1
|
Li L, Rana AN, Li EM, Travis MO, Bruchas MR. Noradrenergic tuning of arousal is coupled to coordinated movements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599619. [PMID: 38948871 PMCID: PMC11212988 DOI: 10.1101/2024.06.18.599619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Matching arousal level to the motor activity of an animal is important for efficiently allocating cognitive resources and metabolic supply in response to behavioral demands, but how the brain coordinates changes in arousal and wakefulness in response to motor activity remains an unclear phenomenon. We hypothesized that the locus coeruleus (LC), as the primary source of cortical norepinephrine (NE) and promoter of cortical and sympathetic arousal, is well-positioned to mediate movement-arousal coupling. Here, using a combination of physiological recordings, fiber photometry, optogenetics, and behavioral tracking, we show that the LCNE activation is tightly coupled to the return of organized movements during waking from an anesthetized state. Moreover, in an awake animal, movement initiations are coupled to LCNE activation, while movement arrests, to LCNE deactivation. We also report that LCNE activity covaries with the depth of anesthesia and that LCNE photoactivation leads to sympathetic activation, consistent with its role in mediating increased arousal. Together, these studies reveal a more nuanced, modulatory role that LCNE plays in coordinating movement and arousal.
Collapse
Affiliation(s)
- Li Li
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Seattle Children's Research Institute" Seattle, WA 98101, USA
| | - Akshay N Rana
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Esther M Li
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98105, USA
| | - Myesa O Travis
- Seattle Children's Research Institute" Seattle, WA 98101, USA
| | - Michael R Bruchas
- Departments of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
2
|
Valizadeh P, Momtazmanesh S, Plazzi G, Rezaei N. Connecting the dots: An updated review of the role of autoimmunity in narcolepsy and emerging immunotherapeutic approaches. Sleep Med 2024; 113:378-396. [PMID: 38128432 DOI: 10.1016/j.sleep.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Narcolepsy type 1 (NT1) is a chronic disorder characterized by pathological daytime sleepiness and cataplexy due to the disappearance of orexin immunoreactive neurons in the hypothalamus. Genetic and environmental factors point towards a potential role for inflammation and autoimmunity in the pathogenesis of the disease. This study aims to comprehensively review the latest evidence on the autoinflammatory mechanisms and immunomodulatory treatments aimed at suspected autoimmune pathways in NT1. METHODS Recent relevant literature in the field of narcolepsy, its autoimmune hypothesis, and purposed immunomodulatory treatments were reviewed. RESULTS Narcolepsy is strongly linked to specific HLA alleles and T-cell receptor polymorphisms. Furthermore, animal studies and autopsies have found infiltration of T cells in the hypothalamus, supporting T cell-mediated immunity. However, the role of autoantibodies has yet to be definitively established. Increased risk of NT1 after H1N1 infection and vaccination supports the autoimmune hypothesis, and the potential role of coronavirus disease 2019 and vaccination in triggering autoimmune neurodegeneration is a recent finding. Alterations in cytokine levels, gut microbiota, and microglial activation indicate a potential role for inflammation in the disease's development. Reports of using immunotherapies in NT1 patients are limited and inconsistent. Early treatment with IVIg, corticosteroids, plasmapheresis, and monoclonal antibodies has seldomly shown some potential benefits in some studies. CONCLUSION The current body of literature supports that narcolepsy is an autoimmune disorder most likely caused by T-cell involvement. However, the potential for immunomodulatory treatments to reverse the autoinflammatory process remains understudied. Further clinical controlled trials may provide valuable insights into this area.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Sara Momtazmanesh
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Giuseppe Plazzi
- IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical, Metabolic, and Neural Sciences, Università Degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Vetrivelan R, Bandaru SS. Neural Control of REM Sleep and Motor Atonia: Current Perspectives. Curr Neurol Neurosci Rep 2023; 23:907-923. [PMID: 38060134 DOI: 10.1007/s11910-023-01322-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
PURPOSE OF REVIEW Since the formal discovery of rapid eye movement (REM) sleep in 1953, we have gained a vast amount of knowledge regarding the specific populations of neurons, their connections, and synaptic mechanisms regulating this stage of sleep and its accompanying features. This article discusses REM sleep circuits and their dysfunction, specifically emphasizing recent studies using conditional genetic tools. RECENT FINDINGS Sublaterodorsal nucleus (SLD) in the dorsolateral pons, especially the glutamatergic subpopulation in this region (SLDGlut), are shown to be indispensable for REM sleep. These neurons appear to be single REM generators in the rodent brain and may initiate and orchestrate all REM sleep events, including cortical and hippocampal activation and muscle atonia through distinct pathways. However, several cell groups in the brainstem and hypothalamus may influence SLDGlut neuron activity, thereby modulating REM sleep timing, amounts, and architecture. Damage to SLDGlut neurons or their projections involved in muscle atonia leads to REM behavior disorder, whereas the abnormal activation of this pathway during wakefulness may underlie cataplexy in narcolepsy. Despite some opposing views, it has become evident that SLDGlut neurons are the sole generators of REM sleep and its associated characteristics. Further research should prioritize a deeper understanding of their cellular, synaptic, and molecular properties, as well as the mechanisms that trigger their activation during cataplexy and make them susceptible in RBD.
Collapse
Affiliation(s)
- Ramalingam Vetrivelan
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA.
| | - Sathyajit Sai Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, USA
| |
Collapse
|
4
|
Witts EC, Mathews MA, Murray AJ. The locus coeruleus directs sensory-motor reflex amplitude across environmental contexts. Curr Biol 2023; 33:4679-4688.e3. [PMID: 37741282 PMCID: PMC10957397 DOI: 10.1016/j.cub.2023.08.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/03/2023] [Accepted: 08/25/2023] [Indexed: 09/25/2023]
Abstract
Purposeful movement across unpredictable environments requires quick, accurate, and contextually appropriate motor corrections in response to disruptions in balance and posture.1,2,3 These responses must respect both the current position and limitations of the body, as well as the surrounding environment,4,5,6 and involve a combination of segmental reflexes in the spinal cord, vestibulospinal and reticulospinal pathways in the brainstem, and forebrain structures such as the motor cortex.7,8,9,10 These motor plans can be heavily influenced by the animal's surrounding environment, even when that environment has no mechanical influence on the perturbation itself. This environmental influence has been considered as cortical in nature, priming motor responses to a perturbation.8,11 Similarly, postural responses can be influenced by environments that alter threat levels in humans.12,13,14,15,16,17,18 Such studies are generally in agreement with work done in the mouse showing that optogenetic stimulation of the lateral vestibular nucleus (LVN) only results in motor responses when the animal is on a balance beam at height and not when walking on the stable surface of a treadmill.10 In general, this ability to flexibly modify postural responses across terrains and environmental conditions is a critically important component of the balance system.19,20 Here we show that LVN-generated motor corrections can be altered by manipulating the surrounding environment. Furthermore, environmental influence on corrections requires noradrenergic signaling from the locus coeruleus, suggesting a potential link between forebrain structures that convey sensory information about the environment and brainstem circuits that generate motor corrections.
Collapse
Affiliation(s)
- Emily C Witts
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, W1T 4JG London, UK.
| | - Miranda A Mathews
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, W1T 4JG London, UK
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, W1T 4JG London, UK.
| |
Collapse
|
5
|
Koyama Y. The role of orexinergic system in the regulation of cataplexy. Peptides 2023; 169:171080. [PMID: 37598758 DOI: 10.1016/j.peptides.2023.171080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 08/22/2023]
Abstract
Loss of orexin/hypocretin causes serious sleep disorder; narcolepsy. Cataplexy is the most striking symptom of narcolepsy, characterized by abrupt muscle paralysis induced by emotional stimuli, and has been considered pathological activation of REM sleep atonia system. Clinical treatments for cataplexy/narcolepsy and early pharmacological studies in narcoleptic dogs tell us about the involvement of monoaminergic and cholinergic systems in the control of cataplexy/narcolepsy. Muscle atonia may be induced by activation of REM sleep-atonia generating system in the brainstem. Emotional stimuli may be processed in the limbic systems including the amygdala, nucleus accumbens, and medial prefrontal cortex. It is now considered that orexin/hypocretin prevents cataplexy by modulating the activity of different points of cataplexy-inducing circuit, including monoaminergic/cholinergic systems, muscle atonia-generating systems, and emotion-related systems. This review will describe the recent advances in understanding the neural mechanisms controlling cataplexy, with a focus on the involvement of orexin/hypocretin system, and will discuss future experimental strategies that will lead to further understanding and treatment of this disease.
Collapse
Affiliation(s)
- Yoshimasa Koyama
- Faculty of Symbiotic Systems Science, Fukushima University, 1 Kanaya-gawa, Fukushima 960-1296, Japan..
| |
Collapse
|
6
|
Wu MF, Thannickal TC, Li S, McGregor R, Lai YY, Siegel JM. Effects of sodium oxybate on hypocretin/orexin and locus coeruleus neurons. Sleep 2023; 46:zsad135. [PMID: 37155728 PMCID: PMC10848214 DOI: 10.1093/sleep/zsad135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 04/22/2023] [Indexed: 05/10/2023] Open
Abstract
Long-term use of sodium oxybate (SXB), (also called gamma-hydroxybutyrate [GHB]) attenuates the cataplexy and sleepiness of human narcolepsy. We had previously found that chronic opiate usage in humans and long-term opiate administration to mice significantly increased the number of detected hypocretin/orexin (Hcrt) neurons, decreased their size, and increased Hcrt level in the hypothalamus. We also found that opiates significantly decreased cataplexy in human narcoleptics as well as in narcoleptic mice and that cessation of locus coeruleus neuronal activity preceded and was tightly linked to cataplectic attacks in narcoleptic dogs. We tested the hypothesis that SXB produces changes similar to opiates and now report that chronic SXB administration significantly increased the size of Hcrt neurons, the reverse of what we had seen with opiates in humans and mice. Levels of Hcrt in the hypothalamus were nonsignificantly lower, in contrast to the significant increase in hypothalamic Hcrt level after opiates. SXB decreased tyrosine hydroxylase levels in the locus coeruleus, the major descending projection of the hypocretin system, also the reverse of what we saw with opioids. Therefore despite some similar effects on narcoleptic symptomatology, SXB does not produce anatomical changes similar to those elicited by opiates. Analysis of changes in other links in the cataplexy pathway might further illuminate SXB's mechanism of action on narcolepsy.
Collapse
Affiliation(s)
- Ming-Fung Wu
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, CA, USA
| | - Thomas C Thannickal
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Songlin Li
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Ronald McGregor
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Yuan-Yang Lai
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Jerome M Siegel
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Neurobiology Research, VA Greater Los Angeles Healthcare System, North Hills, CA, USA
- Brain Research Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
7
|
Kilduff TS. The mystery of gamma-hydoxybutyrate efficacy in narcolepsy type 1. Sleep 2023; 46:zsad156. [PMID: 37260387 PMCID: PMC10485562 DOI: 10.1093/sleep/zsad156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 06/02/2023] Open
Affiliation(s)
- Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA, USA
| |
Collapse
|
8
|
Ono T, Takenoshita S, Nishino S. Pharmacologic Management of Excessive Daytime Sleepiness. Sleep Med Clin 2022; 17:485-503. [PMID: 36150809 DOI: 10.1016/j.jsmc.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Excessive daytime sleepiness (EDS) is defined as "irresistible sleepiness in a situation when an individual would be expected to be awake, and alert." EDS has been a big concern not only from a medical but also from a public health point of view. Patients with EDS have the possibility of falling asleep even when they should wake up and concentrate, for example, when they drive, play sports, or walk outside. In this article, clinical characteristics of common hypersomnia and pharmacologic treatments of each hypersomnia are described.
Collapse
Affiliation(s)
- Taisuke Ono
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA; Department of Geriatric Medicine, Kanazawa Medical University School of Medicine, Ishikawa, Japan.
| | - Shinichi Takenoshita
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
9
|
Seifinejad A, Vassalli A, Tafti M. Neurobiology of cataplexy. Sleep Med Rev 2021; 60:101546. [PMID: 34607185 DOI: 10.1016/j.smrv.2021.101546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 07/29/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022]
Abstract
Cataplexy is the pathognomonic and the most striking symptom of narcolepsy. It has originally been, and still is now, widely considered as an abnormal manifestation of rapid eye movement (REM) sleep during wakefulness due to the typical muscle atonia. The neurocircuits of cataplexy, originally confined to the brainstem as those of REM sleep atonia, now include the hypothalamus, dorsal raphe (DR), amygdala and frontal cortex, and its neurochemistry originally focused on catecholamines and acetylcholine now extend to hypocretin (HCRT) and other neuromodulators. Here, we review the neuroanatomy and neurochemistry of cataplexy and propose that cataplexy is a distinct brain state that, despite similarities with REM sleep, involves cataplexy-specific features.
Collapse
Affiliation(s)
- Ali Seifinejad
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Anne Vassalli
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| | - Mehdi Tafti
- Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
10
|
Liang Y, Shi W, Xiang A, Hu D, Wang L, Zhang L. The NAergic locus coeruleus-ventrolateral preoptic area neural circuit mediates rapid arousal from sleep. Curr Biol 2021; 31:3729-3742.e5. [PMID: 34270948 DOI: 10.1016/j.cub.2021.06.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/26/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023]
Abstract
The locus coeruleus (LC), which is located in the brain stem, plays an important role in promoting arousal. However, the neural circuitry underlying this function remains unclear. Using cortical electroencephalography combined with optrode recording, we found that LC noradrenergic (LCNA) neurons exhibit high activity during wakefulness, while suppressing the activity of these neurons causes a reduction in wakefulness. Viral tracing showed that LCNA neurons directly project to the ventrolateral preoptic area (VLPO) and that optogenetic activation of the noradrenergic (NAergic) LC-VLPO (NAergicLC-VLPO) neural circuit promotes arousal. Optrode recordings in the VLPO revealed two functionally distinct neuronal populations that were stimulated in response to the optogenetic activation of LCNA neurons. Consistently, we identified two types of VLPO neurons that exhibited different responses to NAergic projections from the LC mediated by discrete adrenergic receptors. Together, our results demonstrate that the NAergicLC-VLPO neural circuit is a critical pathway for controlling wakefulness and that a synergistic effect is produced by inhibition of sleep-active neurons in the VLPO through α2 receptors and activation of wake-active neurons in the VLPO through α1 and β receptors.
Collapse
Affiliation(s)
- Yue Liang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China; The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China
| | - Wu Shi
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China
| | - Anfeng Xiang
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065 Shanghai, P. R. China
| | - Dandan Hu
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065 Shanghai, P. R. China
| | - Liecheng Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, China.
| | - Ling Zhang
- The First Rehabilitation Hospital of Shanghai, Tongji University School of Medicine, Shanghai 200090, China; Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065 Shanghai, P. R. China.
| |
Collapse
|
11
|
Adamantidis AR, Schmidt MH, Carter ME, Burdakov D, Peyron C, Scammell TE. A circuit perspective on narcolepsy. Sleep 2021; 43:5699663. [PMID: 31919524 PMCID: PMC7215265 DOI: 10.1093/sleep/zsz296] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/13/2019] [Indexed: 01/25/2023] Open
Abstract
The sleep disorder narcolepsy is associated with symptoms related to either boundary state control that include excessive daytime sleepiness and sleep fragmentation, or rapid eye movement (REM) sleep features including cataplexy, sleep paralysis, hallucinations, and sleep-onset REM sleep events (SOREMs). Although the loss of Hypocretin/Orexin (Hcrt/Ox) peptides or their receptors have been associated with the disease, here we propose a circuit perspective of the pathophysiological mechanisms of these narcolepsy symptoms that encompasses brain regions, neuronal circuits, cell types, and transmitters beyond the Hcrt/Ox system. We further discuss future experimental strategies to investigate brain-wide mechanisms of narcolepsy that will be essential for a better understanding and treatment of the disease.
Collapse
Affiliation(s)
- A R Adamantidis
- Department of Neurology, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Department of Biomedical Research, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - M H Schmidt
- Department of Neurology, Centre for Experimental Neurology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland.,Ohio Sleep Medicine Institute, Dublin, OH
| | - M E Carter
- Department of Biology, Program in Neuroscience, Williams College, Williamstown, MA
| | - D Burdakov
- Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland
| | - C Peyron
- Center for Research in Neuroscience of Lyon, SLEEP team, CNRS UMR5292, INSERM U1028, University Lyon 1, Bron, France
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| |
Collapse
|
12
|
Sleep Disorders in dogs: A Pathophysiological and Clinical Review. Top Companion Anim Med 2021; 43:100516. [PMID: 33556640 DOI: 10.1016/j.tcam.2021.100516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/22/2021] [Accepted: 01/29/2021] [Indexed: 12/11/2022]
Abstract
Sleep is a fundamental process in mammals, including domestic dogs. Disturbances in sleep affect physiological functions like cognitive and physical performance, immune response, pain sensation and increase the risk of diseases. In dogs, sleep can be affected by several conditions, with narcolepsy, REM sleep behavior disorder and sleep breathing disorders being the most frequent causes. Furthermore, sleep disturbances can be a symptom of other primary diseases where they can contribute to the worsening of clinical signs. This review describes reciprocally interacting sleep and wakefulness promoting systems and how their dysfunction can explain the pathophysiological mechanisms of sleep disorders. Additionally, this work discusses the clinical characteristics, diagnostic tools and available treatments for these disorders while highlighting areas in where further studies are needed so as to improve their treatment and prevention.
Collapse
|
13
|
Northeast RC, Huang Y, McKillop LE, Bechtold DA, Peirson SN, Piggins HD, Vyazovskiy VV. Sleep homeostasis during daytime food entrainment in mice. Sleep 2020; 42:5536856. [PMID: 31329251 PMCID: PMC6802571 DOI: 10.1093/sleep/zsz157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 04/27/2019] [Indexed: 02/03/2023] Open
Abstract
Twenty-four hour rhythms of physiology and behavior are driven by the environment and an internal endogenous timing system. Daily restricted feeding (RF) in nocturnal rodents during their inactive phase initiates food anticipatory activity (FAA) and a reorganization of the typical 24-hour sleep-wake structure. Here, we investigate the effects of daytime feeding, where food access was restricted to 4 hours during the light period ZT4-8 (Zeitgeber time; ZT0 is lights on), on sleep-wake architecture and sleep homeostasis in mice. Following 10 days of RF, mice were returned to ad libitum feeding. To mimic the spontaneous wakefulness associated with FAA and daytime feeding, mice were then sleep deprived between ZT3-6. Although the amount of wake increased during FAA and subsequent feeding, total wake time over 24 hours remained stable as the loss of sleep in the light phase was compensated for by an increase in sleep in the dark phase. Interestingly, sleep that followed spontaneous wake episodes during the dark period and the extended period of wake associated with FAA, exhibited lower levels of slow-wave activity (SWA) when compared to baseline or after sleep deprivation, despite a similar duration of waking. This suggests an evolutionary mechanism of reducing sleep drive during negative energy balance to enable greater arousal for food-seeking behaviors. However, the total amount of sleep and SWA accumulated during the 24 hours was similar between baseline and RF. In summary, our study suggests that despite substantial changes in the daily distribution and quality of wake induced by RF, sleep homeostasis is maintained.
Collapse
Affiliation(s)
- Rebecca C Northeast
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Yige Huang
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford
| | - Laura E McKillop
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford
| | - David A Bechtold
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Stuart N Peirson
- Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, United Kingdom
| | - Hugh D Piggins
- Faculty of Biology, Medicine, and Health, University of Manchester, Manchester
| | - Vladyslav V Vyazovskiy
- Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford.,Sleep and Circadian Neuroscience Institute, Oxford Molecular Pathology Institute, Sir William Dunn School of Pathology, Oxford, United Kingdom
| |
Collapse
|
14
|
Abstract
Excessive daytime sleepiness (EDS) is related to medical and social problems, including mental disorders, physical diseases, poor quality of life, and so forth. According to the International Classification of Sleep Disorders, Third Edition, diseases that result from EDS are narcolepsy type 1, narcolepsy type 2, idiopathic hypersomnia, hypersomnia due to a medical disorder, and others. EDS is usually treated using amphetamine-like central nervous system stimulants or modafinil and its R-enantiomer, armodafinil, wake-promoting compounds unrelated to amphetamines; a variety of new drugs are under development. The side effects of some stimulants are potent and careful selection and management are required.
Collapse
Affiliation(s)
- Shinichi Takenoshita
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Seiji Nishino
- Sleep and Circadian Neurobiology Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
15
|
Therapy for Cataplexy. Curr Treat Options Neurol 2020. [DOI: 10.1007/s11940-020-0619-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Abstract
Purpose of the review
Cataplexy, an involuntary loss of muscle activity triggered by strong emotions is the most impressive symptom in narcolepsy. This review gives an overview of the current understanding of cataplexy and its available treatment options.
Recent findings
With the discovery of hypocretin/orexin, the understanding of the pathophysiology of cataplexy advanced in the past decades. In the recent years, with the development of new anticataplectic agents (e.g., Pitolisant) symptomatic treatment of cataplexy has further improved. Abrupt cessation of anticataplectic medication especially antidepressants increase the risk of status cataplecticus, a virtually continuous series of long-lasting cataplectic attacks.
Summary
Cataplexies still remain an under-recognized phenomenon due to missing diagnostic measures. Treatment for cataplexy still remains symptomatic but new agents with better tolerability and usability are continuously developed. New therapeutic actions either targeting the autoimmune mechanisms underlying orexin cell death or substituting orexin action are promising treatments for the near future.
Collapse
|
16
|
Thorpy MJ, Bogan RK. Update on the pharmacologic management of narcolepsy: mechanisms of action and clinical implications. Sleep Med 2019; 68:97-109. [PMID: 32032921 DOI: 10.1016/j.sleep.2019.09.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 08/29/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Narcolepsy is a chronic, debilitating neurological disorder of sleep-wake state instability. This instability underlies all narcolepsy symptoms, including excessive daytime sleepiness (EDS), symptoms of rapid eye movement (REM) sleep dysregulation (ie, cataplexy, hypnagogic/hypnopompic hallucinations, sleep paralysis), and disrupted nighttime sleep. Several neurotransmitter systems promote wakefulness, and various neural pathways are involved in regulating REM sleep-related muscle atonia, providing multiple targets for pharmacologic intervention to reduce EDS and cataplexy. Medications approved by the US Food and Drug Administration (FDA) for the treatment of EDS in narcolepsy include traditional stimulants (eg, amphetamines, methylphenidate), wake-promoting agents (eg, modafinil, armodafinil), and solriamfetol, which mainly act on dopaminergic and noradrenergic pathways. Sodium oxybate (thought to act via GABAB receptors) is FDA-approved for the treatment of EDS and cataplexy. Pitolisant, a histamine 3 (H3)-receptor antagonist/inverse agonist, is approved by the European Medicines Agency (EMA) for the treatment of narcolepsy with or without cataplexy in adults and by the FDA for the treatment of EDS in adults with narcolepsy. Pitolisant increases the synthesis and release of histamine in the brain and modulates the release of other neurotransmitters (eg, norepinephrine, dopamine). Antidepressants that inhibit reuptake of serotonin and/or norepinephrine are widely used off label to manage cataplexy. In many patients with narcolepsy, combination treatment with medications that act via different neural pathways is necessary for optimal symptom management. Mechanism of action, pharmacokinetics, and abuse potential are important considerations in treatment selection and subsequent medication adjustments to maximize efficacy and mitigate adverse effects in the treatment of patients with narcolepsy.
Collapse
Affiliation(s)
- Michael J Thorpy
- Sleep-Wake Disorders Center, Montefiore Medical Center, Albert Einstein College of Medicine, 3411 Wayne Ave, Bronx, NY, 10467, USA.
| | - Richard K Bogan
- SleepMed Inc., Bogan Sleep Consultants, LLC, 1333 Taylor Street, Columbia, SC, USA.
| |
Collapse
|
17
|
Akın O. Morning vs. bedtime levothyroxine administration: what is the ideal choice for children? J Pediatr Endocrinol Metab 2018; 31:1249-1255. [PMID: 30312169 DOI: 10.1515/jpem-2018-0168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/10/2018] [Indexed: 12/24/2022]
Abstract
Background The present study compared the administration of levothyroxine (LT4) before breakfast and bedtime in school children diagnosed with hypothyroidism and analyzed the effects of timing on thyroid functioning and patient satisfaction. Methods A total of 163 children with acquired hypothyroidism (125 females and 38 males) between 8 and 18 years of age and taking LT4 for at least 3 months were enrolled in the study. The timing of administration of the drug of all subjects was shifted to bedtime. The levels of thyroid hormone and blood lipid, anthropometric measurements, Pediatric Quality of Life Inventory, Morisky Medication Adherence Scale and hypothyroidism symptoms scores were analyzed and compared at the beginning of the study and 3 months later after the shift in the timing of drug administration. Results There was no difference between the bedtime and morning regimens of LT4 with respect to thyroid hormone levels, quality of life, drug adherence and symptoms of hypothyroidism. At the end of the study, 45 of 70 new-onset treated subjects preferred the bedtime regimen. Also, drug adherence was found to be better in these patients. Conclusions We found no difference between the bedtime and morning regimens in both new-onset and long-standing treated patients. In naive patients, consideration of patient's preference for timing of drug administration may increase their adherence to medication. Therefore, we suggest that choice of drug administration timing should be based on the preference of patients.
Collapse
Affiliation(s)
- Onur Akın
- Gulhane Training and Research Hospital, Department of Pediatric Endocrinology, Ankara 06010, Turkey, Phone: +90 312 3041585, Fax: +90 312 3044381
| |
Collapse
|
18
|
Nepovimova E, Janockova J, Misik J, Kubik S, Stuchlik A, Vales K, Korabecny J, Mezeiova E, Dolezal R, Soukup O, Kobrlova T, Pham NL, Nguyen TD, Konecny J, Kuca K. Orexin supplementation in narcolepsy treatment: A review. Med Res Rev 2018; 39:961-975. [PMID: 30426515 DOI: 10.1002/med.21550] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/20/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022]
Abstract
Narcolepsy is a rare, chronic neurological disease characterized by excessive daytime sleepiness, cataplexy, vivid hallucinations, and sleep paralysis. Narcolepsy occurs in approximately 1 of 3000 people, affecting mainly adolescents aged 15 to 30 years. Recently, people with narcolepsy were shown to exhibit extensive orexin/hypocretin neuronal loss. The orexin system regulates sleep/wake control via complex interactions with monoaminergic, cholinergic and GABA-ergic neuronal systems. Currently, no cure for narcolepsy exists, but some symptoms can be controlled with medication (eg, stimulants, antidepressants, etc). Orexin supplementation represents a more sophisticated way to treat narcolepsy because it addresses the underlying cause of the disease and not just the symptoms. Research on orexin supplementation in the treatment of sleep disorders has strongly increased over the past two decades. This review focuses on a brief description of narcolepsy, the mechanisms by which the orexin system regulates sleep/wake cycles, and finally, possible therapeutic options based on orexin supplementation in animal models and patients with narcolepsy.
Collapse
Affiliation(s)
- Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jana Janockova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Misik
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Stepan Kubik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - Ales Stuchlik
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - Karel Vales
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| | - Jan Korabecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Rafael Dolezal
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tereza Kobrlova
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ngoc Lam Pham
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Thuy Duong Nguyen
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Konecny
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Department of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Szabo ST, Thorpy MJ, Mayer G, Peever JH, Kilduff TS. Neurobiological and immunogenetic aspects of narcolepsy: Implications for pharmacotherapy. Sleep Med Rev 2018; 43:23-36. [PMID: 30503715 DOI: 10.1016/j.smrv.2018.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 09/22/2018] [Accepted: 09/27/2018] [Indexed: 01/19/2023]
Abstract
Excessive daytime sleepiness (EDS) and cataplexy are common symptoms of narcolepsy, a sleep disorder associated with the loss of hypocretin/orexin (Hcrt) neurons. Although only a few drugs have received regulatory approval for narcolepsy to date, treatment involves diverse medications that affect multiple biochemical targets and neural circuits. Clinical trials have demonstrated efficacy for the following classes of drugs as narcolepsy treatments: alerting medications (amphetamine, methylphenidate, modafinil/armodafinil, solriamfetol [JZP-110]), antidepressants (tricyclic antidepressants, selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors), sodium oxybate, and the H3-receptor inverse agonist/antagonist pitolisant. Enhanced catecholamine availability and regulation of locus coeruleus (LC) norepinephrine (NE) neuron activity is likely central to the therapeutic activity of most of these compounds. LC NE neurons are integral to sleep/wake regulation and muscle tone; reduced excitatory input to the LC due to compromise of Hcrt/orexin neurons (likely due to autoimmune factors) results in LC NE dysregulation and contributes to narcolepsy/cataplexy symptoms. Agents that increase catecholamines and/or LC activity may mitigate EDS and cataplexy by elevating NE regulation of GABAergic inputs from the amygdala. Consequently, novel medications and treatment strategies aimed at preserving and/or modulating Hcrt/orexin-LC circuit integrity are warranted in narcolepsy/cataplexy.
Collapse
Affiliation(s)
- Steven T Szabo
- Duke University Medical Center, Durham, NC, USA; Durham Veterans Affairs Medical Center, Durham, NC, USA.
| | | | | | - John H Peever
- University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
20
|
Bidirectional and context-dependent changes in theta and gamma oscillatory brain activity in noradrenergic cell-specific Hypocretin/Orexin receptor 1-KO mice. Sci Rep 2018; 8:15474. [PMID: 30341359 PMCID: PMC6195537 DOI: 10.1038/s41598-018-33069-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 09/21/2018] [Indexed: 11/08/2022] Open
Abstract
Noradrenaline (NA) and hypocretins/orexins (HCRT), and their receptors, dynamically modulate the circuits that configure behavioral states, and their associated oscillatory activities. Salient stimuli activate spiking of locus coeruleus noradrenergic (NALC) cells, inducing NA release and brain-wide noradrenergic signalling, thus resetting network activity, and mediating an orienting response. Hypothalamic HCRT neurons provide one of the densest input to NALC cells. To functionally address the HCRT-to-NA connection, we selectively disrupted the Hcrtr1 gene in NA neurons, and analyzed resulting (Hcrtr1Dbh-CKO) mice’, and their control littermates’ electrocortical response in several contexts of enhanced arousal. Under enforced wakefulness (EW), or after cage change (CC), Hcrtr1Dbh-CKO mice exhibited a weakened ability to lower infra-θ frequencies (1–7 Hz), and mount a robust, narrow-bandwidth, high-frequency θ rhythm (~8.5 Hz). A fast-γ (55–80 Hz) response, whose dynamics closely parallelled θ, also diminished, while β/slow-γ activity (15–45 Hz) increased. Furthermore, EW-associated locomotion was lower. Surprisingly, nestbuilding-associated wakefulness, inversely, featured enhanced θ and fast-γ activities. Thus HCRT-to-NA signalling may fine-tune arousal, up in alarming conditions, and down during self-motivated, goal-driven behaviors. Lastly, slow-wave-sleep following EW and CC, but not nestbuilding, was severely deficient in slow-δ waves (0.75–2.25 Hz), suggesting that HCRT-to-NA signalling regulates the slow-δ rebound characterizing sleep after stress-associated arousal.
Collapse
|
21
|
Lui S, Torontali Z, Tadjalli A, Peever J. Brainstem Nuclei Associated with Mediating Apnea-Induced Respiratory Motor Plasticity. Sci Rep 2018; 8:12709. [PMID: 30139983 PMCID: PMC6107593 DOI: 10.1038/s41598-018-28578-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/21/2018] [Indexed: 01/30/2023] Open
Abstract
The respiratory control system is plastic. It has a working memory and is capable of retaining how respiratory stimuli affect breathing by regulating synaptic strength between respiratory neurons. For example, repeated airway obstructions trigger a form of respiratory plasticity that strengthens inspiratory activity of hypoglossal (XII) motoneurons. This form of respiratory plasticity is known as long-term facilitation (LTF) and requires noradrenaline released onto XII motoneurons. However, the brainstem regions responsible for this form of LTF remain unidentified. Here, we used electrophysiology, neuropharmacology and immunohistochemistry in adult rats to identify the brainstem regions involved in mediating LTF. First, we show that repeated airway obstructions induce LTF of XII motoneuron activity and that inactivation of the noradrenergic system prevents LTF. Second, we show that noradrenergic cells in the locus coeruleus (LC), which project to XII motoneurons, are recruited during LTF induction. Third, we show that targeted inactivation of noradrenergic LC cells during LTF induction prevents LTF. And lastly, we show that the nucleus tractus solitarius (NTS), which has known projections to the LC, is critical for LTF because its inactivation prevents LTF. Our results suggest that both the LC and NTS are involved in mediating apnea-induced LTF, and we hypothesize that a NTS → LC → XII circuit mechanism mediates this form of respiratory motor plasticity.
Collapse
Affiliation(s)
- Simon Lui
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Zoltan Torontali
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Arash Tadjalli
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - John Peever
- Centre for Biological Timing and Cognition, University of Toronto, Toronto, Ontario, M5S 3G5, Canada. .,Departments of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada. .,Department of Physiology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada.
| |
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW This article outlines the fundamental brain mechanisms that control sleep-wake patterns and reviews how pathologic changes in these control mechanisms contribute to common sleep disorders. RECENT FINDINGS Discrete but interconnected clusters of cells located within the brainstem and hypothalamus comprise the circuits that generate wakefulness, non-rapid eye movement (non-REM) sleep, and REM sleep. These clusters of cells use specific neurotransmitters, or collections of neurotransmitters, to inhibit or excite their respective sleep- and wake-promoting target sites. These excitatory and inhibitory connections modulate not only the presence of wakefulness or sleep, but also the levels of arousal within those states, including the depth of sleep, degree of vigilance, and motor activity. Dysfunction or degeneration of wake- and sleep-promoting circuits is associated with narcolepsy, REM sleep behavior disorder, and age-related sleep disturbances. SUMMARY Research has made significant headway in identifying the brain circuits that control wakefulness, non-REM, and REM sleep and has led to a deeper understanding of common sleep disorders and disturbances.
Collapse
|
23
|
Thannickal TC, John J, Shan L, Swaab DF, Wu MF, Ramanathan L, McGregor R, Chew KT, Cornford M, Yamanaka A, Inutsuka A, Fronczek R, Lammers GJ, Worley PF, Siegel JM. Opiates increase the number of hypocretin-producing cells in human and mouse brain and reverse cataplexy in a mouse model of narcolepsy. Sci Transl Med 2018; 10:10/447/eaao4953. [PMID: 29950444 PMCID: PMC8235614 DOI: 10.1126/scitranslmed.aao4953] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/18/2017] [Accepted: 01/26/2018] [Indexed: 01/18/2023]
Abstract
The changes in brain function that perpetuate opiate addiction are unclear. In our studies of human narcolepsy, a disease caused by loss of immunohistochemically detected hypocretin (orexin) neurons, we encountered a control brain (from an apparently neurologically normal individual) with 50% more hypocretin neurons than other control human brains that we had studied. We discovered that this individual was a heroin addict. Studying five postmortem brains from heroin addicts, we report that the brain tissue had, on average, 54% more immunohistochemically detected neurons producing hypocretin than did control brains from neurologically normal subjects. Similar increases in hypocretin-producing cells could be induced in wild-type mice by long-term (but not short-term) administration of morphine. The increased number of detected hypocretin neurons was not due to neurogenesis and outlasted morphine administration by several weeks. The number of neurons containing melanin-concentrating hormone, which are in the same hypothalamic region as hypocretin-producing cells, did not change in response to morphine administration. Morphine administration restored the population of detected hypocretin cells to normal numbers in transgenic mice in which these neurons had been partially depleted. Morphine administration also decreased cataplexy in mice made narcoleptic by the depletion of hypocretin neurons. These findings suggest that opiate agonists may have a role in the treatment of narcolepsy, a disorder caused by hypocretin neuron loss, and that increased numbers of hypocretin-producing cells may play a role in maintaining opiate addiction.
Collapse
Affiliation(s)
- Thomas C. Thannickal
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Joshi John
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Ling Shan
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Ming-Fung Wu
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Lalini Ramanathan
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Ronald McGregor
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Keng-Tee Chew
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA
| | - Marcia Cornford
- Department of Pathology, Harbor University of California, Los Angeles, Medical Center, Torrance, CA 90509, USA
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Ayumu Inutsuka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Rolf Fronczek
- Leiden University Medical Centre, Department of Neurology, Leiden, Netherlands.,Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Gert Jan Lammers
- Leiden University Medical Centre, Department of Neurology, Leiden, Netherlands.,Sleep Wake Centre, Stichting Epilepsie Instellingen Nederland, Heemstede, Netherlands
| | - Paul F. Worley
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jerome M. Siegel
- Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.,Neurobiology Research, Veterans Administration Greater Los Angeles Healthcare System, 16111 Plummer Street, North Hills, CA 91343, USA.,Corresponding author.
| |
Collapse
|
24
|
Hwang YG, Lee HS. Neuropeptide Y (NPY) or cocaine- and amphetamine-regulated transcript (CART) fiber innervation on central and medial amygdaloid neurons that project to the locus coeruleus and dorsal raphe in the rat. Brain Res 2018; 1689:75-88. [DOI: 10.1016/j.brainres.2018.03.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/15/2018] [Accepted: 03/27/2018] [Indexed: 12/22/2022]
|
25
|
Yu X, Franks NP, Wisden W. Sleep and Sedative States Induced by Targeting the Histamine and Noradrenergic Systems. Front Neural Circuits 2018; 12:4. [PMID: 29434539 PMCID: PMC5790777 DOI: 10.3389/fncir.2018.00004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/11/2018] [Indexed: 01/07/2023] Open
Abstract
Sedatives target just a handful of receptors and ion channels. But we have no satisfying explanation for how activating these receptors produces sedation. In particular, do sedatives act at restricted brain locations and circuitries or more widely? Two prominent sedative drugs in clinical use are zolpidem, a GABAA receptor positive allosteric modulator, and dexmedetomidine (DEX), a selective α2 adrenergic receptor agonist. By targeting hypothalamic neuromodulatory systems both drugs induce a sleep-like state, but in different ways: zolpidem primarily reduces the latency to NREM sleep, and is a controlled substance taken by many people to help them sleep; DEX produces prominent slow wave activity in the electroencephalogram (EEG) resembling stage 2 NREM sleep, but with complications of hypothermia and lowered blood pressure—it is used for long term sedation in hospital intensive care units—under DEX-induced sedation patients are arousable and responsive, and this drug reduces the risk of delirium. DEX, and another α2 adrenergic agonist xylazine, are also widely used in veterinary clinics to sedate animals. Here we review how these two different classes of sedatives, zolpidem and dexmedetomideine, can selectively interact with some nodal points of the circuitry that promote wakefulness allowing the transition to NREM sleep. Zolpidem enhances GABAergic transmission onto histamine neurons in the hypothalamic tuberomammillary nucleus (TMN) to hasten the transition to NREM sleep, and DEX interacts with neurons in the preoptic hypothalamic area that induce sleep and body cooling. This knowledge may aid the design of more precise acting sedatives, and at the same time, reveal more about the natural sleep-wake circuitry.
Collapse
Affiliation(s)
- Xiao Yu
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nicholas P Franks
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| | - William Wisden
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Centre for Neurotechnology, Imperial College London, London, United Kingdom.,UK Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
|
27
|
Han DJ, He ZG, Zhou ZQ, Feng L, Liu C, Xiang Y, Xiang HB. One case with dexmedetomidine-induced stuporous state in epileptic patient undergoing abdominal surgery. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2017; 6:26-31. [PMID: 28804692 PMCID: PMC5545215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 07/01/2017] [Indexed: 06/07/2023]
Abstract
A 56-year-old epileptic patient underwent right hemicolectomy and cholecystectomy surgery under general endotracheal anesthesia. Anesthesia was maintained with sevoflurane, and sufentanil, rocuronium, and dexmedetomidine infusions. After the operation and confirmation of neuromuscular recovery, the patient woke from anesthesia within 15 min and successfully extubated. After the vital signs of patient were stable, the patient was transported to post anesthesia care unit (PACU). 6 h after the surgery, he fell into a stuporous state for lasting 14 h and EEG showed no epileptiform discharges. Stupor did re-occur in 2 days after operation. 36 hours after operation, all signs of the stuporous state resolved spontaneously. Apparent dexmedetomidine-induced stuporous state has not been reported in the human literature.
Collapse
Affiliation(s)
- Dong-Ji Han
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Zhi-Gang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Zhi-Qiang Zhou
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Li Feng
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Cheng Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Yan Xiang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| | - Hong-Bing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan 430030, Hubei, China
| |
Collapse
|
28
|
Abstract
Excessive daytime sleepiness (EDS) is related to medical and social problems, including mental disorders, physical diseases, poor quality of life, and so forth. According to the International Classification of Sleep Disorders, Third Edition, diseases that result from EDS are narcolepsy type 1, narcolepsy type 2, idiopathic hypersomnia, hypersomnia due to a medical disorder, and others. EDS is usually treated using amphetamine-like central nervous system stimulants or modafinil and its R-enantiomer, armodafinil, wake-promoting compounds unrelated to amphetamines; a variety of new drugs are under development. The side effects of some stimulants are potent and careful selection and management are required.
Collapse
|
29
|
Pintwala S, Peever J. Circuit mechanisms of sleepiness and cataplexy in narcolepsy. Curr Opin Neurobiol 2017; 44:50-58. [DOI: 10.1016/j.conb.2017.02.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/07/2017] [Indexed: 12/23/2022]
|
30
|
Mieda M. The roles of orexins in sleep/wake regulation. Neurosci Res 2017; 118:56-65. [DOI: 10.1016/j.neures.2017.03.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 10/25/2022]
|
31
|
Takeuchi T, Duszkiewicz AJ, Sonneborn A, Spooner PA, Yamasaki M, Watanabe M, Smith CC, Fernández G, Deisseroth K, Greene RW, Morris RGM. Locus coeruleus and dopaminergic consolidation of everyday memory. Nature 2016; 537:357-362. [PMID: 27602521 PMCID: PMC5161591 DOI: 10.1038/nature19325] [Citation(s) in RCA: 465] [Impact Index Per Article: 58.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 07/24/2016] [Indexed: 01/06/2023]
Abstract
The retention of episodic-like memory is enhanced, in humans and animals, when something novel happens shortly before or after encoding. Using an everyday memory task in mice, we sought the neurons mediating this dopamine-dependent novelty effect, previously thought to originate exclusively from the tyrosine-hydroxylase-expressing (TH+) neurons in the ventral tegmental area. Here we report that neuronal firing in the locus coeruleus is especially sensitive to environmental novelty, locus coeruleus TH+ neurons project more profusely than ventral tegmental area TH+ neurons to the hippocampus, optogenetic activation of locus coeruleus TH+ neurons mimics the novelty effect, and this novelty-associated memory enhancement is unaffected by ventral tegmental area inactivation. Surprisingly, two effects of locus coeruleus TH+ photoactivation are sensitive to hippocampal D1/D5 receptor blockade and resistant to adrenoceptor blockade: memory enhancement and long-lasting potentiation of synaptic transmission in CA1 ex vivo. Thus, locus coeruleus TH+ neurons can mediate post-encoding memory enhancement in a manner consistent with possible co-release of dopamine in the hippocampus.
Collapse
Affiliation(s)
- Tomonori Takeuchi
- Centre for Cognitive and Neural Systems,, Edinburgh Neuroscience, The University of Edinburgh,, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Adrian J. Duszkiewicz
- Centre for Cognitive and Neural Systems,, Edinburgh Neuroscience, The University of Edinburgh,, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Alex Sonneborn
- University of Texas Southwestern Medical Center,, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Patrick A. Spooner
- Centre for Cognitive and Neural Systems,, Edinburgh Neuroscience, The University of Edinburgh,, 1 George Square, Edinburgh, EH8 9JZ, UK
| | - Miwako Yamasaki
- Department of Anatomy, Hokkaido University Graduate School of Medicine,, Sapporo, Hokkaido, 060-8638, Japan
| | - Masahiko Watanabe
- Department of Anatomy, Hokkaido University Graduate School of Medicine,, Sapporo, Hokkaido, 060-8638, Japan
| | - Caroline C. Smith
- University of Texas Southwestern Medical Center,, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
| | - Guillén Fernández
- Donders Institute for Brain, Cognition, and Behaviour,, Radboud University Medical Centre, Nijmegen, 6525 EZ, The Netherlands
| | - Karl Deisseroth
- Departments of Psychiatry and Behavioral Sciences and of Bioengineering,, Stanford University, Stanford, California 94305, USA
| | - Robert W. Greene
- University of Texas Southwestern Medical Center,, 5323 Harry Hines Boulevard, Dallas, Texas 75390, USA
- International Institute of Integrative Sleep medicine, Tsukuba, Japan
| | - Richard G. M. Morris
- Centre for Cognitive and Neural Systems,, Edinburgh Neuroscience, The University of Edinburgh,, 1 George Square, Edinburgh, EH8 9JZ, UK
- Instituto de Neurociencias,, CSIC-UMH, Alicante, 03550, Spain
| |
Collapse
|
32
|
Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016; 594:5391-414. [PMID: 27060683 DOI: 10.1113/jp271324] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid eye movement (REM) sleep is a recurring part of the sleep-wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
33
|
The norepinephrine reuptake inhibitor reboxetine is more potent in treating murine narcoleptic episodes than the serotonin reuptake inhibitor escitalopram. Behav Brain Res 2016; 308:205-10. [DOI: 10.1016/j.bbr.2016.04.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 04/13/2016] [Accepted: 04/18/2016] [Indexed: 12/18/2022]
|
34
|
Abstract
How does the brain control dreams? New science shows that a small node of cells in the medulla - the most primitive part of the brain - may function to control REM sleep, the brain state that underlies dreaming.
Collapse
Affiliation(s)
- John Peever
- Departments of Cell and Systems Biology and Physiology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center and Division of Sleep Medicine, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
35
|
Feinstein DL, Kalinin S, Braun D. Causes, consequences, and cures for neuroinflammation mediated via the locus coeruleus: noradrenergic signaling system. J Neurochem 2016; 139 Suppl 2:154-178. [PMID: 26968403 DOI: 10.1111/jnc.13447] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Aside from its roles in as a classical neurotransmitter involved in regulation of behavior, noradrenaline (NA) has other functions in the CNS. This includes restricting the development of neuroinflammatory activation, providing neurotrophic support to neurons, and providing neuroprotection against oxidative stress. In recent years, it has become evident that disruption of physiological NA levels or signaling is a contributing factor to a variety of neurological diseases and conditions including Alzheimer's disease (AD) and Multiple Sclerosis. The basis for dysregulation in these diseases is, in many cases, due to damage occurring to noradrenergic neurons present in the locus coeruleus (LC), the major source of NA in the CNS. LC damage is present in AD, multiple sclerosis, and a large number of other diseases and conditions. Studies using animal models have shown that experimentally induced lesion of LC neurons exacerbates neuropathology while treatments to compensate for NA depletion, or to reduce LC neuronal damage, provide benefit. In this review, we will summarize the anti-inflammatory and neuroprotective actions of NA, summarize examples of how LC damage worsens disease, and discuss several approaches taken to treat or prevent reductions in NA levels and LC neuronal damage. Further understanding of these events will be of value for the development of treatments for AD, multiple sclerosis, and other diseases and conditions having a neuroinflammatory component. The classical neurotransmitter noradrenaline (NA) has critical roles in modulating behaviors including those involved in sleep, anxiety, and depression. However, NA can also elicit anti-inflammatory responses in glial cells, can increase neuronal viability by inducing neurotrophic factor expression, and can reduce neuronal damage due to oxidative stress by scavenging free radicals. NA is primarily produced by tyrosine hydroxylase (TH) expressing neurons in the locus coeruleus (LC), a relatively small brainstem nucleus near the IVth ventricle which sends projections throughout the brain and spinal cord. It has been known for close to 50 years that LC neurons are lost during normal aging, and that loss is exacerbated in neurological diseases including Parkinson's disease and Alzheimer's disease. LC neuronal damage and glial activation has now been documented in a variety of other neurological conditions and diseases, however, the causes of LC damage and cell loss remain largely unknown. A number of approaches have been developed to address the loss of NA and increased inflammation associated with LC damage, and several methods are being explored to directly minimize the extent of LC neuronal cell loss or function. In this review, we will summarize some of the consequences of LC loss, consider several factors that likely contribute to that loss, and discuss various ways that have been used to increase NA or to reduce LC damage. This article is part of the 60th Anniversary special issue.
Collapse
Affiliation(s)
- Douglas L Feinstein
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA. .,Jesse Brown VA Medical Center, Chicago, IL, USA.
| | - Sergey Kalinin
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| | - David Braun
- Department of Anesthesiology, University of Illinois, Chicago, IL, USA.,Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
36
|
Lyamin OI, Lapierre JL, Kosenko PO, Kodama T, Bhagwandin A, Korneva SM, Peever JH, Mukhametov LM, Siegel JM. Monoamine Release during Unihemispheric Sleep and Unihemispheric Waking in the Fur Seal. Sleep 2016; 39:625-36. [PMID: 26715233 PMCID: PMC4763370 DOI: 10.5665/sleep.5540] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/31/2015] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Our understanding of the role of neurotransmitters in the control of the electroencephalogram (EEG) has been entirely based on studies of animals with bilateral sleep. The study of animals with unihemispheric sleep presents the opportunity of separating the neurochemical substrates of waking and sleep EEG from the systemic, bilateral correlates of sleep and waking states. METHODS The release of histamine (HI), norepinephrine (NE), and serotonin (5HT) in cortical and subcortical areas (hypothalamus, thalamus and caudate nucleus) was measured in unrestrained northern fur seals (Callorhinus ursinus) using in vivo microdialysis, in combination with, polygraphic recording of EEG, electrooculogram, and neck electromyogram. RESULTS The pattern of cortical and subcortical HI, NE, and 5HT release in fur seals is similar during bilaterally symmetrical states: highest in active waking, reduced in quiet waking and bilateral slow wave sleep, and lowest in rapid eye movement (REM) sleep. Cortical and subcortical HI, NE, and 5HT release in seals is highly elevated during certain waking stimuli and behaviors, such as being sprayed with water and feeding. However, in contrast to acetylcholine (ACh), which we have previously studied, the release of HI, NE, and 5HT during unihemispheric sleep is not lateralized in the fur seal. CONCLUSIONS Among the studied neurotransmitters most strongly implicated in waking control, only ACh release is asymmetric in unihemispheric sleep and waking, being greatly increased on the activated side of the brain. COMMENTARY A commentary on this article appears in this issue on page 491.
Collapse
Affiliation(s)
- Oleg I. Lyamin
- Department of Psychiatry and Biobehavioral Sciences, and Brain Research Institute, University of California Los Angeles, Los Angeles, CA
- Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
- Utrish Dolphinarium Ltd., Moscow, Russia
| | - Jennifer L. Lapierre
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Peter O. Kosenko
- Utrish Dolphinarium Ltd., Moscow, Russia
- Southern Federal University, Rostov-on-Don, Russia
| | - Tohru Kodama
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - John H. Peever
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Lev M. Mukhametov
- Severtsov Institute of Ecology and Evolution, RAS, Moscow, Russia
- Utrish Dolphinarium Ltd., Moscow, Russia
| | - Jerome M. Siegel
- Department of Psychiatry and Biobehavioral Sciences, and Brain Research Institute, University of California Los Angeles, Los Angeles, CA
| |
Collapse
|
37
|
Torterolo P, Castro-Zaballa S, Cavelli M, Chase MH, Falconi A. Neocortical 40 Hz oscillations during carbachol-induced rapid eye movement sleep and cataplexy. Eur J Neurosci 2016; 43:580-9. [PMID: 26670051 DOI: 10.1111/ejn.13151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/18/2023]
Abstract
Higher cognitive functions require the integration and coordination of large populations of neurons in cortical and subcortical regions. Oscillations in the gamma band (30-45 Hz) of the electroencephalogram (EEG) have been involved in these cognitive functions. In previous studies, we analysed the extent of functional connectivity between cortical areas employing the 'mean squared coherence' analysis of the EEG gamma band. We demonstrated that gamma coherence is maximal during alert wakefulness and is almost absent during rapid eye movement (REM) sleep. The nucleus pontis oralis (NPO) is critical for REM sleep generation. The NPO is considered to exert executive control over the initiation and maintenance of REM sleep. In the cat, depending on the previous state of the animal, a single microinjection of carbachol (a cholinergic agonist) into the NPO can produce either REM sleep [REM sleep induced by carbachol (REMc)] or a waking state with muscle atonia, i.e. cataplexy [cataplexy induced by carbachol (CA)]. In the present study, in cats that were implanted with electrodes in different cortical areas to record polysomnographic activity, we compared the degree of gamma (30-45 Hz) coherence during REMc, CA and naturally-occurring behavioural states. Gamma coherence was maximal during CA and alert wakefulness. In contrast, gamma coherence was almost absent during REMc as in naturally-occurring REM sleep. We conclude that, in spite of the presence of somatic muscle paralysis, there are remarkable differences in cortical activity between REMc and CA, which confirm that EEG gamma (≈40 Hz) coherence is a trait that differentiates wakefulness from REM sleep.
Collapse
Affiliation(s)
- Pablo Torterolo
- Laboratorio de Neurobiología del Sueño, Facultad de Medicina, Departamento de Fisiología, Universidad de la República, General Flores 2125, 11800, Montevideo, Uruguay
| | - Santiago Castro-Zaballa
- Laboratorio de Neurobiología del Sueño, Facultad de Medicina, Departamento de Fisiología, Universidad de la República, General Flores 2125, 11800, Montevideo, Uruguay
| | - Matías Cavelli
- Laboratorio de Neurobiología del Sueño, Facultad de Medicina, Departamento de Fisiología, Universidad de la República, General Flores 2125, 11800, Montevideo, Uruguay
| | - Michael H Chase
- WebSciences International and UCLA School of Medicine, Los Angeles, CA, USA
| | - Atilio Falconi
- Laboratorio de Neurobiología del Sueño, Facultad de Medicina, Departamento de Fisiología, Universidad de la República, General Flores 2125, 11800, Montevideo, Uruguay
| |
Collapse
|
38
|
Black SW, Yamanaka A, Kilduff TS. Challenges in the development of therapeutics for narcolepsy. Prog Neurobiol 2015; 152:89-113. [PMID: 26721620 DOI: 10.1016/j.pneurobio.2015.12.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 11/14/2015] [Accepted: 12/04/2015] [Indexed: 01/19/2023]
Abstract
Narcolepsy is a neurological disorder that afflicts 1 in 2000 individuals and is characterized by excessive daytime sleepiness and cataplexy-a sudden loss of muscle tone triggered by positive emotions. Features of narcolepsy include dysregulation of arousal state boundaries as well as autonomic and metabolic disturbances. Disruption of neurotransmission through the hypocretin/orexin (Hcrt) system, usually by degeneration of the HCRT-producing neurons in the posterior hypothalamus, results in narcolepsy. The cause of Hcrt neurodegeneration is unknown but thought to be related to autoimmune processes. Current treatments for narcolepsy are symptomatic, including wake-promoting therapeutics that increase presynaptic dopamine release and anticataplectic agents that activate monoaminergic neurotransmission. Sodium oxybate is the only medication approved by the US Food and Drug Administration that alleviates both sleep/wake disturbances and cataplexy. Development of therapeutics for narcolepsy has been challenged by historical misunderstanding of the disease, its many disparate symptoms and, until recently, its unknown etiology. Animal models have been essential to elucidating the neuropathology underlying narcolepsy. These models have also aided understanding the neurobiology of the Hcrt system, mechanisms of cataplexy, and the pharmacology of narcolepsy medications. Transgenic rodent models will be critical in the development of novel therapeutics for the treatment of narcolepsy, particularly efforts directed to overcome challenges in the development of hypocretin replacement therapy.
Collapse
Affiliation(s)
- Sarah Wurts Black
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA
| | - Akihiro Yamanaka
- Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA 94025, USA.
| |
Collapse
|
39
|
Maruyama T, Matsumura M, Sakai N, Nishino S. The pathogenesis of narcolepsy, current treatments and prospective therapeutic targets. Expert Opin Orphan Drugs 2015. [DOI: 10.1517/21678707.2016.1117973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Shan L, Dauvilliers Y, Siegel JM. Interactions of the histamine and hypocretin systems in CNS disorders. Nat Rev Neurol 2015; 11:401-13. [PMID: 26100750 DOI: 10.1038/nrneurol.2015.99] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Histamine and hypocretin neurons are localized to the hypothalamus, a brain area critical to autonomic function and sleep. Narcolepsy type 1, also known as narcolepsy with cataplexy, is a neurological disorder characterized by excessive daytime sleepiness, impaired night-time sleep, cataplexy, sleep paralysis and short latency to rapid eye movement (REM) sleep after sleep onset. In narcolepsy, 90% of hypocretin neurons are lost; in addition, two groups reported in 2014 that the number of histamine neurons is increased by 64% or more in human patients with narcolepsy, suggesting involvement of histamine in the aetiology of this disorder. Here, we review the role of the histamine and hypocretin systems in sleep-wake modulation. Furthermore, we summarize the neuropathological changes to these two systems in narcolepsy and discuss the possibility that narcolepsy-associated histamine abnormalities could mediate or result from the same processes that cause the hypocretin cell loss. We also review the changes in the hypocretin and histamine systems, and the associated sleep disruptions, in Parkinson disease, Alzheimer disease, Huntington disease and Tourette syndrome. Finally, we discuss novel therapeutic approaches for manipulation of the histamine system.
Collapse
Affiliation(s)
- Ling Shan
- Department of Psychiatry and Brain Research Institute, UCLA School of Medicine, Veterans' Affairs Greater Los Angeles Healthcare System (VA GLAHS), 16111 Plummer Street North Hills, 151A3, CA 91343, USA
| | - Yves Dauvilliers
- Centre de Référence Nationale Maladies Rares, Narcolepsie et Hypersomnie Idiopathique, Département de Neurologie, Hôpital Gui-de-Chauliac, INSERM U1061, 80 avenue Augustin Fliche, Montpellier 34295, France
| | - Jerome M Siegel
- Department of Psychiatry and Brain Research Institute, UCLA School of Medicine, Veterans' Affairs Greater Los Angeles Healthcare System (VA GLAHS), 16111 Plummer Street North Hills, 151A3, CA 91343, USA
| |
Collapse
|
41
|
Abstract
The sleep disorder narcolepsy is caused by the loss of orexinergic neurones in the lateral hypothalamus. A troublesome symptom of narcolepsy is cataplexy, the sudden loss of muscle tone in response to strong emotions. It can be alleviated by antidepressants and sodium oxybate (γ-hydroxybutyric acid (GHB)). It is likely that the noradrenergic nucleus locus coeruleus (LC) is involved since it is essential for the maintenance of muscle tone, and ceases to fire during cataplectic attacks. Furthermore, alpha-2 adrenoceptors proliferate in the LC in cataplexy, probably due to 'heterologous denervation supersensitivity' resulting from the loss/weakening of the orexinergic input to the LC. This would lead to the sensitization of the autoinhibition mechanism of LC neurones mediated by inhibitory alpha-2 adrenoceptors ('autoreceptors'). Thus the excitatory input from the amygdala to the LC, activated by an emotional stimulus, would lead to the 'switching off' of LC activity via the supersensitive auto-inhibition mechanism. GHB is an agonist at both γ-aminobutyric acid (GABA) GABA (B) and GHB receptors that may be a subtype of an extrasynaptic GABA(A) receptor. GHB may prevent a cataplectic attack by dampening the tone of LC neurones via the stimulation of inhibitory extrasynaptic GABA receptors in the LC, and thus increasing the threshold for autoinhibition.
Collapse
Affiliation(s)
- Elemer Szabadi
- Developmental Psychiatry, University of Nottingham, Nottingham, UK
| |
Collapse
|
42
|
Fraigne JJ, Torontali ZA, Snow MB, Peever JH. REM Sleep at its Core - Circuits, Neurotransmitters, and Pathophysiology. Front Neurol 2015; 6:123. [PMID: 26074874 PMCID: PMC4448509 DOI: 10.3389/fneur.2015.00123] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/13/2015] [Indexed: 01/03/2023] Open
Abstract
Rapid eye movement (REM) sleep is generated and maintained by the interaction of a variety of neurotransmitter systems in the brainstem, forebrain, and hypothalamus. Within these circuits lies a core region that is active during REM sleep, known as the subcoeruleus nucleus (SubC) or sublaterodorsal nucleus. It is hypothesized that glutamatergic SubC neurons regulate REM sleep and its defining features such as muscle paralysis and cortical activation. REM sleep paralysis is initiated when glutamatergic SubC cells activate neurons in the ventral medial medulla, which causes release of GABA and glycine onto skeletal motoneurons. REM sleep timing is controlled by activity of GABAergic neurons in the ventrolateral periaqueductal gray and dorsal paragigantocellular reticular nucleus as well as melanin-concentrating hormone neurons in the hypothalamus and cholinergic cells in the laterodorsal and pedunculo-pontine tegmentum in the brainstem. Determining how these circuits interact with the SubC is important because breakdown in their communication is hypothesized to underlie narcolepsy/cataplexy and REM sleep behavior disorder (RBD). This review synthesizes our current understanding of mechanisms generating healthy REM sleep and how dysfunction of these circuits contributes to common REM sleep disorders such as cataplexy/narcolepsy and RBD.
Collapse
Affiliation(s)
- Jimmy J Fraigne
- Department of Cell and Systems Biology, University of Toronto , Toronto, ON , Canada
| | - Zoltan A Torontali
- Department of Cell and Systems Biology, University of Toronto , Toronto, ON , Canada
| | - Matthew B Snow
- Department of Cell and Systems Biology, University of Toronto , Toronto, ON , Canada
| | - John H Peever
- Department of Cell and Systems Biology, University of Toronto , Toronto, ON , Canada
| |
Collapse
|
43
|
Abstract
The discovery of hypocretins (orexins) and their causal implication in narcolepsy is the most important advance in sleep research and sleep medicine since the discovery of rapid eye movement sleep. Narcolepsy with cataplexy is caused by hypocretin deficiency owing to destruction of most of the hypocretin-producing neurons in the hypothalamus. Ablation of hypocretin or hypocretin receptors also leads to narcolepsy phenotypes in animal models. Although the exact mechanism of hypocretin deficiency is unknown, evidence from the past 20 years strongly favours an immune-mediated or autoimmune attack, targeting specifically hypocretin neurons in genetically predisposed individuals. These neurons form an extensive network of projections throughout the brain and show activity linked to motivational behaviours. The hypothesis that a targeted immune-mediated or autoimmune attack causes the specific degeneration of hypocretin neurons arose mainly through the discovery of genetic associations, first with the HLA-DQB1*06:02 allele and then with the T-cell receptor α locus. Guided by these genetic findings and now awaiting experimental testing are models of the possible immune mechanisms by which a specific and localised brain cell population could become targeted by T-cell subsets. Great hopes for the identification of new targets for therapeutic intervention in narcolepsy also reside in the development of patient-derived induced pluripotent stem cell systems.
Collapse
|
44
|
|
45
|
Mosqueiro T, de Lecea L, Huerta R. Control of sleep-to-wake transitions via fast aminoacid and slow neuropeptide transmission. NEW JOURNAL OF PHYSICS 2014; 16:115010. [PMID: 25598695 PMCID: PMC4292803 DOI: 10.1088/1367-2630/16/11/115010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The Locus Coeruleus (LC) modulates cortical, subcortical, cerebellar, brainstem and spinal cord circuits and it expresses receptors for neuromodulators that operate in a time scale of several seconds. Evidences from anatomical, electrophysiological and optogenetic experiments have shown that LC neurons receive input from a group of neurons called Hypocretins (HCRTs) that release a neuropeptide called hypocretin. It is less known how these two groups of neurons can be coregulated using GABAergic neurons. Since the time scales of GABA A inhibition is several orders of magnitude faster than the hypocretin neuropeptide effect, we investigate the limits of circuit activity regulation using a realistic model of neurons. Our investigation shows that GABA A inhibition is insufficient to control the activity levels of the LCs. Despite slower forms of GABA A can in principle work, there is not much plausibility due to the low probability of the presence of slow GABA A and lack of robust stability at the maximum firing frequencies. The best possible control mechanism predicted by our modeling analysis is the presence of inhibitory neuropeptides that exert effects in a similar time scale as the hypocretin/orexin. Although the nature of these inhibitory neuropeptides has not been identified yet, it provides the most efficient mechanism in the modeling analysis. Finally, we present a reduced mean-field model that perfectly captures the dynamics and the phenomena generated by this circuit. This investigation shows that brain communication involving multiple time scales can be better controlled by employing orthogonal mechanisms of neural transmission to decrease interference between cognitive processes and hypothalamic functions.
Collapse
Affiliation(s)
- Thiago Mosqueiro
- Institute of Physics of São Carlos, University of São Paulo, São Carlos, SP, Br
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Ramon Huerta
- BioCircuits Institute, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
46
|
Matsuo K, Ban R, Ban M. Desensitization of the Mechanoreceptors in Müller's Muscle Reduces the Increased Reflex Contraction of the Orbicularis Oculi Slow-Twitch Fibers in Blepharospasm. EPLASTY 2014; 14:e33. [PMID: 25328566 PMCID: PMC4166861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Although the mixed orbicularis oculi muscle lacks the muscle spindles required to induce reflex contraction of its slow-twitch fibers, the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction. We hypothesize that strong stretching of these mechanoreceptors increases reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. METHODS We examined a 71-year-old man with right blepharospasm and bilateral aponeurosis-disinserted blepharoptosis to determine whether the patient's blepharospasm was worsened by increased trigeminal proprioceptive evocation via stretching of the mechanoreceptors in Müller's muscle owing to a 60° upward gaze and serrated eyelid closure, and whether local anesthesia of the mechanoreceptors via lidocaine administration to the upper fornix as well as surgical disinsertion of Müller's muscle from the tarsus and fixation of the disinserted aponeurosis to the tarsus decreased trigeminal proprioceptive evocation and improved patient's blepharospasm. RESULTS Before pharmacological desensitization, 60° upward gaze and serrated eyelid closure exacerbated the patient's blepharospasm. In contrast, these maneuvers did not worsen his blepharospasm following lidocaine administration. One year after surgical desensitization, the blepharospasm had disappeared and a 60° upward gaze did not induce blepharospasm. CONCLUSIONS Strong stretching of the mechanoreceptors in Müller's muscle appeared to increase reflex contraction of the orbicularis oculi slow-twitch muscle fibers, resulting in blepharospasm. In addition to botulinum neurotoxin injections into the involuntarily contracted orbicularis oculi muscle and myectomy, surgical desensitization of the mechanoreceptors in Müller's muscle may represent an additional procedure to reduce blepharospasm.
Collapse
Affiliation(s)
- Kiyoshi Matsuo
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan,Correspondence:
| | | | | |
Collapse
|
47
|
Matsuo K, Ban R, Ban M, Yuzuriha S. Trigeminal Proprioception Evoked by Strong Stretching of the Mechanoreceptors in Müller's Muscle Induces Reflex Contraction of the Orbital Orbicularis Oculi Slow-Twitch Muscle Fibers. EPLASTY 2014; 14:e30. [PMID: 25210572 PMCID: PMC4138965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2022]
Abstract
OBJECTIVE The mixed orbicularis oculi muscle lacks an intramuscular proprioceptive system such as muscle spindles, to induce reflex contraction of its slow-twitch fibers. We evaluated whether the mechanoreceptors in Müller's muscle function as extrinsic mechanoreceptors to induce reflex contraction of the slow-twitch fibers of the orbicularis oculi in addition to those of the levator and frontalis muscles. METHODS We evaluated in patients with aponeurosis-disinserted blepharoptosis whether strong stretching of the mechanoreceptors in Müller's muscle from upgaze with unilateral lid load induced reflex contraction of the orbicularis oculi slow-twitch fibers and whether anesthesia of Müller's muscle precluded the contraction. We compared the electromyographic responses of the bilateral orbicularis oculi muscles to unilateral intraoperative direct stimulation of the trigeminal proprioceptive nerve with those to unilateral transcutaneous electrical stimulation of the supraorbital nerve. RESULTS Upgaze with a unilateral 3-g lid load induced reflex contraction of the bilateral orbicularis oculi muscles with ipsilateral dominance. Anesthesia of Müller's muscle precluded the reflex contraction. The orbicularis oculi reflex evoked by stimulation of the trigeminal proprioceptive nerve differed from that by electrical stimulation of the supraorbital nerve in terms of the intensity of current required to induce the reflex, the absence of R1, and duration. CONCLUSIONS The mechanoreceptors in Müller's muscle functions as an extramuscular proprioceptive system to induce reflex contraction of the orbital orbicularis oculi slow-twitch fibers. Whereas reflex contraction of the pretarsal orbicularis fast-twitch fibers functions in spontaneous or reflex blinking, that of the orbital orbicularis oculi slow-twitch fibers may factor in grimacing and blepharospasm.
Collapse
Affiliation(s)
- Kiyoshi Matsuo
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan,Correspondence:
| | - Ryokuya Ban
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Midori Ban
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Shunsuke Yuzuriha
- Department of Plastic and Reconstructive Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
48
|
Lazowski LK, Townsend B, Hawken ER, Jokic R, du Toit R, Milev R. Sleep architecture and cognitive changes in olanzapine-treated patients with depression: a double blind randomized placebo controlled trial. BMC Psychiatry 2014; 14:202. [PMID: 25030264 PMCID: PMC4223523 DOI: 10.1186/1471-244x-14-202] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 07/10/2014] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Disturbance in sleep quality is a symptom of Major Depressive Disorder (MDD) and Bipolar Disorder (BD) and thus improving quality of sleep is an important aspect of successful treatment. Here, a prospective, double-blind, randomized, placebo-controlled study examined the effect of olanzapine (an atypical antipsychotic) augmentation therapy on sleep architecture, specifically slow wave sleep (SWS), in the treatment of depression. The effect of olanzapine augmentation therapy on other features of sleep (e.g., sleep continuity) and depression (e.g., illness severity and cognitive function) were also determined. METHODS Patients currently experiencing a major depressive episode and who were on a stable medication were included. Sleep architecture was measured by overnight ambulatory polysomnography. Illness severity was determined using the Montgomery-Asberg Depression Rating Scale (MADRS). Cognitive function was examined using Cambridge Neuropsychological Test Automated Battery (CANTAB): Spatial Working Memory (SWM), Spatial Span (SSP), and Reaction Time (RTI) tasks. Polysomnographs, clinical measures and cognitive tests were administered at baseline, after 2-4 days of treatment and after 28-31 days of treatment. Twenty-five patients participated in the study (N = 10, N = 15 for placebo and olanzapine treated groups respectively). RESULTS The primary objective of the study was to assess the objective (polysomnographic) changes in sleep quality, defined as changes in SWS, following olanzapine treatment for depression. Latency to but not duration of SWS was found to significantly differ between olanzapine- and placebo-treated participants (Hedge's g: 0.97, 0.13 respectively). A significant improvement in olanzapine-treated participants over placebo-treated participants was observed in secondary outcome measures, including sleep efficiency, total sleep time, and sleep latency. Secondary objectives assessed the subjective changes in sleep quality parameters and correlated them with measures of illness severity and changes in cognition. MADRS scores were significantly improved in olanzapine-treated participants over time but not more than placebo treatment. There was no significant difference between olanzapine- and placebo-treated participants in SWM, SSP or RTI tasks. CONCLUSIONS Olanzapine augmentation treatment generally did not improve SWS but did improve sleep continuity and depression. Olanzapine may be one of few medications that improve sleep continuity, thus directly targeting symptoms of depression. TRIAL REGISTRATION ClinicalTrials.gov, NCT00520507.
Collapse
Affiliation(s)
- Lauren K Lazowski
- Centre for Neuroscience Studies, Queen’s University, Kingston, Canada
| | - Ben Townsend
- Department of Psychology, Carleton University, Ottawa, Canada
| | - Emily R Hawken
- Centre for Neuroscience Studies, Queen’s University, Kingston, Canada,Department of Psychiatry, Queen’s University, 752 King Street West, Kingston, ON K7L 4X3, Canada
| | - Ruzica Jokic
- Department of Psychiatry, Queen’s University, 752 King Street West, Kingston, ON K7L 4X3, Canada
| | - Regina du Toit
- Department of Psychiatry, Queen’s University, 752 King Street West, Kingston, ON K7L 4X3, Canada
| | - Roumen Milev
- Department of Psychiatry, Queen's University, 752 King Street West, Kingston, ON K7L 4X3, Canada.
| |
Collapse
|
49
|
John J, Kodama T, Siegel JM. Caffeine promotes glutamate and histamine release in the posterior hypothalamus. Am J Physiol Regul Integr Comp Physiol 2014; 307:R704-10. [PMID: 25031227 DOI: 10.1152/ajpregu.00114.2014] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Histamine neurons are active during waking and largely inactive during sleep, with minimal activity during rapid-eye movement (REM) sleep. Caffeine, the most widely used stimulant, causes a significant increase of sleep onset latency in rats and humans. We hypothesized that caffeine increases glutamate release in the posterior hypothalamus (PH) and produces increased activity of wake-active histamine neurons. Using in vivo microdialysis, we collected samples from the PH after caffeine administration in freely behaving rats. HPLC analysis and biosensor measurements showed a significant increase in glutamate levels beginning 30 min after caffeine administration. Glutamate levels remained elevated for at least 140 min. GABA levels did not significantly change over the same time period. Histamine level significantly increased beginning 30 min after caffeine administration and remained elevated for at least 140 min. Immunostaining showed a significantly elevated number of c-Fos-labeled histamine neurons in caffeine-treated rats compared with saline-treated animals. We conclude that increased glutamate levels in the PH activate histamine neurons and contribute to caffeine-induced waking and alertness.
Collapse
Affiliation(s)
- Joshi John
- Neurobiology Research, Veterans Affairs Greater Los Angeles Healthcare System, Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, North Hills, California; and
| | - Tohru Kodama
- Department of Physiological Psychology, Tokyo Metropolitan Institute of Medical Sciences, Tokyo, Japan
| | - Jerome M Siegel
- Neurobiology Research, Veterans Affairs Greater Los Angeles Healthcare System, Neuropsychiatric Institute and Brain Research Institute, University of California, Los Angeles, North Hills, California; and
| |
Collapse
|
50
|
Abstract
Humans prone to cataplexy experience sudden losses of postural muscle tone without a corresponding loss of conscious awareness. The brain mechanisms underlying this debilitating decoupling are now better understood, thanks to a new study using cataplectic mice.
Collapse
Affiliation(s)
- Mark S Blumberg
- Departments of Psychology and Biology, The University of Iowa, E11 Seashore Hall, Iowa City, IA 52242, USA.
| |
Collapse
|