1
|
Bogacki-Rychlik W, Gawęda K, Bialy M. Neurophysiology of male sexual arousal-Behavioral perspective. Front Behav Neurosci 2024; 17:1330460. [PMID: 38333545 PMCID: PMC10851294 DOI: 10.3389/fnbeh.2023.1330460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/15/2023] [Indexed: 02/10/2024] Open
Abstract
In the presented review, we analyzed the physiology of male sexual arousal and its relation to the motivational aspects of this behavior. We highlighted the distinction between these processes based on observable physiological and behavioral parameters. Thus, we proposed the experimentally applicable differentiation between sexual arousal (SA) and sexual motivation (SM). We propose to define sexual arousal as an overall autonomic nervous system response leading to penile erection, triggered selectively by specific sexual cues. These autonomic processes include both spinal and supraspinal neuronal networks, activated by sensory pathways including information from sexual partner and sexual context, as well as external and internal genital organs. To avoid misinterpretation of experimental data, we also propose to precise the term "sexual motivation" as all actions performed by the individual that increase the probability of sexual interactions or increase the probability of exposition to sexual context cues. Neuronal structures such as the amygdala, bed nucleus of stria terminalis, hypothalamus, nucleus raphe, periaqueductal gray, and nucleus paragigantocellularis play crucial roles in controlling the level of arousal and regulating peripheral responses via specific autonomic effectors. On the highest level of CNS, the activity of cortical structures involved in the regulation of the autonomic nervous system, such as the insula and anterior cingulate cortex, can visualize an elevated level of SA in both animal and human brains. From a preclinical perspective, we underlie the usefulness of the non-contact erection test (NCE) procedure in understanding factors influencing sexual arousal, including studies of sexual preference in animal models. Taken together results obtained by different methods, we wanted to focus attention on neurophysiological aspects that are distinctly related to sexual arousal and can be used as an objective parameter, leading to higher translational transparency between basic, preclinical, and clinical studies.
Collapse
Affiliation(s)
| | | | - Michal Bialy
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Ramírez-Rodríguez R, León-Sequeda I, Salomón-Lara L, Perusquia-Cabrera D, Herrera-Covarrubias D, Fernández-Cañedo L, García LI, Manzo J, Pfaus JG, López-Meraz ML, Coria-Avila GA. Enhanced D2 Agonism Induces Conditioned Appetitive Sexual Responses Toward Non-reproductive Conspecifics. ARCHIVES OF SEXUAL BEHAVIOR 2021; 50:3901-3912. [PMID: 34665381 DOI: 10.1007/s10508-021-02023-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Brain mechanisms of sexual attraction toward reproductive partners develop from a systematic interrelationship between biology (nature) and learning (nurture). However, the causes of attraction toward non-reproductive partners are poorly understood. Here, we explored the role of Pavlovian learning under dopaminergic agonism on the development of sexual preference and brain activation for young male rats. During conditioning, adult sexually naïve males received either Saline (Saline-Paired) or the D2-receptor agonist quinpirole (QNP-Paired) and cohabited in contingency, or out of contingency (QNP-Unpaired) during 24 h with an almond-scented prepubertal juvenile male (PD25). Conditioning occurred every 4 days for three trials. Social and sexual responses were assessed four days after the last conditioning trial in a drug-free test, and males chose freely between a scented young male (PD37) and a novel receptive female. Four days later, males were exposed to the conditioned odor only and brain Fos-IR and serum testosterone were analyzed. Saline-Paired and QNP-Unpaired males displayed more non-contact erections (NCEs) and genital investigations for females, whereas QNP-Paired males expressed more NCEs and genital investigations for young males. In the QNP-Paired group, exposure to the young male-paired odor evoked more Fos-IR in limbic, hypothalamic and cortical areas, but no differences in serum testosterone were observed. Cohabitation with juvenile males during enhanced D2 agonism results in atypical appetitive sexual responses and a higher pattern of brain response for the young male-paired odor, with no changes in serum testosterone. We discuss the potential implications for the development of pedophilic disorder and perhaps other paraphilias.
Collapse
Affiliation(s)
- Rodrigo Ramírez-Rodríguez
- Maestría en Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Isabel León-Sequeda
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | - Lázaro Salomón-Lara
- Doctorado en Investigaciones Cerebrales, Universidad Veracruzana, Xalapa, Veracruz, Mexico
| | | | - Deissy Herrera-Covarrubias
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | | | - Luis I García
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - Jorge Manzo
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - James G Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - María-Leonor López-Meraz
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico
| | - Genaro A Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N Col. Industrial Ánimas, 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
3
|
Abstract
Gonadal hormones contribute to the sexual differentiation of brain and behavior throughout the lifespan, from initial neural patterning to "activation" of adult circuits. Sexual behavior is an ideal system in which to investigate the mechanisms underlying hormonal activation of neural circuits. Sexual behavior is a hormonally regulated, innate social behavior found across species. Although both sexes seek out and engage in sexual behavior, the specific actions involved in mating are sexually dimorphic. Thus, the neural circuits mediating sexual motivation and behavior in males and females are overlapping yet distinct. Furthermore, sexual behavior is strongly dependent on circulating gonadal hormones in both sexes. There has been significant recent progress on elucidating how gonadal hormones modulate physiological properties within sexual behavior circuits with consequences for behavior. Therefore, in this mini-review we review the neural circuits of male and female sexual motivation and behavior, from initial sensory detection of pheromones to the extended amygdala and on to medial hypothalamic nuclei and reward systems. We also discuss how gonadal hormones impact the physiology and functioning of each node within these circuits. By better understanding the myriad of ways in which gonadal hormones impact sexual behavior circuits, we can gain a richer and more complete appreciation for the neural substrates of complex behavior.
Collapse
Affiliation(s)
- Kimberly J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
4
|
Díaz-Estrada VX, Barradas-Moctezuma M, Herrera-Covarrubias D, Manzo J, Coria-Avila GA. Nature and nurture of sexual partner preference: Teachings from prenatal administration of acetaminophen in male rats. Horm Behav 2020; 124:104775. [PMID: 32422195 DOI: 10.1016/j.yhbeh.2020.104775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/09/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022]
Abstract
The organizational-activational hypothesis indicates that activation of adult sexual behavior in males depends on organization of the masculine brain during the perinatal sensitive period. In the medial preoptic area such masculinization depends on a neuroendocrine cascade that includes exposure to testosterone, aromatization to estradiol, activation of estrogen receptors, synthesis of cyclooxygenase (COX), increase of prostaglandins, release of glutamate, and activation of AMPA receptors that result in the formation of more dendritic spines. Thus, in the present study we assessed the sexual partner preference (SPP) of adult male rats prenatally treated with acetaminophen (APAP), an analgesic/antipyretic drug that inhibits COX-2 and is commonly used and prescribed during pregnancy. Female rats received either saline (2 ml/kg s.c.) or APAP (50 mg/kg s.c.) every 12 h, during days 16-20 of pregnancy. At postnatal day PD60 half of the male offspring were exposed to sexual experience with receptive females during 5 trials, and the other half remained sexually naïve. At PD90 all them were tested for SPP with one sexually receptive female and one stud male. The results indicated that only APAP-naïve males failed to display SPP. However, APAP-experienced males displayed SPP for females. We discuss the effects of prenatal APAP in the disruption of unconditioned responses towards females (nature mechanisms), and the effects of sexual experience (nurture mechanisms) in the development of conditioned heterosexual preference.
Collapse
Affiliation(s)
- V X Díaz-Estrada
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, 91190 Xalapa, Veracruz, Mexico
| | - M Barradas-Moctezuma
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, 91190 Xalapa, Veracruz, Mexico
| | - D Herrera-Covarrubias
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, 91190 Xalapa, Veracruz, Mexico
| | - J Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, 91190 Xalapa, Veracruz, Mexico
| | - G A Coria-Avila
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, 91190 Xalapa, Veracruz, Mexico.
| |
Collapse
|
5
|
Hull EM, Dominguez JM. Neuroendocrine Regulation of Male Sexual Behavior. Compr Physiol 2019; 9:1383-1410. [DOI: 10.1002/cphy.c180018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
6
|
Turner JM, Will RG, Harvey EA, Hattori T, Tobiansky DJ, Nutsch VL, Martz JR, Dominguez JM. Copulation induces expression of the immediate early gene Arc in mating-relevant brain regions of the male rat. Behav Brain Res 2019; 372:112006. [PMID: 31170433 DOI: 10.1016/j.bbr.2019.112006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/17/2019] [Accepted: 05/31/2019] [Indexed: 01/28/2023]
Abstract
The medial amygdala (MeA), bed nucleus of the stria terminalis (BNST), and medial preoptic area (mPOA) are important for the regulation of male sexual behavior. Sexual experience facilitates sexual behaviors and influences activity in these regions. The goal of this study was to determine whether sexual experience or copulation induces plasticity in the MeA, BNST, or mPOA of male rats, as indicated by changes in levels of Arc, which is indicative of activity-dependent synaptic plasticity in the brain. To this end, sexually naïve or experienced males were placed in mating arenas either alone, with an inaccessible estrus female, or with an accessible estrus female. Arc protein levels were then quantified in these three regions using immunohistochemistry. As expected, sexual experience facilitated copulation, as evidenced by a reduction in latencies to mount, intromit, and ejaculate. Copulation also increased the number of Arc-positive cells in the MeA, anterior BNST, posterior BNST, and the posterior mPOA, but not in the central-rostral region of the mPOA. Surprisingly, prior sexual experience did not impact levels of Arc, suggesting that copulation-induced Arc occurs in both sexually naïve and experienced males.
Collapse
Affiliation(s)
- Jonathan M Turner
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Eric A Harvey
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Tomoko Hattori
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Daniel J Tobiansky
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Victoria L Nutsch
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States
| | - Julia R Martz
- Department of Psychology, The University of Texas at Austin, Austin, TX, United States
| | - Juan M Dominguez
- The Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States; Department of Psychology, The University of Texas at Austin, Austin, TX, United States; Department of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|
7
|
Nucleus accumbens dopamine increases sexual motivation in sexually satiated male rats. Psychopharmacology (Berl) 2019; 236:1303-1312. [PMID: 30536080 DOI: 10.1007/s00213-018-5142-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/29/2018] [Indexed: 10/27/2022]
Abstract
RATIONALE The influence of the main dopaminergic brain regions controlling copulation, the medial preoptic area (mPOA) and the nucleus accumbens (NAcc), on male rat sexual behavior expression has not been fully established. OBJECTIVE This work analyzes the sexual effects of dopamine (DA) receptor activation in the mPOA or the NAcc of sexually active male rats, with an intact (sexually experienced) or a reduced (sexually exhausted) sexual motivation. METHODS The non-specific DA receptor agonist apomorphine and the D2-like receptor agonist quinpirole were infused into the mPOA or the NAcc of sexually experienced or sexually exhausted male rats and their sexual behavior recorded. RESULTS DA receptor activation neither in the mPOA nor in the NAcc modified the copulatory behavior of sexually experienced male rats. DA receptor stimulation in the NAcc, but not in the mPOA, reversed the characteristic sexual inhibition of sexually satiated rats, and D2-like receptors were found to participate in this effect. CONCLUSION The optimal sexual performance of sexually experienced male rats cannot be further improved by DA receptor activation at either brain region. In sexually satiated rats, which are sexually inhibited and have a diminished sexual motivation, NAcc DA receptor stimulation appears to play a key role in their capacity to respond to a motivational significant stimulus, the receptive female, with the participation of D2-like receptors. Activation of DA receptors with the same drug, at the same dose and in the same brain region, produces different effects on copulatory behavior that depend on the animal's sexual motivational state.
Collapse
|
8
|
Understanding Sexual Partner Preference: from Biological Diversity to Psychiatric Disorders. CURRENT SEXUAL HEALTH REPORTS 2018. [DOI: 10.1007/s11930-018-0152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
9
|
Coria-Avila GA, Cibrian-Llanderal T, Díaz-Estrada VX, García LI, Toledo-Cárdenas R, Pfaus JG, Manzo J. Brain activation associated to olfactory conditioned same-sex partner preference in male rats. Horm Behav 2018; 99:50-56. [PMID: 29458055 DOI: 10.1016/j.yhbeh.2018.02.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/03/2018] [Accepted: 02/06/2018] [Indexed: 11/20/2022]
Abstract
Sexual preferences can be strongly modified by Pavlovian learning. For instance, olfactory conditioned same-sex partner preference can occur when a sexually naïve male cohabits with an scented male during repeated periods under the effects of enhanced D2-type activity. Preference is observed days later via social and sexual behaviors. Herein we explored brain activity related to learned same-sex preference (Fos-Immunoreactivity, IR) following exposure to a conditioned odor paired with same-sex preference. During conditioning trials males received either saline or the D2-type receptor agonist quinpirole (QNP) and cohabitated during 24 h with a stimulus male that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. In a drug-free final test we assessed socio/sexual partner preference between the scented male and a receptive female. The results indicated that QNP-conditioned males developed a same-sex preference observed via contact, time spent, olfactory investigations, and non-contact erections. By contrast, saline-conditioned and intact (non-exposed to conditioning) males expressed an unconditioned preference for the female. Four days later the males were exposed to almond scent and their brains were processed for Fos-IR. Results indicated that the QNP-conditioned group expressed more Fos-IR in the nucleus accumbens (AcbSh), medial preoptic area (MPA), piriform cortex (Pir) and ventromedial nucleus of the hypothalamus (VMH) as compared to saline-conditioned. Intact males expressed the lowest Fos-IR in AcbSh and VMH, but the highest in MPA and Pir. We discuss the role of these areas in the learning process of same-sex partner preferences and olfactory discrimination.
Collapse
Affiliation(s)
| | | | | | - Luis I García
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| | | | - James G Pfaus
- CSBN/Psychology, Concordia University, Montreal, QC, Canada
| | - Jorge Manzo
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Mexico
| |
Collapse
|
10
|
Fraley GS. ICV galanin-like peptide stimulates non-contact erections but not touch-based erections in adult, sexually experienced male rats. Neuropeptides 2017; 64:69-73. [PMID: 28168997 DOI: 10.1016/j.npep.2017.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/26/2016] [Accepted: 01/18/2017] [Indexed: 11/24/2022]
Abstract
Galanin-like peptide (GALP) is a neuropeptide transcribed only within the arcuate nucleus of the hypothalamus and is thought to be a mediator between energetics and reproductive function. Intracerebroventricular (ICV) injection of GALP is known to have effects on feeding, and to significantly increase gonadotropin releasing hormone- (GnRH-) mediated luteinizing hormone (LH) secretion. Furthermore, ICV GALP is known to stimulate fos production in the medial pre-optic area (mPOA) and to a lesser extent, the paraventricular nucleus (PVN). ICV injection of 5.0nmol GALP profoundly stimulates male rat sexual behavior. It is not known if GALP's effects on sex behavior are due to an increase in appetitive or mechanical (erectile) aspects of male sexual behavior. To determine this, sexually experienced male rats were cannulated in the lateral ventricle and injected with 5.0nmol GALP or vehicle. Immediately after injections, male rats were placed in an arena connected to a second arena via a tube with a fan. The second arena contained a steroid-primed female and her bedding. The male rat had olfactory but not visual or tactile contact with the female. We analyzed the amount of time the male rats spent investigating the air intake and the number of non-contact erections (NCEs) in a 30minute test. ICV GALP significantly (p<0.05) increased both the amount of time of olfactory investigations and NCEs compared to vehicle. In a second set of animals, we tested if ICV GALP could stimulate touch-based erections. GALP had no significant effect on touch-based erections compared to vehicle. These data suggest that GALP's activation of fos within the mPOA is indicative of its action to stimulate the appetitive aspects of male sexual behavior.
Collapse
Affiliation(s)
- Gregory S Fraley
- Biology, Hope College, 35 East 12th St, SC3065, Holland, MI 49423, USA.
| |
Collapse
|
11
|
Fabre-Nys C, Kendrick KM, Scaramuzzi RJ. The "ram effect": new insights into neural modulation of the gonadotropic axis by male odors and socio-sexual interactions. Front Neurosci 2015; 9:111. [PMID: 25914614 PMCID: PMC4391029 DOI: 10.3389/fnins.2015.00111] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/16/2015] [Indexed: 11/13/2022] Open
Abstract
Reproduction in mammals is controlled by the hypothalamo-pituitary-gonadal (HPG) axis under the influence of external and internal factors such as photoperiod, stress, nutrition, and social interactions. Sheep are seasonal breeders and stop mating when day length is increasing (anestrus). However, interactions with a sexually active ram during this period can override the steroid negative feedback responsible for the anoestrus state, stimulate luteinizing hormone (LH) secretion and eventually reinstate cyclicity. This is known as the “ram effect” and research into the mechanisms underlying it is shedding new light on HPG axis regulation. The first step in the ram effect is increased LH pulsatile secretion in anestrus ewes exposed to a sexually active male or only to its fleece, the latter finding indicating a “pheromone-like” effect. Estradiol secretion increases in all ewes and this eventually induces a LH surge and ovulation, just as during the breeding season. An exception is a minority of ewes that exhibit a precocious LH surge (within 4 h) with no prior increase in estradiol. The main olfactory system and the cortical nucleus of the amygdala are critical brain structures in mediating the ram effect since it is blocked by their inactivation. Sexual experience is also important since activation (increased c-fos expression) in these and other regions is greatly reduced in sexually naïve ewes. In adult ewes kisspeptin neurons in both arcuate and preoptic regions and some preoptic GnRH neurons are activated 2 h after exposure to a ram. Exposure to rams also activates noradrenergic neurons in the locus coeruleus and A1 nucleus and increased noradrenalin release occurs in the posterior preoptic area. Pharmacological modulation of this system modifies LH secretion in response to the male or his odor. Together these results show that the ram effect can be a fruitful model to promote both a better understanding of the neural and hormonal regulation of the HPG axis in general and also the specific mechanisms by which male cues can overcome negative steroid feedback and trigger LH release and ovulatory cycles.
Collapse
Affiliation(s)
- Claude Fabre-Nys
- UMR 7247 Physiologie de la Reproduction et des Comportements, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut Français du Cheval et de L'équitation, Université de Tours Nouzilly, France
| | - Keith M Kendrick
- Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China Chengdu, China
| | - Rex J Scaramuzzi
- Department of Comparative Biological Sciences, Royal Veterinary College South Mimms, UK
| |
Collapse
|
12
|
Triana-Del Rio R, Tecamachaltzi-Silvarán MB, Díaz-Estrada VX, Herrera-Covarrubias D, Corona-Morales AA, Pfaus JG, Coria-Avila GA. Conditioned same-sex partner preference in male rats is facilitated by oxytocin and dopamine: effect on sexually dimorphic brain nuclei. Behav Brain Res 2015; 283:69-77. [PMID: 25601575 DOI: 10.1016/j.bbr.2015.01.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/06/2015] [Accepted: 01/10/2015] [Indexed: 02/04/2023]
Abstract
Conditioned same-sex partner preference can develop in male rats that undergo cohabitation under the effects of quinpirole (QNP, D2 agonist). Herein, we assessed the development of conditioned same-sex social/sexual preference in males that received either nothing, saline, QNP, oxytocin (OT), or QNP+OT during cohabitation with another male (+) or single-caged (-). This resulted in the following groups: (1) Intact-, (2) Saline+, (3) QNP-, (4) OT-, (5) QNP+, (6) OT+ and (7) QNP/OT+. Cohabitation occurred during 24h in a clean cage with a male partner that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days for a total of three trials. Social and sexual preference were assessed four days after the last conditioning trial in a drug-free test in which experimental males chose between the scented familiar male and a novel sexually receptive female. Results showed that males from groups Intact-, Saline+, QNP- and OT- displayed a clear preference for the female (opposite-sex), whereas groups QNP+, OT+ and QNP/OT+ displayed socio/sexual preference for the male partner (same-sex). In Experiment 2, the brains were processed for Nissl dye and the area size of two sexually dimorphic nuclei (SDN-POA and SON) was compared between groups. Males from groups OT-, OT+ and QNP/OT+ expressed a smaller SDN-POA and groups QNP+ and QNP/OT+ expressed a larger SON. Accordingly, conditioned same-sex social/sexual partner preference can develop during cohabitation under enhanced D2 or OT activity but such preference does not depend on the area size of those sexually dimorphic nuclei.
Collapse
Affiliation(s)
- Rodrigo Triana-Del Rio
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| | - Miriam B Tecamachaltzi-Silvarán
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| | - Victor X Díaz-Estrada
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| | - Deissy Herrera-Covarrubias
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| | - Aleph A Corona-Morales
- Laboratorio de Investigación Genómica y Fisiológica, Facultad de Nutrición, Universidad Veracruzana, Xalapa, Veracruz, Mexico.
| | - James G Pfaus
- CSBN/Psychology, Concordia University, Montreal, QC, Canada.
| | - Genaro A Coria-Avila
- Centro de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo s/n Col. Industrial Ánimas, C. P. 91190, Xalapa, Veracruz, Mexico.
| |
Collapse
|
13
|
Neurobiology of social attachments. Neurosci Biobehav Rev 2014; 43:173-82. [DOI: 10.1016/j.neubiorev.2014.04.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 04/05/2014] [Accepted: 04/10/2014] [Indexed: 01/21/2023]
|
14
|
Huo Y, Fang Q, Shi YL, Zhang YH, Zhang JX. Chronic exposure to a predator or its scent does not inhibit male-male competition in male mice lacking brain serotonin. Front Behav Neurosci 2014; 8:116. [PMID: 24782727 PMCID: PMC3986541 DOI: 10.3389/fnbeh.2014.00116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 03/19/2014] [Indexed: 12/01/2022] Open
Abstract
Although it is well-known that defective signaling of the 5-HT system in the brain and stressful stimuli can cause psychological disorders, their combined effects on male–male aggression and sexual attractiveness remain unknown. Our research aimed at examining such effects using tryptophan hydroxylase 2 (Tph2) knockout male mice vs. a rat- or rat scent-based chronic stress model. Tph2+/+ and Tph2−/− male mice were placed individually into the rat home cage (rat), a cage containing soiled rat bedding (rat scent) or a cage containing fresh bedding (control) for 5 h every other day for 56 consecutive days. In Tph2+/+ male mice, rat-exposure decreased male–male aggression and sexual attractiveness of urine odor relative to either rat scent-exposure or control; and rat scent-exposure decreased aggression rather than sexual attractiveness of urine odor compared with control. However, such dose-dependent and long-lasting behavioral inhibitory effects vanished in Tph2−/− male mice. RT-PCR assay further revealed that putative regulatory genes, such as AR, ERα and GluR4 in the prefrontal cortex, and TrkB-Tc and 5-HTR1A in the hippocampus, were down-regulated at the mRNA level in either rat- or rat scent-exposed Tph2+/+ male mice, but partially in the Tph2−/− ones. Hence, we suggest that the dose-dependent and long-lasting inhibitory effects of chronic predator exposure on male–male aggression, sexual attractiveness of urine odor, and mRNA expression of central regulatory genes might be mediated through the 5-HT system in the brain of male mice.
Collapse
Affiliation(s)
- Ying Huo
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences Beijing, China ; Department of College of Life Sciences, University of Chinese Academy of Sciences Beijing, China
| | - Qi Fang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences Beijing, China ; Department of College of Life Sciences, University of Chinese Academy of Sciences Beijing, China
| | - Yao-Long Shi
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences Beijing, China ; Department of College of Life Sciences, University of Chinese Academy of Sciences Beijing, China
| | - Yao-Hua Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| | - Jian-Xu Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
15
|
Veening JG, Olivier B. Intranasal administration of oxytocin: behavioral and clinical effects, a review. Neurosci Biobehav Rev 2013; 37:1445-65. [PMID: 23648680 PMCID: PMC7112651 DOI: 10.1016/j.neubiorev.2013.04.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
The mechanisms behind the effects of IN-applied substances need more attention. The mechanisms involved in the brain-distribution of IN-OT are completely unexplored. The possibly cascading effects of IN-OT on the intrinsic OT-system require serious investigation. IN-OT induces clear and specific changes in neural activation. IN-OT is a promising approach to treat certain clinical symptoms.
The intranasal (IN-) administration of substances is attracting attention from scientists as well as pharmaceutical companies. The effects are surprisingly fast and specific. The present review explores our current knowledge about the routes of access to the cranial cavity. ‘Direct-access-pathways’ from the nasal cavity have been described but many additional experiments are needed to answer a variety of open questions regarding anatomy and physiology. Among the IN-applied substances oxytocin (OT) has an extensive history. Originally applied in women for its physiological effects related to lactation and parturition, over the last decade most studies focused on their behavioral ‘prosocial’ effects: from social relations and ‘trust’ to treatment of ‘autism’. Only very recently in a microdialysis study in rats and mice, the ‘direct-nose-brain-pathways’ of IN-OT have been investigated directly, implying that we are strongly dependent on results obtained from other IN-applied substances. Especially the possibility that IN-OT activates the ‘intrinsic’ OT-system in the hypothalamus as well needs further clarification. We conclude that IN-OT administration may be a promising approach to influence human communication but that the existing lack of information about the neural and physiological mechanisms involved is a serious problem for the proper understanding and interpretation of the observed effects.
Collapse
Affiliation(s)
- Jan G Veening
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands; Department of Anatomy (109), Radboud University of Medical Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | |
Collapse
|
16
|
Kyratsas C, Dalla C, Anderzhanova E, Polissidis A, Kokras N, Konstantinides K, Papadopoulou‐Daifoti Z. Experimental Evidence for Sildenafil's Action in the Central Nervous System: Dopamine and Serotonin Changes in the Medial Preoptic Area and Nucleus Accumbens During Sexual Arousal. J Sex Med 2013; 10:719-29. [DOI: 10.1111/j.1743-6109.2012.03000.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Weathington JM, Strahan JA, Cooke BM. Social experience induces sex-specific fos expression in the amygdala of the juvenile rat. Horm Behav 2012; 62:154-61. [PMID: 22771954 DOI: 10.1016/j.yhbeh.2012.06.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 11/19/2022]
Abstract
To compare the response of the medial amygdala and central amygdala to juvenile social subjugation (JSS), we used unbiased stereology to quantify the immediate early gene product Fos in prepubertal rats after aggressive or benign social encounters or handling. We estimated the overall number of neurons and the proportion of Fos immunoreactive neurons in the posterodorsal (MePD) and posteroventral medial amygdala (MePV) and the central amygdala (CeA). Experience elicited Fos in a sex- and hemisphere-dependent manner in the MePD. The left MePD was selective for JSS in both sexes, but the right MePD showed a specific Fos response to JSS in males only. In the MePV, irrespective of hemisphere or sex, JSS elicited the greatest amount of Fos, benign social experience elicited an intermediate level, and handling the least. None of the experiential conditions elicited significant levels of Fos in the CeA. We found a previously unreported sex difference in the number of CeA neurons (M>F) that was highly significant and a strong trend toward a sex difference (M>F) in the MePD. These data show that the posterior MeA subnuclei are more responsive to JSS than to benign social interaction, that sex interacts with hemispheric laterality to determine the response of the MePD to JSS and that the MePV responds to social experience and JSS. Taken together, these findings support the hypothesis that juvenile rats process JSS in a sex-specific manner.
Collapse
Affiliation(s)
- Jill M Weathington
- Neuroscience Institute, Georgia State University, 100 Piedmont Avenue, SE, Atlanta, GA 30303‐5030, USA
| | | | | |
Collapse
|
18
|
Cibrian-Llanderal T, Rosas-Aguilar V, Triana-Del Rio R, Perez CA, Manzo J, Garcia LI, Coria-Avila GA. Enhaced D2-type receptor activity facilitates the development of conditioned same-sex partner preference in male rats. Pharmacol Biochem Behav 2012; 102:177-83. [PMID: 22564860 DOI: 10.1016/j.pbb.2012.04.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/07/2012] [Accepted: 04/21/2012] [Indexed: 11/25/2022]
Abstract
Animal models have shown that the neural bases of social attachment, sexual preference and pair bonds, depend on dopamine D2-type receptor and oxytocin activity. In addition, studies have demonstrated that cohabitation can shape partner preference via conditioning. Herein, we used rats to explore the development of learned same-sex partner preferences in adulthood as a result of cohabitation during enhanced D2 activity. Experimental Wistar males (N=20), received saline or the D2 agonist (quinpirole) and were allowed to cohabitate during 24 h, with a stimulus male partner that bore almond scent on the back as conditioned stimulus. This was repeated every 4 days, for a total of three trials. Four days later they were drug-free tested for partner preference between the scented male partner and a sexually receptive female. Sexual partner preference was analyzed by measuring frequency and latency for appetitive and consummatory sexual behaviors, as well as non-contact erections. Social preference was also analyzed by measuring the frequency and latency of visits, body contacts and time spent together. Results indicated that only quinpirole-treated males displayed sexual and social preference for the scented male over the sexually receptive female. They spent more time together, displayed more body contacts, more female-like proceptive behaviors, and more non-contact erections. Accordingly, conditioned males appeared to be more sexually aroused and motivated by the known male than by a receptive female. We discuss the implications of this animal model on the formation of learned homosexual partner preferences.
Collapse
|
19
|
Caquineau C, Leng G, Douglas AJ. Sexual behaviour and neuronal activation in the vomeronasal pathway and hypothalamus of food-deprived male rats. J Neuroendocrinol 2012; 24:712-23. [PMID: 22309296 DOI: 10.1111/j.1365-2826.2012.02290.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
As feeding and mating are mutually-exclusive goal-orientated behaviours, we investigated whether brief food deprivation would impair the display of sexual behaviour of male rats. Analysis of performance in a sexual incentive motivation test revealed that, similar to fed males, food-deprived males preferred spending time in the vicinity of receptive females rather than nonreceptive females. Despite this, food-deprived males were more likely to be slow to mate than normally-fed males, and a low dose of the satiety peptide α-melanocyte-stimulating-hormone attenuated the effect of hunger. Using Fos immunocytochemistry, we compared neuronal activity in the vomeronasal projection pathway in response to oestrous cues from receptive females between food-deprived and fed males. As in fed males, more Fos expression was seen in the rostral part of the bed nucleus of the stria terminalis and in the medial preoptic area in food-deprived males, confirming that food-deprived males can recognise and respond to female oestrous cues. However, although there was also an increase in Fos expression in the bed nucleus of the accessory tract and in the posteromedial amygdala in fed males, no increases were seen in these areas in food-deprived rats. We also found selective attenuation in the activation of lateral posterior paraventricular nucleus (lpPVN) oxytocin neurones in food-deprived males. Taken together, the data show that, although food-deprived males can still become sexually motivated, copulation is delayed, and this is accompanied by variations in neuronal activity in the vomeronasal projection pathway. We propose that, in hungry rats, the lpPVN oxytocin neurones (which project to the spinal cord and are involved in maintaining penile erection) facilitate the transition from motivation to intromission, and their lack of activation impairs intromission, and thus delays mating.
Collapse
Affiliation(s)
- C Caquineau
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
20
|
Dhungel S, Masaoka M, Rai D, Kondo Y, Sakuma Y. Both olfactory epithelial and vomeronasal inputs are essential for activation of the medial amygdala and preoptic neurons of male rats. Neuroscience 2011; 199:225-34. [PMID: 21983295 DOI: 10.1016/j.neuroscience.2011.09.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Revised: 09/26/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
Abstract
Chemosensory inputs signaling volatile and nonvolatile molecules play a pivotal role in sexual and social behavior in rodents. We have demonstrated that olfactory preference in male rats, that is, attraction to receptive female odors, is regulated by the medial amygdala (MeA), the cortical amygdala (CoA), and the preoptic area (POA). In this paper, we investigated the involvement of two chemosensory organs, the olfactory epithelium (OE) and the vomeronasal organ (VNO), in olfactory preference and copulatory behavior in male rats. We found that olfactory preferences were impaired by zinc sulfate lesion of the OE but not surgical removal of the VNO. Copulatory behaviors, especially intromission frequency and ejaculation, were also suppressed by zinc sulfate treatment. Neuronal activation in the accessory olfactory bulb (AOB), the MeA, the CoA, and the POA was analyzed after stimulation by airborne odors or soiled bedding of estrous females using cFos immunohistochemistry. Although the OE and VNO belong to different neural systems, the main and accessory olfactory systems, respectively, both OE lesion and VNO removal almost equally suppressed the number of cFos-immunoreactive cells in those areas that regulate olfactory preference. These results suggest that signals received by the OE and VNO interact and converge in the early stage of olfactory processing, in the AOB and its targets, although they have distinct roles in the regulation of social behaviors.
Collapse
Affiliation(s)
- S Dhungel
- Department of Physiology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo, Tokyo 113-8602, Japan
| | | | | | | | | |
Collapse
|
21
|
Triana-Del Rio R, Montero-Domínguez F, Cibrian-Llanderal T, Tecamachaltzi-Silvaran MB, Garcia LI, Manzo J, Hernandez ME, Coria-Avila GA. Same-sex cohabitation under the effects of quinpirole induces a conditioned socio-sexual partner preference in males, but not in female rats. Pharmacol Biochem Behav 2011; 99:604-13. [PMID: 21704064 DOI: 10.1016/j.pbb.2011.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/30/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
Abstract
The effects of the dopamine D2-type receptor agonist quinpirole (QNP) were examined on the development of conditioned same-sex partner preference induced by cohabitation in rats. In Experiment 1, males received either saline or QNP (1.25mg/kg) and cohabited during three trials with almond-scented stimulus males that were sexually naïve. In Experiment 2, males received six trials, and in Experiment 3 received three trials with sexually expert stimulus males. During a final drug-free preference test, males chose between the familiar or a novel male partner. In Experiments 1, 2 and 3 only QNP-treated males displayed a social preference for the familiar male, observed with more time spent together. In Experiment 3 males also displayed a sexual preference observed with more non-contact erections when were exposed to their male partner. In Experiment 4 we tested the effects on OVX, E+P primed females that received 1 systemic injection of either saline or QNP during three conditioning trials. In Experiment 5, females received 2 injections 12-h apart during each trial. Results indicated that both saline and QNP-treated females failed to develop partner preference. These data demonstrate that enhanced D2-type receptor activity during cohabitation facilitates the development of conditioned same-sex partner preference in males, but not in female rats. We discuss the implications for same-sex partner preferences.
Collapse
|
22
|
Kim J, Semaan SJ, Clifton DK, Steiner RA, Dhamija S, Kauffman AS. Regulation of Kiss1 expression by sex steroids in the amygdala of the rat and mouse. Endocrinology 2011; 152:2020-30. [PMID: 21363930 PMCID: PMC3075940 DOI: 10.1210/en.2010-1498] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Kisspeptin (encoded by the Kiss1 gene) is an important regulator of reproduction. In rodents, Kiss1 is expressed in two hypothalamic regions, the arcuate nucleus and anteroventral periventricular/ periventricular continuum, where it is regulated by sex steroids. However, the distribution, regulation, and functional significance of neural kisspeptin outside of the hypothalamus have not been studied and are poorly understood. Here, we report the expression of Kiss1 in the amygdala, predominantly in the medial nucleus of the amygdala (MeA), a region implicated in social and emotional behaviors as well as various aspects of reproduction. In gonadally intact rats and mice, Kiss1-expressing neurons were identified in the MeA of both sexes, with higher Kiss1 expression levels in adult males than females in diestrus. In rats, Kiss1 expression in the MeA changed as a function of the estrous cycle, with highest levels at proestrus. Next, we tested whether Kiss1 in the MeA is regulated by the circulating sex steroid milieu. Kiss1 levels in the MeA were low in gonadectomized mice and rats of both sexes, and treatment with either testosterone or estradiol amplified Kiss1 expression in this region. Testosterone's inductive effect on Kiss1 expression in the MeA likely occurs via estrogen receptor-dependent pathways, not through the androgen receptor, because dihydrotestosterone (a nonaromatizable androgen) did not affect MeA Kiss1 levels. Thus, in rodents, Kiss1 is expressed and regulated by sex steroids in the MeA of both sexes and may play a role in modulating reproduction or brain functions that extend beyond reproduction.
Collapse
Affiliation(s)
- Joshua Kim
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
23
|
Maras PM, Petrulis A. The anterior medial amygdala transmits sexual odor information to the posterior medial amygdala and related forebrain nuclei. Eur J Neurosci 2010; 32:469-82. [PMID: 20704594 DOI: 10.1111/j.1460-9568.2010.07289.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Syrian hamsters, reproductive behavior relies on the perception of chemical signals released from conspecifics. The medial amygdala (MEA) processes sexual odors through functionally distinct, but interconnected, sub-regions; the anterior MEA (MEAa) appears to function as a chemosensory filter to distinguish between opposite-sex and same-sex odors, whereas the posterodorsal MEA (MEApd) is critical for generating attraction specifically to opposite-sex odors. To identify how these sub-regions interact during odor processing, we measured odor-induced Fos expression, an indirect marker of neuronal activation, in the absence of either MEAa or MEApd processing. In Experiment 1, electrolytic lesions of the MEAa decreased Fos expression throughout the posterior MEA in male hamsters exposed to either female or male odors, whereas MEApd lesions had no effect on Fos expression within the MEAa. These results indicate that the MEAa normally enhances processing of sexual odors within the MEApd and that this interaction is primarily unidirectional. Furthermore, lesions of the MEAa, but not the MEApd, decreased Fos expression within several connected forebrain nuclei, suggesting that the MEAa provides the primary excitatory output of the MEA during sexual odor processing. In Experiment 2, we observed a similar pattern of decreased Fos expression, using fiber-sparing, NMDA lesions of the MEAa, suggesting that the decreases in Fos expression were not attributable exclusively to damage to passing fibers. Taken together, these results provide the first direct test of how the different sub-regions within the MEA interact during odor processing, and highlight the role of the MEAa in transmitting sexual odor information to the posterior MEA, as well as to related forebrain nuclei.
Collapse
Affiliation(s)
- Pamela M Maras
- Georgia State University, Neuroscience Institute, Atlanta, GA 30302-5030, USA.
| | | |
Collapse
|
24
|
Gatson NN, Williams JL, Powell ND, McClain MA, Hennon TR, Robbins PD, Whitacre CC. Induction of pregnancy during established EAE halts progression of CNS autoimmune injury via pregnancy-specific serum factors. J Neuroimmunol 2010; 230:105-13. [PMID: 20950868 DOI: 10.1016/j.jneuroim.2010.09.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/30/2022]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the CNS involving T cell targeting of myelin antigens. During pregnancy, women with MS experience decreased relapses followed by a post partum disease flare. Using murine experimental autoimmune encephalomyelitis, we recapitulate pregnancy findings in both relapsing and progressive models. Pregnant mice produced less TNF-α, IL-17 and exhibited reduced CNS pathology relative to non-pregnant controls. Microparticles, called exosomes, shed into the blood during pregnancy were isolated and found to significantly suppress T cell activation relative to those from non-pregnant controls. These results demonstrate the immunosuppressive potential of pregnancy and serum-derived pregnancy exosomes.
Collapse
Affiliation(s)
- Natosha N Gatson
- Department of Molecular Virology, Immunology and Medical Genetics, The Ohio State University, 760 Biomedical Research Tower, 460 W 12th Avenue, Columbus, OH 43210-1239, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Hosokawa N, Chiba A. Androgen receptor blockade in the posterodorsal medial amygdala impairs sexual odor preference in male rats. Horm Behav 2010; 58:493-500. [PMID: 20430028 DOI: 10.1016/j.yhbeh.2010.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 04/13/2010] [Accepted: 04/17/2010] [Indexed: 02/05/2023]
Abstract
The present study was designed to investigate the role of androgen in the medial amygdala (MeA) in the expression of sexual odor preference in male rats. Gonadally intact, sexually experienced male rats received bilateral administration of flutamide, an androgen receptor (AR) blocker, aimed at either the posterior dorsal part (MePD) or the anterior dorsal part (MeAD) of the MeA through inner cannulae inserted into the implanted guide cannulae. Prior to flutamide administration, all subjects spent longer sniffing volatile odors from an estrous female than those from a sexually active male. Experiment 1 demonstrated that the preference for the female odors over the male odors was eliminated during flutamide administration into the MePD, but not into either the MeAD or outside MePD/MeAD. This elimination of the female-directed odor preference resulted from increase of time sniffing the male odors rather than decrease of time sniffing the estrous odors. In Experiment 2, odor discrimination tests confirmed that the flutamide administration into the MePD did not induce impairment in the ability of the subjects to discriminate the estrous odors from the male odors. These results demonstrated that activation of AR in the MePD plays a critical role in the expression of the preference for estrous odors over male odors. AR blockade, however, seemed to induce a preference for male odors rather than reduce the existing preference for estrous odors, suggesting a complicated regulation of sexual odor preference by sex steroids.
Collapse
Affiliation(s)
- Nami Hosokawa
- Department of Materials and Life Sciences, Sophia University, Tokyo 102-8554, Japan
| | | |
Collapse
|
26
|
Delgadillo JA, Gelez H, Ungerfeld R, Hawken PAR, Martin GB. The 'male effect' in sheep and goats--revisiting the dogmas. Behav Brain Res 2009; 200:304-14. [PMID: 19374015 DOI: 10.1016/j.bbr.2009.02.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Male-induced ovulation in sheep and goats (the 'male effect'), documented during the period 1940-1960, has long been shrouded in preconceptions concerning how, when and why it worked. These preconceptions became dogmas but recent research is challenging them so, in this review, we have re-visited some major physiological (breed seasonality; characteristics of the response; the nature of the male stimuli) and physical factors (duration of male presence; isolation from male stimuli) that affect the phenomenon. We reject the dogma that ewes must be isolated from males and conclude that male 'novelty' is more important than isolation per se. Similarly, we reject the perception that the neuroendocrine component of the male effect is restricted to anovulatory females. Finally, we re-assess the relative importance of olfactory and non-olfactory signals, and develop a perspective on the way male-induced ovulation fits with preconceptions about pheromonal processes in mammals. Overall, our understanding of the male effect has evolved significantly and it is time to modify or reject our dogmas so this field of research can advance. We can now ask new questions regarding the application of the male effect in industry and develop research so we can fully understand this biological phenomenon.
Collapse
Affiliation(s)
- J Alberto Delgadillo
- Centro de Investigación en Reproducción Caprina, Universidad Autónoma Agraria Antonio Narro, Periférico Raúl López Sánchez y Carretera a Santa Fe, Coahuila, Mexico.
| | | | | | | | | |
Collapse
|
27
|
Dominguez JM. A Role for Preoptic Glutamate in the Regulation of Male Reproductive Behavior. Neuroscientist 2008; 15:11-9. [DOI: 10.1177/1073858408322679] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although much progress has been made toward understanding the role of the medial preoptic area (MPOA) in the regulation of male reproductive behaviors, the precise mechanisms responsible for its activation during mating are largely unclear. Several studies implicate glutamate in this response. However, not until recently was there direct evidence supporting this hypothesis. Results obtained using in vivo microdialysis showed that levels of glutamate increased in the MPOA during mating, particularly with ejaculation. Levels then decreased rapidly following ejaculation, during a period of sexual quiescence. The magnitude of this decrease correlated with time spent in quiescence. Additionally, central administration of glutamate uptake inhibitors increased levels of glutamate and facilitated behavior. Glutamate activation of N-methyl-D-aspartate (NMDA) receptors in the MPOA is at least partly responsible for behavioral effects evoked by increase glutamate. This is evidenced by histological analysis of the MPOA, which shows that nearly all cells containing mating-induced Fos also contained NMDA receptors. Mating also increased phosphorylation of NMDA receptors, indicating receptor activation. Finally, bilateral microinjections of NMDA receptor antagonists inhibited copulation. This neurochemical, anatomical, and behavioral evidence points to a key role of preoptic glutamate in the regulation of sexual behavior in males. The implications of these findings are discussed.
Collapse
Affiliation(s)
- Juan M. Dominguez
- Department of Psychology, The University of Texas at Austin, Austin, Texas,
| |
Collapse
|
28
|
Masculinization induced by neonatal exposure to PGE(2) or estradiol alters c-fos induction by estrous odors in adult rats. Physiol Behav 2008; 96:383-8. [PMID: 18976678 DOI: 10.1016/j.physbeh.2008.10.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Revised: 09/29/2008] [Accepted: 10/02/2008] [Indexed: 11/23/2022]
Abstract
Processing of relevant olfactory and pheromonal cues has long been known as an important process necessary for social and sexual behavior in rodents. Several nuclei that receive input from the vomeronasal projection pathway are involved in sexual behavior and show changes in immediate early gene expression after stimulation with a variety of sex-related stimuli. The nuclei in this pathway are sexually dimorphic due to the early patterning events induced by estradiol derived from testicular androgens, which developmentally defeminize and masculinize the brain and adult sexual behavior. Masculinization can be induced independently of estradiol via prostaglandin-E(2) (PGE(2)), and therefore assessed separately from defeminization. Here we examined the effects of brain defeminization and masculinization on neuronal response to sex-related odors using Fos, the protein product of the immediate early gene c-fos, as an indicator of activity. Female rat pups treated with a cyclooxygenase-2 inhibitor, to reduce PGE(2), plus estradiol, estradiol alone, and PGE(2) alone were exposed to estrous female odor as adults and the resulting Fos expression was examined in the medial amygdala, preoptic area, and ventromedial nucleus of the hypothalamus. Defeminized and/or masculinized females all showed patterns of Fos activity similar to control males and significantly different from control females. These results suggest that early exposure to estradiol and PGE(2) do not affect olfaction in females, but switch the activity pattern of sex-related nuclei in females to resemble that of males following exposure to sexually-relevant cues.
Collapse
|
29
|
Hernández-González M, Guevara MA, Ågmo A. Motivational Influences on the Degree and Direction of Sexual Attraction. Ann N Y Acad Sci 2008; 1129:61-87. [DOI: 10.1196/annals.1417.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Knapska E, Radwanska K, Werka T, Kaczmarek L. Functional internal complexity of amygdala: focus on gene activity mapping after behavioral training and drugs of abuse. Physiol Rev 2007; 87:1113-73. [PMID: 17928582 DOI: 10.1152/physrev.00037.2006] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The amygdala is a heterogeneous brain structure implicated in processing of emotions and storing the emotional aspects of memories. Gene activity markers such as c-Fos have been shown to reflect both neuronal activation and neuronal plasticity. Herein, we analyze the expression patterns of gene activity markers in the amygdala in response to either behavioral training or treatment with drugs of abuse and then we confront the results with data on other approaches to internal complexity of the amygdala. c-Fos has been the most often studied in the amygdala, showing specific expression patterns in response to various treatments, most probably reflecting functional specializations among amygdala subdivisions. In the basolateral amygdala, c-Fos expression appears to be consistent with the proposed role of this nucleus in a plasticity of the current stimulus-value associations. Within the medial part of the central amygdala, c-Fos correlates with acquisition of alimentary/gustatory behaviors. On the other hand, in the lateral subdivision of the central amygdala, c-Fos expression relates to attention and vigilance. In the medial amygdala, c-Fos appears to be evoked by emotional novelty of the experimental situation. The data on the other major subdivisions of the amygdala are scarce. In conclusion, the studies on the gene activity markers, confronted with other approaches involving neuroanatomy, physiology, and the lesion method, have revealed novel aspects of the amygdala, especially pointing to functional heterogeneity of this brain region that does not fit very well into contemporarily active debate on serial versus parallel information processing within the amygdala.
Collapse
|
31
|
Hosokawa N, Chiba A. Effects of sexual experience on conspecific odor preference and male odor-induced activation of the vomeronasal projection pathway and the nucleus accumbens in female rats. Brain Res 2007; 1175:66-75. [PMID: 17870062 DOI: 10.1016/j.brainres.2007.07.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 07/26/2007] [Accepted: 07/28/2007] [Indexed: 01/01/2023]
Abstract
In the present study in estrogen-progesterone primed ovariectomized female rats, we examined the expression of a preference for male odors and male odor-induced Fos immunoreactivity throughout the vomeronasal projection pathway and the nucleus accumbens (NAcc), using both sexually experienced and sexually naive subjects. Female rats significantly preferred airborne odors and soiled bedding from sexually active males over those from estrous females, irrespective of the presence or absence of prior sexual experience. On the other hand, the brain regions in which exposure to male-soiled bedding significantly increased Fos expression were different between sexually experienced and sexually naive subjects. Significant increment of Fos expression in the posterior-dorsal medial amygdala (MePD) and the bed nucleus of stria terminalis (BNST) in forebrain, as well as the accessory olfactory bulb, was observed in both groups of subjects. Fos expression in the anterior-dorsal medial amygdala (MeAD), the medial preoptic area (mPOA) and the NAcc core, however, was significantly increased only in the sexually experienced subjects. These results suggested that male odor-induced activations of the MePD and/or the BNST, but not of the MeAD, the mPOA and the NAcc core, are required for the expression of a male-directed odor preference in female rats.
Collapse
Affiliation(s)
- Nami Hosokawa
- Life Science Insutitute, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan
| | | |
Collapse
|
32
|
Phillips-Farfán BV, Fernández-Guasti A. c-Fos expression related to sexual satiety in the male rat forebrain. Physiol Behav 2007; 91:609-19. [PMID: 17482654 DOI: 10.1016/j.physbeh.2007.03.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2006] [Revised: 02/02/2007] [Accepted: 03/26/2007] [Indexed: 12/16/2022]
Abstract
The long term inhibition of masculine sexual behavior after repeated ejaculations is known as sexual satiety. To investigate the brain areas that may regulate sexual satiety, c-Fos expression was studied in different groups of sexually experienced male rats: controls not allowed to copulate, males allowed two or four ejaculations and animals allowed to reach sexual satiety. Interestingly, males that ejaculated two or four times had similar c-Fos densities in all the evaluated brain regions, except for the suprachiasmatic nucleus. Similarly, sexually satiated males had analogous c-Fos densities in all the evaluated brain areas independently of the number of ejaculations required to reach satiety. Sexual activity (evidenced in males that ejaculated two or four times) increased c-Fos levels in the anteromedial bed nucleus of the stria terminalis, claustrum, entorhinal cortex, medial preoptic area, nucleus accumbens core, suprachiasmatic nucleus and supraoptic nucleus; however, sexual satiety did not modify c-Fos expression in these regions. Sexually satiated males had increased c-Fos densities in the ventrolateral septum and the anterodorsal and posteroventral medial amygdala, compared with animals allowed to copulate but that did not reach sexual satiety, and decreased c-Fos density in the piriform cortex. These results suggest that the network that underlies sexual satiety is different from that which regulates copulation.
Collapse
|
33
|
Gelez H, Fabre-Nys C. Role of the olfactory systems and importance of learning in the ewes' response to rams or their odors. ACTA ACUST UNITED AC 2006; 46:401-15. [PMID: 16824449 DOI: 10.1051/rnd:2006021] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
In sheep, exposure of seasonally anestrous females to the male or its fleece results in activation of luteinizing hormone (LH) secretion and synchronized ovulation. The study of the neural pathways involved in this phenomenon, commonly named "male effect", show that the main olfactory system plays a critical role in the detection and the integration of the male odor. The accessory olfactory system participates in the perception of the ram odor but does not seem necessary for the endocrine response. According to the hypothesis that the neuroanatomical differences between the two olfactory systems could be associated with different functional roles, we investigated the importance of sexual experience and learning processes in the male effect. Our results showed that female responses depend on previous sexual experience. We also demonstrated that the LH response to male odor could result from an associative learning process. The aim of the present report was to summarize our current knowledge concerning the "male effect" and in particular to clarify the role of sexual experience and learning in the processes involved in this effect.
Collapse
Affiliation(s)
- Hélène Gelez
- Station de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA-CNRS-Université de Tours-Haras Nationaux, 37380 Nouzilly, France
| | | |
Collapse
|
34
|
King BM. Amygdaloid lesion-induced obesity: relation to sexual behavior, olfaction, and the ventromedial hypothalamus. Am J Physiol Regul Integr Comp Physiol 2006; 291:R1201-14. [PMID: 16778067 DOI: 10.1152/ajpregu.00199.2006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Lesions of the amygdala have long been known to produce hyperphagia and obesity in cats, dogs, and monkeys, but only recently have studies with rats determined that the effective site is the posterodorsal amygdala (PDA)-the posterodorsal medial amygdaloid nucleus and the intra-amygdaloid bed nucleus of the stria terminalis. There is a sex difference; female rats with PDA lesions display greater weight gain than male rats. In the brains of female rats with obesity-inducing PDA lesions, there is a dense pattern of axonal degeneration in the capsule of the ventromedial hypothalamus (VMH) and other targets of the stria terminalis. Transections of the dorsal component of the stria terminalis also result in hyperphagia and obesity in female rats. Similar to rats with VMH lesions, rats with PDA lesions are hyperinsulinemic during food restriction and greatly prefer high-carbohydrate diets. The PDA is also a critical site for some aspects of rodent sexual behavior, particularly those that depend on olfaction, and the pattern of degeneration observed after obesity-inducing PDA lesions is remarkably parallel to the circuit that has been proposed to mediate sexual behavior. Medial amygdaloid lesions disrupt the normal feeding pattern and result in impaired responses to caloric challenges, and there is evidence that these behavioral changes are also due to a disruption of olfactory input. With its input from the olfactory bulbs and connections to the VMH, the PDA may be a nodal point at which olfactory and neuroendocrine stimuli are integrated to affect feeding behavior.
Collapse
Affiliation(s)
- Bruce M King
- Dept. of Psychology, Univ. of New Orleans, New Orleans, LA 70148, USA.
| |
Collapse
|
35
|
Cooke BM. Steroid-dependent plasticity in the medial amygdala. Neuroscience 2006; 138:997-1005. [PMID: 16330154 DOI: 10.1016/j.neuroscience.2005.06.018] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Revised: 05/31/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
Behavioral sex differences have traditionally been thought to arise from gonadal steroids during a neonatal sensitive period. However, it is possible to sex-reverse certain behaviors by reversing the levels of circulating androgen in adult males and females. These results suggest that the sexually dimorphic substrates of sex behavior are subject to a high degree of plasticity, even in adulthood. I have found that circulating androgen exerts a trophic effect on the Nissl-stained morphology of an important nucleus in the control of sex behavior, namely, the posterodorsal subnucleus of the medial amygdala. First, sex-reversing the level of circulating androgen reversed the sex difference in soma size and regional volume of the posterodorsal subnucleus of the medial amygdala in adult rats. Interestingly, activation of both androgen and estrogen receptors was necessary for the post-castration maintenance of a masculine phenotype in terms of posterodorsal subnucleus of the medial amygdala cell size, whereas only estrogen receptor activity was necessary to maintain a masculine posterodorsal subnucleus of the medial amygdala volume. Then, we showed that seasonal variation in androgen was correlated with morphologic plasticity in the posterodorsal subnucleus of the medial amygdala of the Siberian hamster. However, if the experimental males were housed with females, their posterodorsal subnucleus of the medial amygdalas failed to regress in response to winter-like short daylengths. Furthermore, when male hamsters were castrated and treated with testosterone, the posterodorsal subnucleus of the medial amygdala responded to the hormone only if the animals were in summer-like photoperiods. Overall, these findings indicate that circulating androgens are critical for the maintenance of greater posterodorsal subnucleus of the medial amygdala regional volumes and soma sizes, and that environmental variables can regulate testosterone secretion and responsiveness.
Collapse
Affiliation(s)
- B M Cooke
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
36
|
Kondo Y, Sakuma Y. The medial amygdala controls the coital access of female rats: a possible involvement of emotional responsiveness. ACTA ACUST UNITED AC 2006; 55:345-53. [PMID: 16409669 DOI: 10.2170/jjphysiol.rp001105] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2005] [Accepted: 12/20/2005] [Indexed: 11/05/2022]
Abstract
Partner preference and paced mating tests were accomplished in ovariectomized female rats following bilateral radiofrequency lesions in the medial amygdala. Open field behavior and passive avoidance learning were also examined to investigate the underlying behavioral mechanism. Partner preference was determined in a chamber located between castrated and sexually active males. Airborne olfactory cues were presented to the female through small holes on the partition. The lesion diminished preference for the odor of sexually active males over that of castrated males, even after injection with a high-dose of estrogen. On the other hand, in a paced mating test the lesioned females without estrogen treatment showed a significantly shorter latency for entering the male's compartment in a two-compartment apparatus, which allowed the females, but not the males, to cross the barrier through a narrow opening at the bottom. However, an administration of estrogen and progesterone reduced the effect. The lesion had no effect on emotionality or exploratory behavior in an open field test, but it impaired passive avoidance learning capability. We suggest that a male poses an inherent threat to a female. The seemingly incompatible results of partner preference and paced mating tests can be compromised if the male is inherently aversive to the female; this emotional response can be removed by the medial amygdala lesion.
Collapse
Affiliation(s)
- Yasuhiko Kondo
- Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan.
| | | |
Collapse
|
37
|
Hosokawa N, Chiba A. Effects of sexual experience on conspecific odor preference and estrous odor-induced activation of the vomeronasal projection pathway and the nucleus accumbens in male rats. Brain Res 2005; 1066:101-8. [PMID: 16330001 DOI: 10.1016/j.brainres.2005.10.036] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/12/2005] [Accepted: 10/15/2005] [Indexed: 01/08/2023]
Abstract
Male rats prefer odors from estrous females to those from sexually active males. Several studies, however, have demonstrated that prior sexual experience was required to develop the preference for estrous odor. Immunohistological methods for visualizing Fos protein have been shown that in sexually experienced male rats, estrous odors activate brain areas throughout the vomeronasal projection pathway (VN pathway) and the nucleus accumbens (NAcc). In the present study, we examined the contribution of prior sexual experience to the estrous odor-induced neuronal activation of these brain areas in relation to the development of the preference for estrous odor. Sexually experienced testosterone-implanted castrates showed the preference for the odor from an estrous female as opposed to the odor from a sexually active male. In these subjects, significant increment of Fos-like immunoreactivity (Fos-Li) after exposure to estrous female soiled bedding was observed in all brain regions examined, confirming the results of previous studies. Sexually naïve subjects, on the other hand, did not show the preference for estrous odor and the significant increment of Fos-Li was observed only in the accessory olfactory bulb (AOB) and the posterior-dorsal medial amygdala (MePD) of the VN pathway. These results suggested that sexual experience is required for the estrous odor-induced activation of more central portions of the VN pathway, such as the medial preoptic area (mPOA) and the bed nucleus of the stria terminalis (BNST), and the NAcc. The activation of some of these brain regions, therefore, is probably involved in the development of the preference for estrous odor.
Collapse
Affiliation(s)
- Nami Hosokawa
- Life Science Insititute, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | | |
Collapse
|
38
|
Xu F, Schaefer M, Kida I, Schafer J, Liu N, Rothman DL, Hyder F, Restrepo D, Shepherd GM. Simultaneous activation of mouse main and accessory olfactory bulbs by odors or pheromones. J Comp Neurol 2005; 489:491-500. [PMID: 16025460 DOI: 10.1002/cne.20652] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is generally believed that the main olfactory system processes common odors and the accessory olfactory system is specifically for pheromones. The potential for these two systems to respond simultaneously to the same stimuli has not been fully explored due to methodological limitations. Here we examine this phenomenon using high-resolution functional magnetic resonance imaging (fMRI) to reveal simultaneously the responses in the main (MOB) and accessory olfactory bulbs (AOB) to odors and pheromones. Common odorants elicited strong signals in the MOB and weak signals in the AOB. 2-Heptanone, a known mouse pheromone, elicited strong signals in both the MOB and AOB. Urine odor, a complicated mixture of pheromones and odorants, elicited significant signals in limited regions of the MOB and large regions of the AOB. The fMRI results demonstrate that both the main and the accessory olfactory systems may respond to volatile compounds but with different selectivity, suggesting a greater integration of the two olfactory pathways than traditionally believed.
Collapse
Affiliation(s)
- Fuqiang Xu
- Department of Diagnostic Radiology, Yale Medical School, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Gelez H, Fabre-Nys C. The "male effect" in sheep and goats: a review of the respective roles of the two olfactory systems. Horm Behav 2004; 46:257-71. [PMID: 15325227 DOI: 10.1016/j.yhbeh.2004.05.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 03/24/2004] [Accepted: 05/12/2004] [Indexed: 10/26/2022]
Abstract
In sheep and goats, exposure of seasonally anestrous females to sexually active males results in activation of luteinizing hormone (LH) secretion and synchronized ovulation. This phenomenon is named "the male effect" and seems to constitute a major factor in the control of reproductive events. This effect depends mostly on olfactory cues and is largely mimicked by exposure to male fleece only. In sheep, preventing the vomeronasal organ (VNO) from functioning does not affect the female responses to male odor suggesting that, unlike in rodents, the accessory olfactory system does not play the major role in the perception of this pheromonal cue. Female responses also seem to depend on previous experience, an effect that is not common for pheromones and renders this model of special interest. The aim of the present report is to summarize our current knowledge concerning the "male effect" and in particular to clarify the respective roles of the two olfactory systems in the processes involved in this effect.
Collapse
Affiliation(s)
- H Gelez
- Station de Physiologie de la Reproduction et des Comportements, UMR 6175 INRA/CNRS/Université de Tours-37380 Nouzilly, France.
| | | |
Collapse
|
40
|
Melis MR, Succu S, Mascia MS, Cortis L, Argiolas A. Extracellular excitatory amino acids increase in the paraventricular nucleus of male rats during sexual activity: main role of N-methyl-d-aspartic acid receptors in erectile function. Eur J Neurosci 2004; 19:2569-75. [PMID: 15128410 DOI: 10.1111/j.0953-816x.2004.03362.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The concentrations of glutamic and aspartic acids were measured in the dialysate obtained with vertical microdialysis probes implanted into the paraventricular nucleus of the hypothalamus of sexually potent male rats during sexual activity. Animals showed noncontact erections when put in the presence of, and copulated with, a receptive (ovarietomized oestrogen- and progesterone-primed) female rat. The concentrations of glutamic and aspartic acids in the paraventricular dialysate increased by 37 and 80%, respectively, above baseline values during exposure to the receptive female rat and by 55 and 127%, respectively, during copulation. No changes in the concentrations of glutamic and aspartic acids were detected in the paraventricular dialysate when sexually potent male rats were exposed to nonreceptive (ovariectomized not oestrogen- and progesterone-primed) female rats or when impotent male rats were used. The injection into the paraventricular nucleus of the excitatory amino acid receptor antagonist dizocilpine (5 micro g), a noncompetitive N-methyl-d-aspartic acid receptor antagonist, reduced noncontact erections and significantly impaired copulatory activity. The alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor antagonist 6-cyano-7-nitro-quinoxaline-2,3-dione (5 micro g) was also able to impair copulatory activity, but to a much lower extent than dizocilpine. In contrast, (+/-)-2-amino-4-phosphono-butanoic acid, a metabotropic receptor antagonist (5 micro g), was found to be ineffective. These results confirm the involvement of the paraventricular nucleus in the control of erectile function and copulatory behaviour and show that excitatory amino acid concentration increases in the paraventricular nucleus when penile erection occurs in physiological contexts.
Collapse
Affiliation(s)
- Maria Rosaria Melis
- Bernard B. Brodie Department of Neuroscience and Center of Excellence for the Neurobiology of Addictions, University of Cagliari, Cittadella Universitaria, S.P. Monserrato-Sestu, Km 0.700, 09042 Monserrato (CA), Italy.
| | | | | | | | | |
Collapse
|
41
|
Matsuoka M, Yoshida-Matsuoka J, Yamagata K, Sugiura H, Ichikawa M, Norita M. Rapid induction of Arc is observed in the granule cell dendrites in the accessory olfactory bulb after mating. Brain Res 2003; 975:189-95. [PMID: 12763607 DOI: 10.1016/s0006-8993(03)02634-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The activity-regulated cytoskeleton-associated protein (Arc), encoded by the immediate early gene arc, is enriched in the brain and is hypothesized to play a role in the activity-dependent neuronal plasticity in the hippocampus. In the present study, the time course of Arc expression during the post-mating period was determined immunocytochemically, and the localization of Arc in the neurons in the accessory olfactory bulb (AOB) of female mice after mating was analyzed using immunocytochemical electron microscopy. Transient increases in the number of Arc-immunoreactive cells were observed in the glomerular, mitral/tufted cell and granule cell layers of the AOB after mating. In particular, the increase in the granule cell layer was remarkable, and larger than the increases in the other layers. In addition, electron microscopic observation revealed that Arc immunoreactivity was in the dendrites of the granule cells 1.5 h after mating. These results indicate that expression of Arc protein is induced rapidly and transiently in granule cell dendrites after mating. It is postulated that Arc protein has a role in the neuronal plasticity of the AOB after mating.
Collapse
Affiliation(s)
- Masato Matsuoka
- Division of Neurobiology and Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 1-757 Asahimachidori, Niigata 951-8510, Japan.
| | | | | | | | | | | |
Collapse
|
42
|
Kippin TE, Cain SW, Pfaus JG. Estrous odors and sexually conditioned neutral odors activate separate neural pathways in the male rat. Neuroscience 2003; 117:971-9. [PMID: 12654349 DOI: 10.1016/s0306-4522(02)00972-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Olfactory stimuli play important roles in sexual behavior. Previous studies have demonstrated that both estrous odors and initially neutral odors paired with copulation influence the sexual behavior of male rats. The present study examines the pattern of neural activation as revealed by Fos immunoreactivity (Fos-IR) following exposure to bedding scented with either a neutral odor (almond) paired previously with copulation, estrous odors or no odor. Following exposure to estrous odors Fos-IR increased in the accessory olfactory bulb, medial amygdala, medial bed nucleus of the stria terminalis, medial preoptic area, ventromedial hypothalamus, ventral tegmental area, and both the nucleus accumbens core and shell. Conversely, following exposure to the sexually conditioned odor Fos-IR increased in the piriform cortex, basolateral amygdala, nucleus accumbens core, and the anterior portion of the lateral hypothalamic area. In addition, following exposure to almond odor Fos-IR increased in the main olfactory bulb independent of its pairing with copulation. These patterns of Fos-IR following exposure to estrous or sexually conditioned odors were not influenced by either the addition or omission of the other type of odor. These findings demonstrate that estrous and sexually conditioned odors are processed by distinct neural pathways and converge in the nucleus accumbens core, suggesting that this structure has a unique role in processing sexual stimuli of both pheromonal and olfactory natures.
Collapse
Affiliation(s)
- T E Kippin
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, QC, Montréal, Canada.
| | | | | |
Collapse
|
43
|
Fernandez-Guasti A, Swaab D, Rodríguez-Manzo G. Sexual behavior reduces hypothalamic androgen receptor immunoreactivity. Psychoneuroendocrinology 2003; 28:501-12. [PMID: 12689608 DOI: 10.1016/s0306-4530(02)00036-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Male sexual behavior is regulated by limbic areas like the medial preoptic nucleus (MPN), the bed nucleus of the stria terminalis (BST), the nucleus accumbens (nAcc) and the ventromedial hypothalamic nucleus (VMN). Neurons in these brain areas are rich in androgen receptors (AR) and express FOS-immunoreactivity in response to mating. In many species sexual satiation, a state of sexual behavior inhibition, is attained after multiple ejaculations. The mechanisms underlying sexual satiation are largely unknown. In this study we show that sexual activity reduces androgen receptor immunoreactivity (AR-ir) in some of the brain areas associated with the control of male sexual behavior, but not in others. Thus, one ejaculation reduced the AR-ir in the MPN and nAcc, but not in the BST and VMN. Copulation to satiation, on the other hand, reduced AR-ir in the MPN, nAcc and VMN, and not in the BST. The AR-ir reduction observed in the MPN of sexually satiated rats was drastic when compared to that of animals ejaculating once. Serum androgen levels did not vary after one ejaculation or copulation to exhaustion. These data reveal that sexual activity reduces AR in specific brain areas and suggest the possibility that such a reduction underlies the sexual inhibition that characterizes sexual satiety.
Collapse
Affiliation(s)
- Alonso Fernandez-Guasti
- Department of Pharmacobiology, CINVESTAV, Calz. De los Tenorios 235, Col. Granjas Coapa, Mexico 14330 D.F., Mexico.
| | | | | |
Collapse
|
44
|
Matsuoka M, Yoshida-Matsuoka J, Sugiura H, Yamagata K, Ichikawa M, Norita M. Mating behavior induces differential Arc expression in the main and accessory olfactory bulbs of adult rats. Neurosci Lett 2002; 335:111-4. [PMID: 12459511 DOI: 10.1016/s0304-3940(02)01187-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The expression of activity-related cytoskeleton-associated protein, Arc, could be useful as a marker for neuronal activity. We investigated Arc-immunoreactivity in both the accessory olfactory bulb (AOB) and the main olfactory bulb (MOB) of adult male rats in response to mating or exposure to female pheromones. Mating behavior strongly enhanced the Arc-immunoreactivity in the granule cell layer of the AOB. However, the enhancement of Arc-immunoreactivity by mating behavior was not observed in the MOB. These results showed that Arc-immunoreactivity was enhanced when the AOB received both afferent and efferent information during mating behavior. Hence, the expression of Arc in the AOB directly associates the pheromonal information with mating behavior. The AOB will provide a useful model to investigate the function of Arc protein.
Collapse
Affiliation(s)
- Masato Matsuoka
- Division of Neurobiology and Anatomy, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8510, Niigata, Japan
| | | | | | | | | | | |
Collapse
|
45
|
Bialy M, Sachs BD. Androgen implants in medial amygdala briefly maintain noncontact erection in castrated male rats. Horm Behav 2002; 42:345-55. [PMID: 12460594 DOI: 10.1006/hbeh.2002.1821] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Castration of male rats causes a rapid loss of their normal erectile response to inaccessible estrous females. Previous studies had demonstrated that these noncontact erections (NCEs), a putative sign of sexual arousal, could be restored by systemic treatment with testosterone (T) or dihydrotestosterone (DHT), but not estradiol (E). We examined whether androgen delivered to the medial amygdala (MeA) of castrated rats would maintain NCE. In Experiment 1, males received bilateral cannulae filled with T, DHT, or E directed at the MeA. Control males had the same hormone-filled cannulae implanted subcutaneously and blank cannulae in the MeA, or they received T in the anterior forebrain. During the 2 weeks after surgery, males were tested twice for NCE and copulation. About half the males with androgens in the MeA had NCEs 1 week after castration, but few responded a week later. Closer proximity of androgen implants to the posterodorsal MeA (MeApd) predicted shorter NCE latencies. No males with subcutaneous androgen had NCEs in either test, and few anterior forebrain-implanted males did. Some males receiving E in MeA or subcutaneously had NCE in each test. In copulation tests, the type of steroid treatment did not affect the incidence of ejaculation or most measures of copulation, and the proximity of cannulae to MeApd predicted only the time from ejaculation to the occurrence of NCE during the postejaculatory interval. Experiment 2 showed that NCEs displayed by males with androgen in MeA occurred in response to estrous females, not spontaneously. The results suggest that androgens, perhaps augmented by estrogen, act in the posterodorsal MeA to facilitate NCE and its associated arousal.
Collapse
Affiliation(s)
- Michal Bialy
- Department of Experimental and Clinical Physiology, Medical University of Warsaw, 00-927, Warsaw, Poland.
| | | |
Collapse
|
46
|
Kondo Y, Sachs BD. Disparate effects of small medial amygdala lesions on noncontact erection, copulation, and partner preference. Physiol Behav 2002; 76:443-7. [PMID: 12126978 DOI: 10.1016/s0031-9384(02)00682-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Male rats with radiofrequency lesions in the anterior medial amygdala (MeAa) or the posterior medial amygdala (MeAp), respectively, were tested for copulation and for noncontact erection (NCE; evoked by inaccessible estrous females) in a chamber in which the male was located between estrous and anestrous females. Barriers allowed only olfactory and auditory interaction between animals. With conscious females as stimuli, MeAp lesions virtually eliminated NCEs, and MeAa lesions moderately impaired them, without affecting the normal preference for estrous over anestrous females. When tested with anesthetized females to remove auditory stimulation, few males with lesions had NCEs. Only the males with MeAp lesions had a significant reduction in preference for estrous over anestrous anesthetized females. Neither MeAa nor MeAp lesions had an effect on copulatory behavior. MeAp lesions may have caused a reduced sensitivity to--or impaired processing of--estrous odors, thereby preventing NCE without disrupting copulatory behavior.
Collapse
Affiliation(s)
- Yasuhiko Kondo
- Department of Psychology, University of Connecticut, Storrs, CT, USA.
| | | |
Collapse
|
47
|
Melis MR, Argiolas A. Reduction of drug-induced yawning and penile erection and of noncontact erections in male rats by the activation of GABAA receptors in the paraventricular nucleus: involvement of nitric oxide. Eur J Neurosci 2002; 15:852-60. [PMID: 11906527 DOI: 10.1046/j.1460-9568.2002.01922.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effect of muscimol, a GABAA receptor agonist, injected into the paraventricular nucleus (PVN) of the hypothalamus on drug-induced (apomorphine, oxytocin and NMDA) yawning and penile erection, and on the increase in the concentration of NO2- and NO3- occurring in the paraventricular dialysate in these experimental conditions, was studied in male rats. Muscimol (50, 100 and 200 ng) reduced, in a dose-dependent manner, penile erection and yawning induced by apomorphine (50 ng), oxytocin (30 ng) and NMDA (50 ng) delivered into the PVN. The reduction of penile erection and yawning was parallel to a reduction of the concomitant NO2- and NO3- increase that occurs in the paraventricular dialysate in this experimental condition. In contrast, baclofen (200 ng), a GABAB receptor agonist, was ineffective. The muscimol effects on drug-induced penile erection, yawning and NO2- increase were prevented by the prior administration of bicuculline (250 ng into the paraventricular nucleus). Muscimol (200 ng) but not baclofen (200 ng), injected into the PVN, reduced both noncontact erections in male rats placed in the presence of an inaccessible receptive female, and also the NO2- increase that occurs in the paraventricular dialysate in this experimental condition. As found with drug-induced penile erection, the muscimol reduction of noncontact erections and of NO2- increase was prevented by bicuculline. The present results show that the activation of GABAA receptors in the PVN reduces yawning and penile erection induced by drugs or physiological stimuli by reducing the increase in NO activity that occurs in this hypothalamic nucleus in these experimental conditions.
Collapse
Affiliation(s)
- Maria Rosaria Melis
- Bernard B. Brodie Department of Neuroscience, University of Cagliari, S.P. Monserrato-Sestu, Km 0.700, 09042 Monserrato (CA), Italy.
| | | |
Collapse
|
48
|
Abstract
Studies of the response of rodents to predatory odors (mainly cat) have provided useful insights into the nature of defensive behavior. This article reviews work in this area with a focus on a behavioral paradigm recently developed in our laboratory in which we present rats with a piece of fabric collar that has been previously worn by a cat. Rats presented with this stimulus spent most of their time engaged in a behavior we call 'head out' in which the rat pokes its head out from a hide box and scans the environment. Periodic 'flat back approaches' and 'vigilant rearing' towards the cat odor source are seen as well as inhibition of non-defensive behaviors such as locomotor activity and grooming. Cat odor causes a sustained increase in blood pressure (> 15mm Hg) without greatly affecting heart beat rate. Rats will develop conditioned fear to both contexts and cues that have been paired with cat odor. C-fos immunohistochemistry indicates that cat odor selectively activates a defensive behavior circuit involving the medial amygdala, ventromedial and dorsomedial hypothalamus, dorsal premammillary nucleus and the periaqueductal gray. The defensive response to cat odor is attenuated by acute administration of the benzodiazepine midazolam (0.375 mg/kg), with chronically administered SSRI antidepressants and acute alcohol exerting more modest anxiolytic effects. The behavioral response to cat odor is very different to that seen to trimethylthiazoline (TMT: fox odor) which has effects more like those seen to an aversive putrid odor. It is concluded that cat odor is a useful tool for elucidating behavioral, neural, pharmacological and autonomic aspects of defensive behavior and anxiety.
Collapse
Affiliation(s)
- R A Dielenberg
- Department of Psychology, University of Sydney, 2006, Sydney, NSW, Australia
| | | |
Collapse
|
49
|
Swann J, Rahaman F, Bijak T, Fiber J. The main olfactory system mediates pheromone-induced fos expression in the extended amygdala and preoptic area of the male Syrian hamster. Neuroscience 2001; 105:695-706. [PMID: 11516834 DOI: 10.1016/s0306-4522(01)00227-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Copulation in male hamsters is stimulated by exposure to vaginal secretions of conspecifics. These pheromones also stimulate fos expression in neural areas that regulate copulation including: the medial nucleus of the amygdala, the bed nucleus of the stria terminalis, and the preoptic area. The pheromones in vaginal secretions are detected by both the main and accessory olfactory systems. However, the accessory system plays the greater role in the regulation of mating behavior and has direct connections with the medial nucleus of the amygdala and bed nucleus of the stria terminalis. The goal of the present study was to determine which system mediates the effect of pheromones on the stimulation of more central areas by deafferenting these systems in experienced male hamsters before exposure to vaginal secretions. Destruction of the receptors in the main olfactory system with zinc sulfate eliminated the increase in fos immunoreactivity in the amygdala, bed nucleus of the stria terminalis and preoptic area following exposure to sexually stimulating pheromones. Deafferentation of the accessory olfactory system by removing the vomeronasal organ had no effect on pheromone-induced fos expression in these areas. We conclude that neurons expressing fos following exposure to vaginal secretions are stimulated via the main olfactory system and are not associated with the expression of copulatory behavior.
Collapse
Affiliation(s)
- J Swann
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA.
| | | | | | | |
Collapse
|
50
|
Murphy AZ, Hoffman GE. Distribution of gonadal steroid receptor-containing neurons in the preoptic-periaqueductal gray-brainstem pathway: a potential circuit for the initiation of male sexual behavior. J Comp Neurol 2001; 438:191-212. [PMID: 11536188 DOI: 10.1002/cne.1309] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The present study used anterograde and retrograde tract tracing techniques to examine the organization of the medial preoptic-periaqueductal gray-nucleus paragigantocellularis pathway in the male rat. The location of neurons containing estrogen (alpha subtype; ER alpha) and androgen receptors (AR) were also examined. We report here that injection of the anterograde tracer biotinylated dextran amine (BDA) into the medial preoptic (MPO) produced dense labeling within the periaqueductal gray (PAG); anterogradely labeled fibers terminated in close juxtaposition to neurons retrogradely labeled from the nucleus paragigantocellularis (nPGi). Dual immunostaining for Fluoro-Gold (FG) and ER alpha or FG and AR showed that over one-third of MPO efferents to the PAG contain receptors for either estrogen or androgen. In addition, approximately 50% of PAG neurons retrogradely labeled from the nPGi were immunoreactive for either ER alpha or AR. These results are the first to establish an MPO-->PAG-->nPGi circuit and further indicate that gonadal steroids can influence neuronal synaptic activity within these sites. We reported previously that nPGi reticulospinal neurons terminate preferentially within the motoneuronal pools of the lumbosacral spinal cord that innervate the pelvic viscera. Together, we propose that the MPO-->PAG-->nPGi circuit forms the final common pathway whereby MPO neural output results in the initiation and maintenance of male copulatory reflexes.
Collapse
Affiliation(s)
- A Z Murphy
- Department of Anatomy & Neurobiology, Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|