1
|
He H, Yang X, Zeb A, Liu J, Gu H, Yang J, Xiang W, Shen S. Cloning and Functional Analysis of a Zeaxanthin Epoxidase Gene in Ulva prolifera. BIOLOGY 2024; 13:695. [PMID: 39336122 PMCID: PMC11429058 DOI: 10.3390/biology13090695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The xanthophyll cycle is a photoprotective mechanism in plants and algae, which protects the photosynthetic system from excess light damage under abiotic stress. Zeaxanthin is considered to play a pivotal role in this process. In this study, the relative content of xanthophylls was determined using HPLC-MS/MS in Ulva prolifera exposed to different salinities. The results showed that high-salt stress significantly increased the relative content of xanthophylls and led to the accumulation of zeaxanthin. It was speculated that the accumulated zeaxanthin may contribute to the response of U. prolifera to high-salt stress. Zeaxanthin epoxidase (ZEP) is a key enzyme in the xanthophyll cycle and is also involved in the synthesis of abscisic acid and carotenoids. In order to explore the biological function of ZEP, a ZEP gene was cloned and identified from U. prolifera. The CDS of UpZEP is 1122 bp and encodes 373 amino acids. Phylogenetic analysis showed that UpZEP clusters within a clade of green algae. The results of qRT-PCR showed that high-salt stress induced the expression of UpZEP. In addition, heterologous overexpression of the UpZEP gene in yeast and Chlamydomonas reinhardtii improved the salt tolerance of transgenic organisms. In conclusion, the UpZEP gene may be involved in the response of U. prolifera to high-salt stress and can improve the high-salt tolerance of transgenic organisms.
Collapse
Affiliation(s)
- Hongyan He
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Xiuwen Yang
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Aurang Zeb
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Jiasi Liu
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Huiyue Gu
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Jieru Yang
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| | - Wenyu Xiang
- Suzhou Industrial Park Environmental Law Enforcement Brigade, Suzhou 215021, China;
| | - Songdong Shen
- School of Biology & Basic Medical Sciences, Soochow University, Suzhou 215101, China
| |
Collapse
|
2
|
Ye S, Huang Y, Ma T, Ma X, Li R, Shen J, Wen J. BnaABF3 and BnaMYB44 regulate the transcription of zeaxanthin epoxidase genes in carotenoid and abscisic acid biosynthesis. PLANT PHYSIOLOGY 2024; 195:2372-2388. [PMID: 38620011 DOI: 10.1093/plphys/kiae184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/25/2024] [Indexed: 04/17/2024]
Abstract
Zeaxanthin epoxidase (ZEP) is a key enzyme that catalyzes the conversion of zeaxanthin to violaxanthin in the carotenoid and abscisic acid (ABA) biosynthesis pathways. The rapeseed (Brassica napus) genome has 4 ZEP (BnaZEP) copies that are suspected to have undergone subfunctionalization, yet the 4 genes' underlying regulatory mechanisms remain unknown. Here, we genetically confirmed the functional divergence of the gene pairs BnaA09.ZEP/BnaC09.ZEP and BnaA07.ZEP/BnaC07.ZEP, which encode enzymes with tissue-specific roles in carotenoid and ABA biosynthesis in flowers and leaves, respectively. Molecular and transgenic experiments demonstrated that each BnaZEP pair is transcriptionally regulated via ABA-responsive element-binding factor 3 s (BnaABF3s) and BnaMYB44s as common and specific regulators, respectively. BnaABF3s directly bound to the promoters of all 4 BnaZEPs and activated their transcription, with overexpression of individual BnaABF3s inducing BnaZEP expression and ABA accumulation under drought stress. Conversely, loss of BnaABF3s function resulted in lower expression of several genes functioning in carotenoid and ABA metabolism and compromised drought tolerance. BnaMYB44s specifically targeted and repressed the expression of BnaA09.ZEP/BnaC09.ZEP but not BnaA07.ZEP/BnaC07.ZEP. Overexpression of BnaA07.MYB44 resulted in increased carotenoid content and an altered carotenoid profile in petals. Additionally, RNA-seq analysis indicated that BnaMYB44s functions as a repressor in phenylpropanoid and flavonoid biosynthesis. These findings provide clear evidence for the subfunctionalization of duplicated genes and contribute to our understanding of the complex regulatory network involved in carotenoid and ABA biosynthesis in B. napus.
Collapse
Affiliation(s)
- Shenhua Ye
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yingying Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Tiantian Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowei Ma
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Rihui Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Hou LY, Sommer F, Poeker L, Dziubek D, Schroda M, Geigenberger P. The impact of light and thioredoxins on the plant thiol-disulfide proteome. PLANT PHYSIOLOGY 2024; 195:1536-1560. [PMID: 38214043 PMCID: PMC11142374 DOI: 10.1093/plphys/kiad669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
Thiol-based redox regulation is a crucial posttranslational mechanism to acclimate plants to changing light availability. Here, we conducted a biotin switch-based redox proteomics study in Arabidopsis (Arabidopsis thaliana) to systematically investigate dynamics of thiol-redox networks in response to temporal changes in light availability and across genotypes lacking parts of the thioredoxin (Trx) or NADPH-Trx-reductase C (NTRC) systems in the chloroplast. Time-resolved dynamics revealed light led to marked decreases in the oxidation states of many chloroplast proteins with photosynthetic functions during the first 10 min, followed by their partial reoxidation after 2 to 6 h into the photoperiod. This involved f, m, and x-type Trx proteins showing similar light-induced reduction-oxidation dynamics, while NTRC, 2-Cys peroxiredoxins, and Trx y2 showed an opposing pattern, being more oxidized in light than dark. In Arabidopsis trxf1f2, trxm1m2, or ntrc mutants, most proteins showed increased oxidation states in the light compared to wild type, suggesting their light-dependent dynamics were related to NTRC/Trx networks. While NTRC deficiency had a strong influence in all light conditions, deficiencies in f- or m-type Trxs showed differential impacts on the thiol-redox proteome depending on the light environment, being higher in constant or fluctuating light, respectively. The results indicate plant redox proteomes are subject to dynamic changes in reductive and oxidative pathways to cooperatively fine-tune photosynthetic and metabolic processes in the light. The importance of the individual elements of the NTRC/Trx networks mediating these responses depend on the extent of light variability, with NTRC playing a crucial role to balance protein-redox states in rapidly fluctuating light.
Collapse
Affiliation(s)
- Liang-Yu Hou
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
- Institute of Plant and Microbial Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Frederik Sommer
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Louis Poeker
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Dejan Dziubek
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| | - Michael Schroda
- Molekulare Biotechnologie und Systembiologie, TU Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Peter Geigenberger
- Faculty of Biology, Ludwig-Maximilians-University Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
4
|
Wang J, Zhou X, Li K, Wang H, Zhang C, Shi Y, Yao M, Wang Y, Xiao W. Systems Metabolic Engineering for Efficient Violaxanthin Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10459-10468. [PMID: 38666490 DOI: 10.1021/acs.jafc.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.
Collapse
Affiliation(s)
- Jia Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Xiao Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Kexin Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Herong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Chenglong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ying Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| |
Collapse
|
5
|
Machado KLDG, Faria DV, Duarte MBS, Silva LAS, de Oliveira TDR, Falcão TCA, Batista DS, Costa MGC, Santa-Catarina C, Silveira V, Romanel E, Otoni WC, Nogueira FTS. Plant age-dependent dynamics of annatto pigment (bixin) biosynthesis in Bixa orellana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1390-1406. [PMID: 37975812 DOI: 10.1093/jxb/erad458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Age affects the production of secondary metabolites, but how developmental cues regulate secondary metabolism remains poorly understood. The achiote tree (Bixa orellana L.) is a source of bixin, an apocarotenoid used in diverse industries worldwide. Understanding how age-dependent mechanisms control bixin biosynthesis is of great interest for plant biology and for economic reasons. Here we overexpressed miRNA156 (miR156) in B. orellana to comprehensively study the effects of the miR156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) module on age-dependent bixin biosynthesis in leaves. Overexpression of miR156 in annatto plants (miR156ox) reduced BoSPL transcript levels, impacted leaf ontogeny, lessened bixin production, and increased abscisic acid levels. Modulation of expression of BoCCD4-4 and BoCCD1, key genes in carotenoid biosynthesis, was associated with diverting the carbon flux from bixin to abscisic acid in miR156ox leaves. Proteomic analyses revealed an overall low accumulation of most secondary metabolite-related enzymes in miR156ox leaves, suggesting that miR156-targeted BoSPLs may be required to activate several secondary metabolic pathways. Our findings suggest that the conserved BomiR156-BoSPL module is deployed to regulate leaf dynamics of bixin biosynthesis, and may create novel opportunities to fine-tune bixin output in B. orellana breeding programs.
Collapse
Affiliation(s)
- Kleiton Lima de Godoy Machado
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Daniele Vidal Faria
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Marcos Bruno Silva Duarte
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Lázara Aline Simões Silva
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | - Tadeu Dos Reis de Oliveira
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Thais Castilho Arruda Falcão
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Diego Silva Batista
- Departamento de Agricultura, Universidade Federal da Paraíba, Campus III, 58220-000, Bananeiras, PB, Brazil
| | | | - Claudete Santa-Catarina
- Laboratório de Biologia Celular e Tecidual (LBCT), Centro de Biociências e Biotecnologia (CBB), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Vanildo Silveira
- Laboratório de Biotecnologia (LBT), CBB-UENF, Campos dos Goytacazes, RJ, Brazil
| | - Elisson Romanel
- Laboratório de Genômica de Plantas e Bioenergia (PGEMBL), Departamento de Biotecnologia, Escola de Engenharia de Lorena (EEL), Universidade de São Paulo (USP), 12602-810, Lorena, SP, Brazil
| | - Wagner Campos Otoni
- Departamento de Biologia Vegetal/Laboratório de Cultura de Tecidos Vegetais/BIOAGRO, Campus Universitário, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil
| | | |
Collapse
|
6
|
Biswal S, Gupta PSS, Panda SK, Bhat HR, Rana MK. Insights into the binding mechanism of ascorbic acid and violaxanthin with violaxanthin de-epoxidase (VDE) and chlorophycean violaxanthin de-epoxidase (CVDE) enzymes. PHOTOSYNTHESIS RESEARCH 2023; 156:337-354. [PMID: 36847893 DOI: 10.1007/s11120-023-01006-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/11/2023] [Indexed: 05/23/2023]
Abstract
Photosynthetic organisms have evolved to work under low and high lights in photoprotection, acting as a scavenger of reactive oxygen species. The light-dependent xanthophyll cycle involved in this process is performed by a key enzyme (present in the thylakoid lumen), Violaxanthin De-Epoxidase (VDE), in the presence of violaxanthin (Vio) and ascorbic acid substrates. Phylogenetically, VDE is found to be connected with an ancestral enzyme Chlorophycean Violaxanthin De-Epoxidase (CVDE), present in the green algae on the stromal side of the thylakoid membrane. However, the structure and functions of CVDE were not known. In search of functional similarities involving this cycle, the structure, binding conformation, stability, and interaction mechanism of CVDE are explored with the two substrates compared to VDE. The structure of CVDE was determined by homology modeling and validated. In silico docking (of first-principles optimized substrates) revealed it has a larger catalytic domain than VDE. A thorough analysis of the binding affinity and stability of four enzyme-substrate complexes is performed by computing free energies and their decomposition, the root-mean-square deviation (RMSD) and fluctuation (RMSF), the radius of gyration, salt bridge, and hydrogen bonding interactions in molecular dynamics. Based on these, violaxanthin interacts with CVDE to a similar extent as that of VDE. Hence, its role is expected to be the same for both enzymes. On the contrary, ascorbic acid has a weaker interaction with CVDE than VDE. Given these interactions drive epoxidation or de-epoxidation in the xanthophyll cycle, it immediately discerns that either ascorbic acid does not participate in de-epoxidation or a different cofactor is necessary as CVDE has a weaker interaction with ascorbic acid than VDE.
Collapse
Affiliation(s)
- Satyaranjan Biswal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India
| | - Parth Sarthi Sen Gupta
- School of Biosciences and Bioengineering, D Y Patil International University, Akurdi, Pune, Maharashtra-411044, India
| | - Saroj Kumar Panda
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India
| | - Haamid Rasool Bhat
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India
| | - Malay Kumar Rana
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Berhampur, Ganjam, Odisha, 760010, India.
| |
Collapse
|
7
|
Tan Y, Wen B, Xu L, Zong X, Sun Y, Wei G, Wei H. High temperature inhibited the accumulation of anthocyanin by promoting ABA catabolism in sweet cherry fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1079292. [PMID: 36860903 PMCID: PMC9968857 DOI: 10.3389/fpls.2023.1079292] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Color is an essential appearance characteristic of sweet cherry (Prunus avium L.) fruits and mainly determined by anthocyanin. Temperature plays an important role in the regulation of anthocyanin accumulation. In this research, anthocyanin, sugar, plant hormone and related gene expression were analyzed using physiological and transcriptomic methods in order to reveal the effects of high temperature on fruit coloring and the related mechanism. The results showed that high temperature severely inhibited anthocyanin accumulation in fruit peel and slowed the coloring process. The total anthocyanin content in fruit peel increased by 455% and 84% after 4 days of normal temperature treatment (NT, 24°C day/14°C night) and high temperature treatment (HT, 34°C day/24°C night), respectively. Similarly, the contents of 8 anthocyanin monomers were significantly higher in NT than in HT. HT also affected the levels of sugars and plant hormones. The total soluble sugar content increased by 29.49% and 16.81% in NT and HT, respectively, after 4 days of treatment. The levels of ABA, IAA and GA20 also increased in both the two treatments but more slowly in HT. Conversely, the contents of cZ, cZR and JA decreased more rapidly in HT than in NT. The results of the correlation analysis showed that the ABA and GA20 contents were significantly correlated with the total anthocyanin contents. Further transcriptome analysis showed that HT inhibited the activation of structural genes in anthocyanin biosynthesis as well as the repression of CYP707A and AOG, which dominated the catabolism and inactivation of ABA. These results indicate that ABA may be a key regulator in the high-temperature-inhibited fruit coloring of sweet cherry. High temperature induces higher ABA catabolism and inactivation, leading to lower ABA levels and finally resulting in slow coloring.
Collapse
Affiliation(s)
- Yue Tan
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Li Xu
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Xiaojuan Zong
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Yugang Sun
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Guoqin Wei
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Hairong Wei
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| |
Collapse
|
8
|
Riaz A, Deng F, Chen G, Jiang W, Zheng Q, Riaz B, Mak M, Zeng F, Chen ZH. Molecular Regulation and Evolution of Redox Homeostasis in Photosynthetic Machinery. Antioxidants (Basel) 2022; 11:antiox11112085. [PMID: 36358456 PMCID: PMC9686623 DOI: 10.3390/antiox11112085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 01/14/2023] Open
Abstract
The recent advances in plant biology have significantly improved our understanding of reactive oxygen species (ROS) as signaling molecules in the redox regulation of complex cellular processes. In plants, free radicals and non-radicals are prevalent intra- and inter-cellular ROS, catalyzing complex metabolic processes such as photosynthesis. Photosynthesis homeostasis is maintained by thiol-based systems and antioxidative enzymes, which belong to some of the evolutionarily conserved protein families. The molecular and biological functions of redox regulation in photosynthesis are usually to balance the electron transport chain, photosystem II, photosystem I, mesophyll and bundle sheath signaling, and photo-protection regulating plant growth and productivity. Here, we review the recent progress of ROS signaling in photosynthesis. We present a comprehensive comparative bioinformatic analysis of redox regulation in evolutionary distinct photosynthetic cells. Gene expression, phylogenies, sequence alignments, and 3D protein structures in representative algal and plant species revealed conserved key features including functional domains catalyzing oxidation and reduction reactions. We then discuss the antioxidant-related ROS signaling and important pathways for achieving homeostasis of photosynthesis. Finally, we highlight the importance of plant responses to stress cues and genetic manipulation of disturbed redox status for balanced and enhanced photosynthetic efficiency and plant productivity.
Collapse
Affiliation(s)
- Adeel Riaz
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Fenglin Deng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Guang Chen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Wei Jiang
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Qingfeng Zheng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
| | - Bisma Riaz
- Department of Biotechnology, University of Okara, Okara, Punjab 56300, Pakistan
| | - Michelle Mak
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Fanrong Zeng
- Hubei Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou 414000, China
- Correspondence: (F.Z.); (Z.-H.C.)
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
- Correspondence: (F.Z.); (Z.-H.C.)
| |
Collapse
|
9
|
Wang Z, Liu M, Yao M, Zhang X, Qu C, Du H, Lu K, Li J, Wei L, Liang Y. Rapeseed ( Brassica napus) Mitogen-Activated Protein Kinase 1 Enhances Shading Tolerance by Regulating the Photosynthesis Capability of Photosystem II. FRONTIERS IN PLANT SCIENCE 2022; 13:902989. [PMID: 35720537 PMCID: PMC9201689 DOI: 10.3389/fpls.2022.902989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Rapeseed (Brassica napus) is the third-largest source of vegetable oil in the world with an edible, medicinal, and ornamental value. However, insufficient light or high planting density directly affects its growth, development, yield, and quality. Mitogen-activated protein kinases (MAPKs) are serine/threonine protein kinases that play key roles in regulating the responses to biotic and abiotic stresses in plants. In this study, we found that the promoter of BnaMAPK1 contained several light-responsive elements (including the AT1-motif, G-Box, and TCT-motif), consistent with its shading stress-induced upregulation. Compared with the wild type under shading stress, BnaMAPK1-overexpressing plants showed higher light capture efficiency and carbon assimilation capacity, enhancing their shading tolerance. Using RNA sequencing, we systematically investigated the function of BnaMAPK1 in shading stress on photosynthetic structure, Calvin cycle, and light-driven electron transport. Notably, numerous genes encoding light-harvesting chlorophyll a/b-binding proteins (BnaLHCBs) in photosystem II-light-harvesting complex (LHC) II supercomplex were significantly downregulated in the BnaMAPK1-overexpressing lines relative to the wild type under shading stress. Combining RNA sequencing and yeast library screening, a candidate interaction partner of BnaMAPK1 regulating in shading stress, BnaLHCB3, was obtained. Moreover, yeast two-hybrid and split-luciferase complementation assays confirmed the physical interaction relationship between BnaLHCB3 and BnaMAPK1, suggesting that BnaMAPK1 may involve in stabilizing the photosystem II-LHC II supercomplex. Taken together, our results demonstrate that BnaMAPK1 positively regulates photosynthesis capability to respond to shading stress in rapeseed, possibly by controlling antenna proteins complex in photosystem II, and could provide valuable information for further breeding for rapeseed stress tolerance.
Collapse
Affiliation(s)
- Zhen Wang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Miao Liu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering College, Guizhou University, Guiyang, China
| | - Mengnan Yao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, China
| | - Xiaoli Zhang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Cunmin Qu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Hai Du
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Kun Lu
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Jiana Li
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Lijuan Wei
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| | - Ying Liang
- Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
10
|
Long SP, Taylor SH, Burgess SJ, Carmo-Silva E, Lawson T, De Souza AP, Leonelli L, Wang Y. Into the Shadows and Back into Sunlight: Photosynthesis in Fluctuating Light. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:617-648. [PMID: 35595290 DOI: 10.1146/annurev-arplant-070221-024745] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Photosynthesis is an important remaining opportunity for further improvement in the genetic yield potential of our major crops. Measurement, analysis, and improvement of leaf CO2 assimilation (A) have focused largely on photosynthetic rates under light-saturated steady-state conditions. However, in modern crop canopies of several leaf layers, light is rarely constant, and the majority of leaves experience marked light fluctuations throughout the day. It takes several minutes for photosynthesis to regain efficiency in both sun-shade and shade-sun transitions, costing a calculated 10-40% of potential crop CO2 assimilation. Transgenic manipulations to accelerate the adjustment in sun-shade transitions have already shown a substantial productivity increase in field trials. Here, we explore means to further accelerate these adjustments and minimize these losses through transgenic manipulation, gene editing, and exploitation of natural variation. Measurement andanalysis of photosynthesis in sun-shade and shade-sun transitions are explained. Factors limiting speeds of adjustment and how they could be modified to effect improved efficiency are reviewed, specifically nonphotochemical quenching (NPQ), Rubisco activation, and stomatal responses.
Collapse
Affiliation(s)
- Stephen P Long
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Samuel H Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - Steven J Burgess
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, United Kingdom
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| | - Lauriebeth Leonelli
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yu Wang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA;
| |
Collapse
|
11
|
Simkin AJ, Kapoor L, Doss CGP, Hofmann TA, Lawson T, Ramamoorthy S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. PHOTOSYNTHESIS RESEARCH 2022; 152:23-42. [PMID: 35064531 DOI: 10.1007/s11120-021-00892-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/13/2021] [Indexed: 05/06/2023]
Abstract
Photosynthetic pigments are an integral and vital part of all photosynthetic machinery and are present in different types and abundances throughout the photosynthetic apparatus. Chlorophyll, carotenoids and phycobilins are the prime photosynthetic pigments which facilitate efficient light absorption in plants, algae, and cyanobacteria. The chlorophyll family plays a vital role in light harvesting by absorbing light at different wavelengths and allowing photosynthetic organisms to adapt to different environments, either in the long-term or during transient changes in light. Carotenoids play diverse roles in photosynthesis, including light capture and as crucial antioxidants to reduce photodamage and photoinhibition. In the marine habitat, phycobilins capture a wide spectrum of light and have allowed cyanobacteria and red algae to colonise deep waters where other frequencies of light are attenuated by the water column. In this review, we discuss the potential strategies that photosynthetic pigments provide, coupled with development of molecular biological techniques, to improve crop yields through enhanced light harvesting, increased photoprotection and improved photosynthetic efficiency.
Collapse
Affiliation(s)
- Andrew J Simkin
- School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom
| | - Leepica Kapoor
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Tanja A Hofmann
- OSFC, Scrivener Drive, Pinewood, Ipswich, IP8 3SU, United Kingdom
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Chen MZ, Zhong XM, Lin HS, Qin XM. Combined Transcriptome and Metabolome Analysis of Musa nana Laur. Peel Treated With UV-C Reveals the Involvement of Key Metabolic Pathways. Front Genet 2022; 12:792991. [PMID: 35154246 PMCID: PMC8830439 DOI: 10.3389/fgene.2021.792991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 11/13/2022] Open
Abstract
An increasing attention is being given to treat fruits with ultraviolet C (UV-C) irradiation to extend shelf-life, senescence, and protection from different diseases during storage. However, the detailed understanding of the pathways and key changes in gene expression and metabolite accumulation related to UV-C treatments are yet to be explored. This study is a first attempt to understand such changes in banana peel irradiated with UV-C. We treated Musa nana Laur. with 0.02 KJ/m2 UV-C irradiation for 0, 4, 8, 12, 15, and 18 days and studied the physiological and quality indicators. We found that UV-C treatment reduces weight loss and decay rate, while increased the accumulation of total phenols and flavonoids. Similarly, our results demonstrated that UV-C treatment increases the activity of defense and antioxidant system related enzymes. We observed that UV-C treatment for 8 days is beneficial for M. nana peels. The peels of M. nana treated with UV-C for 8 days were then subjected to combined transcriptome and metabolome analysis. In total, there were 425 and 38 differentially expressed genes and accumulated metabolites, respectively. We found that UV-C treatment increased the expression of genes in secondary metabolite biosynthesis related pathways. Concomitant changes in the metabolite accumulation were observed. Key pathways that were responsive to UV-C irradiation include flavonoid biosynthesis, phenylpropanoid bios6ynthesis, plant-pathogen interaction, MAPK signaling (plant), and plant hormone signal transduction pathway. We concluded that UV-C treatment imparts beneficial effects on banana peels by triggering defense responses against disease, inducing expression of flavonoid and alkaloid biosynthesis genes, and activating phytohormone and MAPK signaling pathways.
Collapse
Affiliation(s)
- Ming-zhong Chen
- College of Food Science and Technology, and Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
- Yangjiang Polytechnic, Yangjiang, China
| | | | - Hai-Sheng Lin
- College of Food Science and Technology, and Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| | - Xiao-Ming Qin
- College of Food Science and Technology, and Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
13
|
Trinh MDL, Masuda S. Chloroplast pH Homeostasis for the Regulation of Photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:919896. [PMID: 35693183 PMCID: PMC9174948 DOI: 10.3389/fpls.2022.919896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/04/2022] [Indexed: 05/16/2023]
Abstract
The pH of various chloroplast compartments, such as the thylakoid lumen and stroma, is light-dependent. Light illumination induces electron transfer in the photosynthetic apparatus, coupled with proton translocation across the thylakoid membranes, resulting in acidification and alkalization of the thylakoid lumen and stroma, respectively. Luminal acidification is crucial for inducing regulatory mechanisms that protect photosystems against photodamage caused by the overproduction of reactive oxygen species (ROS). Stromal alkalization activates enzymes involved in the Calvin-Benson-Bassham (CBB) cycle. Moreover, proton translocation across the thylakoid membranes generates a proton gradient (ΔpH) and an electric potential (ΔΨ), both of which comprise the proton motive force (pmf) that drives ATP synthase. Then, the synthesized ATP is consumed in the CBB cycle and other chloroplast metabolic pathways. In the dark, the pH of both the chloroplast stroma and thylakoid lumen becomes neutral. Despite extensive studies of the above-mentioned processes, the molecular mechanisms of how chloroplast pH can be maintained at proper levels during the light phase for efficient activation of photosynthesis and other metabolic pathways and return to neutral levels during the dark phase remain largely unclear, especially in terms of the precise control of stromal pH. The transient increase and decrease in chloroplast pH upon dark-to-light and light-to-dark transitions have been considered as signals for controlling other biological processes in plant cells. Forward and reverse genetic screening approaches recently identified new plastid proteins involved in controlling ΔpH and ΔΨ across the thylakoid membranes and chloroplast proton/ion homeostasis. These proteins have been conserved during the evolution of oxygenic phototrophs and include putative photosynthetic protein complexes, proton transporters, and/or their regulators. Herein, we summarize the recently identified protein players that control chloroplast pH and influence photosynthetic efficiency in plants.
Collapse
Affiliation(s)
- Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
- *Correspondence: Shinji Masuda,
| |
Collapse
|
14
|
Simkin AJ. Carotenoids and Apocarotenoids in Planta: Their Role in Plant Development, Contribution to the Flavour and Aroma of Fruits and Flowers, and Their Nutraceutical Benefits. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112321. [PMID: 34834683 PMCID: PMC8624010 DOI: 10.3390/plants10112321] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 05/05/2023]
Abstract
Carotenoids and apocarotenoids are diverse classes of compounds found in nature and are important natural pigments, nutraceuticals and flavour/aroma molecules. Improving the quality of crops is important for providing micronutrients to remote communities where dietary variation is often limited. Carotenoids have also been shown to have a significant impact on a number of human diseases, improving the survival rates of some cancers and slowing the progression of neurological illnesses. Furthermore, carotenoid-derived compounds can impact the flavour and aroma of crops and vegetables and are the origin of important developmental, as well as plant resistance compounds required for defence. In this review, we discuss the current research being undertaken to increase carotenoid content in plants and research the benefits to human health and the role of carotenoid derived volatiles on flavour and aroma of fruits and vegetables.
Collapse
Affiliation(s)
- Andrew J. Simkin
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK; or
- Crop Science and Production Systems, NIAB-EMR, New Road, East Malling, Kent ME19 6BJ, UK
| |
Collapse
|
15
|
Goss R, Schwarz C, Matzner M, Wilhelm C. Influence of the compatible solute sucrose on thylakoid membrane organization and violaxanthin de-epoxidation. PLANTA 2021; 254:52. [PMID: 34392410 PMCID: PMC8364907 DOI: 10.1007/s00425-021-03699-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
The compatible solute sucrose reduces the efficiency of the enzymatic de-epoxidation of violaxanthin, probably by a direct effect on the protein parts of violaxanthin de-epoxidase which protrude from the lipid phase of the thylakoid membrane. The present study investigates the influence of the compatible solute sucrose on the violaxanthin cycle of higher plants in intact thylakoids and in in vitro enzyme assays with the isolated enzyme violaxanthin de-epoxidase at temperatures of 30 and 10 °C, respectively. In addition, the influence of sucrose on the lipid organization of thylakoid membranes and the MGDG phase in the in vitro assays is determined. The results show that sucrose leads to a pronounced inhibition of violaxanthin de-epoxidation both in intact thylakoid membranes and the enzyme assays. In general, the inhibition is similar at 30 and 10 °C. With respect to the lipid organization only minor changes can be seen in thylakoid membranes at 30 °C in the presence of sucrose. However, sucrose seems to stabilize the thylakoid membranes at lower temperatures and at 10 °C a comparable membrane organization to that at 30 °C can be observed, whereas control thylakoids show a significantly different membrane organization at the lower temperature. The MGDG phase in the in vitro assays is not substantially affected by the presence of sucrose or by changes of the temperature. We conclude that the presence of sucrose and the increased viscosity of the reaction buffers stabilize the protein part of the enzyme violaxanthin de-epoxidase, thereby decreasing the dynamic interactions between the catalytic site and the substrate violaxanthin. This indicates that sucrose interacts with those parts of the enzyme which are accessible at the membrane surface of the lipid phase of the thylakoid membrane or the MGDG phase of the in vitro enzyme assays.
Collapse
Affiliation(s)
- Reimund Goss
- Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Christian Schwarz
- Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Monique Matzner
- Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, Department of Plant Physiology, Leipzig University, Johannisallee 21-23, 04103, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
| |
Collapse
|
16
|
Li X, Sun J, Chen Z, Jiang J, Jackson A. Metabolite profile and genes/proteins expression in β-citraturin biosynthesis during fruit ripening in Chinese raspberry (Rubus chingii Hu). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:76-86. [PMID: 33819717 DOI: 10.1016/j.plaphy.2021.03.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/10/2021] [Indexed: 05/09/2023]
Abstract
Carotenoids are one of the most abundant pigments in raspberries. Rubus chingii Hu, indigenous to China, is traditionally consumed for health benefits. However, the carotenoid composition and pathways of R. chingii have not yet been studied. In this study, the components of carotenoids and genes/proteins involved in their biosynthesis were investigated during four fruit ripening phases via LC-MS/MS. Zeaxanthin, β-citraurin and its esters, first identified in Rubus, gradually accumulated during fruit maturation. These compounds, rather than anthocyanins, were responsible for the ripe fruit coloration. In carotenoid metabolism, upstream synthesis genes of RcPSY2 (CL1406.Contig2), RcPDS1 (CL7625.Contig2), RcZDS1 (CL590.Contig6) and RcCRTISO1 (CL6919.Contig2) were up-regulated in gene/protein expression to accelerate carotene biosynthesis. Downstream genes of RcLUT5CHYB/CYP97A (CL8884.Contig3) and RcCHYB/BCH (CL7966.Contig1) were up-regulated in gene/protein expression, while RcCHYE/CYP97C (CL9380.Contig1/2) were maintained at low levels. RcLCYE (Unigene19570) was down-regulated while RcLCYB (CL7586.Contig1) was up-regulated and then down-regulated. These differential gene/protein expressions between LCYB and LCYE, and between CHYE and CHYB led to zeaxanthin accumulation by elevating its biosynthetic enzymes and lowering enzymes for lutein biosynthesis. In apocarotenoid biosynthesis, RcCCD (CL1310.Contig3) was up-regulated in gene/protein expression, which raised the content of β-citraurin and its esters. Additionally, these genes/proteins diverged into different subgroups with distinct pattens of expression, suggesting their difference in function. For example, RcPSY1/3, RcZDS2, and RcCRTISO2/3 genes were expressed at very low levels, suggesting that they may be active in other tissues rather than in fruit. The mechanism of zeaxanthin and β-citraurin biosynthesis is responsible for fruit coloration, which is completely novel to Rubus.
Collapse
Affiliation(s)
- Xiaobai Li
- Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| | - Jian Sun
- Zhejiang Research Institute of Traditional Chinese Medicine Co., Ltd., Hangzhou, 310023, China.
| | - Zhen Chen
- College of Life Sciences, Taizhou University, Taizhou, 318000, China.
| | - Jingyong Jiang
- Taizhou Academy of Agricultural Sciences, Linhai, 317000, China.
| | - Aaron Jackson
- Aaron Jackson, South Oak, Stuttgart, AR, 72160, USA.
| |
Collapse
|
17
|
Gao J, Yang S, Tang K, Li G, Gao X, Liu B, Wang S, Feng X. GmCCD4 controls carotenoid content in soybeans. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:801-813. [PMID: 33131209 PMCID: PMC8051601 DOI: 10.1111/pbi.13506] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 10/06/2020] [Accepted: 10/26/2020] [Indexed: 05/23/2023]
Abstract
To better understand the mechanisms regulating plant carotenoid metabolism in staple crop, we report the map-based cloning and functional characterization of the Glycine max carotenoid cleavage dioxygenase 4 (GmCCD4) gene, which encodes a carotenoid cleavage dioxygenase enzyme involved in metabolizing carotenoids into volatile β-ionone. Loss of GmCCD4 protein function in four Glycine max increased carotenoid content (gmicc) mutants resulted in yellow flowers due to excessive accumulation of carotenoids in flower petals. The carotenoid contents also increase three times in gmicc1 seeds. A genome-wide association study indicated that the GmCCD4 locus was one major locus associated with carotenoid content in natural population. Further analysis indicated that the haplotype-1 of GmCCD4 gene was positively associated with higher carotenoid levels in soybean cultivars and accumulated more β-carotene in engineered E. coli with ectopic expression of different GmCCD4 haplotypes. These observations uncovered that GmCCD4 was a negative regulator of carotenoid content in soybean, and its various haplotypes provide useful resources for future soybean breeding practice.
Collapse
Affiliation(s)
- Jinshan Gao
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Suxin Yang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Kuanqiang Tang
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Guang Li
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| | - Xiang Gao
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Shaodong Wang
- Key Laboratory of Soybean Biology of Education MinistryNortheast Agricultural UniversityHarbinChina
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina
| |
Collapse
|
18
|
Zhu D, Luo F, Zou R, Liu J, Yan Y. Integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses. J Proteomics 2021; 234:104097. [PMID: 33401000 DOI: 10.1016/j.jprot.2020.104097] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/10/2020] [Accepted: 12/21/2020] [Indexed: 01/20/2023]
Abstract
In this study, we performed an integrated physiological and chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses by label-free based quantitative proteomic approach. Both salt and osmotic stresses significantly increased the levels of abscisic acid and methyl jasmonate and led to damages of chloroplast ultrastructure. Main parameters of chlorophyll fluorescence and gas exchange showed a significant decline under both stresses. Quantitative proteomic analysis identified 194 and 169 chloroplast-localized differentially accumulated proteins (DAPs) responsive to salt and osmotic stresses, respectively. The abundance of main DAPs involved in light-dependent reaction were increased under salt stress, but decreased in response to osmotic stress. On the contrary, salt stress induced a significant upregulation of the DAPs associated with Calvin cycle, transcription and translation, amino acid metabolism, carbon and nitrogen metabolism, and some of them exhibited a downregulation under osmotic stress. In particular, both treatments significantly upregulated the DAPs involved in plastoglobule development, protein folding and proteolysis, hormone and vitamin synthesis. Finally, we proposed a putative synergistic responsive network of wheat chloroplast proteome under salt and osmotic stresses, aiming to provide new insights into the underlying response and defense mechanisms of wheat chloroplast proteome in response to abiotic stresses. SIGNIFICANCE: Salt and osmotic stresses are the two most common abiotic stresses that severely affect crop growth and productivity. As the main site of photosynthesis of plant cells, the chloroplast also plays important role in plant tolerance to abiotic stress. However, the response of chloroplast proteome to salt and osmotic is still poorly understood by using the traditional two-dimensional electrophoresis (2-DE) method due to a poor resolution of chloroplast protein separation and low throughput identification of differentially accumulated proteins (DAPs). In this study, we employed label-free based quantitative proteomic approach to perform an integrated physiological and large-scale chloroplast proteome analysis of wheat seedling leaves under salt and osmotic stresses, which laid a solid foundation for future studies into the response and defense mechanisms of wheat chloroplast in response to abiotic stresses.
Collapse
Affiliation(s)
- Dong Zhu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Fei Luo
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Rong Zou
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Junxian Liu
- College of Life Science, Capital Normal University, Beijing, 100048, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
19
|
Zhou Z, Gao H, Ming J, Ding Z, Lin X, Zhan R. Combined Transcriptome and Metabolome analysis of Pitaya fruit unveiled the mechanisms underlying Peel and pulp color formation. BMC Genomics 2020; 21:734. [PMID: 33092530 PMCID: PMC7579827 DOI: 10.1186/s12864-020-07133-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/09/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Elucidating the candidate genes and key metabolites responsible for pulp and peel coloration is essential for breeding pitaya fruit with new and improved appeal and high nutritional value. Here, we used transcriptome (RNA-Seq) and metabolome analysis (UPLC-MS/MS) to identify structural and regulatory genes and key metabolites associated with peel and pulp colors in three pitaya fruit types belonging to two different Hylocereus species. RESULT Our combined transcriptome and metabolome analyses suggest that the main strategy for obtaining red color is to increase tyrosine content for downstream steps in the betalain pathway. The upregulation of CYP76ADs is proposed as the color-breaking step leading to red or colorless pulp under the regulation by WRKY44 transcription factor. Supported by the differential accumulation of anthocyanin metabolites in red pulped pitaya fruit, our results showed the regulation of anthocyanin biosynthesis pathway in addition to betalain biosynthesis. However, no color-breaking step for the development of anthocyanins in red pulp was observed and no biosynthesis of anthocyanins in white pulp was found. Together, we propose that red pitaya pulp color is under the strict regulation of CYP76ADs by WRKYs and the anthocyanin coexistence with betalains is unneglectable. We ruled out the possibility of yellow peel color formation due to anthocyanins because of no differential regulation of chalcone synthase genes between yellow and green and no detection of naringenin chalcone in the metabolome. Similarly, the no differential regulation of key genes in the carotenoid pathway controlling yellow pigments proposed that the carotenoid pathway is not involved in yellow peel color formation. CONCLUSIONS Together, our results propose several candidate genes and metabolites controlling a single horticultural attribute i.e. color formation for further functional characterization. This study presents useful genomic resources and information for breeding pitaya fruit with commercially attractive peel and pulp colors. These findings will greatly complement the existing knowledge on the biosynthesis of natural pigments for their applications in food and health industry.
Collapse
Affiliation(s)
- Zhaoxi Zhou
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Hongmao Gao
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Jianhong Ming
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Zheli Ding
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China
| | - Xing'e Lin
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China.
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, China.
| |
Collapse
|
20
|
Wilhelm C, Goss R, Garab G. The fluid-mosaic membrane theory in the context of photosynthetic membranes: Is the thylakoid membrane more like a mixed crystal or like a fluid? JOURNAL OF PLANT PHYSIOLOGY 2020; 252:153246. [PMID: 32777580 DOI: 10.1016/j.jplph.2020.153246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Since the publication of the fluid-mosaic membrane theory by Singer and Nicolson in 1972 generations of scientists have adopted this fascinating concept for all biological membranes. Assuming the membrane as a fluid implies that the components embedded in the lipid bilayer can freely diffuse like swimmers in a water body. During the detailed biochemical analysis of the thylakoid protein components of chloroplasts from higher plants and algae, in the '80 s and '90 s it became clear that photosynthetic membranes are not homogeneous either in the vertical or the lateral directions. The lateral heterogeneity became obvious by the differentiation of grana and stroma thylakoids, but also the margins have been identified with a highly specific protein pattern. Further refinement of the fluid mosaic model was needed to take into account the presence of non-bilayer lipids, which are the most abundant lipids in all energy-converting membranes, and the polymorphism of lipid phases, which has also been documented in thylakoid membranes. These observations lead to the question, how mobile the components are in the lipid phase and how this ordering is made and maintained and how these features might be correlated with the non-bilayer propensity of the membrane lipids. Assuming instead of free diffusion, a "controlled neighborhood" replaced the model of fluidity by the model of a "mixed crystal structure". In this review we describe why basic photosynthetic regulation mechanisms depend on arrays of crystal-like lipid-protein macro-assemblies. The mechanisms which define the ordering in macrodomains are still not completely clear, but some recent experiments give an idea how this fascinating order is produced, adopted and maintained. We use the operation of the xanthophyll cycle as a rather well understood model challenging and complementing the standard Singer-Nicolson model via assigning special roles to non-bilayer lipids and non-lamellar lipid phases in the structure and function of thylakoid membranes.
Collapse
Affiliation(s)
- Christian Wilhelm
- Leipzig University, Institute of Biology, SenProf Algal Biotechnology, Permoserstr. 15, 04315, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, D-04103, Leipzig, Germany.
| | - Reimund Goss
- Leipzig University, Institute of Biology, Department of Plant Physiology, Johannisallee 21-23, D-04103, Leipzig, Germany
| | - Gyözö Garab
- Biological Research Centre, Institute of Plant Biology, Temesvári körút 62, H-6726, Szeged, Hungary; University of Ostrava, Department of Physics, Faculty of Science, Chittussiho 10, CZ-710 00, Ostrava, Slezská Ostrava, Czech Republic
| |
Collapse
|
21
|
Motojima F, Izumi A, Nuylert A, Zhai Z, Dadashipour M, Shichida S, Yamaguchi T, Nakano S, Asano Y. R-hydroxynitrile lyase from the cyanogenic millipede, Chamberlinius hualienensis-A new entry to the carrier protein family Lipocalines. FEBS J 2020; 288:1679-1695. [PMID: 32679618 PMCID: PMC7983990 DOI: 10.1111/febs.15490] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 01/05/2023]
Abstract
Hydroxynitrile lyases (HNLs) catalyze the cleavage of cyanohydrin into cyanide and the corresponding aldehyde or ketone. Moreover, they catalyze the synthesis of cyanohydrin in the reverse reaction, utilized in industry for preparation of enantiomeric pure pharmaceutical ingredients and fine chemicals. We discovered a new HNL from the cyanogenic millipede, Chamberlinius hualienensis. The enzyme displays several features including a new primary structure, high stability, and the highest specific activity in (R)‐mandelonitrile ((R)‐MAN) synthesis (7420 U·mg−1) among the reported HNLs. In this study, we elucidated the crystal structure and reaction mechanism of natural ChuaHNL in ligand‐free form and its complexes with acetate, cyanide ion, and inhibitors (thiocyanate or iodoacetate) at 1.6, 1.5, 2.1, 1.55, and 1.55 Å resolutions, respectively. The structure of ChuaHNL revealed that it belongs to the lipocalin superfamily, despite low amino acid sequence identity. The docking model of (R)‐MAN with ChuaHNL suggested that the hydroxyl group forms hydrogen bonds with R38 and K117, and the nitrile group forms hydrogen bonds with R38 and Y103. The mutational analysis showed the importance of these residues in the enzymatic reaction. From these results, we propose that K117 acts as a base to abstract a proton from the hydroxyl group of cyanohydrins and R38 acts as an acid to donate a proton to the cyanide ion during the cleavage reaction of cyanohydrins. The reverse mechanism would occur during the cyanohydrin synthesis. (Photo: Dr. Yuko Ishida) Databases Structural data are available in PDB database under the accession numbers 6JHC, 6KFA, 6KFB, 6KFC, and 6KFD.
Collapse
Affiliation(s)
- Fumihiro Motojima
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Atsushi Izumi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Aem Nuylert
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Zhenyu Zhai
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Mohammad Dadashipour
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Sayaka Shichida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Takuya Yamaguchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Shogo Nakano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| | - Yasuhisa Asano
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Imizu, Toyama, Japan.,Asano Active Enzyme Molecule Project, ERATO, JST, Imizu, Toyama, 939-0398, Japan
| |
Collapse
|
22
|
Goss R, Latowski D. Lipid Dependence of Xanthophyll Cycling in Higher Plants and Algae. FRONTIERS IN PLANT SCIENCE 2020; 11:455. [PMID: 32425962 PMCID: PMC7212465 DOI: 10.3389/fpls.2020.00455] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/27/2020] [Indexed: 05/11/2023]
Abstract
The xanthophyll cycles of higher plants and algae represent an important photoprotection mechanism. Two main xanthophyll cycles are known, the violaxanthin cycle of higher plants, green and brown algae and the diadinoxanthin cycle of Bacillariophyceae, Xanthophyceae, Haptophyceae, and Dinophyceae. The forward reaction of the xanthophyll cycles consists of the enzymatic de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin or diadinoxanthin to diatoxanthin during periods of high light illumination. It is catalyzed by the enzymes violaxanthin or diadinoxanthin de-epoxidase. During low light or darkness the back reaction of the cycle, which is catalyzed by the enzymes zeaxanthin or diatoxanthin epoxidase, restores the epoxidized xanthophylls by a re-introduction of the epoxy groups. The de-epoxidation reaction takes place in the lipid phase of the thylakoid membrane and thus, depends on the nature, three dimensional structure and function of the thylakoid lipids. As the xanthophyll cycle pigments are usually associated with the photosynthetic light-harvesting proteins, structural re-arrangements of the proteins and changes in the protein-lipid interactions play an additional role for the operation of the xanthophyll cycles. In the present review we give an introduction to the lipid and fatty acid composition of thylakoid membranes of higher plants and algae. We introduce the readers to the reaction sequences, enzymes and function of the different xanthophyll cycles. The main focus of the review lies on the lipid dependence of xanthophyll cycling. We summarize the current knowledge about the role of lipids in the solubilization of xanthophyll cycle pigments. We address the importance of the three-dimensional lipid structures for the enzymatic xanthophyll conversion, with a special focus on non-bilayer lipid phases which are formed by the main thylakoid membrane lipid monogalactosyldiacylglycerol. We additionally describe how lipids and light-harvesting complexes interact in the thylakoid membrane and how these interactions can affect the structure of the thylakoids. In a dedicated chapter we offer a short overview of current membrane models, including the concept of membrane domains. We then use these concepts to present a model of the operative xanthophyll cycle as a transient thylakoid membrane domain which is formed during high light illumination of plants or algal cells.
Collapse
Affiliation(s)
- Reimund Goss
- Department of Plant Physiology, Institute of Biology, Leipzig University, Leipzig, Germany
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
23
|
Quantitative Proteomic Analyses Identify STO/BBX24 -Related Proteins Induced by UV-B. Int J Mol Sci 2020; 21:ijms21072496. [PMID: 32260266 PMCID: PMC7178263 DOI: 10.3390/ijms21072496] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 12/18/2022] Open
Abstract
Plants use solar radiation for photosynthesis and are inevitably exposed to UV-B. To adapt to UV-B radiation, plants have evolved a sophisticated strategy, but the mechanism is not well understood. We have previously reported that STO (salt tolerance)/BBX24 is a negative regulator of UV-B-induced photomorphogenesis. However, there is limited knowledge of the regulatory network of STO in UV-B signaling. Here, we report the identification of proteins differentially expressed in the wild type (WT) and sto mutant after UV-B radiation by iTRAQ (isobaric tags for relative and absolute quantitation)-based proteomic analysis to explore differential proteins that depend on STO and UV-B signaling. A total of 8212 proteins were successfully identified, 221 of them were STO-dependent proteins in UV-B irradiated plants. The abundances of STO-dependent PSB and LHC (light-harvesting complex) proteins in sto mutants decreased under UV-B radiation, suggesting that STO is necessary to maintain the normal accumulation of photosynthetic system complex under UV-B radiation to facilitate photosynthesis photon capture. The abundance of phenylalanine lyase-1 (PAL1), chalcone synthetase (CHS), and flavonoid synthetase (FLS) increased significantly after UV-B irradiation, suggesting that the accumulation of flavonoids do not require STO, but UV-B is needed. Under UV-B radiation, STO stabilizes the structure of antenna protein complex by maintaining the accumulation of PSBs and LHCs, thereby enhancing the non-photochemical quenching (NPQ) ability, releasing extra energy, protecting photosynthesis, and ultimately promoting the elongation of hypocotyl. The accumulation of flavonoid synthesis key proteins is independent of STO under UV-B radiation. Overall, our results provide a comprehensive regulatory network of STO in UV-B signaling.
Collapse
|
24
|
Garcia-Molina A, Leister D. Accelerated relaxation of photoprotection impairs biomass accumulation in Arabidopsis. NATURE PLANTS 2020; 6:9-12. [PMID: 31907400 DOI: 10.1038/s41477-019-0572-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/21/2019] [Indexed: 05/22/2023]
Abstract
Faster onset of photoprotection could potentially increase biomass accumulation. Indeed, this has been realized in tobacco VPZ lines by overexpression of three photoprotective proteins in parallel. To explore the range of application of this approach, we generated Arabidopsis VPZ lines. These lines triggered photoprotection more rapidly, but growth rate and biomass accumulation were impaired under fluctuating light. This implies that the strategy might interfere with other mechanisms controlling excitation energy distribution, or with source-sink relationships or plastid signalling.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig Maximilians University of Munich, Munich, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig Maximilians University of Munich, Munich, Germany.
| |
Collapse
|
25
|
Berry HM, Rickett DV, Baxter CJ, Enfissi EMA, Fraser PD. Carotenoid biosynthesis and sequestration in red chilli pepper fruit and its impact on colour intensity traits. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2637-2650. [PMID: 30820539 PMCID: PMC6506829 DOI: 10.1093/jxb/erz086] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 02/20/2019] [Indexed: 05/21/2023]
Abstract
The exploitation of diverse natural variation has been a key progenitor of crop breeding over the last decade. However, commercial practice is now turning to the use of accessions with less extreme phenotypes as genetic donors. In the present study, the carotenoid formation in a red-fruited discovery panel of Capsicum annuum (chilli pepper) has been characterized. The data indicated that colour intensity correlated with the amount of capsanthin and its esters, along with transcript levels of the 1-deoxy-d-xylulose 5-phosphate synthase (DXS) and phytoene synthase-1 (PSY-1) genes. Quantification of carotenoids through development and ripening suggested the presence of separate biosynthesis and accumulation phases. Subplastid fractionation demonstrated the differential sequestration of pigments in high- and low-intensity lines and revealed the PSY protein to be most active in the membrane fractions when abundance was highest in the fibril fractions. Carotenoid accumulation was associated with the esterification of xanthophylls, expression of a putative carotenoid acyl transferase, and increased fibril content within the plastid. Interrogation of TEM images and carotenoid analysis of subplastid fractions suggest that the plastoglobuli are likely to be the progenitor of the characteristic fibrils found in pepper fruit. Collectively, these data provide an insight into the underpinning molecular, biochemical, and cellular mechanisms associated with the synthesis and sequestration of carotenoids in chromoplast-containing fruits, in addition to providing potential tools and resources for the breeding of high red colour intensity pepper varieties.
Collapse
Affiliation(s)
- Harriet M Berry
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Daniel V Rickett
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, UK
| | - Charles J Baxter
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, UK
| | - Eugenia M A Enfissi
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
| | - Paul D Fraser
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey, UK
- Correspondence:
| |
Collapse
|
26
|
Non-photochemical quenching in the cells of the carotenogenic chlorophyte Haematococcus lacustris under favorable conditions and under stress. Biochim Biophys Acta Gen Subj 2019; 1863:1429-1442. [PMID: 31075358 DOI: 10.1016/j.bbagen.2019.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 04/04/2019] [Accepted: 05/03/2019] [Indexed: 11/20/2022]
Abstract
The microalga Haematococcus lacustris (formerly H. pluvialis) is the richest source of the valuable pigment astaxanthin, accumulated in red aplanospores (haematocysts). In this work, we report on the photoprotective mechanisms in H. lacustris, conveying this microalga its ability to cope with a wide range of adverse conditions, with special emphasis put on non-photochemical quenching (NPQ) of the excited chlorophyll states. We studied the changes in the primary photochemistry of the photosystems (PS) as a function of irradiance and the physiological state. We leveraged the transcriptomic data to gain a deeper insight into possible NPQ mechanisms in this microalga. Peculiar to H. lacustris is a bi-phasic pattern of changes in photoprotection during haematocyst formation. The first phase coincides with a transient rise of photosynthetic activity. Based on transcriptomic data, high NPQ level in the first phase is maintained predominantly by the expression of PsbS and LhcsR proteins. Then, (in mature haematocysts), stress tolerance is achieved by optical shielding by astaxanthin and dramatic reduction of photosynthetic apparatus. In contrast to many microalgae, shielding plays an important role in H. lacistris haematocysts, whereas regulated NPQ is suppressed. Astaxanthin is decoupled from the PS, hence the light energy is not transferred to reaction centers and dissipates as heat. It allows to retain a higher photochemical yield in haematocysts comparing to vegetative cells. The ability of H. lacustris to substitute the "classical" active photoprotective mechanisms such as NPQ with optic shielding and general metabolism quiescence makes this organism a useful model to reveal photoprotection mechanisms.
Collapse
|
27
|
Carotenoid Biosynthesis in Oriental Melon ( Cucumis melo L. var. makuwa). Foods 2019; 8:foods8020077. [PMID: 30791408 PMCID: PMC6406825 DOI: 10.3390/foods8020077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 11/16/2022] Open
Abstract
Full-length cDNAs encoding ξ-carotene desaturase (CmZDS), lycopene ε-cyclase (CmLCYE), β-ring carotene hydroxylase (CmCHXB), and zeaxanthin epoxidase (CmZEP), and partial-length cDNA encoding ε-ring carotene hydroxylase (CmCHXE) were isolated in Chamoe (Cucumis melo L. var. makuwa), an important commercial fruit. Sequence analyses revealed that these proteins share high identity and common features with other orthologous genes. Expression levels of entire genes involved in the carotenoid biosynthetic pathway were investigated in the peel, pulp, and stalk of chamoe cultivars Ohbokggul and Gotgam. Most of the carotenoid biosynthetic genes were expressed at their highest levels in the stalk, whereas carotenoids were highly distributed in the peel. The expression levels of all carotenoid biosynthetic genes in fruits of the native cultivar Gotgam chamoe were higher than those in the cultivar Ohbokggul chamoe, consistent with the abundant carotenoid accumulation in Gotgam chamoe fruits and trace carotenoid content of Ohbokggul chamoe fruit. Lutein and β-carotene were the dominant carotenoids; high levels (278.05 μg g−1 and 112.02 μg g−1 dry weight, respectively) were found in the peel of Gotgam chamoe. Our findings may provide a foundation for elucidating the carotenoid biosynthetic mechanism in C. melo and inform strategies for developing new chamoe cultivars with improved characteristics.
Collapse
|
28
|
Fenech M, Amaya I, Valpuesta V, Botella MA. Vitamin C Content in Fruits: Biosynthesis and Regulation. FRONTIERS IN PLANT SCIENCE 2019; 9:2006. [PMID: 30733729 PMCID: PMC6353827 DOI: 10.3389/fpls.2018.02006] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 05/19/2023]
Abstract
Throughout evolution, a number of animals including humans have lost the ability to synthesize ascorbic acid (ascorbate, vitamin C), an essential molecule in the physiology of animals and plants. In addition to its main role as an antioxidant and cofactor in redox reactions, recent reports have shown an important role of ascorbate in the activation of epigenetic mechanisms controlling cell differentiation, dysregulation of which can lead to the development of certain types of cancer. Although fruits and vegetables constitute the main source of ascorbate in the human diet, rising its content has not been a major breeding goal, despite the large inter- and intraspecific variation in ascorbate content in fruit crops. Nowadays, there is an increasing interest to boost ascorbate content, not only to improve fruit quality but also to generate crops with elevated stress tolerance. Several attempts to increase ascorbate in fruits have achieved fairly good results but, in some cases, detrimental effects in fruit development also occur, likely due to the interaction between the biosynthesis of ascorbate and components of the cell wall. Plants synthesize ascorbate de novo mainly through the Smirnoff-Wheeler pathway, the dominant pathway in photosynthetic tissues. Two intermediates of the Smirnoff-Wheeler pathway, GDP-D-mannose and GDP-L-galactose, are also precursors of the non-cellulosic components of the plant cell wall. Therefore, a better understanding of ascorbate biosynthesis and regulation is essential for generation of improved fruits without developmental side effects. This is likely to involve a yet unknown tight regulation enabling plant growth and development, without impairing the cell redox state modulated by ascorbate pool. In certain fruits and developmental conditions, an alternative pathway from D-galacturonate might be also relevant. We here review the regulation of ascorbate synthesis, its close connection with the cell wall, as well as different strategies to increase its content in plants, with a special focus on fruits.
Collapse
Affiliation(s)
- Mario Fenech
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Iraida Amaya
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera, Area de Genómica y Biotecnología, Centro de Málaga, Spain
| | - Victoriano Valpuesta
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| | - Miguel A. Botella
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM), Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
29
|
Loss of Function in Zeaxanthin Epoxidase of Dunaliella tertiolecta Caused by a Single Amino Acid Mutation within the Substrate-Binding Site. Mar Drugs 2018; 16:md16110418. [PMID: 30388729 PMCID: PMC6266236 DOI: 10.3390/md16110418] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 10/21/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022] Open
Abstract
The zea1 mutant of marine microalga Dunaliella tertiolecta accumulates zeaxanthin under normal growth conditions, and its phenotype has been speculated to be related to zeaxanthin epoxidase (ZEP). In this study, we isolated the ZEP gene from both wild-type D. tertiolecta and the mutant. We found that the zea1 mutant has a point mutation of the 1337th nucleotide of the ZEP sequence (a change from guanine to adenine), resulting in a change of glycine to aspartate in a highly conserved region in the catalytic domain. Similar expression levels of ZEP mRNA and protein in both wild-type and zea1 were confirmed by using qRT-PCR and western blot analysis, respectively. Additionally, the enzyme activity analysis of ZEPs in the presence of cofactors showed that the inactivation of ZEP in zea1 was not caused by deficiency in the levels of cofactors. From the predicted three-dimensional ZEP structure of zea1, we observed a conformational change on the substrate-binding site in the ZEP. A comparative analysis of the ZEP structures suggested that the conformational change induced by a single amino acid mutation might impact the interaction between the substrate and substrate-binding site, resulting in loss of zeaxanthin epoxidase function.
Collapse
|
30
|
Koizumi J, Takatani N, Kobayashi N, Mikami K, Miyashita K, Yamano Y, Wada A, Maoka T, Hosokawa M. Carotenoid Profiling of a Red Seaweed Pyropia yezoensis: Insights into Biosynthetic Pathways in the Order Bangiales. Mar Drugs 2018; 16:md16110426. [PMID: 30388860 PMCID: PMC6267214 DOI: 10.3390/md16110426] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 10/27/2018] [Accepted: 10/30/2018] [Indexed: 12/24/2022] Open
Abstract
Carotenoids are natural pigments that contribute to light harvesting and photo-protection in photosynthetic organisms. In this study, we analyzed the carotenoid profiles, including mono-hydroxy and epoxy-carotenoids, in the economically valuable red seaweed Pyropia yezoensis, to clarify the detailed biosynthetic and metabolic pathways in the order Bangiales. P. yezoensis contained lutein, zeaxanthin, α-carotene, and β-carotene, as major carotenoids in both the thallus and conchocelis stages. Monohydroxy intermediate carotenoids for the synthesis of lutein with an ε-ring from α-carotene, α-cryptoxanthin (β,ε-caroten-3’-ol), and zeinoxanthin (β,ε-caroten-3-ol) were identified. In addition, β-cryptoxanthin, an intermediate in zeaxanthin synthesis from β-carotene, was also detected. We also identified lutein-5,6-epoxide and antheraxanthin, which are metabolic products of epoxy conversion from lutein and zeaxanthin, respectively, by LC-MS and 1H-NMR. This is the first report of monohydroxy-carotenoids with an ε-ring and 5,6-epoxy-carotenoids in Bangiales. These results provide new insights into the biosynthetic and metabolic pathways of carotenoids in red seaweeds.
Collapse
Affiliation(s)
- Jiro Koizumi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Naoki Takatani
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Noritoki Kobayashi
- Graduate School of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Koji Mikami
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Kazuo Miyashita
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| | - Yumiko Yamano
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| | - Akimori Wada
- Laboratory of Organic Chemistry for Life Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan.
| | - Takashi Maoka
- Research Institute for Production Development, 15 Shimogamo, Morimoto Cho, Sakyoku, Kyoto 606-0805, Japan.
| | - Masashi Hosokawa
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan.
| |
Collapse
|
31
|
Lipid polymorphism in chloroplast thylakoid membranes - as revealed by 31P-NMR and time-resolved merocyanine fluorescence spectroscopy. Sci Rep 2017; 7:13343. [PMID: 29042649 PMCID: PMC5645462 DOI: 10.1038/s41598-017-13574-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/25/2017] [Indexed: 01/22/2023] Open
Abstract
Chloroplast thylakoid membranes contain virtually all components of the energy-converting photosynthetic machinery. Their energized state, driving ATP synthesis, is enabled by the bilayer organization of the membrane. However, their most abundant lipid species is a non-bilayer-forming lipid, monogalactosyl-diacylglycerol; the role of lipid polymorphism in these membranes is poorly understood. Earlier 31P-NMR experiments revealed the coexistence of a bilayer and a non-bilayer, isotropic lipid phase in spinach thylakoids. Packing of lipid molecules, tested by fluorescence spectroscopy of the lipophilic dye, merocyanine-540 (MC540), also displayed heterogeneity. Now, our 31P-NMR experiments on spinach thylakoids uncover the presence of a bilayer and three non-bilayer lipid phases; time-resolved fluorescence spectroscopy of MC540 also reveals the presence of multiple lipidic environments. It is also shown by 31P-NMR that: (i) some lipid phases are sensitive to the osmolarity and ionic strength of the medium, (ii) a lipid phase can be modulated by catalytic hydrogenation of fatty acids and (iii) a marked increase of one of the non-bilayer phases upon lowering the pH of the medium is observed. These data provide additional experimental evidence for the polymorphism of lipid phases in thylakoids and suggest that non-bilayer phases play an active role in the structural dynamics of thylakoid membranes.
Collapse
|
32
|
Recent advances in the development of novel protein scaffolds based therapeutics. Int J Biol Macromol 2017; 102:630-641. [DOI: 10.1016/j.ijbiomac.2017.04.045] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/10/2017] [Accepted: 04/11/2017] [Indexed: 12/21/2022]
|
33
|
Molecular Cloning and Characterization of Carotenoid Pathway Genes and Carotenoid Content in Ixeris dentata var. albiflora. Molecules 2017; 22:molecules22091449. [PMID: 28858245 PMCID: PMC6151524 DOI: 10.3390/molecules22091449] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 08/26/2017] [Accepted: 08/30/2017] [Indexed: 11/22/2022] Open
Abstract
Ixeris dentata var. albiflora is considered as a potential therapeutic agent against mithridatism, calculous, indigestion, pneumonia, hepatitis, and tumors as well as good seasoned vegetable in Far East countries. Phytoene synthase (PSY), phytoene desaturase (PDS) ξ-carotene desaturase (ZDS), lycopene β-cyclase (LCYB), lycopene ε-cyclase (LCYE), ε-ring carotene hydroxylase (CHXB), and zeaxanthin epoxidase (ZDS) are vital enzymes in the carotenoid biosynthesis pathway. We have examined these seven genes from I. dentata that are participated in carotenoid biosynthesis utilizing an Illumina/Solexa HiSeq 2000 platform. In silico analysis of the seven deduced amino acid sequences were revealed its closest homology with other Asteracea plants. Further, we explored transcript levels and carotenoid accumulation in various organs of I. dentata using quantitative real time PCR and high-performance liquid chromatography, respectively. The highest transcript levels were noticed in the leaf for all the genes while minimal levels were noticed in the root. The maximal carotenoid accumulation was also detected in the leaf. We proposed that these genes expressions are associated with the accumulation of carotenoids. Our findings may suggest the fundamental clues to unravel the molecular insights of carotenoid biosynthesis in various organs of I. dentata.
Collapse
|
34
|
Leonelli L, Brooks MD, Niyogi KK. Engineering the lutein epoxide cycle into Arabidopsis thaliana. Proc Natl Acad Sci U S A 2017; 114:E7002-E7008. [PMID: 28760990 PMCID: PMC5565435 DOI: 10.1073/pnas.1704373114] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although sunlight provides the energy necessary for plants to survive and grow, light can also damage reaction centers of photosystem II (PSII) and reduce photochemical efficiency. To prevent damage, plants possess photoprotective mechanisms that dissipate excess excitation. A subset of these mechanisms is collectively referred to as NPQ, or nonphotochemical quenching of chlorophyll a fluorescence. The regulation of NPQ is intrinsically linked to the cycling of xanthophylls that affects the kinetics and extent of the photoprotective response. The violaxanthin cycle (VAZ cycle) and the lutein epoxide cycle (LxL cycle) are two xanthophyll cycles found in vascular plants. The VAZ cycle has been studied extensively, owing in large part to its presence in model plant species where mutants are available to aid in its characterization. In contrast, the LxL cycle is not found in model plants, and its role in photosynthetic processes has been more difficult to define. To address this challenge, we introduced the LxL cycle into Arabidopsis thaliana and functionally isolated it from the VAZ cycle. Using these plant lines, we showed an increase in dark-acclimated PSII efficiency associated with Lx accumulation and demonstrated that violaxanthin deepoxidase is responsible for the light-driven deepoxidation of Lx. Conversion of Lx to L was reversible during periods of low light and occurred considerably faster than rates previously described in nonmodel species. Finally, we present clear evidence of the LxL cycle's role in modulating a rapid component of NPQ that is necessary to prevent photoinhibition in excess light.
Collapse
Affiliation(s)
- Lauriebeth Leonelli
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
| | - Matthew D Brooks
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Krishna K Niyogi
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720;
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
35
|
Abstract
Zeaxanthin is a xanthophyll pigment that is regarded as one of the best carotenoids for the prevention and treatment of degenerative diseases. In the worldwide natural products market, consumers prefer pigments that have been produced from biological sources. In this study, a Dunaliella tertiolecta strain that has 10–15% higher cellular zeaxanthin content than the parent strain (zea1), was obtained by random mutagenesis using ethyl methanesulfonate (EMS) as a mutagen. This mutant, mp3, was grown under various salinities and light intensities to optimize culture conditions for zeaxanthin production. The highest cellular zeaxanthin content was observed at 1.5 M NaCl and 65–85 μmol photons·m−2·s−1, and the highest daily zeaxanthin productivity was observed at 0.6 M NaCl and 140–160 μmol photons·m−2·s−1. The maximal yield of zeaxanthin from mp3 in fed-batch culture was 8 mg·L−1, which was obtained at 0.6 M NaCl and 140–160 μmol photons·m−2·s−1. These results suggest that random mutagenesis with EMS is useful for generating D. tertiolecta strains with increased zeaxanthin content, and also suggest optimal culture conditions for the enhancement of biomass and zeaxanthin production by the zeaxanthin accumulating mutant strains.
Collapse
|
36
|
Goss R, Greifenhagen A, Bergner J, Volke D, Hoffmann R, Wilhelm C, Schaller-Laudel S. Direct isolation of a functional violaxanthin cycle domain from thylakoid membranes of higher plants. PLANTA 2017; 245:793-806. [PMID: 28025675 DOI: 10.1007/s00425-016-2645-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 12/22/2016] [Indexed: 05/25/2023]
Abstract
A special domain of the thylakoid membrane of higher plants has been isolated which carries out the de-epoxidation of the xanthophyll cycle pigment violaxanthin to zeaxanthin. Recent models indicate that in the chloroplast of higher plants, the violaxanthin (V) cycle takes place within specialized domains in the thylakoid membrane. Here, we describe a new procedure to directly isolate such a domain in functional state. The procedure consists of a thylakoid membrane isolation at a pH value of 5.2 which realizes the binding of the enzyme V de-epoxidase (VDE) to the membrane throughout the preparation process. Isolated thylakoid membranes are then solubilized with the very mild detergent n-dodecyl α-D-maltoside and the pigment-protein complexes are separated by sucrose gradient ultracentrifugation. The upper main fraction of the sucrose gradient represents a V cycle domain which consists of the major light-harvesting complex of photosystem II (LHCII), a special lipid composition with an enrichment of the galactolipid monogalactosyldiacylglycerol (MGDG) and the VDE. The domain is isolated in functional state as evidenced by the ability to convert the LHCII-associated V to zeaxanthin. The direct isolation of a V cycle domain proves the most important hypotheses concerning the de-epoxidation reaction in intact thylakoid membranes. It shows that the VDE binds to the thylakoid membrane at low pH values of the thylakoid lumen, that it binds to membrane regions enriched in LHCII, and that the domain contains high amounts of MGDG. The last point is in line with the importance of the galactolipid for V solubilisation and, by providing inverted hexagonal lipid structures, for VDE activity.
Collapse
Affiliation(s)
- Reimund Goss
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany.
| | - Anne Greifenhagen
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Juliane Bergner
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Daniela Volke
- Institute for Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Ralf Hoffmann
- Institute for Bioanalytical Chemistry, Centre for Biotechnology and Biomedicine, University of Leipzig, Deutscher Platz 5, 04103, Leipzig, Germany
| | - Christian Wilhelm
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| | - Susann Schaller-Laudel
- Institute of Biology, University of Leipzig, Johannisallee 21-23, 04103, Leipzig, Germany
| |
Collapse
|
37
|
Liu Y, Yao D, Hu W, Duan H. Molecular cloning and characterization of ClZE, a zeaxanthin epoxidase gene in watermelon (Citrullus lanatus). BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2016.1275803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Yunting Liu
- Agricultural University of Hebei, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, PR China
| | - Daxuan Yao
- Agricultural University of Hebei, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, PR China
| | - Wenjing Hu
- Agricultural University of Hebei, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, PR China
| | - Huijun Duan
- Agricultural University of Hebei, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Baoding, PR China
| |
Collapse
|
38
|
Heine T, Tucker K, Okonkwo N, Assefa B, Conrad C, Scholtissek A, Schlömann M, Gassner G, Tischler D. Engineering Styrene Monooxygenase for Biocatalysis: Reductase-Epoxidase Fusion Proteins. Appl Biochem Biotechnol 2016; 181:1590-1610. [PMID: 27830466 DOI: 10.1007/s12010-016-2304-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/24/2016] [Indexed: 11/25/2022]
Abstract
The enantioselective epoxidation of styrene and related compounds by two-component styrene monooxygenases (SMOs) has targeted these enzymes for development as biocatalysts. In the present work, we prepare genetically engineered fusion proteins that join the C-terminus of the epoxidase (StyA) to the N-terminus of the reductase (StyB) through a linker peptide and demonstrate their utility as biocatalysts in the synthesis of Tyrain purple and other indigoid dyes. A single-vector expression system offers a simplified platform for transformation and expansion of the catalytic function of styrene monooxygenases, and the resulting fusion proteins are self-regulated and couple efficiently NADH oxidation to styrene epoxidation. We find that the reductase domain proceeds through a sequential ternary-complex mechanism at low FAD concentration and a double-displacement mechanism at higher concentrations of FAD. Single-turnover studies indicate an observed rate constant for FAD-to-FAD hydride transfer of ~8 s-1. This step is rate limiting in the styrene epoxidation reaction and helps to ensure that flavin reduction and styrene epoxidation reactions proceed without wasteful side reactions. Comparison of the reductase activity of the fusion proteins with the naturally occurring reductase, SMOB, and N-terminally histidine-tagged reductase, NSMOB, suggests that the observed changes in catalytic mechanism are due in part to an increase in flavin-binding affinity associated with the N-terminal extension of the reductase.
Collapse
Affiliation(s)
| | | | - Nonye Okonkwo
- San Francisco State University, San Francisco, CA, USA
| | | | | | | | | | | | - Dirk Tischler
- TU Bergakademie Freiberg, Freiberg, Germany.
- San Francisco State University, San Francisco, CA, USA.
| |
Collapse
|
39
|
Kang ZH, Wang GX. Redox regulation in the thylakoid lumen. JOURNAL OF PLANT PHYSIOLOGY 2016; 192:28-37. [PMID: 26812087 DOI: 10.1016/j.jplph.2015.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 12/04/2015] [Accepted: 12/04/2015] [Indexed: 06/05/2023]
Abstract
Higher plants need to balance the efficiency of light energy absorption and dissipative photo-protection when exposed to fluctuations in light quantity and quality. This aim is partially realized through redox regulation within the chloroplast, which occurs in all chloroplast compartments except the envelope intermembrane space. In contrast to the chloroplast stroma, less attention has been paid to the thylakoid lumen, an inner, continuous space enclosed by the thylakoid membrane in which redox regulation is also essential for photosystem biogenesis and function. This sub-organelle compartment contains at least 80 lumenal proteins, more than 30 of which are known to contain disulfide bonds. Thioredoxins (Trx) in the chloroplast stroma are photo-reduced in the light, transferring reducing power to the proteins in the thylakoid membrane and ultimately the lumen through a trans-thylakoid membrane-reduced, equivalent pathway. The discovery of lumenal thiol oxidoreductase highlights the importance of the redox regulation network in the lumen for controlling disulfide bond formation, which is responsible for protein activity and folding and even plays a role in photo-protection. In addition, many lumenal members involved in photosystem assembly and non-photochemical quenching are likely required for reduction and/or oxidation to maintain their proper efficiency upon changes in light intensity. In light of recent findings, this review summarizes the multiple redox processes that occur in the thylakoid lumen in great detail, highlighting the essential auxiliary roles of lumenal proteins under fluctuating light conditions.
Collapse
Affiliation(s)
- Zhen-Hui Kang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Gui-Xue Wang
- Key Laboratory of Biorheological Science and Technology (Chongqing University), Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
40
|
Abstract
A substantial proportion of the dazzling diversity of colors displayed by living organisms throughout the tree of life is determined by the presence of carotenoids, which most often provide distinctive yellow, orange and red hues. These metabolites play fundamental roles in nature that extend far beyond their importance as pigments. In photosynthetic lineages, carotenoids are essential to sustain life, since they have been exploited to maximize light harvesting and protect the photosynthetic machinery from photooxidative stress. Consequently, photosynthetic organisms have evolved several mechanisms that adjust the carotenoid metabolism to efficiently cope with constantly fluctuating light environments. This chapter will focus on the current knowledge concerning the regulation of the carotenoid biosynthetic pathway in leaves, which are the primary photosynthetic organs of most land plants.
Collapse
|
41
|
Garab G, Ughy B, Goss R. Role of MGDG and Non-bilayer Lipid Phases in the Structure and Dynamics of Chloroplast Thylakoid Membranes. Subcell Biochem 2016; 86:127-57. [PMID: 27023234 DOI: 10.1007/978-3-319-25979-6_6] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In this chapter we focus our attention on the enigmatic structural and functional roles of the major, non-bilayer lipid monogalactosyl-diacylglycerol (MGDG) in the thylakoid membrane. We give an overview on the state of the art on the role of MGDG and non-bilayer lipid phases in the xanthophyll cycles in different organisms. We also discuss data on the roles of MGDG and other lipid molecules found in crystal structures of different photosynthetic protein complexes and in lipid-protein assemblies, as well as in the self-assembly of the multilamellar membrane system. Comparison and critical evaluation of different membrane models--that take into account and capitalize on the special properties of non-bilayer lipids and/or non-bilayer lipid phases, and thus to smaller or larger extents deviate from the 'standard' Singer-Nicolson model--will conclude this review. With this chapter the authors hope to further stimulate the discussion about, what we think, is perhaps the most exciting question of membrane biophysics: the why and wherefore of non-bilayer lipids and lipid phases in, or in association with, bilayer biological membranes.
Collapse
Affiliation(s)
- Győző Garab
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary.
| | - Bettina Ughy
- Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Reimund Goss
- Institute of Biology, Department of Plant Physiology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
42
|
Varela JC, Pereira H, Vila M, León R. Production of carotenoids by microalgae: achievements and challenges. PHOTOSYNTHESIS RESEARCH 2015; 125:423-36. [PMID: 25921207 DOI: 10.1007/s11120-015-0149-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/21/2015] [Indexed: 05/26/2023]
Abstract
Carotenoids are a wide group of lipophylic isoprenoids synthesized by all photosynthetic organisms and also by some non-photosynthetic bacteria and fungi. Animals, which cannot synthesize carotenoids de novo, must include them in their diet to fulfil essential provitamin, antioxidant, or colouring requirements. Carotenoids are indispensable in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. In this review, we outline the factors inducing carotenoid accumulation in microalgae, the knowledge acquired on the metabolic pathways responsible for their biosynthesis, and the recent achievements in the genetic engineering of this pathway. Despite the considerable progress achieved in understanding and engineering algal carotenogenesis, many aspects remain to be elucidated. The increasing number of sequenced microalgal genomes and the data generated by high-throughput technologies will enable a better understanding of carotenoid biosynthesis in microalgae. Moreover, the growing number of industrial microalgal species genetically modified will allow the production of novel strains with enhanced carotenoid contents.
Collapse
Affiliation(s)
- João C Varela
- Centre of Marine Science, University of Algarve, Campus de Gambelas, Faro, Portugal
| | | | | | | |
Collapse
|
43
|
Yang S, Meng DY, Hou LL, Li Y, Guo F, Meng JJ, Wan SB, Li XG. Peanut violaxanthin de-epoxidase alleviates the sensitivity of PSII photoinhibition to heat and high irradiance stress in transgenic tobacco. PLANT CELL REPORTS 2015; 34:1417-28. [PMID: 25916178 DOI: 10.1007/s00299-015-1797-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/25/2015] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
KEY MESSAGE This is the first study on peanut VDE, which led to multiple biochemical and physiological changes to heat and HI stress by improving de-epoxidation of the xanthophylls cycle. A peanut (Arachis hypogaea L.) violaxanthin de-epoxidase gene (AhVDE) was isolated by RT-PCR and RACE methods. The deduced amino acid sequence of AhVDE showed high identities with violaxanthin de-epoxidase of other plant species. The expression of AhVDE was obviously upregulated by 4, 40 °C and high light, NaCl, and abscisic acid. Sense and RNAi transgenic tobaccos were further used to investigate the physiological effects and functional mechanism of AhVDE. Compared with WT, the content of Z, the ratio of (A + Z)/(V + A + Z) and the non-photochemical quenching were higher in sense plants, and lower in the RNAi lines under heat and high irradiance (HI) stress, respectively. Additionally, photoinhibition of photosystem II (PSII) reflected by the maximal photochemical efficiency in WT lines was more severe, and in the RNAi lines was the most severe compared with that in the sense lines. Meanwhile, overexpressing AhVDE also led to multiple biochemical and physiological changes under heat and HI stress. Higher activities of superoxide dismutase and ascorbate peroxidase, lower content of reactive oxygen species and slighter membrane damage were observed in sense lines after heat and HI stress. These results suggested that, peanut VDE can alleviate PSII photoinhibition to heat and HI stress by improving the xanthophyll cycle-dependent energy dissipation.
Collapse
Affiliation(s)
- Sha Yang
- Biotechnology Research Center, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Du ZP, Wu BL, Wu X, Lin XH, Qiu XY, Zhan XF, Wang SH, Shen JH, Zheng CP, Wu ZY, Xu LY, Wang D, Li EM. A systematic analysis of human lipocalin family and its expression in esophageal carcinoma. Sci Rep 2015; 5:12010. [PMID: 26131602 PMCID: PMC4487233 DOI: 10.1038/srep12010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/11/2015] [Indexed: 02/05/2023] Open
Abstract
The lipocalin proteins (lipocalins) are a large family of small proteins characterized by low sequence similarity and highly conserved crystal structures. Lipocalins have been found to play important roles in many human diseases. For this reason, a systemic analysis of the molecular properties of human lipocalins is essential. In this study, human lipocalins were found to contain four structurally conserved regions (SCRs) and could be divided into two subgroups. A human lipocalin protein-protein interaction network (PPIN) was constructed and integrated with their expression data in esophageal carcinoma. Many lipocalins showed obvious co-expression patterns in esophageal carcinoma. Their subcellular distributions also suggested these lipocalins may transfer signals from the extracellular space to the nucleus using the pathway-like paths. These analyses also expanded our knowledge about this human ancient protein family in the background of esophageal carcinoma.
Collapse
Affiliation(s)
- Ze-Peng Du
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Bing-Li Wu
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| | - Xuan Wu
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Xuan-Hao Lin
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Xiao-Yang Qiu
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Xiao-Fen Zhan
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Shao-Hong Wang
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Jin-Hui Shen
- Department of Pathology, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Chun-Peng Zheng
- Department of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Zhi-Yong Wu
- Department of Oncology Surgery, Shantou Central Hospital, Affiliated Shantou Hospital of Sun Yat-sen University, Shantou 515041, China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Shantou University Medical College, Shantou 515041, China
| | - Dong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150000, China
| | - En-Min Li
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
45
|
Hernández-Gras F, Boronat A. A hydrophobic proline-rich motif is involved in the intracellular targeting of temperature-induced lipocalin. PLANT MOLECULAR BIOLOGY 2015; 88:301-11. [PMID: 25957952 PMCID: PMC4441748 DOI: 10.1007/s11103-015-0326-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 04/27/2015] [Indexed: 05/05/2023]
Abstract
Temperature-induced lipocalins (TILs) play an essential role in the response of plants to different abiotic stresses. In agreement with their proposed role in protecting membrane lipids, TILs have been reported to be associated to cell membranes. However, TILs show an overall hydrophilic character and do not contain any signal for membrane targeting nor hydrophobic sequences that could represent transmembrane domains. Arabidopsis TIL (AtTIL) is considered the ortholog of human ApoD, a protein known to associate to membranes through a short hydrophobic loop protruding from strands 5 and 6 of the lipocalin β-barrel. An equivalent loop (referred to as HPR motif) is also present between β-strands 5 and 6 of TILs. The HPR motif, which is highly conserved among TIL proteins, extends over as short stretch of eight amino acids and contains four invariant proline residues. Subcellular localization studies have shown that TILs are targeted to a variety of cell membranes and organelles. We have also found that the HPR motif is necessary and sufficient for the intracellular targeting of TILs. Modeling studies suggest that the HPR motif may directly anchor TILs to cell membranes, favoring in this way further contact with the polar group of membrane lipids. However, some particular features of the HPR motif open the possibility that targeting of TILs to cell membranes could be mediated by interaction with other proteins. The functional analysis of the HPR motif unveils the existence of novel mechanisms involved in the intracellular targeting of proteins in plants.
Collapse
Affiliation(s)
- Francesc Hernández-Gras
- />Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- />Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Albert Boronat
- />Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, 08028 Barcelona, Spain
- />Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB, Campus Universitat Autònoma de Barcelona, Bellaterra-Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
46
|
Erickson E, Wakao S, Niyogi KK. Light stress and photoprotection in Chlamydomonas reinhardtii. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:449-465. [PMID: 25758978 DOI: 10.1111/tpj.12825] [Citation(s) in RCA: 188] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 05/18/2023]
Abstract
Plants and algae require light for photosynthesis, but absorption of too much light can lead to photo-oxidative damage to the photosynthetic apparatus and sustained decreases in the efficiency and rate of photosynthesis (photoinhibition). Light stress can adversely affect growth and viability, necessitating that photosynthetic organisms acclimate to different environmental conditions in order to alleviate the detrimental effects of excess light. The model unicellular green alga, Chlamydomonas reinhardtii, employs diverse strategies of regulation and photoprotection to avoid, minimize, and repair photo-oxidative damage in stressful light conditions, allowing for acclimation to different and changing environments.
Collapse
Affiliation(s)
- Erika Erickson
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Setsuko Wakao
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA, 94720-3102, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
47
|
Protein redox regulation in the thylakoid lumen: the importance of disulfide bonds for violaxanthin de-epoxidase. FEBS Lett 2015; 589:919-23. [PMID: 25747136 DOI: 10.1016/j.febslet.2015.02.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 12/17/2022]
Abstract
When exposed to saturating light conditions photosynthetic eukaryotes activate the xanthophyll cycle where the carotenoid violaxanthin is converted into zeaxanthin by the enzyme violaxanthin de-epoxidase (VDE). VDE protein sequence includes 13 cysteine residues, 12 of which are strongly conserved in both land plants and algae. Site directed mutagenesis of Arabidopsis thaliana VDE showed that all these 12 conserved cysteines have a major role in protein function and their mutation leads to a strong reduction of activity. VDE is also shown to be active in its completely oxidized form presenting six disulfide bonds. Redox titration showed that VDE activity is sensitive to variation in redox potential, suggesting the possibility that dithiol/disulfide exchange reactions may represent a mechanism for VDE regulation.
Collapse
|
48
|
Schwarz N, Armbruster U, Iven T, Brückle L, Melzer M, Feussner I, Jahns P. Tissue-specific accumulation and regulation of zeaxanthin epoxidase in Arabidopsis reflect the multiple functions of the enzyme in plastids. PLANT & CELL PHYSIOLOGY 2015; 56:346-57. [PMID: 25416291 DOI: 10.1093/pcp/pcu167] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The enzyme zeaxanthin epoxidase (ZEP) catalyzes the conversion of zeaxanthin to violaxanthin, a key reaction for ABA biosynthesis and the xanthophyll cycle. Both processes are important for acclimation to environmental stress conditions, in particular drought (ABA biosynthesis) and light (xanthophyll cycle) stress. Hence, both ZEP functions may require differential regulation to optimize plant fitness. The key to understanding the function of ZEP in both stress responses might lie in its spatial and temporal distribution in plant tissues. Therefore, we analyzed the distribution of ZEP in plant tissues and plastids under drought and light stress by use of a ZEP-specific antibody. In addition, we determined the pigment composition of the plant tissues and chloroplast membrane subcompartments in response to these stresses. The ZEP protein was detected in all plant tissues (except flowers) concomitant with xanthophylls. The highest levels of ZEP were present in leaf chloroplasts and root plastids. Within chloroplasts, ZEP was localized predominantly in the thylakoid membrane and stroma, while only a small fraction was bound by the envelope membrane. Light stress affected neither the accumulation nor the relative distribution of ZEP in chloroplasts, while drought stress led to an increase of ZEP in roots and to a degradation of ZEP in leaves. However, drought stress-induced increases in ABA were similar in both tissues. These data support a tissue- and stress-specific accumulation of the ZEP protein in accordance with its different functions in ABA biosynthesis and the xanthophyll cycle.
Collapse
Affiliation(s)
- Nadine Schwarz
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Ute Armbruster
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA 94305, USA Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Tim Iven
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| | - Lena Brückle
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| | - Michael Melzer
- Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), D-06466 Gatersleben, Germany
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| | - Peter Jahns
- Plant Biochemistry, Heinrich-Heine-University Düsseldorf, D-40225 Düsseldorf, Germany
| |
Collapse
|
49
|
Goss R, Lepetit B. Biodiversity of NPQ. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:13-32. [PMID: 24854581 DOI: 10.1016/j.jplph.2014.03.004] [Citation(s) in RCA: 241] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 05/21/2023]
Abstract
In their natural environment plants and algae are exposed to rapidly changing light conditions and light intensities. Illumination with high light intensities has the potential to overexcite the photosynthetic pigments and the electron transport chain and thus induce the production of toxic reactive oxygen species (ROS). To prevent damage by the action of ROS, plants and algae have developed a multitude of photoprotection mechanisms. One of the most important protection mechanisms is the dissipation of excessive excitation energy as heat in the light-harvesting complexes of the photosystems. This process requires a structural change of the photosynthetic antenna complexes that are normally optimized with regard to efficient light-harvesting. Enhanced heat dissipation in the antenna systems is accompanied by a strong quenching of the chlorophyll a fluorescence and has thus been termed non-photochemical quenching of chlorophyll a fluorescence, NPQ. The general importance of NPQ for the photoprotection of plants and algae is documented by its wide distribution in the plant kingdom. In the present review we will summarize the present day knowledge about NPQ in higher plants and different algal groups with a special focus on the molecular mechanisms that lead to the structural rearrangements of the antenna complexes and enhanced heat dissipation. We will present the newest models for NPQ in higher plants and diatoms and will compare the features of NPQ in different algae with those of NPQ in higher plants. In addition, we will briefly address evolutionary aspects of NPQ, i.e. how the requirements of NPQ have changed during the transition of plants from the aquatic habitat to the land environment. We will conclude with a presentation of open questions regarding the mechanistic basis of NPQ and suggestions for future experiments that may serve to obtain this missing information.
Collapse
Affiliation(s)
- Reimund Goss
- Institut für Biologie, Universität Leipzig, Johannisallee 21-23, D-04103 Leipzig, Germany.
| | - Bernard Lepetit
- Institut für Biologie, Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| |
Collapse
|
50
|
Nisar N, Li L, Lu S, Khin NC, Pogson BJ. Carotenoid metabolism in plants. MOLECULAR PLANT 2015; 8:68-82. [PMID: 25578273 DOI: 10.1016/j.molp.2014.12.007] [Citation(s) in RCA: 604] [Impact Index Per Article: 67.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 11/30/2014] [Accepted: 12/11/2014] [Indexed: 05/19/2023]
Abstract
Carotenoids are mostly C40 terpenoids, a class of hydrocarbons that participate in various biological processes in plants, such as photosynthesis, photomorphogenesis, photoprotection, and development. Carotenoids also serve as precursors for two plant hormones and a diverse set of apocarotenoids. They are colorants and critical components of the human diet as antioxidants and provitamin A. In this review, we summarize current knowledge of the genes and enzymes involved in carotenoid metabolism and describe recent progress in understanding the regulatory mechanisms underlying carotenoid accumulation. The importance of the specific location of carotenoid enzyme metabolons and plastid types as well as of carotenoid-derived signals is discussed.
Collapse
Affiliation(s)
- Nazia Nisar
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Li Li
- US Department of Agriculture-Agricultural Research Service, Robert W. Holley Centre for Agriculture and Health, Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 2100923, China
| | - Nay Chi Khin
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT 0200, Australia
| | - Barry J Pogson
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|