1
|
Chang CH, Peng WY, Lee WH, Yang L, Lin TY, Yang MH, Tsai TH. Transporter modulation of molnupiravir and its metabolite β-D-N4-hydroxycytidine across the blood-brain barrier in a rat. COMMUNICATIONS MEDICINE 2023; 3:150. [PMID: 37857815 PMCID: PMC10587300 DOI: 10.1038/s43856-023-00383-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND The antiviral drug molnupiravir is an orally bioavailable prodrug of the nucleoside analog β-D-N4-hydroxycytidine (NHC), which is used to treat coronavirus disease 2019 (COVID-19). However, there is very little information on the barrier distribution of molnupiravir. Our hypothesis is that molnupiravir and NHC can penetrate the blood‒brain barrier (BBB) into brain tissue and that nucleoside transporters (equilibrative nucleoside transporters; ENT and concentrative nucleoside transporters; CNT) can modulate this process. METHODS To investigate the mechanism of molnupiravir transport through the BBB, multiple microdialyses coupled to a validated ultra-high-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS) was developed to monitor dialysates, and nitrobenzylthioinosine (NBMPR; an inhibitor of ENT) was administered concomitantly with molnupiravir (100 mg/kg, i.v.) in the male rat. RESULTS Here, we show that molnupiravir is rapidly metabolized to NHC in the blood and crossed the BBB in 20 min. Furthermore, when NBMPR is concomitantly administered to inhibit efflux, the concentrations of molnupiravir and NHC in the brain increased significantly. CONCLUSIONS In summary, molnupiravir rapidly transforms into NHC and crosses the BBB and reaches the brain at approximately 0.3-0.8% of the blood‒brain ratio. The maximum concentration of NHC in the blood and brain is above the average half maximal inhibitory concentration (IC50) of the drug required to treat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, suggesting a therapeutic effect. The penetration of NHC is modulated by NBMPR. These findings provide constructive information on brain disorders in clinical patients with COVID-19.
Collapse
Affiliation(s)
- Chun-Hao Chang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Wen-Ya Peng
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Wan-Hsin Lee
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Ling Yang
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Tung-Yi Lin
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan
| | - Muh-Hwa Yang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Tung-Hu Tsai
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 404, Taiwan.
- Department of Chemistry, National Sun Yat-Sen University, Kaohsiung, 804, Taiwan.
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
2
|
Abdelgawad N, Tshavhungwe M(P, Rohlwink U, McIlleron H, Abdelwahab MT, Wiesner L, Castel S, Steele C, Enslin J(N, Thango NS, Denti P, Figaji A. Population Pharmacokinetic Analysis of Rifampicin in Plasma, Cerebrospinal Fluid, and Brain Extracellular Fluid in South African Children with Tuberculous Meningitis. Antimicrob Agents Chemother 2023; 67:e0147422. [PMID: 36815838 PMCID: PMC10019224 DOI: 10.1128/aac.01474-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023] Open
Abstract
Limited knowledge is available on the pharmacokinetics of rifampicin in children with tuberculous meningitis (TBM) and its penetration into brain tissue, which is the site of infection. In this analysis, we characterize the distribution of rifampicin in cerebrospinal fluid (CSF), lumbar (LCSF) and ventricular (VCSF), and brain extracellular fluid (ECF). Children with TBM were included in this pharmacokinetic analysis. Sparse plasma, LCSF, and VCSF samples were collected opportunistically, as clinically indicated. Brain ECF was sampled using microdialysis (MD). Rifampicin was quantified with liquid chromatography with tandem mass spectrometry in all samples, and 25-desacetyl rifampicin in the plasma samples. The data were interpreted with nonlinear mixed-effects modeling, with the CSF and brain ECF modeled as "effect compartments." Data were available from 61 children, with median (min-max) age of 2 (0.3 to 10) years and weight of 11.0 (4.8 to 49.0) kg. A one-compartment model for parent and metabolite with first-order absorption and elimination via saturable hepatic clearance described the data well. Allometric scaling, maturation, and auto-induction of clearance were included. The pseudopartition coefficient between plasma and LCSF/VCSF was ~5%, while the value for ECF was only ~0.5%, possibly reflecting low recovery of rifampicin using MD. The equilibration half-life between plasma and LCSF/VCSF was ~4 h and between plasma and ECF ~2 h. Our study confirms previous reports showing that rifampicin concentrations in the LCSF are lower than in plasma and provides novel knowledge about rifampicin in the VCSF and the brain tissue. Despite MD being semiquantitative because the relative recovery cannot be quantified, our study presents a proof-of-concept that rifampicin reaches the brain tissue and that MD is an attractive technique to study site-of-disease pharmacokinetics in TBM.
Collapse
Affiliation(s)
- Noha Abdelgawad
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | | | - Ursula Rohlwink
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Helen McIlleron
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Mahmoud T. Abdelwahab
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Sandra Castel
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Chanel Steele
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Johannes (Nico) Enslin
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Nqobile Sindiswa Thango
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Anthony Figaji
- Division of Neurosurgery, Department of Surgery, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
3
|
Meropenem Population Pharmacokinetics and Simulations in Plasma, Cerebrospinal Fluid, and Brain Tissue. Antimicrob Agents Chemother 2022; 66:e0043822. [PMID: 35862739 PMCID: PMC9380529 DOI: 10.1128/aac.00438-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Meropenem is a broad spectrum carbapenem used for the treatment of cerebral infections. There is a need for data describing meropenem pharmacokinetics (PK) in the brain tissue to optimize therapy in these infections. Here, we present a meropenem PK model in the central nervous system and simulate dosing regimens. This was a population PK analysis of a previously published prospective study of patients admitted to the neurointesive care unit between 2016 and 2019 who received 2 g of meropenem intravenously every 8 h. Meropenem concentration was determined in blood, cerebrospinal fluid (CSF), and brain microdialysate. Meropenem was described by a six-compartment model: two compartments in the blood, two in the CSF, and two in the brain tissue. Creatinine clearance and brain glucose were included as covariates. The median elimination rate constant was 1.26 h-1, the central plasma volume was 5.38 L, and the transfer rate constants from the blood to the CSF and from the blood to the brain were 0.001 h-1 and 0.02 h-1, respectively. In the first 24 h, meropenem 2 g, administered every 8 h via intermittent and extended infusions achieved good target attainment in the CSF and brain, but continuous infusion (CI) was better at steady-state. Administering a 3 g loading dose (LD) followed by 8 g CI was beneficial for early target attainment. In conclusion, a meropenem PK model was developed using blood, CSF, and brain microdialysate samples. An 8 g CI may be needed for good target attainment in the CSF and brain. Giving a LD prior to the CI improved the probability of early target attainment.
Collapse
|
4
|
Custers ML, Nestor L, De Bundel D, Van Eeckhaut A, Smolders I. Current Approaches to Monitor Macromolecules Directly from the Cerebral Interstitial Fluid. Pharmaceutics 2022; 14:pharmaceutics14051051. [PMID: 35631637 PMCID: PMC9146401 DOI: 10.3390/pharmaceutics14051051] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 01/27/2023] Open
Abstract
Gaining insights into the pharmacokinetic and pharmacodynamic properties of lead compounds is crucial during drug development processes. When it comes to the treatment of brain diseases, collecting information at the site of action is challenging. There are only a few techniques available that allow for the direct sampling from the cerebral interstitial space. This review concerns the applicability of microdialysis and other approaches, such as cerebral open flow microperfusion and electrochemical biosensors, to monitor macromolecules (neuropeptides, proteins, …) in the brain. Microdialysis and cerebral open flow microperfusion can also be used to locally apply molecules at the same time at the site of sampling. Innovations in the field are discussed, together with the pitfalls. Moreover, the ‘nuts and bolts’ of the techniques and the current research gaps are addressed. The implementation of these techniques could help to improve drug development of brain-targeted drugs.
Collapse
|
5
|
Targeting Transporters for Drug Delivery to the Brain: Can We Do Better? Pharm Res 2022; 39:1415-1455. [PMID: 35359241 PMCID: PMC9246765 DOI: 10.1007/s11095-022-03241-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/21/2022] [Indexed: 12/11/2022]
Abstract
Limited drug delivery to the brain is one of the major reasons for high failure rates of central nervous system (CNS) drug candidates. The blood–brain barrier (BBB) with its tight junctions, membrane transporters, receptors and metabolizing enzymes is a main player in drug delivery to the brain, restricting the entrance of the drugs and other xenobiotics. Current knowledge about the uptake transporters expressed at the BBB and brain parenchymal cells has been used for delivery of CNS drugs to the brain via targeting transporters. Although many transporter-utilizing (pro)drugs and nanocarriers have been developed to improve the uptake of drugs to the brain, their success rate of translation from preclinical development to humans is negligible. In the present review, we provide a systematic summary of the current progress in development of transporter-utilizing (pro)drugs and nanocarriers for delivery of drugs to the brain. In addition, we applied CNS pharmacokinetic concepts for evaluation of the limitations and gaps in investigation of the developed transporter-utilizing (pro)drugs and nanocarriers. Finally, we give recommendations for a rational development of transporter-utilizing drug delivery systems targeting the brain based on CNS pharmacokinetic principles.
Collapse
|
6
|
Microdialysis techniques and microdialysis-based patient-near diagnostics. Anal Bioanal Chem 2022; 414:3165-3175. [PMID: 35028692 DOI: 10.1007/s00216-021-03830-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 12/03/2021] [Indexed: 01/04/2023]
Abstract
This article will debate the usefulness of POCT measurements and the contribution microdialysis can make to generating valuable information. A particular theme will be the rarely considered difference between ex vivo sampling, which typically generates only a static measure of concentration, and in vivo measurements that are subject to dynamic changes due to mass transfer. Those dynamic changes provide information about the patients' physiological state.
Collapse
|
7
|
Juhairiyah F, de Lange ECM. Understanding Drug Delivery to the Brain Using Liposome-Based Strategies: Studies that Provide Mechanistic Insights Are Essential. AAPS J 2021; 23:114. [PMID: 34713363 PMCID: PMC8553706 DOI: 10.1208/s12248-021-00648-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
Brain drug delivery may be restricted by the blood-brain barrier (BBB), and enhancement by liposome-based drug delivery strategies has been investigated. As access to the human brain is limited, many studies have been performed in experimental animals. Whereas providing interesting data, such studies have room for improvement to provide mechanistic insight into the rate and extent of specifically BBB transport and intrabrain distribution processes that all together govern CNS target delivery of the free drug. This review shortly summarizes BBB transport and current liposome-based strategies to overcome BBB transport restrictions, with the emphasis on how to determine the individual mechanisms that all together determine the time course of free drug brain concentrations, following their administration as such, and in liposomes. Animal studies using microdialysis providing time course information on unbound drug in plasma and brain are highlighted, as these provide the mechanistic information needed to understand BBB drug transport of the drug, and the impact of a liposomal formulations of that drug on BBB transport. Overall, these studies show that brain distribution of a drug administered as liposomal formulation depends on both drug properties and liposomal formulation characteristics. In general, evidence suggests that active transporters at the BBB, either being influx or efflux transporters, are circumvented by liposomes. It is concluded that liposomal formulations may provide interesting changes in BBB transport. More mechanistic studies are needed to understand relevant mechanisms in liposomal drug delivery to the brain, providing an improved basis for its prediction in human using animal data.
Collapse
Affiliation(s)
- Firda Juhairiyah
- Research Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Research Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| |
Collapse
|
8
|
Wang S, Chen C, Guan C, Qiu L, Zhang L, Zhang S, Zhou H, Du H, Li C, Wu Y, Chang H, Wang T. Effects of membrane transport activity and cell metabolism on the unbound drug concentrations in the skeletal muscle and liver of drugs: A microdialysis study in rats. Pharmacol Res Perspect 2021; 9:e00879. [PMID: 34628723 PMCID: PMC8502442 DOI: 10.1002/prp2.879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/20/2021] [Indexed: 11/09/2022] Open
Abstract
The unbound concentrations of 14 commercial drugs, including five non-efflux/uptake transporter substrates-Class I, five efflux transporter substrates-class II and four influx transporter substrates-Class III, were simultaneously measured in rat liver, muscle, and blood via microanalysis. Kpuu,liver and Kpuu,muscle were calculated to evaluate the membrane transport activity and cell metabolism on the unbound drug concentrations in the skeletal muscle and liver. For Class I compounds, represented by antipyrine, unbound concentrations among liver, muscle and blood are symmetrically distributed when compound hepatic clearance is low. And when compound hepatic clearance is high, unbound concentrations among liver, muscle and blood are asymmetrically distributed, such as Propranolol. For Class II and III compounds, overall, the unbound concentrations among liver, muscle, and blood are asymmetrically distributed due to a combination of hepatic metabolism and efflux and/or influx transporter activity.
Collapse
Affiliation(s)
- Shuyao Wang
- DMPK Department, Pharmaron Inc., Beijing, China
| | - Chun Chen
- DMPK Department, Pharmaron Inc., Beijing, China
| | - Chi Guan
- DMPK Department, Pharmaron Inc., Beijing, China
| | - Liping Qiu
- DMPK Department, Pharmaron Inc., Beijing, China
| | - Lei Zhang
- DMPK Department, Pharmaron Inc., Beijing, China
| | | | - Hongyu Zhou
- DMPK Department, Pharmaron Inc., Beijing, China
| | - Hongwen Du
- DMPK Department, Pharmaron Inc., Beijing, China
| | - Chen Li
- DMPK Department, Pharmaron Inc., Beijing, China
| | - Yaqiong Wu
- DMPK Department, Pharmaron Inc., Beijing, China
| | - Hang Chang
- DMPK Department, Pharmaron Inc., Beijing, China
| | - Tao Wang
- DMPK Department, Pharmaron Inc., Beijing, China
| |
Collapse
|
9
|
Neumaier F, Zlatopolskiy BD, Neumaier B. Drug Penetration into the Central Nervous System: Pharmacokinetic Concepts and In Vitro Model Systems. Pharmaceutics 2021; 13:1542. [PMID: 34683835 PMCID: PMC8538549 DOI: 10.3390/pharmaceutics13101542] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 12/22/2022] Open
Abstract
Delivery of most drugs into the central nervous system (CNS) is restricted by the blood-brain barrier (BBB), which remains a significant bottleneck for development of novel CNS-targeted therapeutics or molecular tracers for neuroimaging. Consistent failure to reliably predict drug efficiency based on single measures for the rate or extent of brain penetration has led to the emergence of a more holistic framework that integrates data from various in vivo, in situ and in vitro assays to obtain a comprehensive description of drug delivery to and distribution within the brain. Coupled with ongoing development of suitable in vitro BBB models, this integrated approach promises to reduce the incidence of costly late-stage failures in CNS drug development, and could help to overcome some of the technical, economic and ethical issues associated with in vivo studies in animal models. Here, we provide an overview of BBB structure and function in vivo, and a summary of the pharmacokinetic parameters that can be used to determine and predict the rate and extent of drug penetration into the brain. We also review different in vitro models with regard to their inherent shortcomings and potential usefulness for development of fast-acting drugs or neurotracers labeled with short-lived radionuclides. In this regard, a special focus has been set on those systems that are sufficiently well established to be used in laboratories without significant bioengineering expertise.
Collapse
Affiliation(s)
- Felix Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Boris D. Zlatopolskiy
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| | - Bernd Neumaier
- Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany; (B.D.Z.); (B.N.)
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), Wilhelm-Johnen-Str., 52428 Jülich, Germany
| |
Collapse
|
10
|
Custers ML, Wouters Y, Jaspers T, De Bundel D, Dewilde M, Van Eeckhaut A, Smolders I. Applicability of cerebral open flow microperfusion and microdialysis to quantify a brain-penetrating nanobody in mice. Anal Chim Acta 2021; 1178:338803. [PMID: 34482878 DOI: 10.1016/j.aca.2021.338803] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 02/02/2023]
Abstract
The use of biologics in the therapeutic landscape has increased exponentially since the last 3 decades. Nevertheless, patients with central nervous system (CNS) related disorders could not yet benefit from this revolution because the blood-brain barrier (BBB) severely hampers biologics from entering the brain. Considerable effort has been put into generating methods to modulate or circumvent the BBB for delivery of therapeutics to the CNS. A promising strategy is receptor-mediated transcytosis (RMT). Recently, Wouters et al. (2020) discovered a mouse anti-transferrin receptor nanobody that is able to deliver a biologically active peptide to the brain via RMT. The present study aims to sample a derivative of this brain-penetrating nanobody (Nb105) in the CNS. Therefore, we compared the applicability of cerebral open flow microperfusion (cOFM) and microdialysis as sampling techniques to directly obtain high molecular weight substances from the cerebral interstitial fluid. A custom AlphaScreen™ assay was validated to quantify nanobody concentrations in the samples. In vitro microdialysis probe (AtmosLM™, 1 MDa cut-off) recovery by gain and by loss for Nb105 was 18.3 ± 3.2% and 27.0 ± 2.5% respectively, whereas for cOFM it was 87.2 ± 4.0% and 97.3 ± 1.6%. Although a large difference in in vitro recovery is observed between cOFM and microdialysis, in vivo similar results were obtained. Immunohistochemical stainings showed an astrocytic and microglial reaction in the immediate vicinity along the implantation track for both probe types. Coronal sections showed higher fluorescein isothiocyanate-dextran and immunoglobulin G extravasation around the microdialysis probe track than after cOFM sampling experiments, however this leakage was clearly limited compared to a positive control where the BBB was disrupted. This is the first study that samples a bispecific nanobody in the brain's interstitial fluid in function of time, providing a pharmacokinetic profile of nanobodies in the CNS. Furthermore, this is the first time a cOFM study is performed in awake freely moving mice, providing data on inflammation and blood-brain barrier integrity in the mouse brain. Overall, this work demonstrates that, while taking into account the (bio)analytical considerations, both microdialysis and cOFM are suitable in vivo sampling techniques for quantification of nanobodies in the CNS.
Collapse
Affiliation(s)
- Marie-Laure Custers
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Yessica Wouters
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, Box 602, 3000 Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium.
| | - Tom Jaspers
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, Box 602, 3000 Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium.
| | - Dimitri De Bundel
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Maarten Dewilde
- VIB Center for Brain & Disease Research, Campus Gasthuisberg O&N4, Herestraat 49, Box 602, 3000 Leuven, Belgium; Laboratory for the Research of Neurodegenerative Diseases, Department of Neurosciences, Leuven Brain Institute (LBI), KU Leuven, 3000 Leuven, Belgium.
| | - Ann Van Eeckhaut
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Ilse Smolders
- Vrije Universiteit Brussel (VUB), Department of Pharmaceutical Chemistry, Drug Analysis and Drug Information, Research Group Experimental Pharmacology, Center for Neurosciences (C4N), Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
11
|
Le Prieult F, Barini E, Laplanche L, Schlegel K, Mezler M. Collecting antibodies and large molecule biomarkers in mouse interstitial brain fluid: a comparison of microdialysis and cerebral open flow microperfusion. MAbs 2021; 13:1918819. [PMID: 33993834 PMCID: PMC8128180 DOI: 10.1080/19420862.2021.1918819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The determination of concentrations of large therapeutic molecules, like monoclonal antibodies (mAbs), in the interstitial brain fluid (ISF) is one of the cornerstones for the translation from preclinical species to humans of treatments for neurodegenerative diseases. Microdialysis (MD) and cerebral open flow microperfusion (cOFM) are the only currently available methods for extracting ISF, and their use and characterization for the collection of large molecules in rodents have barely started. For the first time, we compared both methods at a technical and performance level for measuring ISF concentrations of a non-target-binding mAb, trastuzumab, in awake and freely moving mice. Without correction of the data for recovery, concentrations of samples are over 10-fold higher through cOFM compared to MD. The overall similar pharmacokinetic profile and ISF exposure between MD (corrected for recovery) and cOFM indicate an underestimation of the absolute concentrations calculated with in vitro recovery. In vivo recovery (zero-flow rate method) revealed an increased extraction of trastuzumab at low flow rates and a 6-fold higher absolute concentration at steady state than initially calculated with the in vitro recovery. Technical optimizations have significantly increased the performance of both systems, resulting in the possibility of sampling up to 12 mice simultaneously. Moreover, strict aseptic conditions have played an important role in improving data quality. The standardization of these complex methods makes the unraveling of ISF concentrations attainable for various diseases and modalities, starting in this study with mAbs, but extending further in the future to RNA therapeutics, antibody-drug conjugates, and even cell therapies.
Collapse
Affiliation(s)
- Florie Le Prieult
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Erica Barini
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Loic Laplanche
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Kerstin Schlegel
- Neuroscience Discovery, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| | - Mario Mezler
- Drug Metabolism and Pharmacokinetics, AbbVie Deutschland GmbH & Co. KG, Knollstrasse, Ludwigshafen, Germany
| |
Collapse
|
12
|
Umezu T, Shibata Y. Toxicokinetic characteristics and effects of diphenylarsinic acid on dopamine in the striatum of free-moving mice. Neurotoxicology 2021; 83:106-115. [PMID: 33417988 DOI: 10.1016/j.neuro.2020.12.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Diphenylarsinic acid (DPAA), an artificial phenyl arsenic compound, is considered a groundwater pollutant in Japan. Previous human and animal studies suggested that DPAA affects the central nervous system; however, these effects are poorly understood. The present study investigated the toxicokinetic characteristics and effects of DPAA on dopamine (DA) in the striatum of free-moving mice after a single oral administration. In a simultaneous blood and brain microdialysis study, only DPAA was detectable in both blood and striatum dialysate samples immediately after DPAA administration. DPAA concentrations in the striatum and blood dialysate rapidly reached a maximum, then decreased over time in an essentially parallel manner. A more detailed brain microdialysis examination of intracerebral kinetics revealed that the concentration of DPAA in the striatum dialysate began to increase within 15 min, reaching a maximum approximately 1 h after administration, and then decreased with a biological half-life of approximately 2 h. Moreover, a single oral administration of DPAA at 0.5-32 mg/kg affected the extracellular DA level in the striatum. The effect on DA level changed slowly after DPAA administration, with a bell-shaped dose-response relationship. The present study suggests that DPAA is rapidly absorbed into the blood circulating in the gastrointestinal tract and passes through the blood-brain barrier to subsequently affect DA levels in the striatum in mice after a single oral administration.
Collapse
Affiliation(s)
- Toyoshi Umezu
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | - Yasuyuki Shibata
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
13
|
Bartlett MJ, Mabrouk OS, Szabò L, Flores AJ, Parent KL, Bidlack JM, Heien ML, Kennedy RT, Polt R, Sherman SJ, Falk T. The Delta-Specific Opioid Glycopeptide BBI-11008: CNS Penetration and Behavioral Analysis in a Preclinical Model of Levodopa-Induced Dyskinesia. Int J Mol Sci 2020; 22:ijms22010020. [PMID: 33374986 PMCID: PMC7792611 DOI: 10.3390/ijms22010020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
In previous work we evaluated an opioid glycopeptide with mixed μ/δ-opioid receptor agonism that was a congener of leu-enkephalin, MMP-2200. The glycopeptide analogue showed penetration of the blood-brain barrier (BBB) after systemic administration to rats, as well as profound central effects in models of Parkinson's disease (PD) and levodopa (L-DOPA)-induced dyskinesia (LID). In the present study, we tested the glycopeptide BBI-11008 with selective δ-opioid receptor agonism, an analogue of deltorphin, a peptide secreted from the skin of frogs (genus Phyllomedusa). We tested BBI-11008 for BBB-penetration after intraperitoneal (i.p.) injection and evaluated effects in LID rats. BBI-11008 (10 mg/kg) demonstrated good CNS-penetrance as shown by microdialysis and mass spectrometric analysis, with peak concentration levels of 150 pM in the striatum. While BBI-11008 at both 10 and 20 mg/kg produced no effect on levodopa-induced limb, axial and oral (LAO) abnormal involuntary movements (AIMs), it reduced the levodopa-induced locomotor AIMs by 50% after systemic injection. The N-methyl-D-aspartate receptor antagonist MK-801 reduced levodopa-induced LAO AIMs, but worsened PD symptoms in this model. Co-administration of MMP-2200 had been shown prior to block the MK-801-induced pro-Parkinsonian activity. Interestingly, BBI-11008 was not able to block the pro-Parkinsonian effect of MK-801 in the LID model, further indicating that a balance of mu- and delta-opioid agonism is required for this modulation. In summary, this study illustrates another example of meaningful BBB-penetration of a glycopeptide analogue of a peptide to achieve a central behavioral effect, providing additional evidence for the glycosylation technique as a method to harness therapeutic potential of peptides.
Collapse
MESH Headings
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacokinetics
- Analgesics, Opioid/pharmacology
- Animals
- Corpus Striatum/metabolism
- Disease Models, Animal
- Dizocilpine Maleate/pharmacology
- Dyskinesia, Drug-Induced/metabolism
- Dyskinesia, Drug-Induced/physiopathology
- Glycopeptides/administration & dosage
- Glycopeptides/pharmacokinetics
- Glycopeptides/pharmacology
- Levodopa
- Male
- Motor Activity/drug effects
- Motor Activity/physiology
- Neuroprotective Agents/pharmacology
- Parkinson Disease, Secondary/chemically induced
- Parkinson Disease, Secondary/metabolism
- Parkinson Disease, Secondary/physiopathology
- Rats, Sprague-Dawley
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
Collapse
Affiliation(s)
- Mitchell J. Bartlett
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (M.J.B.); (S.J.S.)
| | - Omar S. Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; (O.S.M.); (R.T.K.)
| | - Lajos Szabò
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (L.S.); (K.L.P.); (M.L.H.); (R.P.)
| | - Andrew J. Flores
- Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, AZ 85724, USA;
| | - Kate L. Parent
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (L.S.); (K.L.P.); (M.L.H.); (R.P.)
| | - Jean M. Bidlack
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA;
| | - Michael L. Heien
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (L.S.); (K.L.P.); (M.L.H.); (R.P.)
| | - Robert T. Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; (O.S.M.); (R.T.K.)
| | - Robin Polt
- Department of Chemistry & Biochemistry, University of Arizona, Tucson, AZ 85721, USA; (L.S.); (K.L.P.); (M.L.H.); (R.P.)
| | - Scott J. Sherman
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (M.J.B.); (S.J.S.)
| | - Torsten Falk
- Department of Neurology, College of Medicine, University of Arizona, Tucson, AZ 85724, USA; (M.J.B.); (S.J.S.)
- Graduate Interdisciplinary Program in Physiological Sciences, University of Arizona, Tucson, AZ 85724, USA;
- Department of Pharmacology, University of Arizona, Tucson, AZ 85724, USA
- Correspondence: ; Tel.: +1-520-626-3927
| |
Collapse
|
14
|
Umezu T, Sano T, Hayashi J, Shibata Y. Simultaneous blood and brain microdialysis in a free-moving mouse to test blood-brain barrier permeability of chemicals. Toxicol Rep 2020; 7:1542-1550. [PMID: 33294385 PMCID: PMC7689036 DOI: 10.1016/j.toxrep.2020.10.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 09/30/2020] [Accepted: 10/29/2020] [Indexed: 01/27/2023] Open
Abstract
Neurotoxic chemicals that pass through the blood-brain barrier (BBB) can influence brain function. Efficient methods to test the permeability of the BBB to specific chemicals would facilitate identification of potentially neurotoxic agents. We report here a simultaneous blood and brain microdialysis in a free-moving mouse to test BBB permeability of different chemicals. Microdialysis sampling was conducted in mice at 3-5 days after implantation of a brain microdialysis probe and 1 day after implantation of a blood microdialysis probe. Therefore, mice were under almost physiological conditions. Results of an intravenous injection of lucifer yellow or uranine showed that the BBB was functioning in the mice under the experimental conditions. Mice were given phenyl arsenic compounds orally, and concentration-time profiles for phenyl arsenic compounds such as diphenylarsinic acid, phenylarsonic acid, and phenylmethylarsinic acid in the blood and brain dialysate samples were obtained using simultaneous blood and brain microdialysis coupled with liquid chromatography-tandem mass spectrometry. Peak area-time profiles for linalool and 2-phenethyl alcohol (fragrance compounds or plant-derived volatile organic chemicals) were obtained using simultaneous blood and brain microdialysis coupled with gas chromatography-mass spectrometry in mice given lavender or rose essential oils intraperitoneally. BBB function was confirmed using lucifer yellow in these mice, and results indicated that the phenyl arsenic compounds, linalool and 2-phenethyl alcohol, passed through the BBB. The present study demonstrates that simultaneous blood and brain microdialysis in a free-moving mouse makes it possible to test the BBB permeability of chemicals when coupled with appropriate chemical analysis methods.
Collapse
Affiliation(s)
- Toyoshi Umezu
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Tomoharu Sano
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Junko Hayashi
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Yasuyuki Shibata
- Center for Environmental Measurement and Analysis, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| |
Collapse
|
15
|
Campagne O, Davis A, Zhong B, Nair S, Haberman V, T Patel Y, Janke L, F Roussel M, Stewart C. CNS Penetration of Cyclophosphamide and Metabolites in Mice Bearing Group 3 Medulloblastoma and Non-Tumor Bearing Mice. JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES 2020; 22:612-629. [PMID: 31815662 DOI: 10.18433/jpps30608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 09/29/2019] [Indexed: 12/27/2022]
Abstract
PURPOSE Cyclophosphamide is widely used to treat children with medulloblastoma; however, little is known about its brain penetration. We performed cerebral microdialysis to characterize the brain penetration of cyclophosphamide (130 mg/kg, IP) and its metabolites [4-hydroxy-cyclophosphamide (4OH-CTX) and carboxyethylphosphoramide mustard (CEPM)] in non-tumor bearing mice and mice bearing orthotopic Group 3 medulloblastoma. METHODS A plasma pharmacokinetic study was performed in non-tumor-bearing CD1- nude mice, and four cerebral microdialysis studies were performed in non-tumor-bearing (M1 and M3) and tumor- bearing mice (M2 and M4). Plasma samples were collected up to 6-hours post-dose, and extracellular fluid (ECF) samples were collected over 60-minute intervals for 24-hours post-dose. To stabilize and quantify 4OH-CTX, a derivatizing solution was added in blood after collection, and either directly in the microdialysis perfusate (M1 and M2) or in ECF collection tubes (M3 and M4). Plasma/ECF cyclophosphamide and CEPM, and 4OH-CTX concentrations were separately measured using different LC-MS/MS methods. RESULTS All plasma/ECF concentrations were described using a population-based pharmacokinetic model. Plasma exposures of cyclophosphamide, 4OH-CTX, and CEPM were similar across studies (mean AUC=112.6, 45.6, and 80.8 µmol∙hr/L). Hemorrhage was observed in brain tissue when the derivatizing solution was in perfusate compared with none when in collection tubes, which suggested potential sample contamination in studies M1 and M2. Model-derived unbound ECF to plasma partition coefficients (Kp,uu) were calculated to reflect CNS penetration of the compounds. Lower cyclophosphamide Kp,uu was obtained in tumor-bearing mice versus non-tumor bearing mice (mean 0.15 versus 0.22, p=0.019). No differences in Kp,uu were observed between these groups for 4OH- CTX and CEPM (overall mean 0.10 and 0.07). CONCLUSIONS Future studies will explore potential mechanisms at the brain-tumor barrier to explain lower cyclophosphamide brain penetration in tumor-bearing mice. These results will be used to further investigate exposure-response relationships in medulloblastoma xenograft models.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Clinton Stewart
- Pharmaceutical Sciences Department, St. Jude Children's Research Hospital, Memphis TN..
| |
Collapse
|
16
|
Profiling and Identification of Omeprazole Metabolites in Mouse Brain and Plasma by Isotope Ratio-Monitoring Liquid Chromatography-Mass Spectrometric Method. Life (Basel) 2020; 10:life10070115. [PMID: 32707673 PMCID: PMC7400457 DOI: 10.3390/life10070115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/27/2022] Open
Abstract
Neuro–inflammation is known to be one of the pathogenesis for the degenerative central nervous system (CNS) disease. Recently various approaches for the treatment of brain diseases by controlling neuro-inflammation in the brain have been introduced. In this respect, there is a continuous demand for CNS drugs, which could be safer and more effective. Omeprazole, a well-known proton-pump inhibitor (PPI) is generally prescribed for the treatment of peptic ulcer. In addition to the anti-gastric acid secretion mechanism, recent studies showed that omeprazole or PPIs would likely have anti-inflammation effects in vitro and in vivo, but their effects on anti-inflammation in brain are still unknown. In this study, omeprazole and its metabolites in a mouse’s brain after various routes of administration have been explored by stable isotope ratio-patterning liquid chromatography–mass spectrometric method. First, a simple liquid chromatography–mass spectrometric (LC–MS) method was established for the quantification of omeprazole in mouse plasma and brain. After that, omeprazole and its stable isotope (D3–omeprazole) were concomitantly administered through various routes to mice in order to identify novel metabolites characteristically observed in the mouse brain and were analyzed using a different LC–MS method with information-dependent analysis (IDA) scan. With this unique approach, several new metabolites of omeprazole were identified by the mass difference between omeprazole and stable isotope in both brain and plasma samples. A total of seventeen metabolites were observed, and the observed metabolites were different from each administration route or each matrix (brain or plasma). The brain pharmacokinetic profiles and brain-to-plasma partition coefficient (Kp) were also evaluated in a satellite study. Overall, these results provide better insights to understand the CNS-related biological effects of omeprazole and its metabolites in vivo.
Collapse
|
17
|
Wang Q, Ren T, Zhao J, Wong CH, Chan HYE, Zuo Z. Exclusion of unsuitable CNS drug candidates based on their physicochemical properties and unbound fractions in biomatrices for brain microdialysis investigations. J Pharm Biomed Anal 2020; 178:112946. [PMID: 31727358 DOI: 10.1016/j.jpba.2019.112946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 10/03/2019] [Accepted: 10/19/2019] [Indexed: 10/25/2022]
Abstract
Microdialysis has been the only direct method of continuously measuring the unbound drug concentrations in extracellular fluid at a specific brain region with respect to time in the same animal. However, not every compound is suitable for microdialysis system as demonstrated by their inconsistent "by gain" and "by loss" in-vitro microdialysis probe recoveries leading to over- or under- estimated in-vivo concentrations. Therefore, our current study was proposed aiming to develop simple exclusion criteria for drug candidates that are not suitable for microdialysis system investigation. Through literature research, the properties ((LogP, pKa, water solubility and unbound fraction in plasma and brain) of drugs that have been reported for microdialysis studies were summarized. The exclusion criteria were developed by evaluating the impact of such properties on the consistency of in-vitro "by gain" and "by loss" recoveries of microdialysis probe. As a result, forty-five compounds were identified from literatures, among which doxorubicin, docetaxel, omeprazole, donepezil and phenytoin were found to have inconsistent in-vitro "by gain" and "by loss" microdialysis probe recoveries and subsequently selected for the exclusion criteria analysis. It was found that compounds with limited water solubility (less than 1 g/L) and unbound fraction in plasma (fu,plasma less than 30%) and brain homogenate (fu,brain less than 10%) were more likely to have inconsistent "by gain" and "by loss" microdialysis probe recoveries. Our proposed exclusion criteria were further validated using carbamazepine (limited water solubility only), DB213 (limited fu,brain only) and piperine (both limited water solubility and limited fu,plasma, fu,brain). Our current proposed exclusion criteria will help excluding the CNS drug candidates that are highly unlikely suitable for brain microdialysis approach leading to a better success rate in brain microdialysis approach development.
Collapse
Affiliation(s)
- Qianwen Wang
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Tianjing Ren
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Jiajia Zhao
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Chun-Ho Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - H Y Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhong Zuo
- School of Pharmacy, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
18
|
Abstract
Treatment of certain central nervous system disorders, including different types of cerebral malignancies, is limited by traditional oral or systemic administrations of therapeutic drugs due to possible serious side effects and/or lack of the brain penetration and, therefore, the efficacy of the drugs is diminished. During the last decade, several new technologies were developed to overcome barrier properties of cerebral capillaries. This review gives a short overview of the structural elements and anatomical features of the blood–brain barrier. The various in vitro (static and dynamic), in vivo (microdialysis), and in situ (brain perfusion) blood–brain barrier models are also presented. The drug formulations and administration options to deliver molecules effectively to the central nervous system (CNS) are presented. Nanocarriers, nanoparticles (lipid, polymeric, magnetic, gold, and carbon based nanoparticles, dendrimers, etc.), viral and peptid vectors and shuttles, sonoporation and microbubbles are briefly shown. The modulation of receptors and efflux transporters in the cell membrane can also be an effective approach to enhance brain exposure to therapeutic compounds. Intranasal administration is a noninvasive delivery route to bypass the blood–brain barrier, while direct brain administration is an invasive mode to target the brain region with therapeutic drug concentrations locally. Nowadays, both technological and mechanistic tools are available to assist in overcoming the blood–brain barrier. With these techniques more effective and even safer drugs can be developed for the treatment of devastating brain disorders.
Collapse
|
19
|
Loisios-Konstantinidis I, Paraiso RLM, Fotaki N, McAllister M, Cristofoletti R, Dressman J. Application of the relationship between pharmacokinetics and pharmacodynamics in drug development and therapeutic equivalence: a PEARRL review. J Pharm Pharmacol 2019; 71:699-723. [DOI: 10.1111/jphp.13070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 01/19/2019] [Indexed: 12/18/2022]
Abstract
Abstract
Objectives
The objective of this review was to provide an overview of pharmacokinetic/pharmacodynamic (PK/PD) models, focusing on drug-specific PK/PD models and highlighting their value added in drug development and regulatory decision-making.
Key findings
Many PK/PD models, with varying degrees of complexity and physiological understanding have been developed to evaluate the safety and efficacy of drug products. In special populations (e.g. paediatrics), in cases where there is genetic polymorphism and in other instances where therapeutic outcomes are not well described solely by PK metrics, the implementation of PK/PD models is crucial to assure the desired clinical outcome. Since dissociation between the pharmacokinetic and pharmacodynamic profiles is often observed, it is proposed that physiologically based pharmacokinetic and PK/PD models be given more weight by regulatory authorities when assessing the therapeutic equivalence of drug products.
Summary
Modelling and simulation approaches already play an important role in drug development. While slowly moving away from ‘one-size fits all’ PK methodologies to assess therapeutic outcomes, further work is required to increase confidence in PK/PD models in translatability and prediction of various clinical scenarios to encourage more widespread implementation in regulatory decision-making.
Collapse
Affiliation(s)
| | - Rafael L M Paraiso
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, Faculty of Science, University of Bath, Bath, UK
| | | | - Rodrigo Cristofoletti
- Division of Therapeutic Equivalence, Brazilian Health Surveillance Agency (ANVISA), Brasilia, Brazil
| | - Jennifer Dressman
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| |
Collapse
|
20
|
De Lange E, vd Berg D, Bellanti F, Voskuyl R, Syvänen S. P-glycoprotein protein expression versus functionality at the blood-brain barrier using immunohistochemistry, microdialysis and mathematical modeling. Eur J Pharm Sci 2018; 124:61-70. [DOI: 10.1016/j.ejps.2018.08.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 10/28/2022]
|
21
|
Altendorfer-Kroath T, Schimek D, Eberl A, Rauter G, Ratzer M, Raml R, Sinner F, Birngruber T. Comparison of cerebral Open Flow Microperfusion and Microdialysis when sampling small lipophilic and small hydrophilic substances. J Neurosci Methods 2018; 311:394-401. [PMID: 30266621 DOI: 10.1016/j.jneumeth.2018.09.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/20/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Assessment of drug concentration in the brain interstitial fluid (ISF) is crucial for development of brain active drugs, which are mainly small, lipophilic substances able to cross the blood-brain barrier (BBB). We aimed to compare the applicability of cerebral Open Flow Microperfusion (cOFM) and Microdialysis (MD) to sample the lipophilic substance amitriptyline (AMI), its metabolites Hydroxyamitriptyline (HYA), Nortriptyline (NOR), Amitriptyline-N-Oxide (ANO), deuterated water (D2O) and the hydrophilic substance sodium fluorescein (Naf) in brain ISF. NEW METHOD: cOFM has been refined to yield increased spatial resolution and performance. COMPARISON OF COFM AND MD AND RESULTS Performance of cOFM and MD was assessed by in vivo AUC ratios of probe samples (AUCCOFM/AUCMD) and the in vivo relative recovery of D2O (RRvv,D2O). Adsorption of AMI and Naf to MD and cOFM was assessed by the in vitro relative recovery (RRvt) prior to the in vivo experiments. The in vivo AUC ratio of AMI and RRvv,D2O was about two times higher for cOFM than for MD (AUCOFM/AUCMD = 2.0, RRvv,D2O(cOFM)/RRvv,D2O(MD) = 2.1). cOFM detected all investigated AMI metabolites except NOR. MD did not detect HYA, NOR, ANO and Naf. In vitro adsorption of AMI and Naf to the MD membrane was strong (RRvt,AMI = 4.4%, RRvt,Naf = 1.5%) but unspecific adsorption to cOFM was negligibly small (RRvt,AMI = 98% and RRvt,Naf = 98%). CONCLUSIONS cOFM showed better performance when sampling AMI and its metabolites, Naf and D2O, and had an about two times higher RRvv,D2O than MD. MD did not detect HYA, NOR, ANO and Naf, most likely due to membrane adsorption.
Collapse
Affiliation(s)
- Thomas Altendorfer-Kroath
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Denise Schimek
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Anita Eberl
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Günther Rauter
- Medical University of Graz, Division of Biomedical Research, Roseggerweg 48, 8036 Graz, Austria
| | - Maria Ratzer
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Reingard Raml
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria
| | - Frank Sinner
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria; Medical University of Graz, Division of Endocrinology and Diabetology, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Thomas Birngruber
- JOANNEUM RESEARCH Forschungsgesellschaft mbH, HEALTH - Institute for Biomedicine and Health Sciences, Neue Stiftingtalstraße 2, 8010 Graz, Austria.
| |
Collapse
|
22
|
Ugarte A, Corbacho D, Aymerich MS, García-Osta A, Cuadrado-Tejedor M, Oyarzabal J. Impact of Neurodegenerative Diseases on Drug Binding to Brain Tissues: From Animal Models to Human Samples. Neurotherapeutics 2018; 15:742-750. [PMID: 29675823 PMCID: PMC6095788 DOI: 10.1007/s13311-018-0624-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Drug efficacy in the central nervous system (CNS) requires an additional step after crossing the blood-brain barrier. Therapeutic agents must reach their targets in the brain to modulate them; thus, the free drug concentration hypothesis is a key parameter for in vivo pharmacology. Here, we report the impact of neurodegeneration (Alzheimer's disease (AD) and Parkinson's disease (PD) compared with healthy controls) on the binding of 10 known drugs to postmortem brain tissues from animal models and humans. Unbound drug fractions, for some drugs, are significantly different between healthy and injured brain tissues (AD or PD). In addition, drugs binding to brain tissues from AD and PD animal models do not always recapitulate their binding to the corresponding human injured brain tissues. These results reveal potentially relevant implications for CNS drug discovery.
Collapse
Affiliation(s)
- Ana Ugarte
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, 31008, Pamplona, Spain
| | - David Corbacho
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, 31008, Pamplona, Spain
- Imaging Unit and Cancer Imaging Laboratory, University of Navarra, Avenida Pio XII 55, 31008, Pamplona, Spain
| | - María S Aymerich
- Neurobiology of Parkinson's Disease, Neurosciences Division, University of Navarra, Avenida Pio XII 55, 31008, Pamplona, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Ana García-Osta
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research, University of Navarra, Avenida Pio XII 55, 31008, Pamplona, Spain
| | - Mar Cuadrado-Tejedor
- Neurobiology of Alzheimer's Disease, Neurosciences Division, Center for Applied Medical Research, University of Navarra, Avenida Pio XII 55, 31008, Pamplona, Spain
- Anatomy Department, School of Medicine, University of Navarra, Irunlarrea 1, 31008, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Avenida Pio XII 55, 31008, Pamplona, Spain.
| |
Collapse
|
23
|
Durk MR. Quantitative Intracerebral Microdialysis Studies to Determine Unbound Extracellular Fluid Drug Concentrations in Discrete Areas of the Brain. ACTA ACUST UNITED AC 2018; 80:7.18.1-7.18.19. [DOI: 10.1002/cpph.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Matthew R. Durk
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc; South San Francisco California
| |
Collapse
|
24
|
van den Brink WJ, Hankemeier T, van der Graaf PH, de Lange ECM. Bundling arrows: improving translational CNS drug development by integrated PK/PD-metabolomics. Expert Opin Drug Discov 2018. [DOI: 10.1080/17460441.2018.1446935] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- W. J. van den Brink
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - T. Hankemeier
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - P. H. van der Graaf
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
- Certara QSP, Canterbury Innovation House, Canterbury, United Kingdom
| | - E. C. M. de Lange
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
25
|
Wen YR, Yang JH, Wang X, Yao ZB. Induced dural lymphangiogenesis facilities soluble amyloid-beta clearance from brain in a transgenic mouse model of Alzheimer's disease. Neural Regen Res 2018; 13:709-716. [PMID: 29722325 PMCID: PMC5950683 DOI: 10.4103/1673-5374.230299] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Impaired amyloid-β clearance from the brain is a core pathological event in Alzheimer's disease. The therapeutic effect of current pharmacotherapies is unsatisfactory, and some treatments cause severe side effects. The meningeal lymphatic vessels might be a new route for amyloid-β clearance. This study investigated whether promoting dural lymphangiogenesis facilitated the clearance of amyloid-β from the brain.First, human lymphatic endothelial cells were treated with 100 ng/mL recombinant human vascular endothelial growth factor-C (rhVEGF-C) protein. Light microscopy verified that rhVEGF-C, a specific ligand for vascular endothelial growth factor receptor-3 (VEGFR-3), significantly promoted tube formation of human lymphatic endothelial cells in vitro. In an in vivo study, 200 μg/mL rhVEGF-C was injected into the cisterna magna of APP/PS1 transgenic mice, once every 2 days, four times in total. Immunofluorescence staining demonstrated high levels of dural lymphangiogenesis in Alzheimer's disease mice. One week after rhVEGF-C administration, enzyme-linked immunosorbent assay results showed that levels of soluble amyloid-β were decreased in cerebrospinal fluid and brain. The Morris water maze test demonstrated that spatial cognition was restored. These results indicate that the upregulation of dural lymphangiogenesis facilities amyloid-β clearance from the brain of APP/PS1 mice, suggesting the potential of the VEGF-C/VEGFR-3 signaling pathway as a therapeutic target for Alzheimer's disease.
Collapse
Affiliation(s)
- Ya-Ru Wen
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jun-Hua Yang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Wang
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi-Bin Yao
- Department of Anatomy and Neurobiology, Zhongshan School of Medicine; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
26
|
Pharmacokinetics of doxorubicin in glioblastoma multiforme following ultrasound-Induced blood-brain barrier disruption as determined by microdialysis. J Pharm Biomed Anal 2017; 149:482-487. [PMID: 29175555 DOI: 10.1016/j.jpba.2017.11.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 11/18/2017] [Accepted: 11/20/2017] [Indexed: 01/17/2023]
Abstract
The goal of this study was to investigate the in vivo extracellular kinetics of doxorubicin (Dox) in glioblastoma multiforme (GBM)-bearing mice following focused ultrasound (FUS)-induced blood-brain barrier (BBB) disruption using microdialysis. An intracranial brain tumor model in NOD-scid mice using human brain GBM 8401 cells was used in this study. Prior to each sonication, simultaneous intravenous administration of Dox and microbubbles, and the Dox concentration in the brains was quantified by high performance liquid chromatography (HPLC). Drug administration with sonication elevated the tumor-to-normal brain Dox ratio of the target tumors by about 2.35-fold compared with the control tumors. The mean peak concentration of Dox in the sonicated GBM dialysate was 10 times greater than without sonication, and the area under the concentration-time curve was 3.3 times greater. This study demonstrates that intracerebral microdialysis is an effective means of evaluating real-time target BBB transport profiles and offers the possibility of investigating the pharmacokinetics of drug delivery in the sonicated brain.
Collapse
|
27
|
Mohamed LA, Markandaiah S, Bonanno S, Pasinelli P, Trotti D. Blood-Brain Barrier Driven Pharmacoresistance in Amyotrophic Lateral Sclerosis and Challenges for Effective Drug Therapies. AAPS JOURNAL 2017; 19:1600-1614. [PMID: 28779378 DOI: 10.1208/s12248-017-0120-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/28/2017] [Indexed: 12/11/2022]
Abstract
The blood-brain barrier (BBB) is essential for proper neuronal function, homeostasis, and protection of the central nervous system (CNS) microenvironment from blood-borne pathogens and neurotoxins. The BBB is also an impediment for CNS penetration of drugs. In some neurologic conditions, such as epilepsy and brain tumors, overexpression of P-glycoprotein, an efflux transporter whose physiological function is to expel catabolites and xenobiotics from the CNS into the blood stream, has been reported. Recent studies reported that overexpression of P-glycoprotein and increase in its activity at the BBB drives a progressive resistance to CNS penetration and persistence of riluzole, the only drug approved thus far for treatment of amyotrophic lateral sclerosis (ALS), rapidly progressive and mostly fatal neurologic disease. This review will discuss the impact of transporter-mediated pharmacoresistance for ALS drug therapy and the potential therapeutic strategies to improve the outcome of ALS clinical trials and efficacy of current and future drug treatments.
Collapse
Affiliation(s)
- Loqman A Mohamed
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA.
| | - Shashirekha Markandaiah
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Silvia Bonanno
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University Hospitals, 900 Walnut Street, Philadelphia, Pennsylvania, 19107, USA
| |
Collapse
|
28
|
Hammarlund-Udenaes M. Microdialysis as an Important Technique in Systems Pharmacology—a Historical and Methodological Review. AAPS JOURNAL 2017; 19:1294-1303. [DOI: 10.1208/s12248-017-0108-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 06/01/2017] [Indexed: 01/03/2023]
|
29
|
Yamamoto Y, Danhof M, de Lange ECM. Microdialysis: the Key to Physiologically Based Model Prediction of Human CNS Target Site Concentrations. AAPS JOURNAL 2017; 19:891-909. [DOI: 10.1208/s12248-017-0050-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/25/2017] [Indexed: 01/03/2023]
|
30
|
Marchand S, Chauzy A, Dahyot-Fizelier C, Couet W. Microdialysis as a way to measure antibiotics concentration in tissues. Pharmacol Res 2016; 111:201-207. [DOI: 10.1016/j.phrs.2016.06.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 11/16/2022]
|
31
|
Challenges for the in vivo quantification of brain neuropeptides using microdialysis sampling and LC-MS. Bioanalysis 2016; 8:1965-85. [PMID: 27554986 DOI: 10.4155/bio-2016-0119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
In recent years, neuropeptides and their receptors have received an increased interest in neuropharmacological research. Although these molecules are considered relatively small compared with proteins, their in vivo quantification using microdialysis is more challenging than for small molecules. Low microdialysis recoveries, aspecific adsorption and the presence of various multiply charged precursor ions during ESI-MS/MS detection hampers the in vivo quantification of these low abundant biomolecules. Every step in the workflow, from sampling until analysis, has to be optimized to enable the sensitive analysis of these compounds in microdialysates.
Collapse
|
32
|
Wang C, Lu X, Li L, Zhang R, shi T, Li S. Microdialysis combined with liquid chromatography-tandem mass spectrometry for the determination of nimodipine in the guinea pig hippocampus. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1017-1018:226-232. [DOI: 10.1016/j.jchromb.2016.02.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 02/24/2016] [Accepted: 02/28/2016] [Indexed: 10/22/2022]
|
33
|
Pitcher MR, Quevedo J. Tools for studying drug transport and metabolism in the brain. Expert Opin Drug Metab Toxicol 2016; 12:161-8. [DOI: 10.1517/17425255.2016.1132307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Meagan R. Pitcher
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Neuroscience Graduate Program, Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, Santa Catarina, Brazil
| |
Collapse
|
34
|
Hosmann A, Schober A, Gruber A, Sterz F, Testori C, Warenits A, Weihs W, Högler S, Scherer T, Janata A, Laggner A, Zeitlinger M. Cerebral and Peripheral Metabolism to Predict Successful Reperfusion After Cardiac Arrest in Rats: A Microdialysis Study. Neurocrit Care 2015; 24:283-93. [DOI: 10.1007/s12028-015-0214-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
35
|
Investigation of utility of cerebrospinal fluid drug concentration as a surrogate for interstitial fluid concentration using microdialysis coupled with cisternal cerebrospinal fluid sampling in wild-type and Mdr1a(-/-) rats. Drug Metab Pharmacokinet 2015; 31:57-66. [PMID: 26830080 DOI: 10.1016/j.dmpk.2015.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/22/2015] [Accepted: 10/23/2015] [Indexed: 11/23/2022]
Abstract
In drug discovery, the cerebrospinal fluid (CSF) drug concentration (CCSF) has been used as a surrogate for the interstitial fluid (ISF) concentration (CISF). However, the CCSF-to-CISF gradient suggested for P-glycoprotein (P-gp) substrates in rodents causes uncertainty in CISF estimations and subsequent pharmacokinetic-pharmacodynamic analyses. To evaluate the utility of CCSF as a surrogate for CISF, this study directly compared the CCSF with the CISF of 12 compounds, including P-gp substrates, under steady-state conditions in wild-type and Mdr1a(-/-) rats using microdialysis coupled with cisternal CSF sampling. In wild-type rats, the ISF-to-unbound plasma (Kp,uu,ISF) and CSF-to-unbound plasma (Kp,uu,CSF) concentration ratios of the P-gp substrates, except for metoclopramide, were lower than those of the non-P-gp substrates, and the Kp,uu,CSF values were within or close to 3-fold of the Kp,uu,ISF values for all the compounds examined. The Kp,uu,CSF values of the selected P-gp substrates increased in Mdr1a(-/-) rats with a similar magnitude to the Kp,uu,ISF values, resulting in the Kp,uu,CSF-to-Kp,uu,ISF ratios being unchanged. These results suggested that P-gp-mediated active efflux at the blood-brain barrier is a major determinant not only for CISF, but also for CCSF, and that CCSF can be used as a surrogate for CISF even for P-gp substrates in rats.
Collapse
|
36
|
Jaquins-Gerstl A, Michael AC. A review of the effects of FSCV and microdialysis measurements on dopamine release in the surrounding tissue. Analyst 2015; 140:3696-708. [PMID: 25876757 PMCID: PMC4437820 DOI: 10.1039/c4an02065k] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Microdialysis is commonly used in neuroscience to obtain information about the concentration of substances, including neurotransmitters such as dopamine (DA), in the extracellular space (ECS) of the brain. Measuring DA concentrations in the ECS with in vivo microdialysis and/or voltammetry is a mainstay of investigations into both normal and pathological function of central DA systems. Although both techniques are instrumental in understanding brain chemistry each has its shortcomings. The objective of this review is to characterize some of the tissue and DA differences associated with each technique in vivo. Much of this work will focus on immunohistochemical and microelectrode measurements of DA in the tissue next to the microdialysis probe and mitigating the response to the damage caused by probe implantation.
Collapse
|
37
|
Rottbøll LAH, Skovgaard K, Barington K, Jensen HE, Friis C. Intrabronchial Microdialysis: Effects of Probe Localization on Tissue Trauma and Drug Penetration into the Pulmonary Epithelial Lining Fluid. Basic Clin Pharmacol Toxicol 2015; 117:242-50. [PMID: 25827198 DOI: 10.1111/bcpt.12403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/24/2015] [Indexed: 11/29/2022]
Abstract
Recent intrabronchial microdialysis data indicate that the respiratory epithelium is highly permeable to drugs. Of concern is whether intrabronchial microdialysis disrupts the integrity of the respiratory epithelium and thereby alters drug penetration into the pulmonary epithelial lining fluid (PELF). The objective of this study was to investigate the effect of intrabronchial microdialysis on the integrity of the bronchial epithelium. Microdialysis sampling in PELF in proximal (n = 4) and distal bronchi (n = 4) was performed after intravenous inulin and florfenicol administration in anaesthetized pigs. Inulin was used as a marker molecule of permeability of the epithelium, and florfenicol was used as test drug. Bronchial tissue was examined by histopathology (distal and proximal bronchi) and gene expression analysis (RT-qPCR, proximal bronchi) at the termination of the experiment (6.5 hr). The microdialysis probe caused overt tissue trauma in distal bronchi, whereas no histopathological lesions were observed in proximal bronchi. A moderate up-regulation of the pro-inflammatory cytokines IL1B, IL6 and acute-phase reactant serum amyloid A was seen in proximal bronchi surrounding the microdialysis probes suggesting initiation of an inflammatory response. The observed up-regulation is considered to have limited impact on drug penetration during short-term studies. Inulin penetrated the respiratory epithelium in both proximal and distal bronchi without any correlation to histopathological lesions. Likewise, florfenicol penetration into PELF was unaffected by bronchial histopathology. However, this independency of pathology on drug penetration may not be valid for other antibiotics. We conclude that short-term microdialysis drug quantification can be performed in proximal bronchi without disruption of tissue integrity.
Collapse
Affiliation(s)
| | - Kerstin Skovgaard
- Section for Immunology and Vaccinology, National Veterinary Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Kristiane Barington
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| | - Christian Friis
- Department of Veterinary Disease Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
38
|
Garg T, Bhandari S, Rath G, Goyal AK. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J Drug Target 2015; 23:865-87. [PMID: 25835469 DOI: 10.3109/1061186x.2015.1029930] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Brain tumor is one of the most challenging diseases to treat. The major obstacle in the specific drug delivery to brain is blood-brain barrier (BBB). Mostly available anti-cancer drugs are large hydrophobic molecules which have limited permeability via BBB. Therefore, it is clear that the protective barriers confining the passage of the foreign particles into the brain are the main impediment for the brain drug delivery. Hence, the major challenge in drug development and delivery for the neurological diseases is to design non-invasive nanocarrier systems that can assist controlled and targeted drug delivery to the specific regions of the brain. In this review article, our major focus to treat brain tumor by study numerous strategies includes intracerebral implants, BBB disruption, intraventricular infusion, convection-enhanced delivery, intra-arterial drug delivery, intrathecal drug delivery, injection, catheters, pumps, microdialysis, RNA interference, antisense therapy, gene therapy, monoclonal/cationic antibodies conjugate, endogenous transporters, lipophilic analogues, prodrugs, efflux transporters, direct conjugation of antitumor drugs, direct targeting of liposomes, nanoparticles, solid-lipid nanoparticles, polymeric micelles, dendrimers and albumin-based drug carriers.
Collapse
Affiliation(s)
| | - Saurav Bhandari
- b Department of Quality Assurance , ISF College of Pharmacy , Moga , Punjab , India
| | | | | |
Collapse
|
39
|
de Lange ECM, Hammarlund-Udenaes M. Translational aspects of blood-brain barrier transport and central nervous system effects of drugs: From discovery to patients. Clin Pharmacol Ther 2015; 97:380-94. [DOI: 10.1002/cpt.76] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 01/06/2015] [Accepted: 01/06/2015] [Indexed: 02/06/2023]
Affiliation(s)
- ECM de Lange
- Leiden Academic Centre for Drug Research; Division of Pharmacology; Leiden University, Gorlaeus Laboratories; Leiden The Netherlands
| | | |
Collapse
|
40
|
Deitchman AN, Derendorf H. Measuring drug distribution in the critically ill patient. Adv Drug Deliv Rev 2014; 77:22-6. [PMID: 25194997 DOI: 10.1016/j.addr.2014.08.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 12/27/2022]
Abstract
Critically ill patients often present with a combination of disease states and comorbid conditions that progress over a clinical course. This can manifest in physiological changes, such as fluid shifts, alterations in protein binding, and acid-base balance issues, which may in turn alter a drug's distribution, potentially towards or away from its site of action. It's vital that these factors are examined for drugs used in critical illness in varying disease states, acute and chronic in nature. Several methods have been used to study the variations in target site penetration, but few provide a feasible option to reliably measure active drug concentrations at the site of action over time. This review examines these techniques, their merits and shortcomings, generally and as they relate to use in critically ill.
Collapse
|
41
|
Stanimirovic DB, Bani-Yaghoub M, Perkins M, Haqqani AS. Blood-brain barrier models: in vitro to in vivo translation in preclinical development of CNS-targeting biotherapeutics. Expert Opin Drug Discov 2014; 10:141-55. [PMID: 25388782 DOI: 10.1517/17460441.2015.974545] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION The majority of therapeutics, small molecule or biologics, developed for the CNS do not penetrate the blood-brain barrier (BBB) sufficiently to induce pharmacologically meaningful effects on CNS targets. To improve the efficiency of CNS drug discovery, several in vitro models of the BBB have been used to aid early selection of molecules with CNS exposure potential. However, correlative studies suggest relatively poor predictability of in vitro BBB models underscoring the need to combine in vitro and in vivo BBB penetration assessment into an integrated preclinical workflow. AREAS COVERED This review gives a brief general overview of in vitro and in vivo BBB models used in the pre-clinical evaluation of CNS-targeting drugs, with particular focus on the recent progress in developing humanized models. The authors discuss the advantages, limitations, in vitro-in vivo correlation, and integration of these models into CNS drug discovery and development with the aim of improving translation. EXPERT OPINION Often, a simplistic rationalization of the CNS drug discovery and development process overlooks or even ignores the need for an early and predictive assessment of the BBB permeability. Indeed, past failures of CNS candidates in clinical trials argue strongly that the early deployment of in vitro and in vivo models for assessing BBB permeability, mechanisms of transport and brain exposure of leads, and the co-development of BBB delivery strategies will improve translation and increase the clinical success of CNS pipelines.
Collapse
Affiliation(s)
- Danica B Stanimirovic
- Human Health Therapeutics Portfolio, National Research Council of Canada , 1200 Montreal Road, Bldg M-54 Ottawa, ON K4P 1R7 , Canada +1 613 993 3730 ; +1 613 941 4475 ;
| | | | | | | |
Collapse
|
42
|
Vitamin D receptor activation induces P-glycoprotein and increases brain efflux of quinidine: an intracerebral microdialysis study in conscious rats. Pharm Res 2014; 32:1128-40. [PMID: 25319098 DOI: 10.1007/s11095-014-1524-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 09/12/2014] [Indexed: 01/20/2023]
Abstract
PURPOSE Since the vitamin D receptor (VDR) was found to up-regulate cerebral P-glycoprotein expression in vitro and in mice, we extend our findings to rats by assessing the effect of rat Vdr activation on brain efflux of quinidine, a P-gp substrate that is eliminated primarily by cytochrome P450 3a. METHODS We treated rats with vehicle or the active VDR ligand, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] (4.8 or 6.4 nmol/kg i.p. every 2nd day × 4) and examined P-gp expression and cerebral quinidine disposition via microdialysis in control and treatment studies conducted longitudinally in the same rat. RESULTS The 6.4 nmol/kg 1,25(OH)2D3 dose increased cerebral P-gp expression 1.75-fold whereas hepatic Cyp3a remained unchanged. Although there was no change in systemic clearance elicited by 1,25(OH)2D3, brain extracellular fluid quinidine concentrations were lower in treated rats. We noted that insertion of indwelling catheters increased plasma protein binding of quinidine and serial sampling decreased the blood:plasma concentration ratio, factors that alter distribution ratios in microdialysis studies. After appropriate correction, KECF/P,uu and KECF/B,uu, or ratios of quinidine unbound concentrations in brain extracellular fluid to plasma or blood at steady-state, were more than halved. CONCLUSION We demonstrate that VDR activation increases cerebral P-gp expression and delimits brain penetration of P-gp substrates.
Collapse
|
43
|
Sjöstedt N, Kortejärvi H, Kidron H, Vellonen KS, Urtti A, Yliperttula M. Challenges of using in vitro data for modeling P-glycoprotein efflux in the blood-brain barrier. Pharm Res 2014; 31:1-19. [PMID: 23797466 DOI: 10.1007/s11095-013-1124-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 06/11/2013] [Indexed: 02/06/2023]
Abstract
The efficacy of central nervous system (CNS) drugs may be limited by their poor ability to cross the bloodbrain barrier (BBB). Transporters, such as p-glycoprotein, may affect the distribution of many drugs into the CNS in conjunction with the restricted paracellular pathway of the BBB. It is therefore important to gain information on unbound drug concentrations in the brain in drug development to ensure sufficient drug exposure from plasma at the target site in the CNS. In vitro methods are routinely used in drug development to study passive permeability and p-glycoprotein efflux of new drugs. This review discusses the challenges in the use of in vitro data as input parameters in physiologically based pharmacokinetic (PBPK) models of CNS drug disposition of p-glycoprotein substrates. Experience with quinidine demonstrates the variability in in vitro parameters of passive permeability and active pglycoprotein efflux. Further work is needed to generate parameter values that are independent of the model and assay. This is a prerequisite for reliable predictions of drug concentrations in the brain in vivo.
Collapse
|
44
|
Gallardo E, Palma-Valdés R, Espartero JL, Santiago M. In vivo striatal measurement of hydroxytyrosol, and its metabolite (homovanillic alcohol), compared with its derivative nitrohydroxytyrosol. Neurosci Lett 2014; 579:173-6. [PMID: 25072818 DOI: 10.1016/j.neulet.2014.07.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/03/2014] [Accepted: 07/21/2014] [Indexed: 12/25/2022]
Abstract
Phenolic compounds were measured by in vivo brain microdialysis in rat striatum. Basal extracellular levels of hydroxytyrosol, homovanillic alcohol and nitro-hydroxytyrosol were not detectable by HPLC with electrochemical detection. However, systemic administration of hydroxytyrosol (20 and 40mg/kg, i.p.) showed a clear increase in the extracellular level of this compound. This increase was accompanied by an increase in the extracellular level of homovanillic alcohol, a metabolite of hydroxytyrosol formed by catechol-O-methyltransferase activity. Perfusion of hydroxytyrosol (20μM) through the microdialysis cannula also produced an increase in the extracellular level of homovanillic alcohol. Systemic administration of nitro-hydroxytyrosol (20 and 40mg/kg, i.p.) produced a small increase in the extracellular level of this compound. Our data show that hydroxytyrosol is a more brain penetrant phenolic compound than nitro-hydroxytyrosol. Accordingly, there is high cerebral metabolism of hydroxytyrosol to produce homovanillic alcohol by catechol-O-methyltransferase activity, that is saturated at the higher administered dose of hydroxytyrosol.
Collapse
Affiliation(s)
- Elena Gallardo
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | - Rocío Palma-Valdés
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | - José Luis Espartero
- Departamento de Química Orgánica y Farmacéutica. Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain
| | - Marti Santiago
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain.
| |
Collapse
|
45
|
Mikitsh JL, Chacko AM. Pathways for small molecule delivery to the central nervous system across the blood-brain barrier. PERSPECTIVES IN MEDICINAL CHEMISTRY 2014; 6:11-24. [PMID: 24963272 PMCID: PMC4064947 DOI: 10.4137/pmc.s13384] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 04/29/2014] [Accepted: 04/29/2014] [Indexed: 01/04/2023]
Abstract
The treatment of central nervous system (CNS) disease has long been difficult due to the ineffectiveness of drug delivery across the blood-brain barrier (BBB). This review summarizes important concepts of the BBB in normal versus pathophysiology and how this physical, enzymatic, and efflux barrier provides necessary protection to the CNS during drug delivery, and consequently treatment challenging. Small molecules account for the vast majority of available CNS drugs primarily due to their ability to penetrate the phospholipid membrane of the BBB by passive or carrier-mediated mechanisms. Physiochemical and biological factors relevant for designing small molecules with optimal capabilities for BBB permeability are discussed, as well as the most promising classes of transporters suitable for small-molecule drug delivery. Clinically translatable imaging methodologies for detecting and quantifying drug uptake and targeting in the brain are discussed as a means of further understanding and refining delivery parameters for both drugs and imaging probes in preclinical and clinical domains. This information can be used as a guide to design drugs with preserved drug action and better delivery profiles for improved treatment outcomes over existing therapeutic approaches.
Collapse
Affiliation(s)
- John L Mikitsh
- Department of Radiology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ann-Marie Chacko
- Department of Radiology, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Targeted Therapeutics and Translational Nanomedicine, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
46
|
Jacus MO, Throm SL, Turner DC, Patel YT, Freeman BB, Morfouace M, Boulos N, Stewart CF. Deriving therapies for children with primary CNS tumors using pharmacokinetic modeling and simulation of cerebral microdialysis data. Eur J Pharm Sci 2014; 57:41-7. [PMID: 24269626 PMCID: PMC4004667 DOI: 10.1016/j.ejps.2013.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/01/2013] [Indexed: 01/01/2023]
Abstract
The treatment of children with primary central nervous system (CNS) tumors continues to be a challenge despite recent advances in technology and diagnostics. In this overview, we describe our approach for identifying and evaluating active anticancer drugs through a process that enables rational translation from the lab to the clinic. The preclinical approach we discuss uses tumor subgroup-specific models of pediatric CNS tumors, cerebral microdialysis sampling of tumor extracellular fluid (tECF), and pharmacokinetic modeling and simulation to overcome challenges that currently hinder researchers in this field. This approach involves performing extensive systemic (plasma) and target site (CNS tumor) pharmacokinetic studies. Pharmacokinetic modeling and simulation of the data derived from these studies are then used to inform future decisions regarding drug administration, including dosage and schedule. Here, we also present how our approach was used to examine two FDA approved drugs, simvastatin and pemetrexed, as candidates for new therapies for pediatric CNS tumors. We determined that due to unfavorable pharmacokinetic characteristics and insufficient concentrations in tumor tissue in a mouse model of ependymoma, simvastatin would not be efficacious in further preclinical trials. In contrast to simvastatin, pemetrexed was advanced to preclinical efficacy studies after our studies determined that plasma exposures were similar to those in humans treated at similar tolerable dosages and adequate unbound concentrations were found in tumor tissue of medulloblastoma-bearing mice. Generally speaking, the high clinical failure rates for CNS drug candidates can be partially explained by the fact that therapies are often moved into clinical trials without extensive and rational preclinical studies to optimize the transition. Our approach addresses this limitation by using pharmacokinetic and pharmacodynamic modeling of data generated from appropriate in vivo models to support the rational testing and usage of innovative therapies in children with CNS tumors.
Collapse
Affiliation(s)
- M O Jacus
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - S L Throm
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - D C Turner
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Y T Patel
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - B B Freeman
- Preclinical Pharmacokinetic Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - M Morfouace
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - N Boulos
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - C F Stewart
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
47
|
Bicker J, Alves G, Fortuna A, Falcão A. Blood-brain barrier models and their relevance for a successful development of CNS drug delivery systems: a review. Eur J Pharm Biopharm 2014; 87:409-32. [PMID: 24686194 DOI: 10.1016/j.ejpb.2014.03.012] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 03/13/2014] [Accepted: 03/20/2014] [Indexed: 02/05/2023]
Abstract
During the research and development of new drugs directed at the central nervous system, there is a considerable attrition rate caused by their hampered access to the brain by the blood-brain barrier. Throughout the years, several in vitro models have been developed in an attempt to mimic critical functionalities of the blood-brain barrier and reliably predict the permeability of drug candidates. However, the current challenge lies in developing a model that retains fundamental blood-brain barrier characteristics and simultaneously remains compatible with the high throughput demands of pharmaceutical industries. This review firstly describes the roles of all elements of the neurovascular unit and their influence on drug brain penetration. In vitro models, including non-cell based and cell-based models, and in vivo models are herein presented, with a particular emphasis on their methodological aspects. Lastly, their contribution to the improvement of brain drug delivery strategies and drug transport across the blood-brain barrier is also discussed.
Collapse
Affiliation(s)
- Joana Bicker
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Gilberto Alves
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| | - Ana Fortuna
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, University of Coimbra, Coimbra, Portugal; CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
48
|
Liu L, Zhang X, Lou Y, Rao Y, Zhang X. Cerebral microdialysis in glioma studies, from theory to application. J Pharm Biomed Anal 2014; 96:77-89. [PMID: 24747145 DOI: 10.1016/j.jpba.2014.03.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 03/11/2014] [Accepted: 03/17/2014] [Indexed: 12/24/2022]
Abstract
Despite recent advances in the treatment of solid tumors, there are few effective treatments for malignant gliomas due to the infiltrative nature, and the protective shield of blood-brain barrier or blood-tumor barriers that restrict the passage of chemotherapy drugs into the brain. Imaging techniques, such as PET and MRI, have allowed the assessment of tumor function in vivo, but they are indirect measures of activity and do not easily allow continuous repeated evaluations. Because the biology of glioma on a cellular and molecular level is fairly unknown, especially in relation to various treatments, the development of novel therapeutic approaches to this devastating condition requires a strong need for a deeper understanding of the tumor's pathophysiology and biochemistry. Cerebral microdialysis, a probe-based sampling technique, allows a discrete volume of the brain to be sampled for neurochemical analysis of neurotransmitters, metabolites, biomarkers, and chemotherapy drugs, which has been employed in studying brain tumors, and is significant for improving the treatment of glioma. In this review, the current concepts of cerebral microdialysis for glioma are elucidated, with a special emphasis on its application to neurochemistry and pharmacokinetic studies.
Collapse
Affiliation(s)
- Lin Liu
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangyi Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yan Lou
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yuefeng Rao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xingguo Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| |
Collapse
|
49
|
A pilot microdialysis study in brain tumor patients to assess changes in intracerebral cytokine levels after craniotomy and in response to treatment with a targeted anti-cancer agent. J Neurooncol 2014; 118:169-77. [PMID: 24634191 DOI: 10.1007/s11060-014-1415-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 02/21/2014] [Indexed: 12/24/2022]
Abstract
Intracerebral microdialysis enables continuous measurement of changes in brain biochemistry. In this study intracerebral microdialysis was used to assess changes in cytokine levels after tumor resection and in response to treatment with temsirolimus. Brain tumor patients undergoing craniotomy participated in this non-therapeutic study. A 100 kDa molecular weight cut-off microdialysis catheter was placed in peritumoral tissue at the time of resection. Cohort 1 underwent craniotomy only. Cohort 2 received a 200 mg dose of intravenous temsirolimus 48 h after surgery. Dialysate samples were collected continuously for 96 h and analyzed for the presence of 30 cytokines. Serial blood samples were collected to measure systemic cytokine levels. Dialysate samples were obtained from six patients in cohort 1 and 4 in cohort 2. Seventeen cytokines could be recovered in dialysate samples from at least 8 of 10 patients. Concentrations of interleukins and chemokines were markedly elevated in peritumoral tissue, and most declined over time, with IL-8, IP-10, MCP-1, MIP1β, IL-6, IL-12p40/p70, MIP1α, IFN-α, G-CSF, IL-2R, and vascular endothelial growth factor significantly (p < 0.05) decreasing over 96 h following surgery. No qualitative changes in intracerebral or serum cytokine concentrations were detected after temsirolimus administration. This is the first intracerebral microdialysis study to evaluate the time course of changes in macromolecule levels in the peritumoral microenvironment after a debulking craniotomy. Initial elevations of peritumoral interleukins and chemokines most likely reflected an inflammatory response to both tumor and surgical trauma. These findings have implications for development of cellular therapies that are administered intracranially at the time of surgery.
Collapse
|
50
|
Birngruber T, Ghosh A, Hochmeister S, Asslaber M, Kroath T, Pieber TR, Sinner F. Long-term implanted cOFM probe causes minimal tissue reaction in the brain. PLoS One 2014; 9:e90221. [PMID: 24621608 PMCID: PMC3951198 DOI: 10.1371/journal.pone.0090221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 01/27/2014] [Indexed: 02/07/2023] Open
Abstract
This study investigated the histological tissue reaction to long-term implanted cerebral open flow microperfusion (cOFM) probes in the frontal lobe of the rat brain. Most probe-based cerebral fluid sampling techniques are limited in application time due to the formation of a glial scar that hinders substance exchange between brain tissue and the probe. A glial scar not only functions as a diffusion barrier but also alters metabolism and signaling in extracellular brain fluid. cOFM is a recently developed probe-based technique to continuously sample extracellular brain fluid with an intact blood-brain barrier. After probe implantation, a 2 week healing period is needed for blood-brain barrier reestablishment. Therefore, cOFM probes need to stay in place and functional for at least 15 days after implantation to ensure functionality. Probe design and probe materials are optimized to evoke minimal tissue reaction even after a long implantation period. Qualitative and quantitative histological tissue analysis revealed no continuous glial scar formation around the cOFM probe 30 days after implantation and only a minor tissue reaction regardless of perfusion of the probe.
Collapse
Affiliation(s)
- Thomas Birngruber
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
| | - Arijit Ghosh
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Sonja Hochmeister
- Division of General Neurology, Medical University of Graz, Graz, Austria
| | - Martin Asslaber
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Thomas Kroath
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
| | - Thomas R. Pieber
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
| | - Frank Sinner
- HEALTH – Institute of Biomedicine and Health Sciences, JOANNEUM RESEARCH, Graz, Austria
- Division of Endocrinology and Metabolism, Medical University of Graz, Graz, Austria
- * E-mail:
| |
Collapse
|