1
|
Schumacher R, Rossetti MF, Canesini G, Gaydou L, Garcia AP, Lazzarino GP, Fernandez PR, Stoker C, Carrió MJ, Andreoli MF, Ramos JG. Neonatal overfeeding alters the functioning of the mesolimbic dopaminergic circuitry involving changes in DNA methylation and effects on feeding behavior. J Nutr Biochem 2023; 122:109451. [PMID: 37748623 DOI: 10.1016/j.jnutbio.2023.109451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/23/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023]
Abstract
Mesolimbic dopaminergic circuit is essential for food reward and motivational behaviors and can contribute to weight gain and obesity. Litter reduction is a classical model for studying the effects of neonatal overfeeding and overweight. Litters of Wistar rats were reduced to 4 pups/dam for small litter (SL) and 10 pups/dam for normal litter at postnatal day (PND) 4. Immediately after performing the feeding behavior tests, the animals were sacrificed in PND21 and PND90. The ventral tegmental area (VTA), Nucleus Accumbens Core (NAcC) and Shell (NAcSh) were isolated from frozen brain sections using the Palkovits micropunch technique. RNA and DNA were extracted from these areas, gene expression was measured by RT-qPCR and DNA methylation levels were measured by MSRM-qPCR technique. SL-PND21 animals presented increased expression levels of Tyrosine Hydroxylase and Dopamine Receptor D2 in VTA, decreased expression levels of dopamine active transporter (DAT) in VTA, and higher expression levels of DAT in NAcC. On the other hand, SL-PND90 animals showed decreased expression levels of Dopamine Receptor D1 and higher expression of DAT in NAcSh. These animals also evidenced impaired sensory-specific satiety. In addition, altered promoter methylation was observed at weaning, and remained in adulthood. This work demonstrates that neonatal overfeeding induces disruptions in the mesolimbic dopaminergic circuitry and causes alterations in feeding behavior from weaning to adulthood, suggesting that the neonatal period is critical for the normal development of dopaminergic circuit that impact on feeding behavior.
Collapse
Affiliation(s)
- Rocio Schumacher
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Maria Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Luisa Gaydou
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ana Paula Garcia
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Gisela Paola Lazzarino
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Pamela Rocio Fernandez
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina
| | - Cora Stoker
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Maria Josefina Carrió
- Departamento de Matemática y Laboratorio de Investigaciones y Servicios en Bioestadística (LISEB), FBCB-UNL, Santa Fe, Argentina
| | - Maria Florencia Andreoli
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa-CONICET, Santa Fe, Argentina; Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
2
|
Won SY, You ST, Choi SW, McLean C, Shin EY, Kim EG. cAMP Response Element Binding-Protein- and Phosphorylation-Dependent Regulation of Tyrosine Hydroxylase by PAK4: Implications for Dopamine Replacement Therapy. Mol Cells 2021; 44:493-499. [PMID: 34238765 PMCID: PMC8334344 DOI: 10.14348/molcells.2021.2250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 03/29/2021] [Accepted: 05/13/2021] [Indexed: 01/23/2023] Open
Abstract
Parkinson's disease (PD) is characterized by a progressive loss of dopamine-producing neurons in the midbrain, which results in decreased dopamine levels accompanied by movement symptoms. Oral administration of l-3,4-dihydroxyphenylalanine (L-dopa), the precursor of dopamine, provides initial symptomatic relief, but abnormal involuntary movements develop later. A deeper understanding of the regulatory mechanisms underlying dopamine homeostasis is thus critically needed for the development of a successful treatment. Here, we show that p21-activated kinase 4 (PAK4) controls dopamine levels. Constitutively active PAK4 (caPAK4) stimulated transcription of tyrosine hydroxylase (TH) via the cAMP response element-binding protein (CREB) transcription factor. Moreover, caPAK4 increased the catalytic activity of TH through its phosphorylation of S40, which is essential for TH activation. Consistent with this result, in human midbrain tissues, we observed a strong correlation between phosphorylated PAK4S474, which represents PAK4 activity, and phosphorylated THS40, which reflects their enzymatic activity. Our findings suggest that targeting the PAK4 signaling pathways to restore dopamine levels may provide a new therapeutic approach in PD.
Collapse
Affiliation(s)
- So-Yoon Won
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| | - Soon-Tae You
- Department of Neurosurgery, The Catholic University of Korea, St. Vincent’s Hospital, Suwon 16247, Korea
| | - Seung-Won Choi
- Daegu Gyeongbuk Institute of Science & Technology, Daegu 42988, Korea
| | - Catriona McLean
- Department of Pathology, The Alfred Hospital, Melbourne 3004, Australia
| | - Eun-Young Shin
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| | - Eung-Gook Kim
- Department of Biochemistry, Chungbuk National University College of Medicine, Cheongju 28644, Korea
| |
Collapse
|
3
|
Kubo A, Sujino M, Masumoto KH, Fujioka A, Terashima T, Shigeyoshi Y, Nagano M. Profiles of Periglomerular Cells in the Olfactory Bulb of Prokineticin Type 2 Receptor-deficient Mice. Acta Histochem Cytochem 2017; 50:95-104. [PMID: 28522884 PMCID: PMC5433939 DOI: 10.1267/ahc.17001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/22/2017] [Indexed: 01/25/2023] Open
Abstract
Both prokineticin receptor 2 (pkr2) and prokineticin 2 (pk2) gene-deficient mice have hypoplasia of the main olfactory bulb (MOB). This hypoplasia has been attributed to disruption of the glomerulus that is caused by loss of afferent projection from olfactory sensory neurons (OSN), and to the impaired migration of granule cells, a type of interneuron. In the present study, we examined whether migration of the second type of interneuron, periglomerular cells (PGC), is dependent on the pkr2 expression by observing the localization of distinct subpopulations of PGC: calretinin (CR)-, calbindin (CB)- and tyrosine hydroxylase (TH)-expressing neurons. In the Pkr2−/− mice, the construction of the layered structure of the MOB was partially preserved, with the exception of the internal plexiform layer (IPL) and the glomerular layer (GL). In the outermost layer of the MOB, abundant CR- and CB-immunopositive neurons were observed in the hypoplastic olfactory bulb. In addition, although markedly decreased, TH-immunopositive neurons were also observed in the outermost cell-dense region in the Pkr2−/−. The findings suggest that the migration of PGC to the MOB, as well as the migration from the core to the surface region of the MOB, is not driven by the PK2-PKR2 system.
Collapse
Affiliation(s)
- Atsuko Kubo
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine
| | - Mitsugu Sujino
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine
| | - Koh-hei Masumoto
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine
| | - Atsuko Fujioka
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine
| | - Toshio Terashima
- Division of Anatomy and Developmental Neurobiology, Department of Cell Biology and Physiology, Kobe University Graduate School of Medicine
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Kindai University Faculty of Medicine
| |
Collapse
|
4
|
Grafe LA, Flanagan-Cato LM. Differential effects of mineralocorticoid and angiotensin II on incentive and mesolimbic activity. Horm Behav 2016; 79:28-36. [PMID: 26730722 PMCID: PMC4765502 DOI: 10.1016/j.yhbeh.2015.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 01/22/2023]
Abstract
The controls of thirst and sodium appetite are mediated in part by the hormones aldosterone and angiotensin II (AngII). The present study examined the behavioral and neural mechanisms of altered effort-value in animals treated with systemic mineralocorticoids, intracerebroventricular AngII, or both. First, rats treated with mineralocorticoid and AngII were tested in the progressive ratio operant task. The willingness to work for sodium versus water depended on hormonal treatment. In particular, rats treated with both mineralocorticoid and AngII preferentially worked for access to sodium versus water compared with rats given only one of these hormones. Second, components of the mesolimbic dopamine pathway were examined for modulation by mineralocorticoids and AngII. Based on cFos immunohistochemistry, AngII treatment activated neurons in the ventral tegmental area and nucleus accumbens, with no enhancement by mineralocorticoid pretreatment. In contrast, Western blot analysis revealed that combined hormone treatment increased levels of phospho-tyrosine hydroxylase in the ventral tegmental area. Thus, mineralocorticoid and AngII treatments differentially engaged the mesolimbic pathway based on tyrosine hydroxylase levels versus cFos activation.
Collapse
Affiliation(s)
- Laura A Grafe
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Loretta M Flanagan-Cato
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, USA; Mahoney Institute of Neurological Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Selective inhibition of HDAC8 decreases neuroblastoma growth in vitro and in vivo and enhances retinoic acid-mediated differentiation. Cell Death Dis 2015; 6:e1657. [PMID: 25695609 PMCID: PMC4669789 DOI: 10.1038/cddis.2015.24] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/29/2014] [Accepted: 01/12/2015] [Indexed: 01/07/2023]
Abstract
For differentiation-defective malignancies, compounds that modulate transcription, such as retinoic acid and histone deacetylase (HDAC) inhibitors, are of particular interest. HDAC inhibitors are currently under investigation for the treatment of a broad spectrum of cancer diseases. However, one clinical drawback is class-specific toxicity of unselective inhibitors, limiting their full anticancer potential. Selective targeting of individual HDAC isozymes in defined tumor entities may therefore be an attractive alternative treatment approach. We have previously identified HDAC family member 8 (HDAC8) as a novel target in childhood neuroblastoma. Using small-molecule inhibitors, we now demonstrate that selective inhibition of HDAC8 exhibits antineuroblastoma activity without toxicity in two xenograft mouse models of MYCN oncogene-amplified neuroblastoma. In contrast, the unselective HDAC inhibitor vorinostat was more toxic in the same models. HDAC8-selective inhibition induced cell cycle arrest and differentiation in vitro and in vivo. Upon combination with retinoic acid, differentiation was significantly enhanced, as demonstrated by elongated neurofilament-positive neurites and upregulation of NTRK1. Additionally, MYCN oncogene expression was downregulated in vitro and tumor cell growth was markedly reduced in vivo. Mechanistic studies suggest that cAMP-response element-binding protein (CREB) links HDAC8- and retinoic acid-mediated gene transcription. In conclusion, HDAC-selective targeting can be effective in tumors exhibiting HDAC isozyme-dependent tumor growth in vivo and can be combined with differentiation-inducing agents.
Collapse
|
6
|
Espach Y, Lochner A, Strijdom H, Huisamen B. ATM Protein Kinase Signaling, Type 2 Diabetes and Cardiovascular Disease. Cardiovasc Drugs Ther 2015; 29:51-8. [DOI: 10.1007/s10557-015-6571-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Complex molecular regulation of tyrosine hydroxylase. J Neural Transm (Vienna) 2014; 121:1451-81. [PMID: 24866693 DOI: 10.1007/s00702-014-1238-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 05/04/2014] [Indexed: 12/16/2022]
Abstract
Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis, is strictly controlled by several interrelated regulatory mechanisms. Enzyme synthesis is controlled by epigenetic factors, transcription factors, and mRNA levels. Enzyme activity is regulated by end-product feedback inhibition. Phosphorylation of the enzyme is catalyzed by several protein kinases and dephosphorylation is mediated by two protein phosphatases that establish a sensitive process for regulating enzyme activity on a minute-to-minute basis. Interactions between tyrosine hydroxylase and other proteins introduce additional layers to the already tightly controlled production of catecholamines. Tyrosine hydroxylase degradation by the ubiquitin-proteasome coupled pathway represents yet another mechanism of regulation. Here, we revisit the myriad mechanisms that regulate tyrosine hydroxylase expression and activity and highlight their physiological importance in the control of catecholamine biosynthesis.
Collapse
|
8
|
Polanski W, Reichmann H, Gille G. Stimulation, protection and regeneration of dopaminergic neurons by 9-methyl-β-carboline: a new anti-Parkinson drug? Expert Rev Neurother 2014; 11:845-60. [DOI: 10.1586/ern.11.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
9
|
NGF-induced cell differentiation and gene activation is mediated by integrative nuclear FGFR1 signaling (INFS). PLoS One 2013; 8:e68931. [PMID: 23874817 PMCID: PMC3707895 DOI: 10.1371/journal.pone.0068931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/04/2013] [Indexed: 11/19/2022] Open
Abstract
Nerve growth factor (NGF) is the founding member of the polypeptide neurotrophin family responsible for neuronal differentiation. To determine whether the effects of NGF rely upon novel Integrative Nuclear FGF Receptor-1 (FGFR1) Signaling (INFS) we utilized the PC12 clonal cell line, a long-standing benchmark model of sympathetic neuronal differentiation. We demonstrate that NGF increases expression of the fgfr1 gene and promotes trafficking of FGFR1 protein from cytoplasm to nucleus by inhibiting FGFR1 nuclear export. Nuclear-targeted dominant negative FGFR1 antagonizes NGF-induced neurite outgrowth, doublecortin (dcx) expression and activation of the tyrosine hydroxylase (th) gene promoter, while active constitutive nuclear FGFR1 mimics the effects of NGF. NGF increases the expression of dcx, th, βIII tubulin, nurr1 and nur77, fgfr1and fibroblast growth factor-2 (fgf-2) genes, while enhancing binding of FGFR1and Nur77/Nurr1 to those genes. NGF activates transcription from isolated NurRE and NBRE motifs. Nuclear FGFR1 transduces NGF activation of the Nur dimer and raises basal activity of the Nur monomer. Cooperation of nuclear FGFR1 with Nur77/Nurr1 in NGF signaling expands the integrative functions of INFS to include NGF, the first discovered pluripotent neurotrophic factor.
Collapse
|
10
|
Farah R, Khamisy-Farah R, Amit T, Youdim MBH, Arraf Z. Lithium's gene expression profile, relevance to neuroprotection A cDNA microarray study. Cell Mol Neurobiol 2013; 33:411-20. [PMID: 23324999 DOI: 10.1007/s10571-013-9907-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/04/2013] [Indexed: 12/28/2022]
Abstract
Lithium can prevent 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) dopaminergic neurotoxicity in mice. This is attributed to induced antioxidant and antiapoptotic state, which among other factors results from induction of Bcl-2 and reduction of Bax, however, cDNA microarray reveals that this represents only one cascade of lithium targets. From analyzing the gene expression profile of lithium, we are able to point out candidate genes that might be involved in the antioxidant and neuroprotective properties of lithium. Among these are, the cAMP response element binding (CREB) protein, extracellular signal-regulated kinase (ERK), both CREB and ERK-part of the mitogen-activated kinase pathway-were upregulated by lithium, downregulated by MPTP, and maintained in mice fed with lithium chloride (LiCl) supplemented diet and treated with MPTP. Our positive control included tyrosine hydroxylase which both its mRNA and protein levels were independently measured, in addition to Bcl-2 protein levels. Other important genes which were similarly regulated are plasma glutathione peroxidase precursor (GSHPX-P), protein kinase C alpha type, insulin-like growth factor binding protein 4 precursor, and interferon regulatory factor. In addition, some genes were oppositely regulated, i.e., downregulated by lithium, upregulated by MPTP, and maintained in mice fed with LiCl supplemented diet and treated with MPTP, among these genes were basic fibroblast growth factor receptor 1 precursor, inhibin alpha subunit, glutamate receptor subunit zeta 1 precursor (NMD-R1), postsynaptic density protein-95 which together with NMD-R1 can form an apoptotic promoting complex. The discussed targets represent part of genes altered by chronic lithium. In fact lithium affected the expressions of more than 50 genes among these were basic transcription factors, transcription activators, cell signaling proteins, cell adhesion proteins, oncogenes and tumor suppressors, intracellular transducers, survival and death genes, and cyclins, here we discuss the relevance of these changes to lithium's reported neuroprotective properties.
Collapse
Affiliation(s)
- Raymond Farah
- Department of Internal Medicine B, Ziv Medical Center, Safed, Israel.
| | | | | | | | | |
Collapse
|
11
|
Lenartowski R, Goc A. Epigenetic, transcriptional and posttranscriptional regulation of the tyrosine hydroxylase gene. Int J Dev Neurosci 2011; 29:873-83. [PMID: 21803145 DOI: 10.1016/j.ijdevneu.2011.07.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/14/2011] [Indexed: 01/12/2023] Open
Abstract
The activity of tyrosine hydroxylase (TH, EC 1.14.16.2) gene and protein determines the catecholamine level, which, in turn, is crucial for the organism homeostasis. The TH gene expression is regulated by near all possible regulatory mechanisms on epigenetic, transcriptional and posttranscriptional levels. Ongoing molecular characteristic of the TH gene reveals some of the cis and trans elements necessary for its proper expression but most of them especially these responsible for tissue specific expression remain still obscure. This review will focus on some aspects of TH regulation including spatial chromatin organization of the TH locus and TH gene, regulatory elements mediating basal, induced and cell-specific activity, transcriptional elongation, alternative TH RNA processing, and the regulation of TH RNA stability in the cell.
Collapse
Affiliation(s)
- Robert Lenartowski
- Nicolaus Copernicus University, Institute of General and Molecular Biology, Department of Genetics, Gagarina 9, 87-100 Toruń, Poland
| | | |
Collapse
|
12
|
Foster CR, Singh M, Subramanian V, Singh K. Ataxia telangiectasia mutated kinase plays a protective role in β-adrenergic receptor-stimulated cardiac myocyte apoptosis and myocardial remodeling. Mol Cell Biochem 2011; 353:13-22. [PMID: 21404020 DOI: 10.1007/s11010-011-0769-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/24/2011] [Indexed: 12/23/2022]
Abstract
β-Adrenergic receptor (β-AR) stimulation induces cardiac myocyte apoptosis and plays an important role in myocardial remodeling. Here we investigated expression of various apoptosis-related genes affected by β-AR stimulation, and examined first time the role of ataxia telangiectasia mutated kinase (ATM) in cardiac myocyte apoptosis and myocardial remodeling following β-AR stimulation. cDNA array analysis of 96 apoptosis-related genes indicated that β-AR stimulation increases expression of ATM in the heart. In vitro, RT-PCR confirmed increased ATM expression in adult cardiac myocytes in response to β-AR stimulation. Analysis of left ventricular structural and functional remodeling of the heart in wild-type (WT) and ATM heterozygous knockout mice (hKO) 28 days after ISO-infusion showed increased heart weight to body weight ratio in both groups. M-mode echocardiography showed increased percent fractional shortening (%FS) and ejection fraction (EF%) in both groups 28 days post ISO-infusion. Interestingly, the increase in %FS and EF% was significantly lower in the hKO-ISO group. Cardiac fibrosis and myocyte apoptosis were higher in hKO mice at baseline and ISO-infusion increased fibrosis and apoptosis to a greater extent in hKO-ISO hearts. ISO-infusion increased phosphorylation of p53 (Serine-15) and expression of p53 and Bax to a similar extent in both groups. hKO-Sham and hKO-ISO hearts exhibited reduced intact β1 integrin levels. MMP-2 protein levels were significantly higher, while TIMP-2 protein levels were lower in hKO-ISO hearts. MMP-9 protein levels were increased in WT-ISO, not in hKO hearts. In conclusion, ATM plays a protective role in cardiac remodeling in response to β-AR stimulation.
Collapse
Affiliation(s)
- Cerrone R Foster
- Department of Physiology, James H Quillen College of Medicine, James H Quillen Veterans Affairs Medical Center, East Tennessee State University, PO Box 70576, Johnson City, TN 37614, USA
| | | | | | | |
Collapse
|
13
|
Abstract
Calcium-dependent electrical activity plays a significant role in neurotransmitter specification at early stages of development. To test the hypothesis that activity-dependent differentiation depends on molecular context, we investigated the development of dopaminergic neurons in the CNS of larval Xenopus laevis. We find that different dopaminergic nuclei respond to manipulation of this early electrical activity by ion channel misexpression with different increases and decreases in numbers of dopaminergic neurons. Focusing on the ventral suprachiasmatic nucleus and the spinal cord to gain insight into these differences, we identify distinct subpopulations of neurons that express characteristic combinations of GABA and neuropeptide Y as cotransmitters and Lim1,2 and Nurr1 transcription factors. We demonstrate that the developmental state of neurons identified by their spatial location and expression of these molecular markers is correlated with characteristic spontaneous calcium spike activity. Different subpopulations of dopaminergic neurons respond differently to manipulation of this early electrical activity. Moreover, retinohypothalamic circuit activation of the ventral suprachiasmatic nucleus recruits expression of dopamine selectively in reserve pool neurons that already express GABA and neuropeptide Y. The results are consistent with the hypothesis that spontaneously active neurons expressing GABA are most susceptible to activity-dependent expression of dopamine in both the spinal cord and brain. Because loss of dopaminergic neurons plays a role in neurological disorders such as Parkinson's disease, understanding how subpopulations of neurons become dopaminergic may lead to protocols for differentiation of neurons in vitro to replace those that have been lost in vivo.
Collapse
|
14
|
Polanski W, Enzensperger C, Reichmann H, Gille G. The exceptional properties of 9-methyl-beta-carboline: stimulation, protection and regeneration of dopaminergic neurons coupled with anti-inflammatory effects. J Neurochem 2010; 113:1659-75. [PMID: 20374418 DOI: 10.1111/j.1471-4159.2010.06725.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Beta-carbolines (BCs) are potential endogenous and exogenous neurotoxins that may contribute to the pathogenesis of Parkinson's disease. However, we recently demonstrated protective and stimulatory effects of 9-methyl-BC (9-me-BC) in primary dopaminergic culture. In the present study, treatment with 9-me-BC unmasked a unique tetrad of effects. First, tyrosine hydroxylase (TH) expression was stimulated in pre-existing dopa decarboxylase immunoreactive neurons and several TH-relevant transcription factors (Gata2, Gata3, Creb1, Crebbp) were up-regulated. Neurite outgrowth of TH immunoreactive (THir) neurons was likewise stimulated. The interaction with tyrosine kinases (protein kinase A and C, epidermal growth factor-receptor, fibroblast growth factor-receptor and neural cell adhesion molecule) turned out to be decisive for these observed effects. Second, 9-me-BC protected in acute toxicity models THir neurons against lipopolysaccharide and 2,9-dime-BC(+) toxicity. Third, in a chronic toxicity model when cells were treated with 9-me-BC after chronic rotenone administration, a pronounced regeneration of THir neurons was observed. Fourth, 9-me-BC inhibited the proliferation of microglia induced by toxin treatment and installed an anti-inflammatory environment by decreasing the expression of inflammatory cytokines and receptors. Finally, 9-me-BC lowered the content of alpha-synuclein protein in the cultures. The presented results warrant the exploration of 9-me-BC as a novel potential anti-parkinsonian medication, as 9-me-BC interferes with several known pathogenic factors in Parkinson's disease as outlined above. Further investigations are currently under way.
Collapse
Affiliation(s)
- Witold Polanski
- Department of Neurology, Technical University of Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
15
|
Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M. Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods 2009; 186:60-7. [PMID: 19903493 DOI: 10.1016/j.jneumeth.2009.11.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Revised: 10/06/2009] [Accepted: 11/04/2009] [Indexed: 01/19/2023]
Abstract
Neuro 2A (N2a) is a mouse neural crest-derived cell line that has been extensively used to study neuronal differentiation, axonal growth and signaling pathways. A convenient characteristic of these cells is their ability to differentiate into neurons within a few days. However, most differentiation methods reported for N2a cells do not provide information about the neuronal types obtained after each treatment. In this study, we evaluated the generation of N2a dopamine neurons following treatment with a number of factors known to induce neuronal differentiation. Our results showed that N2a cells express Nurr-related factor 1 (Nurr1) and produce low levels of tyrosine hydroxylase (TH) and dopamine. Both TH and dopamine levels were significantly enhanced in the presence of dibutyryl cyclic adenosine monophosphate (dbcAMP), as evidenced by Western blot, immunocytochemistry and high performance liquid chromatography (HPLC). In contrast to dbcAMP, other factors such as transforming growth factor beta1 (TGF beta 1), bone morphogenetic protein 4 (BMP4), glial cell-derived neurotrophic factor (GDNF) and retinoic acid (RA) did not increase TH expression. Further investigation confirmed that the effect of dbcAMP on production of TH-positive neurons was mediated through cyclic AMP (cAMP) responsive element binding protein (CREB) and it was antagonized by RA. Thus, although various treatments can be used to generate N2a neurons, only dbcAMP significantly enhanced the formation of dopamine neurons. Taken together, this study provided a simple and reliable method to generate dopamine neurons for rapid and efficient physiological and pharmacological assays.
Collapse
Affiliation(s)
- Roger G Tremblay
- Neurogenesis and Brain Repair Group, Neurobiology Program, Institute for Biological Sciences, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Boulaire J, Balani P, Wang S. Transcriptional targeting to brain cells: Engineering cell type-specific promoter containing cassettes for enhanced transgene expression. Adv Drug Deliv Rev 2009; 61:589-602. [PMID: 19394380 DOI: 10.1016/j.addr.2009.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Accepted: 02/05/2009] [Indexed: 12/16/2022]
Abstract
Transcriptional targeting using a mammalian cellular promoter to restrict transgene expression to target cells is often desirable for gene therapy. This strategy is, however, hindered by relatively weak activity of some cellular promoters, which may lead to low levels of gene expression, thus declining therapeutic efficacy. Here we outline the advances accomplished in the area of transcriptional targeting to brain cells, with a particular focus on engineering gene cassettes to augment cell type-specific expression. Among the effective approaches that improve gene expression while retaining promoter specificity are promoter engineering to change authentic sequences of a cellular promoter and the combined use of a native cellular promoter and other cis-acting elements. Success in achieving high level and sustained transgene expression only in the cell types of interest would be of importance in allowing gene therapy to have its impact on patient treatment.
Collapse
|
17
|
Northcutt KV, Lonstein JS. Social contact elicits immediate-early gene expression in dopaminergic cells of the male prairie vole extended olfactory amygdala. Neuroscience 2009; 163:9-22. [PMID: 19524021 DOI: 10.1016/j.neuroscience.2009.06.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2009] [Revised: 05/21/2009] [Accepted: 06/07/2009] [Indexed: 01/29/2023]
Abstract
Male prairie voles (Microtus ochrogaster) are a valuable model in which to study the neurobiology of sociality because, unlike most mammals, they pair bond after mating and display paternal behaviors. Research on the regulation of these social behaviors has highlighted dopamine (DA) neurotransmission in both pair bonding and parenting. We recently described large numbers of dopaminergic cells in the male prairie vole principal nucleus of the bed nucleus of the stria terminalis (pBST) and posterodorsal medial amygdala (MeApd), but such cells were very few in number or absent in the non-monogamous species we examined, including meadow voles. This suggests that DA cells in these sites may be important for sociosexual behaviors in male prairie voles. To gain some insight into the function of these DAergic neurons in male prairie voles, we examined expression of the immediate-early genes (IEGs) Fos and Egr-1 in tyrosine hydroxylase (TH)-immunoreactive (TH-ir) cells of the pBST and MeApd after males interacted or not with one of several social stimuli. We found that IEGs were constitutively expressed in some TH-ir neurons under any social condition, but that IEG expression in these cells decreased after a 3.5-h social isolation. Thirty-minute mating bouts (but not 6- or 24-h bouts) that included ejaculation elicited greater IEG expression in TH-ir cells than did non-ejaculatory mating, interactions with a familiar female sibling, or interactions with pups. Furthermore, Fos expression in TH-ir cells was positively correlated with the display of copulatory, but not parental, behaviors. These effects of mating were not found in other DA-rich sites of the forebrain (including the anteroventral periventricular preoptic area, periventricular anterior hypothalamus, zona incerta, and arcuate nucleus). Thus, activity in DAergic cells of the male prairie vole pBST and MeApd is influenced by their social environment, and may be particularly involved in mating and its consequences, including pair bonding.
Collapse
Affiliation(s)
- K V Northcutt
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824, USA
| | | |
Collapse
|
18
|
Buhrlage SJ, Bates CA, Rowe SP, Minter AR, Brennan BB, Majmudar CY, Wemmer DE, Al-Hashimi H, Mapp AK. Amphipathic small molecules mimic the binding mode and function of endogenous transcription factors. ACS Chem Biol 2009; 4:335-44. [PMID: 19348463 PMCID: PMC2744096 DOI: 10.1021/cb900028j] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Small molecules that reconstitute the binding mode(s) of a protein and in doing so elicit a programmed functional response offer considerable advantages in the control of complex biological processes. The development challenges of such molecules are significant, however. Many protein-protein interactions require multiple points of contact over relatively large surface areas. More significantly, several binding modes can be superimposed upon a single sequence within a protein, and a true small molecule replacement must be preprogrammed for such multimodal binding. This is the case for the transcriptional activation domain or TAD of transcriptional activators as these motifs utilize a poorly characterized multipartner binding profile in order to stimulate gene expression. Here we describe a unique class of small molecules that exhibit both function and a binding profile analogous to natural transcriptional activation domains. Of particular note, the small molecules are the first reported to bind to the KIX domain within the CREB binding protein (CBP) at a site that is utilized by natural activators. Further, a comparison of functional and nonfunctional small molecules indicates that an interaction with CBP is a key contributor to transcriptional activity. Taken together, the evidence suggests that the small molecule TADs mimic both the function and mechanism of their natural counterparts and thus present a framework for the broader development of small molecule transcriptional switches.
Collapse
Affiliation(s)
| | - Caleb A. Bates
- Department of Medicinal Chemistry, University of Michigan
| | | | | | | | | | | | - Hashim Al-Hashimi
- Department of Chemistry, University of Michigan
- Department of Biophysics, University of Michigan
| | - Anna K. Mapp
- Department of Chemistry, University of Michigan
- Department of Medicinal Chemistry, University of Michigan
- Program in Chemical Biology, University of Michigan
| |
Collapse
|
19
|
Kojima M, Suzuki T, Maekawa T, Ishii S, Sumi-Ichinose C, Nomura T, Ichinose H. Increased expression of tyrosine hydroxylase and anomalous neurites in catecholaminergic neurons of ATF-2 null mice. J Neurosci Res 2008; 86:544-52. [PMID: 17896792 DOI: 10.1002/jnr.21510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
ATF-2/CRE-BP1 was originally identified as a cAMP-responsive element (CRE) binding protein abundant in the brain. We previously reported that phosphorylation of ATF-2 increased the expression of tyrosine hydroxylase (TH), which is the rate-limiting enzyme for catecholamine biosynthesis, directly acting on the CRE in the promoter region of the TH gene in PC12D cells (Suzuki et al. [2002] J. Biol. Chem. 277:40768-40774). To examine the role of ATF-2 on transcriptional control of the TH gene in the brain, we investigated the TH expression in ATF-2-/- mice. We found that TH expression was greatly increased in medulla oblongata and locus ceruleus of the ATF-2-deficient embryos. Ectopic expression of TH was observed in the raphe magnus nucleus, where serotonergic neural cell bodies are located. Interestingly, A10 dorsal neurons were lost in the embryos of ATF-2-/- mice. There was no difference in the TH immunoreactivity in the olfactory bulb. The data showed that alteration in TH expression by absence of ATF-2 gradually declined from caudal to rostral part of the brain. We also found anomalous neurite extension in catecholaminergic neurons of ATF-2 null mice, i.e., increased dendritic arborization and shortened axons. These data suggest that ATF-2 plays critical roles for proper expression of the TH gene and for neurite extension of catecholaminergic neurons, possibly through a repressor-like action.
Collapse
Affiliation(s)
- Masayo Kojima
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Wang Y, Krishnan HR, Ghezzi A, Yin JCP, Atkinson NS. Drug-induced epigenetic changes produce drug tolerance. PLoS Biol 2007; 5:e265. [PMID: 17941717 PMCID: PMC2020501 DOI: 10.1371/journal.pbio.0050265] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2007] [Accepted: 08/10/2007] [Indexed: 12/19/2022] Open
Abstract
Tolerance to drugs that affect neural activity is mediated, in part, by adaptive mechanisms that attempt to restore normal neural excitability. Changes in the expression of ion channel genes are thought to play an important role in these neural adaptations. The slo gene encodes the pore-forming subunit of BK-type Ca(2+)-activated K(+) channels, which regulate many aspects of neural activity. Given that induction of slo gene expression plays an important role in the acquisition of tolerance to sedating drugs, we investigated the molecular mechanism of gene induction. Using chromatin immunoprecipitation followed by real-time PCR, we show that a single brief sedation with the anesthetic benzyl alcohol generates a spatiotemporal pattern of histone H4 acetylation across the slo promoter region. Inducing histone acetylation with a histone deacetylase inhibitor yields a similar pattern of changes in histone acetylation, up-regulates slo expression, and phenocopies tolerance in a slo-dependent manner. The cAMP response element binding protein (CREB) is an important transcription factor mediating experience-based neuroadaptations. The slo promoter region contains putative binding sites for the CREB transcription factor. Chromatin immunoprecipitation assays show that benzyl alcohol sedation enhances CREB binding within the slo promoter region. Furthermore, activation of a CREB dominant-negative transgene blocks benzyl alcohol-induced changes in histone acetylation within the slo promoter region, slo induction, and behavioral tolerance caused by benzyl alcohol sedation. These findings provide unique evidence that links molecular epigenetic histone modifications and transcriptional induction of an ion channel gene with a single behavioral event.
Collapse
Affiliation(s)
- Yan Wang
- Section of Neurobiology, The University of Texas at Austin, Austin, Texas, United States of America
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| | - Harish R Krishnan
- Section of Neurobiology, The University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas, United States of America
| | - Alfredo Ghezzi
- Department of Biology, Brandeis University, Waltham, Massachusetts, United States of America
| | - Jerry C. P Yin
- Department of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nigel S Atkinson
- Section of Neurobiology, The University of Texas at Austin, Austin, Texas, United States of America
- The Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
21
|
Dénes V, Witkovsky P, Koch M, Hunter DD, Pinzón-Duarte G, Brunken WJ. Laminin deficits induce alterations in the development of dopaminergic neurons in the mouse retina. Vis Neurosci 2007; 24:549-62. [PMID: 17711601 PMCID: PMC2935900 DOI: 10.1017/s0952523807070514] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Accepted: 05/17/2007] [Indexed: 11/05/2022]
Abstract
Genetically modified mice lacking the beta2 laminin chain (beta2null), the gamma3 laminin chain (gamma3 null), or both beta2/gamma3 chains (compound null) were produced. The development of tyrosine hydroxylase (TH) immunoreactive neurons in these mouse lines was studied between birth and postnatal day (P) 20. Compared to wild type mice, no alterations were seen in gamma3 null mice. In beta2 null mice, however, the large, type I TH neurons appeared later in development, were at a lower density and had reduced TH immunoreactivity, although TH process number and size were not altered. In the compound null mouse, the same changes were observed together with reduced TH process outgrowth. Surprisingly, in the smaller, type II TH neurons, TH immunoreactivity was increased in laminin-deficient compared to wild type mice. Other retinal defects we observed were a patchy disruption of the inner limiting retinal basement membrane and a disoriented growth of Müller glial cells. Starburst and AII type amacrine cells were not apparently altered in laminin-deficient relative to wild type mice. We postulate that laminin-dependent developmental signals are conveyed to TH amacrine neurons through intermediate cell types, perhaps the Müller glial cell and/or the retinal ganglion cell.
Collapse
Affiliation(s)
- Viktória Dénes
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts
- Tufts Center for Vision Research, Boston, Massachusetts
| | - Paul Witkovsky
- Department of Ophthalmology, New York University School of Medicine, New York, New York
| | - Manuel Koch
- Center for Biochemistry and Department of Dermatology, University of Köln, Köln, Germany
| | | | - Germán Pinzón-Duarte
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts
- Tufts Center for Vision Research, Boston, Massachusetts
| | - William J. Brunken
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts
- Tufts Center for Vision Research, Boston, Massachusetts
| |
Collapse
|
22
|
Teh CHL, Loh CC, Lam KKY, Loo JM, Yan T, Lim TM. Neuronal PAS domain protein 1 regulates tyrosine hydroxylase level in dopaminergic neurons. J Neurosci Res 2007; 85:1762-73. [PMID: 17457889 DOI: 10.1002/jnr.21312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catecholamines (dopamine, norepinephrine, and epinephrine) are all synthesized from a common pathway in which tyrosine hydroxylase (TH) is the rate-limiting enzyme. Dopamine is the main neurotransmitter present in dopaminergic neurons of the ventral midbrain, where dysfunction of these neurons can lead to Parkinson's disease and schizophrenia. Neuronal PAS domain protein 1 (NPAS1) was identified as one of the genes up-regulated during dopaminergic MN9D cell differentiation. We found that there was a corresponding decrease in TH level during MN9D differentiation. Overexpression and siRNA experiments revealed that NPAS1, in concert with ARNT, negatively regulates the expression of TH and that this regulation is mediated by a direct binding of NPAS1 on the TH promoter. Expression studies also confirmed a decrease in TH level in the ventral midbrain during mouse development, concomitant with an increase in NPAS1 level. These results suggest that NPAS1 plays a novel and important role in regulating TH level of dopaminergic neurons in the ventral midbrain during development.
Collapse
Affiliation(s)
- Christina H L Teh
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | |
Collapse
|
23
|
KELLY BB, HEDLUND E, KIM C, ISHIGURO H, ISACSON O, CHIKARAISHI DM, KIM KS, FENG G. A tyrosine hydroxylase-yellow fluorescent protein knock-in reporter system labeling dopaminergic neurons reveals potential regulatory role for the first intron of the rodent tyrosine hydroxylase gene. Neuroscience 2006; 142:343-54. [PMID: 16876957 PMCID: PMC2610443 DOI: 10.1016/j.neuroscience.2006.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 06/14/2006] [Accepted: 06/16/2006] [Indexed: 11/20/2022]
Abstract
Degeneration of the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease. To facilitate the study of the differentiation and maintenance of this population of dopaminergic neurons both in vivo and in vitro, we generated a knock-in reporter line in which the yellow fluorescent protein (YFP) replaced the first exon and the first intron of the tyrosine hydroxylase (TH) gene in one allele by homologous recombination. Expression of YFP under the direct control of the entire endogenous 5' upstream region of the TH gene was predicted to closely match expression of TH from the wild type allele, thus marking functional dopaminergic neurons. We found that YFP was expressed in dopaminergic neurons differentiated in vitro from the knock-in mouse embryonic stem cell line and in dopaminergic brain regions in knock-in mice. Surprisingly, however, YFP expression did not overlap completely with TH expression, and the degree of overlap varied in different TH-expressing brain regions. Thus, the reporter gene did not identify functional TH-expressing cells with complete accuracy. A DNaseI hypersensitivity assay revealed a cluster of hypersensitivity sites in the first intron of the TH gene, which was deleted by insertion of the reporter gene, suggesting that this region may contain cis-acting regulatory sequences. Our results suggest that the first intron of the rodent TH gene may be important for accurate expression of TH.
Collapse
Affiliation(s)
- B. B. KELLY
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| | - E. HEDLUND
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, MA 02478, USA
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
- Neuroregeneration Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - C. KIM
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, MA 02478, USA
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - H. ISHIGURO
- Carna Bioscience, KIBC 511, 5-5-2, Minatojima-Minamimachi, Chuo-ku, Kobe 650-0047, Hyogo, Japan
| | - O. ISACSON
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, MA 02478, USA
- Neuroregeneration Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - D. M. CHIKARAISHI
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
| | - K.-S. KIM
- Udall Parkinson’s Disease Research Center of Excellence, McLean Hospital/Harvard Medical School, MA 02478, USA
- Molecular Neurobiology Laboratory, McLean Hospital/Harvard Medical School, Belmont, MA 02478, USA
| | - G. FENG
- Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Correspondence to: G. Feng, Department of Neurobiology, Box 3209, Duke University Medical Center, Durham, NC 27710, USA. Tel: +1-919-668-1657; fax: +1-919-668-1891. E-mail address: (G. Feng)
| |
Collapse
|
24
|
Ravni A, Eiden LE, Vaudry H, Gonzalez BJ, Vaudry D. Cycloheximide treatment to identify components of the transitional transcriptome in PACAP-induced PC12 cell differentiation. J Neurochem 2006; 98:1229-41. [PMID: 16787409 PMCID: PMC4183198 DOI: 10.1111/j.1471-4159.2006.03962.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neurite outgrowth, reduces proliferation and inhibits apoptosis of PC12 cells. We have partially characterized the transcriptome changes induced by PACAP after 6 h of treatment, when commitment to differentiation has occurred. Here, we have investigated the effects of a 6-h treatment with PACAP (10(-7) m) in the presence of cycloheximide (5 microm) to identify, via superinduction, components of the transitional transcriptome initially induced by PACAP and potentially participating in the regulation of late-response genes required for differentiation. Approximately 100 new transcripts were identified in this screen, i.e. as many individual genes as make up the 6-h PACAP differentiation transcriptome itself. Six known transcripts in this cohort were then measured at several time points between 0 and 6 h by real-time PCR to determine whether these transcripts are induced early following PACAP treatment in the absence of cycloheximide, and therefore may be of functional importance in differentiation. Five out of the six transcripts were indeed induced by PACAP alone soon (between 30 min and 3 h) after cell treatment. beta-Cell translocation gene 2, antiproliferative (Btg2), serum/glucocorticoid-regulated kinase (Sgk), nuclear factor for the kappa chain of B-cells (NFkappaB), seven in absentia homologue 2 (Siah2) and FBJ osteosarcoma related oncogene (Fos) showed a 2.5-200-fold induction by PACAP between 15 min and 3 h, and mRNA levels returned either to baseline or near baseline after 6 h. This work provides new information concerning genes whose transient regulation early after PACAP exposure may contribute to the expression of the differentiated transcriptome in PC12 cells, and should help to elucidate the molecular mechanisms involved in the control of nerve cell survival and differentiation.
Collapse
Affiliation(s)
- Aurélia Ravni
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | - Lee E. Eiden
- Section on Molecular Neuroscience, Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | - Hubert Vaudry
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | - Bruno J. Gonzalez
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| | - David Vaudry
- INSERM U413, Laboratory of Cellular and Molecular Neuroendocrinology, European Institute for Peptide Research (IFRMP 23), University of Rouen, Mont-Saint-Aignan, France
| |
Collapse
|
25
|
Galanopoulou AS. Sex- and cell-type-specific patterns of GABAAreceptor and estradiol-mediated signaling in the immature rat substantia nigra. Eur J Neurosci 2006; 23:2423-30. [PMID: 16706849 DOI: 10.1111/j.1460-9568.2006.04778.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The substantia nigra pars reticulata (SNR) is involved in movement and seizure control. In male but not female postnatal day 15 (PN15) rats, GABAA receptor agonists depolarize the SNR neurons and increase the expression of the calcium-regulated gene KCC2 (potassium/chloride cotransporter). Moreover, in PN15 rat SNR, 7beta-estradiol down-regulates KCC2 expression only in the presence of depolarizing GABAA receptor responses. The hypothesis tested here was that GABAA receptors and estradiol also regulate the expression of the phosphorylated form of the transcription factor cAMP responsive element binding protein (phosphoCREB), in PN15 rat SNR and substantia nigra pars compacta (SNC). Rats were injected with muscimol or 17beta-estradiol or their vehicles, and killed 1 h later. Sections were stained with an antibody specific for phosphoCREB alone or counterstained with either tyrosine hydroxylase (TH)- or parvalbumin (PRV)-specific antibodies. Muscimol increased phosphoCREB-ir in male but not in female SN neurons. Using gramicidin perforated patch clamp of PN14-15 SNC neuron, it was shown that muscimol bath application depolarized male SNC neurons but did not significantly alter membrane potential in females. In males, 17beta-estradiol decreased phosphoCREB expression in all studied cell types. In females, 17beta-estradiol did not influence phosphoCREB expression in PRV-ir SNR cells, but increased it in the dopaminergic SN neurons. These data suggest that GABAA receptor activation and estradiol promote the sexual differentiation of the SN in a cell-type-specific manner, by influencing calcium-regulated gene transcription, and therefore promoting the acquisition of sex-specific roles of the SN in movement and seizure control.
Collapse
Affiliation(s)
- Aristea S Galanopoulou
- Department of Neurology and Einstein/Montefiore Comprehensive Epilepsy Center, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Kennedy Center Rm 311, Bronx, NY 10461, USA.
| |
Collapse
|
26
|
Liu H, Margiotta JF, Howard MJ. BMP4 supports noradrenergic differentiation by a PKA-dependent mechanism. Dev Biol 2005; 286:521-36. [PMID: 16165122 DOI: 10.1016/j.ydbio.2005.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 01/13/2023]
Abstract
Differentiation of neural crest-derived noradrenergic neurons depends upon signaling mediated downstream of BMP binding to cognate receptors and involving cAMP. Compiled data from many groups suggest that neurogenesis and cell type-specific noradrenergic marker gene regulation is coordinated through the expression and function of the basic helix-loop-helix DNA binding protein HAND2 and the homeodomain DNA binding protein Phox2a. However, information detailing how BMP-mediated signaling and signaling through cAMP are coordinated has been lacking. We now provide compelling data suggesting that differentiation of noradrenergic sympathetic ganglion neurons depends upon both canonical and non-canonical pathways of BMP-mediated signaling. The non-canonical pathway involves the activation of protein kinase A (PKA) independent of cAMP. This is a novel mechanism in neural crest-derived cells and is necessary to support neurogenesis as well as aspects of DBH promoter regulation involving HAND2 phosphorylation and dimerization. The expression of transcripts encoding HAND2 and Phox2a is regulated via canonical BMP signaling and thus affects both neurogenesis and cell type-specific gene expression. Interestingly, cAMP- and MapK-mediated signaling modulate specific target sites in both the canonical and non-canonical BMP pathways. Activity of MapK is required for HAND2 transcription and thus affects neurogenesis. Signaling affected by cAMP is necessary for the transcription of Phox2a as well as regulation of DBH promoter transactivation by Phox2a and HAND2. We suggest a comprehensive model that shows how BMP- and cAMP-mediated intracellular signaling integrate neurogenesis and cell type-specific noradrenergic marker gene expression and function.
Collapse
Affiliation(s)
- Hongbin Liu
- Department of Neurosciences, Program in Molecular and Cellular Neuroscience, Medical University of Ohio, 3000 Arlington Ave., Toledo, OH 43614, USA
| | | | | |
Collapse
|
27
|
Arányi T, Faucheux BA, Khalfallah O, Vodjdani G, Biguet NF, Mallet J, Meloni R. The tissue-specific methylation of the human tyrosine hydroxylase gene reveals new regulatory elements in the first exon. J Neurochem 2005; 94:129-39. [PMID: 15953356 DOI: 10.1111/j.1471-4159.2005.03173.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The methylation status of CpG dinucleotides located in or near regulatory elements affects gene expression. The CpG-rich sequence located outside the 5' promoter region of the human Tyrosine Hydroxylase (TH) gene appears to influence the functional effect of the adjacent intronic HUMTH01 microsatellite. In order to identify new regulatory elements in this region acting on gene expression, the methylation profile of the TH CpG island was investigated using the bisulfite sequencing method. The overall methylation level of this region is correlated to TH-expressing and non-expressing status in cell lines and DNA demethylation treatment with 5-azacytidine increased TH expression. Moreover, in a homogeneous background of methylated CpGs, a single CpG in the first exon of the gene is constantly either unmethylated or methylated in, respectively, TH-expressing or non-expressing cell lines, tissues and single cells. Further analysis ascertained that this CpG is contained in a sequence characterized by putative binding sites for the AP2, Sp1 and KAISO factors. Characterization of this sequence shows that these factors specifically bind their respective sites. Finally, the binding of KAISO, a transcriptional repressor, is conditioned by the methylation of this sequence, which may, thus, participate in the regulation of TH gene expression according to its methylation pattern.
Collapse
Affiliation(s)
- Tamás Arányi
- Laboratoire de Génétique de la Neurotransmission CNRS UMR 7091 Bât CERVI, INSERM U289 Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | |
Collapse
|
28
|
Howard MJ. Mechanisms and perspectives on differentiation of autonomic neurons. Dev Biol 2005; 277:271-86. [PMID: 15617674 DOI: 10.1016/j.ydbio.2004.09.034] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 09/22/2004] [Accepted: 09/27/2004] [Indexed: 01/17/2023]
Abstract
Neurons share many features in common but are distinguished by expression of phenotypic characteristics that define their specific function, location, or connectivity. One aspect of neuronal fate determination that has been extensively studied is that of neurotransmitter choice. The generation of diversity of neuronal subtypes within the developing nervous system involves integration of extrinsic and intrinsic instructive cues resulting in the expression of a core set of regulatory molecules. This review focuses on mechanisms of growth and transcription factor regulation in the generation of peripheral neural crest-derived neurons. Although the specification and differentiation of noradrenergic neurons are the focus, I have tried to integrate these into a larger picture providing a general roadmap for development of autonomic neurons. There is a core of DNA binding proteins required for the development of sympathetic, parasympathetic, and enteric neurons, including Phox2 and MASH1, whose specificity is regulated by the recruitment of additional transcriptional regulators in a subtype-specific manner. For noradrenergic neurons, the basic helix-loop-helix DNA binding protein HAND2 (dHAND) appears to serve this function. The studies reviewed here support the notion that neurotransmitter identity is closely linked to other aspects of neurogenesis and reveal a molecular mechanism to coordinate expression of pan-neuronal genes with cell type-specific genes.
Collapse
Affiliation(s)
- Marthe J Howard
- Department of Neurosciences, Medical College of Ohio, Toledo, OH 43614, USA.
| |
Collapse
|
29
|
Colangelo AM, Mallei A, Johnson PF, Mocchetti I. Synergistic effect of dexamethasone and beta-adrenergic receptor agonists on the nerve growth factor gene transcription. ACTA ACUST UNITED AC 2004; 124:97-104. [PMID: 15135217 DOI: 10.1016/j.molbrainres.2004.01.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2004] [Indexed: 11/30/2022]
Abstract
Activation of beta-adrenergic receptor (betaAR) increases the synthesis of nerve growth factor (NGF) in the brain and in C6-2B glioma cells. However, in the brain, the betaAR-mediated increase in NGF expression appears to require the presence of glucocorticoids, suggesting that NGF promoter may be sensitive to cAMP and glucocorticoid-dependent transcription factors. We tested this hypothesis by exposing C6-2B glioma cells to dexamethasone (DEX) in combination with agents that increase cAMP levels and examining the DNA binding activity of two cAMP-dependent transcription factors that regulate NGF expression: cAMP responsive element binding protein (CREB) and CCAAT/enhancer binding protein delta (C/EBPdelta). Electrophoretic mobility shift assays revealed that the beta(2)AR agonist clenbuterol (CLE) or high levels of cAMP elicited a time-dependent increase in C/EBPdelta binding activity as well as phosphorylated CREB (P-CREB). When DEX, which per se showed little effect on these transcription factors, was combined with CLE, dibutyryl cAMP or isoproterenol, enhanced induction of P-CREB and C/EBP binding activity as well as NGF mRNA was observed. Moreover, the increase in NGF mRNA in the presence of DEX was prolonged compared to that obtained by CLE or other cAMP inducing agents alone. In fact, NGF mRNA levels remained significantly elevated at least for 24 h. These studies suggest that the synergistic effect of DEX on the induction of NGF mRNA may include the ability of this glucocorticoid to potentiate the betaAR-mediated induction of transcription factors.
Collapse
Affiliation(s)
- Anna Maria Colangelo
- Georgetown University Medical Center, Department of Neuroscience, Research Building, Box 571464, Washington, DC 20057, USA
| | | | | | | |
Collapse
|
30
|
Lewis-Tuffin LJ, Quinn PG, Chikaraishi DM. Tyrosine hydroxylase transcription depends primarily on cAMP response element activity, regardless of the type of inducing stimulus. Mol Cell Neurosci 2004; 25:536-47. [PMID: 15033181 DOI: 10.1016/j.mcn.2003.10.010] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 09/22/2003] [Accepted: 10/20/2003] [Indexed: 10/26/2022] Open
Abstract
In neurons and neuroendocrine cells, tyrosine hydroxylase (TH) gene expression is induced by stimuli that elevate cAMP, by depolarization, and by hypoxia. Using these stimuli, we examined TH promoter mutants, cAMP response element binding protein (CREB) phosphorylation site mutants, and transcriptional interference with dominant negative transcription factors to assess the relative contributions of CREB/AP-1 family members to the regulation of basal and inducible TH transcription in PC12 cells. We found that basal transcription depends on transcription factor activity at the partial dyad (-17 bp), CRE (-45 bp), and AP1 (-205 bp) elements. Induced transcription is regulated primarily by activity at the CRE, with only small contributions from the AP1 or hypoxia response element 1 (HRE1; -225 bp) elements, regardless of inducing stimulus. CREB, ATF-1, and CREMtau all mediate CRE-dependent transcription, with CREB and CREMtau being more effective than ATF-1. Phosphorylation of CREB on Ser133, but not on Ser142 or Ser143, is required for induced transcription, regardless of inducing stimulus.
Collapse
Affiliation(s)
- Laura J Lewis-Tuffin
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
31
|
Suzuki T, Kurahashi H, Ichinose H. Ras/MEK pathway is required for NGF-induced expression of tyrosine hydroxylase gene. Biochem Biophys Res Commun 2004; 315:389-96. [PMID: 14766220 DOI: 10.1016/j.bbrc.2004.01.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Indexed: 12/31/2022]
Abstract
Neurotrophins are essential for the development and survival of catecholaminergic neurons. However, the critical pathway for expression of the tyrosine hydroxylase (TH) gene induced by neurotrophin is still unclear. Here we found that Ras/MEK pathway is required for NGF-induced expression of the TH gene in PC12D cells. Induction of TH mRNA by NGF was abolished by pretreatment of the cells with U0126, an inhibitor for MEK1/2, but not with inhibitors for p38 MAPK, PI3K, and PKA. U0126 inhibited TH promoter activity at the same concentration as it acted on ERK1/2 phosphorylation. A dominant-negative form of Ras suppressed the NGF-induced activation of the TH reporter gene, and transient transfection of cells with wild-type Ras and an active form of MEK1 increased the TH promoter activity. The reporter assay also demonstrated that the Ras/MEK pathway acted on both the AP-1-binding motif and the cAMP-responsive element in the TH promoter.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Department of Life Science, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan.
| | | | | |
Collapse
|
32
|
Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B. Regulation of fish gonadotropins. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 225:131-85. [PMID: 12696592 DOI: 10.1016/s0074-7696(05)25004-0] [Citation(s) in RCA: 250] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Neurohormones similar to those of mammals are carried in fish by hypothalamic nerve fibers to regulate directly follicle-stimulating hormone (FSH) and luteinizing hormone (LH). Gonadotropin-releasing hormone (GnRH) stimulates the secretion of FSH and LH and the expression of the glycoprotein hormone alpha (GPalpha), FSHbeta, and LHbeta, as well as their secretion. Its signal transduction leading to LH release is similar to that in mammals although the involvement of cyclic AMP-protein kinase A (cAMP-PKA) cannot be ruled out. Dopamine (DA) acting through DA D2 type receptors may inhibit LH release, but not that of FSH, at sites distal to activation of protein kinase C (PKC) and PKA. GnRH increases the steady-state levels of GPalpha, LHbeta, and FSHbeta mRNAs. Pituitary adenylate cyclase-activating polypeptide (PACAP) 38 and neuropeptide Y (NPY) potentiate GnRH effect on gonadotropic cells, and also act directly on the pituitary cells. Whereas PACAP increases all three subunit mRNAs, NPY has no effect on that of FSHbeta. The effect of these peptides on the expression of the gonadotropin subunit genes is transduced differentially; GnRH regulates GPalpha and LHbeta via PKC-ERK and PKA-ERK cascades, while affecting the FSHbeta transcript through a PKA-dependent but ERK-independent cascade. The signals of both NPY and PACAP are transduced via PKC and PKA, each converging at the ERK level. NPY regulates only GPalpha- and LHbeta-subunit genes whereas PACAP regulates the FSHbeta subunit as well. Like those of the mammalian counterparts, the coho salmon LHbeta gene promoter is driven by a strong proximal tripartite element to which three different transcription factors bind. These include Sf-1 and Pitx-1 as in mammals, but the function of the Egr-1 appears to have been replaced by the estrogen receptor (ER). The GnRH responsive region in tilapia FSHbeta 5' flanking region spans the canonical AP1 and CRE motifs implicating both elements in conferring GnRH responsiveness. Generally, high levels of gonadal steroids are associated with high LHbeta transcript levels whereas those of FSHbeta are reduced when pituitary cells are exposed to high steroid levels. Gonadal or hypophyseal activin also participate in the regulation of FSHbeta and LHbeta mRNA levels. However, gonadal effects are dependent on the gender and stage of maturity of the fish.
Collapse
Affiliation(s)
- Zvi Yaron
- Department of Zoology, Tel-Aviv University, Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
33
|
Yohrling GJ, Jiang GCT, DeJohn MM, Miller DW, Young AB, Vrana KE, Cha JHJ. Analysis of cellular, transgenic and human models of Huntington's disease reveals tyrosine hydroxylase alterations and substantia nigra neuropathology. ACTA ACUST UNITED AC 2003; 119:28-36. [PMID: 14597227 DOI: 10.1016/j.molbrainres.2003.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Huntington's disease (HD) is a progressive, autosomal dominant neurodegenerative disorder that is pathologically characterized by a striatal-specific degeneration. Aberrant dopamine neurotransmission has been proposed as a mechanism underlying the movement disorder of HD. We report that the enzymatic activity of tyrosine hydroxylase (TH), the rate-limiting enzyme for dopamine biosynthesis, is decreased in a transgenic mouse model of HD. In addition, mutant huntingtin was found to disrupt transcription of TH and dopamine beta-hydroxylase (DbetaH) promoter reporter constructs. In situ hybridization revealed extensive loss of TH mRNA and decreased dopaminergic cell size in human HD substantia nigra. TH-immunoreactive protein was reduced in human grade 4 HD substantia nigra by 32% compared to age-matched controls. These findings implicate abnormalities in dopamine neurotransmission in HD and may provide new insights into targets for pharmacotherapy.
Collapse
Affiliation(s)
- George J Yohrling
- Department of Neurology, Center for Aging, Genetics, and Neurodegeneration, Massachusetts General Hospital, 114 16th Street, B114-2000, Charlestown, MA 02129-4404, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Gueven N, Keating K, Fukao T, Loeffler H, Kondo N, Rodemann HP, Lavin MF. Site-directed mutagenesis of the ATM promoter: consequences for response to proliferation and ionizing radiation. Genes Chromosomes Cancer 2003; 38:157-67. [PMID: 12939743 DOI: 10.1002/gcc.10261] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Although ATM, the protein defective in ataxia-telangiectasia (A-T), is activated primarily by radiation, there is also evidence that expression of the protein can be regulated by both radiation and growth factors. Computer analysis of the ATM promoter proximal 700-bp sequence reveals a number of potentially important cis-regulatory sequences. Using nucleotide substitutions to delete putative functional elements in the promoter of ATM, we examined the importance of some of these sites for both the basal and the radiation-induced activity of the promoter. In lymphoblastoid cells, most of the mutations in transcription factor consensus sequences [Sp1(1), Sp1(2), Cre, Ets, Xre, gammaIre(2), a modified AP1 site (Fse), and GCF] reduced basal activity to various extents, whereas others [gammaIre(1), NF1, Myb] left basal activity unaffected. In human skin fibroblasts, results were generally the same, but the basal activity varied up to 8-fold in these and other cell lines. Radiation activated the promoter approximately 2.5-fold in serum-starved lymphoblastoid cells, reaching a maximum by 3 hr, and all mutated elements equally blocked this activation. Reduction in Sp1 and AP1 DNA binding activity by serum starvation was rapidly reversed by exposure of cells to radiation. This reduction was not evident in A-T cells, and the response to radiation was less marked. Data provided for interaction between ATM and Sp1 by protein binding and co-immunoprecipitation could explain the altered regulation of Sp1 in A-T cells. The data described here provide additional evidence that basal and radiation-induced regulation of the ATM promoter is under multifactorial control.
Collapse
MESH Headings
- Animals
- Ataxia Telangiectasia Mutated Proteins
- Binding Sites/genetics
- Binding Sites/radiation effects
- Cell Cycle Proteins
- Cell Division/genetics
- Cell Division/radiation effects
- Cell Line
- Cell Line, Transformed
- Chlorocebus aethiops
- Cloning, Molecular
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/radiation effects
- Gamma Rays
- Humans
- Infant, Newborn
- Male
- Mutagenesis, Site-Directed/genetics
- Mutagenesis, Site-Directed/radiation effects
- Promoter Regions, Genetic/genetics
- Promoter Regions, Genetic/radiation effects
- Protein Binding/genetics
- Protein Binding/radiation effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/radiation effects
- Regulatory Sequences, Nucleic Acid/genetics
- Regulatory Sequences, Nucleic Acid/radiation effects
- Sp1 Transcription Factor/genetics
- Sp1 Transcription Factor/metabolism
- Sp1 Transcription Factor/radiation effects
- Transcription Factor AP-1/genetics
- Transcription Factor AP-1/radiation effects
- Tumor Cells, Cultured
- Tumor Suppressor Proteins
- Vero Cells
Collapse
Affiliation(s)
- Nuri Gueven
- Queensland Cancer Fund Research Laboratory, The Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
35
|
Sueiro C, Carrera I, Rodríguez-Moldes I, Molist P, Anadón R. Development of catecholaminergic systems in the spinal cord of the dogfish Scyliorhinus canicula (Elasmobranchs). BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 142:141-50. [PMID: 12711365 DOI: 10.1016/s0165-3806(03)00062-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of catecholamine-synthesizing cells and fibers in the spinal cord of dogfish (Scyliorhinus canicula L.) was studied by means of immunohistochemistry using antibodies against tyrosine hydroxylase (TH). The only TH-immunoreactive (TH-ir) cells already present in the spinal cord of stage 26 embryos were of cerebrospinal fluid-contacting (CSF-c) type. These cells were the first catecholaminergic neurons of the dogfish CNS. The number of these TH-ir cells increased very considerably in later embryos and adult dogfish. In later embryos (stage 33; prehatching), faintly TH-ir non-CSF-contacting neurons were observed in the ventral horn throughout most of the spinal cord. In adult dogfish, some non-CSF-contacting TH-ir cells were observed ventral or lateral to the central canal. In the rostral spinal cord, the catecholaminergic neurons observed in dorsal regions were continuous with caudal rhombencephalic populations. Numerous TH-ir fibers were observed in the spinal cord of later embryos and in adults, both intrinsic and descending from the brain, innervating many regions of the cord including the dorsal and ventral horns. In addition, some TH-ir fibers innervated the marginal nucleus of the spinal cord. The early appearance of catecholaminergic cells and fibers in the embryonic spinal cord of the dogfish, and the large number of these elements observed in adults, suggests an important role for catecholamines through development and adulthood in sensory and motor functions.
Collapse
Affiliation(s)
- Catalina Sueiro
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15706, Santiago de Compostela, Spain
| | | | | | | | | |
Collapse
|
36
|
Suzuki T, Yamakuni T, Hagiwara M, Ichinose H. Identification of ATF-2 as a transcriptional regulator for the tyrosine hydroxylase gene. J Biol Chem 2002; 277:40768-74. [PMID: 12196528 DOI: 10.1074/jbc.m206043200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcriptional regulation of catecholamine-synthesizing genes is important for the determination of neurotransmitters during brain development. We found that three catecholamine-synthesizing genes were transcriptionally up-regulated in cloned PC12D cells overexpressing V-1, a protein that is highly expressed during postnatal brain development (1). To reveal the molecular mechanism to regulate the expression of tyrosine hydroxylase (TH), which is the rate-limiting enzyme for catecholamine biosynthesis, we analyzed the transcription factors responsible for TH induction in the V-1 clonal cells. First, by using reporter constructs, we found that the transcription mediated by cAMP-responsive element (CRE) was selectively enhanced in the V-1 cells, and TH promoter activity was totally dependent on the CRE in the promoter region of the TH gene. Next, immunoblot analyses and a transactivation assay using a GAL4 reporter system revealed that ATF-2, but not cAMP-responsive element-binding protein (CREB), was highly phosphorylated and activated in the V-1 cells, while both CREB and ATF-2 were bound to the TH-CRE. Finally, the enhanced TH promoter activity was competitively attenuated by expression of a plasmid containing the ATF-2 transactivation domain. These data demonstrated that activation of ATF-2 resulted in the increased transcription of the TH gene and suggest that ATF-2 may be deeply involved in the transcriptional regulation of catecholamine-synthesizing genes during neural development.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Division of Molecular Genetics, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Aichi 470-1192, Japan
| | | | | | | |
Collapse
|
37
|
Thanky NR, Son JH, Herbison AE. Sex differences in the regulation of tyrosine hydroxylase gene transcription by estrogen in the locus coeruleus of TH9-LacZ transgenic mice. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2002; 104:220-6. [PMID: 12225877 DOI: 10.1016/s0169-328x(02)00383-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Although estrogen is recognized increasingly as having an important role in modulating extrahypothalamic brain function, the mechanisms through which this occur are not well established. The norepinephrine (NE) neurons of the locus coeruleus provide an important neuromodulatory influence upon multiple neural networks throughout the brain and estrogen has been implicated in their regulation. Using a tyrosine hydroxylase (TH) promoter-LacZ transgenic mouse model, which enables rates of TH gene transcription to be examined in vivo, we have examined here whether estrogen regulates expression of the TH gene in the locus coeruleus of males and females. Optical area measurements of Xgal reaction product in the locus coeruleus revealed that gonadectomy exerted opposite effects on TH gene transcription in males and females; transgene expression was increased in males (P<0.01) but reduced in females (P<0.05). Estrogen reversed these effects in both sexes by suppressing gene expression in males (P<0.05) but elevating it in the female (P<0.05). These studies reveal a marked and unexpected sex difference in the regulation of TH gene activity in the mouse. While estrogen in the male, synthesized from circulating testosterone, suppresses TH gene transcription, estrogen in the female enhances TH promoter activity. The present results indicate that estrogen may exert very different sex-dependent effects upon the biosynthesis of NE within the locus coeruleus.
Collapse
Affiliation(s)
- Niren R Thanky
- Laboratory of Neuroendocrinology, The Babraham Institute, Cambridge, UK
| | | | | |
Collapse
|
38
|
Obara Y, Aoki T, Kusano M, Ohizumi Y. Beta-eudesmol induces neurite outgrowth in rat pheochromocytoma cells accompanied by an activation of mitogen-activated protein kinase. J Pharmacol Exp Ther 2002; 301:803-11. [PMID: 12023507 DOI: 10.1124/jpet.301.3.803] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Beta-eudesmol, a sesquiterpenoid isolated from "So-jutsu" (Atractylodis lanceae rhizomas), is known to have various unique effects on the nervous system. We examined in detail the mechanism by which beta-eudesmol modified neuronal function using rat pheochromocytoma cells (PC-12). Beta-eudesmol at concentrations of 100 and 150 microM significantly induced neurite extension in PC-12 cells, which was accompanied, at the highest concentration, by suppression of [(3)H]thymidine incorporation. Beta-eudesmol at concentrations of 100 and 150 microM also evoked a significant increase in intracellular Ca(2+) concentration ([Ca(2+)](i)) in these cells, as determined by the fura 2 assay. Much of this increase remained even after the extracellular Ca(2+) was chelated by EGTA. The [Ca(2+)](i) increase induced by beta-eudesmol was partially inhibited by the phosphoinositide-specific phospholipase C (PI-PLC) inhibitor 1-[6-[[17beta-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U-73122) (2 microM) under extracellular Ca(2+)-free conditions. Furthermore, beta-eudesmol, in a concentration-dependent fashion, caused an accumulation of inositol phosphates. beta-Eudesmol (150 microM) promoted phosphorylation of both mitogen-activated protein kinase (MAPK) and cAMP-responsive element binding protein in a time-dependent manner. These phosphorylations were suppressed by the MAPK kinase inhibitor 2-(2'-amino-3'-methoxyphenol)-oxanaphthalen-4-one (PD98059) (50 microM), U-73122 (2 microM), the calmodulin inhibitor N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W7) (1-10 microM), and the protein kinase A inhibitor N-[2-(4-bromocinnamylamino)ethyl]-5-isoquinoline (H89) (1-10 microM). Beta-eudesmol-induced neurite extension was significantly inhibited by both U-73122 (2 microM) and PD98059 (30 microM), suggesting the involvement of PI-PLC and MAPK in neurite outgrowth. Beta-eudesmol, being a small molecule, may therefore be a promising lead compound for potentiating neuronal function. Furthermore, the drug may be useful in helping to clarify the mechanisms underlying neuronal differentiation.
Collapse
Affiliation(s)
- Yutaro Obara
- Department of Pharmaceutical Molecular Biology, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | | | | | | |
Collapse
|
39
|
Laorden ML, Castells MT, Milanés MV. Effects of morphine and morphine withdrawal on brainstem neurons innervating hypothalamic nuclei that control the pituitary-adrenocortical axis in rats. Br J Pharmacol 2002; 136:67-75. [PMID: 11976269 PMCID: PMC1762112 DOI: 10.1038/sj.bjp.0704684] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2001] [Revised: 02/11/2002] [Accepted: 02/18/2002] [Indexed: 11/09/2022] Open
Abstract
Different data support a role for brainstem noradrenergic inputs to the hypothalamic paraventricular nucleus (PVN) in the control of hypothalamus - pituitary - adrenocortical (HPA) axis. However, little is known regarding the functional adaptive changes of noradrenergic afferent innervating the PVN and supraoptic nucleus (SON) during chronic opioid exposure and upon morphine withdrawal. Here we have studied the expression of Fos after administration of morphine and during morphine withdrawal in the rat hypothalamic PVN and SON. Fos production was also studied in brainstem regions that innervate hypothalamic nuclei: the nucleus of solitary tract (NTS - A2) and the ventrolateral medulla (VLM - A1) and combined with immunostaining for tyrosine hydroxylase (TH) for immunohistochemical identification of active neurons during morphine withdrawal. Male rats were implanted with s.c. placebo or morphine (tolerant/dependent) pellets for 7 days. On day 8 rats received an injection of saline i.p., morphine i.p., saline s.c. or naloxone s.c. Acute morphine administration produced an increase in Fos expression at hypothalamic nuclei and in the brainstem regions, and tolerance developed towards this effect. Precipitated morphine withdrawal induced marked Fos immunoreactivity within the PVN and SON. Concomitantly, numerous neurons in the brainstem were stimulated by morphine withdrawal. Moreover, catecholaminergic-positive neurons in the brainstem showed a significant increase in Fos expression in response to morphine withdrawal. These findings demonstrate that chronic activation of opioid receptors results in altered patterns of immediate-early genes (IEG) expression in the PVN and SON, which occurs concurrently with an increased activity of their inputs from the brainstem.
Collapse
Affiliation(s)
- Maria Luisa Laorden
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, 30100 Murcia, Spain
| | | | - Maria Victoria Milanés
- Equip of Cellular and Molecular Pharmacology, University School of Medicine, 30100 Murcia, Spain
| |
Collapse
|
40
|
Berghorn KA, Le WW, Sherman TG, Hoffman GE. Suckling stimulus suppresses messenger RNA for tyrosine hydroxylase in arcuate neurons during lactation. J Comp Neurol 2001; 438:423-32. [PMID: 11559898 DOI: 10.1002/cne.1325] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tyrosine hydroxylase (TH) mRNA in tuberoinfundibular dopamine (TIDA) neurons is suppressed during lactation but rebounds upon pup removal. A time course of TH mRNA changes after pup removal revealed three phases: (1) a nuclear phase (evident 1.5 hours after pup removal, maximal at 3 hours) with TH mRNA appearing in 1 or 2 nuclear loci with little or no change in cytoplasmic mRNA; (2) a cytoplasmic phase (noted 6 hours after pup removal, peaked 12-24 hours) with a significant increase in total TH mRNA levels mainly in the cytoplasm; and (3) a stabilization phase (24-48 hours after pup removal) when nuclear signals were low and cytoplasmic RNA showed a slight decline with extension of RNA clusters into the cell dendrites. In rats whose pups could suckle only on one side, TH was up-regulated only on the side contralateral to nipple blockade. These data indicate that after suckling terminates, TH up-regulation is evident at 1.5 hours, but 6 hours is needed before the cells transport sufficient mRNA into the cytoplasm. The rapid signaling of TH up-regulation stems from the fact that the TIDA neurons respond to neural signals from termination of suckling.
Collapse
Affiliation(s)
- K A Berghorn
- Laboratory for Pregnancy and Newborn Research, Department of Physiology, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
41
|
Trocmé C, Ravassard P, Sassone-Corsi P, Mallet J, Biguet NF. CREM and ICER are differentially implicated in trans-synaptic induction of tyrosine hydroxylase gene expression in adrenal medulla and sympathetic ganglia of rat. J Neurosci Res 2001; 65:91-9. [PMID: 11438978 DOI: 10.1002/jnr.1132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reserpine treatment leads to a trans-synaptic increase of the tyrosine hydroxylase (TH) gene transcription rate, mRNA and protein levels in catecholaminergic tissues including the adrenal medulla (AM) and the superior cervical ganglia (SCG). The TPA-responsive element plays an important role in the trans-synaptically-induced transcription of the TH gene in the AM, whereas it does not appear to be involved in the SCG (Trocmé et al. [1997] J. Neurosci. Res. 48:489-498). In this study, we show that another regulatory sequence of the TH proximal promoter, the cAMP-responsive element (CRE), binds different factors in the AM and in the SCG. To elucidate the dynamics of promoter regulation a complete time course analysis was conducted. Reserpine treatment enhances, between 1 hr and 8 hr after the injection, the expression and the binding of the repressor ICER in the AM, whereas in the SCG it enhances the binding of CREM factors. These results suggest that the mechanisms mediating trans-synaptic induction of the TH gene are different in the AM and SCG. The interplay between positive and negative transcription factors and their kinetics of action are responsive of the long-term regulation of the TH gene.
Collapse
Affiliation(s)
- C Trocmé
- CNRS UMR9923, Laboratoire de Génétique Moléculaire de la Neurotransmission et des Processus Neurodégénératifs, Hôpital de la Pitié Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Briñón JG, Crespo C, Weruaga E, Martínez-Guijarro FJ, Aijón J, Alonso JR. Bilateral olfactory deprivation reveals a selective noradrenergic regulatory input to the olfactory bulb. Neuroscience 2001; 102:1-10. [PMID: 11226665 DOI: 10.1016/s0306-4522(00)00443-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Unilateral olfactory deprivation in the rat induces changes in the catecholaminergic system of the olfactory bulb. Nevertheless, evidence suggests that unilateral deprivation does not fully prevent stimulation of the deprived bulb. The present report analyses the response of the catecholaminergic system of the olfactory bulb in fully deprived rats obtained by bilateral naris occlusion. The complete deprivation produces more rapid and dramatic changes in both the intrinsic and extrinsic catecholaminergic systems of the olfactory bulb. Intrinsic responses involve a rapid decrease in dopamine-containing cells to about 25% of controls, correlated with a decreased Fos expression in juxtaglomerular cells of all olfactory glomeruli, with the only exception of those of the atypical glomeruli which maintain unaltered expression of both markers. In parallel with these events, there is a progressive increase in the density of extrinsic noradrenergic axons arising from neurons in the locus coeruleus, which shows, in parallel, a progressive increase in Fos expression. This model demonstrates plastic changes in the catecholaminergic system of the olfactory bulb forming a valid morphological substrate for lowering thresholds in the processing of olfactory information. In addition to this generalized response, there is another one, directed to a specific subset of olfactory glomeruli (atypical glomeruli) involved in the processing of odor pheromone-like cues related to behavioral responses, that could be responsible for keeping active this reduced and selected group of glomeruli carrying crucial olfactory information. These results indicate the existence of adaptive changes in the catecholaminergic system of the olfactory bulb as a response to the lack of afferent peripheral stimulation. These changes involve dopamine- and noradrenaline-immunoreactive elements, in a strategy presumably directed at maintaining to the highest possible level the ability to detect olfactory signals.
Collapse
Affiliation(s)
- J G Briñón
- Instituto de Neurociencias de Castilla y León (INCYL), Dipartmento Biología Celular y Patología, Facultad de Biología, Universidad de Salamanca, E-37007, Salamanca, Spain
| | | | | | | | | | | |
Collapse
|
43
|
Eells JB, Rives JE, Yeung SK, Nikodem VM. In vitro regulated expression of tyrosine hydroxylase in ventral midbrain neurons from Nurr1-null mouse pups. J Neurosci Res 2001; 64:322-30. [PMID: 11340638 DOI: 10.1002/jnr.1082] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transcription factor Nurr1, an orphan member of the steroid-thyroid hormone nuclear receptor superfamily, is essential for the proper terminal differentiation of ventral midbrain dopaminergic neurons. Disruption of the Nurr1 gene in mice by homologous recombination abolishes synthesis of dopamine (DA) and expression of DA biosynthetic enzymes, including tyrosine hydroxylase (TH), in the ventral midbrain without affecting the synthesis of DA in other areas of the brain. At birth, however, dopaminergic neuron precursors in Nurr1 null (-/-) pups remain as shown by continued expression of residual, untranslated Nurr1 mRNA not altered by homologous recombination. Since Nurr1 disruption is lethal shortly after birth, to further investigate the developmental properties of these neurons, dissociated ventral midbrain neurons from newborn pups were grown for 5 days on an astrocyte feeder layer, subjected to various treatments and then evaluated for expression of TH by fluorescent immunocytochemistry. Initially, a small percentage of neurons (0.26% +/- 0.07%) from the ventral midbrain of Nurr1 -/- pups were TH-immunoreactive (TH-IR). No change in TH expression was observed in the presence of glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), or DA alone or in combination. Treatment with forskolin (Fsk), however, significantly increased the percentage of TH-IR neurons (1.36% +/- 0.15%). Combination of Fsk, BNDF, and DA further increased the percentage of TH-IR neurons (2.58% +/- 0.50%). Therefore, these data suggest that dopaminergic neuron precursors, which develop in vivo without Nurr1, remain in an undifferentiated condition that is permissive to the induction of TH in vitro. J. Neurosci. Res. 64:322-330, 2001. Published 2001 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- J B Eells
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
44
|
Freeman WM, Nader MA, Nader SH, Robertson DJ, Gioia L, Mitchell SM, Daunais JB, Porrino LJ, Friedman DP, Vrana KE. Chronic cocaine-mediated changes in non-human primate nucleus accumbens gene expression. J Neurochem 2001; 77:542-9. [PMID: 11299316 DOI: 10.1046/j.1471-4159.2001.00252.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chronic cocaine use elicits changes in the pattern of gene expression within reinforcement-related, dopaminergic regions. cDNA hybridization arrays were used to illuminate cocaine-regulated genes in the nucleus accumbens (NAcc) of non-human primates (Macaca fascicularis; cynomolgus macaque), treated daily with escalating doses of cocaine over one year. Changes seen in mRNA levels by hybridization array analysis were confirmed at the level of protein (via specific immunoblots). Significantly up-regulated genes included: protein kinase A alpha catalytic subunit (PKA(calpha)); cell adhesion tyrosine kinase beta (PYK2); mitogen activated protein kinase kinase 1 (MEK1); and beta-catenin. While some of these changes exist in previously described cocaine-responsive models, others are novel to any model of cocaine use. All of these adaptive responses coexist within a signaling scheme that could account for known inductions of genes(e.g. fos and jun proteins, and cyclic AMP response element binding protein) previously shown to be relevant to cocaine's behavioral actions. The complete data set from this experiment has been posted to the newly created Drug and Alcohol Abuse Array Data Consortium (http://www.arraydata.org) for mining by the general research community.
Collapse
Affiliation(s)
- W M Freeman
- Center for the Neurobiological Investigation of Drug Abuse, Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gardaneh M, Gilbert J, Haber M, Norris MD, Cohn SL, Schmidt ML, Marshall GM. Synergy between 5' and 3' flanking regions of the human tyrosine hydroxylase gene ensures specific, high-level expression in neuroblastoma cells. Neurosci Lett 2000; 292:147-50. [PMID: 11018298 DOI: 10.1016/s0304-3940(00)01474-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Factors regulating tyrosine hydroxylase (TH) gene transcription are of major importance in the studies of malignant and degenerative diseases of catecholamine-synthesizing tissues. In this study, we used transient transfection of a reporter gene to show that high-level, tissue-specific TH expression was only achieved when the reporter gene was cloned between a 5' TH promoter sequence (-513-+1), and, a 3' TH gene flanking sequence (end of exon 14-+976). We also show that TH mRNA expression level is closely linked to the expression level of the proto-oncogene, MYCN in neuroblastoma tumor cell lines. Taken together our data indicate that MYCN may regulate TH expression in neuroblastoma cells, but not through binding to the 5' or 3' TH gene flanking sequences used in our experiments.
Collapse
Affiliation(s)
- M Gardaneh
- Children's Cancer Institute Australia for Medical Research, NSW, Randwick, Australia
| | | | | | | | | | | | | |
Collapse
|
46
|
Jeffrey PL, Capes-Davis A, Dunn JM, Tolhurst O, Seeto G, Hannan AJ, Lin SL. CROC-4: a novel brain specific transcriptional activator of c-fos expressed from proliferation through to maturation of multiple neuronal cell types. Mol Cell Neurosci 2000; 16:185-96. [PMID: 10995546 DOI: 10.1006/mcne.2000.0866] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A novel, brain-specific cDNA, denoted CROC-4, was cloned from human brain by a contingent replication of cDNA procedure capable of detecting transcriptional activators of the human c-fos proto-oncogene promoter. CROC-4 encoded an 18-kDa serine/threonine-rich polypeptide containing a P-loop motif and an SH3-binding region with phosphorylation sites for a variety of protein kinases (cdc2, CDK2, MAPK, CDK5, protein kinase C, Ca(2+)/calmodulin protein kinase 2, casein kinase 2) involved in cell proliferation and differentiation. Immunohistochemistry revealed that during early development, expression was associated with proliferating and migrating cells throughout the rodent brain, initially appearing in the proliferative ventricular zones. During late development and in adult human brain, CROC-4 was expressed in diverse brain regions including the thalamus, subthalamic nucleus, corpus callosum, substantia nigra, caudate nucleus, amygdala, and hippocampus. The association of CROC-4 expression with proliferating regions of developing brain and retention in regions of the adult brain, as well as the punctate nuclear location, suggest that CROC-4 participates in brain-specific c-fos signaling pathways involved in cellular remodeling of brain architecture.
Collapse
Affiliation(s)
- P L Jeffrey
- Developmental Neurobiology Unit, Children's Medical Research Institute, Westmead, NSW, 2145, Australia.
| | | | | | | | | | | | | |
Collapse
|
47
|
Hebert MA, O'Callaghan JP. Protein phosphorylation cascades associated with methamphetamine-induced glial activation. Ann N Y Acad Sci 2000; 914:238-62. [PMID: 11085325 DOI: 10.1111/j.1749-6632.2000.tb05200.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reactive gliosis is the most prominent response to diverse forms of central nervous system (CNS) injury. The signaling events that mediate this characteristic response to neural injury are under intense investigation. Several studies have demonstrated the activation of phosphoproteins within the mitogen-activated protein kinase (MAPK) and Janus kinase (JAK) pathways following neural insult. These signaling pathways may be involved or responsible for the glial response following injury, by virtue of their ability to phosphorylate and dynamically regulate the activity of various transcription factors. This study sought to delineate, in vivo, the relative contribution of MAPK- and JAK-signaling components to reactive gliosis as measured by induction of glial-fibrillary acidic protein (GFAP), following chemical-induced neural damage. At time points (6, 24, and 48 h) following methamphetamine (METH, 10 mg/kg x 4, s.c.) administration, female C57BL/6J mice were sacrificed by focused microwave irradiation, a technique that preserves steady-state phosphorylation. Striatal (target) and nontarget (hippocampus) homogenates were assayed for METH-induced changes in markers of dopamine (DA) neuron integrity as well as differences in the levels of activated phosphoproteins. GFAP upregulation occurred as early as 6 h, reaching a threefold induction 48 h following METH exposure. Neurotoxicant-induced reductions in striatal levels of DA and tyrosine hydroxylase (TH) paralleled the temporal profile of GFAP induction. Blots of striatal homogenates, probed with phosphorylation-state specific antibodies, demonstrated significant changes in activated forms of extracellular-regulated kinase 1/2 (ERK 1/2), c-jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), MAPK/ERK kinase (MEK1/2), 70-kDa ribosomal S6 kinase (p70 S6), cAMP responsive element binding protein (CREB), and signal transducer and activator of transcription 3 (STAT3). MAPK-related phosphoproteins exhibited an activation profile that peaked at 6 h, remained significantly increased at 24, and fell to baseline levels 48 h following neurotoxicant treatment. The ribosomal S6 kinase was enhanced over 60% for all time points examined. Immunoreactivity profiles for the transcription factors CREB and STAT3 indicated maximal increases in phosphorylation occurring at 24 h, and measuring greater than 2- or 17-fold, respectively. Specific signaling events were found to occur with a time course suggestive of their involvement in the gliotic response. The toxicant-induced activation of these growth-associated signaling cascades suggests that these pathways could be obligatory for the triggering and/or persistence of reactive gliosis and may therefore serve as potential targets for modulation of glial response to neural damage.
Collapse
Affiliation(s)
- M A Hebert
- Department of Health & Human Services, Public Health Service, Centers for Disease Control and Prevention, Morgantown, West Virginia 26505-2888, USA
| | | |
Collapse
|
48
|
Cazorla P, Smidt MP, O'Malley KL, Burbach JP. A response element for the homeodomain transcription factor Ptx3 in the tyrosine hydroxylase gene promoter. J Neurochem 2000; 74:1829-37. [PMID: 10800925 DOI: 10.1046/j.1471-4159.2000.0741829.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in the biosynthesis of catecholamines, which takes place in different types of neuronal systems and nonneuronal tissues. The transcriptional regulation of the TH gene, which is complex and highly variable among different tissues, reflects this heterogeneity. We recently isolated a homeodomain transcription factor, named Ptx3, that is uniquely expressed in the dopaminergic neurons of the substantia nigra pars compacta and ventral tegmental area, which together form the mesencephalic dopaminergic system. This strict localization and its coinciding induction of expression with the TH gene during development suggested a possible role for this transcription factor in the control of the TH gene. We report here the presence of a responsive element for Ptx3 located at position -50 to -45 of the rat TH promoter. Transient transfections using TH promoter constructs and electrophoretic mobility shift assays using Ptx3-containing nuclear extracts demonstrated that this region binds Ptx3 protein and confers a transcriptional effect on the TH gene. Depending on the cell type, the effect of Ptx3 was an eight- to 12-fold enhancement of TH promoter activity in Neuro2A neuroblastoma cells, or a 60-80% repression in nonneuronal human embryonic kidney 293 cells. Despite the close association of the Ptx3-binding site and the major cyclic AMP-response element in the TH gene, no interplay was found between Ptx3 and cyclic AMP-modulating agents. In combination with the orphan nuclear receptor Nurr1, which is required for the induction of the TH gene in mesencephalic dopaminergic neurons, the TH promoter activity to Ptx3 was enhanced in Neuro2A cells. Nurr1 alone displayed only very weak activity on the TH promoter in this cell type. The results demonstrate that the homeodomain protein Ptx3 has the potential to act on the promoter of the TH gene in a markedly cell type-dependent fashion. This suggests that Ptx3 contributes to the regulation of TH expression in mesencephalic dopaminergic neurons.
Collapse
Affiliation(s)
- P Cazorla
- Department of Medical Pharmacology, Rudolf Magnus Institute for Neurosciences, Medical Faculty, Utrecht University, The Netherlands
| | | | | | | |
Collapse
|
49
|
Swanson DJ, Adachi M, Lewis EJ. The homeodomain protein Arix promotes protein kinase A-dependent activation of the dopamine beta-hydroxylase promoter through multiple elements and interaction with the coactivator cAMP-response element-binding protein-binding protein. J Biol Chem 2000; 275:2911-23. [PMID: 10644760 DOI: 10.1074/jbc.275.4.2911] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The differentiation and maintenance of a neurotransmitter phenotype is guided by the interaction of exogenous cues with intrinsic genetic machinery. For the noradrenergic phenotype, these influences combine to activate the expression of the catecholaminergic biosynthetic enzymes tyrosine hydroxylase and dopamine beta-hydroxylase (DBH). In this study, we evaluate the molecular mechanisms by which the transcription factor Arix/Phox2a contributes to DBH gene transcription. We have evaluated the contribution of individual homeodomain binding sites in the rat DBH promoter region and find that all are essential for both basal and cAMP-dependent protein kinase A (PKA)-stimulated transcription. Using mammalian one-hybrid and two-hybrid systems, we demonstrate that recruitment of Arix to the positions of homeodomain core recognition sites 1 and 2 at -153 to -166 of the DBH gene restores complete responsiveness of the promoter to PKA in SHSY-5Y neuroblastoma and HepG2 hepatoma cells. Intracellular Arix-Arix interactions are evident and may contribute to the interdependence of homeodomain binding sites. Analysis of functional domains of Arix reveals an N-terminal activation domain and a C-terminal repression domain. The N terminus of Arix contains an amino acid motif similar to a region in Brachyury and Pax9 transcription factors. The N-terminal activation domain of Arix interacts with the transcriptional co-activator, cAMP-response element-binding protein-binding protein, which potentiates transcription from the DBH promoter in a PKA-dependent manner. The present study supports the hypothesis that the paired-like homeodomain protein, Arix, acts as a critical phenotype-specific regulator of the DBH promoter by serving as an integrator of signal-dependent transcription activators within the network of the general transcription machinery.
Collapse
Affiliation(s)
- D J Swanson
- Department of Biochemistry, Oregon Health Sciences University, Portland, Oregon 97201, USA
| | | | | |
Collapse
|
50
|
Schimmel JJ, Crews L, Roffler-Tarlov S, Chikaraishi DM. 4.5 kb of the rat tyrosine hydroxylase 5' flanking sequence directs tissue specific expression during development and contains consensus sites for multiple transcription factors. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1999; 74:1-14. [PMID: 10640671 DOI: 10.1016/s0169-328x(99)00234-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
To delineate DNA sequences responsible for developmentally correct expression of the rat tyrosine hydroxylase (TH) gene, we analyzed a line of transgenic mice expressing high levels of human placental alkaline phosphatase (AP) under control of 4.5 kb of 5' flanking DNA from the rat TH gene in embryos and adults. Several regions, such as the accessory olfactory bulb, which were not thought to synthesize TH protein or do so only transiently, were shown to express TH protein using an improved method of antigen retrieval for TH immunohistochemistry. Many of these regions had been shown to express TH-driven reporter genes in transgenic mice. In the central nervous system, AP was detected in essentially all TH-expressing cell groups throughout development and in adults. In the peripheral nervous system, transgene expression paralleled endogenous TH expression in the developing adrenal medulla and sympathetic ganglia but not in transiently TH-positive cells in dorsal root ganglia. Peripheral expression in the adult adrenal medulla was very weak and absent in sympathetic ganglia. The specificity with which the 4.5 kb region directs transgene expression in embryos is comparable to that observed with longer 5' flanking promoter regions, implying that this region contains the control elements for appropriate expression during development. Sequence analysis of the region demonstrates a GT dinucleotide repeat, an element that resembles the neural restrictive silencer element (NRSE), which restricts transcription of neuronal genes in non-neuronal cells, and consensus sites for three families of transcription factors, Ptx1/3, Nurr1 and Gli1/2, which are required for the early differentiation of mesencephalic neurons.
Collapse
Affiliation(s)
- J J Schimmel
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | | | |
Collapse
|