1
|
Senyigit A, Durmus S, Tabak O, Oruc A, Uzun H, Ekinci I. The Associations between Asprosine, Clusterin, Zinc Alpha-2-Glycoprotein, Nuclear Factor Kappa B, and Peroxisome Proliferator-Activated Receptor Gamma in the Development of Complications in Type 2 Diabetes Mellitus. J Clin Med 2024; 13:6126. [PMID: 39458076 PMCID: PMC11508428 DOI: 10.3390/jcm13206126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/05/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The aim of this study was to investigate the circulating levels of asprosin, clusterin, zinc-alpha-2-glycoprotein (ZAG), nuclear factor-kappa B (NF-κB), and peroxisome proliferator-activated receptor-gamma (PPAR-γ) in patients with T2DM in relation to microvascular and macrovascular complications. Measuring these biomarkers may provide insight into the pathophysiology of T2DM and indicate novel targets for the therapy of diabetes-related complications. Methods: A total of 260 subjects consisting of four groups: healthy controls (Group-1), T2DM patients without complications (Group-2), T2DM patients with microvascular complications (Group-3), and T2DM patients with macrovascular complications (Group-4). Results: The mean age of all subjects was 52.96 ± 6.4, 127 of whom were male. Asprosin, clusterin, and NF-κB levels were significantly higher, while ZAG and PPAR-γ levels were significantly lower in diabetic patients than healthy subjects (p < 0.01, for all). Asprosin (p < 0.01), clusterin (p < 0.01), and NF-κB (p: 0.002) levels were significantly higher and PPAR-γ (p < 0.01) level was significantly lower (p < 0.001) in Group-3 than Group-2. Asprosin (p < 0.01) and NF-κB (p: 0.011) levels were significantly higher while ZAG (p < 0.01) level was significantly lower in Group-4 than Group-2. Serum ZAG level was found lower in Group-4 than in Group-3 (p = 0.037). Further, the biomarkers presented significant correlation with biomarkers like HbA1c and HOMA-IR. It was observed that increasing serum asprosin, clusterin, and NF-κB levels and decreasing serum PPAR-γ levels were effective in the development of microvascular complications while the increased asprosin levels and decreased ZAG levels had a significant effect on the development of macrovascular complications in the binary logistic regression analysis. Conclusions: This study confirms that altered levels of asprosin, clusterin, ZAG, NF-κB, and PPAR-γ are associated with T2DM and its complications. These biomarkers reflect the pathophysiological processes of metabolic disturbance and inflammation in T2DM and, therefore, have the potential for use in targeted interventions to prevent and manage diabetes-related complications.
Collapse
Affiliation(s)
- Abdulhalim Senyigit
- Department of Internal Medicine, Faculty of Medicine, Istanbul Atlas University, 34403 Istanbul, Turkey;
| | - Sinem Durmus
- Department of Medical Biochemistry, Faculty of Medicine, Katip Celebi University, 35620 Izmir, Turkey;
| | - Omur Tabak
- Internal Medicine Clinic, Kanuni Sultan Süleyman Training and Research Hospital, Health Sciences University, 34668 Istanbul, Turkey;
| | - Aykut Oruc
- Department of Physiology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34320 Istanbul, Turkey;
| | - Hafize Uzun
- Department of Biochemistry, Faculty of Medicine, Istanbul Atlas University, 34403 Istanbul, Turkey
| | - Iskender Ekinci
- Department of Internal Medicine, Faculty of Medicine, Bezmialem Vakif University, 34093 Istanbul, Turkey;
| |
Collapse
|
2
|
Liu Y, Lu S, Yang J, Yang Y, Jiao L, Hu J, Li Y, Yang F, Pang Y, Zhao Y, Gao Y, Liu W, Shu P, Ge W, He Z, Peng X. Analysis of the aging-related biomarker in a nonhuman primate model using multilayer omics. BMC Genomics 2024; 25:639. [PMID: 38926642 PMCID: PMC11209966 DOI: 10.1186/s12864-024-10556-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Aging is a prominent risk factor for diverse diseases; therefore, an in-depth understanding of its physiological mechanisms is required. Nonhuman primates, which share the closest genetic relationship with humans, serve as an ideal model for exploring the complex aging process. However, the potential of the nonhuman primate animal model in the screening of human aging markers is still not fully exploited. Multiomics analysis of nonhuman primate peripheral blood offers a promising approach to evaluate new therapies and biomarkers. This study explores aging-related biomarker through multilayer omics, including transcriptomics (mRNA, lncRNA, and circRNA) and proteomics (serum and serum-derived exosomes) in rhesus monkeys (Macaca mulatta). RESULTS Our findings reveal that, unlike mRNAs and circRNAs, highly expressed lncRNAs are abundant during the key aging period and are associated with cancer pathways. Comparative analysis highlighted exosomal proteins contain more types of proteins than serum proteins, indicating that serum-derived exosomes primarily regulate aging through metabolic pathways. Finally, eight candidate aging biomarkers were identified, which may serve as blood-based indicators for detecting age-related brain changes. CONCLUSIONS Our results provide a comprehensive understanding of nonhuman primate blood transcriptomes and proteomes, offering novel insights into the aging mechanisms for preventing or treating age-related diseases.
Collapse
Affiliation(s)
- Yunpeng Liu
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China
| | - Shuaiyao Lu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Jing Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yun Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Li Jiao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Jingwen Hu
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yunli Pang
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China
| | - Yanpan Gao
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Wei Liu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Pengcheng Shu
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Wei Ge
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China.
| | - Xiaozhong Peng
- State Key Laboratory of Respiratory Health and Multimorbidity, National Center of Technology Innovation for Animal Model, National Human Diseases Animal Model Resource Center, NHC Key Laboratory of Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Sciences, CAMS & PUMC, Beijing, 100021, China.
- Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, 650031, China.
- Department of Molecular Biology and Biochemistry, Institute of Basic Medical Sciences, Medical Primate Research Center, Neuroscience Center, CAMS & PUMC, Beijing, 100005, China.
| |
Collapse
|
3
|
Amer R, Koriat A. Aqueous humor perturbations in chronic smokers: a proteomic study. Sci Rep 2024; 14:11279. [PMID: 38760463 PMCID: PMC11101467 DOI: 10.1038/s41598-024-62039-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/13/2024] [Indexed: 05/19/2024] Open
Abstract
The detrimental effects of smoking are multisystemic and its effects on the eye health are significant. Smoking is a strong risk factor for age-related nuclear cataract, age-related macular degeneration, glaucoma, delayed corneal epithelial healing and increased risk of cystoid macular edema in patients with intermediate uveitis among others. We aimed to characterize the aqueous humor (AH) proteome in chronic smokers to gain insight into its perturbations and to identify potential biomarkers for smoking-associated ocular pathologies. Compared to the control group, chronic smokers displayed 67 (37 upregulated, 30 downregulated) differentially expressed proteins (DEPs). Analysis of DEPs from the biological point of view revealed that they were proteins involved in complement activation, lymphocyte mediated immunity, innate immune response, cellular oxidant detoxification, bicarbonate transport and platelet degranulation. From the molecular function point of view, DEPs were involved in oxygen binding, oxygen carrier activity, hemoglobin binding, peptidase/endopeptidase/cysteine-type endopeptidase inhibitory activity. Several of the upregulated proteins were acute phase reactant proteins such as clusterin, alpha-2-HS-glycoprotein, fibrinogen, alpha-1-antitrypsin, C4b-binding protein and serum amyloid A-2. Further research should confirm if these proteins might serve as biomarkers or therapeutic target for smoking-associated ocular diseases.
Collapse
Affiliation(s)
- Radgonde Amer
- Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel.
- Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Adi Koriat
- Department of Ophthalmology, Hadassah Medical Center, Jerusalem, Israel
| |
Collapse
|
4
|
Schicht M, Farger J, Wedel S, Sisignano M, Scholich K, Geisslinger G, Perumal N, Grus FH, Singh S, Sahin A, Paulsen F, Lütjen-Drecoll E. Ocular surface changes in mice with streptozotocin-induced diabetes and diabetic polyneuropathy. Ocul Surf 2024; 31:43-55. [PMID: 38141818 DOI: 10.1016/j.jtos.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/13/2023] [Accepted: 12/20/2023] [Indexed: 12/25/2023]
Abstract
PURPOSE Diabetes mellitus (DM) is a leading risk factor for corneal neuropathy and dry eye disease (DED). Another common consequence of DM is diabetic peripheral polyneuropathy (DPN). Both complications affect around 50 % of the DM patients but the relationship between DM, DED and DPN remains unclear. METHODS In this study, we examined mice with early onset of DM and PN after streptozotocin (STZ)-induced diabetes (DPN). We compared the early morphological changes of the sciatic nerve, dorsal root and trigeminal ganglia with the changes in the ocular surface, including tear proteomic and we also investigated respective changes in the gene expressions and morphological alterations in the eye tissues involved in tear production. RESULTS The lacrimal gland, conjunctival goblet cells and cornea showed morphological changes along with alterations in tear proteins without any obvious signs of ocular surface inflammation. The gene expression for respectively altered tear proteins i.e., of Clusterin in cornea, Car6, Adh3a1, and Eef1a1 in eyelids, and Pigr in the lacrimal gland also showed significant changes compared to control mice. In the trigeminal ganglia like in the dorsal root ganglia neuronal cells showed swollen mitochondria and, in the latter, there was a significant increase of NADPH oxidases and MMP9 suggestive of oxidative and neuronal stress. In the dorsal root ganglia and the sciatic nerve, there was an upregulation of a number of pro-inflammatory cytokines and pain-mediating chemokines. CONCLUSION The early ocular changes in DM Mice only affect the lacrimal gland. Which, is reflected in the tear film composition of DPN mice. Due to the high protein concentration in tear fluid in humans, proteomic analysis in addition to noninvasive investigation of goblet cells and cornea can serve as a tools for the early diagnosis of DPN, DED in clinical practice. Early treatment could delay or even prevent the ocular complications of DM such as DED and PN.
Collapse
Affiliation(s)
- Martin Schicht
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.
| | - Jessica Farger
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Saskia Wedel
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany
| | - Marco Sisignano
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Goethe University, Frankfurt am Main, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Department of Experimental and Translational Ophthalmology, Germany
| | - Natarajan Perumal
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Franz H Grus
- Experimental and Translational Ophthalmology, Department of Ophthalmology, University Medical Centre of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Swati Singh
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Afsun Sahin
- Department of Ophthalmology, Koc University Medical School, Istanbul, Turkey
| | - Friedrich Paulsen
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Elke Lütjen-Drecoll
- Institute of Functional and Clinical Anatomy, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
5
|
Singh S, Sarma DK, Verma V, Nagpal R, Kumar M. Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders. Biochem Biophys Res Commun 2023; 682:1-20. [PMID: 37788525 DOI: 10.1016/j.bbrc.2023.09.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
Metabolic disorders are increasingly prevalent worldwide, leading to high rates of morbidity and mortality. The variety of metabolic illnesses can be addressed through personalized medicine. The goal of personalized medicine is to give doctors the ability to anticipate the best course of treatment for patients with metabolic problems. By analyzing a patient's metabolomic, proteomic, genetic profile, and clinical data, physicians can identify relevant diagnostic, and predictive biomarkers and develop treatment plans and therapy for acute and chronic metabolic diseases. To achieve this goal, real-time modeling of clinical data and multiple omics is essential to pinpoint underlying biological mechanisms, risk factors, and possibly useful data to promote early diagnosis and prevention of complex diseases. Incorporating cutting-edge technologies like artificial intelligence and machine learning is crucial for consolidating diverse forms of data, examining multiple variables, establishing databases of clinical indicators to aid decision-making, and formulating ethical protocols to address concerns. This review article aims to explore the potential of personalized medicine utilizing omics approaches for the treatment of metabolic disorders. It focuses on the recent advancements in genomics, epigenomics, proteomics, metabolomics, and nutrigenomics, emphasizing their role in revolutionizing personalized medicine.
Collapse
Affiliation(s)
- Samradhi Singh
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Devojit Kumar Sarma
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, Sanjay Gandhi Post-Graduate Institute of Medical Sciences, Lucknow, 226014, Uttar Pradesh, India
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Manoj Kumar
- ICMR- National Institute for Research in Environmental Health, Bhopal Bypass Road, Bhouri, Bhopal, 462030, Madhya Pradesh, India.
| |
Collapse
|
6
|
Gross C, Guérin LP, Socol BG, Germain L, Guérin SL. The Ins and Outs of Clusterin: Its Role in Cancer, Eye Diseases and Wound Healing. Int J Mol Sci 2023; 24:13182. [PMID: 37685987 PMCID: PMC10488069 DOI: 10.3390/ijms241713182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Clusterin (CLU) is a glycoprotein originally discovered in 1983 in ram testis fluid. Rapidly observed in other tissues, it was initially given various names based on its function in different tissues. In 1992, it was finally named CLU by consensus. Nearly omnipresent in human tissues, CLU is strongly expressed at fluid-tissue interfaces, including in the eye and in particular the cornea. Recent research has identified different forms of CLU, with the most prominent being a 75-80 kDa heterodimeric protein that is secreted. Another truncated version of CLU (55 kDa) is localized to the nucleus and exerts pro-apoptotic activities. CLU has been reported to be involved in various physiological processes such as sperm maturation, lipid transportation, complement inhibition and chaperone activity. CLU was also reported to exert important functions in tissue remodeling, cell-cell adhesion, cell-substratum interaction, cytoprotection, apoptotic cell death, cell proliferation and migration. Hence, this protein is sparking interest in tissue wound healing. Moreover, CLU gene expression is finely regulated by cytokines, growth factors and stress-inducing agents, leading to abnormally elevated levels of CLU in many states of cellular disturbance, including cancer and neurodegenerative conditions. In the eye, CLU expression has been reported as being severely increased in several pathologies, such as age-related macular degeneration and Fuch's corneal dystrophy, while it is depleted in others, such as pathologic keratinization. Nevertheless, the precise role of CLU in the development of ocular pathologies has yet to be deciphered. The question of whether CLU expression is influenced by these disorders or contributes to them remains open. In this article, we review the actual knowledge about CLU at both the protein and gene expression level in wound healing, and explore the possibility that CLU is a key factor in cancer and eye diseases. Understanding the expression and regulation of CLU could lead to the development of novel therapeutics for promoting wound healing.
Collapse
Affiliation(s)
- Christelle Gross
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | | | - Bianca G. Socol
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
| | - Lucie Germain
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
- Département de Chirurgie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Sylvain L. Guérin
- Centre de Recherche en Organogénèse Expérimentale de l’Université Laval/LOEX, Québec City, QC G1V 0A6, Canada; (C.G.); (B.G.S.); (L.G.)
- Centre de Recherche du CHU de Québec, Axe Médecine Régénératrice, Québec City, QC G1J 1Z4, Canada
- Département d’Ophtalmologie, Faculté de Médecine, Université Laval, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
7
|
The Emerging Roles of Extracellular Chaperones in Complement Regulation. Cells 2022; 11:cells11233907. [PMID: 36497163 PMCID: PMC9738919 DOI: 10.3390/cells11233907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
The immune system is essential to protect organisms from internal and external threats. The rapidly acting, non-specific innate immune system includes complement, which initiates an inflammatory cascade and can form pores in the membranes of target cells to induce cell lysis. Regulation of protein homeostasis (proteostasis) is essential for normal cellular and organismal function, and has been implicated in processes controlling immunity and infection. Chaperones are key players in maintaining proteostasis in both the intra- and extracellular environments. Whilst intracellular proteostasis is well-characterised, the role of constitutively secreted extracellular chaperones (ECs) is less well understood. ECs may interact with invading pathogens, and elements of the subsequent immune response, including the complement pathway. Both ECs and complement can influence the progression of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis, as well as other diseases including kidney diseases and diabetes. This review will examine known and recently discovered ECs, and their roles in immunity, with a specific focus on the complement pathway.
Collapse
|
8
|
Vyletelová V, Nováková M, Pašková Ľ. Alterations of HDL's to piHDL's Proteome in Patients with Chronic Inflammatory Diseases, and HDL-Targeted Therapies. Pharmaceuticals (Basel) 2022; 15:1278. [PMID: 36297390 PMCID: PMC9611871 DOI: 10.3390/ph15101278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 09/10/2023] Open
Abstract
Chronic inflammatory diseases, such as rheumatoid arthritis, steatohepatitis, periodontitis, chronic kidney disease, and others are associated with an increased risk of atherosclerotic cardiovascular disease, which persists even after accounting for traditional cardiac risk factors. The common factor linking these diseases to accelerated atherosclerosis is chronic systemic low-grade inflammation triggering changes in lipoprotein structure and metabolism. HDL, an independent marker of cardiovascular risk, is a lipoprotein particle with numerous important anti-atherogenic properties. Besides the essential role in reverse cholesterol transport, HDL possesses antioxidative, anti-inflammatory, antiapoptotic, and antithrombotic properties. Inflammation and inflammation-associated pathologies can cause modifications in HDL's proteome and lipidome, transforming HDL from atheroprotective into a pro-atherosclerotic lipoprotein. Therefore, a simple increase in HDL concentration in patients with inflammatory diseases has not led to the desired anti-atherogenic outcome. In this review, the functions of individual protein components of HDL, rendering them either anti-inflammatory or pro-inflammatory are described in detail. Alterations of HDL proteome (such as replacing atheroprotective proteins by pro-inflammatory proteins, or posttranslational modifications) in patients with chronic inflammatory diseases and their impact on cardiovascular health are discussed. Finally, molecular, and clinical aspects of HDL-targeted therapies, including those used in therapeutical practice, drugs in clinical trials, and experimental drugs are comprehensively summarised.
Collapse
Affiliation(s)
| | | | - Ľudmila Pašková
- Department of Cell and Molecular Biology of Drugs, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia
| |
Collapse
|
9
|
The Influence of Clusterin Glycosylation Variability on Selected Pathophysiological Processes in the Human Body. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7657876. [PMID: 36071866 PMCID: PMC9441386 DOI: 10.1155/2022/7657876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022]
Abstract
The present review gathers together the most important information about variability in clusterin molecular structure, its profile, and the degree of glycosylation occurring in human tissues and body fluids in the context of the utility of these characteristics as potential diagnostic biomarkers of selected pathophysiological conditions. The carbohydrate part of clusterin plays a crucial role in many biological processes such as endocytosis and apoptosis. Many pathologies associated with neurodegeneration, carcinogenesis, metabolic diseases, and civilizational diseases (e.g., cardiovascular incidents and male infertility) have been described as causes of homeostasis disturbance, in which the glycan part of clusterin plays a very important role. The results of the discussed studies suggest that glycoproteomic analysis of clusterin may help differentiate the severity of hippocampal atrophy, detect the causes of infertility with an immune background, and monitor the development of cancer. Understanding the mechanism of clusterin (CLU) action and its binding epitopes may enable to indicate new therapeutic goals. The carbohydrate part of clusterin is considered necessary to maintain its proper molecular conformation, structural stability, and proper systemic and/or local biological activity. Taking into account the wide spectrum of CLU action and its participation in many processes in the human body, further studies on clusterin glycosylation variability are needed to better understand the molecular mechanisms of many pathophysiological conditions. They can also provide the opportunity to find new biomarkers and enrich the panel of diagnostic parameters for diseases that still pose a challenge for modern medicine.
Collapse
|
10
|
Zhang Q, Meng XH, Qiu C, Shen H, Zhao Q, Zhao LJ, Tian Q, Sun CQ, Deng HW. Integrative analysis of multi-omics data to detect the underlying molecular mechanisms for obesity in vivo in humans. Hum Genomics 2022; 16:15. [PMID: 35568907 PMCID: PMC9107154 DOI: 10.1186/s40246-022-00388-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/04/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Obesity is a complex, multifactorial condition in which genetic play an important role. Most of the systematic studies currently focuses on individual omics aspect and provide insightful yet limited knowledge about the comprehensive and complex crosstalk between various omics levels. SUBJECTS AND METHODS Therefore, we performed a most comprehensive trans-omics study with various omics data from 104 subjects, to identify interactions/networks and particularly causal regulatory relationships within and especially those between omic molecules with the purpose to discover molecular genetic mechanisms underlying obesity etiology in vivo in humans. RESULTS By applying differentially analysis, we identified 8 differentially expressed hub genes (DEHGs), 14 differentially methylated regions (DMRs) and 12 differentially accumulated metabolites (DAMs) for obesity individually. By integrating those multi-omics biomarkers using Mendelian Randomization (MR) and network MR analyses, we identified 18 causal pathways with mediation effect. For the 20 biomarkers involved in those 18 pairs, 17 biomarkers were implicated in the pathophysiology of obesity or related diseases. CONCLUSIONS The integration of trans-omics and MR analyses may provide us a holistic understanding of the underlying functional mechanisms, molecular regulatory information flow and the interactive molecular systems among different omic molecules for obesity risk and other complex diseases/traits.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Community Nursing, School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Xiang-He Meng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
- Center for System Biology, Data Sciences, and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, 410013, Hunan, People's Republic of China
| | - Chuan Qiu
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qi Zhao
- Department of Preventive Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Lan-Juan Zhao
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qing Tian
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Chang-Qing Sun
- Department of Community Nursing, School of Nursing and Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
- Department of Social Medicine and Health Management, College of Public Health, Zhengzhou University, High-Tech Development Zone of States, Zhengzhou, 450001, Henan, People's Republic of China
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
11
|
Meng Q, Li X, Zhao M, Lin S, Yu X, Dong G. Study on the Mechanism of Platelet-Released Clusterins Inducing Restenosis after Carotid Endarterectomy by Activating TLR3/NF- κb p65 Signaling Pathway. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7631126. [PMID: 35047156 PMCID: PMC8763522 DOI: 10.1155/2022/7631126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
This study aimed to explore the role of clusterin released by platelet aggregation in restenosis after carotid endarterectomy. 35 patients who underwent carotid endarterectomy due to carotid artery stenosis were enrolled in this study. They were admitted to the Third Affiliated Hospital of Qiqihar Medical University from January 2018 to January 2019. All the patients were divided into two groups: the restenosis group and the nonrestenosis group, according to the follow-up results within 12 months. Peripheral blood was collected on the first day, 6 months, and 12 months after operation. The expression of CLU in serum of plasma and platelet culture medium was detected by an ELISA experiment. The vascular endothelial cells were cultured in vitro with 100 ng/mL of human recombinant CLU added to the medium. Cell proliferation, migration, and invasion were detected by CCK8, scratch, and Transwell invasion tests. The expression level of TLR3 and NF-κb p65 proteins in cells was detected by western blot. TLR3 knockout plasmids in vascular endothelial cell lines were transfected. Cell proliferation and migration were detected by CCK8 and the scratch assay. The CLU content in peripheral blood plasma and supernatant of platelet culture medium was significantly higher in the restenosis group than that of the control group (p=0.003) 6 months after operation (p=0.047) and 12 months after operation (p=0.011). When CLU was added to vascular endothelial cell culture medium, the proliferation and migration were significantly enhanced. The TLR3/NF-κb p65 protein expression level in cells also significantly increased. After the transfection of TLR3 knockout plasmids into vascular endothelial cell lines, CLU cannot promote the proliferation and migration of vascular endothelial cells. Platelet-released clusterin can induce vascular endothelial cell proliferation and migration by activating the TLR3/NF-kb p65 signaling pathway, leading to carotid artery restenosis after carotid endarterectomy.
Collapse
Affiliation(s)
- Qingyu Meng
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Xichun Li
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Mingyu Zhao
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Shusen Lin
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Xiangwen Yu
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| | - Guanglong Dong
- Vascular Surgery Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, China
| |
Collapse
|
12
|
Oldfield L, Evans A, Rao RG, Jenkinson C, Purewal T, Psarelli EE, Menon U, Timms JF, Pereira SP, Ghaneh P, Greenhalf W, Halloran C, Costello E. Blood levels of adiponectin and IL-1Ra distinguish type 3c from type 2 diabetes: Implications for earlier pancreatic cancer detection in new-onset diabetes. EBioMedicine 2022; 75:103802. [PMID: 34990893 PMCID: PMC8741427 DOI: 10.1016/j.ebiom.2021.103802] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Screening for pancreatic ductal adenocarcinoma (PDAC) in populations at high risk is recommended. Individuals with new-onset type 2 diabetes mellitus (NOD) are the largest high-risk group for PDAC. To facilitate screening, we sought biomarkers capable of stratifying NOD subjects into those with type 2 diabetes mellitus (T2DM) and those with the less prevalent PDAC-related diabetes (PDAC-DM), a form of type 3c DM commonly misdiagnosed as T2DM. METHODS Using mass spectrometry- and immunoassay-based methodologies in a multi-stage analysis of independent sample sets (n=443 samples), blood levels of 264 proteins were considered using Ingenuity Pathway Analysis, literature review and targeted training and validation. FINDINGS Of 30 candidate biomarkers evaluated in up to four independent patient sets, 12 showed statistically significant differences in levels between PDAC-DM and T2DM. The combination of adiponectin and interleukin-1 receptor antagonist (IL-1Ra) showed strong diagnostic potential, (AUC of 0.91; 95% CI: 0.84-0.99) for the distinction of T3cDM from T2DM. INTERPRETATION Adiponectin and IL-1Ra warrant further consideration for use in screening for PDAC in individuals newly-diagnosed with T2DM. FUNDING North West Cancer Research, UK, Cancer Research UK, Pancreatic Cancer Action, UK.
Collapse
Affiliation(s)
- Lucy Oldfield
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Anthony Evans
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Rohith Gopala Rao
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Claire Jenkinson
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Tejpal Purewal
- Department of Diabetes and Endocrinology, Royal Liverpool University Hospital, UK
| | - Eftychia E Psarelli
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Usha Menon
- Institute of Clinical Trials and Methodology, University College London, UK
| | - John F Timms
- Women's Cancer, Institute for Women's Health, University College London, UK
| | - Stephen P Pereira
- Institute for Liver and Digestive Health, University College London, UK
| | - Paula Ghaneh
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - William Greenhalf
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Christopher Halloran
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK
| | - Eithne Costello
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, UK.
| |
Collapse
|
13
|
Arjmand B, Abedi M, Arabi M, Alavi-Moghadam S, Rezaei-Tavirani M, Hadavandkhani M, Tayanloo-Beik A, Kordi R, Roudsari PP, Larijani B. Regenerative Medicine for the Treatment of Ischemic Heart Disease; Status and Future Perspectives. Front Cell Dev Biol 2021; 9:704903. [PMID: 34568321 PMCID: PMC8461329 DOI: 10.3389/fcell.2021.704903] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular disease is now the leading cause of adult death in the world. According to new estimates from the World Health Organization, myocardial infarction (MI) is responsible for four out of every five deaths due to cardiovascular disease. Conventional treatments of MI are taking aspirin and nitroglycerin as intermediate treatments and injecting antithrombotic agents within the first 3 h after MI. Coronary artery bypass grafting and percutaneous coronary intervention are the most common long term treatments. Since none of these interventions will fully regenerate the infarcted myocardium, there is value in pursuing more innovative therapeutic approaches. Regenerative medicine is an innovative interdisciplinary method for rebuilding, replacing, or repairing the missed part of different organs in the body, as similar as possible to the primary structure. In recent years, regenerative medicine has been widely utilized as a treatment for ischemic heart disease (one of the most fatal factors around the world) to repair the lost part of the heart by using stem cells. Here, the development of mesenchymal stem cells causes a breakthrough in the treatment of different cardiovascular diseases. They are easily obtainable from different sources, and expanded and enriched easily, with no need for immunosuppressing agents before transplantation, and fewer possibilities of genetic abnormality accompany them through multiple passages. The production of new cardiomyocytes can result from the transplantation of different types of stem cells. Accordingly, due to its remarkable benefits, stem cell therapy has received attention in recent years as it provides a drug-free and surgical treatment for patients and encourages a more safe and feasible cardiac repair. Although different clinical trials have reported on the promising benefits of stem cell therapy, there is still uncertainty about its mechanism of action. It is important to conduct different preclinical and clinical studies to explore the exact mechanism of action of the cells. After reviewing the pathophysiology of MI, this study addresses the role of tissue regeneration using various materials, including different types of stem cells. It proves some appropriate data about the importance of ethical problems, which leads to future perspectives on this scientific method.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Abedi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Arabi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahdieh Hadavandkhani
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Kordi
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Ronsein GE, Vaisar T, Davidson WS, Bornfeldt KE, Probstfield JL, O'Brien KD, Zhao XQ, Heinecke JW. Niacin Increases Atherogenic Proteins in High-Density Lipoprotein of Statin-Treated Subjects. Arterioscler Thromb Vasc Biol 2021; 41:2330-2341. [PMID: 34134520 DOI: 10.1161/atvbaha.121.316278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
| | - Tomas Vaisar
- Department of Medicine, University of Washington, Seattle (T.V., K.E.B., J.L.P., K.D.O., X.-Q.Z., J.W.H.)
| | - W Sean Davidson
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (W.S.D.)
| | - Karin E Bornfeldt
- Department of Medicine, University of Washington, Seattle (T.V., K.E.B., J.L.P., K.D.O., X.-Q.Z., J.W.H.)
| | - Jeffrey L Probstfield
- Department of Medicine, University of Washington, Seattle (T.V., K.E.B., J.L.P., K.D.O., X.-Q.Z., J.W.H.)
| | - Kevin D O'Brien
- Department of Medicine, University of Washington, Seattle (T.V., K.E.B., J.L.P., K.D.O., X.-Q.Z., J.W.H.)
| | - Xue-Qiao Zhao
- Department of Medicine, University of Washington, Seattle (T.V., K.E.B., J.L.P., K.D.O., X.-Q.Z., J.W.H.)
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle (T.V., K.E.B., J.L.P., K.D.O., X.-Q.Z., J.W.H.)
| |
Collapse
|
15
|
Kropáčková T, Mann H, Růžičková O, Šléglová O, Vernerová L, Horváthová V, Tomčík M, Pavelka K, Vencovský J, Šenolt L. Clusterin serum levels are elevated in patients with early rheumatoid arthritis and predict disease activity and treatment response. Sci Rep 2021; 11:11525. [PMID: 34075162 PMCID: PMC8169772 DOI: 10.1038/s41598-021-90973-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/23/2021] [Indexed: 12/29/2022] Open
Abstract
Clusterin (CLU) is a molecular chaperone that participates in a variety of biological processes. Recent studies indicate its possible involvement in the development of bone erosions and autoimmunity. The aim of this study was to investigate its serum concentrations in patients with early rheumatoid arthritis (RA) and to explore their potential relationship with disease activity and treatment response. Serum levels of CLU were measured in 52 patients before and 3 months after the initiation of treatment and in 52 healthy individuals. CLU levels at baseline were significantly increased in patients with early RA compared with healthy subjects (p < 0.0001). After 3 months of treatment, the levels of CLU decreased and reached concentrations comparable to those in controls. Even though there was no relationship between CLU levels and disease activity at baseline, CLU levels positively correlated with disease activity at months 3, 6 and 12 after treatment initiation. Using ROC analysis, lower CLU baseline levels predicted achieving the therapeutic target of low disease activity and remission at months 3, 6 and 12. In summary, we found increased serum concentrations of clusterin in treatment-naïve patients with early rheumatoid arthritis, and we suggest clusterin as a predictive biomarker of disease activity and treatment response.
Collapse
Affiliation(s)
- Tereza Kropáčková
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Heřman Mann
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Růžičková
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Olga Šléglová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lucia Vernerová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic
| | - Veronika Horváthová
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Tomčík
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Karel Pavelka
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jiří Vencovský
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic.,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ladislav Šenolt
- Institute of Rheumatology, Na Slupi 4, 128 00, Prague 2, Czech Republic. .,Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
16
|
Sun HY, Chen TY, Tan YC, Wang CH, Young KC. Sterol O-acyltransferase 2 chaperoned by apolipoprotein J facilitates hepatic lipid accumulation following viral and nutrient stresses. Commun Biol 2021; 4:564. [PMID: 33980978 PMCID: PMC8115332 DOI: 10.1038/s42003-021-02093-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/06/2021] [Indexed: 11/08/2022] Open
Abstract
The risks of non-alcoholic fatty liver disease (NAFLD) include obese and non-obese stresses such as chronic hepatitis C virus (HCV) infection, but the regulatory determinants remain obscure. Apolipoprotein J (ApoJ) served as an ER-Golgi contact-site chaperone near lipid droplet (LD), facilitating HCV virion production. We hypothesized an interplay between hepatic ApoJ, cholesterol esterification and lipid deposit in response to NAFLD inducers. Exposures of HCV or free-fatty acids exhibited excess LDs along with increased ApoJ expression, whereas ApoJ silencing alleviated hepatic lipid accumulation. Both stresses could concomitantly disperse Golgi, induce closer ApoJ and sterol O-acyltransferase 2 (SOAT2) contacts via the N-terminal intrinsically disordered regions, and increase cholesteryl-ester. Furthermore, serum ApoJ correlated positively with cholesterol and low-density lipoprotein levels in normal glycaemic HCV patients, NAFLD patients and in mice with steatosis. Taken together, hepatic ApoJ might activate SOAT2 to supply cholesteryl-ester for lipid loads, thus providing a therapeutic target of stress-induced steatosis.
Collapse
Affiliation(s)
- Hung-Yu Sun
- Department of Biomedical Engineering, College of Biology, Hunan University, Changsha, China
- Institute of Pathogen Biology and Immunology of College of Biology, Hunan Provincial Key Laboratory of Medical Virology, Hunan University, Changsha, China
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Ying Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ching Tan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Hsiang Wang
- Division of Gastroenterology, Tainan Municipal Hospital, Tainan, Taiwan
| | - Kung-Chia Young
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Cheimonidi C, Grivas IN, Sesti F, Kavrochorianou N, Gianniou DD, Taoufik E, Badounas F, Papassideri I, Rizzi F, Tsitsilonis OE, Haralambous S, Trougakos IP. Clusterin overexpression in mice exacerbates diabetic phenotypes but suppresses tumor progression in a mouse melanoma model. Aging (Albany NY) 2021; 13:6485-6505. [PMID: 33744871 PMCID: PMC7993736 DOI: 10.18632/aging.202788] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 01/13/2021] [Indexed: 04/24/2023]
Abstract
Clusterin (CLU) is an ATP-independent small heat shock protein-like chaperone, which functions both intra- and extra-cellularly. Consequently, it has been functionally involved in several physiological (including aging), as well as in pathological conditions and most age-related diseases, e.g., cancer, neurodegeneration, and metabolic syndrome. To address CLU function at an in vivo model we established CLU transgenic (Tg) mice bearing ubiquitous or pancreas-targeted CLU overexpression (OE). Our downstream analyses in established Tg lines showed that ubiquitous or pancreas-targeted CLU OE in mice affected antioxidant, proteostatic and metabolic pathways. Targeted OE of CLU in the pancreas, which also resulted in CLU upregulation in the liver likely via systemic effects, increased basal glucose levels in the circulation and exacerbated diabetic phenotypes. Furthermore, by establishing a syngeneic melanoma mouse tumor model we found that ubiquitous CLU OE suppressed melanoma cells growth, indicating a likely tumor suppressor function in early phases of tumorigenesis. Our observations provide in vivo evidence corroborating the notion that CLU is a potential modulator of metabolic and/or proteostatic pathways playing an important role in diabetes and tumorigenesis.
Collapse
Affiliation(s)
- Christina Cheimonidi
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Ioannis N. Grivas
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Fabiola Sesti
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Nadia Kavrochorianou
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Despoina D. Gianniou
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Era Taoufik
- Laboratory of Cellular and Molecular Neurobiology-Stem Cells, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Fotis Badounas
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Issidora Papassideri
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Federica Rizzi
- Dipartimento di Medicina e Chirurgia, Universita di Parma, Parma 43125, Italy
- Istituto Nazionale Biostrutture e Biosistemi (I.N.B.B.), Roma 00136, Italy
| | - Ourania E. Tsitsilonis
- Department of Animal and Human Physiology, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| | - Sylva Haralambous
- Inflammation Research Laboratory, Department of Immunology, Transgenic Technology Laboratory, Hellenic Pasteur Institute, Athens 11521, Greece
| | - Ioannis P. Trougakos
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens 15784, Greece
| |
Collapse
|
18
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
19
|
Balcar VJ, Zeman T, Janout V, Janoutová J, Lochman J, Šerý O. Single Nucleotide Polymorphism rs11136000 of CLU Gene (Clusterin, ApoJ) and the Risk of Late-Onset Alzheimer's Disease in a Central European Population. Neurochem Res 2020; 46:411-422. [PMID: 33206315 DOI: 10.1007/s11064-020-03176-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 11/28/2022]
Abstract
Clusterin (CLU; also known as apolipoprotein J, ApoJ) is a protein of inconstant structure known to be involved in diverse processes inside and outside of brain cells. CLU can act as a protein chaperon or protein solubilizer, lipid transporter as well as redox sensor and be anti- or proapoptotic, depending on context. Primary structure of CLU is encoded by CLU gene which contains single nucleotide polymorphisms (SNP's) associated with the risk of late-onset Alzheimer's disease (LOAD). Studying a sample of Czech population and using the case-control association approach we identified C allele of the SNP rs11136000 as conferring a reduced risk of LOAD, more so in females than in males. Additionally, data from two smaller subsets of the population sample suggested a possible association of rs11136000 with diabetes mellitus. In a parallel study, we found no association between rs11136000 and mild cognitive impairment (MCI). Our findings on rs11136000 and LOAD contradict those of some previous studies done elsewhere. We discuss the multiple roles of CLU in a broad range of molecular mechanisms that may contribute to the variability of genetic studies of CLU in various ethnic groups. The above discordance notwithstanding, our conclusions support the association of rs1113600 with the risk of LOAD.
Collapse
Affiliation(s)
- Vladimir J Balcar
- Bosch Institute and Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia. .,Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.
| | - Tomáš Zeman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Vladimír Janout
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Present address: Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jana Janoutová
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Present address: Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czech Republic
| | - Jan Lochman
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Omar Šerý
- Laboratory of Neurobiology and Pathological Physiology, Institute of Animal Physiology and Genetics, Academy of Sciences of the Czech Republic, Veveří 97, 602 00, Brno, Czech Republic.,Laboratory of Neurobiology and Molecular Psychiatry, Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
20
|
Barnum SR, Bubeck D, Schein TN. Soluble Membrane Attack Complex: Biochemistry and Immunobiology. Front Immunol 2020; 11:585108. [PMID: 33240274 PMCID: PMC7683570 DOI: 10.3389/fimmu.2020.585108] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The soluble membrane attack complex (sMAC, a.k.a., sC5b-9 or TCC) is generated on activation of complement and contains the complement proteins C5b, C6, C7, C8, C9 together with the regulatory proteins clusterin and/or vitronectin. sMAC is a member of the MACPF/cholesterol-dependent-cytolysin superfamily of pore-forming molecules that insert into lipid bilayers and disrupt cellular integrity and function. sMAC is a unique complement activation macromolecule as it is comprised of several different subunits. To date no complement-mediated function has been identified for sMAC. sMAC is present in blood and other body fluids under homeostatic conditions and there is abundant evidence documenting changes in sMAC levels during infection, autoimmune disease and trauma. Despite decades of scientific interest in sMAC, the mechanisms regulating its formation in healthy individuals and its biological functions in both health and disease remain poorly understood. Here, we review the structural differences between sMAC and its membrane counterpart, MAC, and examine sMAC immunobiology with respect to its presence in body fluids in health and disease. Finally, we discuss the diagnostic potential of sMAC for diagnostic and prognostic applications and potential utility as a companion diagnostic.
Collapse
Affiliation(s)
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
21
|
Ha J, Moon MK, Kim H, Park M, Cho SY, Lee J, Lee JY, Kim E. Plasma Clusterin as a Potential Link Between Diabetes and Alzheimer Disease. J Clin Endocrinol Metab 2020; 105:5860166. [PMID: 32561922 DOI: 10.1210/clinem/dgaa378] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/13/2020] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Plasma clusterin, a promising biomarker of Alzheimer disease (AD), has been associated with diabetes mellitus (DM). However, clusterin has not been investigated considering a relationship with both DM and AD. In this study, we aimed to investigate the individual and interactive relationships of plasma clusterin levels with both diseases. DESIGN Cross-sectional observation study. METHODS We classified participants by the severity of cognitive (normal cognition, mild cognitive impairment [MCI], and AD) and metabolic (healthy control, prediabetes, and DM) impairments. We evaluated the cognitive and metabolic functions of the participants with neuropsychological assessments, brain magnetic resonance imaging, and various blood tests, to explore potential relationships with clusterin. RESULTS Plasma clusterin levels were higher in participants with AD and metabolic impairment (prediabetes and DM). A two-way ANCOVA revealed no synergistic, but an additive effect of AD and DM on clusterin. Clusterin was negatively correlated with cognitive scores. It was also associated with metabolic status indicated by glycated hemoglobin A1c (HbA1c), the Homeostatic Model Assessment for Insulin Resistance index, and fasting C-peptide. It showed correlations between medial temporal atrophy and periventricular white matter lesions, indicating neurodegeneration and microvascular insufficiency, respectively. Further mediation analysis to understand the triadic relationship between clusterin, AD, and DM revealed that the association between DM and AD was significant when clusterin is considered as a mediator of their relationship. CONCLUSIONS Clusterin is a promising biomarker of DM as well as of AD. Additionally, our data suggest that clusterin may have a role in linking DM with AD as a potential mediator.
Collapse
Affiliation(s)
- Junghee Ha
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Kyong Moon
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyunjeong Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Minsun Park
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - So Yeon Cho
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jimin Lee
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun-Young Lee
- Department of Psychiatry and Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eosu Kim
- Department of Psychiatry, Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
22
|
Early Elevation of Systemic Plasma Clusterin after Reperfused Acute Myocardial Infarction in a Preclinical Porcine Model of Ischemic Heart Disease. Int J Mol Sci 2020; 21:ijms21134591. [PMID: 32605184 PMCID: PMC7369988 DOI: 10.3390/ijms21134591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/23/2020] [Indexed: 01/08/2023] Open
Abstract
Clusterin exerts anti-inflammatory, cytoprotective and anti-apoptotic effects. Both an increase and decrease of clusterin in acute myocardial infarction (AMI) has been reported. We aimed to clarify the role of clusterin as a systemic biomarker in AMI. AMI was induced by percutaneous left anterior artery (LAD) occlusion for 90 min followed by reperfusion in 24 pigs. Contrast ventriculography was performed after reperfusion to assess left ventricular ejection fraction (LVEF), left ventricular end diastolic volume (LVEDV) and left ventricular end systolic volume (LVESV) and additional cMRI + late enhancement to measure infarct size and LV functions at day 3 and week 6 post-MI. Blood samples were collected at prespecified timepoints. Plasma clusterin and other biomarkers (cTnT, NT-proBNP, neprilysin, NGAL, ET-1, osteopontin, miR21, miR29) were measured by ELISA and qPCR. Gene expression profiles of infarcted and remote region 3 h (n = 5) and 3 days (n = 5) after AMI onset were analysed by RNA-sequencing. AMI led to an increase in LVEDV and LVESV during 6-week, with concomitant elevation of NT-proBNP 3-weeks after AMI. Plasma clusterin levels were increased immediately after AMI and returned to normal levels until 3-weeks. Plasma NGAL, ET-1 and miR29 was significantly elevated at 3 weeks follow-up, miR21 increased after reperfusion and at 3 weeks post-AMI, while circulating neprilysin levels did not change. Elevated plasma clusterin levels 120 min after AMI onset suggest that clusterin might be an additional early biomarker of myocardial ischemia.
Collapse
|
23
|
Effect of Induction Time on the Proliferation and Differentiation of Induced Schwann-Like Cells from Adipose-Derived Stem Cells. Cell Mol Neurobiol 2020; 40:1105-1116. [DOI: 10.1007/s10571-020-00795-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 01/18/2020] [Indexed: 12/15/2022]
|
24
|
Jeon YK, Kim SS, Kim JH, Kim HJ, Kim HJ, Park JJ, Cho YS, Joung SH, Kim JR, Kim BH, Song SH, Kim IJ, Kim YK, Kim YB. Combined Aerobic and Resistance Exercise Training Reduces Circulating Apolipoprotein J Levels and Improves Insulin Resistance in Postmenopausal Diabetic Women. Diabetes Metab J 2020; 44:103-112. [PMID: 32097999 PMCID: PMC7043986 DOI: 10.4093/dmj.2018.0160] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 02/19/2019] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Circulating apolipoprotein J (ApoJ) is closely associated with insulin resistance; however, the effect of exercise on circulating ApoJ levels and the association of ApoJ with metabolic indices remain unknown. Here, we investigated whether a combined exercise can alter the circulating ApoJ level, and whether these changes are associated with metabolic indices in patients with type 2 diabetes mellitus. METHODS Postmenopausal women with type 2 diabetes mellitus were randomly assigned into either an exercise (EXE, n=30) or control (CON, n=15) group. Participants in the EXE group were enrolled in a 12-week program consisting of a combination of aerobic and resistance exercises. At baseline, 4, 8, and 12 weeks, body composition and metabolic parameters including homeostatic model assessment of insulin resistance (HOMA-IR) and serum ApoJ levels were assessed. RESULTS In the EXE group, ApoJ levels decreased 26.3% and 19.4%, relative to baseline, at 8 and 12 weeks, respectively. Between-group differences were significant at 8 and 12 weeks (P<0.05 and P<0.001, respectively). In the EXE group, 12 weeks of exercise resulted in significant decreases in body weight, percent body fat, and HOMA-IR indices. Concurrently, weight-adjusted appendicular skeletal muscle mass (ASM/wt) was increased in the EXE group compared with the CON group. Importantly, changes in the ApoJ level were significantly correlated with changes in ASM/wt. CONCLUSION Exercise training resulted in a significant decrease in the circulating ApoJ level, with changes in ApoJ associated with an improvement in some insulin resistance indices. These data suggest that circulating ApoJ may be a useful metabolic marker for assessing the effects of exercise on insulin resistance.
Collapse
Affiliation(s)
- Yun Kyung Jeon
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Sang Soo Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jong Ho Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Hyun Jeong Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Hyun Jun Kim
- Department of Physical Education, Kyungnam University College of Education, Changwon, Korea
| | - Jang Jun Park
- Department of Physical Education, Kyungnam University College of Education, Changwon, Korea
| | - Yuen Suk Cho
- Department of Marine Sports, Pukyong National University, Busan, Korea
| | - So Hee Joung
- Nutrition Service Team, Pusan National University Hospital, Busan, Korea
| | - Ji Ryang Kim
- Kim Yong Ki Internal Medicine Clinic, Busan, Korea
| | - Bo Hyun Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Sang Heon Song
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
- Division of Nephrology, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
| | - In Joo Kim
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Pusan National University Hospital, Pusan National University School of Medicine, Busan, Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan, Korea
| | - Yong Ki Kim
- Kim Yong Ki Internal Medicine Clinic, Busan, Korea
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Gondek M, Herosimczyk A, Knysz P, Ożgo M, Lepczyński A, Szkucik K. Comparative Proteomic Analysis of Serum from Pigs Experimentally Infected with Trichinella spiralis, Trichinella britovi, and Trichinella pseudospiralis. Pathogens 2020; 9:pathogens9010055. [PMID: 31940868 PMCID: PMC7168678 DOI: 10.3390/pathogens9010055] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/05/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Although the available proteomic studies have made it possible to identify and characterize Trichinella stage-specific proteins reacting with infected host-specific antibodies, the vast majority of these studies do not provide any information about changes in the global proteomic serum profile of Trichinella-infested individuals. In view of the above, the present study aimed to examine the protein expression profile of serum obtained at 13 and 60 days postinfection (d.p.i.) from three groups of pigs experimentally infected with Trichinella spiralis, Trichinella britovi, and Trichinella pseudospiralis and from uninfected, control pigs by two-dimensional gel electrophoresis (2-DE) followed by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The comparative proteomic analysis of the T. spiralis group vs. the control group revealed 5 differently expressed spots at both 13 and 60 d.p.i. Experimental infection with T. britovi induced significant expression changes in 3 protein spots at 13 d.p.i. and in 6 protein spots at 60 d.p.i. in comparison with the control group. Paired analyses between the group infected with T. pseudospiralis and the uninfected control group revealed 6 differently changed spots at 13 d.p.i. and 2 differently changed spots at 60 d.p.i. Among these 27 spots, 15 were successfully identified. Depending on the Trichinella species triggering the infection and the time point of serum collection, they were IgM heavy-chain constant region, antithrombin III-precursor, immunoglobulin gamma-chain, clusterin, homeobox protein Mohawk, apolipoprotein E precursor, serum amyloid P-component precursor, Ig lambda chains, complement C3 isoform X1, and apolipoprotein A-I. Our results demonstrate that various Trichinella species and different phases of the invasion produce a distinct, characteristic proteomic pattern in the serum of experimentally infected pigs.
Collapse
Affiliation(s)
- Michał Gondek
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (P.K.); (K.S.)
- Correspondence: ; Tel.: +48-(81)-445-6256
| | - Agnieszka Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.H.); (M.O.); (A.L.)
| | - Przemysław Knysz
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (P.K.); (K.S.)
| | - Małgorzata Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.H.); (M.O.); (A.L.)
| | - Adam Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology, Klemensa Janickiego 29, 71-270 Szczecin, Poland; (A.H.); (M.O.); (A.L.)
| | - Krzysztof Szkucik
- Department of Food Hygiene of Animal Origin, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, Akademicka 12, 20-950 Lublin, Poland; (P.K.); (K.S.)
| |
Collapse
|
26
|
Turkieh A, Porouchani S, Beseme O, Chwastyniak M, Amouyel P, Lamblin N, Balligand JL, Bauters C, Pinet F. Increased clusterin levels after myocardial infarction is due to a defect in protein degradation systems activity. Cell Death Dis 2019; 10:608. [PMID: 31406108 PMCID: PMC6691115 DOI: 10.1038/s41419-019-1857-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 12/21/2022]
Abstract
Clusterin (CLU) is induced in many organs after tissue injury or remodeling. Recently, we show that CLU levels are increased in plasma and left ventricle (LV) after MI, however, the mechanisms involved are not yet elucidated. On the other hand, it has been shown that the activity of the protein degradation systems (PDS) is affected after MI with a decrease in ubiquitin proteasome system (UPS) and an increase in macroautophagy. The aim of this study was to decipher if the increased CLU levels after MI are in part due to the alteration of PDS activity. Rat neonate cardiomyocytes (NCM) were treated with different modulators of UPS and macroautophagy in order to decipher their role in CLU expression, secretion, and degradation. We observed that inhibition of UPS activity in NCM increased CLU mRNA levels, its intracellular protein levels (p-CLU and m-CLU) and its secreted form (s-CLU). Macroautophagy was also induced after MG132 treatment but is not active. The inhibition of macroautophagy induction in MG132-treated NCM increased CLU mRNA and m-CLU levels, but not s-CLU compared to NCM only treated by MG132. We also demonstrate that CLU can be degraded in NCM through proteasome and lysosome by a macroautophagy independent pathway. In another hand, CLU silencing in NCM has no effect either on macroautophagy or apoptosis induced by MG132. However, the overexpression of CLU secreted isoform in H9c2 cells, but not in NCM decreased apoptosis after MG132 treatment. Finally, we observed that increased CLU levels in hypertrophied NCM and in failing human hearts are associated with proteasome inhibition and macroautophagy alteration. All these data suggest that increased CLU expression and secretion after MI is, in part, due to a defect of UPS and macroautophagy activities in the heart and may have a protective effect by decreasing apoptosis induced by proteasome inhibition.
Collapse
Affiliation(s)
- Annie Turkieh
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France.,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France
| | - Sina Porouchani
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France.,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France
| | - Olivia Beseme
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France
| | - Maggy Chwastyniak
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France
| | - Philippe Amouyel
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France
| | - Nicolas Lamblin
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France.,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France
| | - Jean-Luc Balligand
- Institut de Recherche Experimentale et Clinique, Pole of Pharmacology and Therapeutics and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium
| | - Christophe Bauters
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France.,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France
| | - Florence Pinet
- Inserm, University of Lille, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE-Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, F-59000, Lille, France. .,Fédération Hospitalière Universitaire (FHU), REMOD-VHF, Lille, France.
| |
Collapse
|
27
|
Ramadan RA, Madkour MA, El-Nagarr MM, Abourawash SN. Serum clusterin as a marker for diagnosing hepatocellular carcinoma. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2014.05.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Affiliation(s)
- Ragaa A. Ramadan
- Medical Research Institute Teaching Hospital, Alexandria University, Egypt
| | - Marwa A. Madkour
- Medical Research Institute Teaching Hospital, Alexandria University, Egypt
| | | | | |
Collapse
|
28
|
Zhu H, Liu M, Zhai T, Pan H, Wang L, Yang H, Yan K, Gong F, Zeng Y. High serum clusterin levels are associated with premature coronary artery disease in a Chinese population. Diabetes Metab Res Rev 2019; 35:e3128. [PMID: 30659732 DOI: 10.1002/dmrr.3128] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 11/11/2022]
Abstract
BACKGROUND Clusterin plays an important role in the cardiovascular system, and serum levels of clusterin are higher in coronary artery disease patients. Here, we measured serum clusterin levels in premature coronary artery disease (PCAD) patients and explored the association of these levels with PCAD risk. METHODS Serum samples and general clinical information were obtained from 672 subjects including 364 PCAD subjects, 126 non-PCAD subjects, and 182 controls. RESULTS Serum clusterin levels were higher in PCAD patients than in controls, particularly in males with body mass index (BMI) < 25 kg/m2 (P < 0.0001). Compared with the lowest tertile of clusterin, the odds ratio of PCAD in the highest tertile was higher in both a univariate and three adjustment models, and it was 3.146-fold higher in Model 3. This association was especially significant in subgroups with BMI < 25 kg/m2 , total cholesterol < 5.7 mmol/L, high-density lipoprotein cholesterol ≥ 1.0 mmol/L, Urea < 7.14 mmol/L, and estimated glomerular filtration rate < 90 mL/min/1.73 m2 . Serum clusterin may be a potential diagnostic biomarker for PCAD (sensitivity 60.7%, specificity 51.6%, area under the curve 0.595 [95% CI, 0.544-0.647], P < 0.0001), and a combination of clusterin with clinical variables in Model 3 resulted in improved diagnostic accuracy (sensitivity 86.3%, specificity 64.2%, area under the curve 0.829 [95% CI, 0.782-0.877], P < 0.0001). CONCLUSIONS Serum clusterin levels were increased in PCAD patients, especially for males with BMI < 25 kg/m2 . Higher clusterin levels were independently associated with the presence of PCAD, particularly in subjects with normal BMI, lower total cholesterol, urea, estimated glomerular filtration rate, and higher high-density lipoprotein cholesterol. Clusterin might be a potential diagnostic biomarker for PCAD patients, especially in combination with clinical variables.
Collapse
Affiliation(s)
- Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Meijuan Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Tianshu Zhai
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Linjie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hongbo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Kemin Yan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yong Zeng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Overview of genomics and post-genomics research on type 2 diabetes mellitus: Future perspectives and a framework for further studies. J Biosci 2019. [DOI: 10.1007/s12038-018-9818-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Zhao YX, Zhu HJ, Pan H, Liu XM, Wang LJ, Yang HB, Li NS, Gong FY, Sun W, Zeng Y. Comparative Proteome Analysis of Epicardial and Subcutaneous Adipose Tissues from Patients with or without Coronary Artery Disease. Int J Endocrinol 2019; 2019:6976712. [PMID: 31534454 PMCID: PMC6732630 DOI: 10.1155/2019/6976712] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/18/2019] [Accepted: 05/05/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND AIMS Owing to its unique anatomical structure and metabolism, epicardial adipose tissue (EAT) has attracted amount of attention in coronary artery disease (CAD) research. Here, we analyzed differences in proteome composition in epicardial (EAT) and subcutaneous adipose tissues (SAT) from patients with or without CAD. METHODS EAT and SAT samples were collected from 6 CAD patients and 6 non-CAD patients. Isobaric Tagging for Relative and Absolute Quantitation (iTRAQ) analysis combined with liquid chromatography tandem-mass spectrometry (LC-MS/MS) was performed to identify the differentially expressed proteins. RESULTS In total, 2348 proteins expressed in EAT and 2347 proteins expressed in SAT were separately identified. 385 differentially expressed proteins were found in EAT and 210 proteins were found in SAT in CAD patients compared to non-CAD patients. Many proteins differentially expressed in EAT of CAD patients were involved in biological functions associated with CAD development such as cell-to-cell signaling and interaction, inflammatory response, and lipid metabolism. Differential expressions of proteins (MMP9, S100A9, and clusterin) in EAT or SAT were involved in several signaling pathways such as mitochondrial dysfunction, acute phase inflammation, and LXR/RXR activation, which was confirmed by western blotting, and similar results were obtained. CONCLUSIONS The largest profiles of differentially expressed proteins in EAT and SAT between CAD patients and non-CAD patients were identified. The significant signal pathways, mitochondrial dysfunction, and LXR/RXR activation, which differential proteins were involved in, were firstly found to play roles in EAT of CAD patients, and clusterin was firstly found to be upregulated in EAT of CAD patients.
Collapse
Affiliation(s)
- Yu xing Zhao
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui juan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue mei Liu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lin jie Wang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hong bo Yang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nai shi Li
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng ying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Sun
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
| | - Yong Zeng
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Tao Z, Tan S, Chen W, Chen X. Stem Cell Homing: a Potential Therapeutic Strategy Unproven for Treatment of Myocardial Injury. J Cardiovasc Transl Res 2018; 11:403-411. [PMID: 30324254 DOI: 10.1007/s12265-018-9823-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/26/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the prevention and therapeutic modalities of ischemic heart disease, morbidity and mortality post-infarction heart failure remain big challenges in modern society. Stem cell therapy is emerging as a promising therapeutic strategy. Stem cell homing, the ability of stem cells to find their destination, is receiving more attention. Identification of specific cues and understanding the signaling pathways that direct stem cells to targeted destination will improve stem cell homing efficiency. This review discusses the cellular and molecular mechanism of stem cell homing at length in the light of literature and analyzes the problem and considerations of this approach as a treatment strategy for the treatment of ischemic heart disease clinically.
Collapse
Affiliation(s)
- Zhonghao Tao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Shihua Tan
- National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609, Singapore
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Proteomic signature of circulating extracellular vesicles in dilated cardiomyopathy. J Transl Med 2018; 98:1291-1299. [PMID: 29540862 DOI: 10.1038/s41374-018-0044-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/29/2018] [Accepted: 01/30/2018] [Indexed: 11/08/2022] Open
Abstract
Dilated cardiomyopathy (DCM) remains a major cause of heart failure and carries a poor prognosis despite important advances in recent years. Better disease characterization using novel molecular techniques is needed to refine its progression. This study explored the proteomic signature of plasma-derived extracellular vesicles (EVs) obtained from DCM patients and healthy controls using size-exclusion chromatography (SEC). EV-enriched fractions were analyzed by liquid chromatography-mass spectrometry (LC-MS/MS). Raw data obtained from LC-MS/MS were analyzed against the Uniprot human database using MaxQuant software. Additional analyses using Perseus software were based on the Intensity-Based Absolute Quantification (iBAQ) values from MaxQuant analyses. A total of 90.07 ± 21 proteins (227 different proteins) in the DCM group and 96.52 ± 17.91 proteins (183 different proteins) in the control group were identified. A total of 176 proteins (74.6%) were shared by controls and DCM patients, whereas 51 proteins were exclusive for the DCM group and 7 proteins were exclusive for the control group. Fibrinogen (α, β and γ chain), serotransferrin, α-1-antitrypsin, and a variety of apolipoprotein family members (C-I, C-III, D, H or β-2-glycoprotein, and J or clusterin) were clustered in SEC-EVs derived from DCM patients relative to controls (p < 0.05). Regarding Gene Ontology analysis, response to stress and protein activation-related proteins were enriched in DCM-EVs compared with controls. Thus, the present study reports the distinct proteomic signature of circulating DCM-EVs compared with control-EVs. Furthermore, we confirm that SEC obtains highly purified EV fractions from peripheral blood samples for subsequent use in determining disease-specific proteomic signatures.
Collapse
|
33
|
Li F, Li X, Yang J, Guo X, Zheng X, Lv Z, Shi C. Increased Expression of Apo-J and Omi/HtrA2 After Intracerebral Hemorrhage in Rats. World Neurosurg 2018; 116:e26-e34. [PMID: 29581019 DOI: 10.1016/j.wneu.2018.03.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To investigate the changes of Apo-J and Omi/HtrA2 protein expression in rats with intracerebral hemorrhage. METHODS 150 Sprague-Dawley adult rats were randomly divided into 3 groups: (1) normal control (NC) group, (2) sham group, and (3) intracerebral hemorrhage (ICH) group. The data were collected at 6 hours, 12 hours, 1 day, 2 days, 3 days, 5 days, and 7 days. Apoptosis was measured by terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling staining. The distributions of the Apo-J and Omi/HtrA2 proteins were determined by immunohistochemical staining. The levels of Apo-J mRNA and Omi/HtrA2 mRNA expressions were examined by real-time polymerase chain reaction. RESULTS Apoptosis in the ICH group was higher than in the sham and NC groups (P < 0.05). Both the Apo-J and Omi/HtrA2 expression levels were increased in the peripheral region of hemorrhage, with a peak at 3 days. The Apo-J mRNA level positively correlated with the HtrA2 mRNA level in the ICH group (r = 0.883, P < 0.001). CONCLUSION The expressions of Apo-J and Omi/HtrA2 increased in parallel in the peripheral region of rat cerebral hemorrhage. Local high expression of Apo-J in the peripheral regions may play a neuroprotective role by inhibiting apoptosis via the Omi/HtrA2 pathway after hemorrhage.
Collapse
Affiliation(s)
- Feng Li
- Department of Neurology, Wenjiang District People's Hospital, Chengdu, China
| | - Xiaogang Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jing Yang
- Department of Neurology, Wenjiang District People's Hospital, Chengdu, China
| | - Xiaoyan Guo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiaomei Zheng
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zhiyu Lv
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Changqing Shi
- Department of Neurosurgery, Wenjiang District People's Hospital, Chengdu, China.
| |
Collapse
|
34
|
Kwon HK, Jeong H, Hwang D, Park ZY. Comparative proteomic analysis of mouse models of pathological and physiological cardiac hypertrophy, with selection of biomarkers of pathological hypertrophy by integrative Proteogenomics. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2018; 1866:S1570-9639(18)30118-3. [PMID: 30048702 DOI: 10.1016/j.bbapap.2018.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/13/2018] [Accepted: 07/20/2018] [Indexed: 12/21/2022]
Abstract
To determine fundamental characteristics of pathological cardiac hypertrophy, protein expression profiles in two widely accepted models of cardiac hypertrophy (swimming-trained mouse for physiological hypertrophy and pressure-overload-induced mouse for pathological hypertrophy) were compared using a label-free quantitative proteomics approach. Among 3955 proteins (19,235 peptides, false-discovery rate < 0.01) identified in these models, 486 were differentially expressed with a log2 fold difference ≥ 0.58, or were detected in only one hypertrophy model (each protein from 4 technical replicates, p < .05). Analysis of gene ontology biological processes and KEGG pathways identified cellular processes enriched in one or both hypertrophy models. Processes unique to pathological hypertrophy were compared with processes previously identified in cardiac-hypertrophy models. Individual proteins with differential expression in processes unique to pathological hypertrophy were further confirmed using the results of previous targeted functional analysis studies. Using a proteogenomic approach combining transcriptomic and proteomic analyses, similar patterns of differential expression were observed for 23 proteins and corresponding genes associated with pathological hypertrophy. A total of 11 proteins were selected as early-stage pathological-hypertrophy biomarker candidates, and the results of western blotting for five of these proteins in independent samples confirmed the patterns of differential expression in mouse models of pathological and physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Hye Kyeong Kwon
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Hyobin Jeong
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea; Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea; School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Daehee Hwang
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea; Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu 42988, Republic of Korea
| | - Zee-Yong Park
- School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
35
|
Turkieh A, Fertin M, Bouvet M, Mulder P, Drobecq H, Lemesle G, Lamblin N, de Groote P, Porouchani S, Chwastyniak M, Beseme O, Amouyel P, Mouquet F, Balligand JL, Richard V, Bauters C, Pinet F. Expression and Implication of Clusterin in Left Ventricular Remodeling After Myocardial Infarction. Circ Heart Fail 2018; 11:e004838. [DOI: 10.1161/circheartfailure.117.004838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/16/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Annie Turkieh
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Marie Fertin
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Marion Bouvet
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Paul Mulder
- Institut Pasteur de Lille, Université de Lille, France. Inserm U1096, FHU-REMOD-VHF, Normandie University, University of Rouen, France (P.M., V.R.)
| | - Hervé Drobecq
- UMR 8161-M3T-Mechanisms of Tumorigenesis and Target Therapies, CNRS (H.D.)
| | - Gilles Lemesle
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
- Faculté de Médecine de l’Université de Lille, France (G.L., N.L., P.A., C.B.)
- FACT, French Alliance for Cardiovascular Trials, Paris, France (G.L., N.L., C.B.)
| | - Nicolas Lamblin
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
- Faculté de Médecine de l’Université de Lille, France (G.L., N.L., P.A., C.B.)
- FACT, French Alliance for Cardiovascular Trials, Paris, France (G.L., N.L., C.B.)
| | - Pascal de Groote
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
| | - Sina Porouchani
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Maggy Chwastyniak
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Olivia Beseme
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| | - Philippe Amouyel
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
- Faculté de Médecine de l’Université de Lille, France (G.L., N.L., P.A., C.B.)
- CHU Lille, Service de Santé Publique, Épidémiologie, Économie de la Santé et Prévention, France (P.A.)
| | - Frédéric Mouquet
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
| | - Jean-Luc Balligand
- Institut de Recherche Experimentale et Clinique, Pole of Pharmacology and Therapeutics and Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium (J.-L.B.)
| | - Vincent Richard
- Institut Pasteur de Lille, Université de Lille, France. Inserm U1096, FHU-REMOD-VHF, Normandie University, University of Rouen, France (P.M., V.R.)
| | - Christophe Bauters
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
- USIC et Centre Hémodynamique, Institut Coeur Poumon, Centre Hospitalier Régional et Universitaire de Lille, France (G.L., N.L., P.d.G., F.M., C.B.)
- Faculté de Médecine de l’Université de Lille, France (G.L., N.L., P.A., C.B.)
- FACT, French Alliance for Cardiovascular Trials, Paris, France (G.L., N.L., C.B.)
| | - Florence Pinet
- INSERM U1167-RID-AGE, CHU Lille, FHU-REMOD-VHF (A.T., M.F., M.B., N.L., P.d.G., S.P., M.C., O.B., P.A., C.B., F.P.)
| |
Collapse
|
36
|
Islam K, Damiati S, Sethi J, Suhail A, Pan G. Development of a Label-Free Immunosensor for Clusterin Detection as an Alzheimer's Biomarker. SENSORS (BASEL, SWITZERLAND) 2018; 18:E308. [PMID: 29361679 PMCID: PMC5795331 DOI: 10.3390/s18010308] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 01/01/2023]
Abstract
Clusterin (CLU) has been associated with the clinical progression of Alzheimer's disease (AD) and described as a potential AD biomarker in blood plasma. Due to the enormous attention given to cerebrospinal fluid (CSF) biomarkers for the past couple of decades, recently found blood-based AD biomarkers like CLU have not yet been reported for biosensors. Herein, we report the electrochemical detection of CLU for the first time using a screen-printed carbon electrode (SPCE) modified with 1-pyrenebutyric acid N-hydroxysuccinimide ester (Pyr-NHS) and decorated with specific anti-CLU antibody fragments. This bifunctional linker molecule contains succinylimide ester to bind protein at one end while its pyrene moiety attaches to the carbon surface by means of π-π stacking. Cyclic voltammetric and square wave voltammetric studies showed the limit of detection down to 1 pg/mL and a linear concentration range of 1-100 pg/mL with good sensitivity. Detection of CLU in spiked human plasma was demonstrated with satisfactory recovery percentages to that of the calibration data. The proposed method facilitates the cost-effective and viable production of label-free point-of-care devices for the clinical diagnosis of AD.
Collapse
Affiliation(s)
- Kamrul Islam
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Samar Damiati
- Department of Biochemistry, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia.
| | - Jagriti Sethi
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Ahmed Suhail
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| | - Genhua Pan
- Wolfson Nanomaterials & Devices Laboratory, School of Computing, Electronics and Mathematics, Faculty of Science and Engineering, University of Plymouth, Devon PL4 8AA, UK.
| |
Collapse
|
37
|
Seo JA, Kang MC, Ciaraldi TP, Kim SS, Park KS, Choe C, Hwang WM, Lim DM, Farr O, Mantzoros C, Henry RR, Kim YB. Circulating ApoJ is closely associated with insulin resistance in human subjects. Metabolism 2018; 78:155-166. [PMID: 28986164 PMCID: PMC5765540 DOI: 10.1016/j.metabol.2017.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 09/19/2017] [Accepted: 09/20/2017] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Insulin resistance is a major risk factor for type 2 diabetes. ApolipoproteinJ (ApoJ) has been implicated in altered pathophysiologic states including cardiovascular and Alzheimer's disease. However, the function of ApoJ in regulation of glucose homeostasis remains unclear. This study sought to determine whether serum ApoJ levels are associated with insulin resistance in human subjects and if they change after interventions that improve insulin sensitivity. METHODS Serum ApoJ levels and insulin resistance status were assessed in nondiabetic (ND) and type 2 diabetic (T2D) subjects. The impacts of rosiglitazone or metformin therapy on serum ApoJ levels and glucose disposal rate (GDR) during a hyperinsulinemic/euglycemic clamp were evaluated in a separate cohort of T2D subjects. Total ApoJ protein or that associated with the HDL and LDL fractions was measured by immunoblotting or ELISA. RESULTS Fasting serum ApoJ levels were greatly elevated in T2D subjects (ND vs T2D; 100±8.3 vs. 150.6±8.5AU, P<0.0001). Circulating ApoJ levels strongly correlated with fasting glucose, fasting insulin, HOMA-IR, and BMI. ApoJ levels were significantly and independently associated with HOMA-IR, even after adjustment for age, sex, and BMI. Rosiglitazone treatment in T2D subjects resulted in a reduction in serum ApoJ levels (before vs. after treatment; 100±13.9 vs. 77±15.2AU, P=0.015), whereas metformin had no effect on ApoJ levels. The change in ApoJ levels during treatment was inversely associated with the change in GDR. Interestingly, ApoJ content in the LDL fraction was inversely associated with HOMA-IR. CONCLUSION Serum ApoJ levels are closely correlated with the magnitude of insulin resistance regardless of obesity, and decrease along with improvement of insulin resistance in response only to rosiglitazone in type 2 diabetes.
Collapse
Affiliation(s)
- Ji A Seo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Division of Endocrinology, Department of Internal Medicine, Korea University College of Medicine, Seoul, Korea
| | - Min-Cheol Kang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Theodore P Ciaraldi
- Veterans Affairs San Diego Healthcare System (9111G), San Diego, CA 92161, United States; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Sang Soo Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Kyong Soo Park
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea
| | - Charles Choe
- Veterans Affairs San Diego Healthcare System (9111G), San Diego, CA 92161, United States; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Won Min Hwang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Dong Mee Lim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Division of Nephrology, Department of Internal Medicine, College of Medicine, Konyang University, Daejeon, Korea
| | - Olivia Farr
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Christos Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Robert R Henry
- Veterans Affairs San Diego Healthcare System (9111G), San Diego, CA 92161, United States; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, Korea.
| |
Collapse
|
38
|
Sol IS, Kim YH, Park YA, Lee KE, Hong JY, Kim MN, Kim YS, Oh MS, Yoon SH, Kim MJ, Kim KW, Sohn MH, Kim KE. Relationship between sputum clusterin levels and childhood asthma. Clin Exp Allergy 2017; 46:688-95. [PMID: 26661728 DOI: 10.1111/cea.12686] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 11/27/2015] [Accepted: 12/05/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Clusterin is a sensitive cellular biosensor of oxidative stress and has been studied as a biomarker for inflammation-associated diseases. Clusterin levels in childhood asthma have not been evaluated. OBJECTIVES (1) To evaluate sputum clusterin levels in children with asthma compared to a control group. (2) To assess the relationships between sputum clusterin levels and airway inflammation, pulmonary function, and bronchial hyperresponsiveness. METHODS This study included 170 children aged 5-18 years with stable asthma (n = 91), asthma exacerbation (n = 29), or no asthma (healthy controls; n = 50). Induced sputum, pulmonary function, and methacholine challenge tests were performed. Stable asthma was classified into two groups according to the severity. Clusterin levels in sputum were measured using an enzyme-linked immunosorbent assay. RESULTS Children with stable asthma had a higher clusterin level than healthy controls [4540 (3872-5651) pg/mL vs. 3857 (1054-4369) pg/mL, P < 0.001]. The clusterin level was also more elevated in eosinophil-dominant sputum than in non-eosinophilic sputum in stable asthma [5094 (4243-6257) pg/mL vs. 4110 (1871-4839) pg/mL, P = 0.0017]. Clusterin levels were associated with asthma severity. Paradoxically, clusterin levels were lower during asthma exacerbation than in stable asthma [1838 (350-4790] pg/mL vs. 4540 (3872-5651) pg/mL, P < 0.001]. Clusterin levels were strongly correlated with the methacholine concentration that caused a 20% decrease in the forced expiratory volume in 1 s (r = -0.617, P < 0.001); there was no significant correlation between clusterin levels and other pulmonary function parameters. CONCLUSIONS AND CLINICAL RELEVANCE Clusterin levels were altered in children with stable asthma and asthma exacerbation because of its antioxidant and anti-inflammatory effects. Clusterin may be a marker that reflects airway inflammation and severity of symptoms, and it can be used in the assessment and management of childhood asthma.
Collapse
Affiliation(s)
- I S Sol
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Y H Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Y A Park
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - K E Lee
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - J Y Hong
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - M N Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Y S Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - M S Oh
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - S H Yoon
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - M J Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - K W Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - M H Sohn
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - K E Kim
- Department of Pediatrics, Severance Hospital, Institute of Allergy, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
39
|
Pavo N, Lukovic D, Zlabinger K, Lorant D, Goliasch G, Winkler J, Pils D, Auer K, Ankersmit HJ, Giricz Z, Sárközy M, Jakab A, Garamvölgyi R, Emmert MY, Hoerstrup SP, Hausenloy DJ, Ferdinandy P, Maurer G, Gyöngyösi M. Intrinsic remote conditioning of the myocardium as a comprehensive cardiac response to ischemia and reperfusion. Oncotarget 2017; 8:67227-67240. [PMID: 28978029 PMCID: PMC5620169 DOI: 10.18632/oncotarget.18438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
We have previously shown that distal anterior wall ischemia/reperfusion induces gene expression changes in the proximal anterior myocardial area, involving genes responsible for cardiac remodeling. Here we investigated the molecular signals of the ischemia non-affected remote lateral and posterior regions and present gene expression profiles of the entire left ventricle by using our novel and straightforward method of 2D and 3D image reconstruction. Five or 24h after repetitive 10min ischemia/reperfusion without subsequent infarction, pig hearts were explanted and myocardial samples from 52 equally distributed locations of the left ventricle were collected. Expressional changes of seven genes of interest (HIF-1α; caspase-3, transcription factor GATA4; myocyte enhancer factor 2C /MEF2c/; hexokinase 2 /HK2/; clusterin /CLU/ and excision repair cross-complementation group 4 /ERCC4/) were measured by qPCR. 2D and 3D gene expression maps were constructed by projecting the fold changes on the NOGA anatomical mapping coordinates. Caspase-3, GATA4, HK2, CLU, and ERCC4 were up-regulated region-specifically in the ischemic zone at 5 h post ischemia/reperfusion injury. Overexpression of GATA4, clusterin and ERCC4 persisted after 24 h. HK2 showed strong up-regulation in the ischemic zone and down-regulation in remote areas at 5 h, and was severely reduced in all heart regions at 24 h. These results indicate a quick onset of regulation of apoptosis-related genes, which is partially reversed in the late phase of ischemia/reperfusion cardioprotection, and highlight variations between ischemic and unaffected myocardium over time. The NOGA 2D and 3D construction system is an attractive method to visualize expressional variations in the myocardium.
Collapse
Affiliation(s)
- Noemi Pavo
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Katrin Zlabinger
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - David Lorant
- Department of Anaesthesiology, Medical University of Vienna, Vienna, Austria
| | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Johannes Winkler
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Dietmar Pils
- Center for Medical Statistics, Informatics, and Intelligent Systems (CeMSIIS), Medical University of Vienna, Vienna, Austria
- Department of Surgery, Medical University of Vienna, Vienna, Austria
| | - Katharina Auer
- Molecular Oncology Group, Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | | | - Zoltán Giricz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Márta Sárközy
- Department of Biochemistry, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - András Jakab
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Center for MR-Research, University Children’s Hospital Zurich, Zurich, Switzerland
| | - Rita Garamvölgyi
- Institute of Diagnostic Imaging and Radiation Oncology, University of Kaposvar, Kaposvar, Hungary
| | - Maximilian Y. Emmert
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Simon P. Hoerstrup
- Swiss Centre for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Division of Surgical Research, University Hospital of Zurich, Zurich, Switzerland
- Clinic for Cardiovascular Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Derek J. Hausenloy
- The Hatter Cardiovascular Institute, University College London, London, UK
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore, Singapore
- National Heart Research Institute Singapore, National Heart Centre, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- The National Institute of Health Research, University College London Hospitals Biomedical Research Centre, London, UK
- Barts Heart Centre, St Bartholomew’s Hospital, London, UK
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Gerald Maurer
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Mariann Gyöngyösi
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
40
|
Clusterin/apolipoprotein J is independently associated with survival in patients with chronic heart failure. J Clin Lipidol 2017; 11:178-184. [DOI: 10.1016/j.jacl.2016.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 11/26/2016] [Indexed: 12/20/2022]
|
41
|
Abstract
INTRODUCTION Clusterin (CLU) is a stress-activated, ATP-independent molecular chaperone, normally secreted from cells, that is up-regulated in Alzheimer disease and in many cancers. It plays important roles in protein homeostasis/proteostasis, inhibition of cell death pathways, and modulation of pro-survival signalling and transcriptional networks. Changes in the CLU gene locus are highly associated with Alzheimer disease, and many therapy-resistant cancers over-express CLU. The extensive post-translational processing and heterogeneous oligomerization of CLU have so far prevented any definitive structure determination. This in turn has meant that targeting CLU with small molecule inhibitors is challenging. Therefore, inhibiting CLU at the gene-expression level using siRNA or antisense is a valid approach to inhibit its function. Areas covered: This article reviews recent advances regarding the role of CLU in proteostasis, cellular trafficking, human diseases, and signalling pathways involved in oncogenesis. It addresses the rationale for CLU as a therapeutic target in cancer, and the current status of pre-clinical and clinical studies using CLU antisense inhibitor OGX011. Expert opinion: Discusses challenges facing the therapeutic targeting of CLU including rapid changes in the treatment landscape for prostate cancer with multiple new FDA approved drugs, selection of windows of intervention, and potential side effects when silencing CLU expression.
Collapse
Affiliation(s)
- Mark R Wilson
- a School of Biological Sciences , University of Wollongong , Wollongong , Australia
| | - Amina Zoubeidi
- b Department of Urologic Sciences, Vancouver Prostate Centre , University of British Columbia and Vancouver General Hospital , Vancouver , Canada
| |
Collapse
|
42
|
Cai R, Han J, Sun J, Huang R, Tian S, Shen Y, Dong X, Xia W, Wang S. Plasma Clusterin and the CLU Gene rs11136000 Variant Are Associated with Mild Cognitive Impairment in Type 2 Diabetic Patients. Front Aging Neurosci 2016; 8:179. [PMID: 27516739 PMCID: PMC4963458 DOI: 10.3389/fnagi.2016.00179] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/13/2016] [Indexed: 01/15/2023] Open
Abstract
Objective: Type 2 diabetes mellitus (T2DM) is related to an elevated risk of mild cognitive impairment (MCI). Plasma clusterin is reported associated with the early pathology of Alzheimer's disease (AD) and longitudinal brain atrophy in subjects with MCI. The rs11136000 single nucleotide polymorphism within the clusterin (CLU) gene is also associated with the risk of AD. We aimed to investigate the associations among plasma clusterin, rs11136000 genotype and T2DM-associated MCI. Methods: A total of 231 T2DM patients, including 126 MCI and 105 cognitively healthy controls were enrolled in this study. Demographic parameters were collected and neuropsychological tests were conducted. Plasma clusterin and CLU rs11136000 genotype were examined. Results: Plasma clusterin was significantly higher in MCI patients than in control group (p = 0.007). In subjects with MCI, plasma clusterin level was negatively correlated with Montreal cognitive assessment and auditory verbal learning test_delayed recall scores (p = 0.027 and p = 0.020, respectively). After adjustment for age, educational attainment, and gender, carriers of rs11136000 TT genotype demonstrated reduced risk for MCI compared with the CC genotype carriers (OR = 0.158, χ2 = 4.113, p = 0.043). Multivariable regression model showed that educational attainment, duration of diabetes, high-density lipoprotein cholesterol (HDL-c), and plasma clusterin levels are associated with MCI in T2DM patients. Conclusions: Plasma clusterin was associated with MCI and may reflect a protective response in T2DM patients. TT genotype exhibited a reduced risk of MCI compared to CC genotype. Further investigations should be conducted to determine the role of clusterin in cognitive decline. Trial registration Advanced Glycation End Products Induced Cognitive Impairment in Diabetes: BDNF Signal Meditated Hippocampal Neurogenesis ChiCTR-OCC-15006060; http://www.chictr.org.cn/showproj.aspx?proj=10536
Collapse
Affiliation(s)
- Rongrong Cai
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast UniversityNanjing, China; Medical School of Southeast UniversityNanjing, China
| | - Jing Han
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Jie Sun
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Rong Huang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Sai Tian
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Yanjue Shen
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Xue Dong
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Wenqing Xia
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| | - Shaohua Wang
- Department of Endocrinology, The Affiliated ZhongDa Hospital of Southeast University Nanjing, China
| |
Collapse
|
43
|
Kloučková J, Lacinová Z, Kaválková P, Trachta P, Kasalický M, Haluzíková D, Mráz M, Haluzík M. Plasma concentrations and subcutaneous adipose tissue mRNA expression of clusterin in obesity and type 2 diabetes mellitus: the effect of short-term hyperinsulinemia, very-low-calorie diet and bariatric surgery. Physiol Res 2016; 65:481-92. [PMID: 27070750 DOI: 10.33549/physiolres.933121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Clusterin is a heterodimeric glycoprotein with wide range of functions. To further explore its possible regulatory role in energy homeostasis and in adipose tissue, we measured plasma clusterin and its mRNA expression in subcutaneous adipose tissue (SCAT) of 15 healthy lean women, 15 obese women (OB) and 15 obese women with type 2 diabetes mellitus (T2DM) who underwent a 2-week very low-calorie diet (VLCD), 10 obese women without T2DM who underwent laparoscopic sleeve gastrectomy (LSG) and 8 patients with T2DM, 8 patients with impaired glucose tolerance (IGT) and 8 normoglycemic patients who underwent hyperinsulinemic euglycemic clamp (HEC). VLCD decreased plasma clusterin in OB but not in T2DM patients while LSG and HEC had no effect. Clusterin mRNA expression in SCAT at baseline was increased in OB and T2DM patients compared with controls. Clusterin mRNA expression decreased 6 months after LSG and remained decreased 12 months after LSG. mRNA expression of clusterin was elevated at the end of HEC compared with baseline only in normoglycemic but not in IGT or T2DM patients. In summary, our data suggest a possible local regulatory role for clusterin in the adipose tissue rather than its systemic involvement in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- J Kloučková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic, Department of Obesitology, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Immune-Mediated Inflammation May Contribute to the Pathogenesis of Cardiovascular Disease in Mucopolysaccharidosis Type I. PLoS One 2016; 11:e0150850. [PMID: 26986213 PMCID: PMC4795702 DOI: 10.1371/journal.pone.0150850] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 02/19/2016] [Indexed: 01/12/2023] Open
Abstract
Background Cardiovascular disease, a progressive manifestation of α-L-iduronidase deficiency or mucopolysaccharidosis type I, continues in patients both untreated and treated with hematopoietic stem cell transplantation or intravenous enzyme replacement. Few studies have examined the effects of α-L-iduronidase deficiency and subsequent glycosaminoglycan storage upon arterial gene expression to understand the pathogenesis of cardiovascular disease. Methods Gene expression in carotid artery, ascending, and descending aortas from four non-tolerized, non-enzyme treated 19 month-old mucopolysaccharidosis type I dogs was compared with expression in corresponding vascular segments from three normal, age-matched dogs. Data were analyzed using R and whole genome network correlation analysis, a bias-free method of categorizing expression level and significance into discrete modules. Genes were further categorized based on module-trait relationships. Expression of clusterin, a protein implicated in other etiologies of cardiovascular disease, was assessed in canine and murine mucopolysaccharidosis type I aortas via Western blot and in situ immunohistochemistry. Results Gene families with more than two-fold, significant increased expression involved lysosomal function, proteasome function, and immune regulation. Significantly downregulated genes were related to cellular adhesion, cytoskeletal elements, and calcium regulation. Clusterin gene overexpression (9-fold) and protein overexpression (1.3 to 1.62-fold) was confirmed and located specifically in arterial plaques of mucopolysaccharidosis-affected dogs and mice. Conclusions Overexpression of lysosomal and proteasomal-related genes are expected responses to cellular stress induced by lysosomal storage in mucopolysaccharidosis type I. Upregulation of immunity-related genes implicates the potential involvement of glycosaminoglycan-induced inflammation in the pathogenesis of mucopolysaccharidosis-related arterial disease, for which clusterin represents a potential biomarker.
Collapse
|
45
|
Fukuda T, Miyake H, Enatsu N, Matsushita K, Fujisawa M. Seminal level of clusterin in infertile men as a significant biomarker reflecting spermatogenesis. Andrologia 2016; 48:1188-1194. [DOI: 10.1111/and.12558] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2016] [Indexed: 11/29/2022] Open
Affiliation(s)
- T. Fukuda
- Division of Urology; Kobe University Graduate School of Medicine; Kobe Japan
| | - H. Miyake
- Division of Urology; Kobe University Graduate School of Medicine; Kobe Japan
| | - N. Enatsu
- Division of Urology; Kobe University Graduate School of Medicine; Kobe Japan
| | - K. Matsushita
- Division of Urology; Kobe University Graduate School of Medicine; Kobe Japan
| | - M. Fujisawa
- Division of Urology; Kobe University Graduate School of Medicine; Kobe Japan
| |
Collapse
|
46
|
Aragonès G, Auguet T, Guiu-Jurado E, Berlanga A, Curriu M, Martinez S, Alibalic A, Aguilar C, Hernández E, Camara ML, Canela N, Herrero P, Ruyra X, Martín-Paredero V, Richart C. Proteomic Profile of Unstable Atheroma Plaque: Increased Neutrophil Defensin 1, Clusterin, and Apolipoprotein E Levels in Carotid Secretome. J Proteome Res 2016; 15:933-44. [PMID: 26795031 DOI: 10.1021/acs.jproteome.5b00936] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Because of the clinical significance of carotid atherosclerosis, the search for novel biomarkers has become a priority. The aim of the present study was to compare the protein secretion profile of the carotid atherosclerotic plaque (CAP, n = 12) and nonatherosclerotic mammary artery (MA, n = 10) secretomes. We used a nontargeted proteomic approach that incorporated tandem immunoaffinity depletion, iTRAQ labeling, and nanoflow liquid chromatography coupled to high-resolution mass spectrometry. In total, 162 proteins were quantified, of which 25 showed statistically significant differences in secretome levels between carotid atherosclerotic plaque and nondiseased mammary artery. We found increased levels of neutrophil defensin 1, apolipoprotein E, clusterin, and zinc-alpha-2-glycoprotein in CAP secretomes. Results were validated by ELISA assays. Also, differentially secreted proteins are involved in pathways such as focal adhesion and leukocyte transendothelial migration. In conclusion, this study provides a subset of identified proteins that are differently expressed in secretomes of clinical significance.
Collapse
Affiliation(s)
- Gemma Aragonès
- Grup de Recerca GEMMAIR - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut Investigació Sanitària Pere Virgili (IISPV). Tarragona 43007, Spain
| | - Teresa Auguet
- Grup de Recerca GEMMAIR - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut Investigació Sanitària Pere Virgili (IISPV). Tarragona 43007, Spain.,Servei Medicina Interna, Hospital Universitari Joan XXIII , Tarragona 43007, Spain
| | - Esther Guiu-Jurado
- Grup de Recerca GEMMAIR - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut Investigació Sanitària Pere Virgili (IISPV). Tarragona 43007, Spain
| | - Alba Berlanga
- Grup de Recerca GEMMAIR - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut Investigació Sanitària Pere Virgili (IISPV). Tarragona 43007, Spain
| | - Marta Curriu
- Grup de Recerca GEMMAIR - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut Investigació Sanitària Pere Virgili (IISPV). Tarragona 43007, Spain
| | - Salomé Martinez
- Servei Anatomia Patològica, Hospital Universitari Joan XXIII , Tarragona 43007, Spain
| | - Ajla Alibalic
- Servei Medicina Interna, Hospital Universitari Joan XXIII , Tarragona 43007, Spain
| | - Carmen Aguilar
- Grup de Recerca GEMMAIR - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut Investigació Sanitària Pere Virgili (IISPV). Tarragona 43007, Spain
| | - Esteban Hernández
- Servei Angiologia i Cirurgia Vascular, Hospital Universitari Joan XXIII , Tarragona 43007, Spain
| | - María-Luisa Camara
- Servei de Cirurgia Cardíaca, Hospital Germans Trias i Pujol , Badalona 08916, Spain
| | - Núria Canela
- Group of Research on Omic Methodologies (GROM), Centre for Omic Sciences (COS) , Reus 43204, Spain
| | - Pol Herrero
- Group of Research on Omic Methodologies (GROM), Centre for Omic Sciences (COS) , Reus 43204, Spain
| | - Xavier Ruyra
- Servei de Cirurgia Cardíaca, Hospital Germans Trias i Pujol , Badalona 08916, Spain
| | - Vicente Martín-Paredero
- Servei Angiologia i Cirurgia Vascular, Hospital Universitari Joan XXIII , Tarragona 43007, Spain
| | - Cristóbal Richart
- Grup de Recerca GEMMAIR - Medicina Aplicada, Departament de Medicina i Cirurgia, Universitat Rovira i Virgili (URV), Institut Investigació Sanitària Pere Virgili (IISPV). Tarragona 43007, Spain.,Servei Medicina Interna, Hospital Universitari Joan XXIII , Tarragona 43007, Spain
| |
Collapse
|
47
|
Vanhooren V, Navarrete Santos A, Voutetakis K, Petropoulos I, Libert C, Simm A, Gonos ES, Friguet B. Protein modification and maintenance systems as biomarkers of ageing. Mech Ageing Dev 2015; 151:71-84. [PMID: 25846863 DOI: 10.1016/j.mad.2015.03.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 12/22/2022]
|
48
|
Ma Y, Kong L, Nan K, Qi S, Ru L, Ding C, Wang D. Apolipoprotein-J prevents angiotensin II-induced apoptosis in neonatal rat ventricular cells. Lipids Health Dis 2015; 14:114. [PMID: 26391229 PMCID: PMC4578334 DOI: 10.1186/s12944-015-0118-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 09/10/2015] [Indexed: 11/22/2022] Open
Abstract
Background Up-regulation of angiotensin II (AngII) occurs in cardiac diseases, such as congestive heart failure, cardiac hypertrophy, myocardial ischemia and atrial fibrillation, which represent major health problems. Evidence from in vivo studies suggests that the level of Apolipoprotein-J (ApoJ) is also elevated but plays a protective role in cardiovascular disease. This study aimed to evaluate the protective effects of ApoJ against cytotoxicity of AngII in neonatal rat ventricular cells (NRVCs). Methods and results In culture, NRVCs were damaged by exposure to AngII, and ApoJ overexpression using an adenovirus vector significantly reduced the AngII-induced cell injury. ApoJ also prevented AngII from augmenting Nox2/gp91phox expression. The reactive oxygen species (ROS) scavenger, Mn(III)TBAP, showed similar results of attenuating AngII-induced cell damage. Furthermore, ApoJ overexpression increased phosphorylation of Akt, and the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 diminished the antioxidant effects of ApoJ, and prevented the protective effect of ApoJ against the cytotoxicity of AngII. Moreover, upregulation of nuclear factor κB (NF-κB) p65 expression and phosphorylation of p38 mitogen-activated protein kinase (MAPK) mediated by AngII in cultured NRVCs were significantly inhibited by overexpression of ApoJ. The p38 MAPK inhibitor SB203580 and the NF-κB inhibitor PDTC protected NRVCs from injury caused by AngII. Conclusions ApoJ serves as a cytoprotective protein in NRVCs against cytotoxicity of AngII through the PI3K-Akt-ROS and MAPK/ NF-κB pathways.
Collapse
Affiliation(s)
- Yanzhuo Ma
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Lingfeng Kong
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Kai Nan
- Health and Medical Development Research Center of Hebei Province, Shijiazhuang, Hebei, China.
| | - Shuying Qi
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Leisheng Ru
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Chao Ding
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| | - Dongmei Wang
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang, Hebei, China.
| |
Collapse
|
49
|
The E-box-like sterol regulatory element mediates the insulin-stimulated expression of hepatic clusterin. Biochem Biophys Res Commun 2015; 465:501-6. [DOI: 10.1016/j.bbrc.2015.08.047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 08/11/2015] [Indexed: 01/21/2023]
|
50
|
Baralla A, Sotgiu E, Deiana M, Pasella S, Pinna S, Mannu A, Canu E, Sotgiu G, Ganau A, Zinellu A, Sotgia S, Carru C, Deiana L. Plasma Clusterin and Lipid Profile: A Link with Aging and Cardiovascular Diseases in a Population with a Consistent Number of Centenarians. PLoS One 2015; 10:e0128029. [PMID: 26076476 PMCID: PMC4468059 DOI: 10.1371/journal.pone.0128029] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 04/21/2015] [Indexed: 12/26/2022] Open
Abstract
The role of Clusterin in attenuation of inflammation and reverse cholesterol transfer makes this molecule a potential candidate as a marker for cancer, cardiovascular disease, diabetes mellitus, and metabolic syndrome. In elderly subjects cardiovascular diseases represent the primary cause of death and different clinical studies have shown a positive correlation of these diseases with changes in the lipid pattern. This work aimed at evaluating the relationship between circulating clusterin and the biochemical parameters that characterize the lipid profile of a Sardinian population divided into five age groups including centenarians; the high frequency in Sardinia of these long-lived individuals gave us the opportunity to extend the range of the age groups to be analyzed to older ages and to better evaluate the changes in the lipid balance during ageing and its relationship with clusterin concentration in plasma. Our results showed that Clusterin concentration values of the youngest group were more similar with the centenarian's group compared to the other age groups, and a positive correlation arises with LDL. Furthermore given the high prevalence of cardiovascular diseases in the population examined and the association of Clusterin with these pathologies we evaluated Clusterin concentration variation in two groups with or without cardiovascular diseases. In presence of cardiovascular disease, Clusterin is significantly related to the most atherogenic components of lipid profile (total cholesterol and LDL), especially in women, suggesting its potential role in modulating cardiovascular metabolic risk factors.
Collapse
Affiliation(s)
- Angela Baralla
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisabetta Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Marta Deiana
- Associazione "L’Isola dei Centenari", Sassari, Italy
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Sassari, Sassari, Italy
| | - Sara Pasella
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Sara Pinna
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Andrea Mannu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisabetta Canu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Antonello Ganau
- Department of Clinical and Experimental Medicine, Cardiology Unit, University of Sassari, Sassari, Italy
| | - Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Luca Deiana
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
- Associazione "L’Isola dei Centenari", Sassari, Italy
- * E-mail:
| |
Collapse
|