1
|
Churchill CC, Peterson CD, Kitto KF, Pflepsen KR, Belur LR, McIvor RS, Vulchanova L, Wilcox GL, Fairbanks CA. Adeno-associated virus-mediated gene transfer of arginine decarboxylase to the central nervous system prevents opioid analgesic tolerance. FRONTIERS IN PAIN RESEARCH 2024; 4:1269017. [PMID: 38405182 PMCID: PMC10884299 DOI: 10.3389/fpain.2023.1269017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/19/2023] [Indexed: 02/27/2024] Open
Abstract
Agmatine, a decarboxylated form of L-arginine, prevents opioid analgesic tolerance, dependence, and self-administration when given by both central and systemic routes of administration. Endogenous agmatine has been previously detected in the central nervous system. The presence of a biochemical pathway for agmatine synthesis offers the opportunity for site-specific overexpression of the presumptive synthetic enzyme for local therapeutic effects. In the present study, we evaluated the development of opioid analgesic tolerance in ICR-CD1 mice pre-treated with either vehicle control or intrathecally delivered adeno-associated viral vectors (AAV) carrying the gene for human arginine decarboxylase (hADC). Vehicle-treated or AAV-hADC-treated mice were each further divided into two groups which received repeated delivery over three days of either saline or systemically-delivered morphine intended to induce opioid analgesic tolerance. Morphine analgesic dose-response curves were constructed in all subjects on day four using the warm water tail flick assay as the dependent measure. We observed that pre-treatment with AAV-hADC prevented the development of analgesic tolerance to morphine. Peripheral and central nervous system tissues were collected and analyzed for presence of hADC mRNA. In a similar experiment, AAV-hADC pre-treatment prevented the development of analgesic tolerance to a high dose of the opioid neuropeptide endomorphin-2. Intrathecal delivery of anti-agmatine IgG (but not normal IgG) reversed the inhibition of endomorphin-2 analgesic tolerance in AAV-hADC-treated mice. To summarize, we report here the effects of AAV-mediated gene transfer of human ADC (hADC) in models of opioid-induced analgesic tolerance. This study suggests that gene therapy may contribute to reducing opioid analgesic tolerance.
Collapse
Affiliation(s)
- Caroline C. Churchill
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Cristina D. Peterson
- Department of Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Kelley F. Kitto
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Kelsey R. Pflepsen
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
| | - Lalitha R. Belur
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - R. Scott McIvor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Lucy Vulchanova
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - George L. Wilcox
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
- Department of Dermatology, University of Minnesota, Minneapolis, MN, United States
| | - Carolyn A. Fairbanks
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, United States
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
2
|
Watso JC, Huang M, Hendrix JM, Belval LN, Moralez G, Cramer MN, Foster J, Hinojosa-Laborde C, Crandall CG. Comparing the Effects of Low-Dose Ketamine, Fentanyl, and Morphine on Hemorrhagic Tolerance and Analgesia in Humans. PREHOSP EMERG CARE 2023; 27:600-612. [PMID: 36689353 PMCID: PMC10329983 DOI: 10.1080/10903127.2023.2172493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Hemorrhage is a leading cause of preventable battlefield and civilian trauma deaths. Ketamine, fentanyl, and morphine are recommended analgesics for use in the prehospital (i.e., field) setting to reduce pain. However, it is unknown whether any of these analgesics reduce hemorrhagic tolerance in humans. We tested the hypothesis that fentanyl (75 µg) and morphine (5 mg), but not ketamine (20 mg), would reduce tolerance to simulated hemorrhage in conscious humans. Each of the three analgesics was evaluated independently among different cohorts of healthy adults in a randomized, crossover (within drug/placebo comparison), placebo-controlled fashion using doses derived from the Tactical Combat Casualty Care Guidelines for Medical Personnel. One minute after an intravenous infusion of the analgesic or placebo (saline), we employed a pre-syncopal limited progressive lower-body negative pressure (LBNP) protocol to determine hemorrhagic tolerance. Hemorrhagic tolerance was quantified as a cumulative stress index (CSI), which is the sum of products of the LBNP and the duration (e.g., [40 mmHg x 3 min] + [50 mmHg x 3 min] …). Compared with ketamine (p = 0.002 post hoc result) and fentanyl (p = 0.02 post hoc result), morphine reduced the CSI (ketamine (n = 30): 99 [73-139], fentanyl (n = 28): 95 [68-130], morphine (n = 30): 62 [35-85]; values expressed as a % of the respective placebo trial's CSI; median [IQR]; Kruskal-Wallis test p = 0.002). Morphine-induced reductions in tolerance to central hypovolemia were not well explained by a prediction model including biological sex, body mass, and age (R2=0.05, p = 0.74). These experimental data demonstrate that morphine reduces tolerance to simulated hemorrhage while fentanyl and ketamine do not affect tolerance. Thus, these laboratory-based data, captured via simulated hemorrhage, suggest that morphine should not be used for a hemorrhaging individual in the prehospital setting.
Collapse
Affiliation(s)
- Joseph Charles Watso
- Department of Nutrition & Integrative Physiology, Florida State University, Tallahassee, Florida, USA
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mu Huang
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Office of Science, Medicine, and Health, American Heart Association, Dallas, Texas, USA
| | - Joseph Maxwell Hendrix
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Anesthesiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Luke Norman Belval
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Gilbert Moralez
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew Nathaniel Cramer
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Josh Foster
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Craig Gerald Crandall
- Institute for Exercise and Environmental Medicine, Texas Health Presbyterian Hospital Dallas, Dallas, Texas, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Applied Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Alijanpour S, Zarrindast MR. Potentiation of morphine-induced antinociception by harmaline: involvement of μ-opioid and ventral tegmental area NMDA receptors. Psychopharmacology (Berl) 2020; 237:557-570. [PMID: 31740992 DOI: 10.1007/s00213-019-05389-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 11/04/2019] [Indexed: 12/23/2022]
Abstract
RATIONAL Morphine is one of the most well-known and potent analgesic agents; however, it can also induce various side effects. Thus, finding drugs and mechanisms which can potentiate the analgesic effects of low doses of morphine will be a good strategy for pain management. OBJECTIVE The involvement of μ-opioid receptors and ventral tegmental area (VTA) glutamatergic system in harmaline and morphine combination on the nociceptive response were investigated. Also, we examined reward efficacy and tolerance expression following the drugs. METHODS Animals were bilaterally cannulated in the VTA by stereotaxic instrument. A tail-flick (TF) apparatus and conditioned place preference (CPP) paradigm were used to measure nociceptive response and rewarding effects in male NMRI mice respectively. RESULTS Morphine (2 mg/kg, i.p.) had no effect in TF test. Also, harmaline (1.25 and 5 mg/kg, i.p.) could not change pain threshold. Combination of a non-effective dose of harmaline (5 mg/kg) and morphine (2 mg/kg) produced antinociception and also prevented morphine tolerance but had no effect on the acquisition of CPP. Systemic administration of naloxone (0.5 and 1 mg/kg) and intra-VTA microinjection of NMDA (0.06 and 0.1 μg/mouse) before harmaline (5 mg/kg) plus morphine (2 mg/kg) prevented antinociception induced by the drugs. D-AP5 (0.5 and 1 μg/mouse, intra-VTA) potentiated the effect of low-dose harmaline (1.25 mg/kg) and morphine (2 mg/kg) and induced antinociception. Microinjection of the same doses of NMDA or D-AP5 into the VTA alone had no effect on pain threshold. CONCLUSION The findings showed that harmaline potentiated the analgesic effect of morphine and reduced morphine tolerance. Glutamatergic and μ-opioidergic system interactions in the VTA seem to have a modulatory role in harmaline plus morphine-induced analgesia.
Collapse
Affiliation(s)
- Sakineh Alijanpour
- Department of Biology, Faculty of Science, Gonbad Kavous University, P. O. Box 163, Gonbad Kavous, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.,Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Belinskaia DA, Belinskaia MA, Barygin OI, Vanchakova NP, Shestakova NN. Psychotropic Drugs for the Management of Chronic Pain and Itch. Pharmaceuticals (Basel) 2019; 12:ph12020099. [PMID: 31238561 PMCID: PMC6631469 DOI: 10.3390/ph12020099] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Clinical observations have shown that patients with chronic neuropathic pain or itch exhibit symptoms of increased anxiety, depression and cognitive impairment. Such patients need corrective therapy with antidepressants, antipsychotics or anticonvulsants. It is known that some psychotropic drugs are also effective for the treatment of neuropathic pain and pruritus syndromes due to interaction with the secondary molecular targets. Our own clinical studies have identified antipruritic and/or analgesic efficacy of the following compounds: tianeptine (atypical tricyclic antidepressant), citalopram (selective serotonin reuptake inhibitor), mianserin (tetracyclic antidepressant), carbamazepine (anticonvulsant), trazodone (serotonin antagonist and reuptake inhibitor), and chlorprothixene (antipsychotic). Venlafaxine (serotonin-norepinephrine reuptake inhibitor) is known to have an analgesic effect too. The mechanism of such effect of these drugs is not fully understood. Herein we review and correlate the literature data on analgesic/antipruritic activity with pharmacological profile of these compounds.
Collapse
Affiliation(s)
- Daria A Belinskaia
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Mariia A Belinskaia
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
| | - Oleg I Barygin
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| | - Nina P Vanchakova
- Department of Pedagogy and Psychology, Faculty of Postgraduate Education, First Pavlov State Medical University, L'va Tolstogo str. 6-8, St. Petersburg 197022, Russia.
| | - Natalia N Shestakova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Torez 44, St. Petersburg 194223, Russia.
| |
Collapse
|
5
|
Pourzitaki C, Tsaousi G, Papazisis G, Kyrgidis A, Zacharis C, Kritis A, Malliou F, Kouvelas D. Fentanyl and naloxone effects on glutamate and GABA release rates from anterior hypothalamus in freely moving rats. Eur J Pharmacol 2018; 834:169-175. [DOI: 10.1016/j.ejphar.2018.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 07/12/2018] [Accepted: 07/18/2018] [Indexed: 11/28/2022]
|
6
|
Gawel K, Jenda-Wojtanowska M, Gibula-Bruzda E, Kedzierska E, Filarowska J, Marszalek-Grabska M, Wojtanowski KK, Komsta L, Talarek S, Kotlinska JH. The influence of AMN082, metabotropic glutamate receptor 7 (mGlu7) allosteric agonist on the acute and chronic antinociceptive effects of morphine in the tail-immersion test in mice: Comparison with mGlu5 and mGlu2/3 ligands. Physiol Behav 2017; 185:112-120. [PMID: 29294304 DOI: 10.1016/j.physbeh.2017.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 12/18/2017] [Accepted: 12/29/2017] [Indexed: 11/19/2022]
Abstract
Preclinical data indicated that the metabotropic glutamate receptors 5 (mGlu5) and glutamate receptors 2/3 (mGlu2/3) are involved in modulating morphine antinociception. However, little is known about the role of metabotropic glutamate receptors 7 (mGlu7) in this phenomenon. We compared the effects of AMN082 (0.1, 1 or 5mg/kg, ip), a selective mGlu7 allosteric agonist, LY354740 (0.1, 1 or 5mg/kg, ip), an mGlu2/3 agonist and MTEP (0.1, 1 or 5mg/kg, ip), a selective mGlu5 antagonist, on the acute antinociceptive effect of morphine (5mg/kg, sc) and also on the development and expression of tolerance to morphine analgesia in the tail-immersion test in mice. To determine the role of mGlu7 in morphine tolerance, and the association of the mGlu7 effect with the N-methyl-d-aspartate (NMDA) receptors regulation, we used MMPIP (10mg/kg, ip), a selective mGlu7 antagonist and MK-801, a NMDA antagonist. Herein, the acute administration of AMN082, MTEP or LY354740 alone failed to evoked antinociception, and did not affect morphine (5mg/kg, sc) antinociception. However, these ligands inhibited the development of morphine tolerance, and we indicated that MMPIP reversed the inhibitory effect of AMN082. When given together, the non-effective doses of AMN082 and MK-801 did not alter the tolerance to morphine. Thus, mGlu7, similarly to mGlu2/3 and mGlu5, are involved in the development of tolerance to the antinociceptive effects of morphine, but not in the acute morphine antinociception. Furthermore, while mGlu7 are engaged in the development of morphine tolerance, no interaction exists between mGlu7 and NMDA receptors in this phenomenon.
Collapse
Affiliation(s)
- K Gawel
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland; Department of Experimental and Clinical Pharmacology, Medical University, Lublin, Poland
| | - M Jenda-Wojtanowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - E Gibula-Bruzda
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - E Kedzierska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - J Filarowska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - M Marszalek-Grabska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - K K Wojtanowski
- Department of Pharmacognosy with Medicinal Plant Unit, Medical University, Lublin, Poland
| | - L Komsta
- Department of Medicinal Chemistry, Medical University, Lublin, Poland
| | - S Talarek
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland
| | - J H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Lublin, Poland.
| |
Collapse
|
7
|
Jergova S, Gordon CE, Gajavelli S, Sagen J. Experimental Gene Therapy with Serine-Histogranin and Endomorphin 1 for the Treatment of Chronic Neuropathic Pain. Front Mol Neurosci 2017; 10:406. [PMID: 29276474 PMCID: PMC5727090 DOI: 10.3389/fnmol.2017.00406] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023] Open
Abstract
The insufficient pain relief provided by current pharmacotherapy for chronic neuropathic pain is a serious medical problem. The enhanced glutamate signaling via NMDA receptors appears to be one of the key events in the development of chronic pain. Although effective, clinical use of systemic NMDA antagonists is limited by adverse effects such as hallucinations and motor dysfunction. Opioids are also potent analgesics but their chronic use is accompanied by tolerance and risk of addiction. However, combination of NMDA antagonists and opioids seems to provide a stable pain relieve at subthreshold doses of both substances, eliminating development of side effects. Our previous research showed that combined delivery of NMDA antagonist Serine histrogranin (SHG) and endomorphin1 (EM1) leads to attenuation of acute and chronic pain. The aim of this study was to design and evaluate an analgesic potency of the gene construct encoding SHG and EM1. Constructs with 1SHG copy in combination with EM1, 1SHG/EM1, and 6SHG/EM1 were intraspinally injected to animals with peripheral nerve injury-induced pain (chronic constriction injury, CCI) or spinal cord injury induced pain (clip compression model, SCI) and tactile and cold allodynia were evaluated. AAV2/8 particles were used for gene delivery. The results demonstrated 6SHG/EM1 as the most efficient for alleviation of pain-related behavior. The effect was observed up to 8 weeks in SCI animals, suggesting the lack of tolerance of possible synergistic effect between SHG and EM1. Intrathecal injection of SHG antibody or naloxone attenuated the analgesic effect in treated animals. Biochemical and histochemical evaluation confirmed the presence of both peptides in the spinal tissue. The results of this study showed that the injection of AAV vectors encoding combined SHG/EM constructs can provide long term attenuation of pain without overt adverse side effects. This approach may provide better treatment options for patients suffering from chronic pain.
Collapse
Affiliation(s)
- Stanislava Jergova
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Catherine E Gordon
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Shyam Gajavelli
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Jacqueline Sagen
- The Miami Project, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
8
|
Ahmadi S, Golbaghi H, Azizbeigi R, Esmailzadeh N. N-methyl-D-aspartate receptors involved in morphine-induced hyperalgesia in sensitized mice. Eur J Pharmacol 2014; 737:85-90. [PMID: 24842190 DOI: 10.1016/j.ejphar.2014.04.048] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/11/2014] [Accepted: 04/20/2014] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate role of the N-Methyl-D-Aspartate (NMDA) receptors in the decrease of morphine analgesia in mice after nociceptive sensitization. We used a hot plate test to assess effects of morphine on pain behavior in male NMRI mice. All drugs were administered through an intraperitoneal route. Sensitization schedule composed of 3-days pre-treatment of morphine (20mg/kg) followed by 5-days washout. The results showed that morphine (5, 7.5, 10 and 15mg/kg) induced a significant analgesia in normal mice. However, the analgesic effects of morphine significantly decreased at higher dose (15mg/kg) in sensitized mice. Injections of either a competitive NMDA receptor antagonist, D-AP5 (0, 0.25, 0.5 and 1mg/kg) or an NMDA receptor channel blocker (30, 60 and 120mg/kg) alone had no effect on pain behavior. However, injections of D-AP5 (1mg/kg), along with morphine over 3-days of the sensitization schedule, significantly prevented the decrease in the analgesic effect of the opioid at doses of 7.5 and 10mg/kg on the hot plate test. Similarly, injections of MgSO4 (120mg/kg), along with morphine over 3-days of the sensitization schedule, significantly prevented the decrease in analgesic effect of morphine at doses of 10 and 15mg/kg. It can be concluded that NMDA receptors are influenced by morphine during the sensitization schedule, which in turn may affect morphine analgesia after the schedule. This may further support the potential effectiveness of NMDA blockade during repeated use of morphine for control of chronic pain.
Collapse
Affiliation(s)
- Shamseddin Ahmadi
- Department of Biological Science and Biotechnology, Faculty of Science, University of Kurdistan, P.O. Box 66167-15145, Sanandaj, Iran.
| | - Hajar Golbaghi
- Department of Biology, Faculty of Science, Islamic Azad University, Hamedan Branch, Hamedan, Iran
| | - Ronak Azizbeigi
- Department of Physiology, Faculty of Veterinary Science, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Nabaz Esmailzadeh
- Department of Statistics, Faculty of Science, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
9
|
Arout CA, Caldwell M, McCloskey DP, Kest B. C-Fos activation in the periaqueductal gray following acute morphine-3β-d-glucuronide or morphine administration. Physiol Behav 2014; 130:28-33. [DOI: 10.1016/j.physbeh.2014.02.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/28/2014] [Indexed: 10/25/2022]
|
10
|
The plasticity of the association between mu-opioid receptor and glutamate ionotropic receptor N in opioid analgesic tolerance and neuropathic pain. Eur J Pharmacol 2013; 716:94-105. [PMID: 23499699 DOI: 10.1016/j.ejphar.2013.01.066] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 12/13/2012] [Accepted: 01/09/2013] [Indexed: 02/08/2023]
Abstract
Multiple groups have reported the functional cross-regulation between mu-opioid (MOP) receptor and glutamate ionotropic receptor N (GluN), and the post-synaptic association of these receptors has been implicated in the transmission and modulation of nociceptive signals. Opioids, such as morphine, disrupt the MOP receptor-GluN receptor complex to stimulate the activity of GluN receptors via protein kinase C (PKC)/Src. This increased GluN receptor activity opposes MOP receptor signalling, and via neural nitric oxide synthase (nNOS) and calcium and calmodulin regulated kinase II (CaMKII) induces the phosphorylation and uncoupling of the opioid receptor, which results in the development of morphine analgesic tolerance. Both experimental in vivo activation of GluN receptors and neuropathic pain separate the MOP receptor-GluN receptor complex via protein kinase A (PKA) and reduce the analgesic capacity of morphine. The histidine triad nucleotide-binding protein 1 (HINT1) associates with the MOP receptor C-terminus and connects the activities of MOP receptor and GluN receptor. In HINT1⁻/⁻ mice, morphine promotes enhanced analgesia and produces tolerance that is not related to GluN receptor activity. In these mice, the GluN receptor agonist N-methyl-D-aspartate acid (NMDA) does not antagonise the analgesic effects of morphine. Treatments that rescue morphine from analgesic tolerance, such as GluN receptor antagonism or PKC, nNOS and CaMKII inhibitors, all induce MOP receptor-GluN receptor re-association and reduce GluN receptor/CaMKII activity. In mice treated with NMDA or suffering from neuropathic pain (induced by chronic constriction injury, CCI), GluN receptor antagonists, PKA inhibitors or certain antidepressants also diminish CaMKII activity and restore the MOP receptor-GluN receptor association. Thus, the HINT1 protein stabilises the association between MOP receptor and GluN receptor, necessary for the analgesic efficacy of morphine, and this coupling is reduced following the activation of GluN receptors, similar to what is observed in neuropathic pain.
Collapse
|
11
|
Ananthan S, Saini SK, Dersch CM, Xu H, McGlinchey N, Giuvelis D, Bilsky EJ, Rothman RB. 14-Alkoxy- and 14-acyloxypyridomorphinans: μ agonist/δ antagonist opioid analgesics with diminished tolerance and dependence side effects. J Med Chem 2012; 55:8350-63. [PMID: 23016952 DOI: 10.1021/jm300686p] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the search for opioid ligands with mixed functional activity, a series of 5'-(4-chlorophenyl)-4,5α-epoxypyridomorphinans possessing alkoxy or acyloxy groups at C-14 was synthesized and evaluated. In this series, the affinity and functional activity of the ligands were found to be influenced by the nature of the substituent at C-14 as well as by the substituent at N-17. Whereas the incorporation of a 3-phenylpropoxy group at C-14 on N-methylpyridomorhinan gave a dual MOR agonist/DOR agonist 17h, its incorporation on N-cyclopropylmethylpyridomorphinan gave a MOR agonist/DOR antagonist 17d. Interestingly, 17d, in contrast to 17h, did not produce tolerance or dependence effects upon prolonged treatment in cells expressing MOR and DOR. Moreover, 17d displayed greatly diminished analgesic tolerance as compared to morphine upon repeated administration, thus supporting the hypothesis that ligands with MOR agonist/DOR antagonist functional activity could emerge as novel analgesics devoid of tolerance, dependence, and related side effects.
Collapse
Affiliation(s)
- Subramaniam Ananthan
- Organic Chemistry Department, Southern Research Institute, Birmingham, AL 35205, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
|
13
|
The mu-opioid receptor and the NMDA receptor associate in PAG neurons: implications in pain control. Neuropsychopharmacology 2012; 37:338-49. [PMID: 21814188 PMCID: PMC3242298 DOI: 10.1038/npp.2011.155] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The capacity of opioids to alleviate inflammatory pain is negatively regulated by the glutamate-binding N-methyl-D-aspartate receptor (NMDAR). Increased activity of this receptor complicates the clinical use of opioids to treat persistent neuropathic pain. Immunohistochemical and ultrastructural studies have demonstrated the coexistence of both receptors within single neurons of the CNS, including those in the mesencephalic periaqueductal gray (PAG), a region that is implicated in the opioid control of nociception. We now report that mu-opioid receptors (MOR) and NMDAR NR1 subunits associate in the postsynaptic structures of PAG neurons. Morphine disrupts this complex by protein kinase-C (PKC)-mediated phosphorylation of the NR1 C1 segment and potentiates the NMDAR-CaMKII, pathway that is implicated in morphine tolerance. Inhibition of PKC, but not PKA or GRK2, restored the MOR-NR1 association and rescued the analgesic effect of morphine as well. The administration of N-methyl-D-aspartic acid separated the MOR-NR1 complex, increased MOR Ser phosphorylation, reduced the association of the MOR with G-proteins, and diminished the antinociceptive capacity of morphine. Inhibition of PKA, but not PKC, CaMKII, or GRK2, blocked these effects and preserved morphine antinociception. Thus, the opposing activities of the MOR and NMDAR in pain control affect their relation within neurons of structures such as the PAG. This finding could be exploited in developing bifunctional drugs that would act exclusively on those NMDARs associated with MORs.
Collapse
|
14
|
N-Methyl-d-aspartate receptor antagonist MK-801 suppresses glial pro-inflammatory cytokine expression in morphine-tolerant rats. Pharmacol Biochem Behav 2011; 99:371-80. [DOI: 10.1016/j.pbb.2011.05.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 04/22/2011] [Accepted: 05/15/2011] [Indexed: 11/18/2022]
|
15
|
Ozdemir E, Bagcivan I, Durmus N, Altun A, Gursoy S. The nitric oxide-cGMP signaling pathway plays a significant role in tolerance to the analgesic effect of morphine. Can J Physiol Pharmacol 2011; 89:89-95. [PMID: 21326339 DOI: 10.1139/y10-109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although the phenomenon of opioid tolerance has been widely investigated, neither opioid nor nonopioid mechanisms are completely understood. The aim of the present study was to investigate the role of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway in the development of morphine-induced analgesia tolerance. The study was carried out on male Wistar albino rats (weighing 180-210 g; n = 126). To develop morphine tolerance, animals were given morphine (50 mg/kg; s.c.) once daily for 3 days. After the last dose of morphine was injected on day 4, morphine tolerance was evaluated. The analgesic effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzylindazole (YC-1), BAY 41-2272, S-nitroso-N-acetylpenicillamine (SNAP), N(G)-nitro-L-arginine methyl ester (L-NAME), and morphine were considered at 15 or 30 min intervals (0, 15, 30, 60, 90, and 120 min) by tail-flick and hot-plate analgesia tests (n = 6 in each study group). The results showed that YC-1 and BAY 41-2272, a NO-independent activator of soluble guanylate cyclase (sGC), significantly increased the development and expression of morphine tolerance, and L-NAME, a NO synthase (NOS) inhibitor, significantly decreased the development of morphine tolerance. In conclusion, these data demonstrate that the nitric oxide-cGMP signal pathway plays a pivotal role in developing tolerance to the analgesic effect of morphine.
Collapse
Affiliation(s)
- Ercan Ozdemir
- Department of Physiology, Cumhuriyet University School of Medicine, Sivas, Turkey.
| | | | | | | | | |
Collapse
|
16
|
Delayed postoperative latent pain sensitization revealed by the systemic administration of opioid antagonists in mice. Eur J Pharmacol 2011; 657:89-96. [DOI: 10.1016/j.ejphar.2011.01.059] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/07/2011] [Accepted: 01/25/2011] [Indexed: 11/23/2022]
|
17
|
Meng ID, Dodick D, Ossipov MH, Porreca F. Pathophysiology of medication overuse headache: insights and hypotheses from preclinical studies. Cephalalgia 2011; 31:851-60. [PMID: 21444643 DOI: 10.1177/0333102411402367] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Medication overuse headache (MOH) is a clinical concern in the management of migraine headache. MOH arises from the frequent use of medications used for the treatment of a primary headache. Medications that can cause MOH include opioid analgesics as well as formulations designed for the treatment of migraine, such as triptans, ergot alkaloids, or drug combinations that include caffeine and barbiturates. LITERATURE REVIEW Gathering evidence indicates that migraine patients are more susceptible to development of MOH, and that prolonged use of these medications increases the prognosis for development of chronic migraine, leading to the suggestion that similar underlying mechanisms may drive both migraine headache and MOH. In this review, we examine the link between several mechanisms that have been linked to migraine headache and a potential role in MOH. For example, cortical spreading depression (CSD), associated with migraine development, is increased in frequency with prolonged use of topiramate or paracetamol. CONCLUSIONS Increased CGRP levels in the blood have been linked to migraine and elevated CGRP can be casued by prolonged sumatriptan exposure. Possible mechanisms that may be common to both migraine and MOH include increased endogenous facilitation of pain and/or diminished diminished endogenous pain inhibition. Neuroanatomical pathways mediating these effects are examined.
Collapse
|
18
|
Abstract
We have all encountered the following postanesthesia care unit dilemma a myriad of times. As the attending covering the postanesthesia care unit, the anesthesiologist will be confronted not infrequently with the following clinical scenario: "He needed 500 μg fentanyl in the operating room for a toe amputation and has received 20 mg morphine, and he's still complaining of severe pain…. Do you think he may need more morphine?" Opiates do prevail as first-line therapy for moderate to severe surgical and chronic pain states. However, their use may actually confound the clinical picture postoperatively, because opiate exposure counterintuitively may actually trigger exaggerated pain sensation. When assessing a patient experiencing exaggerated postoperative or chronic pain, several questions should come to mind. First, is this patient experiencing tolerance or hyperalgesia induced by opiate therapy? Second, does the management differ for the two etiologies? Third, what underlying mechanisms, both at the neuroanatomic and molecular/chemical levels, underlie the two processes? Fourth, how does the recent literature on opiate-induced hyperalgesia influence previously accepted views of pre-emptive analgesia? Fifth, what treatment modalities exist for opiate-induced hyperalgesia? Most importantly, sixth, how can opiate-induced hyperalgesia be prevented? In this literature review, we aim to address these questions and to hopefully change the current perception and management of perioperative and chronic pain states with opiates.
Collapse
|
19
|
Koyyalagunta D, Waldman SD. Opioid Analgesics. Pain Manag 2011. [DOI: 10.1016/b978-1-4377-0721-2.00122-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
20
|
Buprenorphine-induced hyperalgesia in the rat. Eur J Pharmacol 2011; 651:89-95. [DOI: 10.1016/j.ejphar.2010.10.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 10/13/2010] [Accepted: 10/31/2010] [Indexed: 11/19/2022]
|
21
|
Schenk GJ, Vreugdenhil E, Hubens CJY, Veldhuisen B, de Kloet ER, Oitzl MS. Hippocampal CARP over-expression solidifies consolidation of contextual fear memories. Physiol Behav 2010; 102:323-31. [PMID: 21130104 DOI: 10.1016/j.physbeh.2010.11.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 01/13/2023]
Abstract
The Doublecortin-Like Kinase (DCLK) gene is involved in neuronal migration during development. Through alternative splicing the DCLK gene also produces a transcript called Ca(2+)/calmodulin dependent protein kinase (CaMK)-related peptide (CARP) that is expressed exclusively during adulthood in response to neuronal activity. The function of CARP, however, is poorly understood. To study CARP function, we have generated transgenic mice with over-expression of the CARP transcript in, amongst other brain areas, the hippocampus. We aimed to characterize possible behavioral adaptations of these mice by using a Pavlovian fear conditioning approach. This type of fear conditioning, in which both the hippocampus and amygdala are critically involved, allows studying the formation and extinction of fear related memories. We here report on the behavioral adaptations of two distinct transgenic lines: one with high levels of CARP in the hippocampus and amygdala, whilst the other has high levels of CARP in the hippocampal formation, but not in the amygdala. We tested both mouse lines separately by comparing them to their wild-type littermate controls. We provide evidence suggesting consolidation of contextual fear memories is strengthened in mice of both transgenic lines.
Collapse
Affiliation(s)
- Geert J Schenk
- Division of Medical Pharmacology, Leiden/Amsterdam Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
22
|
Matsui A, Williams JT. Activation of µ-opioid receptors and block of Kir3 potassium channels and NMDA receptor conductance by L- and D-methadone in rat locus coeruleus. Br J Pharmacol 2010; 161:1403-13. [PMID: 20659105 PMCID: PMC3000663 DOI: 10.1111/j.1476-5381.2010.00967.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/02/2010] [Accepted: 07/07/2010] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE Methadone activates opioid receptors to increase a potassium conductance mediated by G-protein-coupled, inwardly rectifying, potassium (K(IR) 3) channels. Methadone also blocks K(IR) 3 channels and N-methyl-D-aspartic acid (NMDA) receptors. However, the concentration dependence and stereospecificity of receptor activation and channel blockade by methadone on single neurons has not been characterized. EXPERIMENTAL APPROACH Intracellular and whole-cell recording were made from locus coeruleus neurons in brain slices and the activation of µ-opioid receptors and blockade of K(IR) 3 and NMDA channels with L- and D-methadone was examined. KEY RESULTS The potency of L-methadone, measured by the amplitude of hyperpolarization was 16.5-fold higher than with D-methadone. A maximum hyperpolarization was caused by both enantiomers (∼30 mV); however, the maximum outward current measured with whole-cell voltage-clamp recording was smaller than the current induced by [Met](5) enkephalin. The K(IR) 3 conductance induced by activation of α(2) -adrenoceptors was decreased with high concentrations of L- and D-methadone (10-30 µM). In addition, methadone blocked the resting inward rectifying conductance (K(IR) ). Both L- and D-methadone blocked the NMDA receptor-dependent current. The block of NMDA receptor-dependent current was voltage-dependent suggesting that methadone acted as a channel blocker. CONCLUSIONS AND IMPLICATIONS Methadone activated µ-opioid receptors at low concentrations in a stereospecific manner. K(IR) 3 and NMDA receptor channel block was not stereospecific and required substantially higher concentrations. The separation in the concentration range suggests that the activation of µ-opioid receptors rather than the channel blocking properties mediate both the therapeutic and toxic actions of methadone.
Collapse
Affiliation(s)
- Aya Matsui
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
23
|
Abstract
The negative motivational aspects of withdrawal include symptoms of both anxiety and depression, and emerge after termination of chronic drug use as well as after acute drug exposure. States of acute withdrawal are an inherent part of intermittent drug use in humans, but the contribution of acute withdrawal to the development of addiction has received limited systematic investigation, because of a lack of preclinical models for withdrawal states that emerge spontaneously after acute drug exposure. Here, we have characterized a spontaneous increase in the magnitude of the acoustic startle reflex (ie, spontaneous withdrawal-potentiated startle) that emerges after acute morphine administration in rats, and compared the time course of startle potentiation and place conditioning. We find that startle potentiation seems to be related to a decrease in opiate receptor occupancy and reflects an anxiety-like state with a pharmacological profile similar to other signs of opiate withdrawal. Spontaneous startle potentiation emerges before the rewarding effects of morphine have subsided, even though naloxone administration after a single morphine exposure causes both startle potentiation and conditioned place aversion (CPA). These results show that negative emotional signs of withdrawal develop after just one exposure to morphine, and are likely a recurrent aspect of intermittent drug use that may contribute to the earliest adaptations underlying the development of addiction. Furthermore, the dissociation between spontaneous startle potentiation and CPA suggests anxiogenic and dysphoric manifestations of opiate withdrawal may be mediated by distinct neural mechanisms that are progressively engaged as withdrawal unfolds.
Collapse
|
24
|
Corticosterone facilitates extinction of fear memory in BALB/c mice but strengthens cue related fear in C57BL/6 mice. Exp Neurol 2009; 216:375-82. [DOI: 10.1016/j.expneurol.2008.12.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/13/2008] [Accepted: 12/17/2008] [Indexed: 11/17/2022]
|
25
|
|
26
|
Frye CA, Marrone J, Walf A. Effects of manipulating progesterone and NMDA receptors in the ventral tegmental area for lordosis of hamsters and rats. Psychopharmacology (Berl) 2008; 200:71-80. [PMID: 18587563 PMCID: PMC3621784 DOI: 10.1007/s00213-008-1143-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 03/10/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE Progesterone (P4) has actions in the ventral tegmental area (VTA) to regulate female sexual behavior in rodents. However, there are few intracellular progestin receptors (PRs) that have been identified in the VTA through which P4 may have its actions to facilitate lordosis. There are N-methyl-D: -aspartate receptors (NMDARs) in the VTA that may be a substrate for P4's effects. OBJECTIVE We investigated the effects of pharmacologically manipulating NMDARs in the VTA for E2- and P4-facilitated lordosis of hamsters and rats. MATERIALS AND METHODS We examined the effect of systemic injections (intraperitoneal; IP) and bilateral infusions to the VTA of the highly specific, competitive NMDAR antagonist, 9-0-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid (LY235959); 0, 0.3, and 1 mg/kg IP and 0, 1.0, and 10 ng/mul intra-VTA), on lordosis of estradiol-primed (E2; 10 microg) and P4-primed (0, 50, 250, or 500 microg) ovariectomized hamsters and rats. RESULTS Intra-VTA administration of the NMDAR antagonist, LY235959, produced similar effects as systemic administration to enhance lordosis, particularly in E2-primed rats or hamsters administered moderate P4 levels (less than 500 microg). Administration of LY235959 to the substantia nigra did not produce similar effects as intra-VTA infusions for lordosis. CONCLUSIONS Together, these data suggest that blocking NMDARs in the VTA enhances lordosis of hamsters and rats.
Collapse
Affiliation(s)
- Cheryl A. Frye
- Departments of Psychology, The University at Albany—SUNY, Albany, NY, USA. Biological Sciences, The University at Albany—SUNY, Albany, NY, USA. The Centers for Neuroscience, The University at Albany—SUNY, Albany, NY, USA. Life Sciences Research Building, The University at Albany—SUNY, 1400 Washington Avenue, Albany, NY 12222, USA
| | - Jennifer Marrone
- Departments of Psychology, The University at Albany—SUNY, Albany, NY, USA
| | - Alicia Walf
- Departments of Psychology, The University at Albany—SUNY, Albany, NY, USA
| |
Collapse
|
27
|
Ko SW, Wu LJ, Shum F, Quan J, Zhuo M. Cingulate NMDA NR2B receptors contribute to morphine-induced analgesic tolerance. Mol Brain 2008; 1:2. [PMID: 18803856 PMCID: PMC2546399 DOI: 10.1186/1756-6606-1-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 06/17/2008] [Indexed: 11/10/2022] Open
Abstract
Morphine is widely used to treat chronic pain, however its utility is hindered by the development of tolerance to its analgesic effects. While N-methyl-D-aspartate (NMDA) receptors are known to play roles in morphine tolerance and dependence, less is known about the roles of individual NMDA receptor subtypes. In this study, Ro 256981, an antagonist of the NMDA receptor subunit NR2B, was used to reduce the expression of analgesic tolerance to morphine. The mechanisms altered with chronic drug use share similarities with those underlying the establishment of long-tem potentiation (LTP) and behavioral memory. Since NMDA NR2B receptors in the anterior cingulate cortex (ACC) play roles in the establishment of LTP and fear memory, we explored their role in changes that occur in this region after chronic morphine. Both systemic and intra-ACC inhibition of NR2B in morphine-tolerant animals inhibited the expression of analgesic tolerance. Electrophysiological recordings revealed a significant increase in the NR2B component of NMDA receptor mediated excitatory postsynaptic currents (EPSCs), at both synaptic and extra-synaptic sites. However, there was no change in alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor mediated EPSCs. This study suggests that selective inhibition of NMDA NR2B receptors may prove useful in combating the development of analgesic tolerance to morphine and proposes a novel role for the ACC in opioid tolerance and morphine induced changes in synaptic plasticity.
Collapse
Affiliation(s)
- Shanelle W Ko
- Department of Physiology, University of Toronto, University of Toronto Centre for the Study of Pain, Canada.
| | | | | | | | | |
Collapse
|
28
|
Glass MJ, Hegarty DM, Oselkin M, Quimson L, South SM, Xu Q, Pickel VM, Inturrisi CE. Conditional deletion of the NMDA-NR1 receptor subunit gene in the central nucleus of the amygdala inhibits naloxone-induced conditioned place aversion in morphine-dependent mice. Exp Neurol 2008; 213:57-70. [PMID: 18614169 DOI: 10.1016/j.expneurol.2008.04.045] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 12/14/2022]
Abstract
Preclinical behavioral pharmacological and neuropharmacological evidence indicates that the NMDA receptor plays an important role in opioid dependence, however, the neural substrates subserving these actions are poorly understood. The central nucleus of the amygdala (CeA) is a critical coordinator of autonomic, behavioral, and emotional systems impacted by opioids, however there is no evidence that the essential NMDA-NR1 (NR1) subunit gene in the amygdala plays a role in opioid dependence. To determine the role of the NR1 subunit gene in the amygdala with respect to physical and psychological opioid withdrawal, a spatial-temporal deletion of this gene was produced by microinjecting a recombinant adeno-associated virus (rAAV) expressing the GFP reporter and Cre recombinase (rAAV-GFP-Cre) into the CeA of adult "floxed" NR1 mice (fNR1). Amygdala microinjection of rAAV-GFP-Cre produced a decrease in NR1 gene expression and protein immunolabeling in postsynaptic sites of neurons without signs of compromised ultrastructural neuronal morphology. Amygdala NR1 gene deletion also did not affect locomotor, somatosensory, or sensory-motor behaviors. In addition, bilateral local NR1 gene deletion did not impact somatic or visceral withdrawal symptoms precipitated by naloxone in morphine-dependent mice. However, there was a significant deficit in the expression of an opioid withdrawal-induced conditioned place aversion in mice with amygdala NR1 deletion. These results indicate that functional amygdala NMDA receptors are involved in aversive psychological processes associated with opioid withdrawal. More generally, spatial-temporal deletion of the NR1 subunit by Cre-loxP technology is an effective means to elucidate the neurogenetic substrates of complex phenotypes associated with drug abuse.
Collapse
Affiliation(s)
- Michael J Glass
- Department of Neurology and Neuroscience, New York, NY 10021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Mendez IA, Trujillo KA. NMDA receptor antagonists inhibit opiate antinociceptive tolerance and locomotor sensitization in rats. Psychopharmacology (Berl) 2008; 196:497-509. [PMID: 17994223 DOI: 10.1007/s00213-007-0984-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Accepted: 10/12/2007] [Indexed: 10/22/2022]
Abstract
RATIONALE N-Methyl-D: -aspartate (NMDA) receptors have an important role in different forms of behavioral and neural plasticity. Evidence suggests that these receptors may also be involved in plasticity arising from long-term treatment with different drugs of abuse, including tolerance, sensitization, and physical dependence. There is abundant evidence demonstrating that NMDA receptors are involved in tolerance to opiate-induced antinociception; however, the role of these receptors in sensitization to the locomotor effects of opiates is more controversial. OBJECTIVE The ability of NMDA receptor antagonists to modify the development of sensitization to the locomotor stimulant effect of three different opiates was examined. In selected studies, the ability of the antagonists to modify tolerance to the antinociceptive effects of the opiates was also examined. MATERIALS AND METHODS Adult male Sprague-Dawley rats were used to assess the effects of NMDA receptor antagonists (MK-801, memantine or LY235959) on tolerance and sensitization to three opiates: morphine, methadone, or buprenorphine. It was predicted that low, selective doses of the antagonists would inhibit the development of opiate tolerance and sensitization. RESULTS Consistent with our predictions, the noncompetitive NMDA receptor antagonists MK-801 and memantine and the competitive NMDA receptor antagonist LY235959 inhibited the development of sensitization to the locomotor stimulant effect of morphine. Additionally, MK-801 inhibited the development of tolerance and sensitization to methadone and buprenorphine in a similar manner. CONCLUSIONS The results, together with previous research, suggest that NMDA receptors are broadly involved in opiate-induced plasticity, including the development of opiate tolerance and sensitization.
Collapse
Affiliation(s)
- Ian A Mendez
- Department of Psychology, Texas A & M University, College Station, TX 77843, USA.
| | | |
Collapse
|
30
|
Hingne PM, Sluka KA. Blockade of NMDA receptors prevents analgesic tolerance to repeated transcutaneous electrical nerve stimulation (TENS) in rats. THE JOURNAL OF PAIN 2007; 9:217-25. [PMID: 18061543 DOI: 10.1016/j.jpain.2007.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/29/2007] [Accepted: 10/03/2007] [Indexed: 12/01/2022]
Abstract
UNLABELLED Repeated daily application of transcutaneous electrical nerve stimulation (TENS) results in tolerance, at spinal opioid receptors, to the antihyperalgesia produced by TENS. Since N-methyl-D-aspartate (NMDA) receptor antagonists prevent analgesic tolerance to opioid agonists, we hypothesized that blockade of NMDA receptors will prevent tolerance to TENS. In rats with knee joint inflammation, TENS was applied for 20 minutes daily at high-frequency (100 Hz), low-frequency (4 Hz), or sham TENS. Rats were treated with the NMDA antagonist MK-801 (0.01 mg/kg to 0.1 mg/kg) or vehicle daily before TENS. Paw withdrawal thresholds were tested before and after inflammation and before and after TENS treatment for 4 days. On day 1, TENS reversed the decreased mechanical withdrawal threshold induced by joint inflammation. On day 4, TENS had no effect on the decreased withdrawal threshold in the group treated with vehicle, demonstrating development of tolerance. However, in the group treated with 0.1 mg/kg MK-801, TENS significantly reversed the mechanical withdrawal thresholds on day 4, demonstrating that tolerance did not develop. Vehicle-treated animals developed cross-tolerance at spinal opioid receptors. Treatment with MK-801 reversed this cross-tolerance at spinal opioid receptors. In summary, blockade of NMDA receptors prevents analgesic tolerance to daily TENS by preventing tolerance at spinal opioid receptors. PERSPECTIVE Observed tolerance to the clinical treatment of TENS could be prevented by administration of pharmaceutical agents with NMDA receptors activity such as ketamine or dextromethorphan.
Collapse
Affiliation(s)
- Priyanka M Hingne
- Graduate Program in Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
31
|
Meng ID, Cao L. From Migraine To Chronic Daily Headache: The Biological Basis of Headache Transformation. Headache 2007; 47:1251-8. [DOI: 10.1111/j.1526-4610.2007.00907.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Dai X, Cui SG, Li SR, Chen Q, Wang R. Melatonin attenuates the development of antinociceptive tolerance to delta-, but not to mu-opioid receptor agonist in mice. Behav Brain Res 2007; 182:21-7. [PMID: 17568695 DOI: 10.1016/j.bbr.2007.04.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2007] [Revised: 04/23/2007] [Accepted: 04/27/2007] [Indexed: 11/30/2022]
Abstract
The effects of melatonin (Mel) on the development of tolerance to antinociceptive actions induced by mu- and delta-opioid receptor agonists were determined in male Kunming mice. In the mouse tail-flick tests, selective mu and delta receptor agonists were repeatedly administered to mice supraspinally (intracerebroventricularly, i.c.v.) in the absence or presence of melatonin. Administration of endomorphin-1 (EM-1, a mu-opioid receptor agonist) or deltorphin I (del I, a delta-opioid receptor agonist) twice daily for 4 days produced antinociceptive tolerance compared with vehicle controls. Co-administration with melatonin prevented the development of tolerance to deltorphin I analgesia, and this effect was dose dependent. However, melatonin did not affect the development of antinociceptive tolerance to endomorphin-1. Additionally, the attenuation of deltorphin I tolerance by melatonin was reduced by chronic treatment with luzindole (luz), a selective antagonist on the MT(2) receptor subtype. Taken together, these data suggest that melatonin interferes with the neural mechanisms involved in the development of tolerance to delta-opioid agonist analgesia via its receptor.
Collapse
Affiliation(s)
- Xu Dai
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou 730000, PR China
| | | | | | | | | |
Collapse
|
33
|
Rodríguez-Muñoz M, de la Torre-Madrid E, Gaitán G, Sánchez-Blázquez P, Garzón J. RGS14 prevents morphine from internalizing Mu-opioid receptors in periaqueductal gray neurons. Cell Signal 2007; 19:2558-71. [PMID: 17825524 DOI: 10.1016/j.cellsig.2007.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 08/06/2007] [Indexed: 01/24/2023]
Abstract
Opioid agonists display different capacities to stimulate mu-opioid receptor (MOR) endocytosis, which is related to their ability to provoke the phosphorylation of specific cytosolic residues in the MORs. Generally, opioids that efficiently promote MOR endocytosis and recycling produce little tolerance, as is the case for [D-Ala(2), N-MePhe(4),Gly-ol(5)] encephalin (DAMGO). However, morphine produces rapid and profound antinociceptive desensitization in the adult mouse brain associated with little MOR internalization. The regulator of G-protein signaling, the RGS14 protein, associates with MORs in periaqueductal gray matter (PAG) neurons, and when RGS14 is silenced morphine increased the serine 375 phosphorylation in the C terminus of the MOR, a GRK substrate. Subsequently, these receptors were internalized and recycled back to the membrane where they accumulated on cessation of antinociception. These mice now exhibited a resensitized response to morphine and little tolerance developed. Thus, in morphine-activated MORs the RGS14 prevents GRKs from phosphorylating those residues required for beta-arresting-mediated endocytosis. Moreover morphine but not DAMGO triggered a process involving calcium/calmodulin-dependent kinase II (CaMKII) in naïve mice, which contributes to MOR desensitization in the plasma membrane. In RGS14 knockdown mice morphine failed to activate this kinase. It therefore appears that phosphorylation and internalization of MORs disrupts the CaMKII-mediated negative regulation of these opioid receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Analgesics, Opioid/administration & dosage
- Analgesics, Opioid/pharmacology
- Animals
- Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Tolerance
- Endocytosis/drug effects
- Enkephalin, Ala(2)-MePhe(4)-Gly(5)-/pharmacology
- Enzyme Activation
- G-Protein-Coupled Receptor Kinases/metabolism
- Gene Silencing
- Hot Temperature/adverse effects
- Injections, Intraventricular
- Male
- Mice
- Molecular Sequence Data
- Morphine/administration & dosage
- Morphine/pharmacology
- Neurons/drug effects
- Neurons/enzymology
- Neurons/metabolism
- Oligonucleotides, Antisense/metabolism
- Pain/etiology
- Pain/physiopathology
- Pain/prevention & control
- Pain Measurement
- Pain Threshold/drug effects
- Periaqueductal Gray/cytology
- Periaqueductal Gray/drug effects
- Periaqueductal Gray/enzymology
- Periaqueductal Gray/metabolism
- Phosphorylation
- RGS Proteins/genetics
- RGS Proteins/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Serine/metabolism
- Synaptosomes/drug effects
- Synaptosomes/metabolism
- Time Factors
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, Madrid E-28002, Spain
| | | | | | | | | |
Collapse
|
34
|
Allen RM, Uban KA, Atwood EM, Albeck DS, Yamamoto DJ. Continuous intracerebroventricular infusion of the competitive NMDA receptor antagonist, LY235959, facilitates escalation of cocaine self-administration and increases break point for cocaine in Sprague-Dawley rats. Pharmacol Biochem Behav 2007; 88:82-8. [PMID: 17716714 PMCID: PMC2712253 DOI: 10.1016/j.pbb.2007.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 07/05/2007] [Accepted: 07/11/2007] [Indexed: 11/20/2022]
Abstract
Although escalation of consumption is an important characteristic of cocaine dependence, the neurobiological mechanisms that mediate this phenomenon have not been fully described. In this study, we used male, Sprague-Dawley rats to measure the effects of acute and continuous intracerebroventricular (ICV) administration of the competitive NMDA receptor antagonist, LY235959, on cocaine self-administration behavior under various schedules of reinforcement and access conditions. Single ICV infusions of LY235959 (0.03-0.3 microg/5 microl) produced dose-dependent and statistically significant decreases in the number of cocaine infusions earned under a progressive ratio schedule of reinforcement. In a second experiment, vehicle or LY235959 (0.2-0.3 microg/day) was continuously administered ICV to rats via surgically-implanted subcutaneous osmotic minipump/intracranial cannula assemblies. Both vehicle- and LY235959-treated rats significantly escalated cocaine self-administration over the 10 long access sessions; however, rats treated with LY235959 escalated cocaine self-administration faster and to a greater degree than vehicle-treated rats. There was a statistically significant increase in cocaine infusions earned under the PR schedule in LY235959-treated rats, but not vehicle-treated rats, after 10 long access cocaine self-administration sessions. These data support the hypothesis that escalation of cocaine consumption is mediated by hypo-glutamatergic tone in the central nervous system and this facilitation of escalation is associated with an increase in motivation to respond for cocaine.
Collapse
Affiliation(s)
- Richard M Allen
- Department of Psychology, University of Colorado at Denver and Health Sciences Center, Downtown Denver Campus, CO 80217, United States.
| | | | | | | | | |
Collapse
|
35
|
Rodríguez-Muñoz M, de la Torre-Madrid E, Sánchez-Blázquez P, Garzón J. Morphine induces endocytosis of neuronal mu-opioid receptors through the sustained transfer of Galpha subunits to RGSZ2 proteins. Mol Pain 2007; 3:19. [PMID: 17634133 PMCID: PMC1947952 DOI: 10.1186/1744-8069-3-19] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 07/17/2007] [Indexed: 12/11/2022] Open
Abstract
Background In general, opioids that induce the recycling of μ-opioid receptors (MORs) promote little desensitization, although morphine is one exception to this rule. While morphine fails to provoke significant internalization of MORs in cultured cells, it does stimulate profound desensitization. In contrast, morphine does promote some internalization of MORs in neurons although this does not prevent this opioid from inducing strong antinociceptive tolerance. Results In neurons, morphine stimulates the long-lasting transfer of MOR-activated Gα subunits to proteins of the RGS-R7 and RGS-Rz subfamilies. We investigated the influence of this regulatory process on the capacity of morphine to promote desensitization and its association with MOR recycling in the mature nervous system. In parallel, we also studied the effects of [D-Ala2, N-MePhe4, Gly-ol5] encephalin (DAMGO), a potent inducer of MOR internalization that promotes little tolerance. We observed that the initial exposure to icv morphine caused no significant internalization of MORs but rather, a fraction of the Gα subunits was stably transferred to RGS proteins in a time-dependent manner. As a result, the antinociception produced by a second dose of morphine administered 6 h after the first was weaker. However, this opioid now stimulated the phosphorylation, internalization and recycling of MORs, and further exposure to morphine promoted little tolerance to this moderate antinociception. In contrast, the initial dose of DAMGO stimulated intense phosphorylation and internalization of the MORs associated with a transient transfer of Gα subunits to the RGS proteins, recovering MOR control shortly after the effects of the opioid had ceased. Accordingly, the recycled MORs re-established their association with G proteins and the neurons were rapidly resensitized to DAMGO. Conclusion In the nervous system, morphine induces a strong desensitization before promoting the phosphorylation and recycling of MORs. The long-term sequestering of morphine-activated Gα subunits by certain RGS proteins reduces the responses to this opioid in neurons. This phenomenon probably increases free Gβγ dimers in the receptor environment and leads to GRK phosphorylation and internalization of the MORs. Although, the internalization of the MORs permits the transfer of opioid-activated Gα subunits to the RGSZ2 proteins, it interferes with the stabilization of this regulatory process and recycled MORs recover the control on these Gα subunits and opioid tolerance develops slowly.
Collapse
Affiliation(s)
- María Rodríguez-Muñoz
- Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, Madrid E-28002, Spain
| | | | - Pilar Sánchez-Blázquez
- Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, Madrid E-28002, Spain
| | - Javier Garzón
- Neurofarmacología, Instituto de Neurobiología Santiago Ramón y Cajal, Madrid E-28002, Spain
| |
Collapse
|
36
|
|
37
|
Hatami H, Oryan S, Semnanian S, Kazemi B, Ahmadiani A. Additive Effect of Dextromethorphan on the Inhibitory Effect of Anti-NT4 on Morphine Tolerance. Pharmacology 2006; 78:105-12. [PMID: 17003573 DOI: 10.1159/000095886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 07/29/2006] [Indexed: 11/19/2022]
Abstract
It has been proposed that opioid tolerance is a model of neuronal plasticity similar to learning and memory. Recent evidence suggests that neurotrophins may be involved in synaptic development and plasticity. Observations indicate that neurotrophin 4 (NT4) is required for the synaptic plasticity mediating both tolerance and memory. Also there are lines of evidence to indicate that NMDA receptors are involved in the neural plasticity underlying the development of opiate tolerance. Neurotrophins affect central transmission postsynaptically by enhancing NMDA receptor responsiveness. So we used the clinically available NMDA receptor antagonist, dextromethorphan, and the neurotrophin 4 antibody, anti-NT4, concomitantly and alone to investigate their effects on morphine tolerance. Tolerance was induced by injecting morphine (7 and 10 mg/kg i.p.) once per day for 4 days. Anti-NT4 (1 microg/rat i.c.v.) was administered 15 min before morphine. Results showed that chronic concomitant treatment of anti-NT4 with morphine in both doses inhibited the development of morphine tolerance. Also acute treatment of anti-NT4 significantly reversed the tolerance that was induced by morphine 7 mg/kg but failed to reverse the tolerance of morphine 10 mg/kg. Dextromethorphan in both doses (10 or 30 mg/kg) has an additive effect on the inhibitory effect of anti-NT4 on the reversal of morphine tolerance (7 mg/kg). These findings provide additional support for the hypothesis that NMDA receptor and NT4 may be involved in neural plasticity underlying opiate tolerance.
Collapse
Affiliation(s)
- Homeira Hatami
- Department of Biology, Teacher Training University, Tehran, Iran
| | | | | | | | | |
Collapse
|
38
|
Hasanein P, Parviz M, Keshavarz M, Javanmardi K, Allahtavakoli M, Ghaseminejad M. Modulation of cholestasis-induced antinociception in rats by two NMDA receptor antagonists: MK-801 and magnesium sulfate. Eur J Pharmacol 2006; 554:123-7. [PMID: 17107671 DOI: 10.1016/j.ejphar.2006.10.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2006] [Revised: 09/26/2006] [Accepted: 10/02/2006] [Indexed: 10/24/2022]
Abstract
Acute cholestasis is associated with increased activity of the endogenous opioid system that results to changes including analgesia. N-methyl-d-aspartate (NMDA) receptors are involved in the nociceptive pathway and play a major role in the development of morphine induced analgesia. The magnesium acts as a non-competitive NMDA receptor antagonist by blocking the NMDA receptor channel. Considering the reported antinociceptive effect of magnesium sulfate as a NMDA receptor antagonist and the existence of close functional links between NMDA receptor antagonists and magnesium with the opioid system, we studied the effect of acute and chronic administration of MK-801 as a NMDA antagonist and magnesium sulfate on modulation of nociception in an experimental model of elevated endogenous opioid tone, acute cholestasis, using the tail-flick paradigm. Cholestasis was induced by ligation of the main bile duct using two ligatures and then transsection of the duct at the midpoint between them. A significant increase (P<0.001) in nociception threshold was observed in bile duct ligated rats compared to unoperated and sham-operated animals. In acute treatment, MK-801 (0.1 mg/kg, b.i.d), but not magnesium (150 mg/kg magnesium sulfate, i.e. 30 mg/kg of Mg(+2), i.p., b.i.d.) increased antinociception in cholestatic rats compared to saline treated cholestatics (P<0.05). In chronic treatment, administration of MK-801 or magnesium sulfate for 7 consecutive days, increased tail-flick latency (P<0.05, P<0.01) in cholestatic animals compared to saline treated cholestatics. These data showed that NMDA receptor pathway is involved in modulation of cholestasis-induced antinociception in rats and that repeated dosages of magnesium sulfate similar to MK-801 is able to modulate nociception in cholestasis.
Collapse
Affiliation(s)
- Parisa Hasanein
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
39
|
Khanna JM, Morato GS, Ferreira VMM. NMDA Antagonists and Tolerance to Drugs Affecting the Central Nervous System. CNS DRUG REVIEWS 2006. [DOI: 10.1111/j.1527-3458.1999.tb00096.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Kitto KF, Fairbanks CA. Supraspinally administered agmatine prevents the development of supraspinal morphine analgesic tolerance. Eur J Pharmacol 2006; 536:133-7. [PMID: 16546161 DOI: 10.1016/j.ejphar.2006.01.053] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 01/03/2006] [Accepted: 01/25/2006] [Indexed: 10/24/2022]
Abstract
We have determined the effect of intracerebroventricularly (i.c.v.) administered decarboxylated arginine (agmatine) on supraspinally induced chronic morphine analgesic tolerance. Mice pre-treated with a schedule of chronic i.c.v administration of morphine (10 nmol, b.i.d. 3 days) show a 12-fold reduction in the potency of acutely administered i.c.v morphine compared to saline injected controls. Co-administration of agmatine (10 nmol) with one of the two daily morphine injections completely prevents the reduction in i.c.v morphine analgesia. Mice injected with agmatine once daily (but no morphine) do not show a increase in morphine analgesic potency relative to saline controls, indicating that a mere potentiation of acute morphine analgesia cannot account for the agmatine-mediated anti-tolerance effect in those mice subjected to the morphine tolerance induction schedule. These observations agree with previous reports that systemically and intrathecally administered agmatine prevent opioid tolerance, and extend these results to include a supraspinal site of action.
Collapse
Affiliation(s)
- Kelley F Kitto
- Department of Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
41
|
Heinzen EL, Pollack GM. Pharmacodynamics of morphine-induced neuronal nitric oxide production and antinociceptive tolerance development. Brain Res 2005; 1023:175-84. [PMID: 15374743 DOI: 10.1016/j.brainres.2004.07.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 11/23/2022]
Abstract
Elevated nitric oxide (NO) production has been implicated in the development of morphine antinociceptive tolerance. This study was conducted to establish the temporal relationship between morphine-induced increases in neuronal NO and loss of pharmacologic activity. Five groups of rats equipped with microdialysis probes in the jugular vein and hippocampus received an intravenous infusion of saline or morphine (0.3, 1, 2, or 3 mg/kg/h) for 8 h. Morphine concentrations in the blood and hippocampal microdialysate were determined by LC/MS-MS; NO production was quantified with an amperometric sensor implanted in the contralateral hippocampus. Antinociceptive effect was monitored at selected time points during and following infusion by electrical stimulation vocalization. The data were fit with a pharmacokinetic/pharmacodynamic model to obtain parameters governing morphine disposition, stimulation of NO production, antinociception, and antinociceptive tolerance development. An additional three groups of rats were pretreated with l-arginine, the NO precursor (100, 300, or 500 mg/kg/h for 8 h), to elevate NO concentrations prior to morphine infusion. Morphine administration resulted in a dose-dependent increase in NO production; the time course of altered NO production coincided with the development of antinociceptive tolerance. l-arginine pretreatment initially enhanced morphine-induced analgesia early in the morphine infusion. However, this NO-associated increase in opioid response dissipated rapidly due to a dominant NO-induced loss of antinociception. Pharmacodynamic modeling suggested that this latter effect was consistent with a hyperalgesic response. These data define a strong, time-dependent relationship between morphine-induced stimulation of NO production and tolerance development, identify specific NO-induced alterations in nociceptive processing after morphine administration, and indicate that NO is a key mediator of antinociceptive tolerance development.
Collapse
Affiliation(s)
- Erin L Heinzen
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina, CB No. 7360, Kerr Hall, Chapel Hill, NC 27599-7360, USA
| | | |
Collapse
|
42
|
Heinzen EL, Booth RG, Pollack GM. Neuronal nitric oxide modulates morphine antinociceptive tolerance by enhancing constitutive activity of the mu-opioid receptor. Biochem Pharmacol 2005; 69:679-88. [PMID: 15670586 DOI: 10.1016/j.bcp.2004.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Accepted: 11/08/2004] [Indexed: 11/21/2022]
Abstract
NO is a key mediator of morphine antinociceptive tolerance. This work was conducted to evaluate the specific effects of NO on mu-opioid receptor activity. To investigate the effects of morphine- and L-arginine (the NO precursor)-induced increases in NO, five groups of rats were treated with saline, l-arginine (100-, 300-, or 500-mg/kg/h), or morphine 3-mg/kg/h for 8h on Day 1; brain tissue was collected on Day 2. To evaluate the effects of additional increases in NO on morphine-induced alterations of the mu-opioid receptor, six groups of rats were treated with 8-h intravenous infusions for two consecutive days as per the following scheme (Day 1:Day 2): saline:saline (control); saline:morphine 3-mg/kg/h (tolerant); L-arginine 500-mg/kg/h:saline (NO control); L-arginine 100-mg/kg/h:morphine 3-mg/kg/h; L-arginine 300-mg/kg/h:morphine 3-mg/kg/h; and L-arginine 500-mg/kg/h:morphine 3-mg/kg/h (supertolerant). Brain tissue was collected at the end of Day 2. The time course of effects on morphine-induced receptor alterations due to increased NO also was evaluated. Brain tissue was analyzed for changes in radioligand (agonist and antagonist) binding and [(35)S]GTPgammaS binding (agonist and antagonist). In the absence of agonist exposure, NO produced an alteration in the mu-opioid receptor that increased receptor activity. In the presence of agonist, NO increased constitutive activation of the mu-opioid receptor and reduced the ability of a selective mu-opioid agonist to activate the mu-opioid G-protein-coupled receptor; these molecular effects occurred in a time course consistent with the development of antinociceptive tolerance. This work establishes important NO-induced alterations in mu-opioid receptor functionality, which directly lead to the development of opioid antinociceptive tolerance.
Collapse
Affiliation(s)
- Erin L Heinzen
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA
| | | | | |
Collapse
|
43
|
Nemmani KVS, Grisel JE, Stowe JR, Smith-Carliss R, Mogil JS. Modulation of morphine analgesia by site-specific N-methyl-D-aspartate receptor antagonists: dependence on sex, site of antagonism, morphine dose, and time. Pain 2004; 109:274-283. [PMID: 15157688 DOI: 10.1016/j.pain.2004.01.035] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2003] [Revised: 12/18/2003] [Accepted: 01/12/2004] [Indexed: 11/28/2022]
Abstract
Pharmacological blockade of N-methyl-D-aspartate (NMDA) receptors can modulate morphine analgesia in experimental animals and humans. However, this literature is highly inconsistent, with NMDA receptor antagonists variously shown to potentiate, attenuate or produce no effect on morphine analgesic magnitude. A number of factors influencing this modulation have been proposed, but no one has examined such factors simultaneously, and all existing studies in mice were conducted exclusively in male subjects. Thus, the influence of systemic administration of site-specific NMDA receptor antagonists-including dextromethorphan, dextrorphan, MK-801, LY235959, L-701,324, and Ro 25-6981-on morphine analgesia (15-45 mg/kg; 15, 30 and 60 min post-injection) was studied in male and female mice using the 49 degrees C tail-withdrawal test. We found that oral and intraperitoneal dextromethorphan, a low-affinity non-competitive antagonist, dose-dependently potentiated low-dose morphine analgesia but attenuated high-dose morphine analgesia. Dextrorphan and MK-801 were found to potentiate low- but not high-dose morphine analgesia. The competitive glutamate-site antagonist, LY235959, and glycine-site antagonist, L-701,324, potentiated morphine analgesia at all doses. In contrast, the polyamine (NR2B) site antagonist, Ro 25-6981, attenuated morphine analgesia at all doses. Strikingly, the non-competitive antagonists produced no modulation of morphine analgesia whatsoever in female mice, whereas no sex differences were observed using competitive or NR2B antagonists. These findings indicate that NMDA modulation of morphine analgesia is critically influenced by sex, site of antagonism, morphine dose and time after injection. Our data suggest that NMDA antagonism via competitive or glycine site antagonism might result in more reliable clinical effects on morphine analgesia in both sexes.
Collapse
Affiliation(s)
- Kumar V S Nemmani
- Department of Psychology and Centre for Research on Pain, McGill University, 1205 Dr Penfield Ave., Montreal, QC, Canada H3A 1B1 Department of Psychology, Furman University, Greenville, SC 29613, USA Endo Pharmaceuticals Inc., Chadds Ford, PA 19317, USA
| | | | | | | | | |
Collapse
|
44
|
Ugale RR, Hirani K, Morelli M, Chopde CT. Role of neuroactive steroid allopregnanolone in antipsychotic-like action of olanzapine in rodents. Neuropsychopharmacology 2004; 29:1597-609. [PMID: 15100702 DOI: 10.1038/sj.npp.1300460] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Olanzapine increases brain allopregnanolone (ALLO) levels sufficiently to modulate neuronal activity by allosterically regulating GABAA receptors. Recently, we reported the antipsychotic-like profile of ALLO in rodents. The present study examined the hypothesis that olanzapine-induced elevation of endogenous neurosteroid ALLO is vital for its neuroleptic-like action. The conditioned avoidance response (CAR) and apomorphine-induced climbing behavioral paradigms were used in rodents. Administration of ALLO (1 microg, intracerebroventricular (i.c.v.)) or neurosteroidogenic agents such as the mitochondrial diazepam binding inhibitor receptor agonist, FGIN 1-27 (0.5 microg, i.c.v.) or the ALLO precursor, progesterone (10 mg/kg, i.p.) significantly potentiated olanzapine-induced blockade of CAR and apomorphine-induced climbing. In contrast, these agents failed to alter the antipsychotic-like effect of risperidone and haloperidol. On the other hand, inhibition of the endogenous biosynthesis of neurosteroids by the 3beta-hydroxysteroid dehydrogenase inhibitor, trilostane (30 mg/kg, i.p.), the 3alpha-hydroxysteroid oxidoreductase inhibitor, indomethacin (5 mg/kg, i.p.), or the GABAA receptor antagonist bicuculline (1 mg/kg, i.p.) and dehydroepiandrosterone sulfate (DHEAS) (1 mg/kg, i.p.) blocked the effect of olanzapine, but not of risperidone and haloperidol. Socially isolated animals, known to exhibit decreased brain ALLO and GABAA receptor functions, displayed a shortening in the muscimol-induced loss of righting reflex and an increased susceptibility to apomorphine-induced climbing. Administration of olanzapine, but not of haloperidol and risperidone, normalized the duration of muscimol-elicited loss of righting reflex. Although all three antipsychotics proved capable of antagonizing the apomorphine-induced climbing, a dose almost five times higher of olanzapine was required in socially isolated animals. The data obtained suggest that enhancement of the GABAergic tone plays a key role in the antipsychotic-like effect exerted by olanzapine in rodents, likely as a consequence of augmented levels of neuroactive steroids, in particular ALLO, in the brain. The present findings provide the first specific behavioral evidence in support of the hypothesis that neuroactive steroid ALLO- mediated GABAergic modulation is essential for the antipsychotic-like action of olanzapine.
Collapse
Affiliation(s)
- Rajesh R Ugale
- University Department of Pharmaceutical Sciences, Nagpur University Campus, Nagpur, Maharashtra, India
| | | | | | | |
Collapse
|
45
|
Abstract
Mixed research findings have led to a debate regarding the effect of N-methyl-D-aspartate (NMDA) receptor antagonists on opiate analgesia. NMDA antagonists have been found in various studies to enhance, to inhibit, or to have no effect on opiate analgesia. The present research used a single protocol to explore the effects of six NMDA receptor antagonists on acute morphine (3.0 mg/kg s.c.) and fentanyl (0.05 mg/kg s.c.) analgesia in adult male Sprague-Dawley rats. NMDA receptor antagonists were selected based on their abilities to block various sites on the NMDA receptor complex, including the noncompetitive antagonists MK-801 (0.1 and 0.3 mg/kg i.p.), dextromethorphan (10.0 and 30.0 mg/kg i.p.), and memantine (3.0 and 10.0 mg/kg i.p.), a glycine site antagonist, (+)-HA-966 (10.0 and 30.0 mg/kg i.p.), a competitive antagonist, LY235959 (1.0 and 3.0 mg/kg i.p.), and a polyamine site antagonist, ifenprodil (1.0 and 3.0 mg/kg i.p.). Analgesia was assessed using the tail-flick test. A single dose of each opiate was used. The low doses of the antagonists, which are known to produce significant neural and behavioral actions at NMDA receptors, had no effect on morphine or fentanyl analgesia. At the higher doses, morphine analgesia was significantly enhanced by LY235959 (3.0 mg/kg), and fentanyl analgesia was significantly enhanced by LY235959 (3.0 mg/kg), dextromethorphan (30.0 mg/kg), and (+)-HA-966 (30.0 mg/kg). Enhancement of analgesia occurred without any apparent adverse side effects. None of the NMDA antagonists affected tail-flick responses on their own, except the higher dose of LY235959 (3.0 mg/kg), which produced a mild analgesic effect. Because no consistent effects were observed, the data suggest that NMDA receptors are not involved in acute mu-opioid analgesia. The mechanisms underlying the enhancement of opiate analgesia by selected NMDA antagonists, such as LY235959, dextromethorphan, and (+)-HA-966, remain to be determined.
Collapse
Affiliation(s)
- Karen E Redwine
- Department of Psychology, California State University, San Marcos, 333 S Twin Oaks Valley Road, San Marcos, CA 92096-0001, USA
| | | |
Collapse
|
46
|
Heinzen EL, Pollack GM. The development of morphine antinociceptive tolerance in nitric oxide synthase-deficient mice. Biochem Pharmacol 2004; 67:735-41. [PMID: 14757173 DOI: 10.1016/j.bcp.2003.08.046] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
UNLABELLED Elevations in nitric oxide (NO) have been implicated in the development of morphine antinociceptive tolerance. This study was conducted to establish the role of specific isoforms of NO synthase (NOS) in morphine tolerance development using genetically modified mice. METHODS Three groups of mice (endothelial NOS [eNOS]-deficient, neuronal NOS [nNOS]-deficient, and NOS-competent) were used in this experiment. On Day 1, the analgesic response (radiant heat tail-flick) to a challenge dose of morphine (4 mg/kg) was determined over 3 hr. Tolerance was induced on Days 1-5 by administering morphine subcutaneously (10 mg/kg) or L-arginine, a NO precursor, intraperitoneally (200 mg/kg), twice daily. Analgesic response to the challenge dose was determined again on Day 6. RESULTS Following sustained morphine administration, nNOS-deficient mice exhibited less tolerance development when compared to the control group, although measurable tolerance still occurred. Mice deficient in eNOS evidenced a degree of tolerance similar to that of control. Prolonged L-arginine administration produced significant functional tolerance to morphine in NOS-competent and eNOS-deficient mice. The loss of morphine responsivity after L-arginine administration was similar to that after morphine pretreatment. L-Arginine did not affect the antinociceptive response to morphine in mice deficient in nNOS, suggesting that the small degree of morphine-induced tolerance in this group occurs through an alternate pathway. CONCLUSIONS These data demonstrate the pivotal role of the neuronal isoform of NOS in development of morphine antinociceptive tolerance. Furthermore, tolerance development appears to be predominantly a NO-mediated process, but likely is augmented by a secondary (non-NO) pathway.
Collapse
Affiliation(s)
- Erin L Heinzen
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina, Kerr Hall CB 7360, Chapel Hill, NC 27599-7360, USA
| | | |
Collapse
|
47
|
Liang D, Li X, Lighthall G, Clark JD. Heme oxygenase type 2 modulates behavioral and molecular changes during chronic exposure to morphine. Neuroscience 2004; 121:999-1005. [PMID: 14580950 DOI: 10.1016/s0306-4522(03)00483-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The heme oxygenase (HO) enzyme system has been shown to participate in nociceptive signaling in a number of different models of pain. In these experiments we investigated the role of the HO type 2 (HO-2) isozyme in tolerance to the analgesic effects of morphine, and the hyperalgesia and allodynia which are measurable upon cessation of administration. Wild type C57Bl/6 wild type mice or HO-2 null mutants in that background strain were treated with morphine for 5 days. The morphine administration protocol consisted of either twice daily repeated s.c. boluses of 15 mg/kg or s.c. implantation of a morphine pellet. At the end of the treatment period wild type mice treated by either protocol exhibited tolerance, but the HO-2 null mutants did not. The HO-2 null mutants also exhibited less mechanical allodynia following cessation of morphine administration, though only modest differences in thermal hyperalgesia were noted. There was no correlation between the degree of tolerance obtained in the bolus and pellet protocols and the degree of hyperalgesia and allodynia observed after cessation of morphine administration in the wild type mice. Our final experiments analyzed increases in expression of mRNA for nitric oxide synthase type 1, N-methyl-D-aspartate (NMDA) receptor NMDAR1 subunit and prodynorphin in spinal cord tissue. In pellet-treated mice two- to three-fold increases were observed in the abundance of these species, but very little change was observed in the null-mutant mice. Taken together our results indicate that HO-2 participates in the acquisition of opioid tolerance, the expression of mechanical allodynia after cessation of opioid administration and in gene regulation occurring in the setting of treatment with morphine. Furthermore, these studies suggest that the mechanisms underlying analgesic tolerance and opioid-induced hypersensitivity are at least somewhat distinct.
Collapse
Affiliation(s)
- D Liang
- Veterans Affairs Palo Alto Health Care System and Stanford University Department of Anesthesiology, 3801 Miranda Avenue, Palo Alto, CA 94304, USA
| | | | | | | |
Collapse
|
48
|
Ananthan S, Khare NK, Saini SK, Seitz LE, Bartlett JL, Davis P, Dersch CM, Porreca F, Rothman RB, Bilsky EJ. Identification of Opioid Ligands Possessing Mixed μ Agonist/δ Antagonist Activity among Pyridomorphinans Derived from Naloxone, Oxymorphone, and Hydropmorphone. J Med Chem 2004; 47:1400-12. [PMID: 14998329 DOI: 10.1021/jm030311v] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of pyridomorphinans derived from naloxone, oxymorphone, and hydromorphone (7a-k) were synthesized and evaluated for binding affinity at the opioid delta, micro, and kappa receptors in brain membranes using radioligand binding assays and for functional activity in vitro using [(35)S]GTP-gamma-S binding assays in brain tissues and bioassays using guinea pig ileum (GPI) and mouse vas deferens (MVD) smooth muscle preparations. The pyridine ring unsubstituted pyridomorphinans possessing the oxymorphone and hydromorphone framework displayed nearly equal binding affinity at the micro and delta receptors. Their affinities at the kappa site were nearly 10-fold less than their binding affinities at the micro and delta sites. Introduction of aryl substituents at the 5'-position on the pyridine ring improved the binding affinity at the delta site while decreasing the binding affinity at the micro site. Nearly all of the ligands possessing an N-methyl group at the17-position with or without a hydroxyl group at the 14-position of the morphinan moiety displayed agonist activity at the micro receptor with varying potencies and efficacies. In the [(35)S]GTP-gamma-S binding assays, most of these pyridomorphinans were devoid of any significant agonist activity at the delta and kappa receptors but displayed moderate to potent antagonist activity at the delta receptors. In antinociceptive evaluations using the warm-water tail-withdrawal assay in mice, the pyridomorphinans produced analgesic effects with varying potencies and efficacies when administered by the intracerebroventricular route. Among the ligands studied, the hydromorphone-derived 4-chlorophenylpyridomorphinan 7h was identified as a ligand possessing a promising profile of mixed micro agonist/delta antagonist activity in vitro and in vivo. In a repeated administration paradigm in which the standard micro agonist morphine produces significant tolerance, repeated administration of the micro agonist/delta antagonist ligand 7h produced no tolerance. These results indicate that appropriate molecular manipulations of the morphinan templates could provide ligands with mixed micro agonist/delta antagonist profiles and such ligands may have the potential of emerging as novel analgesic drugs devoid of tolerance, dependence, and related side effects.
Collapse
Affiliation(s)
- Subramaniam Ananthan
- Organic Chemistry Department, Southern Research Institute, Birmingham, Alabama 35255, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Terman GW, Jin W, Cheong YP, Lowe J, Caron MG, Lefkowitz RJ, Chavkin C. G-protein receptor kinase 3 (GRK3) influences opioid analgesic tolerance but not opioid withdrawal. Br J Pharmacol 2004; 141:55-64. [PMID: 14662727 PMCID: PMC1574178 DOI: 10.1038/sj.bjp.0705595] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2003] [Accepted: 10/23/2003] [Indexed: 11/09/2022] Open
Abstract
1. Tolerance to opioids frequently follows repeated drug administration and affects the clinical utility of these analgesics. Studies in simple cellular systems have demonstrated that prolonged activation of opioid receptors produces homologous receptor desensitization by G-protein receptor kinase mediated receptor phosphorylation and subsequent beta-arrestin binding. To define the role of this regulatory mechanism in the control of the electrophysiological and behavioral responses to opioids, we used mice having a targeted disruption of the G-protein receptor kinase 3 (GRK3) gene. 2. Mice lacking GRK3 did not differ from wild-type littermates neither in their response latencies to noxious stimuli on the hot-plate test nor in their acute antinociceptive responses to fentanyl or morphine. 3. Tolerance to the electrophysiological response to the opioid fentanyl, measured in vitro in the hippocampus, was blocked by GRK3 deletion. In addition, tolerance to the antinociceptive effects of fentanyl was significantly reduced in GRK3 knockouts compared to wild-type littermate controls. 4. Tolerance to the antinociceptive effects of morphine was not affected by GRK3 deletion although morphine tolerance in hippocampal slices from GRK3 knockout mice was significantly inhibited. Tolerance developed more slowly in vitro to morphine than fentanyl supporting previous work in in vitro systems showing a correlation between agonist efficacy and GRK3-mediated desensitization. 5. The results of these studies suggest that GRK3-mediated mechanisms are important components of both electrophysiologic and behavioral opioid tolerance. Fentanyl, a high efficacy opioid, more effectively produced GRK3-dependent effects than morphine, a low efficacy agonist.
Collapse
MESH Headings
- Analgesics, Opioid/adverse effects
- Analgesics, Opioid/metabolism
- Analgesics, Opioid/pharmacology
- Animals
- Dose-Response Relationship, Drug
- Drug Implants
- Drug Tolerance
- Electrophysiology/methods
- Evoked Potentials/drug effects
- Evoked Potentials/physiology
- Fentanyl/administration & dosage
- Fentanyl/antagonists & inhibitors
- Fentanyl/pharmacokinetics
- G-Protein-Coupled Receptor Kinase 3
- Hippocampus/cytology
- Hippocampus/drug effects
- Hippocampus/physiology
- Homozygote
- Hot Temperature/adverse effects
- Infusion Pumps, Implantable
- Injections, Subcutaneous
- Male
- Mice
- Mice, Knockout
- Morphine/administration & dosage
- Morphine/antagonists & inhibitors
- Morphine/pharmacokinetics
- Naloxone/administration & dosage
- Naloxone/pharmacokinetics
- Pain Measurement/methods
- Protein Serine-Threonine Kinases/drug effects
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- Reaction Time/drug effects
- Reaction Time/genetics
- Receptors, Opioid/drug effects
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Substance Withdrawal Syndrome/genetics
- Substance Withdrawal Syndrome/metabolism
- Substance Withdrawal Syndrome/physiopathology
- Up-Regulation/drug effects
- Up-Regulation/genetics
Collapse
Affiliation(s)
- Gregory W Terman
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
50
|
Heinzen EL, Pollack GM. Pharmacokinetics and pharmacodynamics of L-arginine in rats: a model of stimulated neuronal nitric oxide synthesis. Brain Res 2003; 989:67-75. [PMID: 14519513 DOI: 10.1016/s0006-8993(03)03370-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is believed to be involved in a variety of central nervous system (CNS) functions, including opioid responsivity. Elucidation of the role of NO in the CNS requires the ability to elevate systematically neuronal NO concentrations in vivo. This study was conducted to assess the pharmacokinetics of L-arginine, a NO precursor, and to relate the disposition of this amino acid to the pharmacodynamic endpoint of neuronal NO production. L-Arginine (250-, 500-, or 1000-mg/kg/h) or saline was infused intravenously for 6 h to rats. L-Arginine was quantified in brain and blood (after in vivo microdialysis) with high-performance liquid chromatography. NO was quantified simultaneously with a sensitive and specific amperometric sensor placed in the hippocampus. The data were fit with a comprehensive pharmacokinetic-pharmacodynamic (PK/PD) model to obtain parameters governing the systemic disposition of L-arginine, the uptake of L-arginine into the brain, and subsequent NO production. Exogenous administration of L-arginine resulted in incremental elevations in hippocampal NO, with a approximately 33, 48, and approximately 50% increase from control for the 250-, 500-, and 1000-mg/kg/h L-arginine treated rats, respectively. The PK/PD model, which incorporated known characteristics of the system (saturable uptake of L-arginine into brain; NO production governed by circadian changes in enzyme activity) was capable of describing accurately the observed data. The model developed herein will be invaluable in characterizing the numerous roles of NO in the CNS.
Collapse
Affiliation(s)
- Erin L Heinzen
- Division of Drug Delivery and Disposition, School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599-7360, USA
| | | |
Collapse
|