in mice, in which either four or all seven phosphorylation sites in the C‐terminal region of pRb, respectively, have been abolished by Ser/Thr‐to‐Ala substitutions, undergo normal embryogenesis and early development, notwithstanding suppressed phosphorylation of additional upstream sites. Whereas Rb∆K4 mice exhibit telomere attrition but no other abnormalities, Rb∆K7 mice are smaller and display additional hallmarks of premature aging including infertility, kyphosis, and diabetes, indicating an accumulative effect of blocking pRb phosphorylation. Diabetes in Rb∆K7 mice is insulin‐sensitive and associated with failure of quiescent pancreatic β‐cells to re‐enter the cell cycle in response to mitogens, resulting in induction of DNA damage response (DDR), senescence‐associated secretory phenotype (SASP), and reduced pancreatic islet mass and circulating insulin level. Pre‐treatment with the epigenetic regulator vitamin C reduces DDR, increases cell cycle re‐entry, improves islet morphology, and attenuates diabetes. These results have direct implications for cell cycle regulation, CDK‐inhibitor therapeutics, diabetes, and longevity.
Collapse
Affiliation(s)
- Zhe Jiang
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Huiqin Li
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Stephanie A Schroer
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Veronique Voisin
- The Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - YoungJun Ju
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Marek Pacal
- Lunenfeld Tanenbaum Research Institute - Sinai Health System, Mount Sinai Hospital, Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Natalie Erdmann
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, ON, Canada
| | - Wei Shi
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Philip E D Chung
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tao Deng
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada
| | - Nien-Jung Chen
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, ON, Canada
| | - Giovanni Ciavarra
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Alessandro Datti
- Department of Agriculture, Food, and Environmental Sciences, University of Perugia, Perugia, Italy.,Network Biology Collaborative Centre, SMART Laboratory for High-Throughput Screening Programs, Mount Sinai Hospital, Toronto, ON, Canada
| | - Tak W Mak
- Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, Toronto, ON, Canada
| | - Lea Harrington
- Department of Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC, Canada
| | - Frederick A Dick
- Department of Biochemistry, Western University, London, ON, Canada
| | - Gary D Bader
- The Donnelly Centre, Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Rod Bremner
- Lunenfeld Tanenbaum Research Institute - Sinai Health System, Mount Sinai Hospital, Department of Ophthalmology and Vision Science, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Minna Woo
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Eldad Zacksenhaus
- Max Bell Research Centre, Toronto General Research Institute, University Health Network, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
Pillai SC, Borah A, Jacob EM, Kumar DS. Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Deliv 2021; 28:550-568. [PMID: 33703990 PMCID: PMC7954496 DOI: 10.1080/10717544.2021.1892241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is Caesar's sword, which poses a huge risk to the present generation. Understanding the atherosclerotic disease cycle would allow ensuring improved diagnosis, better care, and treatment. Unfortunately, a highly effective and safe way of treating atherosclerosis in the medical community remains a continuous challenge. Conventional treatments have shown considerable success, but have some adverse effects on the human body. Natural derived medications or nutraceuticals have gained immense popularity in the treatment of atherosclerosis due to their decreased side effects and toxicity-related issues. In hindsight, the contribution of nutraceuticals in imparting enhanced clinical efficacy against atherosclerosis warrants more experimental evidence. On the other hand, nanotechnology and drug delivery systems (DDS) have revolutionized the way therapeutics are performed and researchers have been constantly exploring the positive effects that DDS brings to the field of therapeutic techniques. It could be as exciting as ever to apply nano-mediated delivery of nutraceuticals as an additional strategy to target the atherosclerotic sites boasting high therapeutic efficiency of the nutraceuticals and fewer side effects.
Collapse
Affiliation(s)
- Sindhu C. Pillai
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Ankita Borah
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Eden Mariam Jacob
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| |
Collapse
|
15
|
Chen L, Sun X, Wang Z, Lu Y, Chen M, He Y, Xu H, Zheng L. The impact of plasma vitamin C levels on the risk of cardiovascular diseases and Alzheimer's disease: A Mendelian randomization study. Clin Nutr 2021; 40:5327-5334. [PMID: 34537655 DOI: 10.1016/j.clnu.2021.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/23/2021] [Accepted: 08/25/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND & AIMS Previous observational studies have reported associations between plasma vitamin C levels, and cardiovascular diseases (CVDs) and Alzheimer's disease (AD); however, no conclusive results have been obtained. We conducted a Mendelian randomization (MR) study to investigate the causality of vitamin C on the risk of nine CVDs [including coronary artery disease (CAD), myocardial infarction (MI), atrial fibrillation (AF), heart failure (HF), stroke, ischemic stroke (IS), and IS subtypes] and Alzheimer's disease. METHODS Eleven single-nucleotide polymorphisms (SNPs) identified in a recent genome-wide meta-analysis (N = 52,018) were used as the instrumental variables for plasma vitamin C levels. The summary-level data for CVDs and AD were extracted from consortia and genome-wide association studies (GWAS). We performed MR analyses using the fixed-effects inverse-variance-weighted (IVW) method, weighted median, and MR-Egger approaches. RESULTS This MR study found suggestive evidence that genetic liability to higher vitamin C levels was associated with a lower risk of cardioembolic stroke [odds ratio (OR, presented per 1 standard deviation increase in plasma vitamin C levels) = 0.773; 95% confidence interval (CI), 0.623-0.959; P = 0.020] and AD (OR = 0.968; 95% CI, 0.946-0.991; P = 0.007) using the fixed-effects IVW method. Sensitivity analysis yielded directionally similar results. A null-association was observed between vitamin C and the other CVDs. CONCLUSION Our MR study provided suggestive evidence that higher vitamin C levels were casually associated with a decreased risk of cardioembolic stroke and AD. No evidence was observed to suggest that vitamin C affected the risk of CAD, MI, AF, HF, stroke, IS, large artery stroke, or small vessel stroke. However, well-designed studies are warranted to confirm these results and determine the underlying mechanisms of the causal links.
Collapse
Affiliation(s)
- Lu Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Xingang Sun
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Zhen Wang
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Yunlong Lu
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Miao Chen
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Yuxian He
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Hongfei Xu
- Department of Cardiothoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| | - Liangrong Zheng
- Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
| |
Collapse
|
16
|
Gana W, De Luca A, Debacq C, Poitau F, Poupin P, Aidoud A, Fougère B. Analysis of the Impact of Selected Vitamins Deficiencies on the Risk of Disability in Older People. Nutrients 2021; 13:3163. [PMID: 34579039 PMCID: PMC8469089 DOI: 10.3390/nu13093163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 02/07/2023] Open
Abstract
Vitamin deficiencies have a serious impact on healthy aging in older people. Many age-related disorders have a direct or indirect impact on nutrition, both in terms of nutrient assimilation and food access, which may result in vitamin deficiencies and may lead to or worsen disabilities. Frailty is characterized by reduced functional abilities, with a key role of malnutrition in its pathogenesis. Aging is associated with various changes in body composition that lead to sarcopenia. Frailty, aging, and sarcopenia all favor malnutrition, and poor nutritional status is a major cause of geriatric morbidity and mortality. In the present narrative review, we focused on vitamins with a significant risk of deficiency in high-income countries: D, C, and B (B6/B9/B12). We also focused on vitamin E as the main lipophilic antioxidant, synergistic to vitamin C. We first discuss the role and needs of these vitamins, the prevalence of deficiencies, and their causes and consequences. We then look at how these vitamins are involved in the biological pathways associated with sarcopenia and frailty. Lastly, we discuss the critical early diagnosis and management of these deficiencies and summarize potential ways of screening malnutrition. A focused nutritional approach might improve the diagnosis of nutritional deficiencies and the initiation of appropriate clinical interventions for reducing the risk of frailty. Further comprehensive research programs on nutritional interventions are needed, with a view to lowering deficiencies in older people and thus decreasing the risk of frailty and sarcopenia.
Collapse
Affiliation(s)
- Wassim Gana
- Division of Geriatric Medicine, Regional University Hospital Centre, 37000 Tours, France; (F.P.); (A.A.); (B.F.)
- Geriatrics Mobile Units, Regional University Hospital Centre, 37000 Tours, France; (C.D.); (P.P.)
| | - Arnaud De Luca
- Nutrition Mobile Unit, Regional University Hospital Centre, 37000 Tours, France;
- Inserm UMR 1069, Nutrition, Croissance et Cancer, 37032 Tours, France
| | - Camille Debacq
- Geriatrics Mobile Units, Regional University Hospital Centre, 37000 Tours, France; (C.D.); (P.P.)
| | - Fanny Poitau
- Division of Geriatric Medicine, Regional University Hospital Centre, 37000 Tours, France; (F.P.); (A.A.); (B.F.)
| | - Pierre Poupin
- Geriatrics Mobile Units, Regional University Hospital Centre, 37000 Tours, France; (C.D.); (P.P.)
| | - Amal Aidoud
- Division of Geriatric Medicine, Regional University Hospital Centre, 37000 Tours, France; (F.P.); (A.A.); (B.F.)
- Geriatrics Mobile Units, Regional University Hospital Centre, 37000 Tours, France; (C.D.); (P.P.)
| | - Bertrand Fougère
- Division of Geriatric Medicine, Regional University Hospital Centre, 37000 Tours, France; (F.P.); (A.A.); (B.F.)
- Education, Ethics, Health (EA 7505), Tours University, 37000 Tours, France
| |
Collapse
|
17
|
Liu X, Tian M, Li C, Tian F. Polyvinylpyrrolidone-stabilized Pt nanoclusters as robust oxidase mimics for selective detection of ascorbic acid. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
18
|
Daiber A, Steven S, Euler G, Schulz R. Vascular and Cardiac Oxidative Stress and Inflammation as Targets for Cardioprotection. Curr Pharm Des 2021; 27:2112-2130. [PMID: 33550963 DOI: 10.2174/1381612827666210125155821] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/22/2022]
Abstract
Cardiac and vascular diseases are often associated with increased oxidative stress and inflammation, and both may contribute to the disease progression. However, successful applications of antioxidants in the clinical setting are very rare and specific anti-inflammatory therapeutics only emerged recently. Reasons for this rely on the great diversity of oxidative stress and inflammatory cells that can either act as cardioprotective or cause tissue damage in the heart. Recent large-scale clinical trials found that highly specific anti-inflammatory therapies using monoclonal antibodies against cytokines resulted in lower cardiovascular mortality in patients with pre-existing atherosclerotic disease. In addition, unspecific antiinflammatory medication and established cardiovascular drugs with pleiotropic immunomodulatory properties such as angiotensin converting enzyme (ACE) inhibitors or statins have proven beneficial cardiovascular effects. Normalization of oxidative stress seems to be a common feature of these therapies, which can be explained by a close interaction/crosstalk of the cellular redox state and inflammatory processes. In this review, we give an overview of cardiac reactive oxygen species (ROS) sources and processes of cardiac inflammation as well as the connection of ROS and inflammation in ischemic cardiomyopathy in order to shed light on possible cardioprotective interventions.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Sebastian Steven
- Department of Cardiology, Molecular Cardiology, University Medical Center Mainz, Mainz, Germany
| | - Gerhild Euler
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
19
|
Yue X, Samaniego-Castruita D, González-Avalos E, Li X, Barwick BG, Rao A. Whole-genome analysis of TET dioxygenase function in regulatory T cells. EMBO Rep 2021; 22:e52716. [PMID: 34288360 PMCID: PMC8339674 DOI: 10.15252/embr.202152716] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
TET methylcytosine dioxygenases are essential for the stability and function of regulatory T cells (Treg cells), which maintain immune homeostasis and self‐tolerance and express the lineage‐determining transcription factor Foxp3. Here, we use whole‐genome analyses to show that the transcriptional program and epigenetic features (DNA modification, chromatin accessibility) of Treg cells are attenuated in the absence of Tet2 and Tet3. Conversely, the addition of the TET activator vitamin C during TGFβ‐induced iTreg cell differentiation in vitro potentiates the expression of Treg signature genes and alters the epigenetic landscape to better resemble that of Treg cells generated in vivo. Vitamin C enhances IL‐2 responsiveness in iTreg cells by increasing IL2Rα expression, STAT5 phosphorylation, and STAT5 binding, mimicking the IL‐2/STAT5 dependence of Treg cells generated in vivo. In summary, TET proteins play essential roles in maintaining Treg molecular features and promoting their dependence on IL‐2. TET activity during endogenous Treg development and potentiation of TET activity by vitamin C during iTreg differentiation are necessary to maintain the transcriptional and epigenetic features of Treg cells.
Collapse
Affiliation(s)
- Xiaojing Yue
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Samaniego-Castruita
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.,Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Edahí González-Avalos
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.,Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, CA, USA
| | - Xiang Li
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA
| | - Benjamin G Barwick
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA, USA
| | - Anjana Rao
- Division of Signaling and Gene Expression, La Jolla Institute for Immunology, La Jolla, CA, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA, USA.,Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
20
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021; 73:924-967. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Citation(s) in RCA: 414] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1β monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peter J Little
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Hong Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Danielle Kamato
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Zhuoming Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peiqing Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jihong Han
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Ian C Harding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Eno E Ebong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Scott J Cameron
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Alastair G Stewart
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| |
Collapse
|
21
|
Yuan S, Zheng JS, Mason AM, Burgess S, Larsson SC. Genetically predicted circulating vitamin C in relation to cardiovascular disease. Eur J Prev Cardiol 2021; 28:1829-1837. [PMID: 34057996 DOI: 10.1093/eurjpc/zwab081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/26/2022]
Abstract
AIM We conducted a two-sample Mendelian randomization (MR) study to assess the associations of genetically predicted circulating vitamin C levels with cardiovascular diseases (CVDs). METHODS AND RESULTS Ten lead single-nucleotide polymorphisms associated with plasma vitamin C levels at the genome-wide significance level were used as instrumental variables. Summary-level data for 15 CVDs were obtained from corresponding genetic consortia, the UK Biobank study, and the FinnGen consortium. The inverse-variance-weighted method was the primary analysis method, supplemented by the weighted median and MR-Egger methods. Estimates for each CVD from different sources were combined. Genetically predicted vitamin C levels were not associated with any CVD after accounting for multiple testing. However, there were suggestive associations of higher genetically predicted vitamin C levels (per 1 standard deviation increase) with lower risk of cardioembolic stroke [odds ratio, 0.79; 95% confidence interval (CI), 0.64, 0.99; P = 0.038] and higher risk of atrial fibrillation (odds ratio, 1.09; 95% CI, 1.00, 1.18; P = 0.049) in the inverse-variance-weighted method and with lower risk of peripheral artery disease (odds ratio, 0.76, 95% CI, 0.62, 0.93; P = 0.009) in the weighted median method. CONCLUSION We found limited evidence with MR techniques for an overall protective role of vitamin C in the primary prevention of CVD. The associations of vitamin C levels with cardioembolic stroke, atrial fibrillation, and peripheral artery disease need further study.
Collapse
Affiliation(s)
- Shuai Yuan
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobelsväg 13, Stockholm 17177, Sweden
| | - Ju-Sheng Zheng
- Westlake Laboratory of Life Sciences and Biomedicine, Shilongshan Road 18, Cloud Town, Xihu District, Hangzhou, China.,Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Shilongshan Road 18, Cloud Town, Xihu District, Hangzhou, China
| | - Amy M Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Wort's Causeway, Cambridge, CB1 8RN, UK.,National Institute for Health Research Cambridge Biomedical Research Centre, University of Cambridge and Cambridge University Hospitals, Hills Road, Cambridge CB2 0QQ, UK
| | - Stephen Burgess
- MRC Biostatistics Unit, University of Cambridge, East Forvie Building, Forvie Site, Robinson Way, Cambridge Biomedical Campus Cambridge, CB2 0SR, UK.,Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge CB1 8RN, UK
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Nobelsväg 13, Stockholm 17177, Sweden.,Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Akademiska sjukhuset, ingång 78, 1tr, 751 85 Uppsala, Sweden
| |
Collapse
|
22
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
23
|
TET family dioxygenases and the TET activator vitamin C in immune responses and cancer. Blood 2021; 136:1394-1401. [PMID: 32730592 DOI: 10.1182/blood.2019004158] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/13/2020] [Indexed: 12/21/2022] Open
Abstract
Vitamin C serves as a cofactor for Fe(II) and 2-oxoglutarate-dependent dioxygenases including TET family enzymes, which catalyze the oxidation of 5-methylcytosine into 5-hydroxymethylcytosine and further oxidize methylcytosines. Loss-of-function mutations in epigenetic regulators such as TET genes are prevalent in hematopoietic malignancies. Vitamin C deficiency is frequently observed in cancer patients. In this review, we discuss the role of vitamin C and TET proteins in cancer, with a focus on hematopoietic malignancies, T regulatory cells, and other immune system cells.
Collapse
|
24
|
Hammond D, Loghavi S. Clonal haematopoiesis of emerging significance. Pathology 2021; 53:300-311. [PMID: 33685721 DOI: 10.1016/j.pathol.2021.02.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 02/09/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
Clonal haematopoiesis (CH) is a ubiquitous feature of aging and provides mechanistic insight into the inextricable relationship between chronic inflammation and age-related diseases. Although CH confers a cumulative risk of subsequent haematological malignancy, particularly myeloid neoplasms, that risk is heavily mutation- and context-specific. Individuals with mutations in DNA damage response pathway genes receiving select cytotoxic therapies for solid tumours are among the highest risk groups for subsequent development of myeloid neoplasms. Multiple lines of evidence suggest that TET2-mutated macrophages causally contribute to cardiometabolic disease through the generation of proinflammatory cytokines. It is speculated that such CH-related inflammation is a shared driver of several other chronic diseases. Whether we can intervene in individuals with CH to diminish the risk of subsequent haematological malignancy or non-haematological disease remains to be seen. However, precision anti-cytokine therapies are a rational starting point to break the feedforward loop between clonal myeloid expansion, inflammation, and end-organ damage.
Collapse
Affiliation(s)
- Danielle Hammond
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
25
|
Daiber A, Andreadou I, Oelze M, Davidson SM, Hausenloy DJ. Discovery of new therapeutic redox targets for cardioprotection against ischemia/reperfusion injury and heart failure. Free Radic Biol Med 2021; 163:325-343. [PMID: 33359685 DOI: 10.1016/j.freeradbiomed.2020.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 02/06/2023]
Abstract
Global epidemiological studies reported a shift from maternal/infectious communicable diseases to chronic non-communicable diseases and a major part is attributable to atherosclerosis and metabolic disorders. Accordingly, ischemic heart disease was identified as a leading risk factor for global mortality and morbidity with a prevalence of 128 million people. Almost 9 million premature deaths can be attributed to ischemic heart disease and subsequent acute myocardial infarction and heart failure, also representing a substantial socioeconomic burden. As evidenced by typical oxidative stress markers such as lipid peroxidation products or oxidized DNA/RNA bases, the formation of reactive oxygen species by various sources (NADPH oxidases, xanthine oxidase and mitochondrial resperatory chain) plays a central role for the severity of ischemia/reperfusion damage. The underlying mechanisms comprise direct oxidative damage but also adverse redox-regulation of kinase and calcium signaling, inflammation and cardiac remodeling among others. These processes and the role of reactive oxygen species are discussed in the present review. We also present and discuss potential targets for redox-based therapies that are either already established in the clinics (e.g. guanylyl cyclase activators and stimulators) or at least successfully tested in preclinical models of myocardial infarction and heart failure (mitochondria-targeted antioxidants). However, reactive oxygen species have not only detrimental effects but are also involved in essential cellular signaling and may even act protective as seen by ischemic pre- and post-conditioning or eustress - which makes redox therapy quite challenging.
Collapse
Affiliation(s)
- Andreas Daiber
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, 15771, Athens, Greece
| | - Matthias Oelze
- Department of Cardiology 1, Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Sean M Davidson
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom
| | - Derek J Hausenloy
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London, WC1E 6HX, United Kingdom; Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, Singapore; National Heart Research Institute Singapore, National Heart Centre, Singapore; Yong Loo Lin School of Medicine, National University Singapore, Singapore; Cardiovascular Research Center, College of Medical and Health Sciences, Asia University, Taiwan.
| |
Collapse
|
26
|
Zheng JS, Luan J, Sofianopoulou E, Imamura F, Stewart ID, Day FR, Pietzner M, Wheeler E, Lotta LA, Gundersen TE, Amiano P, Ardanaz E, Chirlaque MD, Fagherazzi G, Franks PW, Kaaks R, Laouali N, Mancini FR, Nilsson PM, Onland-Moret NC, Olsen A, Overvad K, Panico S, Palli D, Ricceri F, Rolandsson O, Spijkerman AMW, Sánchez MJ, Schulze MB, Sala N, Sieri S, Tjønneland A, Tumino R, van der Schouw YT, Weiderpass E, Riboli E, Danesh J, Butterworth AS, Sharp SJ, Langenberg C, Forouhi NG, Wareham NJ. Plasma Vitamin C and Type 2 Diabetes: Genome-Wide Association Study and Mendelian Randomization Analysis in European Populations. Diabetes Care 2021; 44:98-106. [PMID: 33203707 PMCID: PMC7783939 DOI: 10.2337/dc20-1328] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/15/2020] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Higher plasma vitamin C levels are associated with lower type 2 diabetes risk, but whether this association is causal is uncertain. To investigate this, we studied the association of genetically predicted plasma vitamin C with type 2 diabetes. RESEARCH DESIGN AND METHODS We conducted genome-wide association studies of plasma vitamin C among 52,018 individuals of European ancestry to discover novel genetic variants. We performed Mendelian randomization analyses to estimate the association of genetically predicted differences in plasma vitamin C with type 2 diabetes in up to 80,983 case participants and 842,909 noncase participants. We compared this estimate with the observational association between plasma vitamin C and incident type 2 diabetes, including 8,133 case participants and 11,073 noncase participants. RESULTS We identified 11 genomic regions associated with plasma vitamin C (P < 5 × 10-8), with the strongest signal at SLC23A1, and 10 novel genetic loci including SLC23A3, CHPT1, BCAS3, SNRPF, RER1, MAF, GSTA5, RGS14, AKT1, and FADS1. Plasma vitamin C was inversely associated with type 2 diabetes (hazard ratio per SD 0.88; 95% CI 0.82, 0.94), but there was no association between genetically predicted plasma vitamin C (excluding FADS1 variant due to its apparent pleiotropic effect) and type 2 diabetes (1.03; 95% CI 0.96, 1.10). CONCLUSIONS These findings indicate discordance between biochemically measured and genetically predicted plasma vitamin C levels in the association with type 2 diabetes among European populations. The null Mendelian randomization findings provide no strong evidence to suggest the use of vitamin C supplementation for type 2 diabetes prevention.
Collapse
Affiliation(s)
- Ju-Sheng Zheng
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
| | - Jian'an Luan
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Eleni Sofianopoulou
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
| | - Fumiaki Imamura
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Isobel D Stewart
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Felix R Day
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Maik Pietzner
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Eleanor Wheeler
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Luca A Lotta
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | | | - Pilar Amiano
- Ministry of Health of the Basque Government, Public Health Division of Gipuzkoa, Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Eva Ardanaz
- Navarra Public Health Institute, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - María-Dolores Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, Instituto Murciano de Investigatión Biosanitaria (IMIB)-Arrixaca, Murcia University, Murcia, Spain
| | - Guy Fagherazzi
- Digital Epidemiology and e-Health Research Hub, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg, France
- Center of Epidemiology and Population Health UMR 1018, INSERM, Paris South - Paris Saclay University, Gustave Roussy Institute, Villejuif, France
| | - Paul W Franks
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nasser Laouali
- Center of Epidemiology and Population Health UMR 1018, INSERM, Paris South - Paris Saclay University, Gustave Roussy Institute, Villejuif, France
| | - Francesca Romana Mancini
- Center of Epidemiology and Population Health UMR 1018, INSERM, Paris South - Paris Saclay University, Gustave Roussy Institute, Villejuif, France
| | - Peter M Nilsson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Anja Olsen
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, Aarhus University, Aarhus, Denmark
| | - Kim Overvad
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Department of Cardiology, Aalborg University Hospital, Aarhus, Denmark
| | - Salvatore Panico
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Domenico Palli
- Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy
| | - Fulvio Ricceri
- Department of Clinical and Biological Sciences, University of Turin, Orbassano, Turin, Italy
- Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco, Turin, Italy
| | - Olov Rolandsson
- Department of Public Health and Clinical Medicine, Family Medicine, Umeå University, Umeå, Sweden
| | | | | | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Nutrition Science, University of Potsdam, Nuthetal, Germany
| | - Núria Sala
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program and Translational Research Laboratory; Catalan Institute of Oncology - ICO, Group of Research on Nutrition and Cancer, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet of Llobregat, Barcelona, Spain
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Nazionale dei Tumori di Milano Via Venezian, Milan, Italy
| | - Anne Tjønneland
- Department of Public Health, Aarhus University, Aarhus, Denmark
- Institute of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Rosario Tumino
- Cancer Registry and Histopathology Department, Azienda Sanitaria Provinciale (ASP), Ragusa, Italy
| | - Yvonne T van der Schouw
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | | | - Elio Riboli
- School of Public Health, Imperial College, London, U.K
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, U.K
- British Heart Foundation Center of Research Excellence, University of Cambridge, Cambridge, U.K
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, U.K
- National Institute for Health Research Cambridge Biomedical Research Center, University of Cambridge and Cambridge University Hospitals, Cambridge, U.K
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, U.K
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, U.K
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, U.K
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, U.K
- National Institute for Health Research Cambridge Biomedical Research Center, University of Cambridge and Cambridge University Hospitals, Cambridge, U.K
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Cambridge, U.K
| | - Stephen J Sharp
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Claudia Langenberg
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Nita G Forouhi
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K.
| | - Nicholas J Wareham
- Medical Research Council Epidemiology Unit, University of Cambridge, Cambridge, U.K.
| |
Collapse
|
27
|
Cong G, Yan R, Sachdev U. Low serum vitamin C correlates with an increased risk of peripheral arterial disease in current smokers: Results from NHANES 2003-2004. INTERNATIONAL JOURNAL CARDIOLOGY HYPERTENSION 2020; 6. [PMID: 33385159 PMCID: PMC7773173 DOI: 10.1016/j.ijchy.2020.100037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Background Cigarette smoking is one of the most critical risk factors for peripheral arterial disease (PAD) and inversely correlated Vitamin C. Here we determine whether serum vitamin C correlates with the risk of PAD, especially among current smokers. Methods A cross-sectional analysis of 2383 individuals ≥40 y was performed from the U.S. National Health and Nutrition Examination Survey (NHANES 2003–2004), including measurement of ankle-brachial index (ABI), smoking status and serum vitamin C. We examined the interactions between plasma vitamin C and exposure to smoking on the risk of PAD. Results 912 (38.2%) were current smokers while 207 participants were diagnosed with PAD based on ABI(ABI≤0.9). Current smokers in the lowest vitamin C quartile had the highest prevalence of PAD (14.1%) compared to other quartiles. However, this trend was not significant in nonsmokers. Current smokers in the lowest quartile had a 2.32-fold risk (95% CI, 1.03–5.32; P = 0.04) for PAD after weighted adjustment for potential confounders, including vitamin D and C-reactive protein. In contrast, non-smokers did not have a differing risk of PAD as a function of vitamin C (P for interaction = 0.019). Conclusions As an anti-oxidant and anti-inflammatory, low serum vitamin C appears to associates with the risk of PAD in smokers. A relationship between PAD and vitamin C in non-current smokers is not apparent. Modulating vitamin C in current smokers may help mitigate the risk of PAD and should be a target of mechanistic study.
Collapse
Affiliation(s)
- Guangzhi Cong
- Department of Cardiology, Cardiovascular Institute, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, CN 750004, China
| | - Ru Yan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ulka Sachdev
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Corresponding author. Magee Womens Hospital of UPMC, 300 Halket Street Suite 5414, Pittsburgh, 15232, PA, China.
| |
Collapse
|
28
|
New promising developments for potential therapeutic applications of high-dose ascorbate as an anticancer drug. Hematol Oncol Stem Cell Ther 2020; 14:179-191. [PMID: 33278349 DOI: 10.1016/j.hemonc.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/11/2020] [Indexed: 12/25/2022] Open
Abstract
Vitamin C (ascorbate) is an essential dietary requirement, with fundamental redox, anti-oxidant functions at physiologic concentrations. Vitamin C is a cofactor for Fe2+ and 2-oxoglutarate-dependent dioxygenases, englobing large families of enzymes, including also epigenetic regulators of DNA and histone methylation. Importantly, vitamin C is involved in the control of the activity of TET (ten-eleven translocation) enzymes, key epigenetic regulators. For this spectrum of activities, often involving pathways deregulated in cancer cells, vitamin C possesses some pharmacologic activities that can be exploited in anticancer therapy. In particular, the capacity of pharmacological doses of vitamin C to target redox imbalance and to rescue deregulated epigenetic program observed in some cancer cells represents a consistent therapeutic potentiality. Several recent studies have identified some cancer subsets that could benefit from the pharmacological activities of vitamin C. The identification of these potentially responsive patients will help to carefully define controlled clinical trials aiming to evaluate the anticancer activity of Vitamin C.
Collapse
|
29
|
Vitamin C and Cardiovascular Disease: An Update. Antioxidants (Basel) 2020; 9:antiox9121227. [PMID: 33287462 PMCID: PMC7761826 DOI: 10.3390/antiox9121227] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
The potential beneficial effects of the antioxidant properties of vitamin C have been investigated in a number of pathological conditions. In this review, we assess both clinical and preclinical studies evaluating the role of vitamin C in cardiac and vascular disorders, including coronary heart disease, heart failure, hypertension, and cerebrovascular diseases. Pitfalls and controversies in investigations on vitamin C and cardiovascular disorders are also discussed.
Collapse
|
30
|
Ullah MF, Usmani S, Shah A, Abuduhier FM. Dietary molecules and experimental evidence of epigenetic influence in cancer chemoprevention: An insight. Semin Cancer Biol 2020; 83:319-334. [PMID: 33152485 DOI: 10.1016/j.semcancer.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022]
Abstract
The world-wide rate of incidence of cancer disease has been only modestly contested by the past and current preventive and interventional strategies. Hence, the global effort towards novel ideas to contain the disease still continues. Constituents of human diets have in recent years emerged as key regulators of carcinogenesis, with studies reporting their inhibitory potential against all the three stages vis-a-vis initiation, promotion and progression. Unlike drugs which usually act on single targets, these dietary factors have an advantage of multi-targeted effects and pleiotropic action mechanisms, which are effective against cancer that manifest as a micro-evolutionary and multi-factorial disease. Since most of the cellular targets have been identified and their consumption considered relatively safe, these diet-derived agents often appear as molecules of interest in repurposing strategies. Currently, many of these molecules are being investigated for their ability to influence the aberrant alterations in cell's epigenome for epigenetic therapy against cancer. Targeting the epigenetic regulators is a new paradigm in cancer chemoprevention which acts to reverse the warped-up epigenetic alterations in a cancer cell, thereby directing it towards a normal phenotype. In this review, we discuss the significance of dietary factors and natural products as chemopreventive agents. Further, we corroborate the experimental evidence from existing literature, reflecting the ability of a series of such molecules to act as epigenetic modifiers in cancer cells, by interfering with molecular events that map the epigenetic imprints such as DNA methylation, histone acetylation and non-coding RNA mediated gene regulation.
Collapse
Affiliation(s)
- Mohammad Fahad Ullah
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Aaliya Shah
- Department of Biochemistry, SKIMS Medical College, Srinagar, India
| | - Faisel M Abuduhier
- Prince Fahad Research Chair, Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, 71491, Saudi Arabia
| |
Collapse
|
31
|
Cerullo G, Negro M, Parimbelli M, Pecoraro M, Perna S, Liguori G, Rondanelli M, Cena H, D’Antona G. The Long History of Vitamin C: From Prevention of the Common Cold to Potential Aid in the Treatment of COVID-19. Front Immunol 2020; 11:574029. [PMID: 33193359 PMCID: PMC7655735 DOI: 10.3389/fimmu.2020.574029] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
From Pauling's theories to the present, considerable understanding has been acquired of both the physiological role of vitamin C and of the impact of vitamin C supplementation on the health. Although it is well known that a balanced diet which satisfies the daily intake of vitamin C positively affects the immune system and reduces susceptibility to infections, available data do not support the theory that oral vitamin C supplements boost immunity. No current clinical recommendations support the possibility of significantly decreasing the risk of respiratory infections by using high-dose supplements of vitamin C in a well-nourished general population. Only in restricted subgroups (e.g., athletes or the military) and in subjects with a low plasma vitamin C concentration a supplementation may be justified. Furthermore, in categories at high risk of infection (i.e., the obese, diabetics, the elderly, etc.), a vitamin C supplementation can modulate inflammation, with potential positive effects on immune response to infections. The impact of an extra oral intake of vitamin C on the duration of a cold and the prevention or treatment of pneumonia is still questioned, while, based on critical illness studies, vitamin C infusion has recently been hypothesized as a treatment for COVID-19 hospitalized patients. In this review, we focused on the effects of vitamin C on immune function, summarizing the most relevant studies from the prevention and treatment of common respiratory diseases to the use of vitamin C in critical illness conditions, with the aim of clarifying its potential application during an acute SARS-CoV2 infection.
Collapse
Affiliation(s)
- Giuseppe Cerullo
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Massimo Negro
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)—Sport Medicine Centre, University of Pavia, Voghera, Italy
| | - Mauro Parimbelli
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)—Sport Medicine Centre, University of Pavia, Voghera, Italy
| | | | - Simone Perna
- Department of Biology, College of Science, University of Bahrain, Sakhir, Bahrain
| | - Giorgio Liguori
- Department of Movement Sciences and Wellbeing, University of Naples Parthenope, Naples, Italy
| | - Mariangela Rondanelli
- IRCCS Mondino Foundation, Pavia, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Hellas Cena
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- Clinical Nutrition and Dietetics Service, Unit of Internal Medicine and Endocrinology, ICS Maugeri IRCCS, University of Pavia, Pavia, Italy
| | - Giuseppe D’Antona
- Centro di Ricerca Interdipartimentale nelle Attività Motorie e Sportive (CRIAMS)—Sport Medicine Centre, University of Pavia, Voghera, Italy
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|
32
|
Ottaviani JI, Britten A, Lucarelli D, Luben R, Mulligan AA, Lentjes MA, Fong R, Gray N, Grace PB, Mawson DH, Tym A, Wierzbicki A, Forouhi NG, Khaw KT, Schroeter H, Kuhnle GGC. Biomarker-estimated flavan-3-ol intake is associated with lower blood pressure in cross-sectional analysis in EPIC Norfolk. Sci Rep 2020; 10:17964. [PMID: 33087825 PMCID: PMC7578063 DOI: 10.1038/s41598-020-74863-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022] Open
Abstract
Flavan-3-ols are a group of bioactive compounds that have been shown to improve vascular function in intervention studies. They are therefore of great interest for the development of dietary recommendation for the prevention of cardio-vascular diseases. However, there are currently no reliable data from observational studies, as the high variability in the flavan-3-ol content of food makes it difficult to estimate actual intake without nutritional biomarkers. In this study, we investigated cross-sectional associations between biomarker-estimated flavan-3-ol intake and blood pressure and other CVD risk markers, as well as longitudinal associations with CVD risk in 25,618 participants of the European Prospective Investigation into Cancer (EPIC) Norfolk cohort. High flavan-3-ol intake, achievable as part of an habitual diet, was associated with a significantly lower systolic blood pressure (- 1.9 (- 2.7; - 1.1) mmHg in men and - 2.5 (- 3.3; - 1.8) mmHg in women; lowest vs highest decile of biomarker), comparable to adherence to a Mediterranean Diet or moderate salt reduction. Subgroup analyses showed that hypertensive participants had stronger inverse association between flavan-3-ol biomarker and systolic blood pressure when compared to normotensive participants. Flavanol intake could therefore have a role in the maintenance of cardiovascular health on a population scale.
Collapse
Affiliation(s)
| | - Abigail Britten
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | | | - Robert Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | | | - Nicola Gray
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK
| | | | | | - Amy Tym
- LGC, Newmarket Road, Fordham, UK
| | | | - Nita G Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | - Gunter G C Kuhnle
- Department of Food and Nutritional Sciences, University of Reading, Reading, UK.
| |
Collapse
|
33
|
Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic Biol Med 2020; 157:15-37. [PMID: 32131026 DOI: 10.1016/j.freeradbiomed.2020.02.026] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/05/2020] [Accepted: 02/26/2020] [Indexed: 02/07/2023]
Abstract
According to the latest Global Burden of Disease Study data, non-communicable diseases in general and cardiovascular disease (CVD) in particular are the leading cause of premature death and reduced quality of life. Demographic shifts, unhealthy lifestyles and a higher burden of adverse environmental factors provide an explanation for these findings. The expected growing prevalence of CVD requires enhanced research efforts for identification and characterisation of novel therapeutic targets and strategies. Cardiovascular risk factors including classical (e.g. hypertension, diabetes, hypercholesterolaemia) and non-classical (e.g. environmental stress) factors induce the development of endothelial dysfunction, which is closely associated with oxidant stress and vascular inflammation and results in CVD, particularly in older adults. Most classically successful therapies for CVD display vasoprotective, antioxidant and anti-inflammatory effects, but were originally designed with other therapeutic aims. So far, only a few 'redox drugs' are in clinical use and many antioxidant strategies have not met expectations. With the present review, we summarise the actual knowledge on CVD pathomechanisms, with special emphasis on endothelial dysfunction, adverse redox signalling and oxidative stress, highlighting the preclinical and clinical evidence. In addition, we provide a brief overview of established CVD therapies and their relation to endothelial dysfunction and oxidative stress. Finally, we discuss novel strategies for redox-based CVD therapies trying to explain why, despite a clear link between endothelial dysfunction and adverse redox signalling and oxidative stress, redox- and oxidative stress-based therapies have not yet provided a breakthrough in the treatment of endothelial dysfunction and CVD.
Collapse
Affiliation(s)
- Andreas Daiber
- The Center for Cardiology, Department of Cardiology 1, Laboratory of Molecular Cardiology, University Medical Center, Langenbeckstr. 1, 55131, Mainz, Germany; The Partner Site Rhine-Main, German Center for Cardiovascular Research (DZHK), Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Stefan Chlopicki
- The Jagiellonian University, Jagiellonian Centre for Experimental Therapeutics (JCET), Bobrzynskiego 14, 30-348, Krakow, Poland; Jagiellonian University Medical College, Grzegorzecka 16, 31-531, Krakow, Poland.
| |
Collapse
|
34
|
Rowe S, Carr AC. Global Vitamin C Status and Prevalence of Deficiency: A Cause for Concern? Nutrients 2020; 12:E2008. [PMID: 32640674 PMCID: PMC7400810 DOI: 10.3390/nu12072008] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Vitamin C is an essential nutrient that must be obtained through the diet in adequate amounts to prevent hypovitaminosis C, deficiency and its consequences-including the potentially fatal deficiency disease scurvy. Global vitamin C status and prevalence of deficiency has not previously been reported, despite vitamin C's pleiotropic roles in both non-communicable and communicable disease. This review highlights the global literature on vitamin C status and the prevalence of hypovitaminosis C and deficiency. Related dietary intake is reported if assessed in the studies. Overall, the review illustrates the shortage of high quality epidemiological studies of vitamin C status in many countries, particularly low- and middle-income countries. The available evidence indicates that vitamin C hypovitaminosis and deficiency is common in low- and middle-income countries and not uncommon in high income settings. Further epidemiological studies are required to confirm these findings, to fully assess the extent of global vitamin C insufficiency, and to understand associations with a range of disease processes. Our findings suggest a need for interventions to prevent deficiency in a range of at risk groups and regions of the world.
Collapse
Affiliation(s)
- Sam Rowe
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool L35QA, UK;
| | - Anitra C. Carr
- Nutrition in Medicine Research Group, Department of Pathology & Biomedical Science, University of Otago, Christchurch 8011, New Zealand
| |
Collapse
|
35
|
Lykkesfeldt J. On the effect of vitamin C intake on human health: How to (mis)interprete the clinical evidence. Redox Biol 2020; 34:101532. [PMID: 32535545 PMCID: PMC7296342 DOI: 10.1016/j.redox.2020.101532] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
For decades, the potential beneficial effect of vitamin C on human health-beyond that of preventing scurvy-has been subject of much controversy. Hundreds of articles have appeared either in support of increased vitamin C intake through diet or supplements or rejecting the hypothesis that increased intake of vitamin C or supplementation may influence morbidity and mortality. The chemistry and pharmacology of vitamin C is complex and has unfortunately rarely been taken into account when designing clinical studies testing its effect on human health. However, ignoring its chemical lability, dose-dependent absorption and elimination kinetics, distribution via active transport, or complex dose-concentration-response relationships inevitably leads to poor study designs, inadequate inclusion and exclusion criteria and misinterpretation of results. The present review outlines the differences in vitamin C pharmacokinetics compared to normal low molecular weight drugs, focusses on potential pitfalls in study design and data interpretation, and re-examines major clinical studies of vitamin C in light of these.
Collapse
Affiliation(s)
- Jens Lykkesfeldt
- Faculty of Health & Medical Sciences, University of Copenhagen, DK-1870, Frederiksberg C, Denmark.
| |
Collapse
|
36
|
Liu X, Hu Z, Xu X, Li Z, Chen Y, Dong J. The associations of plant-based protein intake with all-cause and cardiovascular mortality in patients on peritoneal dialysis. Nutr Metab Cardiovasc Dis 2020; 30:967-976. [PMID: 32249138 DOI: 10.1016/j.numecd.2020.03.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 12/02/2019] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS Plant-based protein intake is associated with all-cause and/or cardiovascular disease (CVD) mortality in general population, but such data are scarce in dialysis patients. Thus, we examined the associations of plant-based protein-total protein ratio with all-cause and CVD mortality in patients on peritoneal dialysis (PD). METHODS AND RESULTS The study enrolled 884 incident patients who started PD between October 2002 and August 2014. All demographic and laboratory data were recorded at baseline. Repeated measurements for laboratory and nutrition parameters were recorded at regular intervals and thus calculated as time-averaged values. Multivariable Cox regression models were used to estimate the hazard ratio (HR) of plant-based protein-total protein ratio and mortality based on baseline and time-averaged covariates, respectively. There were 437 (49%) patients died during a mean follow-up period of 45 months, of which 178 (40.8%) were due to CVD. Each 10% in increase in time-averaged plant-based protein-total protein ratio was associated with a reduction of 71% (95% CI, 90%-14%) and 89% (95% CI, 98%-29%) for all-cause and CVD mortality, respectively. Based on examination on interactive effects, we further found both baseline and time-averaged plant-based protein-total protein ratio were inversely associated with all-cause and CVD mortality in the subgroups of female, age ≥60 years, and albumin >35 g/L. CONCLUSIONS The present study suggested that a diet with a higher plant-based protein-total protein ratio is associated with lower all-cause and CVD mortality in PD patients, and is more significant in female and elderly patients, and those without hypoalbuminemia.
Collapse
Affiliation(s)
- Xihui Liu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, China; Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health and Key Laboratory of Renal Disease, Ministry of Education, Beijing, China; Department of Nephrology, Linyi People's Hospital, Linyi, China
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiao Xu
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health and Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
| | - Ziqian Li
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health and Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
| | - Yuan Chen
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health and Key Laboratory of Renal Disease, Ministry of Education, Beijing, China
| | - Jie Dong
- Renal Division, Department of Medicine, Peking University First Hospital, Institute of Nephrology, Peking University, Key Laboratory of Renal Disease, Ministry of Health and Key Laboratory of Renal Disease, Ministry of Education, Beijing, China.
| |
Collapse
|
37
|
Regulation of Vascular Function and Inflammation via Cross Talk of Reactive Oxygen and Nitrogen Species from Mitochondria or NADPH Oxidase-Implications for Diabetes Progression. Int J Mol Sci 2020; 21:ijms21103405. [PMID: 32408480 PMCID: PMC7279344 DOI: 10.3390/ijms21103405] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress plays a key role for the development of cardiovascular, metabolic, and neurodegenerative disease. This concept has been proven by using the approach of genetic deletion of reactive oxygen and nitrogen species (RONS) producing, pro-oxidant enzymes as well as by the overexpression of RONS detoxifying, antioxidant enzymes leading to an amelioration of the severity of diseases. Vice versa, the development and progression of cardiovascular diseases is aggravated by overexpression of RONS producing enzymes as well as deletion of RONS detoxifying enzymes. We have previously identified cross talk mechanisms between different sources of RONS, which can amplify the oxidative stress-mediated damage. Here, the pathways and potential mechanisms leading to this cross talk are analyzed in detail and highlighted by selected examples from the current literature and own data including hypoxia, angiotensin II (AT-II)-induced hypertension, nitrate tolerance, aging, and others. The general concept of redox-based activation of RONS sources via “kindling radicals” and enzyme-specific “redox switches” as well as the interaction with redox-sensitive inflammatory pathways are discussed. Here, we present evidence for the existence of such cross talk mechanisms in the setting of diabetes and critically assess their contribution to the severity of diabetic complications.
Collapse
|
38
|
Lagoa R, Marques-da-Silva D, Diniz M, Daglia M, Bishayee A. Molecular mechanisms linking environmental toxicants to cancer development: Significance for protective interventions with polyphenols. Semin Cancer Biol 2020; 80:118-144. [PMID: 32044471 DOI: 10.1016/j.semcancer.2020.02.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/25/2020] [Accepted: 02/01/2020] [Indexed: 12/12/2022]
Abstract
Human exposure to environmental toxicants with diverse mechanisms of action is a growing concern. In addition to well-recognized carcinogens, various chemicals in environmental and occupational settings have been suggested to impact health, increasing susceptibility to cancer by inducing genetic and epigenetic changes. Accordingly, in this review, we have discussed recent insights into the pathological mechanisms of these chemicals, namely their effects on cell redox and calcium homeostasis, mitochondria and inflammatory signaling, with a focus on the possible implications for multi-stage carcinogenesis and its reversal by polyphenols. Plant-derived polyphenols, such as epigallocatechin-gallate, resveratrol, curcumin and anthocyanins reduce the incidence of cancer and can be useful nutraceuticals for alleviating the detrimental outcomes of harmful pollutants. However, development of therapies based on polyphenol administration requires further studies to validate the biological efficacy, identifying effective doses, mode of action and new delivery forms. Innovative microphysiological testing models are presented and specific proposals for future trials are given. Merging the current knowledge of multifactorial actions of specific polyphenols and chief environmental toxicants, this work aims to potentiate the delivery of phytochemical-based protective treatments to individuals at high-risk due to environmental exposure.
Collapse
Affiliation(s)
- Ricardo Lagoa
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| | - Dorinda Marques-da-Silva
- School of Technology and Management, Polytechnic Institute of Leiria, Morro do Lena, Alto do Vieiro, 2411-901 Leiria, Portugal; Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Mário Diniz
- Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Department of Chemistry, NOVA School of Science and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Anupam Bishayee
- Lake Erie College of Osteopathic Medicine, 5000 Lakewood Ranch Boulevard, Bradenton, FL 34211, USA
| |
Collapse
|
39
|
Riffenburgh RH, Gillen DL. Clinical trials and group sequential testing. Stat Med 2020. [DOI: 10.1016/b978-0-12-815328-4.00022-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
40
|
Aune D. Plant Foods, Antioxidant Biomarkers, and the Risk of Cardiovascular Disease, Cancer, and Mortality: A Review of the Evidence. Adv Nutr 2019; 10:S404-S421. [PMID: 31728499 PMCID: PMC6855972 DOI: 10.1093/advances/nmz042] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 03/15/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022] Open
Abstract
Although a high intake of plant foods such as fruits, vegetables, whole grains, nuts, and legumes has been recommended for chronic disease prevention, it has been unclear what is the optimal amount of intake of these foods and whether specific subtypes are particularly beneficial. The evidence from several recently published meta-analyses on plant foods and antioxidants and various health outcomes is reviewed as well as more recently published studies. In meta-analyses of prospective studies, inverse associations were observed between intake of fruits, vegetables, whole grains, and nuts and the risk of coronary artery disease, stroke, cardiovascular disease overall, total cancer, and all-cause mortality. The strongest reductions in risk were observed at an intake of 800 g/d for fruits and vegetables, 225 g/d for whole grains, and 15-20 g/d for nuts, respectively. Whole-grain and nut consumption was also inversely associated with mortality from respiratory disease, infections, and diabetes. Stronger and more linear inverse associations were observed between blood concentrations of antioxidants (vitamin C, carotenoids, vitamin E) and cardiovascular disease, cancer, and all-cause mortality than for dietary intake. Most studies that have since been published have been consistent with these results; however, further studies are needed on subtypes of plant foods and less common causes of death. These results strongly support dietary recommendations to increase intake of plant foods, and suggest optimal intakes for chronic disease prevention may be ∼800 g/d for intakes of fruits and vegetables, 225 g/d for whole grains, and 15-20 g/d for nuts. Diets high in plant foods could potentially prevent several million premature deaths each year if adopted globally.
Collapse
Affiliation(s)
- Dagfinn Aune
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, United Kingdom
- Department of Nutrition, Bjørknes University College, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
41
|
Myint PK, Wilson AM, Clark AB, Luben RN, Wareham NJ, Khaw KT. Plasma vitamin C concentrations and risk of incident respiratory diseases and mortality in the European Prospective Investigation into Cancer-Norfolk population-based cohort study. Eur J Clin Nutr 2019; 73:1492-1500. [PMID: 30705384 PMCID: PMC7340537 DOI: 10.1038/s41430-019-0393-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 09/23/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND/OBJECTIVES Cancerous and non-cancerous respiratory diseases are common and contribute significantly to global disease burden. We aim to quantify the association between plasma vitamin C concentrations as an indicator of high fruit and vegetable consumption and the risk of incident respiratory diseases and associated mortality in a general population. SUBJECTS/METHODS Nineteen thousand three hundred and fifty-seven men and women aged 40-79 years without prevalent respiratory diseases at the baseline (1993-1997) and participating in the European Prospective Investigation into Cancer (EPIC)-Norfolk study in the United Kingdom were followed through March 2015 for both incidence and mortality from respiratory diseases. RESULTS There were a total of 3914 incident events and 407 deaths due to any respiratory diseases (excluding lung cancers), 367 incident lung cancers and 280 lung cancer deaths during the follow-up (total person-years >300,000 years). Cox's proportional hazards models showed that persons in the top quartiles of baseline plasma vitamin C concentrations had a 43% lower risk of lung cancer (hazard ratio (HR) 0.57; 95% confidence interval (CI): 0.41-0.81) than did those in the bottom quartile, independently of potential confounders. The results are similar for any non-cancerous respiratory diseases (HR 0.85; 0.77-0.95), including chronic respiratory diseases (HR 0.81; 0.69-0.96) and pneumonia (HR 0.70; 0.59-0.83). The corresponding values for mortality were 0.54 (0.35-0.81), 0.81 (0.59-1.12), 0.85 (0.44-1.66) and 0.61 (0.37-1.01), respectively. Confining analyses to non-smokers showed 42% and 53% risk reduction of non-smoking-related lung cancer incidence and death. CONCLUSIONS Higher levels of vitamin C concentrations as a marker of high fruit and vegetable consumption reduces the risk of cancerous and non-cancerous respiratory illnesses including non-smoking-related cancer incidence and deaths.
Collapse
Affiliation(s)
- Phyo Kyaw Myint
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
- Clinical Gerontology Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| | - Andrew M Wilson
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Allan B Clark
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Robert N Luben
- Clinical Gerontology Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Kay-Tee Khaw
- Clinical Gerontology Unit, Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
42
|
McCall SJ, Clark AB, Luben RN, Wareham NJ, Khaw KT, Myint PK. Plasma Vitamin C Levels: Risk Factors for Deficiency and Association with Self-Reported Functional Health in the European Prospective Investigation into Cancer-Norfolk. Nutrients 2019; 11:E1552. [PMID: 31324013 PMCID: PMC6682997 DOI: 10.3390/nu11071552] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To investigate the demographic and lifestyles factors associated with vitamin C deficiency and to examine the association between plasma vitamin C level and self-reported physical functional health. METHODS A population-based cross-sectional study using the European Prospective Investigation into Cancer-Norfolk study. Plasma vitamin C level < 11 µmol/L indicated vitamin C deficiency. Unconditional logistic regression models assessed the association between vitamin C deficiency and potential risk factors. Associations between quartiles of vitamin C and self-reported functional health measured by the 36-item short-form questionnaire (SF-36) were assessed. RESULTS After adjustment, vitamin C deficiency was associated with older age, being male, lower physical activity, smoking, more socially deprived area (Townsend index) and a lower educational attainment. Compared to the highest, those in the lowest quartile of vitamin C were more likely to score in the lowest decile of physical function (adjusted odds ratio (aOR): 1.43 (95%CI: 1.21-1.70)), bodily pain (aOR: 1.29 (95% CI: 1.07-1.56)), general health (aOR: 1.4 (95%CI: 1.18-1.66)), and vitality (aOR: 1.23 (95%CI: 1.04-1.45)) SF-36 scores. CONCLUSIONS Simple public health interventions should be aimed at populations with risk factors for vitamin C deficiency. Poor self-reported functional health was associated with lower plasma vitamin C levels, which may reflect symptoms of latent scurvy.
Collapse
Affiliation(s)
- Stephen J McCall
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Richard Doll Building, Old Road Campus, Oxford OX3 7LF, UK
- Ageing Clinical & Experimental Research Group, Institute of Applied Health Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Allan B Clark
- Norwich Medical School, University of East Anglia, Norwich NR4 7TJ, UK
| | - Robert N Luben
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR UK
| | - Nicholas J Wareham
- MRC Epidemiology Unit, University of Cambridge School of Clinical Medicine, Cambridge CB2 0QQ, UK
| | - Kay-Tee Khaw
- Department of Public Health and Primary Care, University of Cambridge, Cambridge CB2 0SR UK
| | - Phyo Kyaw Myint
- Ageing Clinical & Experimental Research Group, Institute of Applied Health Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
43
|
Vascular Inflammation and Oxidative Stress: Major Triggers for Cardiovascular Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7092151. [PMID: 31341533 PMCID: PMC6612399 DOI: 10.1155/2019/7092151] [Citation(s) in RCA: 376] [Impact Index Per Article: 75.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/20/2019] [Indexed: 02/08/2023]
Abstract
Cardiovascular disease is a leading cause of death and reduced quality of life, proven by the latest data of the Global Burden of Disease Study, and is only gaining in prevalence worldwide. Clinical trials have identified chronic inflammatory disorders as cardiovascular risks, and recent research has revealed a contribution by various inflammatory cells to vascular oxidative stress. Atherosclerosis and cardiovascular disease are closely associated with inflammation, probably due to the close interaction of inflammation with oxidative stress. Classical therapies for inflammatory disorders have demonstrated protective effects in various models of cardiovascular disease; especially established drugs with pleiotropic immunomodulatory properties have proven beneficial cardiovascular effects; normalization of oxidative stress seems to be a common feature of these therapies. The close link between inflammation and redox balance was also supported by reports on aggravated inflammatory phenotype in the absence of antioxidant defense proteins (e.g., superoxide dismutases, heme oxygenase-1, and glutathione peroxidases) or overexpression of reactive oxygen species producing enzymes (e.g., NADPH oxidases). The value of immunomodulation for the treatment of cardiovascular disease was recently supported by large-scale clinical trials demonstrating reduced cardiovascular mortality in patients with established atherosclerotic disease when treated by highly specific anti-inflammatory therapies (e.g., using monoclonal antibodies against cytokines). Modern antidiabetic cardiovascular drugs (e.g., SGLT2 inhibitors, DPP-4 inhibitors, and GLP-1 analogs) seem to share these immunomodulatory properties and display potent antioxidant effects, all of which may explain their successful lowering of cardiovascular risk.
Collapse
|
44
|
Ching SM, Chia YC, Lentjes MAH, Luben R, Wareham N, Khaw KT. FEV1 and total Cardiovascular mortality and morbidity over an 18 years follow-up Population-Based Prospective EPIC-NORFOLK Study. BMC Public Health 2019; 19:501. [PMID: 31053065 PMCID: PMC6500069 DOI: 10.1186/s12889-019-6818-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 04/15/2019] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Our study aimed to determine the association between forced expiratory volume in one second (FEV1) and subsequent fatal and non-fatal events in a general population. METHODS The Norfolk (UK) based European Prospective Investigation into Cancer (EPIC-Norfolk) recruited 25,639 participants between 1993 and 1997. FEV1 measured by portable spirometry, was categorized into sex-specific quintiles. Mortality and morbidity from all causes, cardiovascular disease (CVD) and respiratory disease were collected from 1997 up to 2015. Cox proportional hazard regression analysis was used with adjustment for socio-economic factors, physical activity and co-morbidities. RESULTS Mean age of the population was 58.7 ± 9.3 years, mean FEV1 for men was 294± 74 cL/s and 214± 52 cL/s for women. The adjusted hazard ratios for all-cause mortality for participants in the highest fifth of the FEV1 category was 0.63 (0.52, 0.76) for men and 0.62 (0.51, 0.76) for women compared to the lowest quintile. Adjusted HRs for every 70 cL/s increase in FEV1 among men and women were 0.77 (p < 0.001) and 0.68 (p < 0.001) for total mortality, 0.85 (p<0.001) and 0.77 (p<0.001) for CVD and 0.52 (p <0.001) and 0.42 (p <0.001) for respiratory disease. CONCLUSIONS Participants with higher FEV1 levels had a lower risk of CVD and all-cause mortality. Measuring the FEV1 with a portable handheld spirometry measurement may be used as a surrogate marker for cardiovascular risk. Every effort should be made to identify those with poorer lung function even in the absence of cardiovascular disease as they are at greater risk of total and CV mortality.
Collapse
Affiliation(s)
- Siew-Mooi Ching
- 0000 0001 2231 800Xgrid.11142.37Department of Family Medicine, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia ,0000 0001 2231 800Xgrid.11142.37Malaysian Research Institute on Ageing, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia ,grid.430718.9Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Yook-Chin Chia
- grid.430718.9Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Marleen A. H. Lentjes
- 0000000121885934grid.5335.0Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine (K-TK and RL) and the Medical Research Council Epidemiology Unit (NW), University of Cambridge, Cambridge, United Kingdom
| | - Robert Luben
- 0000000121885934grid.5335.0Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine (K-TK and RL) and the Medical Research Council Epidemiology Unit (NW), University of Cambridge, Cambridge, United Kingdom
| | - Nicholas Wareham
- 0000000121885934grid.5335.0Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine (K-TK and RL) and the Medical Research Council Epidemiology Unit (NW), University of Cambridge, Cambridge, United Kingdom
| | - Kay-Tee Khaw
- 0000000121885934grid.5335.0Department of Public Health and Primary Care, Institute of Public Health, School of Clinical Medicine (K-TK and RL) and the Medical Research Council Epidemiology Unit (NW), University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
45
|
The Use of Nutraceuticals to Counteract Atherosclerosis: The Role of the Notch Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:5470470. [PMID: 31915510 PMCID: PMC6935452 DOI: 10.1155/2019/5470470] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/13/2019] [Indexed: 12/13/2022]
Abstract
Despite the currently available pharmacotherapies, today, thirty percent of worldwide deaths are due to cardiovascular diseases (CVDs), whose primary cause is atherosclerosis, an inflammatory disorder characterized by the buildup of lipid deposits on the inside of arteries. Multiple cellular signaling pathways have been shown to be involved in the processes underlying atherosclerosis, and evidence has been accumulating for the crucial role of Notch receptors in regulating the functions of the diverse cell types involved in atherosclerosis onset and progression. Several classes of nutraceuticals have potential benefits for the prevention and treatment of atherosclerosis and CVDs, some of which could in part be due to their ability to modulate the Notch pathway. In this review, we summarize the current state of knowledge on the role of Notch in vascular health and its modulation by nutraceuticals for the prevention of atherosclerosis and/or treatment of related CVDs.
Collapse
|
46
|
Abstract
Over the past century, the notion that vitamin C can be used to treat cancer has generated much controversy. However, new knowledge regarding the pharmacokinetic properties of vitamin C and recent high-profile preclinical studies have revived interest in the utilization of high-dose vitamin C for cancer treatment. Studies have shown that pharmacological vitamin C targets many of the mechanisms that cancer cells utilize for their survival and growth. In this Opinion article, we discuss how vitamin C can target three vulnerabilities many cancer cells share: redox imbalance, epigenetic reprogramming and oxygen-sensing regulation. Although the mechanisms and predictive biomarkers that we discuss need to be validated in well-controlled clinical trials, these new discoveries regarding the anticancer properties of vitamin C are promising to help identify patient populations that may benefit the most from high-dose vitamin C therapy, developing effective combination strategies and improving the overall design of future vitamin C clinical trials for various types of cancer.
Collapse
Affiliation(s)
- Bryan Ngo
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin M Van Riper
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jihye Yun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
47
|
Nam SM, Seo M, Seo JS, Rhim H, Nahm SS, Cho IH, Chang BJ, Kim HJ, Choi SH, Nah SY. Ascorbic Acid Mitigates D-galactose-Induced Brain Aging by Increasing Hippocampal Neurogenesis and Improving Memory Function. Nutrients 2019; 11:nu11010176. [PMID: 30650605 PMCID: PMC6356429 DOI: 10.3390/nu11010176] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/26/2018] [Accepted: 01/09/2019] [Indexed: 12/17/2022] Open
Abstract
Ascorbic acid is essential for normal brain development and homeostasis. However, the effect of ascorbic acid on adult brain aging has not been determined. Long-term treatment with high levels of D-galactose (D-gal) induces brain aging by accumulated oxidative stress. In the present study, mice were subcutaneously administered with D-gal (150 mg/kg/day) for 10 weeks; from the seventh week, ascorbic acid (150 mg/kg/day) was orally co-administered for four weeks. Although D-gal administration alone reduced hippocampal neurogenesis and cognitive functions, co-treatment of ascorbic acid with D-gal effectively prevented D-gal-induced reduced hippocampal neurogenesis through improved cellular proliferation, neuronal differentiation, and neuronal maturation. Long-term D-gal treatment also reduced expression levels of synaptic plasticity-related markers, i.e., synaptophysin and phosphorylated Ca2+/calmodulin-dependent protein kinase II, while ascorbic acid prevented the reduction in the hippocampus. Furthermore, ascorbic acid ameliorated D-gal-induced downregulation of superoxide dismutase 1 and 2, sirtuin1, caveolin-1, and brain-derived neurotrophic factor and upregulation of interleukin 1 beta and tumor necrosis factor alpha in the hippocampus. Ascorbic acid-mediated hippocampal restoration from D-gal-induced impairment was associated with an enhanced hippocampus-dependent memory function. Therefore, ascorbic acid ameliorates D-gal-induced impairments through anti-oxidative and anti-inflammatory effects, and it could be an effective dietary supplement against adult brain aging.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Misun Seo
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Jin-Seok Seo
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hyewhon Rhim
- Center for Neuroscience, Korea Institute of Science and Technology, Seoul 02792, Korea.
| | - Sang-Soep Nahm
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Ik-Hyun Cho
- Department of Science in Korean Medicine, Brain Korea 21 Plus Program, Kyung Hee University, Seoul 02447, Korea.
- Department of Cancer Preventive Material Development, Graduate School, Kyung Hee University, Seoul 02447, Korea.
| | - Byung-Joon Chang
- Department of Anatomy, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Hyeon-Joong Kim
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Sun-Hye Choi
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
48
|
Dietary and circulating vitamin C, vitamin E, β-carotene and risk of total cardiovascular mortality: a systematic review and dose-response meta-analysis of prospective observational studies. Public Health Nutr 2019; 22:1872-1887. [PMID: 30630552 DOI: 10.1017/s1368980018003725] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The present review aimed to quantify the association of dietary intake and circulating concentration of major dietary antioxidants with risk of total CVD mortality. DESIGN Systematic review and meta-analysis. SETTING Systematic search in PubMed and Scopus, up to October 2017.ParticipantsProspective observational studies reporting risk estimates of CVD mortality across three or more categories of dietary intakes and/or circulating concentrations of vitamin C, vitamin E and β-carotene were included. A random-effects meta-analysis was conducted. RESULTS A total of fifteen prospective cohort studies and three prospective evaluations within interventional studies (320 548 participants and 16 974 cases) were analysed. The relative risks of CVD mortality for the highest v. the lowest category of antioxidant intakes were as follows: vitamin C, 0·79 (95 % CI 0·68, 0·89; I 2=46 %, n 10); vitamin E, 0·91 (95 % CI 0·79, 1·03; I 2=51 %, n 8); β-carotene, 0·89 (95 % CI 0·73, 1·05; I 2=34 %, n 4). The relative risks for circulating concentrations were: vitamin C, 0·60 (95 % CI 0·42, 0·78; I 2=65 %, n 6); α-tocopherol, 0·82 (95 % CI 0·76, 0·88; I 2=0 %, n 5); β-carotene, 0·68 (95 % CI 0·52, 0·83; I 2=50 %, n 6). Dose-response meta-analyses demonstrated that the circulating biomarkers of antioxidants were more strongly associated with risk of CVD mortality than dietary intakes. CONCLUSIONS The present meta-analysis demonstrates that higher vitamin C intake and higher circulating concentrations of vitamin C, vitamin E and β-carotene are associated with a lower risk of CVD mortality.
Collapse
|
49
|
Daiber A, Xia N, Steven S, Oelze M, Hanf A, Kröller-Schön S, Münzel T, Li H. New Therapeutic Implications of Endothelial Nitric Oxide Synthase (eNOS) Function/Dysfunction in Cardiovascular Disease. Int J Mol Sci 2019; 20:ijms20010187. [PMID: 30621010 PMCID: PMC6337296 DOI: 10.3390/ijms20010187] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023] Open
Abstract
The Global Burden of Disease Study identified cardiovascular risk factors as leading causes of global deaths and life years lost. Endothelial dysfunction represents a pathomechanism that is associated with most of these risk factors and stressors, and represents an early (subclinical) marker/predictor of atherosclerosis. Oxidative stress is a trigger of endothelial dysfunction and it is a hall-mark of cardiovascular diseases and of the risk factors/stressors that are responsible for their initiation. Endothelial function is largely based on endothelial nitric oxide synthase (eNOS) function and activity. Likewise, oxidative stress can lead to the loss of eNOS activity or even “uncoupling” of the enzyme by adverse regulation of well-defined “redox switches” in eNOS itself or up-/down-stream signaling molecules. Of note, not only eNOS function and activity in the endothelium are essential for vascular integrity and homeostasis, but also eNOS in perivascular adipose tissue plays an important role for these processes. Accordingly, eNOS protein represents an attractive therapeutic target that, so far, was not pharmacologically exploited. With our present work, we want to provide an overview on recent advances and future therapeutic strategies that could be used to target eNOS activity and function in cardiovascular (and other) diseases, including life style changes and epigenetic modulations. We highlight the redox-regulatory mechanisms in eNOS function and up- and down-stream signaling pathways (e.g., tetrahydrobiopterin metabolism and soluble guanylyl cyclase/cGMP pathway) and their potential pharmacological exploitation.
Collapse
Affiliation(s)
- Andreas Daiber
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Ning Xia
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Sebastian Steven
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Matthias Oelze
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Alina Hanf
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Swenja Kröller-Schön
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| | - Thomas Münzel
- Center for Cardiology, Cardiology I-Laboratory of Molecular Cardiology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany.
| | - Huige Li
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
50
|
Chen X, Lee J, Wu H, Tsang AW, Furdui CM. Mass Spectrometry in Advancement of Redox Precision Medicine. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:327-358. [PMID: 31347057 PMCID: PMC9236553 DOI: 10.1007/978-3-030-15950-4_19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Redox (portmanteau of reduction-oxidation) reactions involve the transfer of electrons between chemical species in biological processes fundamental to life. It is of outmost importance that cells maintain a healthy redox state by balancing the action of oxidants and antioxidants; failure to do so leads to a multitude of diseases including cancer, diabetes, fibrosis, autoimmune diseases, and cardiovascular and neurodegenerative diseases. From the perspective of precision medicine, it is therefore beneficial to interrogate the redox phenotype of the individual-similar to the use of genomic sequencing-in order to design tailored strategies for disease prevention and treatment. This chapter provides an overview of redox metabolism and focuses on how mass spectrometry (MS) can be applied to advance our knowledge in redox biology and precision medicine.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jingyun Lee
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
| | - Hanzhi Wu
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Allen W Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Cristina M Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
- Wake Forest Baptist Comprehensive Cancer Center, Winston-Salem, NC, USA.
- Center for Redox Biology and Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA.
| |
Collapse
|