1
|
Cheng H, Zhao Y, Hou X, Ling F, Wang J, Wang Y, Cao Y. Unveiling the therapeutic prospects of IFNW1 and IFNA21: insights into glioma pathogenesis and clinical significance. Neurogenetics 2024; 25:337-350. [PMID: 38958838 DOI: 10.1007/s10048-024-00769-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Glioma, a type of brain tumor, poses significant challenges due to its heterogeneous nature and limited treatment options. Interferon-related genes (IRGs) have emerged as potential players in glioma pathogenesis, yet their expression patterns and clinical implications remain to be fully elucidated. We conducted a comprehensive analysis to investigate the expression patterns and functional enrichment of IRGs in glioma. This involved constructing protein-protein interaction networks, heatmap analysis, survival curve plotting, diagnostic and prognostic assessments, differential expression analysis across glioma subgroups, GSVA, immune infiltration analysis, and drug sensitivity analysis. Our analysis revealed distinct expression patterns and functional enrichment of IRGs in glioma. Notably, IFNW1 and IFNA21 were markedly downregulated in glioma tissues compared to normal tissues, and higher expression levels were associated with improved overall survival and disease-specific survival. Furthermore, these genes showed diagnostic capabilities in distinguishing glioma tissues from normal tissues and were significantly downregulated in higher-grade and more aggressive gliomas. Differential expression analysis across glioma subgroups highlighted the association of IFNW1 and IFNA21 expression with key pathways and biological processes, including metabolic reprogramming and immune regulation. Immune infiltration analysis revealed their influence on immune cell composition in the tumor microenvironment. Additionally, elevated expression levels were associated with increased resistance to chemotherapeutic agents. Our findings underscore the potential of IFNW1 and IFNA21 as diagnostic biomarkers and prognostic indicators in glioma. Their roles in modulating glioma progression, immune response, and drug sensitivity highlight their significance as potential therapeutic targets. These results contribute to a deeper understanding of glioma biology and may inform the development of personalized treatment strategies for glioma patients.
Collapse
Affiliation(s)
- Hong Cheng
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China.
| | - Yingjie Zhao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
- Cardiovascular Medicine, The Third People's Hospital of Danyang, Danyang, 212300, Jiangsu, China
| | - Xiaoli Hou
- Yangzhou Vocational University Medical College, Yangzhou, 225000, Jiangsu, China
| | - Fang Ling
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
- Otorhinolaryngology, The Third People's Hospital of Danyang, Danyang, 212300, Jiangsu, China
| | - Jing Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
- Medicine Section, The Third People's Hospital of Danyang, Danyang, 212300, Jiangsu, China
| | - Yixia Wang
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Yasen Cao
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou University, No.136 Jiangyang Middle Road, Yangzhou, 225000, Jiangsu, China
| |
Collapse
|
2
|
Naskar S, Sriraman N, Sarkar A, Mahajan N, Sarkar K. Tumor antigen presentation and the associated signal transduction during carcinogenesis. Pathol Res Pract 2024; 261:155485. [PMID: 39088877 DOI: 10.1016/j.prp.2024.155485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
Numerous developments have been achieved in the study and treatment of cancer throughout the decades that it has been common. After decades of research, about 100 different kinds of cancer have been found, each with unique subgroups within certain organs. This has significantly expanded our understanding of the illness. A mix of genetic, environmental, and behavioral variables contribute to the complicated and diverse process of cancer formation. Mutations, or changes in the DNA sequence, are crucial to the development of cancer. These mutations have the ability to downregulate the expression and function of Major Histocompatibility Complex class I (MHC I) and MHCII receptors, as well as activate oncogenes and inactivate tumor suppressor genes. Cancer cells use this tactic to avoid being recognized by cytotoxic CD8+T lymphocytes, which causes issues with antigen presentation and processing. This review goes into great length into the PI3K pathway, changes to MHC I, and positive impacts of tsMHC-II on disease-free survival and overall survival and the involvement of dendritic cells (DCs) in different tumor microenvironments. The vital functions that the PI3K pathway and its link to the mTOR pathway are highlighted and difficulties in developing effective cancer targeted therapies and feedback systems has also been mentioned, where resistance mechanisms include RAS-mediated oncogenic changes and active PI3K signalling.
Collapse
Affiliation(s)
- Sohom Naskar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nawaneetan Sriraman
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Ankita Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Nitika Mahajan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu 603203, India.
| |
Collapse
|
3
|
Ramalho S, Dopler A, Faller W. Ribosome specialization in cancer: a spotlight on ribosomal proteins. NAR Cancer 2024; 6:zcae029. [PMID: 38989007 PMCID: PMC11231584 DOI: 10.1093/narcan/zcae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
In the past few decades, our view of ribosomes has changed substantially. Rather than passive machines without significant variability, it is now acknowledged that they are heterogeneous, and have direct regulatory capacity. This 'ribosome heterogeneity' comes in many flavors, including in both the RNA and protein components of ribosomes, so there are many paths through which ribosome specialization could arise. It is easy to imagine that specialized ribosomes could have wide physiological roles, through the translation of specific mRNA populations, and there is now evidence for this in several contexts. Translation is highly dysregulated in cancer, needed to support oncogenic phenotypes and to overcome cellular stress. However, the role of ribosome specialization in this is not clear. In this review we focus on specialized ribosomes in cancer. Specifically, we assess the impact that post-translational modifications and differential ribosome incorporation of ribosomal proteins (RPs) have in this disease. We focus on studies that have shown a ribosome-mediated change in translation of specific mRNA populations, and hypothesize how such a process could be driving other phenotypes. We review the impact of RP-mediated heterogeneity in both intrinsic and extrinsic oncogenic processes, and consider how this knowledge could be leveraged to benefit patients.
Collapse
Affiliation(s)
- Sofia Ramalho
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anna Dopler
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - William James Faller
- Division of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
4
|
Zhou X, Xu R, Wu Y, Zhou L, Xiang T. The role of proteasomes in tumorigenesis. Genes Dis 2024; 11:101070. [PMID: 38523673 PMCID: PMC10958230 DOI: 10.1016/j.gendis.2023.06.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/10/2023] [Accepted: 06/27/2023] [Indexed: 03/26/2024] Open
Abstract
Protein homeostasis is the basis of normal life activities, and the proteasome family plays an extremely important function in this process. The proteasome 20S is a concentric circle structure with two α rings and two β rings overlapped. The proteasome 20S can perform both ATP-dependent and non-ATP-dependent ubiquitination proteasome degradation by binding to various subunits (such as 19S, 11S, and 200 PA), which is performed by its active subunit β1, β2, and β5. The proteasome can degrade misfolded, excess proteins to maintain homeostasis. At the same time, it can be utilized by tumors to degrade over-proliferate and unwanted proteins to support their growth. Proteasomes can affect the development of tumors from several aspects including tumor signaling pathways such as NF-κB and p53, cell cycle, immune regulation, and drug resistance. Proteasome-encoding genes have been found to be overexpressed in a variety of tumors, providing a potential novel target for cancer therapy. In addition, proteasome inhibitors such as bortezomib, carfilzomib, and ixazomib have been put into clinical application as the first-line treatment of multiple myeloma. More and more studies have shown that it also has different therapeutic effects in other tumors such as hepatocellular carcinoma, non-small cell lung cancer, glioblastoma, and neuroblastoma. However, proteasome inhibitors are not much effective due to their tolerance and singleness in other tumors. Therefore, further studies on their mechanisms of action and drug interactions are needed to investigate their therapeutic potential.
Collapse
Affiliation(s)
- Xiangyi Zhou
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Ruqing Xu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yue Wu
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Zhou
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tingxiu Xiang
- Department of Oncology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China
| |
Collapse
|
5
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
6
|
Li X, Zhang Y, Guo S, Wu Z, Wang H, Huang Y, Wang Y, Qiu M, Lang J, Xiao Y, Zhu Y, Jin G, Hu L, Kong X. Global analysis of T-cell groups reveals immunological features and common antigen targets of digestive tract tumors. J Cancer Res Clin Oncol 2024; 150:129. [PMID: 38488909 PMCID: PMC10943170 DOI: 10.1007/s00432-024-05645-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND T cells are key players in the tumor immune microenvironment (TIME), as they can recognize and eliminate cancer cells that express neoantigens derived from somatic mutations. However, the diversity and specificity of T-cell receptors (TCRs) that recognize neoantigens are largely unknown, due to the high variability of TCR sequences among individuals. METHODS To address this challenge, we applied GLIPH2, a novel algorithm that groups TCRs based on their predicted antigen specificity and HLA restriction, to cluster the TCR repertoire of 1,702 patients with digestive tract cancer. The patients were divided into five groups based on whether they carried tumor-infiltrating or clonal-expanded TCRs and calculated their TCR diversity. The prognosis, tumor subtype, gene mutation, gene expression, and immune microenvironment of these groups were compared. Viral specificity inference and immunotherapy relevance analysis performed for the TCR groups. RESULTS This approach reduced the complexity of TCR sequences to 249 clonally expanded and 150 tumor-infiltrating TCR groups, which revealed distinct patterns of TRBV usage, HLA association, and TCR diversity. In gastric adenocarcinoma (STAD), patients with tumor-infiltrating TCRs (Patients-TI) had significantly worse prognosis than other patients (Patients-nonTI). Patients-TI had richer CD8+ T cells in the immune microenvironment, and their gene expression features were positively correlated with immunotherapy response. We also found that tumor-infiltrating TCR groups were associated with four distinct tumor subtypes, 26 common gene mutations, and 39 gene expression signatures. We discovered that tumor-infiltrating TCRs had cross-reactivity with viral antigens, indicating a possible link between viral infections and tumor immunity. CONCLUSION By applying GLIPH2 to TCR sequences from digestive tract tumors, we uncovered novel insights into the tumor immune landscape and identified potential candidates for shared TCRs and neoantigens.
Collapse
Affiliation(s)
- Xiaoxue Li
- Shanghai Institute of Nutrition and Health, CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yuchao Zhang
- Shanghai Institute of Nutrition and Health, CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Shiwei Guo
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Shanghai, China
| | - Zhenchuan Wu
- Anda Biology Medicine Development (Shenzhen) Co., Ltd., Shenzhen, China
| | - Hailong Wang
- Anda Biology Medicine Development (Shenzhen) Co., Ltd., Shenzhen, China
| | - Yi Huang
- Shanghai Institute of Nutrition and Health, CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yue Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mengni Qiu
- Shanghai Institute of Nutrition and Health, CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences (CAS), Beijing, China
| | - Jingyu Lang
- Shanghai Institute of Nutrition and Health, CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Yichuan Xiao
- Shanghai Institute of Nutrition and Health, CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Yufei Zhu
- Shanghai Institute of Nutrition and Health, CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China
| | - Gang Jin
- Department of Hepatobiliary Pancreatic Surgery, Changhai Hospital, Shanghai, China.
| | - Landian Hu
- Anda Biology Medicine Development (Shenzhen) Co., Ltd., Shenzhen, China.
| | - Xiangyin Kong
- Shanghai Institute of Nutrition and Health, CAS Key Laboratory of Tissue Microenvironment and Tumor, Chinese Academy of Sciences, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
7
|
Zhou J, Li C, Lu M, Jiang G, Chen S, Li H, Lu K. Pharmacological induction of autophagy reduces inflammation in macrophages by degrading immunoproteasome subunits. PLoS Biol 2024; 22:e3002537. [PMID: 38447109 PMCID: PMC10917451 DOI: 10.1371/journal.pbio.3002537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Defective autophagy is linked to proinflammatory diseases. However, the mechanisms by which autophagy limits inflammation remain elusive. Here, we found that the pan-FGFR inhibitor LY2874455 efficiently activated autophagy and suppressed expression of proinflammatory factors in macrophages stimulated by lipopolysaccharide (LPS). Multiplex proteomic profiling identified the immunoproteasome, which is a specific isoform of the 20s constitutive proteasome, as a substrate that is degraded by selective autophagy. SQSTM1/p62 was found to be a selective autophagy-related receptor that mediated this degradation. Autophagy deficiency or p62 knockdown blocked the effects of LY2874455, leading to the accumulation of immunoproteasomes and increases in inflammatory reactions. Expression of proinflammatory factors in autophagy-deficient macrophages could be reversed by immunoproteasome inhibitors, confirming the pivotal role of immunoproteasome turnover in the autophagy-mediated suppression on the expression of proinflammatory factors. In mice, LY2874455 protected against LPS-induced acute lung injury and dextran sulfate sodium (DSS)-induced colitis and caused low levels of proinflammatory cytokines and immunoproteasomes. These findings suggested that selective autophagy of the immunoproteasome was a key regulator of signaling via the innate immune system.
Collapse
Affiliation(s)
- Jiao Zhou
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Chunxia Li
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Meng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Gaoyue Jiang
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Shanze Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medical College of Jinan University, Shenzhen People’s Hospital, Shenzhen Institute of Respiratory Diseases, Shenzhen, China
| | - Huihui Li
- West China Second University Hospital, Sichuan University, Chengdu, China
| | - Kefeng Lu
- Department of Neurosurgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and the Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| |
Collapse
|
8
|
Pagliuca S, Ferraro F. Immune-driven clonal cell selection at the intersection among cancer, infections, autoimmunity and senescence. Semin Hematol 2024; 61:22-34. [PMID: 38341340 DOI: 10.1053/j.seminhematol.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 02/12/2024]
Abstract
Immune surveillance mechanisms play a crucial role in maintaining lifelong immune homeostasis in response to pathologic stimuli and aberrant cell states. However, their persistence, especially in the context of chronic antigenic exposure, can create a fertile ground for immune evasion. These escaping cell phenotypes, harboring a variety of genomic and transcriptomic aberrances, chiefly in human leukocyte antigen (HLA) and antigen presentation machinery genes, may survive and proliferate, featuring a scenario of clonal cell expansion with immune failure characteristics. While well characterized in solid and, to some extent, hematological malignancies, little is known about their occurrence and significance in other disease contexts. Historical literature highlights the role for escaping HLA-mediated recognition as a strategy adopted by virus to evade from the immune system, hinting at the potential for immune aberrant cell expansion in the context of chronic infections. Additionally, unmasked in idiopathic aplastic anemia as a mechanism able to rescue failing hematopoiesis, HLA clonal escape may operate in autoimmune disorders, particularly in tissues targeted by aberrant immune responses. Furthermore, senescent cell status emerging as immunogenic phenotypes stimulating T cell responses, may act as a bottleneck for the selection of such immune escaping clones, blurring the boundaries between neoplastic transformation, aging and inflammation. Here we provide a fresh overview and perspective on this immune-driven clonal cell expansion, linking pathophysiological features of neoplastic, autoimmune, infectious and senescence processes exposed to immune surveillance.
Collapse
Affiliation(s)
- Simona Pagliuca
- Hematology Department, Nancy University Hospital and UMR7365, IMoPA, University of Lorraine, Vandoeuvre-lès-Nancy, France.
| | - Francesca Ferraro
- Division of Oncology, Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO
| |
Collapse
|
9
|
Li YR, Halladay T, Yang L. Immune evasion in cell-based immunotherapy: unraveling challenges and novel strategies. J Biomed Sci 2024; 31:5. [PMID: 38217016 PMCID: PMC10785504 DOI: 10.1186/s12929-024-00998-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/02/2024] [Indexed: 01/14/2024] Open
Abstract
Cell-based immunotherapies (CBIs), notably exemplified by chimeric antigen receptor (CAR)-engineered T (CAR-T) cell therapy, have emerged as groundbreaking approaches for cancer therapy. Nevertheless, akin to various other therapeutic modalities, tumor cells employ counterstrategies to manifest immune evasion, thereby circumventing the impact of CBIs. This phenomenon is facilitated by an intricately immunosuppression entrenched within the tumor microenvironment (TME). Principal mechanisms underpinning tumor immune evasion from CBIs encompass loss of antigens, downregulation of antigen presentation, activation of immune checkpoint pathways, initiation of anti-apoptotic cascades, and induction of immune dysfunction and exhaustion. In this review, we delve into the intrinsic mechanisms underlying the capacity of tumor cells to resist CBIs and proffer prospective stratagems to navigate around these challenges.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Tyler Halladay
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Mustafa MI, Mohammed A. Nanobodies: A Game-Changer in Cell-Mediated Immunotherapy for Cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:358-364. [PMID: 37634615 DOI: 10.1016/j.slasd.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Nanobodies are small, single-domain antibodies that have emerged as a promising tool in cancer immunotherapy. These molecules can target specific antigens on cancer cells and trigger an immune response against them. In this mini-review article, we highlight the potential of nanobodies in cell-mediated immunotherapy for cancer treatment. We discuss the advantages of nanobodies over conventional antibodies, their ability to penetrate solid tumors, and their potential to enhance the efficacy of other immunotherapeutic agents. We also provide an overview of recent preclinical and clinical studies that have demonstrated the effectiveness of nanobody-based immunotherapy in various types of cancer.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan.
| | - Ahmed Mohammed
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic University, Omdurman, Sudan
| |
Collapse
|
11
|
Ellis SLS, Dada S, Nohara LL, Saranchova I, Munro L, Pfeifer CG, Eyford BA, Morova T, Williams DE, Cheng P, Lack NA, Andersen RJ, Jefferies WA. Curcuphenol possesses an unusual histone deacetylase enhancing activity that counters immune escape in metastatic tumours. Front Pharmacol 2023; 14:1119620. [PMID: 37637416 PMCID: PMC10449465 DOI: 10.3389/fphar.2023.1119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 07/03/2023] [Indexed: 08/29/2023] Open
Abstract
Curcuphenol, a common component of the culinary spices, naturally found in marine invertebrates and plants, has been identified as a novel candidate for reversing immune escape by restoring expression of the antigen presentation machinery (APM) in invasive cancers, thereby resurrecting the immune recognition of metastatic tumours. Two synthetic curcuphenol analogues, were prepared by informed design that demonstrated consistent induction of APM expression in metastatic prostate and lung carcinoma cells. Both analogues were subsequently found to possess a previously undescribed histone deacetylase (HDAC)-enhancing activity. Remarkably, the H3K27ac ChIPseq analysis of curcuphenol-treated cells reveals that the induced epigenomic marks closely resemble the changes in genome-wide pattern observed with interferon-γ, a cytokine instrumental for orchestrating innate and adaptive immunity. These observations link dietary components to modifying epigenetic programs that modulate gene expression guiding poised immunity.
Collapse
Affiliation(s)
- Samantha L. S. Ellis
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah Dada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lilian L. Nohara
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Iryna Saranchova
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Lonna Munro
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Cheryl G. Pfeifer
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - Brett A. Eyford
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Tunc Morova
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
| | - David E. Williams
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Ping Cheng
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Nathan A. Lack
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- School of Medicine, Koç University, Istanbul, Türkiye
| | - Raymond J. Andersen
- Departments of Chemistry and Earth Ocean, and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wilfred A. Jefferies
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- The Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Vancouver Prostate Centre, Vancouver Coastal Health Research Institute, Vancouver, BC, Canada
- Departments of Medical Genetics, Zoology, and Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
12
|
Li J, Lan Z, Liao W, Horner JW, Xu X, Liu J, Yoshihama Y, Jiang S, Shim HS, Slotnik M, LaBella KA, Wu CJ, Dunner K, Hsu WH, Lee R, Khanduri I, Terranova C, Akdemir K, Chakravarti D, Shang X, Spring DJ, Wang YA, DePinho RA. Histone demethylase KDM5D upregulation drives sex differences in colon cancer. Nature 2023; 619:632-639. [PMID: 37344599 PMCID: PMC10529424 DOI: 10.1038/s41586-023-06254-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/24/2023] [Indexed: 06/23/2023]
Abstract
Sex exerts a profound impact on cancer incidence, spectrum and outcomes, yet the molecular and genetic bases of such sex differences are ill-defined and presumptively ascribed to X-chromosome genes and sex hormones1. Such sex differences are particularly prominent in colorectal cancer (CRC) in which men experience higher metastases and mortality. A murine CRC model, engineered with an inducible transgene encoding oncogenic mutant KRASG12D and conditional null alleles of Apc and Trp53 tumour suppressors (designated iKAP)2, revealed higher metastases and worse outcomes specifically in males with oncogenic mutant KRAS (KRAS*) CRC. Integrated cross-species molecular and transcriptomic analyses identified Y-chromosome gene histone demethylase KDM5D as a transcriptionally upregulated gene driven by KRAS*-mediated activation of the STAT4 transcription factor. KDM5D-dependent chromatin mark and transcriptome changes showed repression of regulators of the epithelial cell tight junction and major histocompatibility complex class I complex components. Deletion of Kdm5d in iKAP cancer cells increased tight junction integrity, decreased cell invasiveness and enhanced cancer cell killing by CD8+ T cells. Conversely, iAP mice engineered with a Kdm5d transgene to provide constitutive Kdm5d expression specifically in iAP cancer cells showed an increased propensity for more invasive tumours in vivo. Thus, KRAS*-STAT4-mediated upregulation of Y chromosome KDM5D contributes substantially to the sex differences in KRAS* CRC by means of its disruption of cancer cell adhesion properties and tumour immunity, providing an actionable therapeutic strategy for metastasis risk reduction for men afflicted with KRAS* CRC.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhengdao Lan
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wenting Liao
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - James W Horner
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xueping Xu
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jielin Liu
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yohei Yoshihama
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shan Jiang
- TRACTION Platform, Division of Therapeutics Discovery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Seok Shim
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Max Slotnik
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kyle A LaBella
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kenneth Dunner
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Wen-Hao Hsu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rumi Lee
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Isha Khanduri
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher Terranova
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kadir Akdemir
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiaoying Shang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Denise J Spring
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Indiana University, Indianapolis, IN, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
13
|
Otegui N, Houry M, Arozarena I, Serrano D, Redin E, Exposito F, Leon S, Valencia K, Montuenga L, Calvo A. Cancer Cell-Intrinsic Alterations Associated with an Immunosuppressive Tumor Microenvironment and Resistance to Immunotherapy in Lung Cancer. Cancers (Basel) 2023; 15:3076. [PMID: 37370686 PMCID: PMC10295869 DOI: 10.3390/cancers15123076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Despite the great clinical success of immunotherapy in lung cancer patients, only a small percentage of them (<40%) will benefit from this therapy alone or combined with other strategies. Cancer cell-intrinsic and cell-extrinsic mechanisms have been associated with a lack of response to immunotherapy. The present study is focused on cancer cell-intrinsic genetic, epigenetic, transcriptomic and metabolic alterations that reshape the tumor microenvironment (TME) and determine response or refractoriness to immune checkpoint inhibitors (ICIs). Mutations in KRAS, SKT11(LKB1), KEAP1 and TP53 and co-mutations of these genes are the main determinants of ICI response in non-small-cell lung cancer (NSCLC) patients. Recent insights into metabolic changes in cancer cells that impose restrictions on cytotoxic T cells and the efficacy of ICIs indicate that targeting such metabolic restrictions may favor therapeutic responses. Other emerging pathways for therapeutic interventions include epigenetic modulators and DNA damage repair (DDR) pathways, especially in small-cell lung cancer (SCLC). Therefore, the many potential pathways for enhancing the effect of ICIs suggest that, in a few years, we will have much more personalized medicine for lung cancer patients treated with immunotherapy. Such strategies could include vaccines and chimeric antigen receptor (CAR) cells.
Collapse
Affiliation(s)
- Nerea Otegui
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Maeva Houry
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Imanol Arozarena
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Cancer Signaling Unit, Navarrabiomed, University Hospital of Navarra (HUN), Public University of Navarra (UPNA), 31008 Pamplona, Spain
| | - Diego Serrano
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Esther Redin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| | - Francisco Exposito
- Yale Cancer Center, New Haven, CT 06519, USA;
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sergio Leon
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
| | - Karmele Valencia
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Luis Montuenga
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| | - Alfonso Calvo
- CCUN Cancer Center and Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, 31008 Pamplona, Spain; (N.O.); (M.H.); (D.S.); (S.L.); (K.V.); (L.M.)
- Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, 31008 Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra (IDISNA), 31008 Pamplona, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, 28029 Madrid, Spain
| |
Collapse
|
14
|
Freitas R, Peixoto A, Ferreira E, Miranda A, Santos LL, Ferreira JA. Immunomodulatory glycomedicine: Introducing next generation cancer glycovaccines. Biotechnol Adv 2023; 65:108144. [PMID: 37028466 DOI: 10.1016/j.biotechadv.2023.108144] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 03/17/2023] [Accepted: 03/30/2023] [Indexed: 04/09/2023]
Abstract
Cancer remains a leading cause of death worldwide due to the lack of safer and more effective therapies. Cancer vaccines developed from neoantigens are an emerging strategy to promote protective and therapeutic anti-cancer immune responses. Advances in glycomics and glycoproteomics have unveiled several cancer-specific glycosignatures, holding tremendous potential to foster effective cancer glycovaccines. However, the immunosuppressive nature of tumours poses a major obstacle to vaccine-based immunotherapy. Chemical modification of tumour associated glycans, conjugation with immunogenic carriers and administration in combination with potent immune adjuvants constitute emerging strategies to address this bottleneck. Moreover, novel vaccine vehicles have been optimized to enhance immune responses against otherwise poorly immunogenic cancer epitopes. Nanovehicles have shown increased affinity for antigen presenting cells (APCs) in lymph nodes and tumours, while reducing treatment toxicity. Designs exploiting glycans recognized by APCs have further enhanced the delivery of antigenic payloads, improving glycovaccine's capacity to elicit innate and acquired immune responses. These solutions show potential to reduce tumour burden, while generating immunological memory. Building on this rationale, we provide a comprehensive overview on emerging cancer glycovaccines, emphasizing the potential of nanotechnology in this context. A roadmap towards clinical implementation is also delivered foreseeing advances in glycan-based immunomodulatory cancer medicine.
Collapse
Affiliation(s)
- Rui Freitas
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Andreia Peixoto
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal
| | - Eduardo Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - Andreia Miranda
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal
| | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; Abel Salazar Biomedical Sciences Institute - University of Porto (ICBAS), 4050-313 Porto, Portugal; Health School of University Fernando Pessoa, 4249-004 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal; Department of Surgical Oncology, Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal
| | - José Alexandre Ferreira
- Experimental Pathology and Therapeutics Group, IPO Porto Research Center (CI-IPOP), RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute (IPO Porto), 4200-072 Porto, Portugal; Porto Comprehensive Cancer Center (P.ccc), 4200-072 Porto, Portugal; GlycoMatters Biotech, 4500-162 Espinho, Portugal.
| |
Collapse
|
15
|
Huang Y, Yang F, Zhang W, Zhou Y, Duan D, Liu S, Li J, Zhao Y. A novel lysosome-related gene signature coupled with gleason score for prognosis prediction in prostate cancer. Front Genet 2023; 14:1135365. [PMID: 37065491 PMCID: PMC10098196 DOI: 10.3389/fgene.2023.1135365] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Prostate cancer (PCa) is highly heterogeneous, which makes it difficult to precisely distinguish the clinical stages and histological grades of tumor lesions, thereby leading to large amounts of under- and over-treatment. Thus, we expect the development of novel prediction approaches for the prevention of inadequate therapies. The emerging evidence demonstrates the pivotal role of lysosome-related mechanisms in the prognosis of PCa. In this study, we aimed to identify a lysosome-related prognostic predictor in PCa for future therapies.Methods: The PCa samples involved in this study were gathered from The Cancer Genome Atlas database (TCGA) (n = 552) and cBioPortal database (n = 82). During screening, we categorized PCa patients into two immune groups based on median ssGSEA scores. Then, the Gleason score and lysosome-related genes were included and screened out by using a univariate Cox regression analysis and the least absolute shrinkage and selection operation (LASSO) analysis. Following further analysis, the probability of progression free interval (PFI) was modeled by using unadjusted Kaplan–Meier estimation curves and a multivariable Cox regression analysis. A receiver operating characteristic (ROC) curve, nomogram and calibration curve were used to examine the predictive value of this model in discriminating progression events from non-events. The model was trained and repeatedly validated by creating a training set (n = 400), an internal validation set (n = 100) and an external validation (n = 82) from the cohort.Results: Following grouping by ssGSEA score, the Gleason score and two LRGs—neutrophil cytosolic factor 1 (NCF1) and gamma-interferon-inducible lysosomal thiol reductase (IFI30)—were screened out to differentiate patients with or without progression (1-year AUC = 0.787; 3-year AUC = 0.798; 5-year AUC = 0.772; 10-year AUC = 0.832). Patients with a higher risk showed poorer outcomes (p < 0.0001) and a higher cumulative hazard (p < 0.0001). Besides this, our risk model combined LRGs with the Gleason score and presented a more accurate prediction of PCa prognosis than the Gleason score alone. In three validation sets, our model still achieved high prediction rates.Conclusion: In conclusion, this novel lysosome-related gene signature, coupled with the Gleason score, works well in PCa for prognosis prediction.
Collapse
Affiliation(s)
- Ying Huang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Fan Yang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenyi Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yupeng Zhou
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dengyi Duan
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Shuang Liu
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Jianmin Li
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Jianmin Li, ; Yang Zhao,
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
- *Correspondence: Jianmin Li, ; Yang Zhao,
| |
Collapse
|
16
|
Cotto KC, Feng YY, Ramu A, Richters M, Freshour SL, Skidmore ZL, Xia H, McMichael JF, Kunisaki J, Campbell KM, Chen THP, Rozycki EB, Adkins D, Devarakonda S, Sankararaman S, Lin Y, Chapman WC, Maher CA, Arora V, Dunn GP, Uppaluri R, Govindan R, Griffith OL, Griffith M. Integrated analysis of genomic and transcriptomic data for the discovery of splice-associated variants in cancer. Nat Commun 2023; 14:1589. [PMID: 36949070 PMCID: PMC10033906 DOI: 10.1038/s41467-023-37266-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/08/2023] [Indexed: 03/24/2023] Open
Abstract
Somatic mutations within non-coding regions and even exons may have unidentified regulatory consequences that are often overlooked in analysis workflows. Here we present RegTools ( www.regtools.org ), a computationally efficient, free, and open-source software package designed to integrate somatic variants from genomic data with splice junctions from bulk or single cell transcriptomic data to identify variants that may cause aberrant splicing. We apply RegTools to over 9000 tumor samples with both tumor DNA and RNA sequence data. RegTools discovers 235,778 events where a splice-associated variant significantly increases the splicing of a particular junction, across 158,200 unique variants and 131,212 unique junctions. To characterize these somatic variants and their associated splice isoforms, we annotate them with the Variant Effect Predictor, SpliceAI, and Genotype-Tissue Expression junction counts and compare our results to other tools that integrate genomic and transcriptomic data. While many events are corroborated by the aforementioned tools, the flexibility of RegTools also allows us to identify splice-associated variants in known cancer drivers, such as TP53, CDKN2A, and B2M, and other genes.
Collapse
Affiliation(s)
- Kelsy C Cotto
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Yang-Yang Feng
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Avinash Ramu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Megan Richters
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharon L Freshour
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Zachary L Skidmore
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Huiming Xia
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Joshua F McMichael
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Jason Kunisaki
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Katie M Campbell
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Timothy Hung-Po Chen
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily B Rozycki
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Douglas Adkins
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Siddhartha Devarakonda
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Sumithra Sankararaman
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Yiing Lin
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - William C Chapman
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher A Maher
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Vivek Arora
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Gavin P Dunn
- Department of Neurosurgery, Mass General Hospital, Boston, MA, USA
- Center for Brain Tumor Immunology and Immunotherapy, Mass General Hospital, Boston, MA, USA
| | - Ravindra Uppaluri
- Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ramaswamy Govindan
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Obi L Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| | - Malachi Griffith
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
17
|
Yang F, Zhang X, Wang X, Xue Y, Liu X. The new oncogene transmembrane protein 60 is a potential therapeutic target in glioma. Front Genet 2023; 13:1029270. [PMID: 36744183 PMCID: PMC9895843 DOI: 10.3389/fgene.2022.1029270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/19/2022] [Indexed: 01/22/2023] Open
Abstract
Glioma is a malignant tumor with a high fatality rate, originating in the central nervous system. Even after standard treatment, the prognosis remains unsatisfactory, probably due to the lack of effective therapeutic targets. The family of transmembrane proteins (TMEM) is a large family of genes that encode proteins closely related to the malicious behavior of tumors. Thus, it is necessary to explore the molecular and clinical characteristics of newly identified oncogenes, such as transmembrane protein 60 (TMEM60), to develop effective treating options for glioma. We used bioinformatic methods and basic experiments to verify the expression of transmembrane protein 60 in gliomas and its relationship with 1p and 19q (1p19q) status, isocitrate dehydrogenase (IDH) status, patient prognosis, and immune cell infiltration using public databases and clinical samples. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to detect co-expressed genes. Thus, we inhibited the expression of transmembrane protein 60 to observe the proliferation and activity of glioma LN229 cells. We found transmembrane protein 60 was significantly upregulated in glioma compared with that in normal brain tissue at the mRNA. In the subgroups of World Health Organization high grade, isocitrate dehydrogenase wildtype, 1p and 19q non-codeletion, or isocitrate dehydrogenase wild combined with 1p and 19q non-codeletion, the expression of transmembrane protein 60 increased, and the prognosis of glioma patients worsened. In the transmembrane protein 60 high expression group, infiltration of immune cells and stromal cells in the tumor microenvironment increased, tumor purity decreased, and immune cells and pathways were activated. The immune cells mainly included regulatory T-cell, gamma delta T-cell, macrophages M0, neutrophils, and CD8+ T-cells. Overexpression of co-inhibitory receptors (CTLA4, PDL1 and CD96) may promote the increase of depletion of T-cell, thus losing the anti-tumor function in the transmembrane protein 60 high expression group. Finally, we found that transmembrane protein 60 silencing weakened the viability, proliferation, and colony formation of glioma LN229 cells. This is the 0 report on the abnormally high expression of transmembrane protein 60 in glioma and its related clinical features, such as tumor microenvironment, immune response, tumor heterogeneity, and patient prognosis. We also found that transmembrane protein 60 silencing weakened the proliferation and colony formation of glioma LN229 cells. Thus, the new oncogene transmembrane protein 60 might be an effective therapeutic target for the clinical treatment of glioma.
Collapse
|
18
|
Pagliuca S, Gurnari C, Hercus C, Hergalant S, Nadarajah N, Wahida A, Terkawi L, Mori M, Zhou W, Visconte V, Spellman S, Gadalla SM, Zhu C, Zhu P, Haferlach T, Maciejewski JP. Molecular landscape of immune pressure and escape in aplastic anemia. Leukemia 2023; 37:202-211. [PMID: 36253429 PMCID: PMC10089624 DOI: 10.1038/s41375-022-01723-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/25/2022] [Accepted: 10/04/2022] [Indexed: 02/03/2023]
Abstract
Idiopathic aplastic anemia (IAA) pathophysiology is dominated by autoreactivity of human leukocyte antigen (HLA)-restricted T-cells against antigens presented by hematopoietic stem and progenitor cells (HSPCs). Expansion of PIGA and HLA class I mutant HSPCs have been linked to immune evasion from T-cell mediated pressures. We hypothesized that in analogy with antitumor immunity, the pathophysiological cascade of immune escape in IAA is initiated by immunoediting pressures and culminates with mechanisms of clonal evolution characterized by hits in immune recognition and response genes. To that end, we studied the genetic and transcriptomic make-up of the antigen presentation complexes in a large cohort of patients with IAA and paroxysmal nocturnal hemoglobinuria (PNH) by using single-cell RNA, high throughput DNA sequencing and single nucleotide polymorphism (SNP)-array platforms. At disease onset, HSPCs displayed activation of selected HLA class I and II-restricted mechanisms, without extensive inhibition of immune checkpoint apparatus. Using a newly implemented bioinformatic framework we found that not only class I but also class II genes were often impaired by acquisition of genetic aberrations. We also demonstrated the presence of novel somatic alterations in immune genes possibly contributing to the evasion from the autoimmune T-cells. In contrast, these hits were absent in myeloid neoplasia. These aberrations were not mutually exclusive with PNH and did not correlate with the accumulation of myeloid-driver hits. Our findings shed light on the mechanisms of immune activation and escape in IAA and define alternative modes of clonal hematopoiesis.
Collapse
Affiliation(s)
- Simona Pagliuca
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
- Department of Hematology, CHRU Nancy, Vandœuvre-lès-Nancy, France
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
- Department of Biomedicine and Prevention, PhD in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Colin Hercus
- Novocraft Technologies Sdn Bhd, Kuala Lumpur, Malaysia
| | - Sébastien Hergalant
- Inserm UMR_S1256 Nutrition-Genetics-Environmental Risk Exposure, University of Lorraine, 54500, Vandœuvre-lès-Nancy, France
| | | | - Adam Wahida
- Munich Leukemia Laboratory, MLL, Munich, Germany
| | - Laila Terkawi
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
| | - Minako Mori
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
| | - Weiyin Zhou
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory, Frederick, MD, USA
| | - Valeria Visconte
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA
| | - Stephen Spellman
- CIBMTR® (Center for International Blood and Marrow Transplant Research), National Marrow Donor Program/Be The Match, Minneapolis, MN, USA
| | - Shahinaz M Gadalla
- Division of Cancer Epidemiology & Genetics, NIH-NCI Clinical Genetics Branch, Rockville, MD, USA
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, No. 288 Nanjing Rd, Tianjin, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, No. 288 Nanjing Rd, Tianjin, China
| | | | - Jaroslaw P Maciejewski
- Translational Hematology and Oncology Research Program, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
19
|
Potential of Compounds Originating from the Nature to Act in Hepatocellular Carcinoma Therapy by Targeting the Tumor Immunosuppressive Microenvironment: A Review. MOLECULES (BASEL, SWITZERLAND) 2022; 28:molecules28010195. [PMID: 36615387 PMCID: PMC9822070 DOI: 10.3390/molecules28010195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022]
Abstract
Hepatocellular carcinoma (HCC), the most prevalent subtype of liver cancer, is the second main reason for cancer-related deaths worldwide. In recent decades, sufficient evidence supported that immunotherapy was a safe and effective treatment option for HCC. However, tolerance and frequent recurrence and metastasis occurred in patients after immunotherapy due to the complicated crosstalk in the tumor immunosuppressive microenvironment (TIME) in HCC. Therefore, elucidating the TIME in HCC and finding novel modulators to target TIME for attenuating immune suppression is critical to optimize immunotherapy. Recently, studies have shown the potentially immunoregulatory activities of natural compounds, characterized by multiple targets and pathways and low toxicity. In this review, we concluded the unique role of TIME in HCC. Moreover, we summarized evidence that supports the hypothesis of natural compounds to target TIME to improve immunotherapy. Furthermore, we discussed the comprehensive mechanisms of these natural compounds in the immunotherapy of HCC. Accordingly, we present a well-grounded review of the naturally occurring compounds in cancer immunotherapy, expecting to shed new light on discovering novel anti-HCC immunomodulatory drugs from natural sources.
Collapse
|
20
|
The dichotomous role of immunoproteasome in cancer: Friend or foe? Acta Pharm Sin B 2022; 13:1976-1989. [DOI: 10.1016/j.apsb.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/21/2022] [Accepted: 10/07/2022] [Indexed: 11/08/2022] Open
|
21
|
Pagliuca S, Gurnari C, Rubio MT, Visconte V, Lenz TL. Individual HLA heterogeneity and its implications for cellular immune evasion in cancer and beyond. Front Immunol 2022; 13:944872. [PMID: 36131910 PMCID: PMC9483928 DOI: 10.3389/fimmu.2022.944872] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
Structural and functional variability of human leukocyte antigen (HLA) is the foundation for competent adaptive immune responses against pathogen and tumor antigens as it assures the breadth of the presented immune-peptidome, theoretically sustaining an efficient and diverse T cell response. This variability is presumably the result of the continuous selection by pathogens, which over the course of evolution shaped the adaptive immune system favoring the assortment of a hyper-polymorphic HLA system able to elaborate efficient immune responses. Any genetic alteration affecting this diversity may lead to pathological processes, perturbing antigen presentation capabilities, T-cell reactivity and, to some extent, natural killer cell functionality. A highly variable germline HLA genotype can convey immunogenetic protection against infections, be associated with tumor surveillance or influence response to anti-neoplastic treatments. In contrast, somatic aberrations of HLA loci, rearranging the original germline configuration, theoretically decreasing its variability, can facilitate mechanisms of immune escape that promote tumor growth and immune resistance. The purpose of the present review is to provide a unified and up-to-date overview of the pathophysiological consequences related to the perturbations of the genomic heterogeneity of HLA complexes and their impact on human diseases, with a special focus on cancer.
Collapse
Affiliation(s)
- Simona Pagliuca
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH, United States
- Service d’hématologie Clinique, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365 IMoPa, Biopole de l’Université de Loarraine, Vandoeuvre les Nancy, France
| | - Carmelo Gurnari
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH, United States
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Marie Thérèse Rubio
- Service d’hématologie Clinique, Hôpital Brabois, CHRU Nancy and CNRS UMR 7365 IMoPa, Biopole de l’Université de Loarraine, Vandoeuvre les Nancy, France
| | - Valeria Visconte
- Translational Hematology and Oncology Research Department, Cleveland Clinic, Cleveland, OH, United States
| | - Tobias L. Lenz
- Research Unit for Evolutionary Immunogenomics, Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
22
|
Escriche‐Navarro B, Escudero A, Lucena‐Sánchez E, Sancenón F, García‐Fernández A, Martínez‐Máñez R. Mesoporous Silica Materials as an Emerging Tool for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200756. [PMID: 35866466 PMCID: PMC9475525 DOI: 10.1002/advs.202200756] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/16/2022] [Indexed: 05/16/2023]
Abstract
Cancer immunotherapy has emerged in the past decade as a promising strategy for treating many forms of cancer by stimulating the patient's immune system. Although immunotherapy has achieved some promising results in clinics, more efforts are required to improve the limitations of current treatments related to lack of effective and targeted cancer antigens delivery to immune cells, dose-limiting toxicity, and immune-mediated adverse effects, among others. In recent years, the use of nanomaterials has proven promising to enhance cancer immunotherapy efficacy and reduce side effects. Among nanomaterials, attention has been recently paid to mesoporous silica nanoparticles (MSNs) as a potential multiplatform for enhancing cancer immunotherapy by considering their unique properties, such as high porosity, and good biocompatibility, facile surface modification, and self-adjuvanticity. This review explores the role of MSN and other nano/micro-materials as an emerging tool to enhance cancer immunotherapy, and it comprehensively summarizes the different immunotherapeutic strategies addressed to date by using MSN.
Collapse
Affiliation(s)
- Blanca Escriche‐Navarro
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
| | - Andrea Escudero
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Elena Lucena‐Sánchez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
| | - Félix Sancenón
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Alba García‐Fernández
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| | - Ramón Martínez‐Máñez
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM) Polytechnic University of Valencia‐University of ValenciaCamino de Vera s/nValencia46022Spain
- Universitat Politècnica de ValènciaJoint Unit UPV‐CIPF of Developmental Biology and Disease Models and Nanomedicine, Polytechnic University of Valencia (UPV)‐Príncipe Felipe Research Center Foundation (CIPF)C/ Eduardo Primo Yúfera 3.Valencia46012Spain
- Joint Unit of Nanomedicine and Sensors, Polytechnic University of Valencia, IIS La FeAv. Fernando Abril Martorell, 106Valencia46026Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER‐BBN)Av. Monforte de Lemos, 3–5. Pabellón 11., Planta 0Madrid28029Spain
| |
Collapse
|
23
|
Goncharov MM, Bryushkova EA, Sharaev NI, Skatova VD, Baryshnikova AM, Sharonov GV, Karnaukhov V, Vakhitova MT, Samoylenko IV, Demidov LV, Lukyanov S, Chudakov DM, Serebrovskaya EO. Pinpointing the tumor-specific T-cells via TCR clusters. eLife 2022; 11:77274. [PMID: 35377314 PMCID: PMC9023053 DOI: 10.7554/elife.77274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach to cancer immunotherapy, but its efficiency fundamentally depends on the extent of tumor-specific T cell enrichment within the graft. This can be estimated via activation with identifiable neoantigens, tumor-associated antigens (TAAs), or living or lysed tumor cells, but these approaches remain laborious, time-consuming, and functionally limited, hampering clinical development of ACT. Here, we demonstrate that homology cluster analysis of T cell receptor (TCR) repertoires efficiently identifies tumor-reactive TCRs allowing to: (1) detect their presence within the pool of tumor-infiltrating lymphocytes (TILs); (2) optimize TIL culturing conditions, with IL-2low/IL-21/anti-PD-1 combination showing increased efficiency; (3) investigate surface marker-based enrichment for tumor-targeting T cells in freshly isolated TILs (enrichment confirmed for CD4+ and CD8+ PD-1+/CD39+ subsets), or re-stimulated TILs (informs on enrichment in 4-1BB-sorted cells). We believe that this approach to the rapid assessment of tumor-specific TCR enrichment should accelerate T cell therapy development.
Collapse
Affiliation(s)
- Mikhail M Goncharov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | | | - Nikita I Sharaev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Valeria D Skatova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Anastasiya M Baryshnikova
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - George V Sharonov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vadim Karnaukhov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Maria T Vakhitova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Igor V Samoylenko
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Lev V Demidov
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Sergey Lukyanov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Dmitriy M Chudakov
- Department of genomics of adaptive immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | | |
Collapse
|
24
|
Arnold PY. Review: HLA loss and detection in the setting of relapse from HLA-mismatched hematopoietic cell transplant. Hum Immunol 2022; 83:712-720. [DOI: 10.1016/j.humimm.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/09/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023]
|
25
|
Navarro-Ocón A, Blaya-Cánovas JL, López-Tejada A, Blancas I, Sánchez-Martín RM, Garrido MJ, Griñán-Lisón C, Calahorra J, Cara FE, Ruiz-Cabello F, Marchal JA, Aptsiauri N, Granados-Principal S. Nanomedicine as a Promising Tool to Overcome Immune Escape in Breast Cancer. Pharmaceutics 2022; 14:505. [PMID: 35335881 PMCID: PMC8950730 DOI: 10.3390/pharmaceutics14030505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Breast cancer is the most common type of malignancy and leading cause of cancer death among women worldwide. Despite the current revolutionary advances in the field of cancer immunotherapy, clinical response in breast cancer is frequently below expectations, in part due to various mechanisms of cancer immune escape that produce tumor variants that are resistant to treatment. Thus, a further understanding of the molecular events underlying immune evasion in breast cancer may guarantee a significant improvement in the clinical success of immunotherapy. Furthermore, nanomedicine provides a promising opportunity to enhance the efficacy of cancer immunotherapy by improving the delivery, retention and release of immunostimulatory agents in targeted cells and tumor tissues. Hence, it can be used to overcome tumor immune escape and increase tumor rejection in numerous malignancies, including breast cancer. In this review, we summarize the current status and emerging trends in nanomedicine-based strategies targeting cancer immune evasion and modulating the immunosuppressive tumor microenvironment, including the inhibition of immunosuppressive cells in the tumor area, the activation of dendritic cells and the stimulation of the specific antitumor T-cell response.
Collapse
Affiliation(s)
- Alba Navarro-Ocón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| | - Isabel Blancas
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología, Hospital Universitario “San Cecilio”, 18016 Granada, Spain
| | - Rosario M. Sánchez-Martín
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - María J. Garrido
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy & Nutrition, Navarra Institute for Health Research (IdisNA), University of Navarra, 31080 Pamplona, Spain;
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaen, 23007 Jaen, Spain
| | - Francisca E. Cara
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
| | - Francisco Ruiz-Cabello
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Juan A. Marchal
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Human Anatomy and Embryology, School of Medicine, University of Granada, 18016 Granada, Spain
| | - Natalia Aptsiauri
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry, Molecular Biology 3 and Immunology, School of Medicine, University of Granada, 18071 Granada, Spain
| | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (A.N.-O.); (J.L.B.-C.); (A.L.-T.); (R.M.S.-M.); (C.G.-L.); (J.C.); (F.E.C.)
- Instituto de Investigación Biosanitaria (ibs.GRANADA), 18012 Granada, Spain; (I.B.); (F.R.-C.); (J.A.M.)
- Department of Biochemistry and Molecular Biology 2, School of Pharmacy, University of Granada, 18011 Granada, Spain
| |
Collapse
|
26
|
Wilczyński JR, Nowak M. Cancer Immunoediting: Elimination, Equilibrium, and Immune Escape in Solid Tumors. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:1-57. [PMID: 35165859 DOI: 10.1007/978-3-030-91311-3_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Emphasizing the dynamic processes between cancer and host immune system, the initially discovered concept of cancer immunosurveillance has been replaced by the current concept of cancer immunoediting consisting of three phases: elimination, equilibrium, and escape. Solid tumors composed of both cancer and host stromal cells are an example how the three phases of cancer immunoediting functionally evolve and how tumor shaped by the host immune system gets finally resistant phenotype. The elimination, equilibrium, and escape have been described in this chapter in details, including the role of immune surveillance, cancer dormancy, disruption of the antigen-presenting machinery, tumor-infiltrating immune cells, resistance to apoptosis, as well as the function of tumor stroma, microvesicles, exosomes, and inflammation.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| | - Marek Nowak
- Department of Operative Gynecology and Gynecologic Oncology, Polish Mother's Memorial Hospital-Research Institute, Lodz, Poland
- Department of Operative and Endoscopic Gynecology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
27
|
Swamydas M, Murphy EV, Ignatz-Hoover JJ, Malek E, Driscoll JJ. Deciphering mechanisms of immune escape to inform immunotherapeutic strategies in multiple myeloma. J Hematol Oncol 2022; 15:17. [PMID: 35172851 PMCID: PMC8848665 DOI: 10.1186/s13045-022-01234-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/03/2022] [Indexed: 12/11/2022] Open
Abstract
Multiple myeloma is an incurable cancer characterized by the uncontrolled growth of malignant plasma cells nurtured within a permissive bone marrow microenvironment. While patients mount numerous adaptive immune responses directed against their disease, emerging data demonstrate that tumor intrinsic and extrinsic mechanisms allow myeloma cells to subvert host immunosurveillance and resist current therapeutic strategies. Myeloma downregulates antigens recognized by cellular immunity and modulates the bone marrow microenvironment to promote uncontrolled tumor proliferation, apoptotic resistance, and further hamper anti-tumor immunity. Additional resistance often develops after an initial clinical response to small molecules, immune-targeting antibodies, immune checkpoint blockade or cellular immunotherapy. Profound quantitative and qualitative dysfunction of numerous immune effector cell types that confer anti-myeloma immunity further supports myelomagenesis, disease progression and the emergence of drug resistance. Identification of tumor intrinsic and extrinsic resistance mechanisms may direct the design of rationally-designed drug combinations that prevent or overcome drug resistance to improve patient survival. Here, we summarize various mechanisms of immune escape as a means to inform novel strategies that may restore and improve host anti-myeloma immunity.
Collapse
Affiliation(s)
| | - Elena V Murphy
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH, USA
| | - James J Ignatz-Hoover
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - Ehsan Malek
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA
| | - James J Driscoll
- Seidman Cancer Center, University Hospitals, Cleveland, OH, USA. .,Case Comprehensive Cancer Center, Hematopoietic and Immune Cancer Biology Program, Cleveland, OH, USA.
| |
Collapse
|
28
|
Kim Y, Konda P, Murphy JP, Paulo JA, Gygi SP, Gujar S. Immune Checkpoint Blockade Augments Changes Within Oncolytic Virus-induced Cancer MHC-I Peptidome, Creating Novel Antitumor CD8 T Cell Reactivities. Mol Cell Proteomics 2022; 21:100182. [PMID: 34922008 PMCID: PMC8864471 DOI: 10.1016/j.mcpro.2021.100182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 11/14/2021] [Accepted: 12/05/2021] [Indexed: 02/08/2023] Open
Abstract
The combination cancer immunotherapies with oncolytic virus (OV) and immune checkpoint blockade (ICB) reinstate otherwise dysfunctional antitumor CD8 T cell responses. One major mechanism that aids such reinstatement of antitumor CD8 T cells involves the availability of new class I major histocompatibility complex (MHC-I)-bound tumor epitopes following therapeutic intervention. Thus, therapy-induced changes within the MHC-I peptidome hold the key to understanding the clinical implications for therapy-reinstated CD8 T cell responses. Here, using mass spectrometry-based immuno-affinity methods and tumor-bearing animals treated with OV and ICB (alone or in combination), we captured the therapy-induced alterations within the tumor MHC-I peptidome, which were then tested for their CD8 T cell response-stimulating activity. We found that the oncolytic reovirus monotherapy drives up- as well as downexpression of tumor MHC-I peptides in a cancer type and oncolysis susceptibility dependent manner. Interestingly, the combination of reovirus + ICB results in higher numbers of differentially expressed MHC-I-associated peptides (DEMHCPs) relative to either monotherapies. Most importantly, OV+ICB-driven DEMHCPs contain biologically active epitopes that stimulate interferon-gamma responses in cognate CD8 T cells, which may mediate clinically desired antitumor attack and cancer immunoediting. These findings highlight that the therapy-induced changes to the MHC-I peptidome contribute toward the reinstated antitumor CD8 T cell attack established following OV + ICB combination cancer immunotherapy.
Collapse
Affiliation(s)
- Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - J Patrick Murphy
- Department of Biology, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
29
|
GILT Expression in Human Melanoma Cells Enhances Generation of Antigenic Peptides for HLA Class II-Mediated Immune Recognition. Int J Mol Sci 2022; 23:ijms23031066. [PMID: 35162988 PMCID: PMC8835040 DOI: 10.3390/ijms23031066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
Melanoma is an aggressive skin cancer that has become increasingly prevalent in western populations. Current treatments such as surgery, chemotherapy, and high-dose radiation have had limited success, often failing to treat late stage, metastatic melanoma. Alternative strategies such as immunotherapies have been successful in treating a small percentage of patients with metastatic disease, although these treatments to date have not been proven to enhance overall survival. Several melanoma antigens (Ags) proposed as targets for immunotherapeutics include tyrosinase, NY-ESO-1, gp-100, and Mart-1, all of which contain both human leukocyte antigen (HLA) class I and class II-restricted epitopes necessary for immune recognition. We have previously shown that an enzyme, gamma-IFN-inducible lysosomal thiol-reductase (GILT), is abundantly expressed in professional Ag presenting cells (APCs), but absent or expressed at greatly reduced levels in many human melanomas. In the current study, we report that increased GILT expression generates a greater pool of antigenic peptides in melanoma cells for enhanced CD4+ T cell recognition. Our results suggest that the induction of GILT in human melanoma cells could aid in the development of a novel whole-cell vaccine for the enhancement of immune recognition of metastatic melanoma.
Collapse
|
30
|
Karami Fath M, Azargoonjahromi A, Jafari N, Mehdi M, Alavi F, Daraei M, Mohammadkhani N, Mueller AL, Brockmueller A, Shakibaei M, Payandeh Z. Exosome application in tumorigenesis: diagnosis and treatment of melanoma. Med Oncol 2022; 39:19. [PMID: 34982284 DOI: 10.1007/s12032-021-01621-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Melanoma is the most aggressive of skin cancer derived from genetic mutations in the melanocytes. Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, immunotherapy, biochemotherapy, and targeted therapy. However, the efficiency of these strategies may be decreased due to the development of diverse resistance mechanisms. Here, it has been proven that therapeutic monoclonal antibodies (mAbs) can improve the efficiency of melanoma therapies and also, cancer vaccines are another approach for the treatment of melanoma that has already improved clinical outcomes in these patients. The use of antibodies and gene vaccines provides a new perspective in melanoma treatment. Since the tumor microenvironment is another important factor for cancer progression and metastasis, in recent times, a mechanism has been identified to provide an opportunity for melanoma cells to communicate with remote cells. This mechanism is involved by a novel molecular structure, named extracellular vesicles (EVs). Depending on the functional status of origin cells, exosomes contain various cargos and different compositions. In this review, we presented recent progress of exosome applications in the treatment of melanoma. Different aspects of exosome therapy and ongoing efforts in this field will be discussed too.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nafiseh Jafari
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Mehdi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Fatemeh Alavi
- Department of Pathobiology, Faculty of Specialized Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mona Daraei
- Pharmacy School, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | - Niloufar Mohammadkhani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, 1985717443, Tehran, Iran
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Faculty of Medicine, Institute of Anatomy, Ludwig-Maximilian-University Munich, 80336, Munich, Germany.
| | - Zahra Payandeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
31
|
Wang R, Bu W, Yang Y. Identification of Metabolism-Related Genes Influencing Prognosis of Multiple Myeloma Patients. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:6574491. [PMID: 34956573 PMCID: PMC8694996 DOI: 10.1155/2021/6574491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/19/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022]
Abstract
Multiple myeloma (MM) is the second most commonly diagnosed hematological malignancy. Understanding the basic mechanisms of the metabolism in MM may lead to new therapies that benefit patients. We collected the gene expression profile data of GSE39754 and performed differential analysis. Furthermore, identify the candidate genes that affect the prognosis of the differentially expressed genes (DEGs) related to the metabolism. Enrichment analysis is used to identify the biological effects of candidate genes. Perform coexpression analysis on the verified DEGs. In addition, the candidate genes are used to cluster MM into different subtypes through consistent clustering. Use LASSO regression analysis to identify key genes, and use Cox regression analysis to evaluate the prognostic effects of key genes. Evaluation of immune cell infiltration in MM is by CIBERSORT. We identified 2821 DEGs, of which 348 genes were metabolic-related prognostic genes and were considered candidate genes. Enrichment analysis revealed that the candidate genes are mainly related to the proteasome, purine metabolism, and cysteine and methionine metabolism signaling pathways. According to the consensus clustering method, we identified the two subtypes of group 1 and group 2 that affect the prognosis of MM patients. Using the LASSO model, we have identified 10 key genes. The prognosis of the high-risk group identified by Cox regression analysis is worse than that of the low-risk group. Among them, PKLR has a greater impact on the prognosis of MM, and the prognosis of MM patients is poor when the expression is high. In addition, the level of immune cell infiltration in the high-risk group is higher than that in the low-risk group. In the summary, metabolism-related genes significantly affect the prognosis of MM patients through the metabolic process of MM patients. PKLR may be a prognostic risk factor for MM patients.
Collapse
Affiliation(s)
- Rui Wang
- Department of Hematology, People's Hospital of Lianshui, Lianshui 223400, Huai'an, China
| | - Wenxuan Bu
- Department of Hematology, People's Hospital of Lianshui, Lianshui 223400, Huai'an, China
| | - Yang Yang
- Department of Hematology, People's Hospital of Lianshui, Lianshui 223400, Huai'an, China
| |
Collapse
|
32
|
Hanna A, Balko JM. Breast cancer resistance mechanisms: challenges to immunotherapy. Breast Cancer Res Treat 2021; 190:5-17. [PMID: 34322780 PMCID: PMC8560575 DOI: 10.1007/s10549-021-06337-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/18/2021] [Indexed: 12/26/2022]
Abstract
PURPOSE The clinical implementation of immunotherapy has profoundly transformed cancer treatment. Targeting the immune system to mount anti-tumor responses can elicit a systemically durable response. Employing immune checkpoint blockade (ICB) has suppressed tumor growth and vastly improved patient overall and progression-free survival in several cancer types, most notably melanoma and non-small cell lung carcinoma. Despite widescale clinical success, ICB response is heterogeneously efficacious across tumor types. Many cancers, including breast cancer, are frequently refractory to ICB. In this review, we will discuss the challenges facing immunotherapy success and address the underlying mechanisms responsible for primary and acquired breast cancer resistance to immunotherapy. FINDINGS Even in initially ICB-responsive tumors, many acquire resistance due to tumor-specific alterations, loss of tumor-specific antigens, and extrinsic mechanisms that reshape the immune landscape within the tumor microenvironment (TME). The tumor immune interaction circumvents the benefits of immunotherapy; tumors rewire the tumor-suppressive functions of activated immune cells within their stroma to propagate tumor growth and progression. CONCLUSIONS The breast cancer immune TME is complex and the mechanisms driving resistance to ICB are multifaceted. Continued study in both preclinical models and clinical trials should help elucidate these mechanisms so they can be targeted to benefit more breast cancer patients.
Collapse
Affiliation(s)
- Ann Hanna
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Justin M Balko
- Department of Medicine, Breast Cancer Research Program, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
33
|
Tundo GR, Sbardella D, Oddone F, Kudriaeva AA, Lacal PM, Belogurov AA, Graziani G, Marini S. At the Cutting Edge against Cancer: A Perspective on Immunoproteasome and Immune Checkpoints Modulation as a Potential Therapeutic Intervention. Cancers (Basel) 2021; 13:4852. [PMID: 34638337 PMCID: PMC8507813 DOI: 10.3390/cancers13194852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 01/22/2023] Open
Abstract
Immunoproteasome is a noncanonical form of proteasome with enzymological properties optimized for the generation of antigenic peptides presented in complex with class I MHC molecules. This enzymatic property makes the modulation of its activity a promising area of research. Nevertheless, immunotherapy has emerged as a front-line treatment of advanced/metastatic tumors providing outstanding improvement of life expectancy, even though not all patients achieve a long-lasting clinical benefit. To enhance the efficacy of the currently available immunotherapies and enable the development of new strategies, a broader knowledge of the dynamics of antigen repertoire processing by cancer cells is needed. Therefore, a better understanding of the role of immunoproteasome in antigen processing and of the therapeutic implication of its modulation is mandatory. Studies on the potential crosstalk between proteasome modulators and immune checkpoint inhibitors could provide novel perspectives and an unexplored treatment option for a variety of cancers.
Collapse
Affiliation(s)
| | | | | | - Anna A. Kudriaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
| | - Pedro M. Lacal
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
| | - Alexey A. Belogurov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (A.A.K.)
- Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia
| | - Grazia Graziani
- Laboratory of Molecular Oncology, IDI-IRCCS, 00167 Rome, Italy;
- Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, 00133 Rome, Italy;
| |
Collapse
|
34
|
EZH2 Inhibitor Enhances the STING Agonist‒Induced Antitumor Immunity in Melanoma. J Invest Dermatol 2021; 142:1158-1170.e8. [PMID: 34571002 DOI: 10.1016/j.jid.2021.08.437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022]
Abstract
STING agonists are a new class of drugs for cancer immunotherapy that activate both innate and adaptive antitumor immunity. Recently, multiple clinical trials of STING agonists have been conducted in hematological malignancies and solid tumors. However, STING is commonly suppressed in melanoma through mechanisms that remain unclear. We found that STING expression was epigenetically suppressed by H3K27me3 in melanoma, and EZH2 inhibitor could induce an H3K27 shift from trimethylation to acetylation, resulting in increased expression of STING. Furthermore, a combination of STING agonist and EZH2 inhibitor upregulated major histocompatibility complex class I expression and chemokine production. Whole-transcriptome analysis showed that IFN-1‒related genes were significantly upregulated in the combination treatment group. In addition, the combination treatment synergistically reduced tumor growth and increased CD8+ T-cell infiltration in a poorly immunogenic melanoma mouse model B16-F10. These results showed, to our knowledge, a previously unreported mechanism underlying the epigenetic regulation of STING expression in melanoma; a combination of STING agonists and EZH2 inhibitors can boost the antitumor immune response and would be a promising treatment option for patients with melanoma who are refractory to current immunotherapies.
Collapse
|
35
|
Meyer S, Handke D, Mueller A, Biehl K, Kreuz M, Bukur J, Koehl U, Lazaridou MF, Berneburg M, Steven A, Massa C, Seliger B. Distinct Molecular Mechanisms of Altered HLA Class II Expression in Malignant Melanoma. Cancers (Basel) 2021; 13:cancers13153907. [PMID: 34359808 PMCID: PMC8345549 DOI: 10.3390/cancers13153907] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/29/2021] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The human leukocyte antigen (HLA) class II molecules are constitutively expressed in some melanoma, but the underlying molecular mechanisms have not yet been characterized. METHODS The expression of HLA class II antigen processing machinery (APM) components was determined in melanoma samples by qPCR, Western blot, flow cytometry and immunohistochemistry. Immunohistochemical and TCGA datasets were used for correlation of HLA class II expression to tumor grading, T-cell infiltration and patients' survival. RESULTS The heterogeneous HLA class II expression in melanoma samples allowed us to characterize four distinct phenotypes. Phenotype I totally lacks constitutive HLA class II surface expression, which is inducible by interferon-gamma (IFN-γ); phenotype II expresses low basal surface HLA class II that is further upregulated by IFN-γ; phenotype III lacks constitutive and IFN-γ controlled HLA class II expression, but could be induced by epigenetic drugs; and in phenotype IV, lack of HLA class II expression is not recovered by any drug tested. High levels of HLA class II APM component expression were associated with an increased intra-tumoral CD4+ T-cell density and increased patients' survival. CONCLUSIONS The heterogeneous basal expression of HLA class II antigens and/or APM components in melanoma cells is caused by distinct molecular mechanisms and has clinical relevance.
Collapse
Affiliation(s)
- Stefanie Meyer
- Department of Dermatology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.M.); (M.B.)
| | - Diana Handke
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Anja Mueller
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Katharina Biehl
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Markus Kreuz
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
| | - Jürgen Bukur
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Ulrike Koehl
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
| | - Maria-Filothei Lazaridou
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Mark Berneburg
- Department of Dermatology, University Hospital of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany; (S.M.); (M.B.)
| | - André Steven
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Chiara Massa
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle (Saale), Germany; (D.H.); (A.M.); (K.B.); (J.B.); (M.-F.L.); (A.S.); (C.M.)
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany; (M.K.); (U.K.)
- Correspondence: ; Tel.: +49-(0)-345-557-4054
| |
Collapse
|
36
|
de Sousa E, Lérias JR, Beltran A, Paraschoudi G, Condeço C, Kamiki J, António PA, Figueiredo N, Carvalho C, Castillo-Martin M, Wang Z, Ligeiro D, Rao M, Maeurer M. Targeting Neoepitopes to Treat Solid Malignancies: Immunosurgery. Front Immunol 2021; 12:592031. [PMID: 34335558 PMCID: PMC8320363 DOI: 10.3389/fimmu.2021.592031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
Successful outcome of immune checkpoint blockade in patients with solid cancers is in part associated with a high tumor mutational burden (TMB) and the recognition of private neoantigens by T-cells. The quality and quantity of target recognition is determined by the repertoire of ‘neoepitope’-specific T-cell receptors (TCRs) in tumor-infiltrating lymphocytes (TIL), or peripheral T-cells. Interferon gamma (IFN-γ), produced by T-cells and other immune cells, is essential for controlling proliferation of transformed cells, induction of apoptosis and enhancing human leukocyte antigen (HLA) expression, thereby increasing immunogenicity of cancer cells. TCR αβ-dependent therapies should account for tumor heterogeneity and availability of the TCR repertoire capable of reacting to neoepitopes and functional HLA pathways. Immunogenic epitopes in the tumor-stroma may also be targeted to achieve tumor-containment by changing the immune-contexture in the tumor microenvironment (TME). Non protein-coding regions of the tumor-cell genome may also contain many aberrantly expressed, non-mutated tumor-associated antigens (TAAs) capable of eliciting productive anti-tumor immune responses. Whole-exome sequencing (WES) and/or RNA sequencing (RNA-Seq) of cancer tissue, combined with several layers of bioinformatic analysis is commonly used to predict possible neoepitopes present in clinical samples. At the ImmunoSurgery Unit of the Champalimaud Centre for the Unknown (CCU), a pipeline combining several tools is used for predicting private mutations from WES and RNA-Seq data followed by the construction of synthetic peptides tailored for immunological response assessment reflecting the patient’s tumor mutations, guided by MHC typing. Subsequent immunoassays allow the detection of differential IFN-γ production patterns associated with (intra-tumoral) spatiotemporal differences in TIL or peripheral T-cells versus TIL. These bioinformatics tools, in addition to histopathological assessment, immunological readouts from functional bioassays and deep T-cell ‘adaptome’ analyses, are expected to advance discovery and development of next-generation personalized precision medicine strategies to improve clinical outcomes in cancer in the context of i) anti-tumor vaccination strategies, ii) gauging mutation-reactive T-cell responses in biological therapies and iii) expansion of tumor-reactive T-cells for the cellular treatment of patients with cancer.
Collapse
Affiliation(s)
- Eric de Sousa
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Joana R Lérias
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Antonio Beltran
- Department of Pathology, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Carolina Condeço
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Jéssica Kamiki
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Nuno Figueiredo
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | - Carlos Carvalho
- Digestive Unit, Champalimaud Clinical Centre, Lisbon, Portugal
| | | | - Zhe Wang
- Jiangsu Industrial Technology Research Institute (JITRI), Applied Adaptome Immunology Institute, Nanjing, China
| | - Dário Ligeiro
- Lisbon Centre for Blood and Transplantation, Instituto Português do Sangue e Transplantação (IPST), Lisbon, Portugal
| | - Martin Rao
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Markus Maeurer
- ImmunoSurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal.,I Medical Clinic, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
37
|
Marijt KA, Griffioen L, Blijleven L, van der Burg SH, van Hall T. Cross-presentation of a TAP-independent signal peptide induces CD8 T immunity to escaped cancers but necessitates anchor replacement. Cancer Immunol Immunother 2021; 71:289-300. [PMID: 34142235 PMCID: PMC8783882 DOI: 10.1007/s00262-021-02984-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/08/2021] [Indexed: 12/22/2022]
Abstract
Cancer cells frequently display defects in their antigen-processing pathway and thereby evade CD8 T cell immunity. We described a novel category of cancer antigens, named TEIPP, that emerge on cancers with functional loss of the peptide pump TAP. TEIPPs are non-mutated neoantigens despite their ‘self’ origin by virtue of their absence on normal tissues. Here, we describe the development of a synthetic long peptide (SLP) vaccine for the most immunogenic TEIPP antigen identified thus far, derived from the TAP-independent LRPAP1 signal sequence. LRPAP121–30-specific CD8 T cells were present in blood of all tested healthy donors as well as patients with non-small cell lung adenocarcinoma. SLPs with natural flanking, however, failed to be cross-presented by monocyte-derived dendritic cells. Since the C-terminus of LRPAP121–30 is an unconventional and weakly binding serine (S), we investigated if replacement of this anchor would result in efficient cross-presentation. Exchange into a valine (V) resulted in higher HLA-A2 binding affinity and enhanced T cell stimulation. Importantly, CD8 T cells isolated using the V-variant were able to bind tetramers with the natural S-variant and respond to TAP-deficient cancer cells. A functional screen with an array of N-terminal and C-terminal extended SLPs pointed at the 24-mer V-SLP, elongated at the N-terminus, as most optimal vaccine candidate. This SLP was efficiently cross-presented and consistently induced a strong polyclonal LRPAP121–30-specific CD8 T cells from the endogenous T cell repertoire. Thus, we designed a TEIPP SLP vaccine from the LRPAP1 signal sequence ready for validation in clinical trials.
Collapse
Affiliation(s)
- Koen A Marijt
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Lisa Griffioen
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Laura Blijleven
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Sjoerd H van der Burg
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Thorbald van Hall
- Department of Medical Oncology, C7-P, Oncode Institute, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
38
|
Iyori M, Ogawa R, Emran TB, Tanbo S, Yoshida S. Characterization of the Gene Expression Patterns in the Murine Liver Following Intramuscular Administration of Baculovirus. Gene Expr 2021; 20:147-155. [PMID: 33115550 PMCID: PMC8201657 DOI: 10.3727/105221620x16039045978676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intramuscular administration of wild-type baculovirus is able to both protect against Plasmodium sporozoite challenge and eliminate liver-stage parasites via a Toll-like receptor 9-independent pathway. To investigate its effector mechanism(s), the gene expression profile in the liver of baculovirus-administered mice was characterized by cDNA microarray analysis. The ingenuity pathway analysis gene ontology module revealed that the major gene subsets induced by baculovirus were immune-related signaling, such as interferon signaling. A total of 40 genes commonly upregulated in a Toll-like receptor 9-independent manner were included as possible candidates for parasite elimination. This gene subset consisted of NT5C3, LOC105246895, BTC, APOL9a/b, G3BP3, SLC6A6, USP25, TRIM14, and PSMB8 as the top 10 candidates according to the special unit. These findings provide new insight into effector molecules responsible for liver-stage parasite killing and, possibly, the development of a new baculovirus-mediated prophylactic and therapeutic biopharmaceutical for malaria.
Collapse
Affiliation(s)
- Mitsuhiro Iyori
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Ryohei Ogawa
- †Department of Radiological Sciences, University of Toyama, Toyama, Japan
| | - Talha Bin Emran
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Shuta Tanbo
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| | - Shigeto Yoshida
- *Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa, Japan
| |
Collapse
|
39
|
Lone SN, Bhat AA, Wani NA, Karedath T, Hashem S, Nisar S, Singh M, Bagga P, Das BC, Bedognetti D, Reddy R, Frenneaux MP, El-Rifai W, Siddiqi MA, Haris M, Macha MA. miRNAs as novel immunoregulators in cancer. Semin Cell Dev Biol 2021; 124:3-14. [PMID: 33926791 DOI: 10.1016/j.semcdb.2021.04.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/07/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023]
Abstract
The immune system is a well-known vital regulator of tumor growth, and one of the main hallmarks of cancer is evading the immune system. Immune system deregulation can lead to immune surveillance evasion, sustained cancer growth, proliferation, and metastasis. Tumor-mediated disruption of the immune system is accomplished by different mechanisms that involve extensive crosstalk with the immediate microenvironment, which includes endothelial cells, immune cells, and stromal cells, to create a favorable tumor niche that facilitates the development of cancer. The essential role of non-coding RNAs such as microRNAs (miRNAs) in the mechanism of cancer cell immune evasion has been highlighted in recent studies. miRNAs are small non-coding RNAs that regulate a wide range of post-transcriptional gene expression in a cell. Recent studies have focused on the function that miRNAs play in controlling the expression of target proteins linked to immune modulation. Studies show that miRNAs modulate the immune response in cancers by regulating the expression of different immune-modulatory molecules associated with immune effector cells, such as macrophages, dendritic cells, B-cells, and natural killer cells, as well as those present in tumor cells and the tumor microenvironment. This review explores the relationship between miRNAs, their altered patterns of expression in tumors, immune modulation, and the functional control of a wide range of immune cells, thereby offering detailed insights on the crosstalk of tumor-immune cells and their use as prognostic markers or therapeutic agents.
Collapse
Affiliation(s)
- Saife N Lone
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | - Ajaz A Bhat
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Nissar A Wani
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, Jammu & Kashmir, India
| | | | - Sheema Hashem
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar
| | - Mayank Singh
- Dr. B. R. Ambedkar Institute Rotary Cancer Hospital (BRAIRCH), AIIMS, New Delhi, India
| | - Puneet Bagga
- Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Bhudev Chandra Das
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Uttar Pradesh, India
| | - Davide Bedognetti
- Laboratory of Cancer Immunogenomics, Cancer Research Department, Sidra Medicine, Doha, Qatar; Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy; College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Ravinder Reddy
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, USA
| | | | - Wael El-Rifai
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mushtaq A Siddiqi
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India
| | - Mohammad Haris
- Molecular and Metabolic Imaging Laboratory, Cancer Research Department, Sidra Medicine, Doha, Qatar; Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, India.
| |
Collapse
|
40
|
Mpakali A, Stratikos E. The Role of Antigen Processing and Presentation in Cancer and the Efficacy of Immune Checkpoint Inhibitor Immunotherapy. Cancers (Basel) 2021; 13:E134. [PMID: 33406696 PMCID: PMC7796214 DOI: 10.3390/cancers13010134] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/28/2020] [Accepted: 12/30/2020] [Indexed: 02/07/2023] Open
Abstract
Recent clinical successes of cancer immunotherapy using immune checkpoint inhibitors (ICIs) are rapidly changing the landscape of cancer treatment. Regardless of initial impressive clinical results though, the therapeutic benefit of ICIs appears to be limited to a subset of patients and tumor types. Recent analyses have revealed that the potency of ICI therapies depends on the efficient presentation of tumor-specific antigens by cancer cells and professional antigen presenting cells. Here, we review current knowledge on the role of antigen presentation in cancer. We focus on intracellular antigen processing and presentation by Major Histocompatibility class I (MHCI) molecules and how it can affect cancer immune evasion. Finally, we discuss the pharmacological tractability of manipulating intracellular antigen processing as a complementary approach to enhance tumor immunogenicity and the effectiveness of ICI immunotherapy.
Collapse
Affiliation(s)
- Anastasia Mpakali
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
| | - Efstratios Stratikos
- National Centre for Scientific Research Demokritos, Agia Paraskevi, 15341 Athens, Greece
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis Zographou, 15784 Athens, Greece
| |
Collapse
|
41
|
Qin H, Chen Y. Lipid Metabolism and Tumor Antigen Presentation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:169-189. [PMID: 33740250 DOI: 10.1007/978-981-33-6785-2_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Tumors always evade immune surveillance and block T cell activation in a poorly immunogenic and immunosuppressive environment. Cancer cells and immune cells exhibit metabolic reprogramming in the tumor microenvironment (TME), which intimately links immune cell function and edits tumor immunology. In addition to glucose metabolism, amino acid and lipid metabolism also provide the materials for biological processes crucial in cancer biology and pathology. Furthermore, lipid metabolism is synergistically or negatively involved in the interactions between tumors and the microenvironment and contributes to the regulation of immune cells. Antigen processing and presentation as the initiation of adaptive immune response play a critical role in antitumor immunity. Therefore, a relationship exists between antigen-presenting cells and lipid metabolism in TME. This chapter introduces the updated understandings of lipid metabolism of tumor antigen-presenting cells and describes new directions in the manipulation of immune responses for cancer treatment.
Collapse
Affiliation(s)
- Hong Qin
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Institute for Viral Hepatitis, Centre for Lipid Research, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
42
|
Sabbatino F, Liguori L, Polcaro G, Salvato I, Caramori G, Salzano FA, Casolaro V, Stellato C, Dal Col J, Pepe S. Role of Human Leukocyte Antigen System as A Predictive Biomarker for Checkpoint-Based Immunotherapy in Cancer Patients. Int J Mol Sci 2020; 21:ijms21197295. [PMID: 33023239 PMCID: PMC7582904 DOI: 10.3390/ijms21197295] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recent advances in cancer immunotherapy have clearly shown that checkpoint-based immunotherapy is effective in a small subgroup of cancer patients. However, no effective predictive biomarker has been identified so far. The major histocompatibility complex, better known in humans as human leukocyte antigen (HLA), is a very polymorphic gene complex consisting of more than 200 genes. It has a crucial role in activating an appropriate host immune response against pathogens and tumor cells by discriminating self and non-self peptides. Several lines of evidence have shown that down-regulation of expression of HLA class I antigen derived peptide complexes by cancer cells is a mechanism of tumor immune escape and is often associated to poor prognosis in cancer patients. In addition, it has also been shown that HLA class I and II antigen expression, as well as defects in the antigen processing machinery complex, may predict tumor responses in cancer immunotherapy. Nevertheless, the role of HLA in predicting tumor responses to checkpoint-based immunotherapy is still debated. In this review, firstly, we will describe the structure and function of the HLA system. Secondly, we will summarize the HLA defects and their clinical significance in cancer patients. Thirdly, we will review the potential role of the HLA as a predictive biomarker for checkpoint-based immunotherapy in cancer patients. Lastly, we will discuss the potential strategies that may restore HLA function to implement novel therapeutic strategies in cancer patients.
Collapse
Affiliation(s)
- Francesco Sabbatino
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| | - Luigi Liguori
- Department of Clinical Medicine and Surgery, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Giovanna Polcaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Ilaria Salvato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Gaetano Caramori
- Pulmonary Unit, Department of Biomedical Sciences, Dentistry, Morphological and Functional Imaging (BIOMORF), University of Messina, 98125 Messina, Italy;
| | - Francesco A. Salzano
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Vincenzo Casolaro
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
| | - Jessica Dal Col
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Correspondence: ; Tel.: +39-08996-5210
| | - Stefano Pepe
- Department of Medicine, Surgery and Dentistry ’Scuola Medica Salernitana’, University of Salerno, 84081 Baronissi, Salerno, Italy; (F.S.); (G.P.); (I.S.); (F.A.S.); (V.C.); (C.S.); (S.P.)
- Oncology Unit, AOU San Giovanni di Dio e Ruggi D’Aragona, 84131 Salerno, Italy
| |
Collapse
|
43
|
Curley CT, Stevens AD, Mathew AS, Stasiak K, Garrison WJ, Miller GW, Sheybani ND, Engelhard VH, Bullock TN, Price RJ. Immunomodulation of intracranial melanoma in response to blood-tumor barrier opening with focused ultrasound. Theranostics 2020; 10:8821-8833. [PMID: 32754281 PMCID: PMC7392000 DOI: 10.7150/thno.47983] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 06/27/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Focused ultrasound (FUS) activation of microbubbles (MBs) for blood-brain (BBB) and blood-tumor barrier (BTB) opening permits targeted therapeutic delivery. While the effects of FUS+MBs mediated BBB opening have been investigated for normal brain tissue, no such studies exist for intracranial tumors. As this technology advances into clinical immunotherapy trials, it will be crucial to understand how FUS+MBs modulates the tumor immune microenvironment. Methods and Results: Bulk RNA sequencing revealed that FUS+MBs BTB/BBB opening (1 MHz, 0.5 MPa peak-negative pressure) of intracranial B16F1cOVA tumors increases the expression of genes related to proinflammatory cytokine and chemokine signaling, pattern recognition receptor signaling, and antigen processing and presentation. Flow cytometry revealed increased maturation (i.e. CD86) of dendritic cells (DCs) in the meninges and altered antigen loading of DCs in both the tumor and meninges. For DCs in tumor draining lymph nodes, FUS+MBs had no effect on maturation and elicited only a trend towards increased presentation of tumor-derived peptide by MHC. Neither tumor endothelial cell adhesion molecule expression nor homing of activated T cells was affected by FUS+MBs. Conclusion: FUS+MBs-mediated BTB/BBB opening elicits signatures of inflammation; however, the response is mild, transient, and unlikely to elicit a systemic response independent of administration of immune adjuvants.
Collapse
Affiliation(s)
- Colleen T. Curley
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Aaron D. Stevens
- Department of Pathology, University of Virginia, Charlottesville, VA
| | - Alexander S. Mathew
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Katarzyna Stasiak
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, VA
| | - William J. Garrison
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - G. Wilson Miller
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
| | - Natasha D. Sheybani
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
| | - Victor H. Engelhard
- Carter Immunology Center and Department of Microbiology, Immunology, and Cancer Biology, Charlottesville, VA
| | | | - Richard J. Price
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA
- Department of Radiology & Medical Imaging, University of Virginia, Charlottesville, VA
| |
Collapse
|
44
|
Sublethal Radiation Affects Antigen Processing and Presentation Genes to Enhance Immunogenicity of Cancer Cells. Int J Mol Sci 2020; 21:ijms21072573. [PMID: 32272797 PMCID: PMC7178186 DOI: 10.3390/ijms21072573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 01/10/2023] Open
Abstract
While immunotherapy in cancer is designed to stimulate effector T cell response, tumor-associated antigens have to be presented on malignant cells at a sufficient level for recognition of cancer by T cells. Recent studies suggest that radiotherapy enhances the anti-cancer immune response and also improves the efficacy of immunotherapy. To understand the molecular basis of such observations, we examined the effect of ionizing X-rays on tumor antigens and their presentation in a set of nine human cell lines representing cancers of the esophagus, lung, and head and neck. A single dose of 7.5 or 15 Gy radiation enhanced the New York esophageal squamous cell carcinoma 1 (NY-ESO-1) tumor-antigen-mediated recognition of cancer cells by NY-ESO-1-specific CD8+ T cells. Irradiation led to significant enlargement of live cells after four days, and microscopy and flow cytometry revealed multinucleation and polyploidy in the cells because of dysregulated mitosis, which was also revealed in RNA-sequencing-based transcriptome profiles of cells. Transcriptome analyses also showed that while radiation had no universal effect on genes encoding tumor antigens, it upregulated the expression of numerous genes involved in antigen processing and presentation pathways in all cell lines. This effect may explain the immunostimulatory role of cancer radiotherapy.
Collapse
|
45
|
Nanoparticle mediated cancer immunotherapy. Semin Cancer Biol 2020; 69:307-324. [PMID: 32259643 DOI: 10.1016/j.semcancer.2020.03.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022]
Abstract
The versatility and nanoscale size have helped nanoparticles (NPs) improve the efficacy of conventional cancer immunotherapy and opened up exciting approaches to combat cancer. This review first outlines the tumor immune evasion and the defensive tumor microenvironment (TME) that hinders the activity of host immune system against tumor. Then, a detailed description on how the NP based strategies have helped improve the efficacy of conventional cancer vaccines and overcome the obstacles led by TME. Sustained and controlled drug delivery, enhanced cross presentation by immune cells, co-encapsulation of adjuvants, inhibition of immune checkpoints and intrinsic adjuvant like properties have aided NPs to improve the therapeutic efficacy of cancer vaccines. Also, NPs have been efficient modulators of TME. In this context, NPs facilitate better penetration of the chemotherapeutic drug by dissolution of the inhibitory meshwork formed by tumor associated cells, blood vessels, soluble mediators and extra cellular matrix in TME. NPs achieve this by suppression, modulation, or reprogramming of the immune cells and other mediators localised in TME. This review further summarizes the applications of NPs used to enhance the efficacy of cancer vaccines and modulate the TME to improve cancer immunotherapy. Finally, the hurdles faced in commercialization and translation to clinic have been discussed and intriguingly, NPs owe great potential to emerge as clinical formulations for cancer immunotherapy in near future.
Collapse
|
46
|
Drakes DJ, Rafiq S, Purdon TJ, Lopez AV, Chandran SS, Klebanoff CA, Brentjens RJ. Optimization of T-cell Receptor-Modified T Cells for Cancer Therapy. Cancer Immunol Res 2020; 8:743-755. [PMID: 32209638 DOI: 10.1158/2326-6066.cir-19-0910] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/08/2020] [Accepted: 03/19/2020] [Indexed: 11/16/2022]
Abstract
T-cell receptor (TCR)-modified T-cell gene therapy can target a variety of extracellular and intracellular tumor-associated antigens, yet has had little clinical success. A potential explanation for limited antitumor efficacy is a lack of T-cell activation in vivo We postulated that expression of proinflammatory cytokines in TCR-modified T cells would activate T cells and enhance antitumor efficacy. We demonstrate that expression of interleukin 18 (IL18) in tumor-directed TCR-modified T cells provides a superior proinflammatory signal than expression of interleukin 12 (IL12). Tumor-targeted T cells secreting IL18 promote persistent and functional effector T cells and a proinflammatory tumor microenvironment. Together, these effects augmented overall survival of mice in the pmel-1 syngeneic tumor model. When combined with sublethal irradiation, IL18-secreting pmel-1 T cells were able to eradicate tumors, whereas IL12-secreting pmel-1 T cells caused toxicity in mice through excessive cytokine secretion. In another xenograft tumor model, IL18 secretion enhanced the persistence and antitumor efficacy of NY-ESO-1-reactive TCR-modified human T cells as well as overall survival of tumor-bearing mice. These results demonstrate a rationale for optimizing the efficacy of TCR-modified T-cell cancer therapy through expression of IL18.See related commentary by Wijewarnasuriya et al., p. 732.
Collapse
Affiliation(s)
- Dylan J Drakes
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Sarwish Rafiq
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University School of Medicine, Atlanta, Georgia
| | - Terence J Purdon
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrea V Lopez
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Smita S Chandran
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York.,Parker Institute for Cancer Immunotherapy, New York, New York
| | - Christopher A Klebanoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York.,Parker Institute for Cancer Immunotherapy, New York, New York.,Weill Cornell Medical College, New York, New York
| | - Renier J Brentjens
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, New York, New York. .,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.,Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York.,Cellular Therapeutics Center, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
47
|
Zerfas BL, Maresh ME, Trader DJ. The Immunoproteasome: An Emerging Target in Cancer and Autoimmune and Neurological Disorders. J Med Chem 2019; 63:1841-1858. [PMID: 31670954 DOI: 10.1021/acs.jmedchem.9b01226] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immunoproteasome (iCP) is an isoform of the 20S proteasome that is expressed when cells are stressed or receive an inflammatory signal. The primary role of the iCP is to hydrolyze proteins into peptides that are compatible with being loaded into a MHC-I complex. When the activity of the iCP is dysregulated or highly expressed, it can lead to unwanted cell death. Some cancer types express the iCP rather than the standard proteasome, and selective inhibitors have been developed to exploit this difference. Here, we describe diseases known to be influenced by iCP activity and the current status for targeting the iCP to elicit a therapeutic response. We also describe a variety of chemical tools that have been developed to monitor the activity of the iCP in cells. Finally, we present the future outlook for targeting the iCP in a variety of disease types and with mechanisms besides inhibition.
Collapse
Affiliation(s)
- Breanna L Zerfas
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Marianne E Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| | - Darci J Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
48
|
Falahat R, Perez-Villarroel P, Mailloux AW, Zhu G, Pilon-Thomas S, Barber GN, Mulé JJ. STING Signaling in Melanoma Cells Shapes Antigenicity and Can Promote Antitumor T-cell Activity. Cancer Immunol Res 2019; 7:1837-1848. [PMID: 31462408 DOI: 10.1158/2326-6066.cir-19-0229] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/24/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
STING (stimulator of IFN genes) signaling is an innate immune pathway for induction of a spontaneous antitumor T-cell response against certain immunogenic tumors. Although antigen-presenting cells are known to be involved in this process, insight into the participation of tumor cell-intrinsic STING signaling remains weak. In this study, we find diversity in the regulation of STING signaling across a panel of human melanoma cell lines. We show that intact activation of STING signaling in a subset of human melanoma cell lines enhances both their antigenicity and susceptibility to lysis by human melanoma tumor-infiltrating lymphocytes (TIL) through the augmentation of MHC class I expression. Conversely, defects in the STING signaling pathway protect melanoma cells from increased immune recognition by TILs and limit their sensitivity to TIL lysis. Based on these findings, we propose that defects in tumor cell-intrinsic STING signaling can mediate not only tumor immune evasion but also resistance to TIL-based immunotherapies.
Collapse
Affiliation(s)
- Rana Falahat
- Immunology Program, Moffitt Cancer Center, Tampa, Florida
| | | | | | - Genyuan Zhu
- Immunology Program, Moffitt Cancer Center, Tampa, Florida
| | - Shari Pilon-Thomas
- Immunology Program, Moffitt Cancer Center, Tampa, Florida
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida
| | - Glen N Barber
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, Florida
| | - James J Mulé
- Immunology Program, Moffitt Cancer Center, Tampa, Florida.
- Cutaneous Oncology Program, Moffitt Cancer Center, Tampa, Florida
- Radiation Oncology Department, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
49
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
50
|
Sosnovtseva AO, Zheltukhin AO, Lipatova AV, Chumakov PM, Chekhonin VP. Oncolytic Activity of the Vaccine Strain of Type 3 Poliovirus on the Model of Rat Glioma C6 Cells. Bull Exp Biol Med 2019; 167:111-115. [PMID: 31177454 DOI: 10.1007/s10517-019-04472-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Indexed: 11/28/2022]
Abstract
Rat glioma cell line C6 expressing human poliovirus receptor (PVR) and susceptible to polioviruses (C6-PVR-BFP) was used to produce a clone with knockout of IFNα/β (Ifnar1) receptor subunit 1 gene (Ifnar1). The sensitivity of C6-PVR-BFP cells to the vaccine strain of poliovirus type 3 (PV3) depended on the signaling pathways of the cell response to type 1 IFN. Using the model of subcutaneous tumor xenografts, we demonstrated oncolytic activity of PV3 against C6-PVR-BFP cells that depended on the expression of PVR and increased considerably upon disturbances in IFN response pathways.
Collapse
Affiliation(s)
- A O Sosnovtseva
- V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia. .,V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia.
| | - A O Zheltukhin
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - A V Lipatova
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia
| | - P M Chumakov
- V. A. Engelhardt Institute of Molecular Biology, Russian Academy of Science, Moscow, Russia.,M. P. Chumakov Federal Research Center for Research and Development of Immunobiological Products, Russian Academy of Sciences, Moscow, Russia
| | - V P Chekhonin
- V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, Ministry of Health of the Russian Federation, Moscow, Russia.,N. I. Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|