1
|
Stanisavljević Ilić A, Filipović D. Mapping of c-Fos Expression in Rat Brain Sub/Regions Following Chronic Social Isolation: Effective Treatments of Olanzapine, Clozapine or Fluoxetine. Pharmaceuticals (Basel) 2024; 17:1527. [PMID: 39598437 PMCID: PMC11597560 DOI: 10.3390/ph17111527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/29/2024] Open
Abstract
The c-Fos as a marker of cell activation is used to identify brain regions involved in stimuli processing. This review summarizes a pattern of c-Fos immunoreactivity and the overlapping brain sub/regions which may provide hints for the identification of neural circuits that underlie depressive- and anxiety-like behaviors of adult male rats following three and six weeks of chronic social isolation (CSIS), relative to controls, as well as the antipsychotic-like effects of olanzapine (Olz), and clozapine (Clz), and the antidepressant-like effect of fluoxetine (Flx) in CSIS relative to CSIS alone. Additionally, drug-treated controls relative to control rats were also characterized. The overlapping rat brain sub/regions with increased expression of c-Fos immunoreactivity following three or six weeks of CSIS were the retrosplenial granular cortex, c subregion, retrosplenial dysgranular cortex, dorsal dentate gyrus, paraventricular nucleus of the thalamus (posterior part, PVP), lateral/basolateral (LA/BL) complex of the amygdala, caudate putamen, and nucleus accumbens shell. Increased activity of the nucleus accumbens core following exposure of CSIS rats either to Olz, Clz, and Flx treatments was found, whereas these treatments in controls activated the LA/BL complex of the amygdala and PVP. We also outline sub/regions that might represent potential neuroanatomical targets for the aforementioned antipsychotics or antidepressant treatments.
Collapse
Affiliation(s)
| | - Dragana Filipović
- Department of Molecular Biology and Endocrinology, “VINČA” Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
2
|
Aguilar-Delgadillo A, Cruz-Mendoza F, Luquin-de Andais teh S, Ruvalcaba-Delgadillo Y, Jáuregui-Huerta F. Stress-induced c-fos expression in the medial prefrontal cortex differentially affects the main residing cell phenotypes. Heliyon 2024; 10:e39325. [PMID: 39498004 PMCID: PMC11532284 DOI: 10.1016/j.heliyon.2024.e39325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/07/2024] Open
Abstract
Stress poses a challenge to the body's equilibrium and triggers a series of responses that enable organisms to adapt to stressful stimuli. The medial prefrontal cortex (mPFC), particularly in acute stress conditions, undergoes significant physiological changes to cope with the demands associated with cellular activation. The proto-oncogene c-fos and its protein product c-Fos have long been utilized to investigate the effects of external factors on the central nervous system (CNS). While c-Fos expression has traditionally been attributed to neurons, emerging evidence suggests its potential expression in glial cells. In this study, our main objective was to explore the expression of c-Fos in glial cells and examine how acute stress influences these activity patterns. We conducted our experiments on male Wistar rats, subjecting them to acute stress and sacrificing them 2 h after the stressor initiation. Using double-labelling fluorescent immunohistochemistry targeting c-Fos, along with markers such as GFAP, Iba-1, Olig2, NG2, and NeuN, we analyzed 35 μm brain slices obtained from the mPFC. Our findings compellingly demonstrate that c-Fos expression extends beyond neurons and is present in astrocytes, oligodendrocytes, microglia, and NG2 cells-the diverse population of glial cells. Moreover, we observed distinct regulation of c-Fos expression in response to stress across different subregions of the mPFC. These results emphasize the importance of considering glial cells and their perspective in studies investigating brain activity, highlighting c-Fos as a response marker in glial cells. By shedding light on the differential regulation of c-Fos expression in response to stress, our study contributes to the understanding of glial cell involvement in stress-related processes. This underscores the significance of including glial cells in investigations of brain activity and expands our knowledge of c-Fos as a potential marker for glial cell responses.
Collapse
Affiliation(s)
| | - Fernando Cruz-Mendoza
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
| | | | | | - Fernando Jáuregui-Huerta
- Neurosciences Department, Health sciences center, University of Guadalajara, Guadalajara, Mexico
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
3
|
Gullino LS, Fuller C, Dunn P, Collins HM, El Mestikawy S, Sharp T. Evidence for a Role of 5-HT-glutamate Co-releasing Neurons in Acute Stress Mechanisms. ACS Chem Neurosci 2024; 15:1185-1196. [PMID: 38377469 PMCID: PMC10958520 DOI: 10.1021/acschemneuro.3c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
A major subpopulation of midbrain 5-hydroxytryptamine (5-HT) neurons expresses the vesicular glutamate transporter 3 (VGLUT3) and co-releases 5-HT and glutamate, but the function of this co-release is unclear. Given the strong links between 5-HT and uncontrollable stress, we used a combination of c-Fos immunohistochemistry and conditional gene knockout mice to test the hypothesis that glutamate co-releasing 5-HT neurons are activated by stress and involved in stress coping. Acute, uncontrollable swim stress increased c-Fos immunoreactivity in neurons co-expressing VGLUT3 and the 5-HT marker tryptophan hydroxylase 2 (TPH2) in the dorsal raphe nucleus (DRN). This effect was localized in the ventral DRN subregion and prevented by the antidepressant fluoxetine. In contrast, a more controllable stressor, acute social defeat, had no effect on c-Fos immunoreactivity in VGLUT3-TPH2 co-expressing neurons in the DRN. To test whether activation of glutamate co-releasing 5-HT neurons was causally linked to stress coping, mice with a specific deletion of VGLUT3 in 5-HT neurons were exposed to acute swim stress. Compared to wildtype controls, the mutant mice showed increased climbing behavior, a measure of active coping. Wildtype mice also showed increased climbing when administered fluoxetine, revealing an interesting parallel between the behavioral effects of genetic loss of VGLUT3 in 5-HT neurons and 5-HT reuptake inhibition. We conclude that 5-HT-glutamate co-releasing neurons are recruited by exposure to uncontrollable stress. Furthermore, natural variation in the balance of 5-HT and glutamate co-released at the 5-HT synapse may impact stress susceptibility.
Collapse
Affiliation(s)
- L. Sophie Gullino
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Cara Fuller
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Poppy Dunn
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Helen M. Collins
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| | - Salah El Mestikawy
- Douglas
Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, QC H4H
1R3, Canada
- Sorbonne
Université, INSERM, CNRS, Neuroscience Paris Seine –
Institut de Biologie Paris Seine (NPS – IBPS), 75005 Paris, France
| | - Trevor Sharp
- University
Department of Pharmacology, University of
Oxford, Mansfield Road, Oxford OX1 3QT, U.K.
| |
Collapse
|
4
|
Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24:591-604. [PMID: 37626176 PMCID: PMC10848316 DOI: 10.1038/s41583-023-00729-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.
Collapse
Affiliation(s)
- Kenny L Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wolfram C Poller
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Vlasov I, Filatova E, Slominsky P, Shadrina M. Differential expression of Dusp1 and immediate early response genes in the hippocampus of rats, subjected to forced swim test. Sci Rep 2023; 13:9985. [PMID: 37340011 DOI: 10.1038/s41598-023-36611-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 06/07/2023] [Indexed: 06/22/2023] Open
Abstract
The forced swim test (FST) is widely used to screen for potential antidepressant drugs and treatments. Despite this, the nature of stillness during FST and whether it resembles "depressive-like behavior" are widely debated issues. Furthermore, despite being widely used as a behavioral assay, the effects of the FST on the brain transcriptome are rarely investigated. Therefore, in this study we have investigated changes in the transcriptome of the rat hippocampus 20 min and 24 h after FST exposure. RNA-Seq is performed on the hippocampus tissues of rats 20 min and 24 h after an FST. Differentially expressed genes (DEGs) were identified using limma and used to construct gene interaction networks. Fourteen differentially expressed genes (DEGs) were identified only in the 20-m group. No DEGs were identified 24 h after the FST. These genes were used for Gene Ontology term enrichment and gene-network construction. Based on the constructed gene-interaction networks, we identified a group of DEGs (Dusp1, Fos, Klf2, Ccn1, and Zfp36) that appeared significant based on multiple methods of downstream analysis. Dusp1 appears especially important, as its role in the pathogenesis of depression has been demonstrated both in various animal models of depression and in patients with depressive disorders.
Collapse
Affiliation(s)
- Ivan Vlasov
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute, .
| | - Elena Filatova
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Petr Slominsky
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| | - Maria Shadrina
- Institute of Molecular Genetics of National Research Centre, Kurchatov Institute
| |
Collapse
|
6
|
Nashed MG, Waye S, Hasan SMN, Nguyen D, Wiseman M, Zhang J, Lau H, Dinesh OC, Raymond R, Greig IR, Bambico FR, Nobrega JN. Antidepressant activity of pharmacological and genetic deactivation of the small-conductance calcium-activated potassium channel subtype-3. Psychopharmacology (Berl) 2022; 239:253-266. [PMID: 34982171 DOI: 10.1007/s00213-021-06045-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 12/13/2021] [Indexed: 11/25/2022]
Abstract
RATIONALE The voltage-insensitive, small-conductance calcium-activated potassium (SK) channel is a key regulator of neuronal depolarization and is implicated in the pathophysiology of depressive disorders. OBJECTIVE We ascertained whether the SK channel is impaired in the chronic unpredictable stress (CUS) model and whether it can serve as a molecular target of antidepressant action. METHODS We assessed the depressive-like behavioral phenotype of CUS-exposed rats and performed post-mortem SK channel binding and activity-dependent zif268 mRNA analyses on their brains. To begin an assessment of SK channel subtypes involved, we examined the effects of genetic and pharmacological inhibition of the SK3 channel using conditional knockout mice and selective SK3 channel negative allosteric modulators (NAMs). RESULTS We found that [125I]apamin binding to SK channels is increased in the prefrontal cortex and decreased in the hippocampus, an effect that was associated with reciprocal levels of zif268 mRNA transcripts indicating abnormal regional cell activity in this model. We found that genetic and pharmacological manipulations significantly decreased immobility in the forced swim test without altering general locomotor activity, a hallmark of antidepressant-like activity. CONCLUSIONS Taken together, these findings link depression-related neural and behavioral pathophysiology with abnormal SK channel functioning and suggest that this can be reversed by the selective inhibition of SK3 channels.
Collapse
Affiliation(s)
- Mina G Nashed
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Shannon Waye
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - S M Nageeb Hasan
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - Diana Nguyen
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Micaela Wiseman
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Jing Zhang
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Harry Lau
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - O Chandani Dinesh
- Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| | - Iain R Greig
- Institute of Medical Sciences, University of Aberdeen, King's College, Aberdeen, AB25 2ZD, Scotland
| | - Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada. .,Department of Psychology, Memorial University of Newfoundland, St. John's, Newfoundland & Labrador, A1B 3X9, Canada.
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health (CAMH), Toronto, ON, M5T 1R8, Canada
| |
Collapse
|
7
|
Hagihara H, Shoji H, Otabi H, Toyoda A, Katoh K, Namihira M, Miyakawa T. Protein lactylation induced by neural excitation. Cell Rep 2021; 37:109820. [PMID: 34644564 DOI: 10.1016/j.celrep.2021.109820] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/20/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Lactate has diverse roles in the brain at the molecular and behavioral levels under physiological and pathophysiological conditions. This study investigates whether lysine lactylation (Kla), a lactate-derived post-translational modification in macrophages, occurs in brain cells and if it does, whether Kla is induced by the stimuli that accompany changes in lactate levels. Here, we show that Kla in brain cells is regulated by neural excitation and social stress, with parallel changes in lactate levels. These stimuli increase Kla, which is associated with the expression of the neuronal activity marker c-Fos, as well as with decreased social behavior and increased anxiety-like behavior in the stress model. In addition, we identify 63 candidate lysine-lactylated proteins and find that stress preferentially increases histone H1 Kla. This study may open an avenue for the exploration of a role of neuronal activity-induced lactate mediated by protein lactylation in the brain.
Collapse
Affiliation(s)
- Hideo Hagihara
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | - Hikari Otabi
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan
| | - Atsushi Toyoda
- College of Agriculture, Ibaraki University, Ami, Ibaraki 300-0393, Japan; United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan; Ibaraki University Cooperation between Agriculture and Medical Science (IUCAM), Ami, Ibaraki 300-0393, Japan
| | - Kaoru Katoh
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan; Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Masakazu Namihira
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8566, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan.
| |
Collapse
|
8
|
Microglia react to partner loss in a sex- and brain site-specific manner in prairie voles. Brain Behav Immun 2021; 96:168-186. [PMID: 34058309 PMCID: PMC8319132 DOI: 10.1016/j.bbi.2021.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022] Open
Abstract
Positive social relationships are paramount for the survival of mammals and beneficial for mental and physical health, buffer against stressors, and even promote appropriate immune system functioning. By contrast, impaired social relationships, social isolation, or the loss of a bonded partner lead to aggravated physical and mental health. For example, in humans partner loss is detrimental for the functioning of the immune system and heightens the susceptibility for the development of post-traumatic stress disorders, anxiety disorders, and major depressive disorders. To understand potential underlying mechanisms, the monogamous prairie vole can provide important insights. In the present study, we separated pair bonded male and female prairie voles after five days of co-housing, subjected them to the forced swim test on the fourth day following separation, and studied their microglia morphology and activation in specific brain regions. Partner loss increased passive stress-coping in male, but not female, prairie voles. Moreover, partner loss was associated with microglial priming within the parvocellular region of the paraventricular nucleus of the hypothalamus (PVN) in male prairie voles, whereas in female prairie voles the morphological activation within the whole PVN and the prelimbic cortex (PrL) was decreased, marked by a shift towards ramified microglial morphology. Expression of the immediate early protein c-Fos following partner loss was changed within the PrL of male, but not female, prairie voles. However, the loss of a partner did not affect the investigated aspects of the peripheral immune response. These data suggest a potential sex-dependent mechanism for the regulation of microglial activity following the loss of a partner, which might contribute to the observed differences in passive stress-coping. This study furthers our understanding of the effects of partner loss and its short-term impact on the CNS as well as the CNS immune system and the peripheral innate immune system in both male and female prairie voles.
Collapse
|
9
|
Chronic social defeat stress impairs goal-directed behavior through dysregulation of ventral hippocampal activity in male mice. Neuropsychopharmacology 2021; 46:1606-1616. [PMID: 33692477 PMCID: PMC8280175 DOI: 10.1038/s41386-021-00990-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/30/2021] [Accepted: 02/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic stress is a risk factor for a variety of psychiatric disorders, including depression. Although impairments to motivated behavior are a major symptom of clinical depression, little is known about the circuit mechanisms through which stress impairs motivation. Furthermore, research in animal models for depression has focused on impairments to hedonic aspects of motivation, whereas patient studies suggest that impairments to appetitive, goal-directed motivation contribute significantly to motivational impairments in depression. Here, we characterized goal-directed motivation in repeated social defeat stress (R-SDS), a well-established mouse model for depression in male mice. R-SDS impaired the ability to sustain and complete goal-directed behavior in a food-seeking operant lever-press task. Furthermore, stress-exposed mice segregated into susceptible and resilient subpopulations. Interestingly, susceptibility to stress-induced motivational impairments was unrelated to stress-induced social withdrawal, another prominent effect of R-SDS in mouse models. Based on evidence that ventral hippocampus (vHP) modulates sustainment of goal-directed behavior, we monitored vHP activity during the task using fiber photometry. Successful task completion was associated with suppression of ventral hippocampal neural activity. This suppression was diminished after R-SDS in stress-susceptible but not stress-resilient mice. The serotonin selective reuptake inhibitor (SSRI) escitalopram and ketamine both normalized vHP activity during the task and restored motivated behavior. Furthermore, optogenetic vHP inhibition was sufficient to restore motivated behavior after stress. These results identify vHP hyperactivity as a circuit mechanism of stress-induced impairments to goal-directed behavior and a putative biomarker that is sensitive to antidepressant treatments and that differentiates susceptible and resilient individuals.
Collapse
|
10
|
Pérez-Revuelta L, Téllez de Meneses PG, López M, Briñón JG, Weruaga E, Díaz D, Alonso JR. Secretagogin expression in the mouse olfactory bulb under sensory impairments. Sci Rep 2020; 10:21533. [PMID: 33299042 PMCID: PMC7726155 DOI: 10.1038/s41598-020-78499-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/24/2020] [Indexed: 12/04/2022] Open
Abstract
The interneurons of the olfactory bulb (OB) are characterized by the expression of different calcium-binding proteins, whose specific functions are not fully understood. This is the case of one of the most recently discovered, the secretagogin (SCGN), which is expressed in interneurons of the glomerular and the granule cell layers, but whose function in the olfactory pathway is still unknown. To address this question, we examined the distribution, generation and activity of SCGN-positive interneurons in the OB of two complementary models of olfactory impairments: Purkinje Cell Degeneration (PCD) and olfactory-deprived mice. Our results showed a significant increase in the density of SCGN-positive cells in the inframitral layers of olfactory-deprived mice as compared to control animals. Moreover, BrdU analyses revealed that these additional SCGN-positive cells are not newly formed. Finally, the neuronal activity, estimated by c-Fos expression, increased in preexisting SCGN-positive interneurons of both deprived and PCD mice -being higher in the later- in comparison with control animals. Altogether, our results suggest that the OB possesses different compensatory mechanisms depending on the type of alteration. Particularly, the SCGN expression is dependent of olfactory stimuli and its function may be related to a compensation against a reduction in sensory inputs.
Collapse
Affiliation(s)
- L Pérez-Revuelta
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - P G Téllez de Meneses
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - M López
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - J G Briñón
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - E Weruaga
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| | - D Díaz
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain. .,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain.
| | - J R Alonso
- Laboratory of Neuronal Plasticity and Neurorepair, Institute for Neuroscience of Castile and Leon (INCyL), University of Salamanca, C/ Pintor Fernando Gallego, 1, 37007, Salamanca, Spain.,Institute of Biomedical Research of Salamanca, IBSAL, 37007, Salamanca, Spain
| |
Collapse
|
11
|
Indirect exposure to socially defeated conspecifics using recorded video activates the HPA axis and reduces reward sensitivity in mice. Sci Rep 2020; 10:16881. [PMID: 33037312 PMCID: PMC7547068 DOI: 10.1038/s41598-020-73988-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/24/2020] [Indexed: 12/21/2022] Open
Abstract
Rodents perceive the emotional states of conspecifics using vision. In the present study, we demonstrated that exposure to the video-recorded distress of conspecifics induces stress responses in male C57BL/6J mice. A single exposure to a video-recorded scene of the social defeat stress (SDS) increased plasma corticosterone levels in these mice. This physiological change was suppressed by blocking the visual information, suggesting that vision plays a crucial role in inducing stress responses. Furthermore, after exposure to the video, there were increased numbers of c-Fos-positive neurons in the anterior cingulate cortex and other brain areas that are associated with the negative valence and empathy systems, but not in the regions related to the pain signaling. In addition, repeated exposure to SDS videos induced an apparent reduction in reward sensitivity in the sucrose preference test, but did not affect avoidance behaviour in the social interaction test or immobility behaviour in the forced swim test. Reduced reward sensitivity in mice reflects anhedonia, which is a core symptom of depression in humans. Our video SDS model therefore provides a unique opportunity to not only understand the mechanisms underlying stress-induced anhedonia, but also to screen effective candidate molecules for stress-related disorders with greater reproducibility.
Collapse
|
12
|
Freeman AR, Hare JF, Caldwell HK. Call-specific patterns of neural activation in auditory processing of Richardson's ground squirrel alarm calls. Brain Behav 2020; 10:e01629. [PMID: 32307882 PMCID: PMC7313678 DOI: 10.1002/brb3.1629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/11/2020] [Accepted: 03/20/2020] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Richardson's ground squirrels use alarm calls to warn conspecifics about potential predatory threats. Chirp calls typically indicate high levels of threat from airborne predators, while whistle calls are associated with lower levels of threat from terrestrial predators. These types of calls primarily elicit escape behaviors and increased vigilance in receivers, respectively. While much is known about the neural mechanisms involved in the production of vocalizations, less is known about the mechanisms important for the perception of alarm calls by receivers, and whether changes in perceived risk are associated with unique patterns of neuronal activation. Thus, to determine whether alarm calls associated with different levels of predation risk result in differential neuronal activation, we used immunohistochemistry to identify and quantify c-Fos immunopositive cells in brain regions important in stress, fear, danger, and reward, following alarm call reception. METHODS We exposed 29 female Richardson's ground squirrels (10 control, 10 whistle receivers, and 9 chirp receivers) to playbacks of whistles, chirps, or a no-vocalization control. We then assessed neuronal activation via c-Fos immunohistochemistry in 12 brain regions. RESULTS Ground squirrels receiving high-threat "chirp" vocalizations had reduced neuronal activation in the medial amygdala and superior colliculus compared with controls. It is likely that changes in activity in these brain regions serve to alter the balance between approach and avoidance in turn promoting escape behaviors. CONCLUSIONS Thus, we conclude that in Richardson's ground squirrels, these brain regions are important for the perception of risk resulting from receiving alarm calls and allow for appropriate behavioral responses by receivers.
Collapse
Affiliation(s)
- Angela R Freeman
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, USA
| | - James F Hare
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Heather K Caldwell
- Laboratory of Neuroendocrinology and Behavior, Department of Biological Sciences, Kent State University, Kent, OH, USA.,School of Biomedical Sciences, Kent State University, Kent, OH, USA
| |
Collapse
|
13
|
Fee C, Prevot T, Misquitta K, Banasr M, Sibille E. Chronic Stress-induced Behaviors Correlate with Exacerbated Acute Stress-induced Cingulate Cortex and Ventral Hippocampus Activation. Neuroscience 2020; 440:113-129. [PMID: 32473277 DOI: 10.1016/j.neuroscience.2020.05.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/28/2022]
Abstract
Altered activity of corticolimbic brain regions is a hallmark of stress-related illnesses, including mood disorders, neurodegenerative diseases, and substance abuse disorders. Acute stress adaptively recruits brain region-specific functions for coping, while sustained activation under chronic stress may overwhelm feedback mechanisms and lead to pathological cellular and behavioral responses. The neural mechanisms underlying dysregulated stress responses and how they contribute to behavioral deficits are poorly characterized. Here, we tested whether prior exposure to chronic restraint stress (CRS) or unpredictable chronic mild stress (UCMS) in mice could alter functional response to acute stress and whether these changes are associated with chronic stress-induced behavioral deficits. More specifically, we assessed acute stress-induced functional activation indexed by c-Fos+ cell counts in 24 stress- and mood-related brain regions, and determined if changes in functional activation were linked to chronic stress-induced behavioral impairments, summarized across dimensions through principal component analysis (PCA). Results indicated that CRS and UCMS led to convergent physiological and anxiety-like deficits, whereas working and short-term memory were impaired only in UCMS mice. CRS and UCMS exposure exacerbated functional activation by acute stress in anterior cingulate cortex (ACC) area 24b and ventral hippocampal (vHPC) CA1, CA3, and subiculum. In dysregulated brain regions, levels of functional activation were positively correlated with principal components reflecting variance across behavioral deficits relevant to stress-related disorders. Our data supports an association between a dysregulated stress response, altered functional corticolimbic excitation/inhibition balance, and the expression of maladaptive behaviors.
Collapse
Affiliation(s)
- Corey Fee
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Thomas Prevot
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Keith Misquitta
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
14
|
Wang L, He Z, Zhu Z, Yuan W, Cai W, Li L, Zhang J, Hou W, Yang Y, Zhang X, Guo Q, Wang X, Lian Z, Tai F. The serotonin system in the hippocampus CA3 involves in effects of CSDS on social recognition in adult female mandarin voles (Microtus mandarinus). Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109704. [PMID: 31330217 DOI: 10.1016/j.pnpbp.2019.109704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Chronic social defeat stress (CSDS) exacerbated the development of stress-related psychiatric disorders, and the social recognition dysfunction is the core feature of many psychiatric disorders. However, the effects of CSDS on female social recognition and the underlying neural mechanisms remain unclear. Using highly aggressive adult female mandarin voles (Microtus mandarinus) as animal model, the aim of this work is to investigate the effects of CSDS on social recognition in adult female rodents and the neurobiological mechanisms underlying these effects. Our results indicate the CSDS disrupted the normal social recognition in adult female voles. Meanwhile, defeated voles exhibited increased neural activity in the DG, CA1 and CA3 of the hippocampus. Furthermore, CSDS reduced levels of serotonin (5-HT) and serotonin 1A receptors (5-HT1AR) in the CA3. We also discovered that microinjection of 8-OH-DPAT into the CA3 effectively reversed the social recognition deficits induced by CSDS, and an infusion of WAY-100635 into the CA3 of control female voles impaired social recognition. Moreover, targeted activation of the 5-HT neuron projection from the DRN to CA3 by long-term administration of CNO significantly prevented the CSDS induced social recognition deficits. Taken together, our study demonstrated that CSDS induced social recognition deficits in adult female voles, and these effects were mediated by the action of 5-HT on the 5-HT1AR in the hippocampus CA3. The projection from the DRN to CA3 may be involved in social recognition deficits induced by CSDS.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xia Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
15
|
Neural circuits for coping with social defeat. Curr Opin Neurobiol 2019; 60:99-107. [PMID: 31837481 DOI: 10.1016/j.conb.2019.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/13/2019] [Accepted: 11/20/2019] [Indexed: 12/27/2022]
Abstract
When resources, such as food, territory, and potential mates are limited, competition among animals of the same species is inevitable. Over bouts of agonistic interactions, winners and losers are determined. Losing is a traumatic experience, both physically and psychologically. Losers not only need to deploy a set of species-specific defensive behaviors to minimize the physical damage during defeat, but also adjust their behavior towards the winners to avoid future fights in which they are likely disadvantaged. The expression of defensive behaviors and the fast and long-lasting changes in behaviors accompanying defeat must be supported by a complex neural circuit. This review summarizes the brain regions that have been implicated in coping with social defeat, one centered on basolateral amygdala and the other on ventromedial hypothalamus. Gaps in our knowledge and hypotheses that may help guide future experiments are also discussed.
Collapse
|
16
|
Newman EL, Covington HE, Suh J, Bicakci MB, Ressler KJ, DeBold JF, Miczek KA. Fighting Females: Neural and Behavioral Consequences of Social Defeat Stress in Female Mice. Biol Psychiatry 2019; 86:657-668. [PMID: 31255250 PMCID: PMC6788975 DOI: 10.1016/j.biopsych.2019.05.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Despite the twofold higher prevalence of major depressive and posttraumatic stress disorders in women compared with men, most clinical and preclinical studies have focused on male subjects. We used an ethological murine model to study several cardinal symptoms of affective disorders in the female targets of female aggression. METHODS Intact Swiss Webster (CFW) female resident mice were housed with castrated male mice and tested for aggression toward female intruders. For 10 days, aggressive CFW female residents defeated C57BL/6J (B6) female intruders during 5-minute encounters. Measures of corticosterone, c-Fos activation in hypothalamic and limbic structures, and species-typical behaviors were collected from defeated and control females. Ketamine (20 mg/kg) was tested for its potential to reverse stress-induced social deficits. RESULTS Housed with a castrated male mouse, most intact resident CFW females readily attacked unfamiliar B6 female intruders, inflicting >40 bites in a 5-minute encounter. Compared with controls, defeated B6 females exhibited elevated plasma corticosterone and increased c-Fos activation in the medial amygdala, ventral lateral septum, ventromedial hypothalamus, and hypothalamic paraventricular nucleus. Chronically defeated females also showed vigilance-like behavior and deficits in social interactions, novel object investigation, and nesting. The duration of social interactions increased 24 hours after chronically defeated female mice received a systemic dose of ketamine. CONCLUSIONS These findings demonstrate that CFW female mice living with male conspecifics can be used as aggressive residents in an ethological model of female social defeat stress. These novel behavioral methods will encourage further studies of sex-specific neural, physiological, and behavioral adaptations to chronic stress and the biological bases for interfemale aggression.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Department, Tufts University, Medford, Massachusetts
| | | | - Junghyup Suh
- Division of Depression and Anxiety Disorders and Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | | | - Kerry J Ressler
- Division of Depression and Anxiety Disorders and Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
| | - Joseph F DeBold
- Psychology Department, Tufts University, Medford, Massachusetts
| | - Klaus A Miczek
- Psychology Department, Tufts University, Medford, Massachusetts; Department of Neuroscience, Tufts University, Boston, Massachusetts.
| |
Collapse
|
17
|
Bambico FR, Li Z, Creed M, De Gregorio D, Diwan M, Li J, McNeill S, Gobbi G, Raymond R, Nobrega JN. A Key Role for Prefrontocortical Small Conductance Calcium-Activated Potassium Channels in Stress Adaptation and Rapid Antidepressant Response. Cereb Cortex 2019; 30:1559-1572. [DOI: 10.1093/cercor/bhz187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 05/22/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023] Open
Abstract
AbstractThe muscarinic acetylcholine receptor antagonist scopolamine elicits rapid antidepressant activity, but its underlying mechanism is not fully understood. In a chronic stress model, a single low-dose administration of scopolamine reversed depressive-like reactivity. This antidepressant-like effect was mediated via a muscarinic M1 receptor–SKC pathway because it was mimicked by intra-medial prefrontal cortex (intra-mPFC) infusions of scopolamine, of the M1 antagonist pirenzepine or of the SKC antagonist apamin, but not by the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. Extracellular and whole-cell recordings revealed that scopolamine and ketamine attenuate the SKC-mediated action potential hyperpolarization current and rapidly enhance mPFC neuronal excitability within the therapeutically relevant time window. The SKC agonist 1-EBIO abrogated scopolamine-induced antidepressant activity at a dose that completely suppressed burst firing activity. Scopolamine also induced a slow-onset activation of raphe serotonergic neurons, which in turn was dependent on mPFC-induced neuroplasticity or excitatory input, since mPFC transection abolished this effect. These early behavioral and mPFC activational effects of scopolamine did not appear to depend on prefrontocortical brain-derived neurotrophic factor and serotonin-1A activity, classically linked to SSRIs, and suggest a novel mechanism associated with antidepressant response onset through SKC-mediated regulation of activity-dependent plasticity.
Collapse
Affiliation(s)
- Francis Rodriguez Bambico
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
- Department of Psychology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada
| | - Zhuoliang Li
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Meaghan Creed
- Département des Neurosciences Fondamentales & Service de Neurologie, University of Geneva, Geneva, CH-1211, Switzerland
| | - Danilo De Gregorio
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Mustansir Diwan
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Jessica Li
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Sean McNeill
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - Gabriella Gobbi
- Department of Psychiatry, McGill University, Montreal, QC H3A 1A1, Canada
| | - Roger Raymond
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| | - José N Nobrega
- Behavioural Neurobiology Laboratory, Research Imaging Center, Centre for Addiction and Mental Health, Toronto, ON M5T 1R8, Canada
| |
Collapse
|
18
|
Chan J, Stout D, Pittenger ST, Picciotto MR, Lewis AS. Induction of reversible bidirectional social approach bias by olfactory conditioning in male mice. Soc Neurosci 2019; 15:25-35. [PMID: 31303111 DOI: 10.1080/17470919.2019.1644370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Social avoidance is a common component of neuropsychiatric disorders that confers substantial functional impairment. An unbiased approach to identify brain regions and neuronal circuits that regulate social avoidance might enable development of novel therapeutics. However, most paradigms that alter social avoidance are irreversible and accompanied by multiple behavioral confounds. Here we report a straightforward behavioral paradigm in male mice enabling the reversible induction of social avoidance or approach with temporal control. C57BL/6J mice repeatedly participated in both negative and positive social experiences. Negative social experience was induced by brief social defeat by an aggressive male CD-1 mouse, while positive social experience was induced by exposure to a female mouse, each conducted daily for five days. Each social experience valence was conducted in a specific odorant context (i.e. negative experience in odorant A, positive experience in odorant B). Odorants were equally preferred pre-conditioning. However, after conditioning, mice sniffed positive experience-paired odorants more than negative experience-paired odorants. Furthermore, positive- or negative-conditioned odorant contexts increased or decreased, respectively, the approach behavior of conditioned mice toward conspecifics. Because individual mice undergo both positive and negative conditioning, this paradigm may be useful to examine neural representations of social approach or avoidance within the same subject.
Collapse
Affiliation(s)
- Justin Chan
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Dawson Stout
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,The Avielle Foundation, Newtown, CT, USA
| | | | | | - Alan S Lewis
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.,Departments of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.,Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
19
|
Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, Zhan J, Singer JH, Kirkwood A, Zhao H, Berson DM, Hattar S. Light Affects Mood and Learning through Distinct Retina-Brain Pathways. Cell 2018; 175:71-84.e18. [PMID: 30173913 PMCID: PMC6190605 DOI: 10.1016/j.cell.2018.08.004] [Citation(s) in RCA: 291] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/03/2018] [Accepted: 08/02/2018] [Indexed: 01/25/2023]
Abstract
Light exerts a range of powerful biological effects beyond image vision, including mood and learning regulation. While the source of photic information affecting mood and cognitive functions is well established, viz. intrinsically photosensitive retinal ganglion cells (ipRGCs), the central mediators are unknown. Here, we reveal that the direct effects of light on learning and mood utilize distinct ipRGC output streams. ipRGCs that project to the suprachiasmatic nucleus (SCN) mediate the effects of light on learning, independently of the SCN's pacemaker function. Mood regulation by light, on the other hand, requires an SCN-independent pathway linking ipRGCs to a previously unrecognized thalamic region, termed perihabenular nucleus (PHb). The PHb is integrated in a distinctive circuitry with mood-regulating centers and is both necessary and sufficient for driving the effects of light on affective behavior. Together, these results provide new insights into the neural basis required for light to influence mood and learning.
Collapse
Affiliation(s)
| | | | | | - Michael B Thomsen
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Robert M Layne
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Daniel Severin
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jesse Zhan
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joshua H Singer
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Alfredo Kirkwood
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Haiqing Zhao
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, RI 02912, USA
| | - Samer Hattar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
20
|
Aizawa F, Nakamoto K, Tokuyama S. The involvement of free fatty acid-GPR40/FFAR1 signaling in chronic social defeat stress-induced pain prolongation in C57BL/6J male mice. Psychopharmacology (Berl) 2018; 235:2335-2347. [PMID: 29931581 DOI: 10.1007/s00213-018-4930-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 05/22/2018] [Indexed: 01/10/2023]
Abstract
RATIONALE Depression and anxiety can cause the development of chronic pain. However, the mechanism of chronic pain induced by emotional dysfunction is still unknown. Previously, we demonstrated that the G protein-coupled receptor 40/free fatty acid receptor 1 (GPR40/FFAR1) signaling in the brain is related to regulation of both pain and emotion. In the present study, we proved that the role of GPR40/FFAR1 signaling in the development of chronic pain is induced by emotional dysfunction. RESULTS Repeated social defeat (SD)-stressed mice showed the impairment of social interaction and anxiety behavior. These mice also caused pain prolongation after paw-incision comparison with non-SD mice. This pain prolongation was markedly continued by infusion of the GPR40/FFAR1 antagonist, GW1100 during SD stress but not non-SD stress. Although, infusion of the GW1100 during SD stress did not cause deterioration of the emotional behavior. Furthermore, GW1100-treated SD-mice showed strong tendency of emotional dysfunction after paw incision. CONCLUSION Our findings indicate that the dysfunction of fatty acids-GPR40/FFAR1 signaling in the brain underlying stress condition might be related to the development of chronic pain.
Collapse
Affiliation(s)
- Fuka Aizawa
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, 1-1-3 Minatojima, Chuo-ku, Kobe, 650-8586, Japan.
| |
Collapse
|
21
|
Newman EL, Albrechet-Souza L, Andrew PM, Auld JG, Burk KC, Hwa LS, Zhang EY, DeBold JF, Miczek KA. Persistent escalation of alcohol consumption by mice exposed to brief episodes of social defeat stress: suppression by CRF-R1 antagonism. Psychopharmacology (Berl) 2018; 235:1807-1820. [PMID: 29696309 PMCID: PMC6168197 DOI: 10.1007/s00213-018-4905-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 04/10/2018] [Indexed: 02/07/2023]
Abstract
RATIONALE Episodic bouts of social stress can precede the initiation, escalation, or relapse to disordered alcohol intake. Social stress may engender neuroadaptations in the hypothalamic-pituitary-adrenal (HPA) axis and in extrahypothalamic stress circuitry to promote the escalation of alcohol intake. OBJECTIVES We aimed to (1) confirm a pattern of escalated drinking in socially defeated mice and to (2) test drugs that target distinct aspects of the HPA axis and extrahypothalamic neural substrates for their effectiveness in reducing murine, stress-escalated drinking. METHODS Male C57BL/6J (B6) mice were socially defeated by resident Swiss-derived males for ten consecutive days receiving 30 bites/day. Ten days after the final defeat, cohorts of B6 mice received continuous or intermittent access to 20% EtOH (w/v) and water. After 4 weeks of drinking, mice were injected with weekly, systemic doses of the CRF-R1 antagonist, CP376395; the glucocorticoid receptor antagonist, mifepristone; the 11-beta-hydroxylase inhibitor, metyrapone; or the 5-alpha-reductase inhibitor, finasteride. RESULTS Prior to drug treatments, defeated mice reliably consumed more EtOH than non-defeated controls, and mice given alcohol intermittently consumed more EtOH than those with continuous access. CP376395 (17-30 mg/kg) reduced continuous, but not intermittent EtOH intake (g/kg) in socially defeated mice. Mifepristone (100 mg/kg), however, increased drinking by defeated mice with intermittent access to alcohol while reducing drinking during continuous access. When administered finasteride (100 mg/kg) or metyrapone (50 mg/kg), all mice reduced their EtOH intake while increasing their water consumption. CONCLUSIONS Mice with a history of episodic social defeat stress were selectively sensitive to the effects of CRF-R1 antagonism, suggesting that CRF-R1 may be a potential target for treating alcohol use disorders in individuals who escalate their drinking after exposure to repeated bouts of psychosocial stress. Future studies will clarify how social defeat stress may alter the expression of extrahypothalamic CRF-R1 and glucocorticoid receptors.
Collapse
Affiliation(s)
- Emily L Newman
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Lucas Albrechet-Souza
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Peter M Andrew
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - John G Auld
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Kelly C Burk
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Lara S Hwa
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Eric Y Zhang
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Joseph F DeBold
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA
| | - Klaus A Miczek
- Psychology Department, Tufts University, Bacon Hall, 530 Boston Avenue, Medford, MA, 02155, USA.
- Department of Neuroscience, Sackler School of Graduate Biomedical Sciences, Boston, MA, 02111, USA.
| |
Collapse
|
22
|
Wulsin AC, Franco-Villanueva A, Romancheck C, Morano RL, Smith BL, Packard BA, Danzer SC, Herman JP. Functional disruption of stress modulatory circuits in a model of temporal lobe epilepsy. PLoS One 2018; 13:e0197955. [PMID: 29795651 PMCID: PMC5993058 DOI: 10.1371/journal.pone.0197955] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 05/13/2018] [Indexed: 12/15/2022] Open
Abstract
Clinical data suggest that the neuroendocrine stress response is chronically dysregulated in a subset of patients with temporal lobe epilepsy (TLE), potentially contributing to both disease progression and the development of psychiatric comorbidities such as anxiety and depression. Whether neuroendocrine dysregulation and psychiatric comorbidities reflect direct effects of epilepsy-related pathologies, or secondary effects of disease burden particular to humans with epilepsy (i.e. social estrangement, employment changes) is not clear. Animal models provide an opportunity to dissociate these factors. Therefore, we queried whether epileptic mice would reproduce neuroendocrine and behavioral changes associated with human epilepsy. Male FVB mice were exposed to pilocarpine to induce status epilepticus (SE) and the subsequent development of spontaneous recurrent seizures. Morning baseline corticosterone levels were elevated in pilocarpine treated mice at 1, 7 and 10 weeks post-SE relative to controls. Similarly, epileptic mice had increased adrenal weight when compared to control mice. Exposure to acute restraint stress resulted in hypersecretion of corticosterone 30 min after the onset of the challenge. Anatomical analyses revealed reduced Fos expression in infralimbic and prelimbic prefrontal cortex, ventral subiculum and basal amygdala following restraint. No differences in Fos immunoreactivity were found in the paraventricular nucleus of the hypothalamus, hippocampal subfields or central amygdala. In order to assess emotional behavior, a second cohort of mice underwent a battery of behavioral tests, including sucrose preference, open field, elevated plus maze, 24h home-cage monitoring and forced swim. Epileptic mice showed increased anhedonic behavior, hyperactivity and anxiety-like behaviors. Together these data demonstrate that epileptic mice develop HPA axis hyperactivity and exhibit behavioral dysfunction. Endocrine and behavioral changes are associated with impaired recruitment of forebrain circuits regulating stress inhibition and emotional reactivity. Loss of forebrain control may underlie pronounced endocrine dysfunction and comorbid psychopathologies seen in temporal lobe epilepsy.
Collapse
Affiliation(s)
- Aynara C. Wulsin
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- Department of Anesthesia, Cincinnati Children Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ana Franco-Villanueva
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Christian Romancheck
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Rachel L. Morano
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Brittany L. Smith
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Benjamin A. Packard
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Steve C. Danzer
- Department of Anesthesia, Cincinnati Children Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - James P. Herman
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
23
|
Lin X, Itoga CA, Taha S, Li MH, Chen R, Sami K, Berton F, Francesconi W, Xu X. c-Fos mapping of brain regions activated by multi-modal and electric foot shock stress. Neurobiol Stress 2018; 8:92-102. [PMID: 29560385 PMCID: PMC5857493 DOI: 10.1016/j.ynstr.2018.02.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 01/17/2018] [Accepted: 02/01/2018] [Indexed: 12/29/2022] Open
Abstract
Real-world stressors are complex and multimodal, involving physical, psychological, and social dimensions. However, the brain networks that mediate stress responses to these stimuli need to be further studied. We used c-Fos mapping in mice to characterize brain circuits activated by exposure to a single episode of multimodal stress (MMS), and compared these to circuits activated by electric foot shocks (EFS). We focused on characterizing c-Fos activity in stress-relevant brain regions including the paraventricular nucleus (PVN) of the hypothalamus and the bed nucleus of the stria terminalis (BNST). We also assessed stress-induced activation of CRH-positive neurons in each of these structures. MMS and EFS activated an overlapping network of brain regions with a similar time course. c-Fos expression within the PVN and the BNST peaked 30–60 min after exposure to both MMS and EFS, and returned to baseline levels within 24 h. Quantification of c-Fos expression within BNST subregions revealed that while c-Fos expression peaked in all subregions 30–60 min after MMS and EFS exposure, the neuronal density of c-Fos expression was significantly higher in the dorsomedial and ventral BNST relative to the dorsolateral BNST. Our preliminary assessment indicated that a great majority of MMS or EFS-activated neurons in the PVN were CRH-positive (>87%); in contrast, about 6–35% of activated neurons in the BNST were CRH-positive. Our findings indicate that both MMS and EFS are effective at activating stress-relevant brain areas and support the use of MMS as an effective approach for studying multidimensional stress in animal models. The results also reveal that the PVN and BNST are part of a common neural circuit substrate involved in neural processing related to stress.
Collapse
Affiliation(s)
- Xiaoxiao Lin
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Christy A Itoga
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Sharif Taha
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112-5820, United States
| | - Ming H Li
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Ryan Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Kirolos Sami
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States
| | - Fulvia Berton
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Walter Francesconi
- Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, United States.,Department of Biomedical Engineering, University of California, Irvine, CA 92697-2715, United States.,Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, United States
| |
Collapse
|
24
|
Impact of anger emotional stress before pregnancy on adult male offspring. Oncotarget 2017; 8:98837-98852. [PMID: 29228731 PMCID: PMC5716771 DOI: 10.18632/oncotarget.22007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/02/2017] [Indexed: 12/22/2022] Open
Abstract
Previous studies have reported that maternal chronic stress or depression is linked to an increased risk of affective disorders in progeny. However, the impact of maternal chronic stress before pregnancy on the progeny of animal models is unknown. We investigated the behaviors and the neurobiology of 60-day-old male offspring of female rats subjected to 21 days of resident-intruder stress before pregnancy. An anger stressed parental rat model was established using the resident-intruder paradigm and it was evaluated using behavioral tests. Anger stressed maternal rats showed a significant increase in locomotion and aggression but a reduction in sucrose preference. Offspring subjected to pre-gestational anger stress displayed enhanced aggressive behaviors, reduced anxiety, and sucrose preference. Further, offspring subjected to pre-gestational stress showed significant impairments in the recognition index (RI) on the object recognition test and the number of platform crossings in the Morris water maze test. The monoaminergic system was significantly altered in pre-gestationally stressed offspring, and the expression of phosphorylated cyclic adenosine monophosphate response element binding protein (P-CREB), brain-derived neurotrophic factor (BDNF), and serotonin transporter (SERT) levels in pre-gestational stressed offspring were altered in some brain regions. Fluoxetine was used to treat pre-gestational stressed maternal rats and it significantly reduced the changes caused by stress, as evidenced by both behaviors and neural biochemical indexes in the offspring in some but not all cases. These findings suggest that anger stress before pregnancy could induce aggressive behaviors, cognitive deficits, and neurobiological alterations in offspring.
Collapse
|
25
|
Kwon W, Kim HS, Jeong J, Sung Y, Choi M, Park S, Lee J, Jang S, Kim SH, Lee S, Kim MO, Ryoo ZY. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice. FASEB J 2017; 32:390-403. [PMID: 28899881 DOI: 10.1096/fj.201601340rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/05/2017] [Indexed: 11/11/2022]
Abstract
Ten-eleven translocation methylcytosine dioxygenase 1 (Tet1) initiates DNA demethylation by converting 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC) at CpG-rich regions of genes, which have key roles in adult neurogenesis and memory. In addition, the overexpression of Tet1 with 5-hmC alteration in patients with psychosis has also been reported, for instance in schizophrenia and bipolar disorders. The mechanism underlying Tet1 overexpression in the brain; however, is still elusive. In the present study, we found that Tet1-transgenic (Tet1-TG) mice displayed abnormal behaviors involving elevated anxiety and enhanced fear memories. We confirmed that Tet1 overexpression affected adult neurogenesis with oligodendrocyte differentiation in the hippocampal dentate gyrus of Tet1-TG mice. In addition, Tet1 overexpression induced the elevated expression of immediate early genes, such as Egr1, c-fos, Arc, and Bdnf, followed by the activation of intracellular calcium signals (i.e., CamKII, ERK, and CREB) in prefrontal and hippocampal neurons. The expression of GABA receptor subunits (Gabra2 and Gabra4) fluctuated in the prefrontal cortex and hippocampus. We evaluated the effects of Tet1 overexpression on intracellular calcium-dependent cascades by activating the Egr1 promoter in vitro Tet1 enhanced Egr1 expression, which may have led to alterations in Gabra2 and Gabra4 expression in neurons. Taken together, we suggest that the Tet1 overexpression in our Tet1-TG mice can be applied as an effective model for studying various stress-related diseases that show hyperactivation of intracellular calcium-dependent cascades in the brain.-Kwon, W., Kim, H.-S., Jeong, J., Sung, Y., Choi, M., Park, S., Lee, J., Jang, S., Kim, S. H., Lee, S., Kim, M. O., Ryoo, Z. Y. Tet1 overexpression leads to anxiety-like behavior and enhanced fear memories via the activation of calcium-dependent cascade through Egr1 expression in mice.
Collapse
Affiliation(s)
- Wookbong Kwon
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Hyeng-Soo Kim
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea.,Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, South Korea; and
| | - Jain Jeong
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Yonghun Sung
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Minjee Choi
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Song Park
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Jinhee Lee
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Soyoung Jang
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Sung Hyun Kim
- Institute of Life Science and Biotechnology, Kyungpook National University, Daegu, South Korea; and
| | - Sanggyu Lee
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Myoung Ok Kim
- The School of Animal Biotechnology (BT) Science, Kyungpook National University, Sangju, South Korea
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea;
| |
Collapse
|
26
|
Abstract
Background Stress and stressful life events have repeatedly been shown as causally related to depression. The Chronic Mild Stress rat model is a valid model of stress-induced depression. Like humans, rats display great heterogeneity in their response to stress and adversity. Hence some individuals are stress-sensitive and prone to develop depression-like behaviour in response to modest stressors, while others are stress-resilient and remain essentially symptom free. Objectives Compared to the large body of research, which describes stress-induced maladaptive neurobiological changes, relatively little attention has been devoted to understand resiliency to stress. The aim of the present study was to identify changes in neuronal activity, associated with stress-resilient and stress-susceptible chronic mild stress endophenotypes, by examining c-Fos expression in 13 different brain areas. Changes in c-Fos expression have been reported as associated to stressful conditions. Methods Stress-induced modulation of neuronal activation patterns in response to the chronic mild stress paradigm was mapped using the immediate early gene expression c-Fos as a marker. Quantification of the c-Fos-like immunoreactivity responses was done by semi-automated profile counting procedures and design-based stereology. Results Exposure to chronic mild stress significantly altered c-Fos expression in a total of 6 out of 13 investigated areas. Chronic mild stress was found to suppress the c-Fos response within the magnocellular ventral lateral geniculate nucleus of both stress subgroups. In the the lateral and ventral orbital cortices of stress-resilient rats, the c-Fos like immunoreactivity response was also repressed by stress exposure. On the contrary the c-Fos response within the amygdala, medial habenula, and infralimbic cortex was increased selectively for the stress-susceptible rats. Conclusions The study was initiated to characterize neuronal substrates associated with stress-coping mechanisms. Six areas, all of which represents limbic structures, were found to be sensitive to stress exposure. The effects within these areas associate to the hedonic status of the rats. Hence, these areas might be associated to stress-coping mechanisms underlying the chronic mild stress induced segregation into stress-susceptible and stress-resilient endophenotypes.
Collapse
Affiliation(s)
- Fabia Febbraro
- Danish Research Institute of Translational Neuroscience (DANDRITE) Aarhus University, Aarhus C, Denmark
- * E-mail: (FF); (OW)
| | - Katrine Svenningsen
- Focused Research Unit for Molecular Diagnostic and Clinical Research IRS-Center Sonderjylland, Laboratory Center, Hospital of Southern Jutland, Åbenrå, Denmark
| | - Thao Phuong Tran
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, Denmark
| | - Ove Wiborg
- Department of Clinical Medicine, Health, Aarhus University, Aarhus C, Denmark
- * E-mail: (FF); (OW)
| |
Collapse
|
27
|
Matricon J, Seillier A, Giuffrida A. Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597. Neurosci Res 2016; 110:49-58. [PMID: 27091613 PMCID: PMC5007165 DOI: 10.1016/j.neures.2016.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 10/21/2022]
Abstract
The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597.
Collapse
Affiliation(s)
- Julien Matricon
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Alexandre Seillier
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Andrea Giuffrida
- Department of Pharmacology and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
28
|
Brouillard C, Carrive P, Camus F, Bénoliel JJ, Similowski T, Sévoz-Couche C. Long-lasting bradypnea induced by repeated social defeat. Am J Physiol Regul Integr Comp Physiol 2016; 311:R352-64. [DOI: 10.1152/ajpregu.00021.2016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022]
Abstract
Repeated social defeat in the rat induces long-lasting cardiovascular changes associated with anxiety. In this study, we investigated the effects of repeated social defeat on breathing. Respiratory rate was extracted from the respiratory sinus arrhythmia (RSA) peak frequency of the ECG in rats subjected to social defeat for 4 consecutive days. Respiratory rate was recorded under anesthesia 6 days (D+10) or 26 days (D+30) after social defeat. At D+10, defeated (D) rats spent less time in the open arms of the elevated plus maze test, had heavier adrenal glands, and displayed bradypnea, unlike nondefeated animals. At D+30, all signs of anxiety had disappeared. However, one-half of the rats still displayed bradypnea (DL rats, for low respiratory rate indicated by a lower RSA frequency), whereas those with higher respiratory rate (DH rats) had recovered. Acute blockade of the dorsomedial hypothalamus (DMH) or nucleus tractus solitarii (NTS) 5-HT3 receptors reversed bradypnea in all D rats at D+10 and in DL rats at D+30. Respiratory rate was also recorded in conscious animals implanted with radiotelemetric ECG probes. DH rats recovered between D+10 and D+18, whereas DL rats remained bradypneic until D+30. In conclusion, social stress induces sustained chronic bradypnea mediated by DMH neurons and NTS 5-HT3 receptors. These changes are associated with an anxiety-like state that persists until D+10, followed by recovery. However, bradypnea may persist in one-half of the population up until D+30, despite apparent recovery of the anxiety-like state.
Collapse
Affiliation(s)
- Charly Brouillard
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Institut National de la Santé et de la Recherche Médicale, UMR-S 975, Centre National de la Recherche Scientifique, UMR 7225, Faculté de Médecine University Pierre and Marie Curie, Site Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, University Pierre and Marie Curie University Paris 06, Institut National de la Santé et de la Recherche Médicale, UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Pascal Carrive
- Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Françoise Camus
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Institut National de la Santé et de la Recherche Médicale, UMR-S 975, Centre National de la Recherche Scientifique, UMR 7225, Faculté de Médecine University Pierre and Marie Curie, Site Pitié-Salpêtrière, Paris, France
| | - Jean-Jacques Bénoliel
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Institut National de la Santé et de la Recherche Médicale, UMR-S 975, Centre National de la Recherche Scientifique, UMR 7225, Faculté de Médecine University Pierre and Marie Curie, Site Pitié-Salpêtrière, Paris, France
| | - Thomas Similowski
- Sorbonne Universités, University Pierre and Marie Curie University Paris 06, Institut National de la Santé et de la Recherche Médicale, UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
- Assistance Publique-Hôpitaux de Paris, Groupe Hospitalier Pitié-Salpêtrière, Charles Foix, Service de Pneumologie et Réanimation Médicale, Paris, France; and
| | - Caroline Sévoz-Couche
- Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, Institut National de la Santé et de la Recherche Médicale, UMR-S 975, Centre National de la Recherche Scientifique, UMR 7225, Faculté de Médecine University Pierre and Marie Curie, Site Pitié-Salpêtrière, Paris, France
- Sorbonne Universités, University Pierre and Marie Curie University Paris 06, Institut National de la Santé et de la Recherche Médicale, UMRS1158, Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
29
|
Abstract
Molecular genetics has led to major advances in the study of neurological disease over the last 2 decades. Initial advances were made in understanding specific mutations that were associated with disease, such as epilepsy and other neurological conditions. In addition to specific mutations, recent research has focused on long-lasting or permanent changes in genetic expression as an underlying substrate of acquired diseases such as epilepsy. In symptomatic epilepsy, normal brain tissue is permanently altered and develops spon taneous recurrent seizures. Evidence indicates that long-lasting changes in gene expression at both tran scriptional and post-transcriptional levels are associated with epileptogenesis. The expression of transcription factors and other regulatory proteins represent a molecular mechanism for mediating these changes. Understanding the effects of severe environmental stresses on the multiple sites of transcriptional and post-transcriptional regulation of gene expression is likely to provide important insights into the devel opment of altered neuronal function in a number of important disease states, including epilepsy. NEURO SCIENTIST 5:86-99, 1999
Collapse
Affiliation(s)
- Robert J. Delorenzo
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| | - T. Allen Morris
- Departments of Neurology, Pharmacology and Toxicology,
and Biochemistry and Molecular Biophysics Virginia Commonwealth University
Richmond, Virginia
| |
Collapse
|
30
|
Nabeka H, Shimokawa T, Doihara T, Saito S, Wakisaka H, Hamada F, Kobayashi N, Matsuda S. A prosaposin-derived Peptide alleviates kainic Acid-induced brain injury. PLoS One 2015; 10:e0126856. [PMID: 25993033 PMCID: PMC4436272 DOI: 10.1371/journal.pone.0126856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022] Open
Abstract
Four sphingolipid activator proteins (i.e., saposins A–D) are synthesized from a single precursor protein, prosaposin (PS), which exerts exogenous neurotrophic effects in vivo and in vitro. Kainic acid (KA) injection in rodents is a good model in which to study neurotrophic factor elevation; PS and its mRNA are increased in neurons and the choroid plexus in this animal model. An 18-mer peptide (LSELIINNATEELLIKGL; PS18) derived from the PS neurotrophic region prevents neuronal damage after ischemia, and PS18 is a potent candidate molecule for use in alleviating ischemia-induced learning disabilities and neuronal loss. KA is a glutamate analog that stimulates excitatory neurotransmitter release and induces ischemia-like neuronal degeneration; it has been used to define mechanisms involved in neurodegeneration and neuroprotection. In the present study, we demonstrate that a subcutaneous injection of 0.2 and 2.0 mg/kg PS18 significantly improved behavioral deficits of Wistar rats (n = 6 per group), and enhanced the survival of hippocampal and cortical neurons against neurotoxicity induced by 12 mg/kg KA compared with control animals. PS18 significantly protected hippocampal synapses against KA-induced destruction. To evaluate the extent of PS18- and KA-induced effects in these hippocampal regions, we performed histological evaluations using semithin sections stained with toluidine blue, as well as ordinal sections stained with hematoxylin and eosin. We revealed a distinctive feature of KA-induced brain injury, which reportedly mimics ischemia, but affects a much wider area than ischemia-induced injury: KA induced neuronal degeneration not only in the CA1 region, where neurons degenerate following ischemia, but also in the CA2, CA3, and CA4 hippocampal regions.
Collapse
Affiliation(s)
- Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | | | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Fuculty of Medicine, Yufu, Oita, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
31
|
Bouwknecht JA. Behavioral studies on anxiety and depression in a drug discovery environment: keys to a successful future. Eur J Pharmacol 2014; 753:158-76. [PMID: 25460021 DOI: 10.1016/j.ejphar.2014.09.051] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 08/25/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022]
Abstract
The review describes a personal journey through 25 years of animal research with a focus on the contribution of rodent models for anxiety and depression to the development of new medicines in a drug discovery environment. Several classic acute models for mood disorders are briefly described as well as chronic stress and disease-induction models. The paper highlights a variety of factors that influence the quality and consistency of behavioral data in a laboratory setting. The importance of meta-analysis techniques for study validation (tolerance interval) and assay sensitivity (Monte Carlo modeling) are demonstrated by examples that use historic data. It is essential for successful discovery of new potential drugs to maintain a high level of control in animal research and to bridge knowledge across in silico modeling, and in vitro and in vivo assays. Today, drug discovery is a highly dynamic environment in search of new types of treatments and new animal models which should be guided by enhanced two-way translation between bench and bed. Although productivity has been disappointing in the search of new and better medicines in psychiatry over the past decades, there has been and will always be an important role for in vivo models in-between preclinical discovery and clinical development. The right balance between good science and proper judgment versus a decent level of innovation, assay development and two-way translation will open the doors to a very bright future.
Collapse
|
32
|
Lkhagvasuren B, Oka T, Nakamura Y, Hayashi H, Sudo N, Nakamura K. Distribution of Fos-immunoreactive cells in rat forebrain and midbrain following social defeat stress and diazepam treatment. Neuroscience 2014; 272:34-57. [PMID: 24797330 DOI: 10.1016/j.neuroscience.2014.04.047] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/02/2014] [Accepted: 04/21/2014] [Indexed: 02/04/2023]
Abstract
The anxiolytic diazepam selectively inhibits psychological stress-induced autonomic and behavioral responses without causing noticeable suppression of other central performances. This pharmacological property of diazepam led us to the idea that neurons that exhibit diazepam-sensitive, psychological stress-induced activation are potentially those recruited for stress responses. To obtain neuroanatomical clues for the central stress circuitries, we examined the effects of diazepam on psychological stress-induced neuronal activation in broad brain regions. Rats were exposed to a social defeat stress, which caused an abrupt increase in body temperature by up to 2°C. Pretreatment with diazepam (4mg/kg, i.p.) attenuated the stress-induced hyperthermia, confirming an inhibitory physiological effect of diazepam on the autonomic stress response. Subsequently, the distribution of cells expressing Fos, a marker of neuronal activation, was examined in 113 forebrain and midbrain regions of these rats after the stress exposure and diazepam treatment. The stress following vehicle treatment markedly increased Fos-immunoreactive (IR) cells in most regions of the cerebral cortex, limbic system, thalamus, hypothalamus and midbrain, which included parts of the autonomic, neuroendocrine, emotional and arousal systems. The diazepam treatment significantly reduced the stress-induced Fos expression in many brain regions including the prefrontal, sensory and motor cortices, septum, medial amygdaloid nucleus, medial and lateral preoptic areas, parvicellular paraventricular hypothalamic nucleus, dorsomedial hypothalamus, perifornical nucleus, tuberomammillary nucleus, association, midline and intralaminar thalami, and median and dorsal raphe nuclei. In contrast, diazepam increased Fos-IR cells in the central amygdaloid nucleus, medial habenular nucleus, ventromedial hypothalamic nucleus and magnocellular lateral hypothalamus. These results provide important information for elucidating the neural circuitries that mediate the autonomic and behavioral responses to psychosocial stressors.
Collapse
Affiliation(s)
- B Lkhagvasuren
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - T Oka
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Y Nakamura
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - H Hayashi
- Division of Psychosomatic Medicine, Department of Neurology, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahata-Nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - N Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - K Nakamura
- Career-Path Promotion Unit for Young Life Scientists, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012, Japan.
| |
Collapse
|
33
|
Imbe H, Kimura A, Donishi T, Kaneoke Y. Repeated forced swim stress enhances CFA-evoked thermal hyperalgesia and affects the expressions of pCREB and c-Fos in the insular cortex. Neuroscience 2013; 259:1-11. [PMID: 24291670 DOI: 10.1016/j.neuroscience.2013.11.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 01/26/2023]
Abstract
Stress affects brain activity and promotes long-term changes in multiple neural systems. Exposure to stressors causes substantial effects on the perception and response to pain. In several animal models, chronic stress produces lasting hyperalgesia. The insular (IC) and anterior cingulate cortices (ACC) are the regions exhibiting most reliable pain-related activity. And the IC and ACC play an important role in pain modulation via the descending pain modulatory system. In the present study we examined the expression of phospho-cAMP response element-binding protein (pCREB) and c-Fos in the IC and ACC after forced swim stress (FS) and complete Freund's adjuvant (CFA) injection to clarify changes in the cerebral cortices that affect the activity of the descending pain modulatory system in the rats with stress-induced hyperalgesia. FS (day 1, 10min; days 2-3, 20min) induced an increase in the expression of pCREB and c-Fos in the anterior IC (AIC). CFA injection into the hindpaw after the FS shows significantly enhanced thermal hyperalgesia and induced a decrease in the expression of c-Fos in the AIC and the posterior IC (PIC). Quantitative image analysis showed that the numbers of c-Fos-immunoreactive neurons in the left AIC and PIC were significantly lower in the FS+CFA group (L AIC, 95.9±6.8; L PIC, 181.9±23.1) than those in the naive group (L AIC, 151.1±19.3, p<0.05; L PIC, 274.2±37.3, p<0.05). These findings suggest a neuroplastic change in the IC after FS, which may be involved in the enhancement of CFA-induced thermal hyperalgesia through dysfunction of the descending pain modulatory system.
Collapse
Affiliation(s)
- H Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan.
| | - A Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan
| | - T Donishi
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan
| | - Y Kaneoke
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan
| |
Collapse
|
34
|
Karabeg MM, Grauthoff S, Kollert SY, Weidner M, Heiming RS, Jansen F, Popp S, Kaiser S, Lesch KP, Sachser N, Schmitt AG, Lewejohann L. 5-HTT deficiency affects neuroplasticity and increases stress sensitivity resulting in altered spatial learning performance in the Morris water maze but not in the Barnes maze. PLoS One 2013; 8:e78238. [PMID: 24167611 PMCID: PMC3805519 DOI: 10.1371/journal.pone.0078238] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 09/11/2013] [Indexed: 12/20/2022] Open
Abstract
The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM.
Collapse
Affiliation(s)
- Margherita M. Karabeg
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Sandra Grauthoff
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Sina Y. Kollert
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Magdalena Weidner
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Rebecca S. Heiming
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Friederike Jansen
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Sandy Popp
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Sylvia Kaiser
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Klaus-Peter Lesch
- Division of Molecular Psychiatry, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | - Norbert Sachser
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
| | - Angelika G. Schmitt
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
- * E-mail:
| | - Lars Lewejohann
- Department of Behavioral Biology, University of Münster, Münster, Germany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Münster, Germany
- Behavioural Biology, University of Osnabrück, Osnabrück, Germany
| |
Collapse
|
35
|
Bourne AR, Mohan G, Stone MF, Pham MQ, Schultz CR, Meyerhoff JL, Lumley LA. Olfactory cues increase avoidance behavior and induce Fos expression in the amygdala, hippocampus and prefrontal cortex of socially defeated mice. Behav Brain Res 2013; 256:188-96. [PMID: 23968590 DOI: 10.1016/j.bbr.2013.08.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/10/2013] [Accepted: 08/13/2013] [Indexed: 11/29/2022]
Abstract
Genes and proteins of the Fos family are used as markers of neuronal activity and can be modulated by stress. This study investigated whether social defeat (SD) or exposure to an olfactory cue associated with the SD experience activated Fos and FosB/DeltaFosB (ΔFosB) expression in brain regions implicated in the development of post-traumatic stress disorder. Mice exposed to acute SD showed more Fos positive cells in the basolateral amygdala (BLA), CA1 of the hippocampus and the medial prefrontal cortex (mPFC) 1h after SD, and had greater expression of the more persistent FosB/ΔFosB protein in the BLA 24 h after SD compared to controls. Mice exposed to an olfactory cue 24 h or 7 days after SD had higher levels of Fos expression in all three regions 1h after exposure to the cue, and displayed increased avoidance behavior compared to controls. While the avoidance response dissipated with time (less at 7 day vs 24 h after social defeat), Fos expression in the mPFC and CA1 in response to an olfactory cue was greater at 7 days relative to 24 h after social defeat. The results suggest additional processing of the cue-stress association and may provide further support for a role of the mPFC in fear inhibition. These findings may have implications for brain regions and circuitry involved in the avoidance of cues associated with a stressful event that may lead to context-dependent adaptive or maladaptive behavior.
Collapse
Affiliation(s)
- A R Bourne
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Xue YT, Mei XF, Su WG, Li YL, Meng XQ, Zhang J. Effect of Anger on Endothelial-derived Vasoactive Factors in Spontaneously Hypertensive Rats. Heart Lung Circ 2013; 22:291-6. [DOI: 10.1016/j.hlc.2012.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/02/2012] [Accepted: 11/02/2012] [Indexed: 11/28/2022]
|
37
|
Crawford LK, Rahman SF, Beck SG. Social stress alters inhibitory synaptic input to distinct subpopulations of raphe serotonin neurons. ACS Chem Neurosci 2013; 4:200-9. [PMID: 23336059 DOI: 10.1021/cn300238j] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 01/07/2013] [Indexed: 12/25/2022] Open
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders, yet much is unknown about the underlying mechanisms. The dorsal raphe (DR) is at the crux of the anxiety-inducing effects of uncontrollable stress, a key component of models of anxiety. Though DR serotonin (5-HT) neurons play a prominent role, anxiety-associated changes in the physiology of 5-HT neurons remain poorly understood. A 5-day social defeat model of anxiety produced a multifaceted, anxious phenotype in intruder mice that included increased avoidance behavior in the open field test, increased stress-evoked grooming, and increased bladder and heart weights when compared to control mice. Intruders were further compared to controls using electrophysiology recordings conducted in midbrain slices wherein recordings targeted 5-HT neurons of the ventromedial (vmDR) and lateral wing (lwDR) subfields of the DR. Though defining membrane characteristics of 5-HT neurons were unchanged, γ-aminobutyric-acid-mediated (GABAergic) synaptic regulation of 5-HT neurons was altered in a topographically specific way. In the vmDR of intruders, there was a decrease in the frequency and amplitude of GABAergic spontaneous inhibitory postsynaptic currents (sIPSCs). However, in the lwDR, there was an increase in the strength of inhibitory signals due to slower sIPSC kinetics. Synaptic changes were selective for GABAergic input, as glutamatergic synaptic input was unchanged in intruders. The distinct inhibitory regulation of DR subfields provides a mechanism for increased 5-HT output in vmDR target regions and decreased 5-HT output in lwDR target regions, divergent responses to uncontrollable stress that have been reported in the literature but were previously poorly understood.
Collapse
Affiliation(s)
- LaTasha K. Crawford
- Anesthesiology Department, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania,
United States
- Mahoney Institute
of Neurological Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United
States
| | - Shumaia F. Rahman
- Anesthesiology Department, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania,
United States
| | - Sheryl G. Beck
- Anesthesiology Department, Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania,
United States
- Mahoney Institute
of Neurological Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States
- University of Pennsylvania Perelman School of Medicine, Philadelphia,
Pennsylvania, United States
| |
Collapse
|
38
|
Stress-induced differences in the limbic system Fos expression are more pronounced in rats differing in responsiveness to novelty than social position. Brain Res Bull 2012; 89:31-40. [DOI: 10.1016/j.brainresbull.2012.06.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 06/11/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
|
39
|
Miczek KA, Nikulina EM, Takahashi A, Covington HE, Yap JJ, Boyson CO, Shimamoto A, de Almeida RMM. Gene expression in aminergic and peptidergic cells during aggression and defeat: relevance to violence, depression and drug abuse. Behav Genet 2011; 41:787-802. [PMID: 21416141 PMCID: PMC3806208 DOI: 10.1007/s10519-011-9462-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/04/2011] [Indexed: 01/19/2023]
Abstract
In this review, we examine how experiences in social confrontations alter gene expression in mesocorticolimbic cells. The focus is on the target of attack and threat due to the prominent role of social defeat stress in the study of coping mechanisms and victimization. The initial operational definition of the socially defeated mouse by Ginsburg and Allee (1942) enabled the characterization of key endocrine, cardiovascular, and metabolic events during the initial response to an aggressive opponent and during the ensuing adaptations. Brief episodes of social defeat stress induce an augmented response to stimulant challenge as reflected by increased locomotion and increased extracellular dopamine (DA) in the nucleus accumbens (NAC). Cells in the ventral tegmental area (VTA) that project to the NAC were more active as indicated by increased expression of c-fos and Fos-immunoreactivity and BDNF. Intermittent episodes of social defeat stress result in increased mRNA for MOR in brainstem and limbic structures. These behavioral and neurobiological indices of sensitization persist for several months after the stress experience. The episodically defeated rats also self-administered intravenous cocaine during continuous access for 24 h ("binge"). By contrast, continuous social stress, particularly in the form of social subordination stress, leads to reduced appetite, compromised endocrine activities, and cardiovascular and metabolic abnormalities, and prefer sweets less as index of anhedonia. Cocaine challenges in subordinate rats result in a blunted psychomotor stimulant response and a reduced DA release in NAC. Subordinate rats self-administer cocaine less during continuous access conditions. These contrasting patterns of social stress result from continuous vs. intermittent exposure to social stress, suggesting divergent neuroadaptations for increased vulnerability to cocaine self-administration vs. deteriorated reward mechanisms characteristic of depressive-like profiles.
Collapse
Affiliation(s)
- Klaus A Miczek
- Department of Psychology, Tufts University, 530 Boston Ave. (Bacon Hall), Medford, MA 02155, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Matrov D, Vonk A, Herm L, Rinken A, Harro J. Activating effects of chronic variable stress in rats with different exploratory activity: association with dopamine d(1) receptor function in nucleus accumbens. Neuropsychobiology 2011; 64:110-22. [PMID: 21701229 DOI: 10.1159/000325224] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/23/2011] [Indexed: 01/11/2023]
Abstract
BACKGROUND/AIMS Rats display persistent behavioural phenotypes of low (LE) versus high (HE) exploratory activity in the exploration box paradigm. LE rats that prefer passive coping strategies show differential dopaminergic activity in the striatum. The main hypothesis of this study was that chronic variable stress (CVS) would have a higher impact on LE rats. METHODS Animals were submitted to a CVS regimen lasting 32 days that was followed by a behavioural test battery. The functional states of their dopamine D(1) and D(2) receptors were measured in the striatum and nucleus accumbens (NAcc). Cerebral oxidative metabolism was assessed via cytochrome c oxidase histochemistry in 65 brain regions. RESULTS CVS decreased weight gain, to a higher extent in LE rats, and lowered the sucrose preference after the first week, but habituation to the anhedonic effect had developed by the end of the experiment. CVS did not change the behavioural phenotypes initially assigned. No effect of stress on D(2) receptor function was found. Chronically stressed animals exhibited higher levels of social interaction and D(1) receptor-mediated cAMP accumulation in the NAcc, but not in the striatum. CVS was associated with higher oxidative metabolism levels in the anteroventral thalamus, median raphe nuclei and central periaqueductal grey matter. These changes after stress did not depend upon the exploratory phenotype. CONCLUSION This study revealed changes in brain biochemistry after habituation to CVS that might be implicated in successful adaptation to chronic stress.
Collapse
Affiliation(s)
- Denis Matrov
- Department of Psychology, Centre of Behavioural and Health Sciences, University of Tartu, Tartu, Estonia
| | | | | | | | | |
Collapse
|
41
|
Mapping patterns of depression-related brain regions with cytochrome oxidase histochemistry: Relevance of animal affective systems to human disorders, with a focus on resilience to adverse events. Neurosci Biobehav Rev 2011; 35:1876-89. [DOI: 10.1016/j.neubiorev.2011.02.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 02/24/2011] [Accepted: 02/25/2011] [Indexed: 12/28/2022]
|
42
|
Lin Y, Sarfraz Y, Jensen A, Dunn AJ, Stone EA. Participation of brainstem monoaminergic nuclei in behavioral depression. Pharmacol Biochem Behav 2011; 100:330-9. [PMID: 21893082 DOI: 10.1016/j.pbb.2011.08.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 08/16/2011] [Accepted: 08/22/2011] [Indexed: 01/15/2023]
Abstract
Several lines of research have now suggested the controversial hypothesis that the central noradrenergic system acts to exacerbate depression as opposed to having an antidepressant function. If correct, lesions of this system should increase resistance to depression, which has been partially but weakly supported by previous studies. The present study reexamined this question using two more recent methods to lesion noradrenergic neurons in mice: intraventricular (ivt) administration of either the noradrenergic neurotoxin, DSP4, or of a dopamine-β-hydroxylase-saporin immunotoxin (DBH-SAP ITX) prepared for mice. Both agents given 2 weeks prior were found to significantly increase resistance to depressive behavior in several tests including acute and repeated forced swims, tail suspension and endotoxin-induced anhedonia. Both agents also increased locomotor activity in the open field. Cell counts of brainstem monoaminergic neurons, however, showed that both methods produced only partial lesions of the locus coeruleus and also affected the dorsal raphe or ventral tegmental area. Both the cell damage and the antidepressant and hyperactive effects of ivt DSP4 were prevented by a prior i.p. injection of the NE uptake blocker, reboxetine. The results are seen to be consistent with recent pharmacological experiments showing that noradrenergic and serotonergic systems function to inhibit active behavior. Comparison with previous studies utilizing more complete and selective LC lesions suggest that mouse strain, lesion size or involvement of multiple neuronal systems are critical variables in the behavioral and affective effects of monoaminergic lesions and that antidepressant effects and hyperactivity may be more likely to occur if lesions are partial and/or involve multiple monoaminergic systems.
Collapse
Affiliation(s)
- Yan Lin
- Department of Psychiatry, New York University Langone School of Medicine, 550 First Ave, New York, NY 10016, United States
| | | | | | | | | |
Collapse
|
43
|
Abstract
This protocol describes a simplified method for inducing a chronic depression-like state in mice that is based on the repeated open-space forced swim method originally developed for rats. The method consists of mice swimming daily in lukewarm water in rat tub cages, for 15 min/day for 4 days, and thereafter once per week. This procedure produces a progressive decrease in distance swum and a concomitant increase in immobility (floating) in ∼70% of the mice, both of which persist unaltered for weeks. The model has predictive, face, and construct validity and has a number of advantages over previous methods in that it utilizes very mild stress, is short in duration, and is easily standardized. Moreover, since it utilizes a greater swimming area than the traditional (Porsolt) method it can be used to study interactions of depressive behavior with behavioral flexibility and perseveration.
Collapse
Affiliation(s)
- Eric A Stone
- Department of Psychiatry, New York University Langone School of Medicine, New York, New York, USA
| | | |
Collapse
|
44
|
Cognitive and neural correlates of depression-like behaviour in socially defeated mice: an animal model of depression with cognitive dysfunction. Int J Neuropsychopharmacol 2011; 14:303-17. [PMID: 20735879 PMCID: PMC3432579 DOI: 10.1017/s1461145710000945] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human depression is associated with cognitive deficits. It is critical to have valid animal models in order to investigate mechanisms and treatment strategies for these associated conditions. The goal of this study was to determine the association of cognitive dysfunction with depression-like behaviour in an animal model of depression and investigate the neural circuits underlying the behaviour. Mice that were exposed to social defeat for 14 d developed depression-like behaviour, i.e. anhedonia and social avoidance as indicated by reduced sucrose preference and decreased social interaction. The assessment of cognitive performance of defeated mice demonstrated impaired working memory in the T-maze continuous alternation task and enhanced fear memory in the contextual and cued fear-conditioning tests. In contrast, reference learning and memory in the Morris water maze test were intact in defeated mice. Neuronal activation following chronic social defeat was investigated by c-fosin-situ hybridization. Defeated mice exhibited preferential neural activity in the prefrontal cortex, cingulate cortex, hippocampal formation, septum, amygdala, and hypothalamic nuclei. Taken together, our results suggest that the chronic social defeat mouse model could serve as a valid animal model to study depression with cognitive impairments. The patterns of neuronal activation provide a neural basis for social defeat-induced changes in behaviour.
Collapse
|
45
|
Badowska-Szalewska E, Spodnik E, Klejbor I, Ludkiewicz B, Moryś J. Do two models of acute and chronic stress stimulation influence the amount of nerve growth factor (NGF) and its receptor TrkA in the hippocampal neurons of middle aged rats? Brain Res 2011; 1384:97-109. [PMID: 21303670 DOI: 10.1016/j.brainres.2011.01.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/27/2011] [Accepted: 01/31/2011] [Indexed: 01/25/2023]
Abstract
Our study aimed to explore the influence of two different stressors: acute (once for 15 min) and chronic (15 min daily for 21 days) exposure to high light open field (HL-OF) or forced swim (FS) on the density of nerve growth factor (NGF) and tyrosine kinase A (TrkA) immunoreactive neurons in the hippocampal CA1 and CA3 pyramidal cell layers and dentate gyrus (DG) granule cell layer in middle aged (360 days old; P360; P, postnatal day) rats. In contrast to non-stressed animals, acute HL-OF stimulation resulted in an increase (p<0.001) in the density of NGF-ir cells in CA1, CA3, DG, whereas chronic HL-OF produced no changes in all hippocampal regions. The rats which underwent acute and chronic FS tests showed no statistically significant differences in the density of NGF-ir containing cells in the CA1, CA3, and DG subfields compared with control rats. Except for DG, where after 21 days of FS the density of TrkA-ir neurons was found to increase (p<0.05) in comparison to unstressed rats, no changes were noted in the density of TrkA-ir in the studied hippocampal structures as a result of acute and chronic HL-OF or FS exposure. These results indicate that acute HL-OF stress stimulation was the only factor inducing changes in the density of NGF-ir containing neurons in the hippocampal CA1, CA3, and DG of middle aged rats. In respect of the density of NGF-ir and TrkA-ir cells in the hippocampal structures, prolonged exposure to HL-OF or FS stressors did not constitute an aggravating factor for rats in the studied ontogenetic period.
Collapse
Affiliation(s)
- Ewa Badowska-Szalewska
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, Dębinki 1 St., 80–211 Gdańsk, Poland.
| | | | | | | | | |
Collapse
|
46
|
Pan Y, Xu L, Young KA, Wang Z, Zhang Z. Agonistic encounters and brain activation in dominant and subordinate male greater long-tailed hamsters. Horm Behav 2010; 58:478-84. [PMID: 20471386 PMCID: PMC2917492 DOI: 10.1016/j.yhbeh.2010.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 04/28/2010] [Accepted: 05/04/2010] [Indexed: 11/17/2022]
Abstract
During an agonistic encounter test, dominant male greater long-tailed hamsters (Tscheskia triton) initiated attacks sooner and displayed higher levels of aggression and flank marking behavior than their subordinate counterparts. Accordingly, subordinate males exhibited more defensive behavior than dominant ones. Specific patterns of neuronal activation, measured by Fos-immunoreactive staining (Fos-ir), were found in the hamster brain following agonistic interactions. Increased Fos-ir was observed in the bed nucleus of the stria terminalis (BST), ventromedial hypothalamus (VMH), and medial (MeA) and anterior cortical (ACo) nuclei of the amygdala (AMYG) in both dominant and subordinate males. In contrast, dominant males had significantly higher Fos-ir densities in the medial preoptic area (MPOA) than subordinate males, whereas subordinate males expressed higher densities of Fos-ir in the anterior hypothalamus (AH) and central nucleus of the amygdala (CeA). Additionally, Fos-ir levels in the MPOA were significantly correlated with aggression and Fos-ir levels in the AH and CeA were correlated with defensive behavior. Together, our data indicate distinct patterns of neuronal activation associated with agonistic encounters in a behavior-specific manner in male greater long-tailed hamsters.
Collapse
Affiliation(s)
- Yongliang Pan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China
| | | | | | | | | |
Collapse
|
47
|
O'Mahony CM, Sweeney FF, Daly E, Dinan TG, Cryan JF. Restraint stress-induced brain activation patterns in two strains of mice differing in their anxiety behaviour. Behav Brain Res 2010; 213:148-54. [PMID: 20435071 DOI: 10.1016/j.bbr.2010.04.038] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 04/20/2010] [Accepted: 04/23/2010] [Indexed: 02/05/2023]
Abstract
Genetically identical inbred mouse strains are one of the most useful tools in dissecting the genetic basis of complex disorders. C57BL/6 and BALB/c mice differ markedly in emotionality. In particular, BALB/c mice are more stress-sensitive and have been proposed to be a model of pathological anxiety. There is a paucity of studies investigating whether brain activation in response to a stressor is different in these two strains. To this end, having confirmed that the strains differ in anxiety responses in a light-dark box test, we then examined if restraint stress induced increases in c-Fos protein expression in selective regions of the mouse brain. The areas of interest analysed were the paraventricular nucleus (PVN) of the hypothalamus, prefrontal cortex (PFC), the paraventricular thalamic nucleus (PV) and the hippocampus. These areas were chosen due to their known involvement in stress response. Our data demonstrate that BALB/c showed a similar cellular activation pattern to stress, with respect to c-Fos expression, in the PVN, PV and in the hippocampus. On the other hand, BALB/c showed markedly blunted stress-induced brain activation compared with stressed C57BL/6 mice in both the CG1 and CG2 regions of the PFC. The lower levels of stress-induced activity in high anxiety BALB/c mice, possibly indicate a circuit dysregulation at the cortico-limbic level in response to stress.
Collapse
Affiliation(s)
- Cliona M O'Mahony
- Neuropharmacology Research Group, University College Cork, Cork, Ireland
| | | | | | | | | |
Collapse
|
48
|
Caldwell EE, Riccio DC. Alcohol self-administration in rats: Modulation by temporal parameters related to repeated mild social defeat stress. Alcohol 2010; 44:265-74. [PMID: 20682194 DOI: 10.1016/j.alcohol.2010.02.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 11/24/2009] [Accepted: 02/10/2010] [Indexed: 02/04/2023]
Abstract
Clinical evidence often points to stress as a cause or an antecedent to the development of drinking problems. Yet, animal models of alcohol drinking have yielded inconsistent evidence for a direct contribution of stress, and many studies have shown that stress suppresses alcohol consumption. The aim of the present study was to examine alcohol reward in animals exposed to repeated, mild social stress, and to determine whether alcohol drinking changes as a function of the temporal parameters of alcohol access relative to the stressor. Male Long-Evans rats, trained to self-administer a 6% (wt/vol) alcohol solution using a sucrose-fading procedure, were exposed to five brief (5min) episodes of contact with an aggressive male. Full contact with the resident was limited to a single episode of defeat, whereas the following four encounters occurred with the subjects behind a protective wire mesh cage. Alcohol self-administration was measured 1 week prior to stress (baseline), on each day of stress exposure, and 1 week following stress. Separate groups of animals were randomly assigned to self-administer alcohol immediately prior, immediately following, or 2h following defeat stress. Stress preferentially increased alcohol drinking on stress-exposure days, and further elevated the amount consumed 1 week following stress. Temporal parameters of alcohol access relative to the stressor were found to be important. Average alcohol consumption was greatest for animals drinking 2h postdefeat, whereas animals drinking immediately prior to or following the stressor did not show a significant increase in alcohol consumption. Results suggest that mild social defeat stress is sufficient to elicit increases in alcohol consumption in nonpreferring strains of rodents, provided alcohol access occurs at an optimal time interval after the social defeat experience.
Collapse
|
49
|
Böer U, Noll C, Cierny I, Krause D, Hiemke C, Knepel W. A common mechanism of action of the selective serotonin reuptake inhibitors citalopram and fluoxetine: Reversal of chronic psychosocial stress-induced increase in CRE/CREB-directed gene transcription in transgenic reporter gene mice. Eur J Pharmacol 2010; 633:33-8. [DOI: 10.1016/j.ejphar.2010.01.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/15/2009] [Accepted: 01/20/2010] [Indexed: 12/28/2022]
|
50
|
Urocortin-1 and -2 double-deficient mice show robust anxiolytic phenotype and modified serotonergic activity in anxiety circuits. Mol Psychiatry 2010; 15:426-41, 339. [PMID: 19884890 DOI: 10.1038/mp.2009.115] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The urocortin (Ucn) family of neuropeptides is suggested to be involved in homeostatic coping mechanisms of the central stress response through the activation of corticotropin-releasing factor receptor type 2 (CRFR2). The neuropeptides, Ucn1 and Ucn2, serve as endogenous ligands for the CRFR2, which is highly expressed by the dorsal raphe serotonergic neurons and is suggested to be involved in regulating major component of the central stress response. Here, we describe genetically modified mice in which both Ucn1 and Ucn2 are developmentally deleted. The double knockout mice showed a robust anxiolytic phenotype and altered hypothalamic-pituitary-adrenal axis activity compared with wild-type mice. The significant reduction in anxiety-like behavior observed in these mice was further enhanced after exposure to acute stress, and was correlated with the levels of serotonin and 5-hydroxyindoleacetic acid measured in brain regions associated with anxiety circuits. Thus, we propose that the Ucn/CRFR2 serotonergic system has an important role in regulating homeostatic equilibrium under challenge conditions.
Collapse
|