1
|
Harry GJ. Developmental Associations between Neurovascularization and Microglia Colonization. Int J Mol Sci 2024; 25:1281. [PMID: 38279280 PMCID: PMC10816009 DOI: 10.3390/ijms25021281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
The temporal and spatial pattern of microglia colonization and vascular infiltration of the nervous system implies critical associated roles in early stages of nervous system development. Adding to existing reviews that cover a broad spectrum of the various roles of microglia during brain development, the current review will focus on the developmental ontogeny and interdependency between the colonization of the nervous system with yolk sac derived macrophages and vascularization. Gaining a better understanding of the timing and the interdependency of these two processes will significantly contribute to the interpretation of data generated regarding alterations in either process during early development. Additionally, such knowledge should provide a framework for understanding the influence of the early gestational environmental and the impact of genetics, disease, disorders, or exposures on the early developing nervous system and the potential for long-term and life-time effects.
Collapse
Affiliation(s)
- G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute Environmental Health Sciences, 111 T.W. Alexander Drive, Research Triangle Park, Durham, NC 27709, USA
| |
Collapse
|
2
|
Naaldijk Y, Sherman LS, Turrini N, Kenfack Y, Ratajczak MZ, Souayah N, Rameshwar P, Ulrich H. Mesenchymal Stem Cell-Macrophage Crosstalk Provides Specific Exosomal Cargo to Direct Immune Response Licensing of Macrophages during Inflammatory Responses. Stem Cell Rev Rep 2024; 20:218-236. [PMID: 37851277 DOI: 10.1007/s12015-023-10612-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2023] [Indexed: 10/19/2023]
Abstract
Neurodegenerative diseases (NDDs) continue to be a significant healthcare problem. The economic and social implications of NDDs increase with longevity. NDDs are linked to neuroinflammation and activated microglia and astrocytes play a central role. There is a growing interest for stem cell-based therapy to deliver genes, and for tissue regeneration. The promise of mesenchymal stem cells (MSC) is based on their availability as off-the-shelf source, and ease of expanding from discarded tissues. We tested the hypothesis that MSC have a major role of resetting activated microglial cells. We modeled microglial cell lines by using U937 cell-derived M1 and M2 macrophages. We studied macrophage types, alone, or in a non-contact culture with MSCs. MSCs induced significant release of exosomes from both types of macrophages, but significantly more of the M1 type. RNA sequencing showed enhanced gene expression within the exosomes with the major changes linked to the inflammatory response, including cytokines and the purinergic receptors. Computational analyses of the transcripts supported the expected effect of MSCs in suppressing the inflammatory response of M1 macrophages. The inflammatory cargo of M1 macrophage-derived exosomes revealed involvement of cytokines and purinergic receptors. At the same time, the exosomes from MSC-M2 macrophages were able to reset the classical M2 macrophages to more balanced inflammation. Interestingly, we excluded transfer of purinergic receptor transcripts from the co-cultured MSCs by analyzing these cells for the identified purinergic receptors. Since exosomes are intercellular communicators, these findings provide insights into how MSCs may modulate tissue regeneration and neuroinflammation.
Collapse
Affiliation(s)
- Yahaira Naaldijk
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | - Lauren S Sherman
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA
- Rutgers School of Graduate Studies at NHMS, Newark, NJ, USA
| | - Natalia Turrini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil
| | | | - Mariusz Z Ratajczak
- Stem Cell Institute at James Graham Brown Cancer Center, University of Louisville, Louisville, KY, USA
- Laboratory of Regenerative Medicine at Medical University of Warsaw, Warsaw, Poland
| | - Nizar Souayah
- Department of Neurology, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Pranela Rameshwar
- Department of Medicine, Rutgers New Jersey Medical School (NJMS), Newark, NJ, USA.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, 05508-000, Brazil.
- Department of Neuroscience and Physiology, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
3
|
Harry GJ. Microglia Colonization Associated with Angiogenesis and Neural Cell Development. ADVANCES IN NEUROBIOLOGY 2024; 37:163-178. [PMID: 39207692 DOI: 10.1007/978-3-031-55529-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The temporal and spatial pattern of microglia colonization of the nervous system implies a role in early stages of organ development including cell proliferation, differentiation, and neurovascularization. As microglia colonize and establish within the developing nervous system, they assume a neural-specific identity and contribute to key developmental events. Their association around blood vessels implicates them in development of the vascular system or vice versa. A similar association has been reported for neural cell proliferation and associated phenotypic shifts and for cell fate differentiation to neuronal or glial phenotypes. These processes are accomplished by phagocytic activities, cell-cell contact relationships, and secretion of various factors. This chapter will present data currently available from studies evaluating the dynamic and interactive nature of these processes throughout the progression of nervous system development.
Collapse
Affiliation(s)
- G Jean Harry
- Mechanistic Toxicology Branch, Division of Translational Toxicology, National Institute Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
4
|
Triviño JJ, von Bernhardi R. The effect of aged microglia on synaptic impairment and its relevance in neurodegenerative diseases. Neurochem Int 2021; 144:104982. [PMID: 33556444 DOI: 10.1016/j.neuint.2021.104982] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
Microglia serve key functions in the central nervous system (CNS), participating in the establishment and regulation of synapses and the neuronal network, and regulating activity-dependent plastic changes. As the neuroimmune system, they respond to endogenous and exogenous signals to protect the CNS. In aging, one of the main changes is the establishment of inflamm-aging, a mild chronic inflammation that reduces microglial response to stressors. Neuroinflammation depends mainly on the increased activation of microglia. Microglia over-activation may result in a reduced capacity for performing normal functions related to migration, clearance, and the adoption of an anti-inflammatory state, contributing to an increased susceptibility for neurodegeneration. Oxidative stress contributes both to aging and to the progression of neurodegenerative diseases. Increased production of reactive oxygen species (ROS) and neuroinflammation associated with age- and disease-dependent mechanisms affect synaptic activity and neurotransmission, leading to cognitive dysfunction. Astrocytes prevent microglial cell cytotoxicity by mechanisms mediated by transforming growth factor β1 (TGFβ1). However, TGFβ1-Smad3 pathway is impaired in aging, and the age-related impairment of TGFβ signaling can reduce protective activation while facilitating cytotoxic activation of microglia. A critical analysis on the effect of aging microglia on neuronal function is relevant for the understanding of age-related changes on neuronal function. Here, we present evidence in the context of the "microglial dysregulation hypothesis", which leads to the reduction of the protective functions and increased cytotoxicity of microglia, to discuss the mechanisms involved in neurodegenerative changes and Alzheimer's disease.
Collapse
Affiliation(s)
- Juan José Triviño
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile
| | - Rommy von Bernhardi
- Department of Neurology, Pontificia Universidad Católica de Chile School of Medicine, Laboratory of Neuroscience. Marcoleta 391, Santiago, Chile; Faculty of Health Sciences, Universidad San Sebastián, Lota 2465, Santiago, Chile.
| |
Collapse
|
5
|
Neuroprotective function of microglia in the developing brain. Neuronal Signal 2021; 5:NS20200024. [PMID: 33532089 PMCID: PMC7823182 DOI: 10.1042/ns20200024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/03/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system and are important for immune processes. Besides their classical roles in pathological conditions, these cells also dynamically interact with neurons and influence their structure and function in physiological conditions. Recent evidence revealed their role in healthy brain homeostasis, including the regulation of neurogenesis, cell survival, and synapse maturation and elimination, especially in the developing brain. In this review, we summarize the current state of knowledge on microglia in brain development, with a focus on their neuroprotective function. We will also discuss how microglial dysfunction may lead to the impairment of brain function, thereby contributing to disease development.
Collapse
|
6
|
Fujita Y, Yamashita T. Alterations in Chromatin Structure and Function in the Microglia. Front Cell Dev Biol 2021; 8:626541. [PMID: 33553166 PMCID: PMC7858661 DOI: 10.3389/fcell.2020.626541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/28/2020] [Indexed: 12/01/2022] Open
Abstract
Microglia are resident immune cells in the central nervous system (CNS). Microglia exhibit diversity in their morphology, density, electrophysiological properties, and gene expression profiles, and play various roles in neural development and adulthood in both physiological and pathological conditions. Recent transcriptomic analysis using bulk and single-cell RNA-seq has revealed that microglia can shift their gene expression profiles in various contexts, such as developmental stages, aging, and disease progression in the CNS, suggesting that the heterogeneity of microglia may be associated with their distinct functions. Epigenetic changes, including histone modifications and DNA methylation, coordinate gene expression, thereby contributing to the regulation of cellular state. In this review, we summarize the current knowledge regarding the epigenetic mechanisms underlying spatiotemporal and functional diversity of microglia that are altered in response to developmental stages and disease conditions. We also discuss how this knowledge may lead to advances in therapeutic approaches for diseases.
Collapse
Affiliation(s)
- Yuki Fujita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Graduate School of Frontier Bioscience, Osaka University, Osaka, Japan.,Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Oh M, Kim SY, Gil JE, Byun JS, Cha DW, Ku B, Lee W, Kim WK, Oh KJ, Lee EW, Bae KH, Lee SC, Han BS. Nurr1 performs its anti-inflammatory function by regulating RasGRP1 expression in neuro-inflammation. Sci Rep 2020; 10:10755. [PMID: 32612143 PMCID: PMC7329810 DOI: 10.1038/s41598-020-67549-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 06/10/2020] [Indexed: 12/21/2022] Open
Abstract
Nurr1, a transcription factor belonging to the orphan nuclear receptor, has an essential role in the generation and maintenance of dopaminergic neurons and is important in the pathogenesis of Parkinson’ disease (PD). In addition, Nurr1 has a non-neuronal function, and it is especially well known that Nurr1 has an anti-inflammatory function in the Parkinson’s disease model. However, the molecular mechanisms of Nurr1 have not been elucidated. In this study, we describe a novel mechanism of Nurr1 function. To provide new insights into the molecular mechanisms of Nurr1 in the inflammatory response, we performed Chromatin immunoprecipitation sequencing (ChIP-Seq) on LPS-induced inflammation in BV2 cells and finally identified the RasGRP1 gene as a novel target of Nurr1. Here, we show that Nurr1 directly binds to the RasGRP1 intron to regulate its expression. Moreover, we also identified that RasGRP1 regulates the Ras-Raf-MEK-ERK signaling cascade in LPS-induced inflammation signaling. Finally, we conclude that RasGRP1 is a novel regulator of Nurr1’s mediated inflammation signaling.
Collapse
Affiliation(s)
- Mihee Oh
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Sun Young Kim
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jung-Eun Gil
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Jeong-Su Byun
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Dong-Wook Cha
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Bonsu Ku
- Disease Target Structure Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | | | - Won-Kon Kim
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Eun-Woo Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Kwang-Hee Bae
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea.,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea
| | - Sang Chul Lee
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea.
| | - Baek-Soo Han
- Biodefense Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea. .,Department of Functional Genomics, University of Science and Technology (UST) of Korea, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW With the incidence of neurodevelopmental disorders on the rise, it is imperative to identify and understand the mechanisms by which environmental contaminants can impact the developing brain and heighten risk. Here, we report on recent findings regarding novel mechanisms of developmental neurotoxicity and highlight chemicals of concern, beyond traditionally defined neurotoxicants. RECENT FINDINGS The perinatal window represents a critical and extremely vulnerable period of time during which chemical insult can alter the morphological and functional trajectory of the developing brain. Numerous chemical classes have been associated with alterations in neurodevelopment including metals, solvents, pesticides, and, more recently, endocrine-disrupting compounds. Although mechanisms of neurotoxicity have traditionally been identified as pathways leading to neuronal cell death, neuropathology, or severe neural injury, recent research highlights alternative mechanisms that result in more subtle but consequential changes in the brain and behavior. These emerging areas of interest include neuroendocrine and immune disruption, as well as indirect toxicity via actions on other organs such as the gut and placenta. Understanding of the myriad ways in which the developing brain is vulnerable to chemical exposures has grown tremendously over the past decade. Further progress and implementation in risk assessment is critical to reducing risk of neurodevelopmental disorders.
Collapse
|
9
|
The Role of NADPH Oxidases and Oxidative Stress in Neurodegenerative Disorders. Int J Mol Sci 2018; 19:ijms19123824. [PMID: 30513656 PMCID: PMC6321244 DOI: 10.3390/ijms19123824] [Citation(s) in RCA: 226] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/26/2018] [Accepted: 11/27/2018] [Indexed: 02/08/2023] Open
Abstract
For a number of years, nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) was synonymous with NOX2/gp91phox and was considered to be a peculiarity of professional phagocytic cells. Over the last decade, several more homologs have been identified and based on current research, the NOX family consists of NOX1, NOX2, NOX3, NOX4, NOX5, DUOX1 and DUOX2 enzymes. NOXs are electron transporting membrane proteins that are responsible for reactive oxygen species (ROS) generation-primarily superoxide anion (O₂●-), although hydrogen peroxide (H₂O₂) can also be generated. Elevated ROS leads to oxidative stress (OS), which has been associated with a myriad of inflammatory and degenerative pathologies. Interestingly, OS is also the commonality in the pathophysiology of neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS) and multiple sclerosis (MS). NOX enzymes are expressed in neurons, glial cells and cerebrovascular endothelial cells. NOX-mediated OS is identified as one of the main causes of cerebrovascular damage in neurodegenerative diseases. In this review, we will discuss recent developments in our understanding of the mechanisms linking NOX activity, OS and neurodegenerative diseases, with particular focus on the neurovascular component of these conditions. We conclude highlighting current challenges and future opportunities to combat age-related neurodegenerative disorders by targeting NOXs.
Collapse
|
10
|
Edlow AG, Glass RM, Smith CJ, Tran PK, James K, Bilbo S. Placental Macrophages: A Window Into Fetal Microglial Function in Maternal Obesity. Int J Dev Neurosci 2018; 77:60-68. [PMID: 30465871 DOI: 10.1016/j.ijdevneu.2018.11.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/05/2018] [Accepted: 11/14/2018] [Indexed: 01/18/2023] Open
Abstract
Fetal placental macrophages and microglia (resident brain macrophages) have a common origin in the fetal yolk sac. Yolk-sac-derived macrophages comprise the permanent pool of brain microglia throughout an individual's lifetime. Inappropriate fetal microglial priming may therefore have lifelong neurodevelopmental consequences, but direct evaluation of microglial function in a living fetus or neonate is impossible. We sought to test the hypothesis that maternal obesity would prime both placental macrophages and fetal brain microglia to overrespond to an immune challenge, thus providing a window into microglial function using placental cells. Obesity was induced in C57BL/6 J mice using a 60% high-fat diet. On embryonic day 17.5, fetal brain microglia and corresponding CD11b + placental cells were isolated from fresh tissue. Cells were treated with media or lipopolysaccharide (LPS). Tumor necrosis factor-alpha (TNF-α) production by stimulated and unstimulated cells was quantified via ELISA. We demonstrate for the first time that the proinflammatory cytokine production of CD11b + placental cells is strongly correlated with that of brain microglia (Spearman's ρ = 0.73, p = 0.002) in the setting of maternal obesity. Maternal obesity-exposed CD11b + cells had an exaggerated response to LPS compared to controls, with a 5.1-fold increase in TNF-α production in placentas (p = 0.003) and 3.8-fold increase in TNF-α production in brains (p = 0.002). In sex-stratified analyses, only male obesity-exposed brains and placentas had significant increase in TNF-α production in response to LPS. Taken together, these data suggest that maternal obesity primes both placental macrophages and fetal brain microglia to overproduce a proinflammatory cytokine in response to immune challenge. Male brain and placental immune response is more marked than female in this setting. Given that fetal microglial priming may impact neuroimmune function throughout the lifespan, these data could provide insight into the male predominance of certain neurodevelopmental morbidities linked to maternal obesity, including cognitive dysfunction, autism spectrum disorder, and ADHD. Placental CD11b+ macrophages may have the potential to serve as an accessible biomarker of aberrant fetal brain immune activation in maternal obesity. This finding may have broader implications for assaying the impact of other maternal exposures on fetal brain development.
Collapse
Affiliation(s)
- Andrea G Edlow
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Massachusetts General Hospital, Vincent Center for Reproductive Biology
| | - Ruthy M Glass
- Obstetrics, Gynecology, and Reproductive Biology, Harvard Medical School, Massachusetts General Hospital, Vincent Center for Reproductive Biology
| | - Caroline J Smith
- Pediatrics and Program in Neuroscience, Harvard Medical School, Lurie Center for Autism, MassGeneral Hospital for Children
| | - Phuong Kim Tran
- Pediatrics and Program in Neuroscience, Harvard Medical School, Lurie Center for Autism, MassGeneral Hospital for Children
| | - Kaitlyn James
- Massachusetts General Hospital, Deborah Kelly Center for Outcomes Research
| | - Staci Bilbo
- Pediatrics and Program in Neuroscience, Harvard Medical School, Lurie Center for Autism, MassGeneral Hospital for Children
| |
Collapse
|
11
|
Zhang J, Jing Y, Zhang H, Bilkey DK, Liu P. Maternal immune activation altered microglial immunoreactivity in the brain of postnatal day 2 rat offspring. Synapse 2018; 73:e22072. [PMID: 30256454 DOI: 10.1002/syn.22072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/12/2018] [Accepted: 09/20/2018] [Indexed: 12/22/2022]
Abstract
Microglia, the resident immune cells of the central nervous system, play critical roles in neurodevelopment, synaptic pruning, and neuronal wiring. Early in development, microglia migrate via the tangential and radial migration pathways to their final destinations and mature gradually, a process that includes morphological changes. Recent research has implicated microglial abnormality in the etiology of schizophrenia. Since prenatal exposure to viral or bacterial infections due to maternal immune activation (MIA) leads to increased risk of schizophrenia in the offspring during adulthood, the present study systematically investigated how MIA induced by polyinosinic:polycytidylic acid (a mimic of viral double-stranded RNA) affected microglial immunoreactivity along the migration and maturation trajectories in the brains of male and female rat offspring on postnatal day (PND) 2. The immunohistochemistry revealed significant changes in the density of IBA-1 immunoreactive cells in the corpus callosum, somatosensory cortex, striatum, and the subregions of the hippocampus of the MIA offspring. The male and female MIA offspring displayed markedly altered microglial immunoreactivity in both the tangential and radial migration, as well as maturation, pathways when compared to their sex- and age-matched controls as evidenced by morphology-based cell counting. Given the important roles of microglia in synaptic pruning and neuronal wiring and survival, these changes may lead to structural and functional neurodevelopmental abnormalities, and so contribute to the functional deficits observed in juvenile and adult MIA offspring. Future research is required to systematically determine how MIA affects microglial migration and maturation in rat offspring.
Collapse
Affiliation(s)
- Jiaxian Zhang
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| | - Yu Jing
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| | - Hu Zhang
- School of Pharmacy, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| | - David K Bilkey
- Department of Psychology, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| | - Ping Liu
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Brain Health and Research Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
12
|
Oria M, Figueira RL, Scorletti F, Sbragia L, Owens K, Li Z, Pathak B, Corona MU, Marotta M, Encinas JL, Peiro JL. CD200-CD200R imbalance correlates with microglia and pro-inflammatory activation in rat spinal cords exposed to amniotic fluid in retinoic acid-induced spina bifida. Sci Rep 2018; 8:10638. [PMID: 30006626 PMCID: PMC6045622 DOI: 10.1038/s41598-018-28829-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/27/2018] [Indexed: 01/04/2023] Open
Abstract
Spina bifida aperta is a congenital malformation characterized by the failure of neural tube closure resulting in an unprotected fetal spinal cord. The spinal cord then undergoes progressive damage, likely due to chemical and mechanical factors related to exposure to the intrauterine environment. Astrogliosis in exposed spinal cords has been described in animal models of spina bifida during embryonic life but its relationship with neuroinflammatory processes are completely unknown. Using a retinoic acid-induced rat model of spina bifida we demonstrated that, when exposed to amniotic fluid, fetal spinal cords showed progressive astrogliosis with neuronal loss at mid-gestation (E15) compared to unexposed spinal cords. The number of microglial cells with a reactive phenotype and activation marker expression increased during gestation and exhibited progressive disruption in the inhibitory immune ligand-receptor system. Specifically we demonstrate down-regulation of CD200 expression and up-regulation of CD200R. Exposed spinal cords demonstrated neuroinflammation with increased tissue water content and cytokine production by the end of gestation (E20), which correlated with active Caspase3 expression in the exposed layers. Our findings provide new evidence that microglia activation, including the disruption of the endogenous inhibitory system (CD200-CD200R), may participate in the pathogenesis of spina bifida through late gestation.
Collapse
Affiliation(s)
- Marc Oria
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.
| | - Rebeca L Figueira
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.,Laboratory of Experimental Fetal Surgery "Michael Harrison", Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo-USP, Ribeirao Preto, Brazil
| | - Federico Scorletti
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Lourenco Sbragia
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA.,Laboratory of Experimental Fetal Surgery "Michael Harrison", Division of Pediatric Surgery, Department of Surgery and Anatomy, Ribeirao Preto Medical School, University of Sao Paulo-USP, Ribeirao Preto, Brazil
| | - Kathryn Owens
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Zhen Li
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Bedika Pathak
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Maria U Corona
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Mario Marotta
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| | - Jose L Encinas
- Department of Pediatric Surgery, La Paz University Hospital, Madrid, Spain
| | - Jose L Peiro
- Center for Fetal and Placental Research, Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center (CCHMC), Cincinnati, OH, USA
| |
Collapse
|
13
|
Bittle J, Stevens HE. The role of glucocorticoid, interleukin-1β, and antioxidants in prenatal stress effects on embryonic microglia. J Neuroinflammation 2018; 15:44. [PMID: 29452586 PMCID: PMC5815231 DOI: 10.1186/s12974-018-1079-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 01/24/2018] [Indexed: 12/24/2022] Open
Abstract
Maternal stress during pregnancy is associated with an increased risk of psychopathology in offspring. Resident immune cells of the brain, microglia, may be mediators of prenatal stress and altered neurodevelopment. Here, we demonstrate that neither the exogenous pro-inflammatory cytokine, interleukin-1β (IL-1β), nor the glucocorticoid hormone, corticosterone, recapitulated the full effects of prenatal stress on the morphology of microglial cells in the cortical plate of embryonic mice; IL-1β effects showed greater similarity to prenatal stress effects on microglia. Unexpectedly, oil vehicle alone, which has antioxidant properties, moderated the effects of prenatal stress on microglia. Microglia changes with prenatal stress were also sensitive to the antioxidant, N-acetylcysteine, suggesting redox dysregulation as a mechanism of prenatal stress.
Collapse
Affiliation(s)
- Jada Bittle
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1330 PBDB, 169 Newton Rd., Iowa City, IA 52246 USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA 52242 USA
| | - Hanna E. Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, 1330 PBDB, 169 Newton Rd., Iowa City, IA 52246 USA
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, 356 Medical Research Center, Iowa City, IA 52242 USA
- Iowa Neuroscience Institute, University of Iowa Carver College of Medicine, 2312 PBDB, 169 Newton Rd., Iowa City, IA 52246 USA
| |
Collapse
|
14
|
Rock KD, Horman B, Phillips AL, McRitchie SL, Watson S, Deese-Spruill J, Jima D, Sumner S, Stapleton HM, Patisaul HB. EDC IMPACT: Molecular effects of developmental FM 550 exposure in Wistar rat placenta and fetal forebrain. Endocr Connect 2018; 7:305-324. [PMID: 29351906 PMCID: PMC5817967 DOI: 10.1530/ec-17-0373] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
Firemaster 550 (FM 550) is a flame retardant (FR) mixture that has become one of the most commonly used FRs in foam-based furniture and baby products. Human exposure to this commercial mixture, composed of brominated and organophosphate components, is widespread. We have repeatedly shown that developmental exposure can lead to sex-specific behavioral effects in rats. Accruing evidence of endocrine disruption and potential neurotoxicity has raised concerns regarding the neurodevelopmental effects of FM 550 exposure, but the specific mechanisms of action remains unclear. Additionally, we observed significant, and in some cases sex-specific, accumulation of FM 550 in placental tissue following gestational exposure. Because the placenta is an important source of hormones and neurotransmitters for the developing brain, it may be a critical target of toxicity to consider in the context of developmental neurotoxicity. Using a mixture of targeted and exploratory approaches, the goal of the present study was to identify possible mechanisms of action in the developing forebrain and placenta. Wistar rat dams were orally exposed to FM 550 (0, 300 or 1000 µg/day) for 10 days during gestation and placenta and fetal forebrain tissue collected for analysis. In placenta, evidence of endocrine, inflammatory and neurotransmitter signaling pathway disruption was identified. Notably, 5-HT turnover was reduced in placental tissue and fetal forebrains indicating that 5-HT signaling between the placenta and the embryonic brain may be disrupted. These findings demonstrate that environmental contaminants, like FM 550, have the potential to impact the developing brain by disrupting normal placental functions.
Collapse
Affiliation(s)
- Kylie D Rock
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Brian Horman
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
| | - Allison L Phillips
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Susan L McRitchie
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Scott Watson
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jocelin Deese-Spruill
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dereje Jima
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
- Bioinformatics Research CenterNorth Carolina State University, Raleigh, North Carolina, USA
| | - Susan Sumner
- NIH Eastern Regional Comprehensive Metabolomics Res. CoreUniv. of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| | - Heather M Stapleton
- Nicholas School of the EnvironmentDuke University, Durham, North Carolina, USA
| | - Heather B Patisaul
- Department of Biological SciencesNorth Carolina State University, Raleigh, North Carolina, USA
- Center for Human Health and the EnvironmentNorth Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
15
|
The role of IL-6 in neurodevelopment after prenatal stress. Brain Behav Immun 2017; 65:274-283. [PMID: 28546058 PMCID: PMC5537020 DOI: 10.1016/j.bbi.2017.05.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 12/13/2022] Open
Abstract
Prenatal stress exposure is associated with adverse psychiatric outcomes, including autism and ADHD, as well as locomotor and social inhibition and anxiety-like behaviors in animal offspring. Similarly, maternal immune activation also contributes to psychiatric risk and aberrant offspring behavior. The mechanisms underlying these outcomes are not clear. Offspring microglia and the pro-inflammatory cytokine interleukin-6 (IL-6), known to influence microglia, may serve as common mechanisms between prenatal stress and prenatal immune activation. To evaluate the role of prenatal IL-6 in prenatal stress, microglia morphological analyses were conducted at embryonic days 14 (E14), E15, and in adult mice. Offspring microglia and behavior were evaluated after repetitive maternal restraint stress, repetitive maternal IL-6, or maternal IL-6 blockade during stress from E12 onwards. At E14, novel changes in cortical plate embryonic microglia were documented-a greater density of the mutivacuolated morphology. This resulted from either prenatal stress or IL-6 exposure and was prevented by IL-6 blockade during prenatal stress. Prenatal stress also resulted in increased microglia ramification in adult brain, as has been previously shown. As with embryonic microglia, prenatal IL-6 recapitulated prenatal stress-induced changes in adult microglia. Furthermore, prenatal IL-6 was able to recapitulate the delay in GABAergic progenitor migration caused by prenatal stress. However, IL-6 mechanisms were not necessary for this delay, which persisted after prenatal stress despite IL-6 blockade. As we have previously demonstrated, behavioral effects of prenatal stress in offspring, including increased anxiety-like behavior, decreased sociability, and locomotor inhibition, may be related to these GABAergic delays. While adult microglia changes were ameliorated by IL-6 blockade, these behavioral changes were independent of IL-6 mechanisms, similar to GABAergic delays. This and previous work from our laboratory suggests that multiple mechanisms, including GABAergic delays, may underlie prenatal stress-linked deficits.
Collapse
|
16
|
Bilbo SD, Block CL, Bolton JL, Hanamsagar R, Tran PK. Beyond infection - Maternal immune activation by environmental factors, microglial development, and relevance for autism spectrum disorders. Exp Neurol 2017; 299:241-251. [PMID: 28698032 DOI: 10.1016/j.expneurol.2017.07.002] [Citation(s) in RCA: 196] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 06/26/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022]
Abstract
Immune molecules such as cytokines and chemokines and the cells that produce them within the brain, notably microglia, are critical for normal brain development. This recognition has in recent years led to the working hypothesis that inflammatory events during pregnancy, e.g. in response to infection, may disrupt the normal expression of immune molecules during critical stages of neural development and thereby contribute to the risk for neurodevelopmental disorders such as autism spectrum disorder (ASD). This hypothesis has in large part been shepherded by the work of Dr. Paul Patterson and colleagues, which has elegantly demonstrated that a single viral infection or injection of a viral mimetic to pregnant mice significantly and persistently impacts offspring immune and nervous system function, changes that underlie ASD-like behavioral dysfunction including social and communication deficits. Subsequent studies by many labs - in humans and in non-human animal models - have supported the hypothesis that ongoing disrupted immune molecule expression and/or neuroinflammation contributes to at least a significant subset of ASD. The heterogeneous clinical and biological phenotypes observed in ASD strongly suggest that in genetically susceptible individuals, environmental risk factors combine or synergize to create a tipping or threshold point for dysfunction. Importantly, animal studies showing a link between maternal immune activation (MIA) and ASD-like outcomes in offspring involve different species and diverse environmental factors associated with ASD in humans, beyond infection, including toxin exposures, maternal stress, and maternal obesity, all of which impact inflammatory or immune pathways. The goal of this review is to highlight the broader implications of Dr. Patterson's work for the field of autism, with a focus on the impact that MIA by diverse environmental factors has on fetal brain development, immune system development, and the pathophysiology of ASD.
Collapse
Affiliation(s)
- Staci D Bilbo
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, United States.
| | - Carina L Block
- Psychology and Neuroscience, Duke University, Durham, NC 27708, United States
| | - Jessica L Bolton
- Pediatrics and Anatomy/Neurobiology, University of California-Irvine, Irvine, CA 92697, United States
| | - Richa Hanamsagar
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, United States
| | - Phuong K Tran
- Pediatrics and Neuroscience, Harvard Medical School, Lurie Center for Autism, Massachusetts General Hospital for Children, Boston, MA 02126, United States
| |
Collapse
|
17
|
Orellana JA, Cerpa W, Carvajal MF, Lerma-Cabrera JM, Karahanian E, Osorio-Fuentealba C, Quintanilla RA. New Implications for the Melanocortin System in Alcohol Drinking Behavior in Adolescents: The Glial Dysfunction Hypothesis. Front Cell Neurosci 2017; 11:90. [PMID: 28424592 PMCID: PMC5380733 DOI: 10.3389/fncel.2017.00090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/15/2017] [Indexed: 12/12/2022] Open
Abstract
Alcohol dependence causes physical, social, and moral harms and currently represents an important public health concern. According to the World Health Organization (WHO), alcoholism is the third leading cause of death worldwide, after tobacco consumption and hypertension. Recent epidemiologic studies have shown a growing trend in alcohol abuse among adolescents, characterized by the consumption of large doses of alcohol over a short time period. Since brain development is an ongoing process during adolescence, short- and long-term brain damage associated with drinking behavior could lead to serious consequences for health and wellbeing. Accumulating evidence indicates that alcohol impairs the function of different components of the melanocortin system, a major player involved in the consolidation of addictive behaviors during adolescence and adulthood. Here, we hypothesize the possible implications of melanocortins and glial cells in the onset and progression of alcohol addiction. In particular, we propose that alcohol-induced decrease in α-MSH levels may trigger a cascade of glial inflammatory pathways that culminate in altered gliotransmission in the ventral tegmental area and nucleus accumbens (NAc). The latter might potentiate dopaminergic drive in the NAc, contributing to increase the vulnerability to alcohol dependence and addiction in the adolescence and adulthood.
Collapse
Affiliation(s)
- Juan A Orellana
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Neurociencias, Departamento de Neurología, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Waldo Cerpa
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratorio de Función y Patología Neuronal, Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de ChileSantiago, Chile
| | - Maria F Carvajal
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - José M Lerma-Cabrera
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Eduardo Karahanian
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Unidad de Neurociencia, Centro de Investigación Biomédica, Universidad Autónoma de ChileSantiago, Chile
| | - Cesar Osorio-Fuentealba
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Facultad de Kinesiología, Artes y Educación Física, Universidad Metropolitana de Ciencias de la EducaciónSantiago, Chile
| | - Rodrigo A Quintanilla
- Centro de Investigación y Estudio del Consumo de Alcohol en AdolescentesSantiago, Chile.,Laboratory of Neurodegenerative Diseases, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
18
|
Reemst K, Noctor SC, Lucassen PJ, Hol EM. The Indispensable Roles of Microglia and Astrocytes during Brain Development. Front Hum Neurosci 2016; 10:566. [PMID: 27877121 PMCID: PMC5099170 DOI: 10.3389/fnhum.2016.00566] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/25/2016] [Indexed: 01/17/2023] Open
Abstract
Glia are essential for brain functioning during development and in the adult brain. Here, we discuss the various roles of both microglia and astrocytes, and their interactions during brain development. Although both cells are fundamentally different in origin and function, they often affect the same developmental processes such as neuro-/gliogenesis, angiogenesis, axonal outgrowth, synaptogenesis and synaptic pruning. Due to their important instructive roles in these processes, dysfunction of microglia or astrocytes during brain development could contribute to neurodevelopmental disorders and potentially even late-onset neuropathology. A better understanding of the origin, differentiation process and developmental functions of microglia and astrocytes will help to fully appreciate their role both in the developing as well as in the adult brain, in health and disease.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Stephen C. Noctor
- Department of Psychiatry and Behavioral Sciences, UC Davis MIND InstituteSacramento, CA, USA
| | - Paul J. Lucassen
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Elly M. Hol
- Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center UtrechtUtrecht, Netherlands
- Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
19
|
Gajardo-Gómez R, Labra VC, Orellana JA. Connexins and Pannexins: New Insights into Microglial Functions and Dysfunctions. Front Mol Neurosci 2016; 9:86. [PMID: 27713688 PMCID: PMC5031785 DOI: 10.3389/fnmol.2016.00086] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
Under physiological conditions, microglia adopt a resting phenotype associated with the production of anti-inflammatory and neurotrophic factors. In response to a wide variety of insults, these cells shift to an activated phenotype that is necessary for the proper restoration of brain homeostasis. However, when the intensity of a threat is relatively high, microglial activation worsens the progression of damage rather than providing protection, with potentially significant consequences for neuronal survival. Coordinated interactions among microglia and other brain cells, including astrocytes and neurons, are critical for the development of timely and optimal inflammatory responses in the brain parenchyma. Tissue synchronization is in part mediated by connexins and pannexins, which are protein families that form different plasma membrane channels to communicate with neighboring cells. Gap junction channels (which are exclusively formed by connexins in vertebrates) connect the cytoplasm of contacting cells to coordinate electrical and metabolic coupling. Hemichannels (HCs) and pannexons (which are formed by connexins and pannexins, respectively) communicate the intra- and extracellular compartments and serve as diffusion pathways for the exchange of ions and small molecules. In this review article, we discuss the available evidence concerning the functional expression and regulation of connexin- and pannexin-based channels in microglia and their contributions to microglial function and dysfunction. Specifically, we focus on the possible implications of these channels in microglia-to-microglia, microglia-to-astrocyte and neuron-to-microglia interactions in the inflamed brain.
Collapse
Affiliation(s)
- Rosario Gajardo-Gómez
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
20
|
Rawat P, Spector SA. Development and characterization of a human microglia cell model of HIV-1 infection. J Neurovirol 2016; 23:33-46. [PMID: 27538994 DOI: 10.1007/s13365-016-0472-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 05/13/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
Microglia cells are the major reservoir of HIV-1 (HIV) within the CNS. However, current models using transformed cell lines are not representative of primary microglia and fetal brain samples for isolation of primary human microglia (HMG) are increasingly difficult to obtain. Here, we describe a monocyte-derived microglia (MMG) cell model of HIV infection that recapitulates infection of primary HMG. CD14+ cells isolated from healthy donors were cultured with M-CSF, beta-nerve growth factor, GM-CSF, and CCL2, and compared to HMG. MMG and HMG cells were infected with HIV and viral replication was detected by p24 antigen. Both MMG and HMG cells were found to acquire spindle shape with few branched or unbranched processes at their ends during the second week in culture and both were found to be CD11b+/ CD11c+/ CD14+/ CD45+/ CD195+/ HLADRlow/ CD86low/ CD80+. Whereas hT-Hμglia and HMC3 transformed cell lines are deficient in human microglia signature genes (C1Q, GAS6, GPR34, MERTK, PROS1, and P2RY12), MMG cells expressed all of these genes. Additionally, MMG expressed all the microglia signature miRNA (miR-99a, miR125b-5p, and miR-342-3p). Both MMG and HMG produced ROS and phagocytosed labeled zymosan particles upon PMA stimulation. MMG and HMG infected with HIV produced equivalent levels of HIV p24 antigen in culture supernatants for 30 days post-infection. Thus, we have developed and characterized a microglia cell model of HIV infection derived from primary monocytes that recapitulates the phenotypic and molecular properties of HMG, is superior to transformed cell lines, and has similar HIV replication kinetics to HMG.
Collapse
Affiliation(s)
- Pratima Rawat
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, 92093-0672, USA
| | - Stephen A Spector
- Department of Pediatrics, Division of Infectious Diseases, University of California San Diego, La Jolla, CA, 92093-0672, USA. .,Rady Children's Hospital, San Diego, CA, 92123, USA.
| |
Collapse
|
21
|
Hoeijmakers L, Heinen Y, van Dam AM, Lucassen PJ, Korosi A. Microglial Priming and Alzheimer's Disease: A Possible Role for (Early) Immune Challenges and Epigenetics? Front Hum Neurosci 2016; 10:398. [PMID: 27555812 PMCID: PMC4977314 DOI: 10.3389/fnhum.2016.00398] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022] Open
Abstract
Neuroinflammation is thought to contribute to Alzheimer's disease (AD) pathogenesis that is, to a large extent, mediated by microglia. Given the tight interaction between the immune system and the brain, peripheral immune challenges can profoundly affect brain function. Indeed, both preclinical and clinical studies have indicated that an aberrant inflammatory response can elicit behavioral impairments and cognitive deficits, especially when the brain is in a vulnerable state, e.g., during early development, as a result of aging, or under disease conditions like AD. However, how exactly peripheral immune challenges affect brain function and whether this is mediated by aberrant microglial functioning remains largely elusive. In this review, we hypothesize that: (1) systemic immune challenges occurring during vulnerable periods of life can increase the propensity to induce later cognitive dysfunction and accelerate AD pathology; and (2) that "priming" of microglial cells is instrumental in mediating this vulnerability. We highlight how microglia can be primed by both neonatal infections as well as by aging, two periods of life during which microglial activity is known to be specifically upregulated. Lasting changes in (the ratios of) specific microglial phenotypes can result in an exaggerated pro-inflammatory cytokine response to subsequent inflammatory challenges. While the resulting changes in brain function are initially transient, a continued and/or excess release of such pro-inflammatory cytokines can activate various downstream cellular cascades known to be relevant for AD. Finally, we discuss microglial priming and the aberrant microglial response as potential target for treatment strategies for AD.
Collapse
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| | - Yvonne Heinen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| | - Anne-Marie van Dam
- Department of Anatomy and Neurosciences, Neuroscience Campus Amsterdam, VU University Medical Center Amsterdam, Netherlands
| | - Paul J Lucassen
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam Amsterdam, Netherlands
| |
Collapse
|
22
|
Kawahara K, Hirata H, Ohbuchi K, Nishi K, Maeda A, Kuniyasu A, Yamada D, Maeda T, Tsuji A, Sawada M, Nakayama H. The novel monoclonal antibody 9F5 reveals expression of a fragment of GPNMB/osteoactivin processed by furin-like protease(s) in a subpopulation of microglia in neonatal rat brain. Glia 2016; 64:1938-61. [PMID: 27464357 PMCID: PMC5129557 DOI: 10.1002/glia.23034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 07/02/2016] [Accepted: 07/07/2016] [Indexed: 12/19/2022]
Abstract
To differentiate subtypes of microglia (MG), we developed a novel monoclonal antibody, 9F5, against one subtype (type 1) of rat primary MG. The 9F5 showed high selectivity for this cell type in Western blot and immunocytochemical analyses and no cross-reaction with rat peritoneal macrophages (Mφ). We identified the antigen molecule for 9F5: the 50- to 70-kDa fragments of rat glycoprotein nonmetastatic melanoma protein B (GPNMB)/osteoactivin, which started at Lys(170) . In addition, 9F5 immunoreactivity with GPNMB depended on the activity of furin-like protease(s). More important, rat type 1 MG expressed the GPNMB fragments, but type 2 MG and Mφ did not, although all these cells expressed mRNA and the full-length protein for GPNMB. These results suggest that 9F5 reactivity with MG depends greatly on cleavage of GPNMB and that type 1 MG, in contrast to type 2 MG and Mφ, may have furin-like protease(s) for GPNMB cleavage. In neonatal rat brain, amoeboid 9F5+ MG were observed in specific brain areas including forebrain subventricular zone, corpus callosum, and retina. Double-immunοstaining with 9F5 antibody and anti-Iba1 antibody, which reacts with MG throughout the CNS, revealed that 9F5+ MG were a portion of Iba1+ MG, suggesting that MG subtype(s) exist in vivo. We propose that 9F5 is a useful tool to discriminate between rat type 1 MG and other subtypes of MG/Mφ and to reveal the role of the GPNMB fragments during developing brain. GLIA 2016;64:1938-1961.
Collapse
Affiliation(s)
- Kohichi Kawahara
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan. .,Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata, 956-8603, Japan.
| | - Hiroshi Hirata
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Kengo Ohbuchi
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Kentaro Nishi
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Akira Maeda
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan
| | - Akihiko Kuniyasu
- Department of Molecular Cell Pharmacology, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Daisuke Yamada
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata, 956-8603, Japan
| | - Takehiko Maeda
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Niigata University of Pharmacy and Applied Life Sciences, 265-1 Higashijima, Niigata, 956-8603, Japan
| | - Akihiko Tsuji
- Department of Biological Science and Technology, the University of Tokushima Graduate School, 2-1 Minamijosanjima, Tokushima, 770-8506, Japan
| | - Makoto Sawada
- Department of Brain Functions, Research Institute of Environmental Medicine, Nagoya University, Nagoya, 464-8601, Japan
| | - Hitoshi Nakayama
- Department of Molecular Cell Function, Faculty of Life Sciences, Kumamoto University, 5-1 Ohe-Honmachi, Kumamoto, 862-0973, Japan.
| |
Collapse
|
23
|
Del Rio R, Quintanilla RA, Orellana JA, Retamal MA. Neuron-Glia Crosstalk in the Autonomic Nervous System and Its Possible Role in the Progression of Metabolic Syndrome: A New Hypothesis. Front Physiol 2015; 6:350. [PMID: 26648871 PMCID: PMC4664731 DOI: 10.3389/fphys.2015.00350] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/09/2015] [Indexed: 01/26/2023] Open
Abstract
Metabolic syndrome (MS) is characterized by the following physiological alterations: increase in abdominal fat, insulin resistance, high concentration of triglycerides, low levels of HDL, high blood pressure, and a generalized inflammatory state. One of the pathophysiological hallmarks of this syndrome is the presence of neurohumoral activation, which involve autonomic imbalance associated to hyperactivation of the sympathetic nervous system. Indeed, enhanced sympathetic drive has been linked to the development of endothelial dysfunction, hypertension, stroke, myocardial infarct, and obstructive sleep apnea. Glial cells, the most abundant cells in the central nervous system, control synaptic transmission, and regulate neuronal function by releasing bioactive molecules called gliotransmitters. Recently, a new family of plasma membrane channels called hemichannels has been described to allow the release of gliotransmitters and modulate neuronal firing rate. Moreover, a growing amount of evidence indicates that uncontrolled hemichannel opening could impair glial cell functions, affecting synaptic transmission and neuronal survival. Given that glial cell functions are disturbed in various metabolic diseases, we hypothesize that progression of MS may relies on hemichannel-dependent impairment of glial-to-neuron communication by a mechanism related to dysfunction of inflammatory response and mitochondrial metabolism of glial cells. In this manuscript, we discuss how glial cells may contribute to the enhanced sympathetic drive observed in MS, and shed light about the possible role of hemichannels in this process.
Collapse
Affiliation(s)
- Rodrigo Del Rio
- Centro de Investigación Biomédica, Universidad Autónoma de Chile Santiago, Chile ; Dirección de Investigación, Universidad Científica del Sur Lima, Perú
| | | | - Juan A Orellana
- Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile Santiago, Chile
| | - Mauricio A Retamal
- Centro de Fisiología Celular e Integrativa, Facultad de Medicina. Clínica Alemana Universidad del Desarrollo Santiago, Chile
| |
Collapse
|
24
|
Ziats MN, Edmonson C, Rennert OM. The autistic brain in the context of normal neurodevelopment. Front Neuroanat 2015; 9:115. [PMID: 26379512 PMCID: PMC4548149 DOI: 10.3389/fnana.2015.00115] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 08/12/2015] [Indexed: 01/06/2023] Open
Abstract
The etiology of autism spectrum disorders (ASDs) is complex and largely unclear. Among various lines of inquiry, many have suggested convergence onto disruptions in both neural circuitry and immune regulation/glial cell function pathways. However, the interpretation of the relationship between these two putative mechanisms has largely focused on the role of exogenous factors and insults, such as maternal infection, in activating immune pathways that in turn result in neural network abnormalities. Yet, given recent insights into our understanding of human neurodevelopment, and in particular the critical role of glia and the immune system in normal brain development, it is important to consider these putative pathological processes in their appropriate normal neurodevelopmental context. In this review, we explore the hypothesis that the autistic brain cellular phenotype likely represents intrinsic abnormalities of glial/immune processes constitutively operant in normal brain development that result in the observed neural network dysfunction. We review recent studies demonstrating the intercalated role of neural circuit development, the immune system, and glial cells in the normal developing brain, and integrate them with studies demonstrating pathological alterations in these processes in autism. By discussing known abnormalities in the autistic brain in the context of normal brain development, we explore the hypothesis that the glial/immune component of ASD may instead be related to intrinsic exaggerated/abnormal constitutive neurodevelopmental processes such as network pruning. Moreover, this hypothesis may be relevant to other neurodevelopmental disorders that share genetic, pathologic, and clinical features with autism.
Collapse
Affiliation(s)
- Mark N Ziats
- National Institute of Child Health and Human Development, NIH Bethesda, MD, USA ; Medical Scientist Training Program, Baylor College of Medicine Houston, TX, USA
| | - Catherine Edmonson
- National Institute of Child Health and Human Development, NIH Bethesda, MD, USA ; College of Medicine, University of Florida Gainesville, FL, USA
| | - Owen M Rennert
- National Institute of Child Health and Human Development, NIH Bethesda, MD, USA
| |
Collapse
|
25
|
Schomberg D, Miranpuri G, Duellman T, Crowell A, Vemuganti R, Resnick D. Spinal cord injury induced neuropathic pain: Molecular targets and therapeutic approaches. Metab Brain Dis 2015; 30:645-58. [PMID: 25588751 DOI: 10.1007/s11011-014-9642-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Neuropathic pain, especially that resulting from spinal cord injury, is a tremendous clinical challenge. A myriad of biological changes have been implicated in producing these pain states including cellular interactions, extracellular proteins, ion channel expression, and epigenetic influences. Physiological consequences of these changes are varied and include functional deficits and pain responses. Developing therapies that effectively address the cause of these symptoms require a deeper knowledge of alterations in the molecular pathways. Matrix metalloproteinases and tissue inhibitors of metalloproteinases are two promising therapeutic targets. Matrix metalloproteinases interact with and influence many of the studied pain pathways. Gene expression of ion channels and inflammatory mediators clearly contributes to neuropathic pain. Localized and time dependent targeting of these proteins could alleviate and even prevent neuropathic pain from developing. Current therapeutic options for neuropathic pain are limited primarily to analgesics targeting the opioid pathway. Therapies directed at molecular targets are highly desirable and in early stages of development. These include transplantation of exogenously engineered cell populations and targeted gene manipulation. This review describes specific molecular targets amenable to therapeutic intervention using currently available delivery systems.
Collapse
Affiliation(s)
- Dominic Schomberg
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, 600 Highland Ave, Madison, WI, 53792, USA
| | | | | | | | | | | |
Collapse
|
26
|
Xavier AL, Lima FRS, Nedergaard M, Menezes JRL. Ontogeny of CX3CR1-EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone. Front Cell Neurosci 2015; 9:37. [PMID: 25741237 PMCID: PMC4330885 DOI: 10.3389/fncel.2015.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/21/2015] [Indexed: 01/29/2023] Open
Abstract
The full spectrum of cellular interactions within CNS neurogenic niches is still poorly understood. Only recently has the monocyte counterpart of the nervous system, the microglial cells, been described as an integral cellular component of neurogenic niches. The present study sought to characterize the microglia population in the early postnatal subventricular zone (SVZ), the major site of postnatal neurogenesis, as well as in its anterior extension, the rostral migratory stream (RMS), a pathway for neuroblasts during their transit toward the olfactory bulb (OB) layers. Here we show that microglia within the SVZ/RMS pathway are not revealed by phenotypic markers that characterize microglia in other regions. Analysis of the transgenic mice strain that has one locus of the constitutively expressed fractalkine CX3CR1 receptor replaced by the gene encoding the enhanced green fluorescent protein (EGFP) circumvented the antigenic plasticity of the microglia, thus allowing us to depict microglia within the SVZ/RMS pathway during early development. Notably, microglia within the early SVZ/RMS are not proliferative and display a protracted development, retaining a more immature morphology than their counterparts outside germinal layers. Furthermore, microglia contact and phagocyte radial glia cells (RG) processes, thereby playing a role on the astroglial transformation that putative stem cells within the SVZ niche undergo during the first postnatal days.
Collapse
Affiliation(s)
- Anna L Xavier
- Programa em Ciências Morfológicas, Programa de Diferenciação Celular, Laboratório de Neuroanatomia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil ; Center for Translational Neuromedicine, University of Rochester Medical School Rochester, NY, USA
| | - Flavia R S Lima
- Laboratório de Morfogênese Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of Rochester Medical School Rochester, NY, USA
| | - João R L Menezes
- Programa em Ciências Morfológicas, Programa de Diferenciação Celular, Laboratório de Neuroanatomia Celular, Instituto de Ciências Biomédicas, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| |
Collapse
|
27
|
Neuropathic pain: role of inflammation, immune response, and ion channel activity in central injury mechanisms. Ann Neurosci 2014; 19:125-32. [PMID: 25205985 PMCID: PMC4117080 DOI: 10.5214/ans.0972.7531.190309] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Revised: 06/30/2012] [Accepted: 07/27/2012] [Indexed: 01/11/2023] Open
Abstract
Neuropathic pain (NP) is a significant and disabling clinical problem with very few therapeutic treatment options available. A major priority is to identify the molecular mechanisms responsible for NP. Although many seemingly relevant pathways have been identified, more research is needed before effective clinical interventions can be produced. Initial insults to the nervous system, such as spinal cord injury (SCI), are often compounded by secondary mechanisms such as inflammation, the immune response, and the changing expression of receptors and ion channels. The consequences of these secondary effects myriad and compound those elicited by the primary injury. Chronic NP syndromes following SCI can greatly complicate the clinical treatment of the primary injury and result in high comorbidity. In this review, we will describe physiological outcomes associated with SCI along with some of the mechanisms known to contribute to chronic NP development.
Collapse
|
28
|
Brain APCs including microglia are only differential and positional polymorphs. Ann Neurosci 2014; 17:191-9. [PMID: 25205905 PMCID: PMC4117011 DOI: 10.5214/ans.0972.7531.1017410] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 09/22/2010] [Accepted: 10/04/2010] [Indexed: 12/23/2022] Open
Abstract
The antigen presentation to lymphocytes in brain occurs in two steps. Initially it happens at perivascular spaces by perivascular microglia/macrophage population and finally at the site of inflammation deep into brain parenchyma by the resident microglia. But recent evidence challanges the existing notion of involvement of distinct and different cells at these sites. Studies have shown that many of these microglial cells show dendritic cell phenotype in pathogenic and cytokine driven environment. Different subsets of the cell show wide range of myeloid lineage functions indicating a pre-differentiated status of the cell. Monocytic CD34(+)/B220(+) precursor cells have been transformed to microglial cells in vitro and transplantation of these cells show Iba-1 or F4/80 positivity with microglial phenotypes in vivo in adults. Even they can be converted into dendritic cell like forms. The interconvertability among macrophage-microglia-dendritic cells and final effector maturation according to the microenvironmental cues indicates existence of a pre-mature myeloid cell population concerned with antigen presentation and related functions in brain. With the substantial recent observation this article sketches the idea that brain APCs appearing as macrophage/microglia/DC like forms are derivatives of the same stock in response to their position and microenvironment. And also microglia is never any distinct cells, both in neonatal stage and adults.
Collapse
|
29
|
Mead J, Ashwood P. Evidence supporting an altered immune response in ASD. Immunol Lett 2014; 163:49-55. [PMID: 25448709 DOI: 10.1016/j.imlet.2014.11.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/07/2014] [Accepted: 11/11/2014] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders characterized by deficits in social interactions, communication, and increased stereotypical repetitive behaviors. The immune system plays an important role in neurodevelopment, regulating neuronal proliferation, synapse formation and plasticity, as well as removing apoptotic neurons. Immune dysfunction in ASD has been repeatedly described by many research groups across the globe. Symptoms of immune dysfunction in ASD include neuroinflammation, presence of autoantibodies, increased T cell responses, and enhanced innate NK cell and monocyte immune responses. Moreover these responses are frequently associated with more impairment in core ASD features including impaired social interactions, repetitive behaviors and communication. In mouse models replacing immune components in animals that exhibit autistic relevant features leads to improvement in behavior in these animals. Taken together this research suggests that the immune dysfunction often seen in ASD directly affects aspects of neurodevelopment and neurological processes leading to changes in behavior. Discussion of immune abnormalities in ASD will be the focus of this review.
Collapse
Affiliation(s)
- Jennifer Mead
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA
| | - Paul Ashwood
- Department of Medical Microbiology and Immunology, UC Davis, CA, USA; The M.I.N.D. Institute, University of California at Davis, CA, USA.
| |
Collapse
|
30
|
Ueno M, Yamashita T. Bidirectional tuning of microglia in the developing brain: from neurogenesis to neural circuit formation. Curr Opin Neurobiol 2014; 27:8-15. [PMID: 24607651 DOI: 10.1016/j.conb.2014.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/15/2014] [Accepted: 02/06/2014] [Indexed: 12/14/2022]
Abstract
The developing brain employs multi-step processes to construct neural circuitry. Recent studies have highlighted that microglia, traditionally known to be the resident immune cells in the brain, have essential roles in these processes, which range from neurogenesis to establishing synaptic connections. Microglia play bidirectional roles for maintaining proper circuitry: eliminating unnecessary cells, axons, and synapses, while supporting the neighboring ones. Although these processes are performed in different parts of the neuron, similar molecular mechanisms are possibly involved. This paper reviews recent progress on the knowledge of the roles of microglia in brain development, and further discusses the application of this knowledge in therapies for brain disorders and injuries.
Collapse
Affiliation(s)
- Masaki Ueno
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, United States; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita-shi, Osaka 565-0871, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo, Japan.
| |
Collapse
|
31
|
Jiang XS, Ni YQ, Liu TJ, Zhang M, Jiang R, Xu GZ. Generation and characterization of immortalized rat retinal microglial cell lines. J Neurosci Res 2014; 92:424-31. [PMID: 24452530 DOI: 10.1002/jnr.23337] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/29/2013] [Accepted: 11/04/2013] [Indexed: 02/05/2023]
Abstract
Retinal microglia play an important role as resident immunocompetent and phagocytic cells in the event of injury and disease. Retinal microglia and microglia precursor transplantation show a rescue effect in ischemic retina and retinal degeneration. However, studies of retinal microglia have been hampered by the difficulty of obtaining sufficient numbers of microglia. One way to circumvent this difficulty is to establish permanent retinal microglia cell lines. In the present study, we report the generation of immortalized retinal microglia, T-MG cells, from postnatal day 3 rat retinal tissue using a lentiviral vector encoding SV40 large T antigen. The T-MG cells exhibited cell-type-specific antigens for monocyte/macrophage lineage cells, including CD11b (OX42), ED1 (OX6), and Iba1, and actively phagocytosed latex beads. In addition to primary retinal microglia, T-MG cells also have the ability to recruit into chemokines. Treatment of T-MG cells with lipopolysaccharide (LPS) led to increased levels of tumor necrosis factor-α, interleukin-1β, and inducible nitric oxide synthase. Genome-wide microarray analysis showed a less than 1% difference in the genes between the T-MG cells and the control primary retinal microglia. The T-MG cells exhibited properties similar to those of the primary retinal microglia and should have considerable utility as an in vitro model for the study of retinal microglia in health and as a curative therapy and an in vivo model for the study of retinal microglia in disease.
Collapse
Affiliation(s)
- Xiao-shuang Jiang
- Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China; Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, People's Republic of China; Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, People's Republic of China
| | | | | | | | | | | |
Collapse
|
32
|
Hamacher M, Meyer HE, Marcus K. New access to Alzheimer’s and other neurodegenerative diseases. Expert Rev Proteomics 2014; 4:591-4. [DOI: 10.1586/14789450.4.5.591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
33
|
Pontes B, Ayala Y, Fonseca ACC, Romão LF, Amaral RF, Salgado LT, Lima FR, Farina M, Viana NB, Moura-Neto V, Nussenzveig HM. Membrane elastic properties and cell function. PLoS One 2013; 8:e67708. [PMID: 23844071 PMCID: PMC3701085 DOI: 10.1371/journal.pone.0067708] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/22/2013] [Indexed: 12/18/2022] Open
Abstract
Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.
Collapse
Affiliation(s)
- Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yareni Ayala
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Anna Carolina C. Fonseca
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana F. Romão
- Universidade Federal do Rio de Janeiro/Macaé, Macaé, Rio de Janeiro, Brazil
| | - Racκele F. Amaral
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Leonardo T. Salgado
- Diretoria de Pesquisas, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia R. Lima
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Farina
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nathan B. Viana
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivaldo Moura-Neto
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - H. Moysés Nussenzveig
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013; 16:543-51. [PMID: 23525041 DOI: 10.1038/nn.3358] [Citation(s) in RCA: 566] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/13/2013] [Indexed: 01/19/2023]
|
35
|
|
36
|
Siddiqui TA, Lively S, Vincent C, Schlichter LC. Regulation of podosome formation, microglial migration and invasion by Ca(2+)-signaling molecules expressed in podosomes. J Neuroinflammation 2012; 9:250. [PMID: 23158496 PMCID: PMC3551664 DOI: 10.1186/1742-2094-9-250] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 10/25/2012] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Microglia migrate during brain development and after CNS injury, but it is not known how they degrade the extracellular matrix (ECM) to accomplish this. Podosomes are tiny structures with the unique ability to adhere to and dissolve ECM. Podosomes have a two-part architecture: a core that is rich in F-actin and actin-regulatory molecules (for example, Arp2/3), surrounded by a ring with adhesion and structural proteins (for example, talin, vinculin). We recently discovered that the lamellum at the leading edge of migrating microglia contains a large F-actin-rich superstructure ('podonut') composed of many podosomes. Microglia that expressed podosomes could degrade ECM molecules. Finely tuned Ca(2+) signaling is important for cell migration, cell-substrate adhesion and contraction of the actomyosin network. Here, we hypothesized that podosomes contain Ca(2+)-signaling machinery, and that podosome expression and function depend on Ca(2+) influx and specific ion channels. METHODS High-resolution immunocytochemistry was used on rat microglia to identify podosomes and novel molecular components. A pharmacological toolbox was applied to functional assays. We analyzed roles of Ca(2+)-entry pathways and ion channels in podosome expression, microglial migration into a scratch-wound, transmigration through pores in a filter, and invasion through Matrigel™-coated filters. RESULTS Microglial podosomes were identified using well-known components of the core (F-actin, Arp2) and ring (talin, vinculin). We discovered four novel podosome components related to Ca(2+) signaling. The core contained calcium release activated calcium (CRAC; Orai1) channels, calmodulin, small-conductance Ca(2+)-activated SK3 channels, and ionized Ca(2+) binding adapter molecule 1 (Iba1), which is used to identify microglia in the CNS. The Orai1 accessory molecule, STIM1, was also present in and around podosomes. Podosome formation was inhibited by removing external Ca(2+) or blocking CRAC channels. Blockers of CRAC channels inhibited migration and invasion, and SK3 inhibition reduced invasion. CONCLUSIONS Microglia podosome formation, migration and/or invasion require Ca(2+) influx, CRAC, and SK3 channels. Both channels were present in microglial podosomes along with the Ca(2+)-regulated molecules, calmodulin, Iba1 and STIM1. These results suggest that the podosome is a hub for sub-cellular Ca(2+)-signaling to regulate ECM degradation and cell migration. The findings have broad implications for understanding migration mechanisms of cells that adhere to, and dissolve ECM.
Collapse
Affiliation(s)
- Tamjeed A Siddiqui
- Toronto Western Research Institute, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada
| | | | | | | |
Collapse
|
37
|
Shao J, Liu T, Xie QR, Zhang T, Yu H, Wang B, Ying W, Mruk DD, Silvestrini B, Cheng CY, Xia W. Adjudin attenuates lipopolysaccharide (LPS)- and ischemia-induced microglial activation. J Neuroimmunol 2012; 254:83-90. [PMID: 23084372 DOI: 10.1016/j.jneuroim.2012.09.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Revised: 09/23/2012] [Accepted: 09/24/2012] [Indexed: 12/14/2022]
Abstract
Neuroinflammation caused by microglial activation plays a key role in ischemia, neurodegeneration and many other CNS diseases. In this study, we found that Adjudin, a potential non-hormonal male contraceptive, exhibits additional function to reduce the production of proinflammatory mediators. Adjudin significantly inhibited LPS-induced IL-6 release and IL-6, IL-1β, TNF-α expression in BV2 microglial cells. Furthermore, Adjudin exhibited anti-inflammatory properties by suppression of NF-κB p65 nuclear translocation and DNA binding activity as well as ERK MAPK phosphorylation. To determine the in vivo effect of Adjudin, we used a permanent middle cerebral artery occlusion (pMCAO) mouse model and found that Adjudin could reduce ischemia-induced CD11b expression, a marker of microglial activation. Furthermore, Adjudin treatment attenuated brain edema and neurological deficits after ischemia but did not reduce infarct volume. Thus, our data suggest that Adjudin may be useful for mitigating neuroinflammation.
Collapse
Affiliation(s)
- Jiaxiang Shao
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai 200030, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Swinnen N, Smolders S, Avila A, Notelaers K, Paesen R, Ameloot M, Brône B, Legendre P, Rigo JM. Complex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia 2012; 61:150-63. [PMID: 23001583 DOI: 10.1002/glia.22421] [Citation(s) in RCA: 147] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 08/28/2012] [Indexed: 12/12/2022]
Abstract
Microglia are the immune cells of the central nervous system. They are suspected to play important roles in adult synaptogenesis and in the development of the neuronal network. Microglial cells originate from progenitors in the yolk sac. Although it was suggested that they invade the cortex at early developmental stages in the embryo, their invasion pattern remains largely unknown. To address this issue we analyzed the pattern of cortical invasion by microglial cells in mouse embryos at the onset of neuronal cell migration using in vivo immunohistochemistry and ex vivo time-lapse analysis of microglial cells. Microglial cells begin to invade the cortex at 11.5 days of embryonic age (E11.5). They first accumulate at the pial surface and within the lateral ventricles, after which they spread throughout the cortical wall, avoiding the cortical plate region in later embryonic ages. The invasion of the cortical parenchyma occurs in different phases. First, there is a gradual increase of microglial cells between E10.5 and E14.5. From E14.5 to E15.5 there is a rapid phase with a massive increase in microglia, followed by a slow phase again from E15.5 until E17.5. At early stages, many peripheral microglia are actively proliferating before entering the parenchyma. Remarkably, activated microglia accumulate in the choroid plexus primordium, where they are in the proximity of dying cells. Time-lapse analysis shows that embryonic microglia are highly dynamic cells.
Collapse
Affiliation(s)
- Nina Swinnen
- Hasselt University, BIOMED, Agoralaan (Gebouw C), Diepenbeek B-3590, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lijia Z, Zhao S, Wang X, Wu C, Yang J. A self-propelling cycle mediated by reactive oxide species and nitric oxide exists in LPS-activated microglia. Neurochem Int 2012; 61:1220-30. [PMID: 23000131 DOI: 10.1016/j.neuint.2012.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 08/29/2012] [Accepted: 09/05/2012] [Indexed: 10/27/2022]
Abstract
It has been widely accepted that microglia, the innate immune cells in the brain, can be chronically activated in response to neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which has been considered as the main reason responsible for the progressive nature of neurodegenerative diseases. In the present study, it was found that LPS (lipopolysaccharide) significantly induced the activation of N9 microglia, and the increase of NO level induced by pretreatment of LPS could last after the removal of LPS. The culture medium of activated microglia significantly decreased the viability of rat primary cortical neuron. These results can be blocked by the antioxidant N-acetylcysteine (NAC) and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase inhibitor diphenyleneiodonium sulfate (DPI), suggesting that intracellular reactive oxide species (iROS) released from the activated microglial cells may continue to further activate microglia. Next, it was shown that the iROS level increased rapidly after the LPS treatment in microglia cells followed by the NO production through the regulation of iNOS (inducible nitric oxide synthase) expression. The increase of iROS could be reversed by gp91phox (the critical and catalytic subunit of NADPH oxidase) siRNA. Moreover, NO released from sodium nitroprusside (SNP) was able to increase the iROS production of N9 microglia by regulating of the activity and the expression of NADPH oxidase. In conclusion, our research suggests for the first time that there may exist a self-propelling cycle in microglial cells possibly mediated by iROS and NO when they become activated by LPS. It may be responsible partially for the ongoing microglial activation and the progressive nature of neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhang Lijia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | | | | | | | | |
Collapse
|
40
|
O’Kusky J, Ye P. Neurodevelopmental effects of insulin-like growth factor signaling. Front Neuroendocrinol 2012; 33:230-51. [PMID: 22710100 PMCID: PMC3677055 DOI: 10.1016/j.yfrne.2012.06.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/09/2012] [Accepted: 06/07/2012] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor (IGF) signaling greatly impacts the development and growth of the central nervous system (CNS). IGF-I and IGF-II, two ligands of the IGF system, exert a wide variety of actions both during development and in adulthood, promoting the survival and proliferation of neural cells. The IGFs also influence the growth and maturation of neural cells, augmenting dendritic growth and spine formation, axon outgrowth, synaptogenesis, and myelination. Specific IGF actions, however, likely depend on cell type, developmental stage, and local microenvironmental milieu within the brain. Emerging research also indicates that alterations in IGF signaling likely contribute to the pathogenesis of some neurological disorders. This review summarizes experimental studies and shed light on the critical roles of IGF signaling, as well as its mechanisms, during CNS development.
Collapse
Affiliation(s)
- John O’Kusky
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada V5Z 1M9
| | - Ping Ye
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
41
|
Is autism a member of a family of diseases resulting from genetic/cultural mismatches? Implications for treatment and prevention. AUTISM RESEARCH AND TREATMENT 2012; 2012:910946. [PMID: 22928103 PMCID: PMC3420574 DOI: 10.1155/2012/910946] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 01/18/2012] [Accepted: 04/10/2012] [Indexed: 12/20/2022]
Abstract
Several lines of evidence support the view that autism is a typical member of a large family of immune-related, noninfectious, chronic diseases associated with postindustrial society. This family of diseases includes a wide range of inflammatory, allergic, and autoimmune diseases and results from consequences of genetic/culture mismatches which profoundly destabilize the immune system. Principle among these consequences is depletion of important components, particularly helminths, from the ecosystem of the human body, the human biome. Autism shares a wide range of features in common with this family of diseases, including the contribution of genetics/epigenetics, the identification of disease-inducing triggers, the apparent role of immunity in pathogenesis, high prevalence, complex etiologies and manifestations, and potentially some aspects of epidemiology. Fortunately, using available resources and technology, modern medicine has the potential to effectively reconstitute the human biome, thus treating or even avoiding altogether the consequences of genetic/cultural mismatches which underpin this entire family of disease. Thus, if indeed autism is an epidemic of postindustrial society associated with immune hypersensitivity, we can expect that the disease is readily preventable.
Collapse
|
42
|
Etemad S, Zamin RM, Ruitenberg MJ, Filgueira L. A novel in vitro human microglia model: characterization of human monocyte-derived microglia. J Neurosci Methods 2012; 209:79-89. [PMID: 22659341 DOI: 10.1016/j.jneumeth.2012.05.025] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 04/20/2012] [Accepted: 05/22/2012] [Indexed: 12/18/2022]
Abstract
Microglia are the innate immune cells of the central nervous system. They help maintaining physiological homeostasis and contribute significantly to inflammatory responses in the course of infection, injury and degenerative processes. To date, there is no standardized simple model available to investigate the biology of human microglia. The aim of this study was to establish a new human microglia model. For that purpose, human peripheral blood monocytes were cultured in serum free medium in the presence of M-CSF, GM-CSF, NGF and CCL2 to generate monocyte-derived microglia (M-MG). M-MG were clearly different in morphology, phenotype and function from freshly isolated monocytes, cultured monocytes in the absence of the cytokines and monocyte-derived dendritic cells (M-DC) cultured in the presence of GM-CSF and IL-4. M-MG acquired a ramified morphology with primary and secondary processes. M-MG displayed a comparable phenotype to the human microglia cell line HMC3, expressing very low levels of CD45, CD14 and HLA-DR, CD11b and CD11c; and undetectable levels of CD40, CD80 and CD83, and a distinct pattern of chemokine receptors (positive for CCR1, CCR2, CCR4, CCR5, CXCR1, CXCR3, CX3CR1; negative for CCR6 and CCR7). In comparison with M-DC, M-MG displayed lower T-lymphocyte stimulatory capacity, as well as lower phagocytosis activity. The described protocol for the generation of human monocyte-derived microglia is feasible, well standardized and reliable, as it uses well defined culture medium and recombinant cytokines, but no serum or conditioned medium. This protocol will certainly be very helpful for future studies investigating the biology and pathology of human microglia.
Collapse
Affiliation(s)
- Samar Etemad
- School of Anatomy, Physiology and Human Biology, University of Western Australia, WA 6009, Australia
| | | | | | | |
Collapse
|
43
|
Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, Camden JM, Erb L. Neuroprotective roles of the P2Y(2) receptor. Purinergic Signal 2012; 8:559-78. [PMID: 22528682 DOI: 10.1007/s11302-012-9307-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Schomberg D, Olson JK. Immune responses of microglia in the spinal cord: Contribution to pain states. Exp Neurol 2012; 234:262-70. [DOI: 10.1016/j.expneurol.2011.12.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 12/05/2011] [Accepted: 12/13/2011] [Indexed: 01/24/2023]
|
45
|
Pham K, Luo D, Liu C, Harrison JK. CCL5, CCR1 and CCR5 in murine glioblastoma: immune cell infiltration and survival rates are not dependent on individual expression of either CCR1 or CCR5. J Neuroimmunol 2012; 246:10-7. [PMID: 22425022 DOI: 10.1016/j.jneuroim.2012.02.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 02/17/2012] [Accepted: 02/19/2012] [Indexed: 12/17/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain tumor. Microglia/macrophages are found within human GBM where they likely promote tumor progression. We report that CCL5, CCR1, and CCR5 are expressed in glioblastoma. Individual deletion of CCR1 or CCR5 had little to no effect on survival of tumor bearing mice, or numbers of glioblastoma-infiltrated microglia/macrophages or lymphocytes. CCL5 promoted in vitro migration of wild type, CCR1- or CCR5-deficient microglia/macrophages that was blocked by the dual CCR1/CCR5 antagonist, Met-CCL5. These data suggest that CCL5 functions within the glioblastoma microenvironment through CCR1 and CCR5 in a redundant manner.
Collapse
Affiliation(s)
- Kien Pham
- Department of Pharmacology and Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610-0267, USA
| | | | | | | |
Collapse
|
46
|
Networks of neuronal genes affected by common and rare variants in autism spectrum disorders. PLoS Genet 2012; 8:e1002556. [PMID: 22412387 PMCID: PMC3297570 DOI: 10.1371/journal.pgen.1002556] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/11/2012] [Indexed: 11/19/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders with phenotypic and genetic heterogeneity. Recent studies have reported rare and de novo mutations in ASD, but the allelic architecture of ASD remains unclear. To assess the role of common and rare variations in ASD, we constructed a gene co-expression network based on a widespread survey of gene expression in the human brain. We identified modules associated with specific cell types and processes. By integrating known rare mutations and the results of an ASD genome-wide association study (GWAS), we identified two neuronal modules that are perturbed by both rare and common variations. These modules contain highly connected genes that are involved in synaptic and neuronal plasticity and that are expressed in areas associated with learning and memory and sensory perception. The enrichment of common risk variants was replicated in two additional samples which include both simplex and multiplex families. An analysis of the combined contribution of common variants in the neuronal modules revealed a polygenic component to the risk of ASD. The results of this study point toward contribution of minor and major perturbations in the two sub-networks of neuronal genes to ASD risk.
Collapse
|
47
|
Abstract
Microglia, the brain's innate immune cell type, are cells of mesodermal origin that populate the central nervous system (CNS) during development. Undifferentiated microglia, also called ameboid microglia, have the ability to proliferate, phagocytose apoptotic cells and migrate long distances toward their final destinations throughout all CNS regions, where they acquire a mature ramified morphological phenotype. Recent studies indicate that ameboid microglial cells not only have a scavenger role during development but can also promote the death of some neuronal populations. In the mature CNS, adult microglia have highly motile processes to scan their territorial domains, and they display a panoply of effects on neurons that range from sustaining their survival and differentiation contributing to their elimination. Hence, the fine tuning of these effects results in protection of the nervous tissue, whereas perturbations in the microglial response, such as the exacerbation of microglial activation or lack of microglial response, generate adverse situations for the organization and function of the CNS. This review discusses some aspects of the relationship between microglial cells and neuronal death/survival both during normal development and during the response to injury in adulthood.
Collapse
|
48
|
Bilbo SD, Smith SH, Schwarz JM. A lifespan approach to neuroinflammatory and cognitive disorders: a critical role for glia. J Neuroimmune Pharmacol 2012; 7:24-41. [PMID: 21822589 PMCID: PMC3267003 DOI: 10.1007/s11481-011-9299-y] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/14/2011] [Indexed: 12/15/2022]
Abstract
Cognitive decline is a common problem of aging. Whereas multiple neural and glial mechanisms may account for these declines, microglial sensitization and/or dystrophy has emerged as a leading culprit in brain aging and dysfunction. However, glial activation is consistently observed in normal brain aging as well, independent of frank neuroinflammation or functional impairment. Such variability suggests the existence of additional vulnerability factors that can impact neuronal-glial interactions and thus overall brain and cognitive health. The goal of this review is to elucidate our working hypothesis that an individual's risk or resilience to neuroinflammatory disorders and poor cognitive aging may critically depend on their early life experience, which can change immune reactivity within the brain for the remainder of the lifespan. For instance, early-life infection in rats can profoundly disrupt memory function in young adulthood, as well as accelerate age-related cognitive decline, both of which are linked to enduring changes in glial function that occur in response to the initial infection. We discuss these findings within the context of the growing literature on the role of immune molecules and neuroimmune crosstalk in normal brain development. We highlight the intrinsic factors (e.g., chemokines, hormones) that regulate microglial development and their colonization of the embryonic and postnatal brain, and the capacity for disruption or "re-programming" of this crucial process by external events (e.g., stress, infection). An impact on glia, which in turn alters neural development, has the capacity to profoundly impact cognitive and mental health function at all stages of life.
Collapse
Affiliation(s)
- Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University, Durham, NC 27708, USA.
| | | | | |
Collapse
|
49
|
Kaur C, Rathnasamy G, Ling EA. Roles of activated microglia in hypoxia induced neuroinflammation in the developing brain and the retina. J Neuroimmune Pharmacol 2012; 8:66-78. [PMID: 22367679 DOI: 10.1007/s11481-012-9347-2] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 02/09/2012] [Indexed: 12/14/2022]
Abstract
Amoeboid microglial cells (AMCs) in the developing brain display surface receptors and antigens shared by the monocyte-derived tissue macrophages. Activation of AMCs in the perinatal brain has been associated with periventricular white matter damage in hypoxic-ischemic conditions. The periventricular white matter, where the AMCs preponderate, is selectively vulnerable to hypoxia as manifested by death of premyelinating oligodendrocytes and degeneration of axons leading to neonatal mortality and long-term neurodevelopmental deficits. AMCs respond vigorously to hypoxia by producing excess amounts of inflammatory cytokines e.g. the tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) along with glutamate, nitric oxide (NO) and reactive oxygen species which collectively cause oligodendrocyte death, axonal degeneration as well as disruption of the immature blood brain barrier. A similar phenomenon is observed in the hypoxic developing cerebellum in which activated AMCs induced Purkinje neuronal death through production of TNF-α and IL-1β via their respective receptors. Hypoxia is also implicated in retinopathy of prematurity in which activation of AMCs has been shown to cause retinal ganglion cell death through production of TNF-α and IL-1β and NO. Because AMCs play a pivotal role in hypoxic injuries in the developing brain affecting both neurons and oligodendrocytes, a fuller understanding of the underlying molecular mechanisms of microglial activation under such conditions would be desirable for designing of a novel therapeutic strategy for management of hypoxic damage.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, MD10, Singapore 117597, Singapore.
| | | | | |
Collapse
|
50
|
Regulation of microglia by ionotropic glutamatergic and GABAergic neurotransmission. ACTA ACUST UNITED AC 2011; 7:41-6. [PMID: 22166726 DOI: 10.1017/s1740925x11000123] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Recent studies have indicated that constitutive functions of microglia in the healthy adult central nervous system (CNS) involve immune surveillance, synapse maintenance and trophic support. These functions have been related to the ramified structure of 'resting' microglia and the prominent motility in their processes that provide extensive coverage of the entire extracellular milleu. In this review, we examine how external signals, and in particular, ionotropic neurotransmission, regulate features of microglial morphology and process motility. Current findings indicate that microglial physiology in the healthy CNS is constitutively and reciprocally regulated by endogenous ionotropic glutamatergic and GABAergic neurotransmission. These influences do not act directly on microglial cells but indirectly via the activity-dependent release of ATP, likely through a mechanism involving pannexin channels. Microglia in the 'resting' state are not only dynamically active, but also constantly engaged in ongoing communication with neuronal and macroglial components of the CNS in a functionally relevant way.
Collapse
|