1
|
Paul AA, Kadosh YS, Kushmaro A, Marks RS. Microbead-Encapsulated Luminescent Bioreporter Screening of P. aeruginosa via Its Secreted Quorum-Sensing Molecules. BIOSENSORS 2024; 14:383. [PMID: 39194612 DOI: 10.3390/bios14080383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium that remains a prevalent clinical and environmental challenge. Quorum-sensing (QS) molecules are effective biomarkers in pinpointing the presence of P. aeruginosa. This study aimed to develop a convenient-to-use, whole-cell biosensor using P. aeruginosa reporters individually encapsulated within alginate-poly-L-lysine (alginate-PLL) microbeads to specifically detect the presence of bacterial autoinducers. The PLL-reinforced microbeads were prepared using a two-step method involving ionic cross-linking and subsequent coating with thin layers of PLL. The alginate-PLL beads showed good stability in the presence of a known cation scavenger (sodium citrate), which typically limits the widespread applications of calcium alginate. In media containing synthetic autoinducers-such as N-(3-oxo dodecanoyl) homoserine lactone (3-oxo-C12-HSL) and N-butanoyl-L-homoserine lactone (C4-HSL), or the cell-free supernatants of planktonic or the flow-cell biofilm effluent of wild P. aeruginosa (PAO1)-the encapsulated bacteria enabled a dose-dependent detection of the presence of these QS molecules. The prepared bioreporter beads remained stable during prolonged storage at 4 and -80 °C and were ready for on-the-spot sensing without the need for recovery. The proof-of-concept, optical fiber-based, and whole-cell biosensor developed here demonstrates the practicality of the encapsulated bioreporter for bacterial detection based on specific QS molecules.
Collapse
Affiliation(s)
- Abraham Abbey Paul
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Yael Schlichter Kadosh
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Ariel Kushmaro
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
- School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| | - Robert S Marks
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
- The Ilse Katz Center for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel
| |
Collapse
|
2
|
Sremac M, Luo H, Deng H, Parr MFE, Hutcheson J, Verde PS, Alagpulinsa DA, Kitzmann JM, Papas KK, Brauns T, Markmann JF, Lei J, Poznansky MC. Short-term function and immune-protection of microencapsulated adult porcine islets with alginate incorporating CXCL12 in healthy and diabetic non-human primates without systemic immune suppression: A pilot study. Xenotransplantation 2023; 30:e12826. [PMID: 37712342 DOI: 10.1111/xen.12826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 08/10/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023]
Abstract
Replacement of insulin-producing pancreatic beta-cells by islet transplantation offers a functional cure for type-1 diabetes (T1D). We recently demonstrated that a clinical grade alginate micro-encapsulant incorporating the immune-repellent chemokine and pro-survival factor CXCL12 could protect and sustain the integrity and function of autologous islets in healthy non-human primates (NHPs) without systemic immune suppression. In this pilot study, we examined the impact of the CXCL12 micro encapsulant on the function and inflammatory and immune responses of xenogeneic islets transplanted into the omental tissue bilayer sac (OB; n = 4) and diabetic (n = 1) NHPs. Changes in the expression of cytokines after implantation were limited to 2-6-fold changes in blood, most of which did not persist over the first 4 weeks after implantation. Flow cytometry of PBMCs following transplantation showed minimal changes in IFNγ or TNFα expression on xenoantigen-specific CD4+ or CD8+ T cells compared to unstimulated cells, and these occurred mainly in the first 4 weeks. Microbeads were readily retrievable for assessment at day 90 and day 180 and at retrieval were without microscopic signs of degradation or foreign body responses (FBR). In vitro and immunohistochemistry studies of explanted microbeads indicated the presence of functional xenogeneic islets at day 30 post transplantation in all biopsied NHPs. These results from a small pilot study revealed that CXCL12-microencapsulated xenogeneic islets abrogate inflammatory and adaptive immune responses to the xenograft. This work paves the way toward future larger scale studies of the transplantation of alginate microbeads with CXCL12 and porcine or human stem cell-derived beta cells or allogeneic islets into diabetic NHPs without systemic immunosuppression.
Collapse
Affiliation(s)
- Marinko Sremac
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Hao Luo
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of General Surgery, General Hospital of Western Theater Command, Chengdu, China
| | - Hongping Deng
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Madeline F E Parr
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Pushkar S Verde
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - David A Alagpulinsa
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jenna Miner Kitzmann
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Klearchos K Papas
- Department of Surgery, Institute for Cellular Transplantation, University of Arizona, Tucson, Arizona, USA
| | - Timothy Brauns
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - James F Markmann
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ji Lei
- Division of Transplant Surgery and Center of Transplantation Sciences, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Abuqwider J, Di Porzio A, Barrella V, Gatto C, Sequino G, De Filippis F, Crescenzo R, Spagnuolo MS, Cigliano L, Mauriello G, Iossa S, Mazzoli A. Limosilactobacillus reuteri DSM 17938 reverses gut metabolic dysfunction induced by Western diet in adult rats. Front Nutr 2023; 10:1236417. [PMID: 37908302 PMCID: PMC10613642 DOI: 10.3389/fnut.2023.1236417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Microencapsulation of probiotic bacteria is an efficient and innovative new technique aimed at preserving bacterial survival in the hostile conditions of the gastrointestinal tract. However, understanding whether a microcapsule preserves the effectiveness of the bacterium contained within it is of fundamental importance. Methods Male Wistar rats aged 90 days were fed a control diet or a Western diet for 8 weeks, with rats fed the Western diet divided into three groups: one receiving the diet only (W), the second group receiving the Western diet and free L. reuteri DSM 17938 (WR), and the third group receiving the Western diet and microencapsulated L. reuteri DSM 17938 (WRM). After 8 weeks of treatment, gut microbiota composition was evaluated, together with occludin, one of the tight junction proteins, in the ileum and the colon. Markers of inflammation were also quantified in the portal plasma, ileum, and colon, as well as markers for gut redox homeostasis. Results The Western diet negatively influenced the intestinal microbiota, with no significant effect caused by supplementation with free and microencapsulated L. reuteri. However, L. reuteri, in both forms, effectively preserved the integrity of the intestinal barrier, thus protecting enterocytes from the development of inflammation and oxidative stress. Conclusion From these whole data, it emerges that L. reuteri DSM 17938 can be an effective probiotic in preventing the unhealthy consequences of the Western diet, especially in the gut, and that microencapsulation preserves the probiotic effects, thus opening the formulation of new preparations to be able to improve gut function independent of dietary habits.
Collapse
Affiliation(s)
- Jumana Abuqwider
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Di Porzio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Valentina Barrella
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Cristina Gatto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Giuseppina Sequino
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Francesca De Filippis
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | | | - Maria Stefania Spagnuolo
- Department of Bio-Agrofood Science, Institute for the Animal Production System in the Mediterranean Environment, National Research Council Naples (CNR-ISPAAM), Naples, Italy
| | - Luisa Cigliano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Susanna Iossa
- Department of Biology, University of Naples Federico II, Naples, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Arianna Mazzoli
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Applications of bile acids as biomaterials-based modulators, in biomedical science and microfluidics. Ther Deliv 2022; 13:591-604. [PMID: 36861306 DOI: 10.4155/tde-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Chronic disorders such as diabetes mellitus are associated with multiple organ dysfunction, including retinopathy, neuropathy, nephropathy, peripheral vascular disease, and vascular disease. Lifelong subcutaneous insulin injections are currently the only treatment option for patients with Type 1 diabetes mellitus, and it poses numerous challenges. Since the breakthrough achieved from the Edmonton protocol in the year 2000, there has been important research to investigate whether islet cell transplantation can achieve long-term normoglycemia in patients without the need for insulin. The use of biopolymeric scaffold to enclose islet cells has also been explored to improve survivability and viability of islet cells. This review paper summarizes the latest research in using biopolymeric scaffolds in islet transplantation and how microfluidic devices can assist.
Collapse
|
5
|
Qin T, Hu S, Smink AM, de Haan BJ, Silva-Lagos LA, Lakey JR, de Vos P. Inclusion of extracellular matrix molecules and necrostatin-1 in the intracapsular environment of alginate-based microcapsules synergistically protects pancreatic β cells against cytokine-induced inflammatory stress. Acta Biomater 2022; 146:434-449. [PMID: 35500812 DOI: 10.1016/j.actbio.2022.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/01/2022]
Abstract
Immunoisolation of pancreatic islets in alginate-based microcapsules is a promising approach for grafting of islets in absence of immunosuppression. However, loss and damage to the extracellular matrix (ECM) during islet isolation enhance susceptibility of islets for inflammatory stress. In this study, a combined strategy was applied to reduce this stress by incorporating ECM components (collagen type IV/RGD) and necroptosis inhibitor, necrostatin-1 (Nec-1) in alginate-based microcapsules in vitro. To demonstrate efficacy, viability and function of MIN6 β-cells and human islets in capsules with collagen type IV/RGD and/or Nec-1 was investigated in presence and absence of IL-1β, IFN-γ and TNF-α. The combination of collagen type IV/RGD and Nec-1 had higher protective effects than the molecules alone. Presence of collagen type IV/RGD and Nec-1 in the intracapsular environment reduced cytokine-induced overproduction of free radical species and unfavorable shifts in mitochondrial dynamics. In addition, the ECM components collagen type IV/RGD prevented a cytokine induced suppression of the FAK/Akt pathway. Our data indicate that the inclusion of collagen type IV/RGD and Nec-1 in the intracapsular environment prevents islet-cell loss when exposed to inflammatory stress, which might contribute to higher survival of β-cells in the immediate period after transplantation. This approach of inclusion of stress reducing agents in the intracapsular environment of immunoisolating devices may be an effective way to enhance the longevity of encapsulated islet grafts. STATEMENT OF SIGNIFICANCE: Islet-cells in immunoisolated alginate-based microcapsules are very susceptible to inflammatory stress which impacts long-term survival of islet grafts. Here we show that incorporation of ECM components (collagen type IV/RGD) and necrostatin-1 (Nec-1) in the intracapsular environment of alginate-based capsules attenuates this susceptibility and promotes islet-cell survival. This effect induced by collagen type IV/RGD and Nec-1 was probably due to lowering free radical production, preventing mitochondrial dysfunction and by maintaining ECM/integrin/FAK/Akt signaling and Nec-1/RIP1/RIP3 signaling. Our study provides an effective strategy to extend longevity of islet grafts which might be of great potential for future clinical application of immunoisolated cells.
Collapse
|
6
|
Madadelahi M, Azimi-Boulali J, Madou M, Martinez-Chapa SO. Characterization of Fluidic-Barrier-Based Particle Generation in Centrifugal Microfluidics. MICROMACHINES 2022; 13:mi13060881. [PMID: 35744496 PMCID: PMC9228483 DOI: 10.3390/mi13060881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
The fluidic barrier in centrifugal microfluidic platforms is a newly introduced concept for making multiple emulsions and microparticles. In this study, we focused on particle generation application to better characterize this method. Because the phenomenon is too fast to be captured experimentally, we employ theoretical models to show how liquid polymeric droplets pass a fluidic barrier before crosslinking. We explain how secondary flows evolve and mix the fluids within the droplets. From an experimental point of view, the effect of different parameters, such as the barrier length, source channel width, and rotational speed, on the particles’ size and aspect ratio are investigated. It is demonstrated that the barrier length does not affect the particle’s ultimate velocity. Unlike conventional air gaps, the barrier length does not significantly affect the aspect ratio of the produced microparticles. Eventually, we broaden this concept to two source fluids and study the importance of source channel geometry, barrier length, and rotational speed in generating two-fluid droplets.
Collapse
Affiliation(s)
- Masoud Madadelahi
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
- Correspondence: (M.M.); (S.O.M.-C.)
| | - Javid Azimi-Boulali
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Department of Mechanical Engineering, Binghamton University, Binghamton, NY 13902, USA
| | - Marc Madou
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA;
| | - Sergio Omar Martinez-Chapa
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, NL, Mexico;
- Correspondence: (M.M.); (S.O.M.-C.)
| |
Collapse
|
7
|
Mooranian A, Ionescu CM, Wagle SR, Kovacevic B, Walker D, Jones M, Chester J, Foster T, Johnston E, Mikov M, Atlas MD, Al-Salami H. Probucol Pharmacological and Bio-Nanotechnological Effects on Surgically Transplanted Graft Due to Powerful Anti-Inflammatory, Anti-Fibrotic and Potential Bile Acid Modulatory Actions. Pharmaceutics 2021; 13:pharmaceutics13081304. [PMID: 34452266 PMCID: PMC8398853 DOI: 10.3390/pharmaceutics13081304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
INTRODUCTION A major obstacle in islet transplantation and graft survival pre and post transplantation is islet apoptosis due to mainly inflammatory bio molecules released during islet harvesting and post graft transplantation and hence, subsequent graft fibrosis and failure. This study aimed to investigate if incorporation of the anti-inflammatory anti-hyperlipidaemic drug probucol (PB) would improve islet-graft survival and function, post transplantation in Type 1 diabetes (T1D). METHODS T1D was induced in mice, and biological profiles of the diabetic mice transplanted PB-microencapsulated islets harvested from healthy syngeneic mice were measured. RESULTS AND CONCLUSION Compared with sham (no PB), the treated group showed significant reduction in serum levels of interleukin-1β, interleukin-6, interleukin-12, interleukin-17, and tumour necrosis factor-α, accompanied by a 3-fold increase in survival duration, which suggests PB islet-protective effects, post transplantation.
Collapse
Affiliation(s)
- Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Daniel Walker
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Jacqueline Chester
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Edan Johnston
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Momir Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21101 Novi Sad, Serbia;
| | - Marcus D. Atlas
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, Perth, WA 6102, Australia; (A.M.); (C.M.I.); (S.R.W.); (B.K.); (D.W.); (M.J.); (J.C.); (T.F.); (E.J.)
- Hearing Therapeutics, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands, Perth, WA 6009, Australia;
- Correspondence: ; Tel.: +61-8-9266-9816; Fax: +61-8-9266-2769
| |
Collapse
|
8
|
Somo SI, Brown JM, Brey EM. Dual Crosslinking of Alginate Outer Layer Increases Stability of Encapsulation System. Front Chem 2020; 8:575278. [PMID: 33282827 PMCID: PMC7688585 DOI: 10.3389/fchem.2020.575278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/21/2020] [Indexed: 01/17/2023] Open
Abstract
The current standard treatment for Type 1 diabetes is the administration of exogenous insulin to manage blood glucose levels. Cellular therapies are in development to address this dependency and allow patients to produce their own insulin. Studies have shown that viable, functional allogenic islets can be encapsulated inside alginate-based materials as a potential treatment for Type 1 diabetes. The capability of these grafts is limited by several factors, among which is the stability and longevity of the encapsulating material in vivo. Previous studies have shown that multilayer Alginate-Poly-L-Ornithine-Alginate (A-PLO-A) microbeads are effective in maintaining cellular function in vivo. This study expands upon the existing encapsulation material by investigating whether covalent crosslinking of the outer alginate layer increases stability. The alginate comprising the outer layer was methacrylated, allowing it to be covalently crosslinked. Microbeads with a crosslinked outer layer exhibited a consistent outer layer thickness and increased stability when exposed to chelating agents in vitro. The outer layer was maintained in vivo even in the presence of a robust inflammatory response. The results demonstrate a technique for generating A-PLO-A with a covalently crosslinked outer layer.
Collapse
Affiliation(s)
- Sami I. Somo
- Biomedical Engineering Department, Illinois Institute of Technology, Chicago, IL, United States
| | - Jacob M. Brown
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
| | - Eric M. Brey
- Biomedical Engineering Department, University of Texas at San Antonio, San Antonio, TX, United States
- *Correspondence: Eric M. Brey
| |
Collapse
|
9
|
Hu S, Kuwabara R, Navarro Chica CE, Smink AM, Koster T, Medina JD, de Haan BJ, Beukema M, Lakey JRT, García AJ, de Vos P. Toll-like receptor 2-modulating pectin-polymers in alginate-based microcapsules attenuate immune responses and support islet-xenograft survival. Biomaterials 2020; 266:120460. [PMID: 33099059 DOI: 10.1016/j.biomaterials.2020.120460] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/03/2020] [Accepted: 10/18/2020] [Indexed: 12/14/2022]
Abstract
Encapsulation of pancreatic islets in alginate-microcapsules is used to reduce or avoid the application of life-long immunosuppression in preventing rejection. Long-term graft function, however, is limited due to varying degrees of host tissue responses against the capsules. Major graft-longevity limiting responses include inflammatory responses provoked by biomaterials and islet-derived danger-associated molecular patterns (DAMPs). This paper reports on a novel strategy for engineering alginate microcapsules presenting immunomodulatory polymer pectin with varying degrees of methyl-esterification (DM) to reduce these host tissue responses. DM18-pectin/alginate microcapsules show a significant decrease of DAMP-induced Toll-Like Receptor-2 mediated immune activation in vitro, and reduce peri-capsular fibrosis in vivo in mice compared to higher DM-pectin/alginate microcapsules and conventional alginate microcapsules. By testing efficacy of DM18-pectin/alginate microcapsules in vivo, we demonstrate that low-DM pectin support long-term survival of xenotransplanted rat islets in diabetic mice. This study provides a novel strategy to attenuate host responses by creating immunomodulatory capsule surfaces that attenuate activation of specific pro-inflammatory immune receptors locally at the transplantation site.
Collapse
Affiliation(s)
- Shuxian Hu
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands.
| | - Rei Kuwabara
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Carlos E Navarro Chica
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Alexandra M Smink
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Taco Koster
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Juan D Medina
- Coulter Department of Biomedical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Martin Beukema
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, 333 City Boulevard West Suite 1600, Orange, CA, 92868, USA; Department of Biomedical Engineering, University of California Irvine, 5200 Engineering Hall, Irvine, CA, 92697, USA
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332, USA
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA 11, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
10
|
Li Y, Frei AW, Yang EY, Labrada-Miravet I, Sun C, Rong Y, Samojlik MM, Bayer AL, Stabler CL. In vitro platform establishes antigen-specific CD8 + T cell cytotoxicity to encapsulated cells via indirect antigen recognition. Biomaterials 2020; 256:120182. [PMID: 32599358 PMCID: PMC7480933 DOI: 10.1016/j.biomaterials.2020.120182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
The curative potential of non-autologous cellular therapy is hindered by the requirement of anti-rejection therapy. Cellular encapsulation within nondegradable biomaterials has the potential to inhibit immune rejection, but the efficacy of this approach in robust preclinical and clinical models remains poor. While the responses of innate immune cells to the encapsulating material have been characterized, little attention has been paid to the contributions of adaptive immunity in encapsulated graft destabilization. Avoiding the limitations of animal models, we established an efficient, antigen-specific in vitro platform capable of delineating direct and indirect host T cell recognition to microencapsulated cellular grafts and evaluated their consequential impacts. Using ovalbumin (OVA) as a model antigen, we determined that alginate microencapsulation abrogates direct CD8+ T cell activation by interrupting donor-host interaction; however, indirect T cell activation, mediated by host antigen presenting cells (APCs) primed with shed donor antigens, still occurs. These activated T cells imparted cytotoxicity on the encapsulated cells, likely via diffusion of cytotoxic solutes. Overall, this platform delivers unique mechanistic insight into the impacts of hydrogel encapsulation on host adaptive immune responses, comprehensively addressing a long-standing hypothesis of the field. Furthermore, it provides an efficient benchtop screening tool for the investigation of new encapsulation methods and/or synergistic immunomodulatory agents.
Collapse
Affiliation(s)
- Ying Li
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Anthony W Frei
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Ethan Y Yang
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA
| | - Irayme Labrada-Miravet
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Chuqiao Sun
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Yanan Rong
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Magdalena M Samojlik
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Allison L Bayer
- Diabetes Research Institute, College of Medicine, University of Miami, Miami, FL, USA; Department of Microbiology and Immunology, University of Miami, Miami, FL, USA
| | - Cherie L Stabler
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA; Graduate Program in Biomedical Sciences, College of Medicine, University of Florida, Gainesville, FL, USA; University of Florida Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
11
|
Chen S, Du K, Zou C. Current progress in stem cell therapy for type 1 diabetes mellitus. Stem Cell Res Ther 2020; 11:275. [PMID: 32641151 PMCID: PMC7346484 DOI: 10.1186/s13287-020-01793-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/19/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is the most common chronic autoimmune disease in young patients and is characterized by the loss of pancreatic β cells; as a result, the body becomes insulin deficient and hyperglycemic. Administration or injection of exogenous insulin cannot mimic the endogenous insulin secreted by a healthy pancreas. Pancreas and islet transplantation have emerged as promising treatments for reconstructing the normal regulation of blood glucose in T1DM patients. However, a critical shortage of pancreases and islets derived from human organ donors, complications associated with transplantations, high cost, and limited procedural availability remain bottlenecks in the widespread application of these strategies. Attempts have been directed to accommodate the increasing population of patients with T1DM. Stem cell therapy holds great potential for curing patients with T1DM. With the advent of research on stem cell therapy for various diseases, breakthroughs in stem cell-based therapy for T1DM have been reported. However, many unsolved issues need to be addressed before stem cell therapy will be clinically feasible for diabetic patients. In this review, we discuss the current research advances in strategies to obtain insulin-producing cells (IPCs) from different precursor cells and in stem cell-based therapies for diabetes.
Collapse
Affiliation(s)
- Shuai Chen
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Kechen Du
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunlin Zou
- Key Laboratory of Longevity and Ageing-Related Disease of Chinese Ministry of Education, Center for Translational Medicine and School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
12
|
Ashimova A, Yegorov S, Negmetzhanov B, Hortelano G. Cell Encapsulation Within Alginate Microcapsules: Immunological Challenges and Outlook. Front Bioeng Biotechnol 2019; 7:380. [PMID: 31850335 PMCID: PMC6901392 DOI: 10.3389/fbioe.2019.00380] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022] Open
Abstract
Cell encapsulation is a bioengineering technology that provides live allogeneic or xenogeneic cells packaged in a semipermeable immune-isolating membrane for therapeutic applications. The concept of cell encapsulation was first proposed almost nine decades ago, however, and despite its potential, the technology has yet to deliver its promise. The few clinical trials based on cell encapsulation have not led to any licensed therapies. Progress in the field has been slow, in part due to the complexity of the technology, but also because of the difficulties encountered when trying to prevent the immune responses generated by the various microcapsule components, namely the polymer, the encapsulated cells, the therapeutic transgenes and the DNA vectors used to genetically engineer encapsulated cells. While the immune responses induced by polymers such as alginate can be minimized using highly purified materials, the need to cope with the immunogenicity of encapsulated cells is increasingly seen as key in preventing the immune rejection of microcapsules. The encapsulated cells are recognized by the host immune cells through a bidirectional exchange of immune mediators, which induce both the adaptive and innate immune responses against the engrafted capsules. The potential strategies to cope with the immunogenicity of encapsulated cells include the selective diffusion restriction of immune mediators through capsule pores and more recently inclusion in microcapsules of immune modulators such as CXCL12. Combining these strategies with the use of well-characterized cell lines harboring the immunomodulatory properties of stem cells should encourage the incorporation of cell encapsulation technology in state-of-the-art drug development.
Collapse
Affiliation(s)
- Assem Ashimova
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Sergey Yegorov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Pedagogical Mathematics and Natural Science, Faculty of Education and Humanities, Suleyman Demirel University, Almaty, Kazakhstan
| | - Baurzhan Negmetzhanov
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
- National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Gonzalo Hortelano
- Department of Biology, School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
13
|
Bansal A, D'Sa S, D'Souza MJ. Biofabrication of microcapsules encapsulating beta-TC-6 cells via scalable device and in-vivo evaluation in type 1 diabetic mice. Int J Pharm 2019; 572:118830. [PMID: 31715349 DOI: 10.1016/j.ijpharm.2019.118830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/21/2019] [Accepted: 10/26/2019] [Indexed: 02/08/2023]
Abstract
Type 1 diabetes mellitus (T1DM) is a disease characterized by lack of pancreatic islet function. Whole tissue transplantation appears to be a viable alternative in the management of T1DM. This study aims at the fabrication and evaluation of alginate-chitosan microcapsules encapsulating insulin-secreting beta-TC-6 cells using an automated spraying nozzle. Uniform spherical microcapsules (250-350 µm) encapsulated with beta-TC-6 cells were fabricated in large quantities in a short span of time. Microencapsulated beta-TC-6 cells were transplanted intraperitoneally into streptozotocin (STZ) induced diabetic mice and monitored for immune tolerance and decrease in blood glucose levels. Mice that received microencapsulated beta-TC-6 cells maintained normoglycemia for 35 ± 5 days before rejection. However, the group that received naked beta-TC-6 cells rejected the cells within 1-2 days, unable to control elevated blood glucose levels. They also exhibited high immune reactions, as evidenced by elevated levels of CD8+ and CD62L T cells. CD4+ T cells that mediated a Th2 response (humoral response) were predominant in microencapsulated beta-TC-6 cells and cells only group as evidenced by elevated levels of CD45R. Our findings from the in-vivo study demonstrated that transplantation of microencapsulated beta-TC-6 cells can be a viable alternative in the management of T1DM with acceptable immune response.
Collapse
Affiliation(s)
- Amit Bansal
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA.
| | - Sucheta D'Sa
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| | - Martin J D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, Mercer University, College of Pharmacy, Atlanta, GA 30341, USA
| |
Collapse
|
14
|
Duin S, Schütz K, Ahlfeld T, Lehmann S, Lode A, Ludwig B, Gelinsky M. 3D Bioprinting of Functional Islets of Langerhans in an Alginate/Methylcellulose Hydrogel Blend. Adv Healthc Mater 2019; 8:e1801631. [PMID: 30835971 DOI: 10.1002/adhm.201801631] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/24/2019] [Indexed: 12/16/2022]
Abstract
Transplantation of pancreatic islets is a promising strategy to alleviate the unstable blood-glucose control that some patients with diabetes type 1 exhibit and has seen many advances over the years. Protection of transplanted islets from the immune system can be accomplished by encapsulation within a hydrogel, the most investigated of which is alginate. In this study, islet encapsulation is combined with 3D extrusion bioprinting, an additive manufacturing method which enables the fabrication of 3D structures with a precise geometry to produce macroporous hydrogel constructs with embedded islets. Using a plottable hydrogel blend consisting of clinically approved ultrapure alginate and methylcellulose (Alg/MC) enables encapsulating pancreatic islets in macroporous 3D hydrogel constructs of defined geometry while retaining their viability, morphology, and functionality. Diffusion of glucose and insulin in the Alg/MC hydrogel is comparable to diffusion in plain alginate; the embedded islets continuously produce insulin and glucagon throughout the observation and still react to glucose stimulation albeit to a lesser degree than control islets.
Collapse
Affiliation(s)
- Sarah Duin
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Kathleen Schütz
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Tilman Ahlfeld
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Susann Lehmann
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Hospital Carl Gustav Carus of Technische Universität Dresden and German Centre for Diabetes Research Dresden, Tatzberg 47‐49 01307 Dresden Germany
| | - Anja Lode
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| | - Barbara Ludwig
- Paul Langerhans Institute Dresden of Helmholtz Centre Munich at University Hospital Carl Gustav Carus of Technische Universität Dresden and German Centre for Diabetes Research Dresden, Tatzberg 47‐49 01307 Dresden Germany
- Department of Medicine IIIUniversity Hospital Carl Gustav CarusTechnische Universität Dresden Fetscherstraße 74 01307 Dresden Germany
| | - Michael Gelinsky
- Centre for Translational BoneJoint and Soft Tissue ResearchUniversity Hospital Carl Gustav Carus and Faculty of Medicine of Technische Universität Dresden Fetscherstr. 74 01307 Dresden Germany
| |
Collapse
|
15
|
Wang T. Successful diabetes management without immunosuppressivedrugs in NHP model has been demonstrated. Encapsulation system with taperednanopore conduits achieved normal glycaemia with regulated insulin release. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 46:S1162-S1168. [DOI: 10.1080/21691401.2018.1533847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Taylor Wang
- Department of Mechanical Engineering, School of Engineering, Vanderbilt University, Nashville, TN, USA
- Applied Physics Program, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
16
|
Espona-Noguera A, Etxebarria-Elezgarai J, Saenz Del Burgo L, Cañibano-Hernández A, Gurruchaga H, Blanco FJ, Orive G, Hernández RM, Benito-Lopez F, Ciriza J, Basabe-Desmonts L, Pedraz JL. Type 1 Diabetes Mellitus reversal via implantation of magnetically purified microencapsulated pseudoislets. Int J Pharm 2019; 560:65-77. [PMID: 30742984 DOI: 10.1016/j.ijpharm.2019.01.058] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 01/13/2023]
Abstract
Microencapsulation of pancreatic islets for the treatment of Type I Diabetes Mellitus (T1DM) generates a high quantity of empty microcapsules, resulting in high therapeutic graft volumes that can enhance the host's immune response. We report a 3D printed microfluidic magnetic sorting device for microcapsules purification with the objective to reduce the number of empty microcapsules prior transplantation. In this study, INS1E pseudoislets were microencapsulated within alginate (A) and alginate-poly-L-lysine-alginate (APA) microcapsules and purified through the microfluidic device. APA microcapsules demonstrated higher mechanical integrity and stability than A microcapsules, showing better pseudoislets viability and biological function. Importantly, we obtained a reduction of the graft volume of 77.5% for A microcapsules and 78.6% for APA microcapsules. After subcutaneous implantation of induced diabetic Wistar rats with magnetically purified APA microencapsulated pseudoislets, blood glucose levels were restored into normoglycemia (<200 mg/dL) for almost 17 weeks. In conclusion, our described microfluidic magnetic sorting device represents a great alternative approach for the graft volume reduction of microencapsulated pseudoislets and its application in T1DM disease.
Collapse
Affiliation(s)
- A Espona-Noguera
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J Etxebarria-Elezgarai
- BIOMICs-microfluidics Research Group, Microfluidics Cluster UPV/EHU, University of the Basque Country, Spain
| | - L Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - A Cañibano-Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - H Gurruchaga
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - F J Blanco
- INIBIC-Hospital Universitario La Coruña, La Coruña, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), La Coruña, Spain
| | - G Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), BTI Biotechnology Institute, Vitoria-Gasteiz, Spain
| | - Rosa M Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - F Benito-Lopez
- AMMa LOAC Research Group, Microfluidics Cluster UPV/EHU, University of the Basque Country, Spain
| | - J Ciriza
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - L Basabe-Desmonts
- BIOMICs-microfluidics Research Group, Microfluidics Cluster UPV/EHU, University of the Basque Country, Spain; Basque Foundation of Science, IKERBASQUE, Spain.
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Engineering endocrine pancreatic tissue is an emerging topic in type 1 diabetes with the intent to overcome the current limitation of β cell transplantation. During islet isolation, the vascularized structure and surrounding extracellular matrix (ECM) are completely disrupted. Once implanted, islets slowly engraft and mostly are lost for the initial avascular phase. This review discusses the main building blocks required to engineer the endocrine pancreas: (i) islet niche ECM, (ii) islet niche vascular network, and (iii) new available sources of endocrine cells. RECENT FINDINGS Current approaches include the following: tissue engineering of endocrine grafts by seeding of native or synthetic ECM scaffolds with human islets, vascularization of native or synthetic ECM prior to implantation, vascular functionalization of ECM structures to enhance angiogenesis after implantation, generation of engineered animals as human organ donors, and embryonic and pluripotent stem cell-derived endocrine cells that may be encapsulated or genetically engineered to be immunotolerated. Substantial technological improvements have been made to regenerate or engineer endocrine pancreatic tissue; however, significant hurdles remain, and more research is needed to develop a technology to integrate all components of viable endocrine tissue for clinical application.
Collapse
Affiliation(s)
- Antonio Citro
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, CPZN 4700, Boston, MA, 02114, USA.
- Harvard Medical School, Boston, MA, USA.
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
18
|
Safley SA, Kenyon NS, Berman DM, Barber GF, Willman M, Duncanson S, Iwakoshi N, Holdcraft R, Gazda L, Thompson P, Badell IR, Sambanis A, Ricordi C, Weber CJ. Microencapsulated adult porcine islets transplanted intraperitoneally in streptozotocin-diabetic non-human primates. Xenotransplantation 2018; 25:e12450. [PMID: 30117193 DOI: 10.1111/xen.12450] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 05/18/2018] [Accepted: 06/26/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Xenogeneic donors would provide an unlimited source of islets for the treatment of type 1 diabetes (T1D). The goal of this study was to assess the function of microencapsulated adult porcine islets (APIs) transplanted ip in streptozotocin (STZ)-diabetic non-human primates (NHPs) given targeted immunosuppression. METHODS APIs were encapsulated in: (a) single barium-gelled alginate capsules or (b) double alginate capsules with an inner, islet-containing compartment and a durable, biocompatible outer alginate layer. Immunosuppressed, streptozotocin-diabetic NHPs were transplanted ip with encapsulated APIs, and graft function was monitored by measuring blood glucose, %HbA1c, and porcine C-peptide. At graft failure, explanted capsules were assessed for biocompatibility and durability plus islet viability and functionality. Host immune responses were evaluated by phenotyping peritoneal cell populations, quantitation of peritoneal cytokines and chemokines, and measurement of anti-porcine IgG and IgM plus anti-Gal IgG. RESULTS NHP recipients had reduced hyperglycemia, decreased exogenous insulin requirements, and lower percent hemoglobin A1c (%HbA1c) levels. Porcine C-peptide was detected in plasma of all recipients, but these levels diminished with time. However, relatively high levels of porcine C-peptide were detected locally in the peritoneal graft site of some recipients at sacrifice. IV glucose tolerance tests demonstrated metabolic function, but the grafts eventually failed in all diabetic NHPs regardless of the type of encapsulation or the host immunosuppression regimen. Explanted microcapsules were intact, "clean," and free-floating without evidence of fibrosis at graft failure, and some reversed diabetes when re-implanted ip in diabetic immunoincompetent mice. Histology of explanted capsules showed scant evidence of a host cellular response, and viable islets could be found. Flow cytometric analyses of peritoneal cells and peripheral blood showed similarly minimal evidence of a host immune response. Preformed anti-porcine IgG and IgM antibodies were present in recipient plasma, but these levels did not rise post-transplant. Peritoneal graft site cytokine or chemokine levels were equivalent to normal controls, with the exception of minimal elevation observed for IL-6 or IL-1β, GRO-α, I-309, IP-10, and MCP-1. However, we found central necrosis in many of the encapsulated islets after graft failure, and explanted islets expressed endogenous markers of hypoxia (HIF-1α, osteopontin, and GLUT-1), suggesting a role for non-immunologic factors, likely hypoxia, in graft failure. CONCLUSIONS With donor xenoislet microencapsulation and host immunosuppression, APIs corrected hyperglycemia after ip transplantation in STZ-diabetic NHPs in the short term. The islet xenografts lost efficacy gradually, but at graft failure, some viable islets remained, substantial porcine C-peptide was detected in the peritoneal graft site, and there was very little evidence of a host immune response. We postulate that chronic effects of non-immunologic factors, such as in vivo hypoxic and hyperglycemic conditions, damaged the encapsulated islet xenografts. To achieve long-term function, new approaches must be developed to prevent this damage, for example, by increasing the oxygen supply to microencapsulated islets in the ip space.
Collapse
Affiliation(s)
- Susan A Safley
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Norma S Kenyon
- Diabetes Research Institute, Miami, Florida.,Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida
| | - Dora M Berman
- Diabetes Research Institute, Miami, Florida.,Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida
| | | | | | - Stephanie Duncanson
- Department of Biomedical Engineering, School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Neal Iwakoshi
- Department of Surgery, Emory University, Atlanta, Georgia
| | | | | | - Peter Thompson
- Department of Surgery, Emory University, Atlanta, Georgia
| | - I Raul Badell
- Department of Surgery, Emory University, Atlanta, Georgia
| | - Athanassios Sambanis
- Department of Biomedical Engineering, School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Camillo Ricordi
- Diabetes Research Institute, Miami, Florida.,Department of Surgery, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Microbiology & Immunology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Pathology, Miller School of Medicine, University of Miami, Miami, Florida.,Department of Medicine, Miller School of Medicine, University of Miami, Miami, Florida
| | - Collin J Weber
- Department of Surgery, Emory University, Atlanta, Georgia
| |
Collapse
|
19
|
Llacua LA, Faas MM, de Vos P. Extracellular matrix molecules and their potential contribution to the function of transplanted pancreatic islets. Diabetologia 2018; 61:1261-1272. [PMID: 29306997 PMCID: PMC6449002 DOI: 10.1007/s00125-017-4524-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/18/2017] [Indexed: 12/18/2022]
Abstract
Extracellular matrix (ECM) molecules are responsible for structural and biochemical support, as well as for regulation of molecular signalling and tissue repair in many organ structures, including the pancreas. In pancreatic islets, collagen type IV and VI, and laminins are the most abundant molecules, but other ECM molecules are also present. The ECM interacts with specific combinations of integrin α/β heterodimers on islet cells and guides many cellular processes. More specifically, some ECM molecules are involved in beta cell survival, function and insulin production, while others can fine tune the susceptibility of islet cells to cytokines. Further, some ECM induce release of growth factors to facilitate tissue repair. During enzymatic isolation of islets for transplantation, the ECM is damaged, impacting islet function. However, restoration of the ECM in human islets (for example by adding ECM to the interior of immunoprotective capsules) has been shown to enhance islet function. Here, we provide current insight into the role of ECM molecules in islet function and discuss the clinical potential of ECM manipulation to enhance pancreatic islet function and survival.
Collapse
Affiliation(s)
- L Alberto Llacua
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1 EA11, 9700 RB, Groningen, the Netherlands.
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Marijke M Faas
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1 EA11, 9700 RB, Groningen, the Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Hanzeplein 1 EA11, 9700 RB, Groningen, the Netherlands
- University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
20
|
Llacua LA, Hoek A, de Haan BJ, de Vos P. Collagen type VI interaction improves human islet survival in immunoisolating microcapsules for treatment of diabetes. Islets 2018; 10:60-68. [PMID: 29521546 PMCID: PMC5895175 DOI: 10.1080/19382014.2017.1420449] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/11/2017] [Accepted: 12/14/2017] [Indexed: 01/12/2023] Open
Abstract
Collagens are the most abundant fibrous protein in the human body and constitute the main structural element of the extracellular matrix. It provides mechanical and physiological support for cells. In the pancreas, collagen VI content is more than double that of collagen I or IV. It is a major component of the islet-exocrine interface and could be involved in islet-cell survival. To test the impact of collagen VI on human encapsulated pancreatic islets-cells, we tested the effects of exogenous collagen type VI on in vitro functional survival of alginate encapsulated human islet-cells. Concentrations tested ranged from 0.1 to 50 µg/ml. Islets in capsules without collagen type VI served as control. Islet-cell interaction with collagen type VI at concentrations of 0.1 and 10 µg/ml, promoted islet-cell viability (p<0.05). Although no improvement in glucose induced insulin secretion (GSIS) was observed, islets in capsules without incorporation of collagen type VI showed more dysfunction and oxygen consumption rates was improved by inclusion of collagen type VI. Our results demonstrate that incorporation of collagen type VI in immunoisolated human islets supports in vitro viability and survival of human pancreatic islets.
Collapse
Affiliation(s)
- L. Alberto Llacua
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Arjan Hoek
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Bart J. de Haan
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Section of Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
21
|
Orive G, Emerich D, Khademhosseini A, Matsumoto S, Hernández RM, Pedraz JL, Desai T, Calafiore R, de Vos P. Engineering a Clinically Translatable Bioartificial Pancreas to Treat Type I Diabetes. Trends Biotechnol 2018; 36:445-456. [PMID: 29455936 DOI: 10.1016/j.tibtech.2018.01.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Encapsulating, or immunoisolating, insulin-secreting cells within implantable, semipermeable membranes is an emerging treatment for type 1 diabetes. This approach can eliminate the need for immunosuppressive drug treatments to prevent transplant rejection and overcome the shortage of donor tissues by utilizing cells derived from allogeneic or xenogeneic sources. Encapsulation device designs are being optimized alongside the development of clinically viable, replenishable, insulin-producing stem cells, for the first time creating the possibility of widespread therapeutic use of this technology. Here, we highlight the status of the most advanced and widely explored implementations of cell encapsulation with an eye toward translating the potential of this technological approach to medical reality.
Collapse
Affiliation(s)
- Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria, Spain; BTI Biotechnology Institute, Vitoria, Spain; Joint first authors and contributed equally to the paper.
| | - Dwaine Emerich
- NsGene,225 Chapman Street, Providence, RI, USA; Joint first authors and contributed equally to the paper
| | - Ali Khademhosseini
- Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA, USA; Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA, USA. http://twitter.com/@khademh
| | - Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory, 115 Kuguhara, Tateiwa, Muya-cho, Naruto, Tokushima 772-8601, Japan
| | - R M Hernández
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - J L Pedraz
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Tejal Desai
- University of California, San Francisco, Department of Bioengineering and Therapeutic Sciences, Byers Hall Room 203C, MC 2520, 1700 4th Street, San Francisco, CA, USA
| | - Riccardo Calafiore
- Department of Medicine, Section of Cardiovascular, Endocrine and Metabolic Clinical Physiology, Laboratory for Endocrine Cell Transplants and Biohybrid Organs, University of Perugia, Piazzale Gambuli, Perugia, Italy; Joint first authors and contributed equally to the paper
| | - Paul de Vos
- University of Groningen, Pathology and Medical Biology Section, Immunoendocrinology, Groningen, The Netherlands.
| |
Collapse
|
22
|
Abstract
The principle of immunoisolation of cells is based on encapsulation of cells in immunoprotective but semipermeable membranes that protect cells from hazardous effects of the host immune system but allows ingress of nutrients and outgress of therapeutic molecules. The technology was introduced in 1933 but has only received its deserved attention for its therapeutic application for three decades now.In the past decade important advances have been made in creating capsules that provoke minimal or no inflammatory responses. There are however new emerging challenges. These challenges relate to optimal nutrition and oxygen supply as well as standardization and documentation of capsule properties.It is concluded that the proof of principle of applicability of encapsulated grafts for treatment of human disease has been demonstrated and merits optimism about its clinical potential. Further innovation requires a much more systematic approach in identifying crucial properties of capsules and cellular grafts to allow sound interpretations of the results.
Collapse
Affiliation(s)
- Paul de Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, Groningen, The Netherlands.
| |
Collapse
|
23
|
Krishnan R, Ko D, Foster CE, Liu W, Smink AM, de Haan B, De Vos P, Lakey JRT. Immunological Challenges Facing Translation of Alginate Encapsulated Porcine Islet Xenotransplantation to Human Clinical Trials. Methods Mol Biol 2017; 1479:305-333. [PMID: 27738946 DOI: 10.1007/978-1-4939-6364-5_24] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transplantation of alginate-encapsulated islets has the potential to treat patients suffering from type I diabetes, a condition characterized by an autoimmune attack against insulin-secreting beta cells. However, there are multiple immunological challenges associated with this procedure, all of which must be adequately addressed prior to translation from trials in small animal and nonhuman primate models to human clinical trials. Principal threats to graft viability include immune-mediated destruction triggered by immunogenic alginate impurities, unfavorable polymer composition and surface characteristics, and release of membrane-permeable antigens, as well as damage associated molecular patterns (DAMPs) by the encapsulated islets themselves. The lack of standardization of significant parameters of bioencapsulation device design and manufacture (i.e., purification protocols, surface-modification grafting techniques, alginate composition modifications) between labs is yet another obstacle that must be overcome before a clinically effective and applicable protocol for encapsulating islets can be implemented. Nonetheless, substantial progress is being made, as is evident from prolonged graft survival times and improved protection from immune-mediated graft destruction reported by various research groups, but also with regard to discoveries of specific pathways involved in explaining observed outcomes. Progress in the latter is essential for a comprehensive understanding of the mechanisms responsible for the varying levels of immunogenicity of certain alginate devices. Successful translation of encapsulated islet transplantation from in vitro and animal model testing to human clinical trials hinges on application of this knowledge of the pathways and interactions which comprise immune-mediated rejection. Thus, this review not only focuses on the different factors contributing to provocation of the immune reaction by encapsulated islets, but also on the defining characteristics of the response itself.
Collapse
Affiliation(s)
- Rahul Krishnan
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - David Ko
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA
| | - Clarence E Foster
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA.,Department of Transplantation, University of California Irvine, Orange, CA, USA
| | - Wendy Liu
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA
| | - A M Smink
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Bart de Haan
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Paul De Vos
- Division of Immuno-Endocrinology, Departments of Pathology and Laboratory Medicine, University of Groningen, Groningen, The Netherlands
| | - Jonathan R T Lakey
- Department of Surgery, University of California Irvine, 333 City Blvd West, Suite 1600, Orange, CA, 92868, USA. .,Department of Transplantation, University of California Irvine, Orange, CA, USA. .,Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
24
|
Gonzalez-Pujana A, Santos E, Orive G, Pedraz JL, Hernandez RM. Cell microencapsulation technology: Current vision of its therapeutic potential through the administration routes. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Morga M, Michna A, Adamczyk Z. Formation and stability of polyelectrolyte/polypeptide monolayers determined by electrokinetic measurements. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
26
|
A Retrievable, Efficacious Polymeric Scaffold for Subcutaneous Transplantation of Rat Pancreatic Islets. Ann Surg 2017; 266:149-157. [PMID: 27429018 DOI: 10.1097/sla.0000000000001919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE We aim on developing a polymeric ectopic scaffold in a readily accessible site under the skin. SUMMARY BACKGROUND DATA The liver as transplantation site for pancreatic islets is associated with significant loss of islets. Several extrahepatic sites were tested in experimental animals, but many have practical limitations in the clinical setting and do not have the benefit of easy accessibility. METHODS AND RESULTS Functional survival of rat islets was tested during 7 days of culture in the presence of poly(D,L-lactide-co-ε-caprolactone) (PDLLCL), poly(ethylene oxide terephthalate)/polybutylene terephthalate (PEOT/PBT) block copolymer, and polysulfone. Tissue responses were studied in vivo after subcutaneous implantation in rats. Culture on PEOT/PBT and polysulfone profoundly disturbed function of islets, and induced severe tissue responses in vivo. Modification of their hydrophilicity did not change the suitability of the polymers. PDLLCL was the only polymer that promoted functional survival of rat islets in vitro and was associated with minor tissue reactions after 28 days. Rat islets were transplanted in the PDLLCL scaffold in a diabetic rat model. Before islet seeding, the scaffold was allowed to engraft for 28 days to allow the tissue response to dampen and to allow blood vessel growth into the device. Islet transplantation into the scaffold resulted in normoglycemia within 3 days and for the duration of the study period of 16 weeks. CONCLUSIONS In conclusion, we found that some polymers such as PEOT/PBT and polysulfone interfere with islet function. PDLLCL is a suitable polymer to create an artificial islet transplantation site under the skin and supports islet survival.
Collapse
|
27
|
Progress in emerging techniques for characterization of immobilized viable whole-cell biocatalysts. CHEMICAL PAPERS 2017. [DOI: 10.1007/s11696-017-0243-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
28
|
de Haan BJ, Faas MM, de Vos P. Factors Influencing Insulin Secretion from Encapsulated Islets. Cell Transplant 2017; 12:617-25. [PMID: 14579930 DOI: 10.3727/000000003108747226] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Adequate regulation of glucose levels by a microencapsulated pancreatic islet graft requires a minute-to-minute regulation of blood glucose. To design such a transplant, it is mandatory to have sufficient insight in factors influencing the kinetics of insulin secretion by encapsulated islets. The present study investigates factors influencing the glucose-induced insulin response of encapsulated islets in vitro. We applied static incubations and did the following observations. (i) Small islets (90–120 μm) showed a similar instead of a lower glucose-induced insulin response, suggesting that inclusion of only small islets, which are associated with lower protrusion and failing rates, has no consequences for the functional performance of the graft. (ii) A capsule diameter of 800 μm showed identical rather than lower glucose-induced insulin responses as smaller, 500-μm capsules. (iii) Capsule membranes constructed with a conventional permeability interfered with diffusion of insulin, as illustrated by a lower response of islets in capsules with a 10-min poly-L-lysine (PLL) membrane than islets in capsules with a 5-min PLL membrane. (iv) Irrespective of the tested porosity, the capsules provided sufficient immunoprotection because the 10-min PLL membranes did block diffusion of the cytokines IL-1β (17 kDa) and TNF-α (70 kDa) while the 5-min PLL membranes interfered with the diffusion of the vast majority of the cytokines. We conclude that capsules containing small islets (90–120 μm) and a membrane with a lower permeability than routinely applied is preferred in order to obtain a graft with adequate glucose-induced insulin responses.
Collapse
Affiliation(s)
- Bart J de Haan
- Immunoendocrinology, Department of Pathology and Laboratory Medicine, Section of Medical Biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands.
| | | | | |
Collapse
|
29
|
Abstract
Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.
Collapse
Affiliation(s)
- Vijayaganapathy Vaithilingam
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia
| | - Sumeet Bal
- Materials Science and Engineering, Commonwealth Scientific and Industrial Research Organization (CSIRO), North Ryde, New South Wales, Australia
| | - Bernard E Tuch
- School of Medical Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
30
|
Leong WY, Soon CF, Wong SC, Tee KS, Cheong SC, Gan SH, Youseffi M. In Vitro Growth of Human Keratinocytes and Oral Cancer Cells into Microtissues: An Aerosol-Based Microencapsulation Technique. Bioengineering (Basel) 2017; 4:E43. [PMID: 28952522 PMCID: PMC5590479 DOI: 10.3390/bioengineering4020043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/08/2017] [Accepted: 05/12/2017] [Indexed: 12/03/2022] Open
Abstract
Cells encapsulation is a micro-technology widely applied in cell and tissue research, tissue transplantation, and regenerative medicine. In this paper, we proposed a growth of microtissue model for the human keratinocytes (HaCaT) cell line and an oral squamous cell carcinoma (OSCC) cell line (ORL-48) based on a simple aerosol microencapsulation technique. At an extrusion rate of 20 μL/min and air flow rate of 0.3 L/min programmed in the aerosol system, HaCaT and ORL-48 cells in alginate microcapsules were encapsulated in microcapsules with a diameter ranging from 200 to 300 μm. Both cell lines were successfully grown into microtissues in the microcapsules of alginate within 16 days of culture. The microtissues were characterized by using a live/dead cell viability assay, field emission-scanning electron microscopy (FE-SEM), fluorescence staining, and cell re-plating experiments. The microtissues of both cell types were viable after being extracted from the alginate membrane using alginate lyase. However, the microtissues of HaCaT and ORL-48 demonstrated differences in both nucleus size and morphology. The microtissues with re-associated cells in spheroids are potentially useful as a cell model for pharmacological studies.
Collapse
Affiliation(s)
- Wai Yean Leong
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Chin Fhong Soon
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
- Biosensor and Bioengineering Laboratory, MiNT-SRC Research Center, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Soon Chuan Wong
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Kian Sek Tee
- Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, Malaysia.
| | - Sok Ching Cheong
- Cancer Research Malaysia, 1, Jalan SS12/1A, Subang Jaya 47500, Malaysia.
| | - Siew Hua Gan
- Human Genome Centre, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kota Bahru, Malaysia.
| | - Mansour Youseffi
- School of Engineering, Design and Technology, Medical Engineering, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
31
|
Bygd HC, Bratlie KM. Investigating the Synergistic Effects of Combined Modified Alginates on Macrophage Phenotype. Polymers (Basel) 2016; 8:E422. [PMID: 30974698 PMCID: PMC6432444 DOI: 10.3390/polym8120422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/17/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023] Open
Abstract
Understanding macrophage responses to biomaterials is crucial to the success of implanted medical devices, tissue engineering scaffolds, and drug delivery vehicles. Cellular responses to materials may depend synergistically on multiple surface chemistries, due to the polyvalent nature of cell⁻ligand interactions. Previous work in our lab found that different surface functionalities of chemically modified alginate could sway macrophage phenotype toward either the pro-inflammatory or pro-angiogenic phenotype. Using these findings, this research aims to understand the relationship between combined material surface chemistries and macrophage phenotype. Tumor necrosis factor-α (TNF-α) secretion, nitrite production, and arginase activity were measured and used to determine the ability of the materials to alter macrophage phenotype. Cooperative relationships between pairwise modifications of alginate were determined by calculating synergy values for the aforementioned molecules. Several materials appeared to improve M1 to M2 macrophage reprogramming capabilities, giving valuable insight into the complexity of surface chemistries needed for optimal incorporation and survival of implanted biomaterials.
Collapse
Affiliation(s)
- Hannah C Bygd
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Kaitlin M Bratlie
- Department of Materials Science & Engineering, Iowa State University, Ames, IA 50011, USA.
- Department of Chemical & Biological Engineering, Iowa State University, Ames, IA 50011, USA.
- Division of Materials Science & Engineering, Ames National Laboratory, Ames, IA 50011, USA.
| |
Collapse
|
32
|
Appel AA, Ibarra V, Somo SI, Larson JC, Garson AB, Guan H, McQuilling JP, Zhong Z, Anastasio MA, Opara EC, Brey EM. Imaging of Hydrogel Microsphere Structure and Foreign Body Response Based on Endogenous X-Ray Phase Contrast. Tissue Eng Part C Methods 2016; 22:1038-1048. [PMID: 27796159 PMCID: PMC5116683 DOI: 10.1089/ten.tec.2016.0253] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Transplantation of functional islets encapsulated in stable biomaterials has the potential to cure Type I diabetes. However, the success of these materials requires the ability to quantitatively evaluate their stability. Imaging techniques that enable monitoring of biomaterial performance are critical to further development in the field. X-ray phase-contrast (XPC) imaging is an emerging class of X-ray techniques that have shown significant promise for imaging biomaterial and soft tissue structures. In this study, XPC imaging techniques are shown to enable three dimensional (3D) imaging and evaluation of islet volume, alginate hydrogel structure, and local soft tissue features ex vivo. Rat islets were encapsulated in sterile ultrapurified alginate systems produced using a high-throughput microfluidic system. The encapsulated islets were implanted in omentum pouches created in a rodent model of type 1 diabetes. Microbeads were imaged with XPC imaging before implantation and as whole tissue samples after explantation from the animals. XPC microcomputed tomography (μCT) was performed with systems using tube-based and synchrotron X-ray sources. Islets could be identified within alginate beads and the islet volume was quantified in the synchrotron-based μCT volumes. Omental adipose tissue could be distinguished from inflammatory regions resulting from implanted beads in harvested samples with both XPC imaging techniques. Individual beads and the local encapsulation response were observed and quantified using quantitative measurements, which showed good agreement with histology. The 3D structure of the microbeads could be characterized with XPC imaging and failed beads could also be identified. These results point to the substantial potential of XPC imaging as a tool for imaging biomaterials in small animal models and deliver a critical step toward in vivo imaging.
Collapse
Affiliation(s)
- Alyssa A. Appel
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Veronica Ibarra
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Sami I. Somo
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
| | - Jeffery C. Larson
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| | - Alfred B. Garson
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Huifeng Guan
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | | | - Zhong Zhong
- National Synchrotron Light Source, Brookhaven National Laboratory, Upton, New York
| | - Mark A. Anastasio
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri
| | - Emmanuel C. Opara
- Wake Forest Institute of Regenerative Medicine, Winston-Salem, North Carolina
| | - Eric M. Brey
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois
- Research Services, Edward Hines Jr. VA Hospital, Chicago, Illinois
| |
Collapse
|
33
|
Zheng H, Gao M, Ren Y, Lou R, Xie H, Yu W, Liu X, Ma X. Controlling Gel Structure to Modulate Cell Adhesion and Spreading on the Surface of Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19333-19342. [PMID: 27404911 DOI: 10.1021/acsami.6b05778] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The surface properties of implanted materials or devices play critical roles in modulating cell behavior. However, the surface properties usually affect cell behaviors synergetically so that it is still difficult to separately investigate the influence of a single property on cell behavior in practical applications. In this study, alginate-chitosan (AC) microcapsules with a dense or loose gel structure were fabricated to understand the effect of gel structure on cell behavior. Cells preferentially adhered and spread on the loose gel structure microcapsules rather than on the dense ones. The two types of microcapsules exhibited nearly identical surface positive charges, roughness, stiffness, and hydrophilicity; thus, the result suggested that the gel structure was the principal factor affecting cell behavior. X-ray photoelectron spectroscopy analyses demonstrated that the overall percentage of positively charged amino groups was similar on both microcapsules. The different gel structures led to different states and distributions of the positively charged amino groups of chitosan, so we conclude that the loose gel structure facilitated greater cell adhesion and spreading mainly because more protonated amino groups remained unbound and exposed on the surface of these microcapsules.
Collapse
Affiliation(s)
- Huizhen Zheng
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, PR China
- University of the Chinese Academy of Sciences , Beijing 100049, PR China
| | - Meng Gao
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, PR China
- University of the Chinese Academy of Sciences , Beijing 100049, PR China
| | - Ying Ren
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, PR China
- University of the Chinese Academy of Sciences , Beijing 100049, PR China
| | - Ruyun Lou
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, PR China
- University of the Chinese Academy of Sciences , Beijing 100049, PR China
| | - Hongguo Xie
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, PR China
| | - Weiting Yu
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, PR China
| | - Xiudong Liu
- College of Environment and Chemical Engineering, Dalian University , Dalian Economic Technological Development Zone, Dalian 116622, PR China
| | - Xiaojun Ma
- Laboratory of Biomedical Materials Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , 457 Zhongshan Road, Dalian 116023, PR China
| |
Collapse
|
34
|
Llacua A, de Haan BJ, Smink SA, de Vos P. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes. J Biomed Mater Res A 2016; 104:1788-96. [PMID: 26990360 DOI: 10.1002/jbm.a.35706] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/16/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023]
Abstract
In the pancreas, extracellular matrix (ECM) components play an import role in providing mechanical and physiological support, and also contribute to the function of islets. These ECM-connections are damaged during islet-isolation from the pancreas and are not fully recovered after encapsulation and transplantation. To promote the functional survival of human pancreatic islets, we tested different ECMs molecules in alginate-encapsulated human islets. These were laminin derived recognition sequences, IKVAV, RGD, LRE, PDSGR, collagen I sequence DGEA (0.01 - 1.0 mM), and collagen IV (50 - 200 µg/mL). Interaction with RGD and PDSGR promoted islet viability and glucose induced insulin secretion (GIIS) when it was applied at concentrations ranging from 0.01 - 1.0 mM (p < 0.05). Also the laminin sequence LRE contributed to enhanced GIIS but only at higher concentrations of 1 mM (p < 0.05). Collagen IV also had beneficial effects but only at 50 µg/ml and no further improvement was observed at higher concentrations. IKVAV and DGEA had no effects on human islets. Synergistic effects were observed by adding Collagen(IV)-RGD, Collagen(IV)-LRE, and Collagen(IV)-PDSGR to encapsulated human islets. Our results demonstrate the potential of specific ECM components in support of functional survival of human encapsulated and free islet grafts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1788-1796, 2016.
Collapse
Affiliation(s)
- Alberto Llacua
- Department of Pathology and Medical Biology, Immunoendocrinology, University of Groningen, Hanzeplein 1, Groningen, RB, 9700, The Netherlands
| | - Bart J de Haan
- Department of Pathology and Medical Biology, Immunoendocrinology, University of Groningen, Hanzeplein 1, Groningen, RB, 9700, The Netherlands
| | - Sandra A Smink
- Department of Pathology and Medical Biology, Immunoendocrinology, University of Groningen, Hanzeplein 1, Groningen, RB, 9700, The Netherlands
| | - Paul de Vos
- Department of Pathology and Medical Biology, Immunoendocrinology, University of Groningen, Hanzeplein 1, Groningen, RB, 9700, The Netherlands
| |
Collapse
|
35
|
Bygd HC, Bratlie KM. The effect of chemically modified alginates on macrophage phenotype and biomolecule transport. J Biomed Mater Res A 2016; 104:1707-19. [DOI: 10.1002/jbm.a.35700] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/29/2016] [Accepted: 02/23/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Hannah C. Bygd
- Department of Materials Science and EngineeringIowa State UniversityAmes Iowa50011
| | - Kaitlin M. Bratlie
- Department of Materials Science and EngineeringIowa State UniversityAmes Iowa50011
- Department of Chemical and Biological EngineeringIowa State UniversityAmes Iowa50011
- Division of Materials Science & EngineeringAmes National LaboratoryAmes Iowa50011
| |
Collapse
|
36
|
de Vos P, Smink AM, Paredes G, Lakey JRT, Kuipers J, Giepmans BNG, de Haan BJ, Faas MM. Enzymes for Pancreatic Islet Isolation Impact Chemokine-Production and Polarization of Insulin-Producing β-Cells with Reduced Functional Survival of Immunoisolated Rat Islet-Allografts as a Consequence. PLoS One 2016; 11:e0147992. [PMID: 26824526 PMCID: PMC4732769 DOI: 10.1371/journal.pone.0147992] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/11/2016] [Indexed: 11/18/2022] Open
Abstract
The primary aim of this study was to determine whether normal variations in enzyme-activities of collagenases applied for rat-islet isolation impact longevity of encapsulated islet grafts. Also we studied the functional and immunological properties of rat islets isolated with different enzyme preparations to determine whether this impacts these parameters. Rat-islets were isolated from the pancreas with two different collagenases with commonly accepted collagenase, neutral protease, and clostripain activities. Islets had a similar and acceptable glucose-induced insulin-release profile but a profound statistical significant difference in production of the chemokines IP-10 and Gro-α. The islets were studied with nanotomy which is an EM-based technology for unbiased study of ultrastructural features of islets such as cell-cell contacts, endocrine-cell condition, ER stress, mitochondrial conditions, and cell polarization. The islet-batch with higher chemokine-production had a lower amount of polarized insulin-producing β-cells. All islets had more intercellular spaces and less interconnected areas with tight cell-cell junctions when compared to islets in the pancreas. Islet-graft function was studied by implanting encapsulated and free islet grafts in rat recipients. Alginate-based encapsulated grafts isolated with the enzyme-lot inducing higher chemokine production and lower polarization survived for a two-fold shorter period of time. The lower survival-time of the encapsulated grafts was correlated with a higher influx of inflammatory cells at 7 days after implantation. Islets from the same two batches transplanted as free unencapsulated-graft, did not show any difference in survival or function in vivo. Lack of insight in factors contributing to the current lab-to-lab variation in longevity of encapsulated islet-grafts is considered to be a threat for clinical application. Our data suggest that seemingly minor variations in activity of enzymes applied for islet-isolation might contribute to longevity-variations of immunoisolated islet-grafts.
Collapse
Affiliation(s)
- Paul de Vos
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
- * E-mail:
| | - Alexandra M. Smink
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Genaro Paredes
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Jonathan R. T. Lakey
- Department of Surgery and Biomedical Engineering, University of California Irvine, Orange, CA, 92868, United States of America
| | - Jeroen Kuipers
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, P. O. Box 196, 9700 AD, Groningen, The Netherlands
| | - Ben N. G. Giepmans
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, P. O. Box 196, 9700 AD, Groningen, The Netherlands
| | - Bart J. de Haan
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| | - Marijke M. Faas
- Immunoendocrinology, department of Pathology and Medical biology, University of Groningen, Hanzeplein 1, 9700 RB Groningen, The Netherlands
| |
Collapse
|
37
|
Zheng H, Li S, Gao M, Ren Y, Zheng G, Xie H, Yu W, Wang X, Ma X. An improved model for exploring the effect of physicochemical properties of alginate-based microcapsules on their fibrosis formation in vivo. RSC Adv 2016. [DOI: 10.1039/c6ra19294g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An effectivein vitromodel established forexploring the effect ofthephysicochemical properties of alginate-based microcapsules on their fibrosis formation.
Collapse
Affiliation(s)
- Huizhen Zheng
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Shen Li
- Department of Endocrinology and Metabolism
- Dalian Municipal Central Hospital Affiliated of Dalian Medical University
- Dalian 116033
- P. R. China
| | - Meng Gao
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Ying Ren
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Guoshuang Zheng
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Hongguo Xie
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Weiting Yu
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Xiuli Wang
- Department of Histology and Embryology
- College of Basic Medical Science
- Dalian Medical University
- Dalian
- P. R. China
| | - Xiaojun Ma
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
38
|
Köllmer M, Appel AA, Somo SI, Brey EM. Long-Term Function of Alginate-Encapsulated Islets. TISSUE ENGINEERING PART B-REVIEWS 2015; 22:34-46. [PMID: 26414084 DOI: 10.1089/ten.teb.2015.0140] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Human trials have demonstrated the feasibility of alginate-encapsulated islet cells for the treatment of type 1 diabetes. Encapsulated islets can be protected from the host's immune system and remain viable and functional following transplantation. However, the long-term success of these therapies requires that alginate microcapsules maintain their immunoprotective capacity and stability in vivo for sustained periods. In part, as a consequence of different encapsulation strategies, islet encapsulation studies have produced inconsistent results in regard to graft functioning time, stability, and overall metabolic benefits. Alginate composition (proportion of M- and G-blocks), alginate purity, the cross-linking ions (calcium or barium), and the presence or absence of additional polymer coating layers influence the success of cell encapsulation. This review summarizes the outcomes of long-term studies of alginate-encapsulated islet transplants in animals and humans and provides a critical discussion of the graft failure mechanisms, including issues with graft biocompatibility, transplantation site, and integrity of the encapsulated islet grafts. Strategies to improve the mechanical stability of alginate capsules and methods for monitoring graft survival and function in vivo are presented.
Collapse
Affiliation(s)
- Melanie Köllmer
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois
| | - Alyssa A Appel
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Hines Veterans Administration Hospital , Hines, Illinois
| | - Sami I Somo
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Hines Veterans Administration Hospital , Hines, Illinois
| | - Eric M Brey
- 1 Department of Biomedical Engineering, Illinois Institute of Technology , Chicago, Illinois.,2 Research Service, Hines Veterans Administration Hospital , Hines, Illinois
| |
Collapse
|
39
|
Morga M, Adamczyk Z, Gödrich S, Oćwieja M, Papastavrou G. Monolayers of poly-l-lysine on mica – Electrokinetic characteristics. J Colloid Interface Sci 2015; 456:116-24. [DOI: 10.1016/j.jcis.2015.05.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023]
|
40
|
Kozlovskaya V, Xue B, Lei W, Padgett LE, Tse HM, Kharlampieva E. Hydrogen-bonded multilayers of tannic acid as mediators of T-cell immunity. Adv Healthc Mater 2015; 4:686-94. [PMID: 25491369 DOI: 10.1002/adhm.201400657] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 11/17/2014] [Indexed: 01/07/2023]
Abstract
Type 1 diabetes is an autoimmune-mediated disease resulting in the destruction of insulin-secreting pancreatic β-cells. Transplantation of insulin-producing islets is a viable treatment to restore euglycemia in Type 1 diabetics; however, the clinical application remains limited due to the use of toxic immunosuppressive therapies to prevent immune-mediated rejection. A nanothin polymer material with dual antioxidant and immunosuppressive properties capable of modulating both innate and adaptive immune responses crucial for transplantation outcome is presented. Through the use of hollow microparticles (capsules) composed of hydrogen-bonded multilayers of natural polyphenol (tannic acid) with poly(N-vinylpyrrolidone) (TA/PVPON) and with poly(N-vinylcaprolactam) (TA/PVCL), proinflammatory reactive oxygen and nitrogen species are efficiently dissipated and the production of interferon (IFN)-γ and tumor necrosis factor (TNF)-α proinflammatory cytokines is attenuated by cognate antigen-stimulated autoreactive CD4+ T cells. These results provide evidence that TA-containing capsules are efficacious in immunomodulation and may provide physical transplant protection and prevent diabetogenic autoreactive T-cell responses. Future studies will determine if xeno- and allotransplantation with (TA/PVPON)- or (TA/PVCL)-coated pancreatic islets will decrease the risk of graft rejection due to attenuation of oxidative stress and IFN-γ, and restore euglycemia in Type 1 diabetics.
Collapse
Affiliation(s)
- Veronika Kozlovskaya
- Department of Chemistry; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Bing Xue
- Department of Chemistry; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Weiqi Lei
- Department of Microbiology; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Lindsey E. Padgett
- Department of Microbiology; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Hubert M. Tse
- Department of Microbiology; University of Alabama at Birmingham; Birmingham AL 35294 USA
| | - Eugenia Kharlampieva
- Department of Chemistry; University of Alabama at Birmingham; Birmingham AL 35294 USA
- Center for Nanoscale Materials and Biointegration; University of Alabama at Birmingham; Birmingham AL 35294 USA
| |
Collapse
|
41
|
Campanha-Rodrigues AL, Grazioli G, Oliveira TC, Campos-Lisbôa ACV, Mares-Guia TR, Sogayar MC. Therapeutic Potential of Laminin–Biodritin Microcapsules for Type 1 Diabetes Mellitus. Cell Transplant 2015; 24:247-61. [DOI: 10.3727/096368913x675160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Pancreatic islet microencapsulation constitutes an attractive therapy for type 1 diabetes mellitus; however, long-term β-cell function remains a major problem. Loss of extracellular matrix interactions during islet isolation dramatically affects β-cell viability. We have previously shown beneficial effects of laminin (LN) in human islet cultures. Herein, we investigated whether LN could improve the outcome of transplantation after islet microencapsulation in Biodritin, an alginate-based material. To test LN-Biodritin stability, microcapsules were subjected to different types of in vitro stress. Focusing on biocompatibility, empty microcapsules were coincubated with the RAW 264.7 macrophage cell line for up to 24 h, and empty beads were implanted IP in mice and retrieved for analyses after 7 and 30 days. Upon culturing for 48 h, mRNA, protein levels, and caspase 3 activity were evaluated in islets microencapsulated with LN-Biodritin. Mice rendered diabetic by streptozotocin injection were transplanted with microencapsulated islets, followed by assessment of body weight, glycemia, and graft function (evaluated by OGTT). Graft efficiency was observed upon microencapsulated islet explantation. The results obtained showed that LN-Biodritin microcapsules were as stable and biocompatible as Biodritin. Modulation of mRNA and protein levels suggested protection against apoptosis and islet stress. Mice transplanted with LN-Biodritin microencapsulated islets presented a better outcome at 198 days postsurgery. Graft explantation led animals to hyperglycemia. In conclusion, LN-Biodritin constitutes a very promising biomaterial for islet transplantation.
Collapse
Affiliation(s)
- Ana Lucia Campanha-Rodrigues
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Gisella Grazioli
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Talita C. Oliveira
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Ana Carolina V. Campos-Lisbôa
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Thiago R. Mares-Guia
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
- Cell Protect Biotechnology Ltda., São Paulo, SP, Brazil
| | - Mari C. Sogayar
- Chemistry Institute, Biochemistry Department, Cell and Molecular Therapy Center (NUCEL/NETCEM), School of Medicine, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
42
|
Spasojevic M, Paredes-Juarez GA, Vorenkamp J, de Haan BJ, Schouten AJ, de Vos P. Reduction of the inflammatory responses against alginate-poly-L-lysine microcapsules by anti-biofouling surfaces of PEG-b-PLL diblock copolymers. PLoS One 2014; 9:e109837. [PMID: 25347191 PMCID: PMC4209974 DOI: 10.1371/journal.pone.0109837] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023] Open
Abstract
Large-scale application of alginate-poly-L-lysine (alginate-PLL) capsules used for microencapsulation of living cells is hampered by varying degrees of success, caused by tissue responses against the capsules in the host. A major cause is proinflammatory PLL which is applied at the surface to provide semipermeable properties and immunoprotection. In this study, we investigated whether application of poly(ethylene glycol)-block-poly(L-lysine hydrochloride) diblock copolymers (PEG-b-PLL) can reduce the responses against PLL on alginate-matrices. The application of PEG-b-PLL was studied in two manners: (i) as a substitute for PLL or (ii) as an anti-biofouling layer on top of a proinflammatory, but immunoprotective, semipermeable alginate-PLL100 membrane. Transmission FTIR was applied to monitor the binding of PEG-b-PLL. When applied as a substitute for PLL, strong host responses in mice were observed. These responses were caused by insufficient binding of the PLL block of the diblock copolymers confirmed by FTIR. When PEG-b-PLL was applied as an anti-biofouling layer on top of PLL100 the responses in mice were severely reduced. Building an effective anti-biofouling layer required 50 hours as confirmed by FTIR, immunocytochemistry and XPS. Our study provides new insight in the binding requirements of polyamino acids necessary to provide an immunoprotective membrane. Furthermore, we present a relatively simple method to mask proinflammatory components on the surface of microcapsules to reduce host responses. Finally, but most importantly, our study illustrates the importance of combining physicochemical and biological methods to understand the complex interactions at the capsules' surface that determine the success or failure of microcapsules applicable for cell-encapsulation.
Collapse
Affiliation(s)
- Milica Spasojevic
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
- Departments of Pathology and Laboratory Medicine, section of Medical Biology, division of immunoendocrinology, University of Groningen, Groningen, The Netherlands
| | - Genaro A. Paredes-Juarez
- Departments of Pathology and Laboratory Medicine, section of Medical Biology, division of immunoendocrinology, University of Groningen, Groningen, The Netherlands
| | - Joop Vorenkamp
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Bart J. de Haan
- Departments of Pathology and Laboratory Medicine, section of Medical Biology, division of immunoendocrinology, University of Groningen, Groningen, The Netherlands
| | - Arend Jan Schouten
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Departments of Pathology and Laboratory Medicine, section of Medical Biology, division of immunoendocrinology, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
43
|
de Vos P, Lazarjani HA, Poncelet D, Faas MM. Polymers in cell encapsulation from an enveloped cell perspective. Adv Drug Deliv Rev 2014; 67-68:15-34. [PMID: 24270009 DOI: 10.1016/j.addr.2013.11.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 08/26/2013] [Accepted: 11/13/2013] [Indexed: 02/07/2023]
Abstract
In the past two decades, many polymers have been proposed for producing immunoprotective capsules. Examples include the natural polymers alginate, agarose, chitosan, cellulose, collagen, and xanthan and synthetic polymers poly(ethylene glycol), polyvinyl alcohol, polyurethane, poly(ether-sulfone), polypropylene, sodium polystyrene sulfate, and polyacrylate poly(acrylonitrile-sodium methallylsulfonate). The biocompatibility of these polymers is discussed in terms of tissue responses in both the host and matrix to accommodate the functional survival of the cells. Cells should grow and function in the polymer network as adequately as in their natural environment. This is critical when therapeutic cells from scarce cadaveric donors are considered, such as pancreatic islets. Additionally, the cell mass in capsules is discussed from the perspective of emerging new insights into the release of so-called danger-associated molecular pattern molecules by clumps of necrotic therapeutic cells. We conclude that despite two decades of intensive research, drawing conclusions about which polymer is most adequate for clinical application is still difficult. This is because of the lack of documentation on critical information, such as the composition of the polymer, the presence or absence of confounding factors that induce immune responses, toxicity to enveloped cells, and the permeability of the polymer network. Only alginate has been studied extensively and currently qualifies for application. This review also discusses critical issues that are not directly related to polymers and are not discussed in the other reviews in this issue, such as the functional performance of encapsulated cells in vivo. Physiological endocrine responses may indeed not be expected because of the many barriers that the metabolites encounter when traveling from the blood stream to the enveloped cells and back to circulation. However, despite these diffusion barriers, many studies have shown optimal regulation, allowing us to conclude that encapsulated grafts do not always follow nature's course but are still a possible solution for many endocrine disorders for which the minute-to-minute regulation of metabolites is mandatory.
Collapse
|
44
|
Rokstad AMA, Lacík I, de Vos P, Strand BL. Advances in biocompatibility and physico-chemical characterization of microspheres for cell encapsulation. Adv Drug Deliv Rev 2014; 67-68:111-30. [PMID: 23876549 DOI: 10.1016/j.addr.2013.07.010] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Cell encapsulation has already shown its high potential and holds the promise for future cell therapies to enter the clinics as a large scale treatment option for various types of diseases. The advancement in cell biology towards this goal has to be complemented with functional biomaterials suitable for cell encapsulation. This cannot be achieved without understanding the close correlation between cell performance and properties of microspheres. The ongoing challenges in the field of cell encapsulation require a critical view on techniques and approaches currently utilized to characterize microspheres. This review deals with both principal subjects of microspheres characterization in the cell encapsulation field: physico-chemical characterization and biocompatibility. The up-to-day knowledge is summarized and discussed with the focus to identify missing knowledge and uncertainties, and to propose the mandatory next steps in characterization of microspheres for cell encapsulation. The primary conclusion of this review is that further success in development of microspheres for cell therapies cannot be accomplished without careful selection of characterization techniques, which are employed in conjunction with biological tests.
Collapse
Affiliation(s)
- Anne Mari A Rokstad
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| | - Igor Lacík
- Department for Biomaterials Research, Polymer Institute of the Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia.
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, EA11, 9700 RB Groningen, The Netherlands.
| | - Berit L Strand
- Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Prinsesse Kristinasgt. 1, N-7491 Trondheim, Norway; Department of Biotechnology, NTNU, Sem Saelandsvei 6/8, N-7491 Trondheim, Norway; The Central Norway Health Authority (RHA), Trondheim, Norway.
| |
Collapse
|
45
|
Enrichment of cancer stem cell-like cells by culture in alginate gel beads. J Biotechnol 2014; 177:1-12. [PMID: 24607645 DOI: 10.1016/j.jbiotec.2014.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 01/24/2014] [Accepted: 02/19/2014] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are most likely the reason of cancer reoccurrence and metastasis. For further elucidation of the mechanism underlying the characteristics of CSCs, it is necessary to develop efficient culture systems to culture and expand CSCs. In this study, a three-dimensional (3D) culture system based on alginate gel (ALG) beads was reported to enrich CSCs. Two cell lines derived from different histologic origins were encapsulated in ALG beads respectively and the expansion of CSCs was investigated. Compared with two-dimensional (2D) culture, the proportion of cells with CSC-like phenotypes was significantly increased in ALG beads. Expression levels of CSC-related genes were greater in ALG beads than in 2D culture. The increase of CSC proportion after being cultured within ALG beads was further confirmed by enhanced tumorigenicity in vivo. Moreover, increased metastasis ability and higher anti-cancer drug resistance were also observed in 3D-cultured cells. Furthermore, we found that it was hypoxia, through the upregulation of hypoxia-inducible factors (HIFs) that occurred in ALG beads to induce the increasing of CSC proportion. Therefore, ALG bead was an efficient culture system for CSC enrichment, which might provide a useful platform for CSC research and promote the development of new anti-cancer therapies targeting CSCs.
Collapse
|
46
|
Transplantation of Encapsulated Pancreatic Islets as a Treatment for Patients with Type 1 Diabetes Mellitus. Adv Med 2014; 2014:429710. [PMID: 26556410 PMCID: PMC4590955 DOI: 10.1155/2014/429710] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 11/30/2013] [Indexed: 12/19/2022] Open
Abstract
Encapsulation of pancreatic islets has been proposed and investigated for over three decades to improve islet transplantation outcomes and to eliminate the side effects of immunosuppressive medications. Of the numerous encapsulation systems developed in the past, microencapsulation have been studied most extensively so far. A wide variety of materials has been tested for microencapsulation in various animal models (including nonhuman primates or NHPs) and some materials were shown to induce immunoprotection to islet grafts without the need for chronic immunosuppression. Despite the initial success of microcapsules in NHP models, the combined use of islet transplantation (allograft) and microencapsulation has not yet been successful in clinical trials. This review consists of three sections: introduction to islet transplantation, transplantation of encapsulated pancreatic islets as a treatment for patients with type 1 diabetes mellitus (T1DM), and present challenges and future perspectives.
Collapse
|
47
|
Gattás-Asfura K, Valdes M, Celik E, Stabler C. Covalent layer-by-layer assembly of hyperbranched polymers on alginate microcapsulesto impart stability and permselectivity. J Mater Chem B 2014; 2:8208-8219. [PMID: 25478165 DOI: 10.1039/c4tb01241k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The microencapsulation of cells has shown promise as a therapeutic vehicle for the treatment of a wide variety of diseases. While alginate microcapsules provide an ideal cell encapsulation material, polycations coatings are commonly employed to enhance stability and impart permselectivity. In this study, functionalized hyperbranched alginate and dendrimer polymers were used to generate discreet nanoscale coatings onto alginate microbeads via covalent layer-by-layer assembly. The bioorthogonal Staudinger ligation scheme was used to chemoselectively crosslink azide functionalized hyperbranched alginate (alginate-hN3) to methyl-2-diphenylphosphino-terephthalate (MDT) linked PAMAM dendrimer (PAMAM-MDT). Covalent layer-by-layer deposition of PAMAM-MDT/alginate-hN3 coatings onto alginate microbeads resulted in highly stable coatings, even after the inner alginate gel was liquefied to form microcapsules. The permselectivity of the coated microcapsules could be manipulated via the charge density of the PAMAM, the number of layers deposited, and the length of the functional arms. The cytocompatibility of the resulting PAMAM-MDT/alginate-hN3 coating was evaluated using a beta cell line, with no significant detrimental response observed. The biocompatibility of the coatings in vivo was also found comparable to uncoated alginate beads. The remarkable stability and versatile nature of these coatings provides an appealing option for bioencapsulation and the release of therapeutic agents.
Collapse
Affiliation(s)
- Km Gattás-Asfura
- Diabetes Research Institute, University of Miami, Miami, FL 33136 USA
| | - M Valdes
- Diabetes Research Institute, University of Miami, Miami, FL 33136 USA ; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - E Celik
- Department of Mechanical and Aerospace Engineering, University of Miami, Coral Gables, FL 33146 USA
| | - Cl Stabler
- Diabetes Research Institute, University of Miami, Miami, FL 33136 USA ; Department of Biomedical Engineering, University of Miami, Coral Gables, FL 33146 USA ; Department of Surgery and Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
48
|
Therapeutic cell encapsulation: Ten steps towards clinical translation. J Control Release 2013; 170:1-14. [DOI: 10.1016/j.jconrel.2013.04.015] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/05/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022]
|
49
|
Spasojevic M, Bhujbal S, Paredes G, de Haan BJ, Schouten AJ, de Vos P. Considerations in binding diblock copolymers on hydrophilic alginate beads for providing an immunoprotective membrane. J Biomed Mater Res A 2013; 102:1887-96. [PMID: 23853069 PMCID: PMC4232034 DOI: 10.1002/jbm.a.34863] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/13/2013] [Accepted: 06/28/2013] [Indexed: 01/14/2023]
Abstract
Alginate-based microcapsules are being proposed for treatment of many types of diseases. A major obstacle however in the successes is that these capsules are having large lab-to-lab variations. To make the process more reproducible, we propose to cover the surface of alginate capsules with diblock polymers that can form polymer brushes. In the present study, we describe the stepwise considerations for successful application of diblock copolymer of polyethylene glycol (PEG) and poly-l-lysine (PLL) on the surface of alginate beads. Special procedures had to be designed as alginate beads are hydrophilic and most protocols are designed for hydrophobic biomaterials. The successful attachment of diblock copolymer and the presence of PEG blocks on the surface of the capsules were studied by fluorescence microscopy. Longer time periods, that is, 30–60 min, are required to achieve saturation of the surface. The block lengths influenced the strength of the capsules. Shorter PLL blocks resulted in less stable capsules. Adequate permeability of the capsules was achieved with poly(ethylene glycol)-block-poly(l-lysine hydrochloride) (PEG454-b-PLL100) diblock copolymers. The capsules were a barrier for immunoglobulin G. The PEG454-b-PLL100 capsules have similar mechanical properties as PLL capsules. Minor immune activation of nuclear factor κB in THP-1 monocytes was observed with both PLL and PEG454-b-PLL100 capsules prepared from purified alginate. Our results show that we can successfully apply block copolymers on the surface of hydrophilic alginate beads without interfering with the physicochemical properties.
Collapse
Affiliation(s)
- Milica Spasojevic
- Department of Polymer Chemistry, Zernike Institute for Advanced Materials, University of Groningen, 9747, AG Groningen, the Netherlands; Departments of Pathology and Laboratory Medicine, Section of Medical Biology, Division of Immunoendocrinology, University of Groningen, Hanzeplein 1, 9700, RB Groningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
50
|
Roberts JR, Ritter DW, McShane MJ. A Design Full of Holes: Functional Nanofilm-Coated Microdomains in Alginate Hydrogels. J Mater Chem B 2013; 107:3195-3201. [PMID: 24040514 PMCID: PMC3770476 DOI: 10.1039/c3tb20477d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study demonstrates the successful manufacture and functional characterization of alginate hydrogels containing a variety of encapsulates within polyelectrolyte multilayer-coated micropores. These microporous alginate (MPA) hydrogels are prepared via one-step internal ionotropic gelation of the alginate using polyelectrolyte multilayer-coated CaCO3 microspheres along with the weak acid glucono-δ-lactone. Here, successful encapsulation of a model macromolecule and fluorescent nanoparticles within microcapsules-distributed throughout the larger alginate hydrogel-is confirmed with confocal microscopy, while the porous morphology of the MPA hydrogels is examined with scanning electron microscopy. Hydrogels constructed with uncoated CaCO3 microspheres release their contents into the surrounding environment, while those constructed with polyelectrolyte multilayer-coated CaCO3 microspheres retain the materials within the pores. MPA hydrogels containing the model enzyme glucose oxidase retained activity and are capable of reacting with small molecules from the external environment. The ability to encapsulate an assortment of functional materials within a moldable, biocompatible alginate matrix gives this approach great flexibility and potential in a wide variety of biomedical applications.
Collapse
Affiliation(s)
- Jason R. Roberts
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, United States
| | - Dustin W. Ritter
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, United States
| | - Michael J. McShane
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120, United States
- Materials Science and Engineering Program, Texas A&M University, College Station, TX 77843-3120, United States
| |
Collapse
|