1
|
Gaddam RR, Ang AD, Badiei A, Chambers ST, Bhatia M. Alteration of the renin-angiotensin system in caerulein induced acute pancreatitis in the mouse. Pancreatology 2015; 15:647-53. [PMID: 26444748 DOI: 10.1016/j.pan.2015.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 08/28/2015] [Accepted: 09/15/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND The objective of this study was to determine if RAS bioactive enzymes and peptides are perturbed in acute pancreatitis and associated lung injury. METHODS The intervention group of mice were treated with ten hourly intraperitoneal (i.p.) injections of caerulein (50 μg/kg) to induce acute pancreatitis. Animals were euthanized, samples of pancreas, lung and blood were collected, and plasma was prepared and stored for subsequent analysis. ACE and ACE2 activities were determined by spectrofluorometric assay. ACE, ACE2, Ang II and Ang-(1-7) levels were quantified by ELISA. RESULTS There was a significant decrease in ACE2 enzymatic activity in pancreatic and lung tissues of mice with acute pancreatitis. In contrast, there were no significant changes in measured levels of ACE and ACE2 in the pancreas, and lung or activity of ACE in pancreatic and lung tissue following acute pancreatitis. There were no significant differences in the activities and levels of circulating ACE and ACE2 following acute pancreatitis. The ACE to ACE2 activity ratio was markedly increased in pancreatic and lung tissues of mice with acute pancreatitis. No significant changes were observed in the levels of Ang II except for a decrease in lung tissue. No changes were observed in Ang-(1-7) levels in pancreas, lung and plasma between the groups. The Ang II to Ang-(1-7) ratio was increased in the pancreas but was decreased in the lung following caerulein treatment. CONCLUSION These data suggest dysregulation of RAS in acute pancreatitis as evidenced by altered Ang II/Ang-(1-7) levels induced by the imbalance of ACE/ACE2 activity.
Collapse
Affiliation(s)
| | - Abel Damien Ang
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Alireza Badiei
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | | | - Madhav Bhatia
- Department of Pathology, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
2
|
Pan Z, Feng L, Long H, Wang H, Feng J, Chen F. Effects of Local Pancreatic Renin-Angiotensin System on the Microcirculation of Rat with Severe Acute Pancreatitis. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2015; 19:299-307. [PMID: 26170733 PMCID: PMC4499641 DOI: 10.4196/kjpp.2015.19.4.299] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 11/19/2014] [Accepted: 12/02/2014] [Indexed: 12/23/2022]
Abstract
Severe acute pancreatitis (SAP) is normally related to multiorgan dysfunction and local complications. Studies have found that local pancreatic renin-angiotensin system (RAS) was significantly upregulated in drug-induced SAP. The present study aimed to investigate the effects of angiotensin II receptors inhibitor valsartan on dual role of RAS in SAP in a rat model and to elucidate the underlying mechanisms. 3.8% sodium taurocholate (1 ml/kg) was injected to the pancreatic capsule in order for pancreatitis induction. Rats in the sham group were injected with normal saline in identical locations. We also investigated the regulation of experimentally induced SAP on local RAS expression in the pancreas through determination of the activities of serum amylase, lipase and myeloperoxidase, histological and biochemical analysis, radioimmunoassay, fluorescence quantitative PCR and Western blot analysis. The results indicated that valsartan could effectively suppress the local RAS to protect against experimental acute pancreatitis through inhibition of microcirculation disturbances and inflammation. The results suggest that pancreatic RAS plays a critical role in the regulation of pancreatic functions and demonstrates application potential as AT1 receptor antagonists. Moreover, other RAS inhibitors could be a new therapeutic target in acute pancreatitis.
Collapse
Affiliation(s)
- Zhijian Pan
- Department of Gastroenterology Surgery, The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science & Technology, Wuhan 430014, Hubei, China
| | - Ling Feng
- Department of gynecology and obstetrics, Fifth Hospital of Wuhan, Wuhan 430050, Hubei, China
| | - Haocheng Long
- Department of General Surgery, Fifth Hospital of Wuhan, Wuhan 430050, Hubei, China
| | - Hui Wang
- Department of Gastroenterology Surgery, The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science & Technology, Wuhan 430014, Hubei, China
| | - Jiarui Feng
- Department of General Surgery, Fifth Hospital of Wuhan, Wuhan 430050, Hubei, China
| | - Feixiang Chen
- Department of General Surgery, Fifth Hospital of Wuhan, Wuhan 430050, Hubei, China
| |
Collapse
|
3
|
Abstract
OBJECTIVES We sought association of genetic variants in the renin-angiotensin system (RAS) and vitamin D system with acute pancreatitis (AP) development and severity. BACKGROUND The endocrine RAS is involved in circulatory homeostasis through the pressor action of angiotensin II at its AT1 receptor. However, local RAS regulate growth and inflammation in diverse cells and tissues, and their activity may be suppressed by vitamin D. Intrapancreatic angiotensin II generation has been implicated in the development of AP. METHODS Five hundred forty-four white patients with AP from 3 countries (United Kingdom, 22; Germany, 136; and The Netherlands 386) and 8487 control subjects (United Kingdom 7833, The Netherlands 717) were genotyped for 8 polymorphisms of the RAS/vitamin D systems, chosen on the basis of likely functionality. RESULTS The angiotensin-converting enzyme I (rather than D) allele was significantly associated with alcohol-related AP when all cohorts were combined (P = 0.03). The renin rs5707 G (rather than A) allele was associated with AP (P = 0.002), infected necrosis (P = 0.025) and mortality (P = 0.046). CONCLUSIONS The association of 2 RAS polymorphisms with AP suggests the need for further detailed analysis of the role of RAS/vitamin D in the genesis or severity of AP, particularly given the ready potential for pharmacological manipulation of this system using existing marketed agents. However, further replication studies will be required before any such association is considered robust, particularly given the significant heterogeneity of AP causation and clinical course.
Collapse
|
4
|
Fang F, Pan J, Xu L, Su G, Li G, Wang J. Association between angiotensin-converting enzyme gene insertion/deletion polymorphism and pancreatitis risk: A meta-analysis. J Renin Angiotensin Aldosterone Syst 2014; 16:820-6. [PMID: 25070351 DOI: 10.1177/1470320314539827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Many studies have focused on the relationship between the angiotensin-converting enzyme gene (ACE) insertion/deletion (I/D) polymorphism and pancreatitis risk, but the results remain inconsistent. Thus, a meta-analysis was carried out to derive a more precise estimation of the association between ACE I/D polymorphism and pancreatitis risk. METHODS Relevant publications were searched in several widely used databases and seven studies from six eligible articles were included in the meta-analysis. Pooled odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to evaluate the strength of the association between ACE I/D polymorphism and pancreatitis risk. RESULTS Significant associations between ACE I/D polymorphism and pancreatitis risk were observed in both overall meta-analysis for DI versus II (OR=0.80, 95% CI=0.67-0.96) and DD + DI versus II (OR=0.83, 95% CI=0.70-0.98), and acute pancreatitis subgroup for DI versus II (OR=0.65, 95% CI=0.44-0.95). However, no significant pancreatitis risk variation was detected for all genetic models in the subgroup meta-analysis based on ethnicity. CONCLUSIONS According to the results of our meta-analysis, the ACE I/D polymorphism probably associates with pancreatitis risk, especially acute pancreatitis risk, with the I allele acting as a risk factor.
Collapse
Affiliation(s)
- Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Lixiao Xu
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Guanghao Su
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Gang Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| | - Jian Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, China
| |
Collapse
|
5
|
FURUKAWA HIROYUKI, SHINMURA ATSUSHI, TAJIMA HIDEHIRO, TSUKADA TOMOYA, NAKANUMA SHINICHI, OKAMOTO KOICHI, SAKAI SEISHO, MAKINO ISAMU, NAKAMURA KEISHI, HAYASHI HIRONORI, OYAMA KATSUNOBU, INOKUCHI MASAFUMI, NAKAGAWARA HISATOSHI, MIYASHITA TOMOHARU, FUJITA HIDETO, TAKAMURA HIROYUKI, NINOMIYA ITASU, KITAGAWA HIROHISA, FUSHIDA SACHIO, FUJIMURA TAKASHI, OHTA TETSUO, WAKAYAMA TOMOHIKO, ISEKI SHOICHI. Concentration of tissue angiotensin II increases with severity of experimental pancreatitis. Mol Med Rep 2013; 8:335-8. [DOI: 10.3892/mmr.2013.1509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 05/30/2013] [Indexed: 11/05/2022] Open
|
6
|
Bexelius TS, Blomberg J, Lu YX, Håkansson HO, Möller P, Nordgren CE, Arnelo U, Lagergren J, Lindblad M. Losartan to prevent hyperenzymemia after endoscopic retrograde cholangiopan-creatography: A randomized clinical trial. World J Gastrointest Endosc 2012; 4:506-512. [PMID: 23189222 PMCID: PMC3506968 DOI: 10.4253/wjge.v4.i11.506] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM: To study if the angiotensin II receptor blockers (ARB) losartan counteracts pancreatic hyperenzymemia as measured 24 h after endoscopic retrograde cholangiopancreatography (ERCP).
METHODS: A triple-blind and placebo-controlled randomized clinical trial was performed at two Swedish hospitals in 2006-2008. Patients over 18 years of age undergoing ERCP, excluding those with current pancreatitis, current use of ARB, and severe disease, such as sepsis, liver and renal failure. One oral dose of 50 mg losartan or placebo was given one hour before ERCP. The relative risk of hyperenzymemia 24 h after ERCP was estimated using multivariable logistic regression, and expressed as odds ratio with 95% confidence intervals (CIs), including adjustment for potential remaining confounding.
RESULTS: Among 76 participating patients, 38 were randomized to the losartan and the placebo group, respectively. The incidence rates of hyperenzymemia and acute pancreatitis among all 76 participating patients were 21% and 12%, respectively. Hyperenzymemia was detected in 9 and 7 patients in the losartan and placebo group, respectively. There were no major differences between the comparison groups regarding cannulation difficulty, findings, or proportion of patients requiring drainage of the bile ducts. There were, however, more pancreatic duct injections, a greater extent of pancreatography, and more biliary sphincterotomies in the losartan group than in the placebo group. Losartan was not associated with risk of hyperenzymemia compared to the placebo group after multi-varible logistic regression analysis (odds ratio 1.6, 95%CI 0.3-7.8).
CONCLUSION: In this randomized trial 50 mg losartan given orally had no prophylactic effect on development of hyperenzymemia after ERCP.
Collapse
Affiliation(s)
- Tomas Sjöberg Bexelius
- Tomas Sjöberg Bexelius, John Blomberg, Yun-Xia Lu, Jesper Lagergren, Mats Lindblad, Upper Gastrointestinal Research, Department of Molecular Medicine and Surgery, Karolinska Institutet, 176 70 Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Severe acute pancreatitis is associated with upregulation of the ACE2-angiotensin-(1-7)-Mas axis and promotes increased circulating angiotensin-(1-7). Pancreatology 2012; 12:451-7. [PMID: 23127535 DOI: 10.1016/j.pan.2012.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/28/2012] [Accepted: 07/29/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Angiotensin-converting enzyme 2 (ACE2), its product angiotensin-(1-7) and its receptor Mas may counteract the adverse effects of the ACE-angiotensin receptor II-AT(1) axis in many diseases. We examined the expression of these novel components of the rennin-angiotensin system in an experimental mouse model of severe acute pancreatitis (SAP). METHODS SAP was induced by six intraperitoneal injections of caerulein, and mice were sacrificed at 2, 12, 24, 48 and 72 h post disease-induction (normal control group mice were sacrificed at 2 h post disease-induction). Tissue and blood were collected for biochemical detection, gene and protein expression by qRT-PCR and western blot analysis, enzyme-linked immunosorbent assay and immunohistology detection. RESULTS Pancreatic ACE2 gene and protein expression, plasma and pancreatic angiotensin-(1-7) levels and Mas receptor gene and protein expression were significantly increased (p < 0.05) following SAP induction compared with the normal control group. CONCLUSIONS Severe acute pancreatitis is associated with upregulation of the ACE2-angiotensin-(1-7)-Mas axis and promotes increased circulating angiotensin-(1-7). These results support the presence of an ACE2-angiotensin-(1-7)-Mas axis in pancreatitis.
Collapse
|
8
|
Can we expect progress in the treatment of fibrosis in the course of chronic pancreatitis? Adv Med Sci 2012; 56:132-7. [PMID: 21940269 DOI: 10.2478/v10039-011-0023-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chronic pancreatitis (CP) is a necroinflammatory process characterized by loss of both exocrine and endocrine function. To date, the disease has been treated symptomatically. Real advances in CP management can be expected once the pathophysiology of the disease is elucidated and individual stages of its development are properly managed. A key role in the CP pathogenesis is played by activation of pancreatic stellate cells (PSCs) that cooperate with the remaining pancreatic cells. All these cells produce cytokines, growth factors, angiotensin and other substances, which paracrinally or autocrinally induce further, persistent activation of PSCs. The activated PSCs are capable of producing and modifying the extracellular matrix. An optimal therapeutic preparation should exert beneficial effects on all the above-mentioned phenomena observed in CP. The most promising treatment modalities include blocking of the renin-angiotensin system (RAS), activation of peroxisome proliferator-activated receptors gamma (PPAR-γ), influence on the remaining PSC signaling pathways, blocking of substances produced by activated PSCs, and antioxidants. The findings of many recent experimental studies are highly encouraging; however, their efficacy should be confirmed in well-designed clinical trials.
Collapse
|
9
|
van der Zijl NJ, Moors CCM, Goossens GH, Blaak EE, Diamant M. Does interference with the renin-angiotensin system protect against diabetes? Evidence and mechanisms. Diabetes Obes Metab 2012; 14:586-95. [PMID: 22226145 DOI: 10.1111/j.1463-1326.2012.01559.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Agents interfering with the renin-angiotensin system (RAS) were consistently shown to lower the incidence of type 2 diabetes mellitus (T2DM), as compared to other antihypertensive drugs, in hypertensive high-risk populations. The mechanisms underlying this protective effect of RAS blockade using angiotensin-converting enzyme inhibitors or angiotensin-receptor blockers on glucose metabolism are not fully understood. In this article, we will review the evidence from randomized controlled trials and discuss the proposed mechanisms as to how RAS interference may delay the onset of T2DM. In particular, as T2DM is characterized by β-cell dysfunction and obesity-related insulin resistance, we address the mechanisms that underlie RAS blockade-induced improvement in β-cell function and insulin sensitivity.
Collapse
Affiliation(s)
- N J van der Zijl
- Diabetes Center, Department of Internal Medicine, VU University Medical Center, Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
10
|
Mansfield C. Pathophysiology of acute pancreatitis: potential application from experimental models and human medicine to dogs. J Vet Intern Med 2012; 26:875-87. [PMID: 22676262 DOI: 10.1111/j.1939-1676.2012.00949.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/05/2012] [Accepted: 04/24/2012] [Indexed: 12/18/2022] Open
Abstract
The cellular events leading to pancreatitis have been studied extensively in experimental models. Understanding the cellular events and inciting causes of the multisystem inflammatory cascades that are activated with this disease is of vital importance to advance diagnosis and treatment of this condition. Unfortunately, the pathophysiology of pancreatitis in dogs is not well understood, and extrapolation from experimental and human medicine is necessary. The interplay of the inflammatory cascades (kinin, complement, cytokine) is extremely complex in both initiating leukocyte migration and perpetuating disease. Recently, nitric oxide (NO) and altered microcirculation of the pancreas have been proposed as major initiators of inflammation. In addition, the role of the gut is becoming increasingly explored as a cause of oxidative stress and potentiation of systemic inflammation in pancreatitis.
Collapse
Affiliation(s)
- Caroline Mansfield
- Faculty of Veterinary Science, The University of Melbourne, Werribee, Vic., Australia.
| |
Collapse
|
11
|
Increased ACE in extrahepatic cholangiocarcinoma as a clue for activated RAS in biliary neoplasms. Clin Res Hepatol Gastroenterol 2011; 35:644-9. [PMID: 21802387 DOI: 10.1016/j.clinre.2011.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 05/23/2011] [Accepted: 06/20/2011] [Indexed: 02/04/2023]
Abstract
AIM Cholangiocarcinoma (CCA) is a primary neoplastic tumor of the epithelial lining of the biliary tree which carries a poor prognosis despite combined therapeutic strategies. Although the exact etiology remains obscure, it has been suggested that locally produced Angiotensin II (Ang II) in intrahepatic CCA tissues plays a key role in the proliferation and activation of CCA. In the present study, we aimed to analyze the relationship between the levels of circulating angiotensin converting enzyme (ACE), an important molecule of the renin-angiotensin system (RAS), and biliary disorders. PATIENTS AND METHODS The study group comprised 19 extrahepatic cholangiocarcinoma (EHCC) (16 patients with hilar, three patients with distal CCA), and 15 choledocolithiasis (CL) patients, with 15 controls. Median age of EHCC, CL and healthy controls were 67 (48-82), 65 (29-87) and 56 (23-74) respectively. ACE was measured by monitoring the alteration in absorbance at 340 nm of the hydrolysis of furylacrylolylphenylalanylglycylglycine (FAPGG) to FAP and GG on an analyzer. The ACE activity in the sample was determined by comparing the sample reaction rate to that obtained with the ACE calibrator. RESULTS Serum mean ACE levels were 56.6±27.4 U/L, 32.9±14.6 U/L and 28.6±10.6 U/L for patients with EHCC, CL and healthy controls, respectively. Serum ACE levels were significantly higher in patients with EHCC compared to CL and control groups. No significant differences with respect to ACE levels were observed between CL and control groups. CONCLUSION Circulating ACE in the context of RAS might be associated with EHCC development by creating a local environment enriched with cytokines and other growth factors that may promote cholangiocyte turnover.
Collapse
|
12
|
Skipworth JRA, Szabadkai G, Olde Damink SWM, Leung PS, Humphries SE, Montgomery HE. Review article: pancreatic renin-angiotensin systems in health and disease. Aliment Pharmacol Ther 2011; 34:840-52. [PMID: 21851372 DOI: 10.1111/j.1365-2036.2011.04810.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND In addition to the circulating (endocrine) renin-angiotensin system (RAS), local renin-angiotensin systems are now known to exist in diverse cells and tissues. Amongst these, pancreatic renin-angiotensin systems have recently been identified and may play roles in the physiological regulation of pancreatic function, as well as being implicated in the pathogenesis of pancreatic diseases including diabetes, pancreatitis and pancreatic cancer. AIM To review and summarise current knowledge of pancreatic renin-angiotensin systems. METHODS We performed an extensive PubMed, Medline and online review of all relevant literature. RESULTS Pancreatic RAS appear to play various roles in the regulation of pancreatic physiology and pathophysiology. Ang II may play a role in the development of pancreatic ductal adenocarcinoma, via stimulation of angiogenesis and prevention of chemotherapy toxicity, as well as in the initiation and propagation of acute pancreatitis (AP); whereas, RAS antagonism is capable of preventing new-onset diabetes and improving glycaemic control in diabetic patients. Current evidence for the roles of pancreatic RAS is largely based upon cell and animal models, whilst definitive evidence from human studies remains lacking. CONCLUSIONS The therapeutic potential for RAS antagonism, using cheap and widely available agents, and may be untapped and such roles are worthy of active investigation in diverse pancreatic disease states.
Collapse
Affiliation(s)
- J R A Skipworth
- Department of Surgery and Interventional Science, UCL, London, UK.
| | | | | | | | | | | |
Collapse
|
13
|
Evidence of an intracellular angiotensin-generating system and non-AT1, non-AT2 binding site in a human pancreatic cell line. Pancreas 2011; 40:701-7. [PMID: 21602736 DOI: 10.1097/mpa.0b013e318215a891] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVES To assess the presence of a local angiotensin-generating systems (LAGS) and its participation in tumor growth in the human pancreatic cancer derived cell line Capan-1. METHODS Capan-1 cells were cultured in Dulbecco modified Eagle medium, and angiotensin I was assayed by radioimmunoassay and angiotensin II and vascular endothelial growth factor were assayed by enzyme-linked immunosorbent assay in the supernatant. Immunohistochemistry and reverse transcription-polymerase chain reaction were performed for the expression of AT1 and AT2 receptors. Angiotensin II binding assays and blockade were studied. RESULTS High levels of both angiotensins I and II were found in Capan-1 cells, although neither angiotensin I nor angiotensin II was detected in the cell culture supernatant. Reverse transcription-polymerase chain reaction and immunocytochemistry revealed that Capan-1 cells do not express AT1 and AT2 receptors; however, specific binding to the cell membrane was identified for angiotensin II. Neither exogenous angiotensin II nor Dup753 (specific AT1 receptor blocker) affected Capan-1 cells' proliferation or vascular endothelial growth factor secretion. CONCLUSIONS Detection of both angiotensin I and angiotensin II along with specific binding of angiotensin II in Capan-1 cells provides evidence of the existence of a LAGS that operates in an intracrine manner. Intracellular angiotensin II may play a role in the aggressiveness of pancreatic cancer and is a possible target for therapeutic agents.
Collapse
|
14
|
Abstract
Our knowledge of acute pancreatitis is still far from complete and there is no unanimous agreement concerning the pathophysiological processes leading to typical alterations during the course of acute pancreatitis. We reviewed the paper published in the last decade on the pathophysiology and treatment of acute pancreatitis. It is difficult to translate the experimental therapeutic results into clinical practice. For example, lexipafant was efficacious in decreasing the severity and mortality of lethal pancreatitis in rats, but seems to have no effect on severe acute pancreatitis in humans. Thus, the main problem in acute pancreatitis, especially in the severe form of the disease, is the difficulty of designing clinical studies capable of giving reliable statistically significant answers regarding the benefits of the various proposed therapeutic agents previously tested in experimental settings. Thus, analgesia, supportive care, and treatment of the pulmonary and renal complications remain the cornerstones of the treatment of acute pancreatitis, especially in the severe form of the disease.
Collapse
Affiliation(s)
- Raffaele Pezzilli
- Ospedale Sant'Orsola-Malpighi, Dipartimento di Medicina Interna e Gastroenterologia, Bologna, Italy.
| |
Collapse
|
15
|
Leung PS, Cheng Q. The Novel Roles of Glucagon-Like Peptide-1, Angiotensin II, and Vitamin D in Islet Function. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 654:339-61. [DOI: 10.1007/978-90-481-3271-3_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Current Research of the RAS in Pancreatitis and Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 690:179-99. [DOI: 10.1007/978-90-481-9060-7_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
17
|
Inhibition of renin-angiotensin system in experimental acute pancreatitis in rats: a new therapeutic target? ACTA ACUST UNITED AC 2009; 62:353-60. [PMID: 19525099 DOI: 10.1016/j.etp.2009.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 04/06/2009] [Accepted: 05/11/2009] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Pancreatic renin-angiotensin system has been implied to play a role in the regulation of pancreatic functions and could be a new therapeutic target in acute pancreatitis. The aim of this study was to evaluate the therapeutic potential of angiotensin-converting-enzyme inhibition by captopril and angiotensin II type 1 receptor inhibition by L-158809 and losartan experimentally in acute pancreatitis. DESIGN Rats were randomly divided into 15 groups. Acute edematous pancreatitis was induced by injection of cerulein 20microg/kg SC four times at hourly intervals. Severe necrotizing pancreatitis was induced by retrograde injection of 3% taurocholate into the biliary-pancreatic duct. INTERVENTIONS Captopril, L-158809 and losartan were given intraperitoneally. Main outcome features: pancreatic pathology, pancreatic myeloperoxidase activity and serum amylase activity were assessed. RESULTS Captopril decreased serum amylase (10,809+/-1867 vs. 4085+/-1028U/L, p<0.01), myeloperoxidase activity (3.5+/-0.5 vs. 1.5+/-0.1, p<0.05) and histopathological score (5.0+/-0.4 vs. 1.1+/-0.5, p<0.01) in acute edematous pancreatitis. In taurocholate induced severe necrotizing pancreatitis captopril ameliorated histopathological score (10.1+/-1.2 vs. 3.4+/-0.5, p<0.01), pancreatic parenchymal necrosis (4.5+/-0.6 vs. 0.0+/-0.0, p<0.001), fatty necrosis (2.8+/-0.9 vs. 0.1+/-0.1, p<0.01) and edema (2.1+/-0.3 vs. 1.4+/-0.3, p<0.05). However, L-158809 did not have similar beneficial effects on acute pancreatitis in rats while losartan decreased pancreatic parenchymal necrosis and neutrophil infiltration. CONCLUSIONS This study not only demonstrated the differential effects of captopril, losartan and L-158809 in acute pancreatitis but also showed that there is still much to investigate about pancreatic renin-angiotensin system. Inhibition of angiotensin-converting enzyme should be evaluated carefully as a potential new therapeutic target in acute pancreatitis.
Collapse
|
18
|
Shimizu K. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. J Gastroenterol 2009; 43:823-32. [PMID: 19012035 DOI: 10.1007/s00535-008-2249-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 02/07/2023]
Abstract
Pancreatic stellate cells (PSCs) play a crucial role in pancreatic fibrogenesis in chronic pancreatitis and in the desmoplastic reaction of pancreatic cancer. When PSCs are stimulated by oxidative stress, ethanol and its metabolite acetaldehyde, and cytokines, the phenotype of quiescent fat-storing cells converts to myofibroblastlike activated PSCs, which then produce extracellular matrix, adhesion molecules, and various chemokines in response to cytokines and growth factors. Recent data suggest that PSCs have a phagocytic function. Plateletderived growth factor is a potent stimulator of PSC proliferation. Transforming growth factor beta, activin A, and connective tissue growth factor also play a role in PSC-mediated pancreatic fibrogenesis through autocrine and paracrine loops. Following pancreatic damage, pathophysiological processes that occur in the pancreas, including pancreas tissue pressure, hyperglycemia, intracellular reactive oxygen species production, activation of protease-activated receptor 2, induction of cyclooxygenase 2, and bacterial infection play a role in sustaining pancreatic fibrosis through increased PSC proliferation and collagen production by PSCs. Targeting PSCs might be an effective therapeutic approach in chronic pancreatitis. Various substances including vitamin A, vitamin E, polyphenols, peroxisome proliferator-activated receptor gamma ligands, and inhibitors of the renin-angiotensin system show great promise of being useful in the treatment of chronic pancreatitis.
Collapse
Affiliation(s)
- Kyoko Shimizu
- Department of Gastroenterology, Tokyo Women's Medical University, School of Medicine, 8-1 Kawada, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
19
|
Abstract
OBJECTIVES To identify the mechanisms underlying hypotension during the early phase of severe acute pancreatitis (SAP) by analyzing whether an impaired response to vasoactive substances occurs in this pathological process. METHODS Experimental SAP was induced by infusing 5% sodium taurocholate through the main pancreatic duct in rats. Once mean arterial pressure (MAP) in animals with pancreatitis was reduced, different vasoactive substances and inhibitors were administered. RESULTS Administration of the nonspecific nitric oxide synthase inhibitor N omega-nitro-L-arginine methyl ester caused a similar increase in MAP in rats with pancreatitis and control rats, whereas inducible nitric oxide synthase inhibition did not cause changes in MAP. Moreover, the hypertensive response to endothelin and angiotensin II was lower in pancreatitis. Inhibition of angiotensin II synthesis by the angiotensin-converting enzyme inhibitor perindopril in animals with pancreatitis caused severe hypotension, causing death in 40% of them. Finally, pressor hyporesponsiveness to angiotensin II in animals with pancreatitis was avoided by previous administration of perindopril and N omega-nitro-L-arginine methyl ester. CONCLUSIONS The SAP-induced hypotension is associated with a deficient pressor responsiveness to angiotensin II and endothelin-1. The renin-angiotensin system plays an important role in the control of MAP in animals with pancreatitis.
Collapse
|
20
|
The effect of emodin-assisted early enteral nutrition on severe acute pancreatitis and secondary hepatic injury. Mediators Inflamm 2008; 2007:29638. [PMID: 18288270 PMCID: PMC2220032 DOI: 10.1155/2007/29638] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2007] [Accepted: 08/12/2007] [Indexed: 12/13/2022] Open
Abstract
Severe acute pancreatitis (SAP) characterized by atrocious progression and numerous complications often leads to a high mortality rate due to hypermetabolism, systemic inflammatory response syndrome (SIRS), and multiple organs dysfunction syndrome (MODS). Studies have revealed that both early enteral nutrition (EEN) and emodin are potent agents in the management of SAP. However, whether the combined strategy is rational and more effective than either one alone remains unknown. In this regard, Wistar rats were treated with emodin-assisted EEN (EAEEN) through enteral nutrient tubes after induction of SAP by retrograde infusion of 5.0% sodium taurocholate into the common pancreatic duct. Serum levels of amylase, tumor necrosis factor-alpha (TNF-α), angiotensin II (AngII), maleic dialdehyde (MDA), glutamic pyruvic transaminase (ALT), glutamic oxaloacetic transaminase (AST) and C-reactive protein (CRP), intestinal secretory IgA (SIgA), pancreatic and hepatic myeloperoxidase (MPO) activity as well as plasma levels of D-lactate and endotoxin were measured. In addition, pathologic alterations of pancreas and liver were observed microscopically. We found that EAEEN could significantly ameliorate these parameters and prevent pancreas and liver from serious damage. In conclusion, Our results indicated that EAEEN could exert beneficial effects on experimental SAP and obviously abate the severity of secondary hepatic injury. The combined strategy was safe and more effective than either one alone in the acute stage of SAP. This study also provided an experimental base for the clinical treatment of SAP patients with EAEEN.
Collapse
|
21
|
Lai KC, Cheng CHK, Leung PS. The ghrelin system in acinar cells: localization, expression, and regulation in the exocrine pancreas. Pancreas 2007; 35:e1-8. [PMID: 17895831 DOI: 10.1097/mpa.0b0013e31812eee3e] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Ghrelin and its receptor are expressed abundantly in the stomach and pituitary. Recently, a ghrelin system, consisting of both ligand and receptor, has also been found to exist in the endocrine cells of pancreatic islets. This ghrelin system may play a role in regulating insulin secretion and glucose homeostasis. The aim of the present study was to investigate whether a functional ghrelin system also exists in the exocrine pancreas. METHODS Precise localization and expression of ghrelin and its receptor in rat pancreatic acinar cells were examined by immunocytochemistry and Western blot, whereas messenger RNA levels were examined by semiquantitative reverse transcription-polymerase chain reaction. The roles of physiological and pathophysiological conditions, such as gastric acid inhibition, starvation, and acute pancreatitis, in regulation of ghrelin and its receptor were also examined. RESULTS Both ghrelin and its receptor were detected, at both protein and messenger RNA levels, in the acinar cells of the exocrine pancreas. Ghrelin receptor expression was up-regulated by gastric acid inhibition and down-regulated by acute pancreatitis, whereas levels remained unchanged after food deprivation. In contrast, ghrelin expression did not exhibit significant changes in any condition. CONCLUSIONS Our data indicate that a ghrelin system exists in the acinar cells of the exocrine pancreas. This system is subject to regulation by physiological and pathophysiological stimuli and may thus regulate exocrine functions by paracrine and/or autocrine mechanisms.
Collapse
Affiliation(s)
- Kit Ching Lai
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | | | | |
Collapse
|
22
|
Wong TP, Debnam ES, Leung PS. Involvement of an enterocyte renin-angiotensin system in the local control of SGLT1-dependent glucose uptake across the rat small intestinal brush border membrane. J Physiol 2007; 584:613-23. [PMID: 17702818 PMCID: PMC2277173 DOI: 10.1113/jphysiol.2007.138578] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
There is increasing evidence that locally produced angiotensin AII (AII) regulates the function of many tissues, but the involvement of enterocyte-derived AII in the control of intestinal transport is unknown. This study examined whether there is a local renin-angiotensin system (RAS) in rat villus enterocytes and assessed the effects of AII on SGLT1-dependent glucose transport across the brush border membrane (BBM). Gene and protein expression of angiotensinogen, ACE, and AT(1) and AT(2) receptors were studied in jejunal and ileal enterocytes using immunocytochemistry, Western blotting and RT-PCR. Mucosal uptake of d-[(14)C]glucose by everted intestinal sleeves before and after addition of AII (0-100 nm) to the mucosal buffer was measured in the presence or absence of the AT(1) receptor antagonist losartan (1 microm). Immunocytochemistry revealed the expression of angiotensinogen, ACE, and AT(1) and AT(2) receptors in enterocytes; immunoreactivity of AT(1) receptor and angiotensinogen proteins was especially pronounced at the BBM. Expression of angiotensinogen and AT(1) and AT(2) receptors, but not ACE, was greater in the ileum than the jejunum. Addition of AII to mucosal buffer inhibited phlorizin-sensitive (SGLT1-dependent) jejunal glucose uptake in a rapid and dose-dependent manner and reduced the expression of SGLT1 at the BBM. Losartan attenuated the inhibitory action of AII on glucose uptake. AII did not affect jejunal uptake of l-leucine. The detection of RAS components at the enterocyte BBM, and the rapid inhibition of SGLT1-dependent glucose uptake by luminal AII suggest that AII secretion exerts autocrine control of intestinal glucose transport.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Angiotensinogen/genetics
- Angiotensinogen/metabolism
- Animals
- Autocrine Communication
- Blotting, Western
- Enterocytes/drug effects
- Enterocytes/metabolism
- Glucose/metabolism
- Ileum/cytology
- Ileum/drug effects
- Ileum/metabolism
- Immunohistochemistry
- In Vitro Techniques
- Jejunum/cytology
- Jejunum/drug effects
- Jejunum/metabolism
- Leucine/metabolism
- Losartan/pharmacology
- Male
- Microvilli/metabolism
- Peptidyl-Dipeptidase A/genetics
- Peptidyl-Dipeptidase A/metabolism
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System/drug effects
- Renin-Angiotensin System/genetics
- Sodium-Glucose Transporter 1/metabolism
Collapse
Affiliation(s)
- Tung Po Wong
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | | | | |
Collapse
|
23
|
Turkyilmaz S, Alhan E, Ercin C, Vanizor BK. Effects of Enalaprilat on Acute Necrotizing Pancreatitis in Rats. Inflammation 2007; 30:205-12. [PMID: 17653597 DOI: 10.1007/s10753-007-9038-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Accepted: 06/26/2007] [Indexed: 01/30/2023]
Abstract
The aim of this study was to investigate the influence of enalaprilat on acute necrotizing pancreatitis (ANP) induced by glycodeoxycholic acid in rats. The induction of ANP resulted in a significant increase in the mortality rate, pancreatic necrosis, serum activity of amylase, alanine aminotransferase (ALT), and interleukin-6 (IL-6), lactate dehydrogenase (LDH) in bronchoalveolar lavage (BAL) fluid, serum concentration of urea, and tissue activity of myeloperoxidase (MPO) and maondialdehyde (MDA) in the pancreas and lung, and a significant decrease in concentrations of calcium, blood pressure, urine output and p0(2). The use of enalaprilat inhibited the changes in urine output, blood pressure, serum concentration of urea, p0(2), and tissue activity of MPO and MDA in the pancreas and lungs. It reduced the mortality and pancreatic damage. Enalaprilat demonstrated a beneficial effect on the course of ANP in rats; therefore, it may be used in the treatment of acute pancreatitis.
Collapse
Affiliation(s)
- Serdar Turkyilmaz
- Department of Surgery, Farabi Hospital, School of Medicine, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | | | | | | |
Collapse
|
24
|
Leung PS. Mechanisms of protective effects induced by blockade of the renin-angiotensin system: novel role of the pancreatic islet angiotensin-generating system in Type 2 diabetes. Diabet Med 2007; 24:110-6. [PMID: 17257271 DOI: 10.1111/j.1464-5491.2007.02072.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Large clinical trials have shown that inhibition of the renin-angiotensin system (RAS) can delay and/or prevent the onset of Type 2 diabetes mellitus (T2DM) in high-risk individuals, such as those with hypertension or chronic heart failure. Moreover, a meta-analysis of these randomized clinical studies concluded that the mean weighted relative risk of development of T2DM was reduced by 25% in those patients treated with angiotensin II receptor blockers or angiotensin-converting enzyme inhibitors. In spite of these firm clinical data, the mechanistic pathways mediating the protective activity of RAS blockade have yet to be resolved. Of particular interest is the recently identified local pancreatic RAS and, perhaps more importantly, the finding that it is up-regulated in animal models of T2DM. This putative local RAS may regulate pancreatic islet blood flow, oxygen tension, and islet (pro)insulin biosynthesis. It might also mediate the generation of reactive oxygen species, thereby causing oxidative stress-induced pancreatic beta-cell apoptosis and fibrosis. Moreover, findings that RAS blockade improved beta-cell secretory function and cell mass in experimental animal models of Type 2 diabetes indicate that inhibition of RAS activation may play a pivotal role in protecting islet cell function, and furthermore may prevent the development of overt T2DM. Such data supporting the involvement of the local pancreatic RAS in islet function, as well as a causal relationship between RAS activation and T2DM, and RAS induced beta-cell dysfunction, mandate further investigation into the role of RAS in the pathogenesis of the progressive islet impairment observed in patients with T2DM.
Collapse
Affiliation(s)
- P S Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
25
|
Abstract
The systemic renin-angiotensin system (RAS) plays an important role in regulating blood pressure, electrolyte and fluid homeostasis. However, local RASs also exist in diverse tissues and organs, where they play a multitude of autocrine, paracrine and intracrine physiological roles. The existence of a local RAS is now recognized in pancreatic acinar, islet, duct, endothelial and stellate cells, the expression of which is modulated in response to physiological and pathophysiological stimuli such as hypoxia, pancreatitis, islet transplantation, hyperglycaemia, and diabetes mellitus. This pancreatic RAS has been proposed to have important endocrine and exocrine roles in the pancreas, regulating local blood flow, duct cell sodium bicarbonate secretion, acinar cell digestive enzyme secretion, islet beta-cell (pro)insulin biosynthesis, and thus, glucose-stimulated insulin release, delta-cell somatostatin secretion, and pancreatic cell proliferation and differentiation. It may further mediate oxidative stress-induced cell inflammation, apoptosis and fibrosis. Further exploration of this system would probably offer new insights into the pathogenesis of pancreatitis, diabetes, cystic fibrosis and pancreatic cancer formation. New therapeutic targets and strategies might thus be suggested.
Collapse
Affiliation(s)
- Po Sing Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
26
|
Lack of significant association of an insertion/deletion polymorphism in the angiotensin converting enzyme (ACE) gene with tropical calcific pancreatitis. BMC Gastroenterol 2006; 6:42. [PMID: 17163998 PMCID: PMC1762011 DOI: 10.1186/1471-230x-6-42] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Accepted: 12/12/2006] [Indexed: 12/31/2022] Open
Abstract
Background The genetic basis of tropical calcific pancreatitis (TCP) is different and is explained by mutations in the pancreatic secretory trypsin inhibitor (SPINK1) gene. However, mutated SPINK1 does not account for the disease in all the patients, neither does it explain the phenotypic heterogeneity between TCP and fibro-calculous pancreatic diabetes (FCPD). Recent studies suggest a crucial role for pancreatic renin-angiotensin system during chronic hypoxia in acute pancreatitis and for angiotensin converting enzyme (ACE) inhibitors in reducing pancreatic fibrosis in experimental models. We investigated the association of ACE gene insertion/deletion (I/D) polymorphism in TCP patients using a case-control approach. Since SPINK1 mutations are proposed a modifier role, we also investigated its interaction with the ACE gene variant. Methods We analyzed the I/D polymorphism in the ACE gene (g.11417_11704del287) in 171 subjects comprising 91 TCP and 80 FCPD patients and compared the allelic and genotypic frequency in them with 99 healthy ethnically matched control subjects. Results We found 46% and 21% of TCP patients, 56% and 19.6% of FCPD patients and 54.5% and 19.2% of the healthy controls carrying the I/D and D/D genotypes respectively (P>0.05). No significant difference in the clinical picture was observed between patients with and without the del allele at the ACE in/del polymorphism in both categories. No association was observed with the presence or absence of N34S SPINK1 mutation in these patients. Conclusion We conclude that the ACE insertion/deletion variant does not show any significant association with the pathogenesis, fibrosis and progression of tropical calcific pancreatitis and the fibro-calculous pancreatic diabetes.
Collapse
|
27
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2005; 13:2667-2671. [DOI: 10.11569/wcjd.v13.i22.2667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
|
28
|
Tikellis C, Cooper ME, Thomas MC. Role of the renin-angiotensin system in the endocrine pancreas: implications for the development of diabetes. Int J Biochem Cell Biol 2005; 38:737-51. [PMID: 16198140 DOI: 10.1016/j.biocel.2005.08.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/27/2005] [Accepted: 08/11/2005] [Indexed: 11/17/2022]
Abstract
Activation of the renin-angiotensin system has a pivotal role in the pathogenesis of diabetic complications. However, recent evidence suggests that it may also contribute to the development of diabetes itself. In the endocrine pancreas, all the components of an active renin-angiotensin system are present, which modulate a range of activities including local blood flow, hormone release and prostaglandin synthesis. In both types 1 and 2 diabetes, there is an up-regulation of its expression and activity in the endocrine pancreas. Whether these changes have a direct pathogenetic role or reflect a response to local stress or tissue injury remains to be established. Angiotensin-mediated increases in oxidative stress, inflammation and free fatty acids levels potentially contribute to beta-cell dysfunction in diabetes. In addition, activation of the renin-angiotensin system appears to potentiate the action of other pathogenic pathways including glucotoxicity, lipotoxicity and advanced glycation. In experimental models of type 2 diabetes, blockade of the renin-angiotensin system with angiotensin converting enzyme inhibitors or angiotensin receptor antagonists results in the improvement of islet structure and function. Moreover, the incidence of de novo diabetes appears to be significantly reduced by blockade of the renin-angiotensin system in clinical studies. At least two large controlled trials are currently underway to study the role of renin-angiotensin system in the development of diabetes. It is hoped that these studies will demonstrate the true potential of the blockade of the renin-angiotensin system for the prevention of diabetes.
Collapse
Affiliation(s)
- C Tikellis
- Danielle Alberti Memorial Centre for Diabetic Complications, Wynn Domain, Baker Heart Research Institute, Melbourne, Vic., Australia.
| | | | | |
Collapse
|
29
|
Kampf C, Lau T, Olsson R, Leung PS, Carlsson PO. Angiotensin II type 1 receptor inhibition markedly improves the blood perfusion, oxygen tension and first phase of glucose-stimulated insulin secretion in revascularised syngeneic mouse islet grafts. Diabetologia 2005; 48:1159-67. [PMID: 15877216 DOI: 10.1007/s00125-005-1761-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2005] [Accepted: 02/05/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS We recently found evidence of an angiotensin-generating system in pancreatic islets. The present study investigated the effect of endogenously produced angiotensin II on microcirculation and function in transplanted islets. MATERIALS AND METHODS Losartan, an angiotensin II type 1 receptor inhibitor, was administered either acute intravenously to mice with 4-week-old islet renal subcapsular transplants, or added to the drinking water for the final 14 days or throughout the 4-week post-transplantation period. The graft-bearing kidney was, in some cases, dissected out and perfused in vitro to evaluate the effect of angiotensin II and losartan on glucose-stimulated insulin release from the grafts. RESULTS Losartan treatment throughout the 4-week post-transplantation period had negative effects on islet revascularisation as well as on islet graft insulin release. However, administration of losartan, either intravenously or orally, after the formation of a new vascular network, improved islet graft blood perfusion. PO2 in the islet transplants was also effectively improved by the losartan treatment. Graft perfusion experiments showed a markedly better first phase of glucose-stimulated insulin release in transplanted islets when exposed to losartan. In contrast, acute administration of angiotensin II decreased islet graft blood flow, PO2 and glucose-stimulated insulin release. CONCLUSIONS/INTERPRETATION This study shows that inhibition of the islet reninangiotensin system may be a feasible strategy to increase the blood perfusion, PO2 and function within islet grafts. Such treatment should not be initiated, however, before the islet vascular system has been formed.
Collapse
Affiliation(s)
- C Kampf
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
30
|
Abstract
Several regulatory systems are implicated in the regulation of islet function and beta cell mass. Of great interest in this context are some endocrine, paracrine/autocrine, and intracrine regulators. These include, to name but a few, the gut peptides, growth factors, prostaglandins, and some vasoactive mediators such as nitric oxide, bradykinins, endothelins, and angiotensins. Apart from its potent vasoconstrictor actions, the renin-angiotensin system (RAS) that generates angiotensin II has several novel functions-stimulation and inhibition of cell proliferation; induction of apoptosis; generation of reactive oxygen species; regulation of hormone secretion; and proinflammatory and profibrogenic actions. In the pancreas, recent evidence supports the presence of an islet RAS, which is subject to activation by islet transplantation and diabetes. Such a local islet RAS, if activated, may drive islet fibrosis and reduce islet blood flow, oxygen tension, and insulin biosynthesis. Moreover, activation of an islet RAS may drive the synthesis of reactive oxygen species, cause oxidative stress-induced beta cell dysfunction and apoptosis, and thus contribute to the islet dysfunction seen in type 2 diabetes and after islet transplantation. Blockade of the RAS could contribute to the development of novel therapeutic strategies in the prevention and treatment of patients with diabetes and in islet transplantation.
Collapse
Affiliation(s)
- Po Sing Leung
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong.
| | | |
Collapse
|
31
|
Leung PS. Roles of the renin-angiotensin system and its blockade in pancreatic inflammation. Int J Biochem Cell Biol 2005; 37:237-8. [PMID: 15381165 DOI: 10.1016/j.biocel.2004.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Indexed: 11/21/2022]
|
32
|
Tsang SW, Cheng CHK, Leung PS. The role of the pancreatic renin-angiotensin system in acinar digestive enzyme secretion and in acute pancreatitis. ACTA ACUST UNITED AC 2005; 119:213-9. [PMID: 15120483 DOI: 10.1016/j.regpep.2004.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/19/2004] [Accepted: 02/05/2004] [Indexed: 12/16/2022]
Abstract
The pancreas contains a local renin-angiotensin system (RAS), which is subject to activation by experimental pancreatitis. In the exocrine pancreas, angiotensin II receptor subtypes AT1 and AT2 have been localized in the pancreatic ducts, blood vessels and acinar cells. We hypothesize that local RAS activities may have a potential role in regulating pancreatic acinar digestive enzyme secretion. The present study was designed to elucidate firstly the existence of RAS components in pancreatic acinar cells and their regulation by acute pancreatitis. Secondly, the differential roles of AT1 and AT2 receptors in controlling digestive enzyme secretion from dispersed functional pancreatic acini were also investigated. The mRNA levels of RAS components were assessed by semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR). Acinar secretions were assayed by the measurement of alpha-amylase and lipase activities. Induction of acute pancreatitis was achieved by hyperstimulation of two intraperitoneal (i.p.) injections of cerulein (50 microg/kg/h). Results from RT-PCR showed that the mRNA levels of the major RAS components (angiotensinogen, AT1 and AT2 receptors) were expressed in isolated rat pancreatic acinar cells, and they were upregulated during pancreatitis. Exogenous addition of angiotensin II could stimulate a dose-dependent release of digestive enzymes from the acinar cells. Administration of the selective AT1 receptor antagonist losartan significantly inhibited the acinar digestion enzyme secretion in both normal and pancreatitis-induced acini. However, a specific AT2 receptor blocker PD123319 did not exhibit such a suppressive effect. These data indicate the existence of an acinar RAS in the pancreas of potential importance in the physiological regulation of digestive enzyme secretion. The differential actions of AT1 and AT2 receptors and their upregulation may have clinical relevance to the pathogenesis and management of acute pancreatitis.
Collapse
Affiliation(s)
- Siu Wai Tsang
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
33
|
Yamada T, Kuno A, Ogawa K, Tang M, Masuda K, Nakamura S, Ando T, Okamoto T, Ohara H, Nomura T, Joh T, Shirai T, Itoh M. Combination therapy with an angiotensin-converting enzyme inhibitor and an angiotensin II receptor blocker synergistically suppresses chronic pancreatitis in rats. J Pharmacol Exp Ther 2004; 313:36-45. [PMID: 15608084 DOI: 10.1124/jpet.104.077883] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We recently demonstrated that both lisinopril and candesartan, an angiotensin-converting enzyme inhibitor and angiotensin II type 1 receptor blocker, respectively, attenuate pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori (WBN/Kob) rats. The purpose of the present study was to assess whether combination therapy with low doses of both, ineffective when given alone, might synergistically exert protective effects. Lisinopril, candesartan, or a combination of both in drinking water was administered to 10-week-old male WBN/Kob rats for 10 weeks. Parameters of inflammation and fibrosis, positive immunostaining for alpha-smooth muscle actin, and gene expression of cytokine and growth factors were assessed, as well as circulating renin-angiotensin system components. Dose-dependent effects of combination therapy were also investigated. Only combination therapy attenuated gross alterations in the pancreas, as quantitatively confirmed by increases in pancreatic weights and decreases in myeloperoxidase activity, hydroxyproline content, histologic scores, relative fibrosis area, and relative area of alpha-smooth muscle actin-positive cells. Combination therapy suppressed up-regulation of tumor necrosis factor-alpha, platelet-derived growth factor-receptor beta, and transforming growth factor-beta1 mRNA in the pancreas. Dose dependence of combination therapy was recognized with reference to improvement in these parameters. The conclusions are that combination therapy synergistically alleviated pancreatic inflammation and fibrosis in male WBN/Kob rats. This effect may be related to suppression of tumor necrosis factor-alpha, platelet-derived growth factor-receptor beta, and transforming growth factor-beta1 mRNA. Compared with the either therapy alone, combination therapy with an angiotensin-converting enzyme inhibitor and an angiotensin II type 1 receptor blocker may be more beneficial for treating chronic pancreatitis.
Collapse
Affiliation(s)
- Tamaki Yamada
- Okazaki City Medical Association, Public Health Center, 1-9-1 Tatsumi-nishi, Okazaki, Aichi, Japan, 444-0875.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Tsang SW, Ip SP, Leung PS. Prophylactic and therapeutic treatments with AT 1 and AT 2 receptor antagonists and their effects on changes in the severity of pancreatitis. Int J Biochem Cell Biol 2004; 36:330-9. [PMID: 14643897 DOI: 10.1016/s1357-2725(03)00257-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Previous studies showed that a local pancreatic renin-angiotensin system (RAS) was upregulated in experimental acute pancreatitis. RAS inhibition could attenuate pancreatic inflammation and fibrosis, which casts a new light on the role of the pancreatic RAS in pancreatitis. The present study explores the prophylactic and therapeutic potentials, and possible molecular mechanism for the antagonism of angiotensin II receptors on the changes in the severity of pancreatic injury induced by acute pancreatitis. Experimental pancreatitis was induced by an intraperitoneal injection of supra-maximal dose of cerulein. The differential effects of angiotensin II receptors inhibitors losartan and PD123319 on the pancreatic injury were assessed by virtue of using the pancreatic water content, biochemical and histological analyses. Blockade of the AT(1) receptor by losartan at a dose of 200microg/kg could markedly ameliorate the pancreatic injury induced by cerulein, as evidenced by biochemical and histopathological studies. However, blockade of the AT(2) receptor by PD123319 appeared not to provide any beneficial role in cerulein-induced pancreatic injury. Both prophylactic and therapeutic treatments with losartan were effective against cerulein-induced pancreatic injury. The protective action of losartan was linked to an inhibition of NAD(P)H oxidase activity, thus consequential oxidative modification of pancreatic proteins in the pancreas. Inhibition of the AT(1) receptor, but not AT(2) receptor, may play a beneficial role in ameliorating the severity of acute pancreatitis. The differential effects of AT(1) and AT(2) inhibitors on cerulein-induced pancreatic injury might be due to the distinctive mechanism of the AT(1) and AT(2) receptors on the activation of NAD(P)H oxidase. Thus the protective role of AT(1) receptor antagonist, losartan, could be mediated by the inhibition of NAD(P)H oxidase-dependent generation of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Siu Wai Tsang
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, Shatin, PR China
| | | | | |
Collapse
|
35
|
Nagashio Y, Asaumi H, Watanabe S, Nomiyama Y, Taguchi M, Tashiro M, Sugaya T, Otsuki M. Angiotensin II type 1 receptor interaction is an important regulator for the development of pancreatic fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2004; 287:G170-7. [PMID: 15016612 DOI: 10.1152/ajpgi.00005.2004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The renin-angiotensin system (RAS) plays important roles in various pathophysiological processes. However, the role of the RAS in pancreatic fibrosis has not been established. We investigated the role of angiotensin II (ANG II)-ANG II type 1 (AT(1)) receptor pathway in the development of pancreatic fibrosis with AT(1a) receptor-deficient [AT(1a)(-/-)] mice. To induce pancreatic fibrosis, AT(1a)(-/-) and wild-type (WT) mice were submitted to three episodes of acute pancreatitis induced by six intraperitoneal injections of 50 microg/kg body wt cerulein at hourly intervals, per week, for four consecutive weeks. Pancreatic fibrosis was assessed by histology and hydroxyproline content. Pancreatic stellate cell (PSC) activation and the localization of AT(1) receptors were assessed by Western blot analysis for alpha-smooth muscle actin and immunostaining. Transforming growth factor-beta(1) (TGF-beta(1)) mRNA expression in the pancreas was assessed by RT-PCR. Six intraperitoneal injections of cerulein induced acute pancreatitis in both AT(1a)(-/-) and WT mice. There were no significant differences between two groups with regard to serum amylase and histological changes. Pancreatic fibrosis induced by repeated episodes of acute pancreatitis was significantly attenuated in AT(1a)(-/-) mice compared with that in WT mice. This finding was accompanied by a reduction of activated PSCs. Dual-immunofluorescence staining in WT mice revealed that activated PSCs express AT(1) receptors. The level of TGF-beta(1) mRNA was lower in AT(1a)(-/-) mice than in WT mice. Our results demonstrate that the ANG II-AT(1) receptor pathway is not essential for the local pancreatic injury in acute pancreatitis but plays an important role in the development of pancreatic fibrosis through PSC activation and proliferation.
Collapse
Affiliation(s)
- Yoshikuni Nagashio
- Third Dept. of Internal Medicine, University of Occupational and Environmental Health, School of Medicine, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Hama K, Ohnishi H, Yasuda H, Ueda N, Mashima H, Satoh Y, Hanatsuka K, Kita H, Ohashi A, Tamada K, Sugano K. Angiotensin II stimulates DNA synthesis of rat pancreatic stellate cells by activating ERK through EGF receptor transactivation. Biochem Biophys Res Commun 2004; 315:905-11. [PMID: 14985098 DOI: 10.1016/j.bbrc.2004.01.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2004] [Indexed: 02/08/2023]
Abstract
Although angiotensin II (Ang II) is known to participate in pancreatic fibrosis, little is known as to the mechanism by which Ang II promotes pancreatic fibrosis. To elucidate the mechanism, we examined the action of Ang II on the proliferation of rat pancreatic stellate cells (PSCs) that play central roles in pancreatic fibrosis. Immunocytochemistry and Western blotting demonstrated that both Ang II type 1 and type 2 receptors were expressed in PSCs. [3H]Thymidine incorporation assay revealed that Ang II enhanced DNA synthesis in PSCs, which was blocked by Ang II type 1 receptor antagonist losartan. Western blotting using anti-phospho-epidermal growth factor (EGF) receptor and anti-phospho-extracellular signal regulated kinase (ERK) antibodies showed that Ang II-activated EGF receptor and ERK. Both EGF receptor kinase inhibitor AG1478 and MEK1 inhibitor PD98059 attenuated ERK activation and DNA synthesis enhanced by Ang II. These results indicate that Ang II stimulates PSC proliferation through EGF receptor transactivation-ERK activation pathway.
Collapse
Affiliation(s)
- Kouji Hama
- Department of Gastroenterology, Jichi Medical School, Tochigi 329-0498, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
The aim of the study was to identify pancreatic stellate cells (PSCs) as a potential target of angiotensin II (ATII) action because recently a local renin-angiotensin system (RAS) has been described in the pancreas. PSCs were isolated from male Wistar rats and investigated for ATII receptor expression and ATII-induced calcium transients, contractions, proliferation, and alpha-smooth muscle actin expression. Quiescent and activated PSCs expressed the ATII receptor subtype AT1 but not AT2. Addition of ATII led to a rapid elevation of intracellular calcium ([Ca]i). The sensitivity toward ATII with respect to calcium transients did not change during the transdifferentiation process. In activated PSCs, ATII dose dependently induced PSC cell contraction. Furthermore, ATII induced an activation of the c-Jun-N-terminal kinase (JNK) and extracellular regulated kinase (Erk), which was inhibited after intracellular calcium chelation by BAPTA-AM. The p38 mitogen-activated protein kinase (p38) was also activated by ATII. BAPTA-AM itself induced p38 activation, which was not further enhanced by ATII. ATII stimulated PSC proliferation, while PSC transdifferentiation, as indicated by alpha-smooth muscle actin expression and collagen type I secretion, was not enhanced. The data suggest that PSCs are targets of ATII action with potential pathophysiological relevance.
Collapse
Affiliation(s)
- Roland Reinehr
- Clinic for Gastroenterology, Hepatology, and Infectiology, Heinrich-Heine-University, Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
38
|
Lau T, Carlsson PO, Leung PS. Evidence for a local angiotensin-generating system and dose-dependent inhibition of glucose-stimulated insulin release by angiotensin II in isolated pancreatic islets. Diabetologia 2004; 47:240-8. [PMID: 14722647 DOI: 10.1007/s00125-003-1295-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2003] [Revised: 11/06/2003] [Indexed: 01/13/2023]
Abstract
AIMS/HYPOTHESIS A local angiotensin-generating system has been found in the exocrine pancreas. This study aimed, primarily, to investigate the existence of a local angiotensin-generating system in the pancreatic islets and, secondly, to elucidate its role in regulating insulin secretion. METHODS Real-time RT-PCR and western blot were used to investigate if angiotensin-generating components are present in the mouse pancreatic islets, which are subject to regulation by islet transplantation. The localisation of AT1-receptors in islets was investigated by immunohistochemistry. Batch-type incubations of isolated islets were applied for studying the influence of angiotensin II on the glucose-stimulated insulin release, glucose oxidation and (pro)insulin, and total protein biosynthesis. RESULTS Major components, namely angiotensinogen, ACE, AT1- and AT2-receptors, were expressed in endogenous islets. AT1-receptors were localised to pancreatic beta cells. Exposure of the isolated islets to angiotensin II induced a dose-dependent inhibition of glucose-stimulated insulin release and inhibited (pro)insulin biosynthesis. This inhibitory action was fully preventable by pretreatment of the islets with losartan, an AT1-receptor antagonist. We also investigated if the expression of these components was changed after islet transplantation. Notably, a markedly increased expression of mRNA for the AT1-receptor was observed in islets retrieved from 4-week-old syngeneic islet transplants, a finding that was confirmed at the protein level. CONCLUSION/INTERPRETATION These data indicate the existence of an islet angiotensin-generating system of potential importance in the physiological regulation of glucose-induced insulin secretion, thus diabetes mellitus. The increased expression of the AT1-receptor in islet transplants could have relevance to islet-graft function.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers
- Angiotensin II Type 2 Receptor Blockers
- Angiotensinogen/genetics
- Animals
- Blotting, Western
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Glucose/metabolism
- Glucose/pharmacology
- Imidazoles/pharmacology
- Immunohistochemistry
- In Vitro Techniques
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/drug effects
- Islets of Langerhans/metabolism
- Islets of Langerhans/physiology
- Islets of Langerhans Transplantation/methods
- Losartan/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Oxidation-Reduction/drug effects
- Peptidyl-Dipeptidase A/genetics
- Proinsulin/biosynthesis
- Protein Biosynthesis
- Pyridines/pharmacology
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Receptor, Angiotensin, Type 2/genetics
- Receptor, Angiotensin, Type 2/metabolism
- Renin-Angiotensin System/genetics
- Renin-Angiotensin System/physiology
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- T Lau
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | | |
Collapse
|
39
|
Lam SY, Fung ML, Leung PS. Regulation of the angiotensin-converting enzyme activity by a time-course hypoxia in the carotid body. J Appl Physiol (1985) 2003; 96:809-13. [PMID: 14527966 DOI: 10.1152/japplphysiol.00684.2003] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic hypoxia activates a local angiotensin-generating system in the carotid body. Here, we test the hypothesis that the activity of the critical enzyme for this system, angiotensin-converting enzyme (ACE), in the carotid body is subject to regulation by a time-course hypoxia. Results from the carotid body assays showed that ACE activity was markedly increased under the hypoxic stress of 7-, 14-, 21-, and 28-day exposures. The changes in ACE activity of 7-day (15.00 vs. 30.95 x 10(-5) nmol.microg(-1).min(-1)), 14-day (8.73 vs. 30.25 x 10(-5) nmol.microg(-1).min(-1)), and 21-day (11.41 vs. 31.83 x 10(-5) nmol.microg(-1).min(-1)) hypoxia treatments were enhanced significantly. However, ACE activity in 28-day (13.18 vs. 24.53 x 10(-5) nmol.microg(-1).min(-1)) hypoxia treatment was observed to increase insignificantly when compared with results in the respective control groups. Captopril inhibited all rises in ACE activity in both the control and experimental groups. Results clearly indicate an activation of the enzymatic activity of ACE, the critical enzyme for determining the conversion of angiotensin I into the physiologically active angiotensin II, by chronic hypoxia in the carotid body. An increase in the ACE activity may increase the local production of angiotensin II in the carotid body and thus its agonist action at the AT1 receptor. This may be important in the modulation of cardiopulmonary adaptation in the hypoxic ventilatory response as well as for electrolyte and water homeostasis during chronic hypoxia.
Collapse
Affiliation(s)
- Siu Yin Lam
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | | | | |
Collapse
|
40
|
Yamada T, Kuno A, Masuda K, Ogawa K, Sogawa M, Nakamura S, Ando T, Sano H, Nakazawa T, Ohara H, Nomura T, Joh T, Itoh M. Candesartan, an angiotensin II receptor antagonist, suppresses pancreatic inflammation and fibrosis in rats. J Pharmacol Exp Ther 2003; 307:17-23. [PMID: 12944495 DOI: 10.1124/jpet.103.053322] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Angiotensin-converting enzyme inhibitors and angiotensin receptor antagonists attenuate fibrosis in the kidney, heart, and liver by suppressing transforming growth factor-beta1 mRNA and decreasing production of extracellular matrix proteins. We recently demonstrated that lisinopril, an angiotensin-converting enzyme inhibitor, alleviates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. The involvement of angiotensin II receptor and its receptor interaction in the pathogenesis of spontaneous chronic pancreatitis was assessed in this model. Candesartan, an angiotensin II receptor antagonist, was administered in drinking water (10.5, 42, or 125 mg/l) to 10-week-old male WBN/Kob rats for 10 weeks and inflammatory parameters, fibrosis, and gene expression of renin-angiotensin system components and transforming growth factor-beta1 were assessed in the pancreas. Immunostaining for alpha-smooth muscle actin was also performed. Candesartan significantly suppressed decrease in pancreatic weight and increases in pancreatic myeloperoxidase activity, hydroxyproline content, ratio of fibrous tissue, histologic scores, and ratio of alpha-smooth muscle actin-positive cells (activated pancreatic stellate cells) at 20 weeks. The high dose enhanced the expression of angiotensinogen and angiotensin II receptor type 2 mRNA and suppressed the overexpression of transforming growth factor-beta1 mRNA. The conclusion is that candesartan alleviates chronic pancreatitis and fibrosis by suppressing the overexpression of transforming growth factor-beta1, resulting in prevention of activation of pancreatic stellate cells in male WBN/Kob rats. We propose that angiotensin II receptor type 1 antagonists may be useful for the treatment of chronic pancreatitis involving angiotensin II interaction with its receptor.
Collapse
MESH Headings
- Actins/analysis
- Angiotensin Receptor Antagonists
- Animals
- Antihypertensive Agents/blood
- Antihypertensive Agents/therapeutic use
- Benzimidazoles/blood
- Benzimidazoles/therapeutic use
- Biphenyl Compounds
- Body Weight/drug effects
- Fibrosis/blood
- Fibrosis/pathology
- Fibrosis/prevention & control
- Hydroxyproline/metabolism
- Immunohistochemistry
- Inflammation/pathology
- Inflammation/prevention & control
- Male
- Muscle, Smooth/metabolism
- Organ Size/drug effects
- Pancreatitis/blood
- Pancreatitis/pathology
- Pancreatitis/prevention & control
- Peroxidase/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/drug effects
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Angiotensin/biosynthesis
- Receptors, Angiotensin/genetics
- Tetrazoles/blood
- Tetrazoles/therapeutic use
- Transforming Growth Factor beta/biosynthesis
- Transforming Growth Factor beta/genetics
Collapse
Affiliation(s)
- Tamaki Yamada
- Department of Comprehensive Medicine, Internal Medicine, and Bioregulation, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Santos CF, Caprio MAV, Oliveira EB, Salgado MCO, Schippers DN, Munzenmaier DH, Greene AS. Functional role, cellular source, and tissue distribution of rat elastase-2, an angiotensin II-forming enzyme. Am J Physiol Heart Circ Physiol 2003; 285:H775-83. [PMID: 12714330 DOI: 10.1152/ajpheart.00818.2002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We recently described a chymostatin-sensitive elastase-2 as the major angiotensin (ANG) II-forming enzyme in the perfusate of the rat mesenteric arterial bed (MAB) with the same cDNA sequence as rat pancreatic elastase-2. The role of this enzyme in generating ANG II was examined in the rat isolated and perfused MAB. The vasoconstrictor effect elicited by ANG I and the renin substrate tetradecapeptide was only partially inhibited by captopril but abolished by the combination of captopril and chymostatin or N-acetyl-Ala-Ala-Pro-Leu-chloromethylketone (Ac-AAPL-CK; inhibitor originally developed for human elastase-2). The effect induced by [Pro11,d-Ala12]-ANG I, an ANG I-converting enzyme (ACE)-resistant biologically inactive precursor of ANG II, was blocked by chymostatin or Ac-AAPL-CK. It was also demonstrated that cultured rat mesenteric endothelial cells synthesize elastase-2 and that mRNA for this enzyme can be detected in different rat tissues such as the pancreas, MAB, lung, heart, kidney, liver, and spleen. In conclusion, the demonstration of a functional alternative pathway to ACE for ANG II generation in the rat MAB and the fact that cultured MAB endothelial cells are capable of producing and secreting elastase-2 represent strong evidence of a physiological role for this enzyme in the rat vasculature.
Collapse
Affiliation(s)
- Carlos F Santos
- Department of Pharmacology, University of São Paulo School of Medicine, Ribeirão Preto 14049-900, Brazil
| | | | | | | | | | | | | |
Collapse
|
42
|
Leung PS, Chappell MC. A local pancreatic renin-angiotensin system: endocrine and exocrine roles. Int J Biochem Cell Biol 2003; 35:838-46. [PMID: 12676170 DOI: 10.1016/s1357-2725(02)00179-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The renin-angiotensin system (RAS) is classically characterized as a circulating hormonal system primarily through the production of the physiologically active product angiotensin II (Ang II) that plays a crucial role in the regulation of blood pressure, fluid and electrolyte homeostasis. In addition to this circulating RAS, numerous tissues and organs have been recently demonstrated to exhibit their own RAS products and activities. Such an intrinsic RAS can modulate the specific local functions of their respective tissues and organs, frequently in a paracrine and autocrine manner. Recent findings from our laboratories and others have made a significant contribution on the expression, localization, regulation, and potential role of a local RAS in the pancreas. Although, it is quite intriguing that components of the local pancreatic RAS are responsive to various physiological and pathophysiological conditions, the crucial role of this system in regulating the exocrine and endocrine functions and ultimately the clinical relevance to pancreatic disease is still largely equivocal. Of particular interest in this context are the actions of pancreatic RAS on the growth, anti-proliferation and free radical generation in the pancreas. The aims of the current article focus on the emerging data on the local pancreatic RAS; its involvement in exocrine acinar and endocrine islet aspects, and the clinical significance in the pancreas are particularly addressed. The target for the local pancreatic RAS may provide a new insight into future management of various clinical conditions including islet transplants, diabetes mellitus, pancreatic cancer, pancreatitis and cystic fibrosis.
Collapse
Affiliation(s)
- Po Sing Leung
- Department of Physiology, Faculty of Medicine, Chinese University of Hong Kong, Shatin, N. T., Hong Kong, PR China.
| | | |
Collapse
|
43
|
Ip SP, Kwan PC, Williams CH, Pang S, Hooper NM, Leung PS. Changes of angiotensin-converting enzyme activity in the pancreas of chronic hypoxia and acute pancreatitis. Int J Biochem Cell Biol 2003; 35:944-54. [PMID: 12676178 DOI: 10.1016/s1357-2725(02)00181-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Emerging data have provided evidence for the presence of a local renin-angiotensin system (RAS) in the pancreas, which play a role in the regulation of pancreatic microcirculation, thus affecting islet hormonal secretion. The present study aimed, therefore, at elucidating the presence and changes of angiotensin-converting enzyme (ACE) using reverse transcription-polymerase chain reaction (RT-PCR) and a specific assay for ACE activity using the internally quenched fluorogenic substrate Meoc-DL-Amp-Gly-Lys(epsilon -DNP)-Gln-OH. RT-PCR clearly demonstrated the expression of ACE mRNA in the pancreas. ACE activity was markedly and significantly increased by chronic hypoxia and by acute pancreatitis when compared with that of their respective control pancreas. Addition of captopril, a specific inhibitor for ACE, completely blocked the ACE activity both in the control and experimental groups. All these data suggest that increased activity of pancreatic ACE in chronic hypoxia and acute pancreatitis could have implications for pancreatic physiology and pathophysiology.
Collapse
Affiliation(s)
- Siu Po Ip
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin N.T., Hong Kong, PR China
| | | | | | | | | | | |
Collapse
|
44
|
Ip SP, Tsang SW, Wong TP, Che CT, Leung PS. Saralasin, a nonspecific angiotensin II receptor antagonist, attenuates oxidative stress and tissue injury in cerulein-induced acute pancreatitis. Pancreas 2003; 26:224-9. [PMID: 12657946 DOI: 10.1097/00006676-200304000-00003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Free radical-mediated pancreatic injury is believed to play a key role in the pathogenesis of acute pancreatitis. Most of these studies have focused on the effects of antioxidant enzymes and free radical scavengers on improving the pancreatic injury. Recent findings showed that cerulein-induced acute pancreatitis was associated with an upregulation of a local pancreatic renin-angiotensin system in the pancreas. In the current study we hypothesized that inhibition of this renin-angiotensin system by saralasin, a nonspecific antagonist for angiotensin II receptor, could attenuate the severity of cerulein-induced pancreatitis. METHODOLOGY The effects of saralasin on oxidative stress and tissue injury in cerulein-induced pancreatitis were assessed by histopathologic analysis and on the basis of biochemical changes of plasma alpha-amylase level, pancreatic glutathione status, oxidative modification of protein, and lipid peroxidation. RESULTS Data from the biochemical analysis showed that intravenous injections of saralasin at doses of 10 microg/kg to 50 microg/kg 30 minutes before the induction of acute pancreatitis significantly reduced pancreatic injury, as indicated by a decrease in plasma alpha-amylase activity in comparison with the cerulein-treated control. The effect of saralasin was further manifested by significant suppressions of glutathione depletion, oxidative modification of proteins, and lipid peroxidation in cerulein-treated rat pancreas. Histopathologic examination findings were in agreement with the biochemical data. CONCLUSIONS These data suggest that prophylactic administration of saralasin can ameliorate the oxidative stress and tissue injury in cerulein-induced pancreatitis. Such a protective effect may provide new insight into the potential value of angiotensin II receptor antagonists in the clinical therapy for acute pancreatitis.
Collapse
Affiliation(s)
- Siu Po Ip
- Department of Physiology and School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | | | | | | | | |
Collapse
|
45
|
Kuno A, Yamada T, Masuda K, Ogawa K, Sogawa M, Nakamura S, Nakazawa T, Ohara H, Nomura T, Joh T, Shirai T, Itoh M. Angiotensin-converting enzyme inhibitor attenuates pancreatic inflammation and fibrosis in male Wistar Bonn/Kobori rats. Gastroenterology 2003; 124:1010-9. [PMID: 12671898 DOI: 10.1053/gast.2003.50147] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Pancreatic stellate cells have some similarities to hepatic stellate cells and an intrinsic renin-angiotensin system is present in the pancreas and is enhanced in acute pancreatitis and chronic pancreatic hypoxia. We assessed the effects of lisinopril, an angiotensin-converting enzyme (ACE) inhibitor, on spontaneously occurring chronic pancreatitis. METHODS Lisinopril in drinking water (20, 50, or 200 mg/L) was administered to 10-week-old male Wistar Bonn/Kobori (WBN/Kob) rats for 10 weeks and then the inflammatory parameters, fibrosis, serum and pancreatic ACE activity, and expression of transforming growth factor-beta1 (TGF-beta1) messenger RNA (mRNA) as well as positive immunostaining for alpha-smooth muscle actin (alpha-SMA) were assessed. RESULTS Lisinopril attenuated gross alterations in the pancreas. This protective effect was confirmed quantitatively by significant increases in pancreatic weights and decreases in pancreatic myeloperoxidase (MPO) activity (an index of granulocyte infiltration), pancreatic hydroxyproline content (an index of collagen deposition), ratio of fibrous tissue, and histologic scores. Lisinopril significantly reduced serum ACE activity but it did not affect pancreatic activity. High doses of lisinopril suppressed the overexpression of TGF-beta1 mRNA measured by reverse-transcription polymerase chain reaction (RT-PCR) and decreased the number of alpha-SMA-positive cells (activated pancreatic stellate cells) in the pancreas. CONCLUSIONS Lisinopril alleviated chronic pancreatitis and fibrosis in male WBN/Kob rats. It suppressed the expression of TGF-beta1 mRNA, resulting in the prevention of pancreatic stellate cell activation, which may be involved in the observed protection. We propose that an ACE inhibitor may be useful for treating chronic pancreatitis.
Collapse
Affiliation(s)
- Atsushi Kuno
- First Department of Internal Medicine, Nagoya City University Medical School, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tsang SW, Ip SP, Wong TP, Che CT, Leung PS. Differential effects of saralasin and ramiprilat, the inhibitors of renin-angiotensin system, on cerulein-induced acute pancreatitis. REGULATORY PEPTIDES 2003; 111:47-53. [PMID: 12609748 DOI: 10.1016/s0167-0115(02)00226-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Acute pancreatitis is an inflammatory disease characterized by pancreatic tissue edema, acinar cell necrosis, hemorrhage and inflammation of the damaged gland. It is believed that acinar cell injury is initiated by the activation of digestive zymogens inside the acinar cells, leading finally to the autodigestion of the pancreas. Previous study in our laboratory demonstrated that cerulein-induced acute pancreatitis was associated with an up-regulation of local renin-angiotensin system (RAS) in rat pancreas. Therefore, the utilization of RAS inhibitors may provide a novel and alternative treatment for acute pancreatitis. By means of a rat model of cerulein-induced acute pancreatitis, results from the present study showed that an intravenous injection of saralasin, an antagonist for angiotensin II receptors, at a dose of 40 microg/kg 30 min before the induction of acute pancreatitis significantly attenuated pancreatic edema. Results from the biochemical measurements showed that pretreatment with saralasin at a dose of 20 microg/kg markedly reduced pancreatic injury, as evidenced by the decreased activities of alpha-amylase and lipase in plasma. However, the same recipe of ramiprilat, a specific inhibitor for angiotensin-converting enzyme, at a dose of 20 microg/kg did not provide any protective effect against acute pancreatitis. On the contrary, pretreatment with ramiprilat at a dose 40 microg/kg enhanced cerulein-induced pancreatic injury. Results from histopathological analysis of these RAS inhibitors further confirmed with those results as obtained from biochemical analysis. These data indicate that administration of saralasin but not ramiprilat could be protective against acute pancreatitis and that activation of pancreatic RAS in acute pancreatitis may play a role in pancreatic tissue injury.
Collapse
Affiliation(s)
- Siu Wai Tsang
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, PR China
| | | | | | | | | |
Collapse
|
47
|
Zhou ZG, Chen YD, Sun W, Chen Z. Pancreatic microcirculatory impairment in experimental acute pancreatitis in rats. World J Gastroenterol 2002; 8:933-6. [PMID: 12378645 PMCID: PMC4656590 DOI: 10.3748/wjg.v8.i5.933] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the feature of pancreatic microcirculatory impairment, especially the initial changes, in caerulein-induced experimental acute pancreatitis (AP).
METHODS: The pancreatic microcirculation of caerulein-induced AP model was studied by intravital fluorescence microscopy with FITC-labeled erythrocytes (FITC-RBC), scanning electron microscopy of vascular corrosion casts, and light microscopy of Chinese ink-injected/cleared tissues.
RESULTS: Animals in caerulein-treated group showed hyperamylemia (× 2), pancreatic oedema, infiltration of inflammatory cells in pancreas. Constrictions of intralobular arteriolar sphincters, presence of vacuoles in all layers of sphincter, and gross irregularity in capillary network of acini were found in the AP specimens. The decrease of pancreatic capillary blood flow (0.34 ± 0.10 nL·min-1vs 0.91 ± 0.06 nL·min-1 of control, P < 0.001), reduction of functional capillary density (277 ± 13 cm-1vs 349 ± 8 cm-1 of control, P < 0.001), and irregular intermittent perfusion were observed in caerulein-induced groups.
CONCLUSION: Impairment and constriction of pancreatic intralobular arteriolar sphincter are the initial microcirculatory lesions in the early phase of acute pancreatitis, and play a key role in the pancreatic ischaemia and pancreatic microvascular failure in acute pancreatitis.
Collapse
Affiliation(s)
- Zong-Guang Zhou
- III Department of General Surgery (Gastroenteric Surgery), West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | | | | | | |
Collapse
|
48
|
Abstract
INTRODUCTION The circulating renin-angiotensin system (RAS) plays a crucial role in the regulation of blood pressure, electrolytes, and fluid homeostasis. In contrast to the circulating RAS, the presence of an intrinsic RAS has been demonstrated in different tissues/organs, which may affect both local and global functions of a biologic system. Our previous studies provided solid evidence of the existence of a local RAS in rat pancreas. Our further investigation showed that such a pancreatic RAS could be activated by experimental models of chronic hypoxia and chemically induced pancreatitis. These previous findings formed the basis for the current study. METHODOLOGY Adult Sprague-Dawley rats were exposed to isobaric hypoxia (10% O2), and the effects on the circulating and pancreatic RAS were documented. RESULTS The current study shows that exposure of rats to isobaric hypoxia caused a time-dependent increase in plasma renin activity. The activation of circulating RAS by hypoxia was associated with a parallel upregulation of local RAS components, including the mRNA expression of angiotensinogen and angiotensin II receptor types I and II in the pancreas. CONCLUSION The upregulation of local pancreatic RAS, along with its counterpart circulating RAS, may be responsible for both physiologic and pathophysiologic aspects of a biologic system under chronic hypoxic stress.
Collapse
Affiliation(s)
- Siu Po Ip
- Department of Physiology and School of Chinese Medicine, The Chinese University of Hong Kong, Hong Kong
| | | | | |
Collapse
|
49
|
Ip SP, Chan YW, Che CT, Leung PS. Effect of chronic hypoxia on glutathione status and membrane integrity in the pancreas. Pancreatology 2002; 2:34-9. [PMID: 12120004 DOI: 10.1159/000049446] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Our recent study has shown that chronic hypoxia could upregulate significantly a local renin-angiotensin system in the pancreas. The activation of such a local renin-angiotensin system may provide an alternate mechanism that leads to the generation of reactive radical species in the pancreas during chronically hypoxic exposure. The present study aims at elucidating the antioxidant status in the pancreas during varying degrees of chronic hypoxia. METHODS Sprague-Dawley rats were exposed to an isobaric hypoxic (10% oxygen) chamber for a period up to 28 days. The glutathione status and membrane integrity of the pancreas were studied with a time course of chronic hypoxia (3, 7, 14, 21 and 28 days). The effect of chronic hypoxia on changes of oxidative states in the pancreas was assessed based on the measurements of glutathione, malondialdehyde, alpha-amylase and DNA fragmentation using biochemical assays. RESULTS Pancreatic glutathione was decreased drastically after 3-day hypoxia and its level was almost completely recovered after 7-day hypoxia. Malondialdehyde was not affected while DNA fragmentation was increased significantly in a time-dependent manner during the course of chronic hypoxia. Membrane integrity of the pancreatic cells was improved, as evidenced by the decrease of plasma alpha-amylase during the time-course study of chronic hypoxia. CONCLUSION Pancreatic glutathione was depleted only in the early period of chronic hypoxia followed by a rapid recovery, suggesting that adaptive response of the pancreas may occur during chronic hypoxia. The enhancement of glutathione-dependent antioxidant capacity during chronic hypoxia prevented oxidative damage to the membrane of the pancreatic cells.
Collapse
Affiliation(s)
- S P Ip
- School of Chinese Medicine, Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR
| | | | | | | |
Collapse
|
50
|
Abstract
Pancreatic microcirculatory disturbance plays an important role in the pathogenesis of acute pancreatitis, and it involves a series of changes including vasoconstriction, ischaemia, increased vascular permeability, impairment of nutritive tissue perfusion, ischaemia/reperfusion, leukocyte adherence, hemorrheological changes and impaired lymphatic drainage. Ischaemia possibly acts as an initiating factor of pancreatic microcirculatory injury in acute pancreatitis, or as an aggravating/continuing mechanism. The end-artery feature of the intralobular arterioles suggests that the pancreatic microcirculation is highly susceptible to ischaemia. Various vasoactive mediators, as bradykinin, platelet activating factor, endothelin and nitric oxide participate in the development of microcirculatory failure.
Collapse
Affiliation(s)
- Zong-Guang Zhou
- Department of Hepato-bilio-pancreatic Surgery & Institute of Microcirculation, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China.
| | | |
Collapse
|