1
|
Soengas JL, Comesaña S, Blanco AM, Conde-Sieira M. Feed Intake Regulation in Fish: Implications for Aquaculture. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2025; 33:8-60. [DOI: 10.1080/23308249.2024.2374259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- José L. Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Ayelén M. Blanco
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
2
|
Bakshi A, Rai U. Reproductive phase-dependent and sexually dimorphic expression of leptin and its receptor in different parts of brain of spotted snakehead Channa punctata. JOURNAL OF FISH BIOLOGY 2023; 102:904-912. [PMID: 36704849 DOI: 10.1111/jfb.15334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The reproductive phase-wise leptin (lep) and its receptor (lepr) expression in different parts of the brain of adult male and female spotted snakehead Channa punctata reveals sexual dimorphism in the brain leptin system. In anterior, middle and posterior parts of the brain of males, a maximum lep was observed in resting, spawning and postspawning reproductive phases, respectively. In females, a high level of lep was seen during the preparatory phase in the anterior brain, preparatory and postspawning phases in the middle brain and resting and postspawning phases in the posterior brain. Nonetheless, the transcript level of lepr was recorded highest during the spawning phase, irrespective of sex and region of the brain. Regardless of the reproductive state of fishes, lep and lepr were seen considerably high in middle and posterior parts of male brain than that of female, implying the involvement of factors other than sex steroids for sex-related variation in the leptin system in these regions of the brain. Nonetheless, no sex difference was evidenced in the expression of either ligand or its receptor in the anterior brain. In summary, the presence of lep and lepr in different regions of the brain and variation in their expression depending on sex and reproductive phases raise the possibility of pivotal actions of leptin in influencing neuronal circuitry and thereby reproductive functions.
Collapse
Affiliation(s)
- Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | | |
Collapse
|
3
|
Martins N, Castro C, Oliva-Teles A, Peres H. The Interplay between Central and Peripheral Systems in Feed Intake Regulation in European Seabass ( Dicentrarchus labrax) Juveniles. Animals (Basel) 2022; 12:ani12233287. [PMID: 36496811 PMCID: PMC9739057 DOI: 10.3390/ani12233287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The present study aimed to evaluate the effects of feeding or feed deprivation on the orexigenic and anorexigenic responses at the central (whole brain) and peripheral (anterior and posterior intestine, stomach, and liver) system levels in European seabass. For this purpose, a group of fish (208 g) was fed a single meal daily for 8 days (fed group) and another group was feed-deprived for 8 days (unfed group). Compared to the fed group, in the whole brain, feed deprivation did not induce changes in npy, agrp1, and cart2 expression, but increased agrp2 and pomc1 expression. In the anterior intestine, feed deprivation increased cck expression, while in the posterior intestine, the npy expression increased and pyyb decreased. In the stomach, the ghr expression decreased regardless of the feeding status. The hepatic lep expression increased in the unfed fish. The present results suggest a feed intake regulation mechanism in European seabass similar to that observed in other teleosts.
Collapse
Affiliation(s)
- Nicole Martins
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
- Correspondence:
| | - Carolina Castro
- FLATLANTIC—Atividades Piscícolas, S.A., Rua do Aceiros s/n, 3070-732 Praia de Mira, Portugal
| | - Aires Oliva-Teles
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| | - Helena Peres
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre s/n, Edifício FC4, 4169-007 Porto, Portugal
- CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n 289, 4450-208 Matosinhos, Portugal
| |
Collapse
|
4
|
Sánchez-Baizán N, Ribas L, Piferrer F. Improved biomarker discovery through a plot twist in transcriptomic data analysis. BMC Biol 2022; 20:208. [PMID: 36153614 PMCID: PMC9509653 DOI: 10.1186/s12915-022-01398-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptomic analysis is crucial for understanding the functional elements of the genome, with the classic method consisting of screening transcriptomics datasets for differentially expressed genes (DEGs). Additionally, since 2005, weighted gene co-expression network analysis (WGCNA) has emerged as a powerful method to explore relationships between genes. However, an approach combining both methods, i.e., filtering the transcriptome dataset by DEGs or other criteria, followed by WGCNA (DEGs + WGCNA), has become common. This is of concern because such approach can affect the resulting underlying architecture of the network under analysis and lead to wrong conclusions. Here, we explore a plot twist to transcriptome data analysis: applying WGCNA to exploit entire datasets without affecting the topology of the network, followed with the strength and relative simplicity of DEG analysis (WGCNA + DEGs). We tested WGCNA + DEGs against DEGs + WGCNA to publicly available transcriptomics data in one of the most transcriptomically complex tissues and delicate processes: vertebrate gonads undergoing sex differentiation. We further validate the general applicability of our approach through analysis of datasets from three distinct model systems: European sea bass, mouse, and human. Results In all cases, WGCNA + DEGs clearly outperformed DEGs + WGCNA. First, the network model fit and node connectivity measures and other network statistics improved. The gene lists filtered by each method were different, the number of modules associated with the trait of interest and key genes retained increased, and GO terms of biological processes provided a more nuanced representation of the biological question under consideration. Lastly, WGCNA + DEGs facilitated biomarker discovery. Conclusions We propose that building a co-expression network from an entire dataset, and only thereafter filtering by DEGs, should be the method to use in transcriptomic studies, regardless of biological system, species, or question being considered. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01398-w.
Collapse
|
5
|
Transcriptome Sequencing Analysis Reveals Dynamic Changes in Major Biological Functions during the Early Development of Clearhead Icefish, Protosalanx chinensis. FISHES 2022. [DOI: 10.3390/fishes7030115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Early development, when many important developmental events occur, is a critical period for fish. However, research on the early development of clearhead icefish is very limited, especially in molecular research. In this study, we aimed to explore the dynamic changes in the biological functions of five key periods in clearhead icefish early development, namely the YL (embryonic), PM (first day after hatching), KK (fourth day after hatching), LC (seventh day after hatching), and SL (tenth day after hatching) stages, through transcriptome sequencing and different analysis strategies. A trend expression analysis and an enrichment analysis revealed that the expression ofgenes encoding G protein-coupled receptors and their ligands, i.e., prss1_2_3, pomc, npy, npb, sst, rln3, crh, gh, and prl that are associated with digestion and feeding regulation gradually increased during early development. In addition, a weighted gene co-expression network analysis (WGCNA) showed that eleven modules were significantly associated with early development, among which nine modules were significantly positively correlated. Through the enrichment analysis and hub gene identification results of these nine modules, it was found that the pathways related to eye, bone, and heart development were significantly enriched in the YL stage, and the ccnd2, seh1l, kdm6a, arf4, and ankrd28 genes that are associated with cell proliferation and differentiation played important roles in these developmental processes; the pak3, dlx3, dgat2, and tas1r1 genes that are associated with jaw and tooth development, TG (triacylglycerol) synthesis, and umami amino acid receptors were identified as hub genes for the PM stage; the pathways associated with aerobic metabolism and unsaturated fatty acid synthesis were significantly enriched in the KK stage, with the foxk, slc13a2_3_5, ndufa5, and lsc2 genes playing important roles; the pathways related to visual perception were significantly enriched in the LC stage; and the bile acid biosynthetic and serine-type peptidase activity pathways were significantly enriched in the SL stage. These results provide a more detailed understanding of the processes of early development of clearhead icefish.
Collapse
|
6
|
Neuropeptide Y in Spotted Scat (Scatophagus Argus), Characterization and Functional Analysis towards Feed Intake Regulation. FISHES 2022. [DOI: 10.3390/fishes7030111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y (Npy) is an intricate neuropeptide regulating numerous physiological processes. It is a highly conserved peptide known to improve feed intake in many vertebrates, including fishes. To enlighten the mechanism of Npy in spotted scat feed intake control, we cloned and identified the Npy cDNA sequence. We further examined its expression in some tissues and explored its expression effects at different time frames (hours and days). Here, we discovered that spotted scat Npy comprised a 300 bp open reading frame (ORF) and a 99 amino acid sequence. Npy was identified to be expressed in all tissues examined. Using in situ hybridization examination, we proved that npy has a wide expression in the brain of the spotted scat. Furthermore, the expression of npy in the hypothalamus significantly increased one hour after feeding (p < 0.05). Further, it was revealed that npy expression significantly increased in fish that were fasted for up to 5 days and significantly increased after refeeding from the 8th to the 10th day. This suggests that Npy is an orexigenic peptide, and hence, it increases food intake and growth in the spotted scat. Additionally, results from in vitro and in vivo experiments revealed that Npy locally interacts with other appetite-regulating peptides in the spotted scat hypothalamus. This research aimed to set a fundamental study in developing the feed intake regulation, improving growth and reproduction, which is significant to the aquaculture industry of the spotted scat.
Collapse
|
7
|
Basu S, Mitra S, Singh O, Chandramohan B, Singru PS. Secretagogin in the brain and pituitary of the catfish, Clarias batrachus: Molecular characterization and regulation by insulin. J Comp Neurol 2022; 530:1743-1772. [PMID: 35322425 DOI: 10.1002/cne.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 11/12/2022]
Abstract
Secretagogin (scgn), is a novel hexa EF-hand, phylogenetically conserved calcium-binding protein. It serves as Ca2+ sensor and participates in Ca2+ -signaling and neuroendocrine regulation in mammals. However, its relevance in the brain of non-mammalian vertebrates has largely remained unexplored. To address this issue, we studied the cDNA encoding scgn, scgn mRNA expression, and distribution of scgn-equipped elements in the brain and pituitary of a teleost, Clarias batrachus (cb). The cbscgn cDNA consists of three transcripts (T) variants: T1 (2185 bp), T2 (2151 bp) and T3 (2060 bp). While 816 bp ORF in T1 and T2 encodes highly conserved six EF-hand 272 aa protein fully capable of Ca2+ -binding, 726-bp ORF in T3 encodes 242 aa protein. The T1 showed >90% and >70% identity with scgn of catfishes, and other teleosts and mammals, respectively. The T1-mRNA was widely expressed in the brain and pituitary, while the expression of T3 was restricted to the telencephalon. Application of the anti-scgn antiserum revealed a ∼32 kDa scgn-immunoreactive (scgn-i) band (known molecular weight of scgn) in the forebrain tissue, and immunohistochemically labeled neurons in the olfactory epithelium and bulb, telencephalon, preoptic area, hypothalamus, thalamus, and hindbrain. In the pituitary, scgn-i cells were seen in the pars distalis and intermedia. Insulin is reported to regulate scgn mRNA in the mammalian hippocampus, and feeding-related neuropeptides in the telencephalon of teleost. Intracranial injection of insulin significantly increased T1-mRNA expression and scgn-immunoreactivity in the telencephalon. We suggest that scgn may be an important player in the regulation of olfactory, neuroendocrine system, and energy balance functions in C. batrachus.
Collapse
Affiliation(s)
- Sumela Basu
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Saptarsi Mitra
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Omprakash Singh
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Bathrachalam Chandramohan
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India
| | - Praful S Singru
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, India.,Homi Bhabha National Institute (HBNI), Mumbai, India
| |
Collapse
|
8
|
Natterson-Horowitz B, Cho JH. Stress, Subordination, and Anomalies of Feeding Across the Tree of Life: Implications for Interpreting Human Eating Disorders. Front Psychol 2021; 12:727554. [PMID: 34675841 PMCID: PMC8525799 DOI: 10.3389/fpsyg.2021.727554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Eating behaviors of animals living in naturalistic environments offer unique insights into several dysregulated eating patterns observed in humans. Social subordination is a known precipitant of hyperphagia and hypophagia in human beings, and examples of similar responses have been identified in a phylogenetically widespread range of vertebral species. This points to potentially conserved, patterned responses to animals navigating lives within social hierarchies. Self-imposed food restriction in subordinate fish and hyperphagic responses in socially subordinated bird and primate individuals may represent evolved adaptations to the stress of social subordination. As such, hyperphagic and hypophagic responses to social subordination in these species may model the natural history, neurobiology, and behavioral ecology of human dieting and bingeing more accurately than some current animal models. Phylogenetically widespread similarities in eating patterns under the stress of social subordination point to potentially shared biological benefits of these behaviors across species and the role of evolutionary trade-offs, adaptations, and other processes in shaping them. The application of a broadly comparative lens to disordered eating behaviors in other species exposes important similarities and differences between neurophysiology of eating across species. In doing so, it highlights the value of phylogenetic analyses and macroevolution as tools for identifying novel, naturally occurring models for understanding disordered human eating. Moreover, this approach introduces the intriguing possibility that human cultural influences on disordered eating may have far more ancient origins than previously considered.
Collapse
Affiliation(s)
- B Natterson-Horowitz
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, United States.,Department of Human Evolutionary Biology, Harvard University, Boston, MA, United States
| | - Julia H Cho
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|
9
|
Tolås I, Kalananthan T, Gomes AS, Lai F, Norland S, Murashita K, Rønnestad I. Regional Expression of npy mRNA Paralogs in the Brain of Atlantic Salmon ( Salmo salar, L.) and Response to Fasting. Front Physiol 2021; 12:720639. [PMID: 34512390 PMCID: PMC8427667 DOI: 10.3389/fphys.2021.720639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/28/2021] [Indexed: 12/18/2022] Open
Abstract
Neuropeptide Y (NPY) is known as a potent orexigenic signal in vertebrates, but its role in Atlantic salmon has not yet been fully established. In this study, we identified three npy paralogs, named npya1, npya2, and npyb, in the Atlantic salmon genome. In silico analysis revealed that these genes are well conserved across the vertebrate’s lineage and the mature peptide sequences shared at least 77% of identity with the human homolog. We analyzed mRNA expression of npy paralogs in eight brain regions of Atlantic salmon post-smolt, and the effect of 4 days of fasting on the npy expression level. Results show that npya1 was the most abundant paralog, and was predominantly expressed in the telencephalon, followed by the midbrain and olfactory bulb. npya2 mRNA was highly abundant in hypothalamus and midbrain, while npyb was found to be highest expressed in the telencephalon, with low mRNA expression levels detected in all the other brain regions. 4 days of fasting resulted in a significant (p < 0.05) decrease of npya1 mRNA expression in the olfactory bulb, increased npya2 mRNA expression in the midbrain and decreased npyb mRNA expression in the pituitary. In the hypothalamus, the vertebrate appetite center, expression of the npy paralogs was not significantly affected by feeding status. However, we observed a trend of increased npya2 mRNA expression (p = 0.099) following 4 days of fasting. Altogether, our findings provide a solid basis for further research on appetite and energy metabolism in Atlantic salmon.
Collapse
Affiliation(s)
- Ingvill Tolås
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Ana S Gomes
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Floriana Lai
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Sissel Norland
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Physiological Function Division, Aquaculture Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Tamaki, Japan
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
10
|
Canosa LF, Bertucci JI. Nutrient regulation of somatic growth in teleost fish. The interaction between somatic growth, feeding and metabolism. Mol Cell Endocrinol 2020; 518:111029. [PMID: 32941926 DOI: 10.1016/j.mce.2020.111029] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 07/03/2020] [Accepted: 09/07/2020] [Indexed: 12/13/2022]
Abstract
This review covers the current knowledge on the regulation of the somatic growth axis and its interaction with metabolism and feeding regulation. The main endocrine and neuroendocrine factors regulating both the growth axis and feeding behavior will be briefly summarized. Recently discovered neuropeptides and peptide hormones will be mentioned in relation to feeding control as well as growth hormone regulation. In addition, the influence of nutrient and nutrient sensing mechanisms on growth axis will be highlighted. We expect that in this process gaps of knowledge will be exposed, stimulating future research in those areas.
Collapse
Affiliation(s)
- Luis Fabián Canosa
- Instituto Tecnológico de Chascomús (INTECH), CONICET-UNSAM, Chascomús, Buenos Aires, Argentina.
| | | |
Collapse
|
11
|
Li Q, Wen H, Li Y, Zhang Z, Wang L, Mao X, Li J, Qi X. FOXO1A promotes neuropeptide FF transcription subsequently regulating the expression of feeding-related genes in spotted sea bass (Lateolabrax maculatus). Mol Cell Endocrinol 2020; 517:110871. [PMID: 32450284 DOI: 10.1016/j.mce.2020.110871] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/05/2020] [Accepted: 05/13/2020] [Indexed: 01/13/2023]
Abstract
FOXOs belong to the forkhead transcription factor superfamily, several of which are suggested to be involved in the control of food intake. Previously, we proved that the neuropeptide FF (NPFF) peptide was involved in feeding regulation in spotted sea bass. In the present study, seven members of the foxo family were identified in the whole genome of spotted sea bass. The distributions of these genes in different tissues were analyzed by qRT-PCR. Variations in the foxo1a and npff expression profiles during short-term starvation showed similar expression patterns. The colocalization of foxo1a and npff in the telencephalon, hypothalamus, stomach and intestine further provided evidence that foxo1a may act directly to promote the transcription of npff. Thirteen predicted FOXO1 binding sites were found in the 5' upstream region of npff. Luciferase assay results showed that FOXO1A was able to activate npff transcriptional responses by directly binding DNA response elements, and the key regulatory areas and sites of FOXO1A on the npff promoter were confirmed by deletion and site-directed mutagenesis analyses. These findings may help to elucidate the role of FOXO1 in the regulation of feeding processes in teleosts.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Haishen Wen
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yun Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Zhanxiong Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Lingyu Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xuebin Mao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Junjie Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xin Qi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China.
| |
Collapse
|
12
|
Maruska KP, Butler JM, Field KE, Forester C, Augustus A. Neural Activation Patterns Associated with Maternal Mouthbrooding and Energetic State in an African Cichlid Fish. Neuroscience 2020; 446:199-212. [PMID: 32707292 DOI: 10.1016/j.neuroscience.2020.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/18/2020] [Accepted: 07/14/2020] [Indexed: 10/23/2022]
Abstract
Parental care is widespread in the animal kingdom, but for many species, provisioning energetic resources must be balanced with trade-offs between self-promoting and offspring-promoting behaviors. However, little is known about the neural mechanisms underlying these motivational decisions. Mouthbrooding is an extreme form of parental care most common in fishes that provides an ideal opportunity to examine which brain regions are involved in parenting and energetics. The African cichlid fish Astatotilapia burtoni is a maternal mouthbrooder in which females hold developing young inside their mouths for 2 weeks. This brood care makes feeding impossible, so females undergo obligatory starvation. We used immunohistochemistry for the neural activation marker pS6 to examine which brain regions were involved in processing salient information in mouthbrooding, starved, and fed females. We identified brain regions more associated with maternal brood care (TPp, Dc-4/-5), and others reflective of energetic state (Dl-v, NLTi). Most nuclei examined, however, were involved in both maternal care and energetic status. Placement of each of the 16 examined nuclei into these functional categories was supported by node by node comparisons, co-activity networks, hierarchical clustering, and discriminant function analysis. These results reveal which brain regions are involved in parental care and food intake in a species where provisioning is skewed towards the offspring when parental feeding is not possible. This study provides support for both distinct and shared circuitry involved in regulation of maternal care, food intake, and energy balance, and helps put the extreme parental case of mouthbrooding into a comparative and evolutionary context.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States.
| | - Julie M Butler
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States; Biology Department, Stanford University, 371 Jane Stanford Way, Stanford, CA 94305-5020, United States
| | - Karen E Field
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States
| | - Christopher Forester
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States
| | - Ashley Augustus
- Department of Biological Sciences, 202 Life Sciences Bldg., Louisiana State University, Baton Rouge, LA 70803, United States
| |
Collapse
|
13
|
Parker CG, Cheung E. Metabolic control of teleost reproduction by leptin and its complements: Understanding current insights from mammals. Gen Comp Endocrinol 2020; 292:113467. [PMID: 32201232 DOI: 10.1016/j.ygcen.2020.113467] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/05/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
Reproduction is expensive. Hence, reproductive physiology is sensitive to an array of endogenous signals that provide information on metabolic and nutritional sufficiency. Although metabolic gating of reproductive function in mammals, as evidenced by studies demonstrating delayed puberty and perturbed fertility, has long been understood to be a function of energy sufficiency, an understanding of the endocrine regulators of this relationship have emerged only within recent decades. Peripheral signals including leptin and cortisol have long been implicated in the physiological integration of metabolism and reproduction. Recent studies have begun to explore possible roles for these two hormones in the regulation of reproduction in teleost fishes, as well as a role for leptin as a catabolic stress hormone. In this review, we briefly explore the reproductive actions of leptin and cortisol in mammals and teleost fishes and possible role of both hormones as putative modulators of the reproductive axis during stress events.
Collapse
Affiliation(s)
- Coltan G Parker
- Neuroscience Program, Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N Mathews Ave, Urbana, IL, USA
| | - Eugene Cheung
- Department of Biological Sciences, David Clark Labs, 100 Brooks Avenue, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
14
|
Das K, Ogawa S, Kitahashi T, Parhar IS. Expression of neuropeptide Y and gonadotropin-releasing hormone gene types in the brain of female Nile tilapia (Oreochromis niloticus) during mouthbrooding and food restriction. Peptides 2019; 112:67-77. [PMID: 30389346 DOI: 10.1016/j.peptides.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
A cichlid fish, the Nile tilapia (Oreochromis niloticus), is a maternal mouthbrooder, which exhibits minimum energy expenditure and slower ovarian cycles during mouthbrooding. The objective of this study was to observe changes in the gene expression of key neuropeptides involved in the control of appetite and reproduction, including neuropeptide Y a (NPYa), reproductive neuropeptides: gonadotropin-releasing hormone (GnRH1, GnRH2 and GnRH3) and kisspeptin (Kiss2) during mouthbrooding (4- and 12-days), 12-days of food restriction and 12-days of food restriction followed by refeeding. The food restriction regime showed a significant increase in npya mRNA levels in the telencephalon. However, there were no significant alterations in npya mRNA levels during mouthbrooding. gnrh1 mRNA levels were significantly lower in mouthbrooding female as compared with females with food restriction. gnrh3 mRNA levels were also significantly lower in female with 12-days of mouthbrooding, 12-days of food restriction followed by 12-days of refeeding when compared with controls. There were no significant differences in gnrh2 and kiss2 mRNA levels between groups under different feeding regimes. No significant changes were observed in mRNA levels of receptors for peripheral metabolic signaling molecules: ghrelin (GHS-R1a and GHS-R1b) and leptin (Lep-R). These results suggested that unaffected npya mRNA levels in the telencephalon might contribute to suppression of appetite in mouthbrooding female tilapia. Furthermore, lower gnrh1 and gnrh3 mRNA levels may influence the suppression of reproductive functions such as progression of ovarian cycle and reproductive behaviours, while GnRH2 and Kiss2 may not play a significant roles in reproduction under food restriction condition.
Collapse
Affiliation(s)
- Kalpana Das
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| | - Takashi Kitahashi
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
15
|
Li Q, Wen H, Li Y, Zhang Z, Zhou Y, Qi X. Evidence for the Direct Effect of the NPFF Peptide on the Expression of Feeding-Related Factors in Spotted Sea Bass ( Lateolabrax maculatus). Front Endocrinol (Lausanne) 2019; 10:545. [PMID: 31447787 PMCID: PMC6691130 DOI: 10.3389/fendo.2019.00545] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023] Open
Abstract
Neuropeptide FF (NPFF) is a family member of RF-amide peptides, which are suggested to be involved in the control of vertebrate feeding behavior. However, little is known about the effect of the NPFF peptide on feeding-related processes in basal vertebrates. In this study, four full-length cDNAs, npff, npffr1, npffr2-1, and npffr2-2, were cloned from spotted sea bass and characterized. The conserved NPFF peptide is biologically active because it functionally interacts with different receptors expressed in cultured eukaryotic cells to enhance CRE promoter activity. Tissue distribution analysis showed that the highest npff mRNA expression occurred in the telencephalon, hypothalamus, medulla, gonad and muscle, but the npffrs mRNAs were mainly distributed within the central nervous system (CNS). In situ hybridization (ISH) detected npff-expressing cells in several specific regions ranging across the telencephalon and midbrain to the hypothalamus. Incubation of the spotted sea bass conserved NPFF peptide significantly increased the expression of orexin (orx) and neuropeptide Y (npy) mRNA and decreased the expression of leptin (lep), somatostatin (ss), and cholecystokinin (cck) mRNA in brain cells. Similarly, the conserved NPFF peptide also heightened the expression of gastrin (gas), ghrelin (ghrl), and motilin (mtl) mRNA and significantly reduced the expression of cck mRNA in the intestine and stomach. Taken together, these data suggest that the NPFF peptide may play a stimulating role in regulating feeding-related processes in spotted sea bass.
Collapse
|
16
|
Di Yorio MP, Muñoz-Cueto JA, Paullada-Salmerón JA, Somoza GM, Tsutsui K, Vissio PG. The Gonadotropin-Inhibitory Hormone: What We Know and What We Still Have to Learn From Fish. Front Endocrinol (Lausanne) 2019; 10:78. [PMID: 30837949 PMCID: PMC6389629 DOI: 10.3389/fendo.2019.00078] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/28/2019] [Indexed: 12/16/2022] Open
Abstract
Gonadotropin-inhibitory hormone, GnIH, is named because of its function in birds and mammals; however, in other vertebrates this function is not yet clearly established. More than half of the vertebrate species are teleosts. This group is characterized by the 3R whole genome duplication, a fact that could have been responsible for the great phenotypic complexity and great variability in reproductive strategies and sexual behavior. In this context, we revise GnIH cell bodies and fibers distribution in adult brains of teleosts, discuss its relationship with GnRH variants and summarize the few reports available about the ontogeny of the GnIH system. Considering all the information presented in this review, we propose that in teleosts, GnIH could have other functions beyond reproduction or act as an integrative signal in the reproductive process. However, further studies are required in order to clarify the role of GnIH in this group including its involvement in development, a key stage that strongly impacts on adult life.
Collapse
Affiliation(s)
- María P. Di Yorio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - José A. Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
| | - José A. Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Puerto Real, Spain
- Marine Research Institute (INMAR), Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), Puerto Real, Spain
| | - Gustavo M. Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Argentina
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda University, Tokyo, Japan
| | - Paula G. Vissio
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Biodiversidad y Biología Experimental y Aplicada (IBBEA), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
- *Correspondence: Paula G. Vissio
| |
Collapse
|
17
|
Deichler A, Carrasco D, Gonzalez-Cabrera C, Letelier JC, Marín G, Mpodozis J. The nucleus pretectalis principalis: A pretectal structure hidden in the mammalian thalamus. J Comp Neurol 2018; 527:372-391. [DOI: 10.1002/cne.24540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Alfonso Deichler
- Departamento de Biología, Facultad de Ciencias; Universidad de Chile; Ñuñoa Chile
| | - Denisse Carrasco
- Departamento de Biología, Facultad de Ciencias; Universidad de Chile; Ñuñoa Chile
| | - Cristian Gonzalez-Cabrera
- Departamento de Anatomía, Escuela de Medicina; Pontificia Universidad Católica de Chile; Santiago Chile
| | - Juan C. Letelier
- Departamento de Biología, Facultad de Ciencias; Universidad de Chile; Ñuñoa Chile
| | - Gonzalo Marín
- Departamento de Biología, Facultad de Ciencias; Universidad de Chile; Ñuñoa Chile
- Facultad de Medicina; Universidad Finis Terrae; Santiago Chile
| | - Jorge Mpodozis
- Departamento de Biología, Facultad de Ciencias; Universidad de Chile; Ñuñoa Chile
| |
Collapse
|
18
|
Soengas JL, Cerdá-Reverter JM, Delgado MJ. Central regulation of food intake in fish: an evolutionary perspective. J Mol Endocrinol 2018; 60:R171-R199. [PMID: 29467140 DOI: 10.1530/jme-17-0320] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/21/2018] [Indexed: 12/11/2022]
Abstract
Evidence indicates that central regulation of food intake is well conserved along the vertebrate lineage, at least between teleost fish and mammals. However, several differences arise in the comparison between both groups. In this review, we describe similarities and differences between teleost fish and mammals on an evolutionary perspective. We focussed on the existing knowledge of specific fish features conditioning food intake, anatomical homologies and analogies between both groups as well as the main signalling pathways of neuroendocrine and metabolic nature involved in the homeostatic and hedonic central regulation of food intake.
Collapse
Affiliation(s)
- José Luis Soengas
- Departamento de Bioloxía Funcional e Ciencias da SaúdeLaboratorio de Fisioloxía Animal, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y BiotecnologíaInstituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - María Jesús Delgado
- Departamento de Fisiología (Fisiología Animal II)Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Otero-Rodiño C, Rocha A, Álvarez-Otero R, Ceinos RM, López-Patiño MA, Míguez JM, Cerdá-Reverter JM, Soengas JL. Glucosensing capacity of rainbow trout telencephalon. J Neuroendocrinol 2018; 30:e12583. [PMID: 29427522 DOI: 10.1111/jne.12583] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 12/28/2022]
Abstract
To assess the hypothesis of glucosensing systems present in fish telencephalon, we first demonstrated in rainbow trout, by in situ hybridisation, the presence of glucokinase (GK). Then, we assessed the response of glucosensing markers in rainbow trout telencephalon 6 hours after i.c.v. treatment with glucose or 2-deoxyglucose (inducing glucoprivation). We evaluated the response of parameters related to the mechanisms dependent on GK, liver X receptor (LXR), mitochondrial activity, sweet taste receptor and sodium-glucose linked transporter 1 (SGLT-1). We also assessed mRNA abundance of neuropeptides involved in the metabolic control of food intake (agouti-related protein, neuropeptide Y, pro-opiomelanocortin, and cocaine- and amphetamine-related transcript), as well as the abundance and phosphorylation status of proteins possibly involved in linking glucosensing with neuropeptide expression, such as protein kinase B (AkT), AMP-activated protein kinase (AMPK), mechanistic target of rapamycin and cAMP response element-binding protein (CREB). The responses obtained support the presence in the telencephalon of a glucosensing mechanism based on GK and maybe one based on LXR, although they do not support the presence of mechanisms dependent on mitochondrial activity and SGLT-1. The mechanism based on sweet taste receptor responded to glucose but in a converse way to that characterised previously in the hypothalamus. In general, systems responded only to glucose but not to glucoprivation. Neuropeptides did not respond to glucose or glucoprivation. By contrast, the presence of glucose activates Akt and inhibits AMPK, CREB and forkhead box01. This is the first study in any vertebrate species in which the response to glucose of putative glucosensing mechanisms is demonstrated in the telencephalon. Their role might relate to processes other than homeostatic control of food intake, such as the hedonic and reward system.
Collapse
Affiliation(s)
- C Otero-Rodiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - A Rocha
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - R Álvarez-Otero
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - R M Ceinos
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - M A López-Patiño
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - J M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - J M Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (CSIC), Castellón, Spain
| | - J L Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
20
|
Cortés R, Teles M, Oliveira M, Fierro-Castro C, Tort L, Cerdá-Reverter JM. Effects of acute handling stress on short-term central expression of orexigenic/anorexigenic genes in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2018; 44:257-272. [PMID: 29071448 DOI: 10.1007/s10695-017-0431-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Physiological mechanisms driving stress response in vertebrates are evolutionarily conserved. These mechanisms involve the activation of both the hypothalamic-sympathetic-chromaffin cell (HSC) and the hypothalamic-pituitary-adrenal (HPA) axes. In fish, the reduction of food intake levels is a common feature of the behavioral response to stress but the central mechanisms coordinating the energetic response are not well understood yet. In this work, we explore the effects of acute stress on key central systems regulating food intake in fish as well as on total body cortisol and glucose levels. We show that acute stress induced a rapid increase in total body cortisol with no changes in body glucose, at the same time promoting a prompt central response by activating neuronal pathways. All three orexigenic peptides examined, i.e., neuropeptide y (npy), agouti-related protein (agrp), and ghrelin, increased their central expression level suggesting that these neuronal systems are not involved in the short-term feeding inhibitory effects of acute stress. By contrast, the anorexigenic precursors tested, i.e., cart peptides and pomc, exhibited increased expression after acute stress, suggesting their involvement in the anorexigenic effects.
Collapse
Affiliation(s)
- Raul Cortés
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain
- Universidad Bernardo O'Higgins, Centro de Investigación en Recursos Naturales y Sustentabilidad, Fábrica1990, Santiago, Chile
| | - Mariana Teles
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Miguel Oliveira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Camino Fierro-Castro
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - Lluis Tort
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193, Barcelona, Spain
| | - José Miguel Cerdá-Reverter
- Deparment of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Torre la Sal s/n 12595, Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
21
|
Fischer EK, O'Connell LA. Modification of feeding circuits in the evolution of social behavior. ACTA ACUST UNITED AC 2017; 220:92-102. [PMID: 28057832 DOI: 10.1242/jeb.143859] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Adaptive trade-offs between foraging and social behavior intuitively explain many aspects of individual decision-making. Given the intimate connection between social behavior and feeding/foraging at the behavioral level, we propose that social behaviors are linked to foraging on a mechanistic level, and that modifications of feeding circuits are crucial in the evolution of complex social behaviors. In this Review, we first highlight the overlap between mechanisms underlying foraging and parental care and then expand this argument to consider the manipulation of feeding-related pathways in the evolution of other complex social behaviors. We include examples from diverse taxa to highlight that the independent evolution of complex social behaviors is a variation on the theme of feeding circuit modification.
Collapse
Affiliation(s)
- Eva K Fischer
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| | - Lauren A O'Connell
- Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
22
|
Porter DT, Roberts DA, Maruska KP. Distribution and female reproductive state differences in orexigenic and anorexigenic neurons in the brain of the mouth brooding African cichlid fish, Astatotilapia burtoni. J Comp Neurol 2017. [PMID: 28649723 DOI: 10.1002/cne.24268] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Integration of reproduction and metabolism is necessary for species survival. While the neural circuits controlling energy homeostasis are well-characterized, the signals controlling the relay of nutritional information to the reproductive axis are less understood. The cichlid fish Astatotilapia burtoni is ideal for studying the neural regulation of feeding and reproduction because females cycle between a feeding gravid state and a period of forced starvation while they brood developing young inside their mouths. To test the hypothesis that candidate neuropeptide-containing neurons known to be involved in feeding and energy homeostasis in mammals show conserved distribution patterns, we performed immunohistochemistry and in situ hybridization to localize appetite-stimulating (neuropeptide Y, NPY; agouti-related protein, AGRP) and appetite-inhibiting (cocaine and amphetamine-regulated transcript, CART; pro-opiomelanocortin, pomc1a) neurons in the brain. NPY, AGRP, CART, and pomc1a somata showed distribution patterns similar to other teleosts, which included localization to the lateral tuberal nucleus (NLT), the putative homolog of the mammalian arcuate nucleus. Gravid females also had larger NPY and AGRP neurons in the NLT compared to brooding females, but brooding females had larger pomc1a neurons compared to gravid females. Hypothalamic agrp mRNA levels were also higher in gravid compared to brooding females. Thus, larger appetite-stimulating neurons (NPY, AGRP) likely promote feeding while females are gravid, while larger pomc1a neurons may act as a signal to inhibit food intake during mouth brooding. Collectively, our data suggest a potential role for NPY, AGRP, POMC, and CART in regulating energetic status in A. burtoni females during varying metabolic and reproductive demands.
Collapse
Affiliation(s)
- Danielle T Porter
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - David A Roberts
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
23
|
Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017; 11:354. [PMID: 28694769 PMCID: PMC5483453 DOI: 10.3389/fnins.2017.00354] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model.
Collapse
Affiliation(s)
- María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones CientíficasCastellón, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| |
Collapse
|
24
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
25
|
Cowan M, Paullada-Salmerón JA, López-Olmeda JF, Sánchez-Vázquez FJ, Muñoz-Cueto JA. Effects of pinealectomy on the neuroendocrine reproductive system and locomotor activity in male European sea bass, Dicentrarchus labrax. Comp Biochem Physiol A Mol Integr Physiol 2017; 207:1-12. [PMID: 28188883 DOI: 10.1016/j.cbpa.2017.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 02/03/2017] [Accepted: 02/05/2017] [Indexed: 12/19/2022]
Abstract
The seasonally changing photoperiod controls the timing of reproduction in most fish species, however, the transduction of this photoperiodic information to the reproductive axis is still unclear. This study explored the potential role of two candidate neuropeptide systems, gonadotropin-inhibitory hormone (Gnih) and kisspeptin, as mediators between the pineal organ (a principle transducer of photoperiodic information) and reproductive axis in male European sea bass, Dicentrarchus labrax. Two seven-day experiments of pinealectomy (Px) were performed, in March (end of reproductive season) and August (resting season). Effects of Px and season on the brain expression of gnih (sbgnih) and its receptor (sbgnihr), kisspeptins (kiss1, kiss2) and their receptors (kissr2, kissr3) and gonadotropin-releasing hormone (gnrh1, gnrh2, gnrh3) and the main brain receptor (gnrhr-II-2b) genes, plasma melatonin levels and locomotor activity rhythms were examined. Results showed that Px reduced night-time plasma melatonin levels. Gene expression analyses demonstrated a sensitivity of the Gnih system to Px in March, with a reduction in sbgnih in the mid-hindbrain, a region with bilateral connections to the pineal organ. In August, kiss2 levels increased in Px animals but not in controls. Significant differences in expression were observed for diencephalic sbgnih, sbgnihr, kissr3 and tegmental gnrh2 between seasons. Recordings of locomotor activity following surgery revealed a change from light-synchronised to free-running rhythmic behavior. Altogether, the Gnih and Kiss2 sensitivity to Px and seasonal differences observed for Gnih and its receptor, Gnrh2, and the receptor for Kiss2 (Kissr3), suggested they could be mediators involved in the relay between environment and seasonal reproduction.
Collapse
Affiliation(s)
- Mairi Cowan
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain.
| | - José A Paullada-Salmerón
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain
| | - José Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - Francisco Javier Sánchez-Vázquez
- Department of Physiology, Faculty of Biology, University of Murcia, Regional Campus of International Excellence "Campus Mare Nostrum", E-30100 Murcia, Spain
| | - José A Muñoz-Cueto
- Department of Biology, Faculty of Marine and Environmental Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3), E-11510 Puerto Real, Spain; INMAR-CACYTMAR Research Institutes, Puerto Real University Campus, E-11510 Puerto Real, Spain.
| |
Collapse
|
26
|
Boswell T, Dunn IC. Regulation of Agouti-Related Protein and Pro-Opiomelanocortin Gene Expression in the Avian Arcuate Nucleus. Front Endocrinol (Lausanne) 2017; 8:75. [PMID: 28450851 PMCID: PMC5389969 DOI: 10.3389/fendo.2017.00075] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 12/25/2022] Open
Abstract
The arcuate nucleus is generally conserved across vertebrate taxa in its neuroanatomy and neuropeptide expression. Gene expression of agouti-related protein (AGRP), neuropeptide Y (NPY), pro-opiomelanocortin (POMC), and cocaine- and amphetamine-regulated transcript (CART) has been established in the arcuate nucleus of several bird species and co-localization demonstrated for AGRP and NPY. The proteins encoded by these genes exert comparable effects on food intake in birds after central administration to those seen in other vertebrates, with AGRP and NPY being orexigenic and CART and α-melanocyte-stimulating hormone anorexigenic. We have focused on the measurement of arcuate nucleus AGRP and POMC expression in several avian models in relation to the regulation of energy balance, incubation, stress, and growth. AGRP mRNA and POMC mRNA are, respectively, up- and downregulated after energy deprivation and restriction. This suggests that coordinated changes in the activity of AGRP and POMC neurons help to drive the homeostatic response to replace depleted energy stores in birds as in other vertebrates. While AGRP and POMC expression are generally positively and negatively correlated with food intake, respectively, we review here situations in some avian models in which AGRP gene expression is dissociated from the level of food intake and may have an influence on growth independent of changes in appetite. This suggests the possibility that the central melanocortin system exerts more pleiotropic functions in birds. While the neuroanatomical arrangement of AGRP and POMC neurons and the sensitivity of their activity to nutritional state appear generally conserved with other vertebrates, detailed knowledge is lacking of the key nutritional feedback signals acting on the avian arcuate nucleus and there appear to be significant differences between birds and mammals. In particular, recently identified avian leptin genes show differences between bird species in their tissue expression patterns and appear less closely linked in their expression to nutritional state. It is presently uncertain how the regulation of the central melanocortin system in birds is brought about in the situation of the apparently reduced importance of leptin and ghrelin compared to mammals.
Collapse
Affiliation(s)
- Timothy Boswell
- School of Biology, Newcastle University, Newcastle upon Tyne, UK
- *Correspondence: Timothy Boswell,
| | - Ian C. Dunn
- Royal (Dick) School of Veterinary Studies, Roslin Institute, University of Edinburgh, Easter Bush, UK
| |
Collapse
|
27
|
The Ontogeny and Brain Distribution Dynamics of the Appetite Regulators NPY, CART and pOX in Larval Atlantic Cod (Gadus morhua L.). PLoS One 2016; 11:e0153743. [PMID: 27100086 PMCID: PMC4839749 DOI: 10.1371/journal.pone.0153743] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 04/04/2016] [Indexed: 11/19/2022] Open
Abstract
Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and spatial complexity of NPY, CART and pOX mRNAs expression might be correlated to the maturation of appetite control regulation. These observations suggest that teleost larvae continue to develop the regulatory networks underlying appetite control after onset of exogenous feeding.
Collapse
|
28
|
Blanco AM, Sánchez-Bretaño A, Delgado MJ, Valenciano AI. Brain Mapping of Ghrelin O-Acyltransferase in Goldfish (Carassius Auratus): Novel Roles for the Ghrelinergic System in Fish? Anat Rec (Hoboken) 2016; 299:748-58. [PMID: 27064922 DOI: 10.1002/ar.23346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Ghrelin O-acyltransferase (GOAT) is the enzyme responsible for acylation of ghrelin, a gut-brain hormone with important roles in many physiological functions in vertebrates. Many aspects of GOAT remain to be elucidated, especially in fish, and particularly its anatomical distribution within the different brain areas has never been reported to date. The present study aimed to characterize the brain mapping of GOAT using RT-qPCR and immunohistochemistry in a teleost, the goldfish (Carassius auratus). Results show that goat transcripts are expressed in different brain areas of the goldfish, with the highest levels in the vagal lobe. Using immunohistochemistry, we also report the presence of GOAT immunoreactive cells in different encephalic areas, including the telencephalon, some hypothalamic nuclei, pineal gland, optic tectum and cerebellum, although they are especially abundant in the hindbrain. Particularly, an important signal is observed in the vagal lobe and some fiber tracts of the brainstem, such as the medial longitudinal fasciculus, Mauthneri fasciculus, secondary gustatory tract and spinothalamic tract. Most of the forebrain areas where GOAT is detected, particularly the hypothalamic nuclei, also express the ghs-r1a ghrelin receptor and other appetite-regulating hormones (e.g., orexin and NPY), supporting the role of ghrelin as a modulator of food intake and energy balance in fish. Present results are the first report on the presence of GOAT in the brain using imaging techniques. The high presence of GOAT in the hindbrain is a novelty, and point to possible new functions for the ghrelinergic system in fish. Anat Rec, 299:748-758, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | - Aída Sánchez-Bretaño
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | - María J Delgado
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | - Ana I Valenciano
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| |
Collapse
|
29
|
Escobar S, Rocha A, Felip A, Carrillo M, Zanuy S, Kah O, Servili A. Leptin receptor gene in the European sea bass (Dicentrarchus labrax): Cloning, phylogeny, tissue distribution and neuroanatomical organization. Gen Comp Endocrinol 2016; 229:100-11. [PMID: 26979276 DOI: 10.1016/j.ygcen.2016.03.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
Abstract
In this study, we report the cloning of three transcripts for leptin receptor in the European sea bass, a marine teleost of economic interest. The two shortest variants, generated by different splice sites, encode all functional extracellular and intracellular domains but missed the transmembrane domain. The resulting proteins are therefore potential soluble binding proteins for leptin. The longest transcript (3605bp), termed sblepr, includes all the essential domains for binding and transduction of the signal. Thus, it is proposed as the ortholog for the human LEPR gene, the main responsible for leptin signaling. Phylogenetic analysis shows the sblepr clustered within the teleost leptin receptor group in 100% of the bootstrap replicates. The neuroanatomical localization of sblepr expressing cells has been assessed by in situ hybridization in brains of sea bass of both sexes during their first sexual maturation. At histological level, the distribution pattern of sblepr expressing cells in the brain shows no clear differences regarding sex or reproductive season. Transcripts of the sblepr have a widespread distribution throughout the forebrain and midbrain until the caudal portion of the hypothalamus. A high hybridization signal is detected in the telencephalon, preoptic area, medial basal and caudal hypothalamus and in the pituitary gland. In a more caudal region, sblepr expressing cells are identified in the longitudinal torus. The expression pattern observed for sblepr suggests that in sea bass, leptin is very likely to be involved in the control of food intake, energy reserves and reproduction.
Collapse
Affiliation(s)
- Sebastián Escobar
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Ana Rocha
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Alicia Felip
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Manuel Carrillo
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain
| | - Silvia Zanuy
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre la Sal (CSIC), Ribera de Cabanes s/n, 12595 Torre la Sal, Castellón, Spain.
| | - Olivier Kah
- Team NEED, Research Institute for Health, Environment and Occupation, INSERM U1085, SFR Biosit, Université de Rennes 1, France.
| | - Arianna Servili
- Team NEED, Research Institute for Health, Environment and Occupation, INSERM U1085, SFR Biosit, Université de Rennes 1, France
| |
Collapse
|
30
|
The Conservative Evolution of the Vertebrate Basal Ganglia. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/b978-0-12-802206-1.00004-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
31
|
Sánchez-Bretaño A, Blanco AM, Unniappan S, Kah O, Gueguen MM, Bertucci JI, Alonso-Gómez ÁL, Valenciano AI, Isorna E, Delgado MJ. In Situ Localization and Rhythmic Expression of Ghrelin and ghs-r1 Ghrelin Receptor in the Brain and Gastrointestinal Tract of Goldfish (Carassius auratus). PLoS One 2015; 10:e0141043. [PMID: 26506093 PMCID: PMC4624692 DOI: 10.1371/journal.pone.0141043] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
Ghrelin is a gut-brain peptide hormone, which binds to the growth hormone secretagogue receptor (GHS-R) to regulate a wide variety of biological processes in fish. Despite these prominent physiological roles, no studies have reported the anatomical distribution of preproghrelin transcripts using in situ hybridization in a non-mammalian vertebrate, and its mapping within the different encephalic areas remains unknown. Similarly, no information is available on the possible 24-h variations in the expression of preproghrelin and its receptor in any vertebrate species. The first aim of this study was to investigate the anatomical distribution of ghrelin and GHS-R1a ghrelin receptor subtype in brain and gastrointestinal tract of goldfish (Carassius auratus) using immunohistochemistry and in situ hybridization. Our second aim was to characterize possible daily variations of preproghrelin and ghs-r1 mRNA expression in central and peripheral tissues using real-time reverse transcription-quantitative PCR. Results show ghrelin expression and immunoreactivity in the gastrointestinal tract, with the most abundant signal observed in the mucosal epithelium. These are in agreement with previous findings on mucosal cells as the primary synthesizing site of ghrelin in goldfish. Ghrelin receptor was observed mainly in the hypothalamus with low expression in telencephalon, pineal and cerebellum, and in the same gastrointestinal areas as ghrelin. Daily rhythms in mRNA expression were found for preproghrelin and ghs-r1 in hypothalamus and pituitary with the acrophase occurring at nighttime. Preproghrelin, but not ghs-r1a, displayed a similar daily expression rhythm in the gastrointestinal tract with an amplitude 3-fold higher than the rest of tissues. Together, these results described for the first time in fish the mapping of preproghrelin and ghrelin receptor ghs-r1a in brain and gastrointestinal tract of goldfish, and provide the first evidence for a daily regulation of both genes expression in such locations, suggesting a possible connection between the ghrelinergic and circadian systems in teleosts.
Collapse
Affiliation(s)
- Aída Sánchez-Bretaño
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Ayelén M. Blanco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Olivier Kah
- Inserm (Research Institute for Health, Environment and Occupation, IRSET), SFR Biosit Université de Rennes 1, Rennes, France
| | - Marie-M. Gueguen
- Inserm (Research Institute for Health, Environment and Occupation, IRSET), SFR Biosit Université de Rennes 1, Rennes, France
| | - Juan I. Bertucci
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico Chascomús, Buenos Aires, Argentina
| | - Ángel L. Alonso-Gómez
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Ana I. Valenciano
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Esther Isorna
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail:
| |
Collapse
|
32
|
Li S, Xiao L, Liu Q, Zheng B, Chen H, Liu X, Zhang Y, Lin H. Distinct functions of neuromedin u and neuromedin s in orange-spotted grouper. J Mol Endocrinol 2015; 55:95-106. [PMID: 26162607 DOI: 10.1530/jme-15-0018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/10/2015] [Indexed: 12/29/2022]
Abstract
Neuromedin U (NMU) and neuromedin S (NMS) play inhibitory roles in the regulation of food intake and energy homeostasis in mammals. However, their functions are not clearly established in teleost fish. In the present study, nmu and nms homologs were identified in several fish species. Subsequently, their cDNA sequences were cloned from the orange-spotted grouper (Epinephelus coioides). Sequence analysis showed that the orange-spotted grouper Nmu proprotein contains a 21-amino acid mature Nmu peptide (Nmu-21). The Nms proprotein lost the typical mature Nms peptide, but it retains a putative 34-amino acid peptide (Nmsrp). In situ hybridization revealed that nmu- and nms-expressing cells are mainly localized in the hypothalamic regions associated with appetite regulation. Food deprivation decreased the hypothalamic nmu mRNA levels but induced an increase of nms mRNA levels. Periprandial expression analysis showed that hypothalamic expression of nmu increased significantly at 3 h post-feeding, while nms expression was elevated at the normal feeding time. I.p. injection of synthetic Nmu-21 peptide suppressed the hypothalamic neuropeptide y (npy) expression, while Nmsrp administration significantly increased the expression of npy and orexin in orange-spotted grouper. Furthermore, the mRNA levels of LH beta subunit (lhβ) and gh in the pituitary were significantly down-regulated after Nmu-21 peptide administration, while Nmsrp was able to significantly stimulate the expression of FSH beta subunit (fshβ), prolactin (prl), and somatolaction (sl). Our results indicate that nmu and nms possess distinct neuroendocrine functions and pituitary functions in the orange spotted grouper.
Collapse
Affiliation(s)
- Shuisheng Li
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Ling Xiao
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Qiongyu Liu
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Binbin Zheng
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Huapu Chen
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Xiaochun Liu
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Yong Zhang
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| | - Haoran Lin
- State Key Laboratory of BiocontrolInstitute of Aquatic Economic Animals, and the Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, ChinaFisheries CollegeGuangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
33
|
Paullada-Salmerón JA, Cowan M, Aliaga-Guerrero M, Gómez A, Zanuy S, Mañanos E, Muñoz-Cueto JA. LPXRFa peptide system in the European sea bass: A molecular and immunohistochemical approach. J Comp Neurol 2015; 524:176-98. [DOI: 10.1002/cne.23833] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 01/15/2023]
Affiliation(s)
- José A. Paullada-Salmerón
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - Mairi Cowan
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - María Aliaga-Guerrero
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| | - Ana Gómez
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - Silvia Zanuy
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - Evaristo Mañanos
- Institute of Aquaculture of Torre de la Sal, CSIC; Ribera de Cabanes E-12595 Castellón Spain
| | - José A. Muñoz-Cueto
- Department of Biology; Faculty of Environmental and Marine Sciences, University of Cádiz, Marine Campus of International Excellence (CEIMAR) and Agrifood Campus of International Excellence (ceiA3); E-11510 Puerto Real Spain
- INMAR-CACYTMAR Research Institutes, Puerto Real University Campus; E-11510 Puerto Real Spain
| |
Collapse
|
34
|
Tian J, He G, Mai K, Liu C. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:773-787. [PMID: 25805459 DOI: 10.1007/s10695-015-0045-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The goal of this study was to systematically evaluate the molecular activities of endocrine-, amino acid and peptide transporters-, and metabolic enzyme-related genes in 35-day-old mixed-sex zebrafish (Danio rerio) after feeding . Zebrafish with initial body weights ranging from 9 to 11 mg were fasted for 384 h in a controlled indoor environment. Fish were sampled at 0, 3, 6, 12, 24, 48, 96, 192, and 384 h after fed. Overall, the present study results show that the regulatory mechanism that insulin-like growth factor I negative feedback regulated growth hormone is conserved in zebrafish, as it is in mammals, but that regulation of growth hormone receptors is highly intricate. Leptin and cholecystokinin are time-dependent negative feedback signals, and neuropeptide Y may be an important positive neuropeptide for food intake in zebrafish. The amino acid/carnitine transporters B(0,+) (ATB(0,+)) and broad neutral (0) amino acid transporter 1(B(0)AT1) mRNA levels measured in our study suggest that protein may be utilized during 24-96 h of fasting in zebrafish. Glutamine synthetase mRNA levels were downregulated, and glutamate dehydrogenase, alanine aminotransferase, aspartate transaminase, and trypsin mRNA levels were upregulated after longtime fasting in this study. The mRNA expression levels of fatty acid synthetase decreased significantly (P < 0.05), whereas those of lipoprotein lipase rapidly increased after 96 h of fasting. Fasting activated the expression of glucose synthesis genes when fasting for short periods of time; when fasting is prolonged, the mRNA levels of glucose breakdown enzymes and pentose phosphate shunt genes decreased.
Collapse
Affiliation(s)
- Juan Tian
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, No. 5 Yushan Rd., Qingdao, 266003, People's Republic of China,
| | | | | | | |
Collapse
|
35
|
Neuroendocrine control of appetite in Atlantic halibut (Hippoglossus hippoglossus): Changes during metamorphosis and effects of feeding. Comp Biochem Physiol A Mol Integr Physiol 2015; 183:116-25. [DOI: 10.1016/j.cbpa.2015.01.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 12/18/2014] [Accepted: 01/15/2015] [Indexed: 12/14/2022]
|
36
|
Tang Y, Li H, Li J, Yu F, Yu J. Characterization and expression analysis of two distinct neuropeptide Ya paralogues in Jian carp (Cyprinus carpio var. Jian). FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1709-1719. [PMID: 25015546 DOI: 10.1007/s10695-014-9961-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/29/2014] [Indexed: 06/03/2023]
Abstract
Two distinct neuropeptide Ya paralogues (jlNPYa1 and jlNPYa2) were cloned and characterized in Jian carp (Cyprinus carpio var. Jian), with a highly conserved organization encoded by four exons and three introns. The cDNAs for jlNPYa1 and jlNPYa2 were 693 and 730 bp in size, respectively. jlNPYa1 and jlNPYa2 both encoded a 96-amino acid protein, which shared 97.9 % identity. Phylogenetic tree showed that it has two NPYa genes, called jlNPYa1 and jlNPYa2, that presumably resulted from the tetraploidization event in the carp lineage. Analysis of expression profiles of jlNPYa1 and jlNPYa2 showed that the two NPY genes had a broad tissue distribution but expressed primarily in the forebrain, hypothalamus, testis and liver. The expression pattern was different in juvenile and adult (female and male) Jian carp. In juvenile, the highest expression level of jlNPYa1 and jlNPYa2 was detected in the testis. In adult, it was detected in the forebrain. In female hypothalamus, the expression level of jlNPYa1 was significantly higher than that of jlNPYa2. However, the opposite was true in male hypothalamus. The differing distribution patterns of the two NPY genes suggested that jlNPYa1 and jlNPYa2 might play different roles in Jian carp.
Collapse
|
37
|
Agulleiro MJ, Cortés R, Leal E, Ríos D, Sánchez E, Cerdá-Reverter JM. Characterization, tissue distribution and regulation by fasting of the agouti family of peptides in the sea bass (Dicentrarchus labrax). Gen Comp Endocrinol 2014; 205:251-9. [PMID: 24561275 DOI: 10.1016/j.ygcen.2014.02.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/05/2014] [Accepted: 02/11/2014] [Indexed: 01/11/2023]
Abstract
The melanocortin system is one of the most complex hormonal systems in vertebrates. Atypically, the signaling of melanocortin receptors is regulated by the binding of endogenous antagonists, named agouti-signaling protein (ASIP) and agouti-related protein (AGRP). Teleost specific genome duplication (TSGD) rendered new gene copies in teleost fish and up to four different genes of the agouti family of peptides have been characterized. In this paper, molecular cloning was used to characterize mRNA of the agouti family of peptides in sea bass. Four different genes were identified: AGRP1, ASIP1, AGRP2 and ASIP2. The AGRP1 gene is mainly expressed in the brain whereas ASIP1 is mainly expressed in the ventral skin. Both ASIP2 and AGRP2 are expressed in the brain and the pineal gland but also in some peripheral tissues. Immunocytochemical studies demonstrated that AGRP1 is exclusively expressed within the lateral tuberal nucleus, the homologue of the mammalian arcuate nucleus in fish. Long-term fasting (8-29 days) increased the hypothalamic expression of AGRP1 but depressed AGRP2 expression (15-29 days). In contrast, the hypothalamic expression of ASIP2 was upregulated during short-term fasting suggesting that this peptide could be involved in the short term regulation of food intake in the sea bass.
Collapse
Affiliation(s)
- Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Raúl Cortés
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Esther Leal
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Diana Ríos
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - Elisa Sánchez
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain
| | - José Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, Castellón, Spain.
| |
Collapse
|
38
|
Kumar S, Singh U, Saha S, Singru PS. Tyrosine hydroxylase in the olfactory system, forebrain and pituitary of the Indian major carp, Cirrhinus cirrhosus: organisation and interaction with neuropeptide Y in the preoptic area. J Neuroendocrinol 2014; 26:400-11. [PMID: 24750502 DOI: 10.1111/jne.12160] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 04/06/2014] [Accepted: 04/12/2014] [Indexed: 12/13/2022]
Abstract
Dopamine (DA) inhibits, whereas gonadotrophin-releasing hormone (GnRH) stimulates, luteinisiing (LH) cells in the pituitary of some but not all teleosts. A reduction in the hypophysiotropic dopaminergic tone is necessary for the stimulatory effect of GnRH on LH cells. Neuropeptide Y (NPY) has emerged as one of the potent, endogenous agent that modulates LH secretion directly or indirectly via GnRH. Involvement of NPY in the regulation of hypophysiotropic DA neurones, however, is not known, but there is good evidence suggesting an interaction in the mammalian hypothalamus. DA neurones, identified by tyrosine hydroxylase (TH)-immunoreactivity, were observed widely throughout the brain of the Indian major carp, Cirrhinus cirrhosus. The granule cells and ganglion cells of terminal nerve in the olfactory bulb, and cells in ventral telencephalon and preoptic area (POA) showed conspicuous TH immunoreactivity. In the POA, the nucleus preopticus periventricularis (NPP), divisible into anterior (NPPa) and posterior (NPPp) components, showed prominent TH-immunoreactivity. The majority of TH neurones in NPPa showed axonal extensions to the pituitary and were closely associated with LH cells. The NPPa also appeared to be the site for intense interaction between NPY and DA because it contains a rich network of NPY fibres and few immunoreactive cells. Approximately 89.7 ± 1.5% TH neurones in NPPa were contacted by NPY fibres. Superfused POA slices treated with a NPY Y2 -receptor agonist, NPY 13-36 resulted in a significant (P < 0.001) reduction in TH-immunoreactivity in NPPa. TH neurones in NPPa did not respond to NPY Y1 -receptor agonist, [Leu(31) , Pro(34) ] Neuropeptide Y treatment. We suggest that, by inhibiting DAergic neurones in NPPa via Y2 -receptors, NPY may contribute to the up-regulation of the GnRH-LH cells axis. The microcircuitry of DA and NPY and their interaction in NPPa might be a crucial component in the central regulation of LH secretion in the teleosts.
Collapse
Affiliation(s)
- S Kumar
- School of Biological Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, Odisha, India
| | | | | | | |
Collapse
|
39
|
Escobar S, Servili A, Espigares F, Gueguen MM, Brocal I, Felip A, Gómez A, Carrillo M, Zanuy S, Kah O. Expression of kisspeptins and kiss receptors suggests a large range of functions for kisspeptin systems in the brain of the European sea bass. PLoS One 2013; 8:e70177. [PMID: 23894610 PMCID: PMC3720930 DOI: 10.1371/journal.pone.0070177] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/16/2013] [Indexed: 02/07/2023] Open
Abstract
This study, conducted in the brain of a perciform fish, the European sea bass, aimed at raising antibodies against the precursor of the kisspeptins in order to map the kiss systems and to correlate the expression of kisspeptins, kiss1 and kiss2, with that of kisspeptin receptors (kiss-R1 and kiss-R2). Specific antibodies could be raised against the preprokiss2, but not the preoprokiss1. The data indicate that kiss2 neurons are mainly located in the hypothalamus and project widely to the subpallium and pallium, the preoptic region, the thalamus, the pretectal area, the optic tectum, the torus semicircularis, the mediobasal medial and caudal hypothalamus, and the neurohypophysis. These results were compared to the expression of kiss-R1 and kiss-R2 messengers, indicating a very good correlation between the wide distribution of Kiss2-positive fibers and that of kiss-R2 expressing cells. The expression of kiss-R1 messengers was more limited to the habenula, the ventral telencephalon and the proximal pars distalis of the pituitary. Attempts to characterize the phenotype of the numerous cells expressing kiss-R2 showed that neurons expressing tyrosine hydroxylase, neuropeptide Y and neuronal nitric oxide synthase are targets for kisspeptins, while GnRH1 neurons did not appear to express kiss-R1 or kiss-R2 messengers. In addition, a striking result was that all somatostatin-positive neurons expressed-kissR2. These data show that kisspeptins are likely to regulate a wide range of neuronal systems in the brain of teleosts.
Collapse
Affiliation(s)
- Sebastián Escobar
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Arianna Servili
- Research Institute in Health, Environment and Occupation, INSERM U1085, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Felipe Espigares
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Marie-Madeleine Gueguen
- Research Institute in Health, Environment and Occupation, INSERM U1085, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| | - Isabel Brocal
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Alicia Felip
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Ana Gómez
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Manuel Carrillo
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Silvia Zanuy
- Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, s/n, Ribera de Cabanes, Castellón, Spain
| | - Olivier Kah
- Research Institute in Health, Environment and Occupation, INSERM U1085, Université de Rennes 1, Campus de Beaulieu, Rennes, France
| |
Collapse
|
40
|
Leal E, Fernández-Durán B, Agulleiro MJ, Conde-Siera M, Míguez JM, Cerdá-Reverter JM. Effects of dopaminergic system activation on feeding behavior and growth performance of the sea bass (Dicentrarchus labrax): a self-feeding approach. Horm Behav 2013; 64:113-21. [PMID: 23747830 DOI: 10.1016/j.yhbeh.2013.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 05/21/2013] [Accepted: 05/29/2013] [Indexed: 11/17/2022]
Abstract
Dopamine is synthesized from l-dopa and subsequently processed into norepinephrine and epinephrine. Any excess neurotransmitter can be taken up again by the neurons to be broken down enzymatically into DOPAC. The effect of dopamine on mammalian food intake is controversial. Mice unable to synthesize central dopamine die of starvation. However, studies have also shown that central injection of dopamine inhibits food intake. The effect of dopaminergic system in the fish feeding behavior has been scarcely explored. We report that the inclusion of l-dopa in the diets results in the activation of sea bass central dopaminergic system but also in the significant increase of the hypothalamic serotonin levels. Dietary l-dopa induces a decrease of food intake and feed conversion efficiency that drives a decline of all growth parameters tested. No behavioral effects were observed after l-dopa treatment. l-dopa treatment stimulated central expression of NPY and CRF. It suggests that CRF might mediate l-dopa effects on food intake but also that CRF neurons lie downstream of NPY neurons in the hierarchical forebrain system, thus controlling energy balance. Unexpectedly, dietary administration of haloperidol, a D2-receptor antagonist, cannot block dopamine effects but also induces a decline of the food intake. This decrease seems to be a side effect of haloperidol treatment since fish exhibited a decreased locomotor activity. We conclude that oral l-dopa inhibits sea bass food intake and growth. Mechanism could also involve an increase of hypothalamic serotoninergic tone.
Collapse
Affiliation(s)
- Esther Leal
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Castellón, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Li S, Zhao L, Xiao L, Liu Q, Zhou W, Qi X, Chen H, Yang H, Liu X, Zhang Y, Lin H. Structural and functional characterization of neuropeptide Y in a primitive teleost, the Japanese eel (Anguilla japonica). Gen Comp Endocrinol 2012; 179:99-106. [PMID: 22902242 DOI: 10.1016/j.ygcen.2012.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023]
Abstract
In the present study, the first full-length cDNA encoding Neuropeptide Y (NPY) was cloned from the brain of Japanese eel (Anguilla japonica). The open reading frame of Japanese eel NPY gene is 294 bp in length, encoding a precursor protein of 97 amino acids, which contains a 36-amino-acid mature peptide. Sequence analysis showed that the Japanese eel NPY peptide is similar to that of other species. Real-time PCR revealed that NPY in Japanese eel is mainly expressed in the brain, especially in the hypothalamus and the optic tectum thalamus. The effect of a negative energy balance on NPY gene expression was examined subsequently. The mRNA level of NPY in the hypothalamus and the optic tectum thalamus showed a pronounced increase after 4 days of food deprivation. The biological activities of Japanese eel NPY were further investigated in vivo and in vitro. Intraperitoneal injection of the NPY peptide into Japanese eel could potently elevate the expression of the mammalian gonadotropin-releasing hormone (mGnRH) in hypothalamus and the follicle-stimulating hormone beta (FSHβ), the luteinizing hormone beta (LHβ) and growth hormone (GH) in pituitary. In static incubation studies, the stimulatory effects of NPY on mGnRH expression in hypothalamic fragments and on FSHβ, LHβ and GH expression in pituitary cells were also observed. However, in vivo and in vitro studies showed that NPY exhibits an inhibitory action on the expression of thyroid-stimulating hormone beta (TSHβ) in pituitary. The results indicate that NPY is involved in the regulation of multiple physiological processes in Japanese eel.
Collapse
Affiliation(s)
- Shuisheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kamijo M, Kojima K, Maruyama K, Konno N, Motohashi E, Ikegami T, Uchiyama M, Shioda S, Ando H, Matsuda K. Neuropeptide Y in tiger puffer (Takifugu rubripes): distribution, cloning, characterization, and mRNA expression responses to prandial condition. Zoolog Sci 2012; 28:882-90. [PMID: 22132785 DOI: 10.2108/zsj.28.882] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuropeptide tyrosine (NPY) is a potent orexigenic neuropeptide implicated in feeding regulation in rodents. However, the involvement of NPY in feeding behavior has not well been studied in fish. Therefore, we investigated the role of NPY in food intake using a tiger puffer (Takifugu rubripes) model. We observed the distribution of NPY-like immunoreactivity in the brain. Neuronal cell bodies containing NPY were located in the telencephalon, hypothalamus, mesencephalon, and medulla oblongata, and their nerve fibers were also found throughout the brain. We cloned two cDNAs, encoding NPYa and NPYb orthologs, respectively, from the brain, and also confirmed two genes encoding these NPYs in the Takifugu genome database. We examined the distribution of these transcripts in the brain using real-time PCR. Levels of NPYa mRNA in the telencephalon, mesencephalon and hypothalamus were much higher than in the medulla oblongata and cerebellum, whereas levels of NPYb mRNA in the medulla oblongata were higher than in other regions. We also examined prandial effects on the expression level of these transcripts in the telencephalon and hypothalamus. NPYa mRNA levels in the hypothalamus, but not in the telencephalon, obtained from fish fasted for one week were higher than those in fish that had been fed normally. The level was decreased at 2 h after feeding. Levels of NPYb mRNA were not affected by prandial conditions. These results suggest that NPY is present throughout the brain, and that NPYa, but not NPYb, in the hypothalamus is involved in the feeding regulation in the tiger puffer.
Collapse
Affiliation(s)
- Motoki Kamijo
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama 930-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Servili A, Herrera-Pérez P, Yáñez J, Muñoz-Cueto JA. Afferent and Efferent Connections of the Pineal Organ in the European Sea Bass Dicentrarchus labrax: A Carbocyanine Dye Tract-Tracing Study. BRAIN, BEHAVIOR AND EVOLUTION 2011; 78:272-85. [DOI: 10.1159/000330824] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 03/25/2011] [Indexed: 11/19/2022]
|
44
|
Herrera-Pérez P, Del Carmen Rendón M, Besseau L, Sauzet S, Falcón J, Muñoz-Cueto JA. Melatonin receptors in the brain of the European sea bass: An in situ hybridization and autoradiographic study. J Comp Neurol 2010; 518:3495-511. [DOI: 10.1002/cne.22408] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
45
|
Falcón J, Migaud H, Muñoz-Cueto JA, Carrillo M. Current knowledge on the melatonin system in teleost fish. Gen Comp Endocrinol 2010; 165:469-82. [PMID: 19409900 DOI: 10.1016/j.ygcen.2009.04.026] [Citation(s) in RCA: 273] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2008] [Revised: 04/15/2009] [Accepted: 04/23/2009] [Indexed: 01/27/2023]
Abstract
Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes.
Collapse
Affiliation(s)
- J Falcón
- CNRS, FRE3247 et GDR2821, Modèles en Biologie cellulaire et évolutive, Avenue Fontaulé, BP 44, F-66651 Banyuls-sur-Mer, Cedex, France.
| | | | | | | |
Collapse
|
46
|
Reiner A. The Conservative Evolution of the Vertebrate Basal Ganglia. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/b978-0-12-374767-9.00002-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
47
|
Amano M, Amiya N, Hiramatsu M, Tomioka T, Oka Y. Interaction between neuropeptide Y immunoreactive neurons and galanin immunoreactive neurons in the brain of the masu salmon, Oncorhynchus masou. Neurosci Lett 2009; 462:33-8. [DOI: 10.1016/j.neulet.2009.06.067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Revised: 06/18/2009] [Accepted: 06/19/2009] [Indexed: 10/20/2022]
|
48
|
Neves JV, Wilson JM, Rodrigues PNS. Transferrin and ferritin response to bacterial infection: the role of the liver and brain in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:848-857. [PMID: 19428486 DOI: 10.1016/j.dci.2009.02.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/03/2009] [Accepted: 02/09/2009] [Indexed: 05/27/2023]
Abstract
Iron is essential for growth and survival, but it is also toxic when in excess. Thus, there is a tight regulation of iron that is accomplished by the interaction of several genes including the iron transporter transferrin and iron storage protein ferritin. These genes are also known to be involved in response to infection. The aim of this study was to understand the role of transferrin and ferritin in infection and iron metabolism in fish. Thus, sea bass transferrin and ferritin H cDNAs were isolated from liver, cloned and characterized. Transferrin constitutive expression was found to be highest in the liver, but also with significant expression in the brain, particularly in the highly vascularized region connecting the inferior lobe of the hypothalamus and the saccus vasculosus. Ferritin, on the other hand, was expressed in all tested organs, but also significantly higher in the liver. Fish were subjected to either experimental bacterial infection or iron modulation and transferrin and ferritin mRNA expression levels were analyzed, along with several iron regulatory parameters. Transferrin expression was found to decrease in the liver and increase in the brain in response to infection and to increase in the liver in iron deficiency. Ferritin expression was found to inversely reflect transferrin in the liver, increasing in infection and iron overload and decreasing in iron deficiency, whereas in the brain, ferritin expression was also increased in infection. These findings demonstrate the evolutionary conservation of transferrin and ferritin dual functions in vertebrates, being involved in both the immune response and iron metabolism.
Collapse
Affiliation(s)
- João V Neves
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Portugal
| | | | | |
Collapse
|
49
|
MacDonald E, Volkoff H. Cloning, distribution and effects of season and nutritional status on the expression of neuropeptide Y (NPY), cocaine and amphetamine regulated transcript (CART) and cholecystokinin (CCK) in winter flounder (Pseudopleuronectes americanus). Horm Behav 2009; 56:58-65. [PMID: 19303880 DOI: 10.1016/j.yhbeh.2009.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2008] [Revised: 02/09/2009] [Accepted: 03/06/2009] [Indexed: 01/31/2023]
Abstract
cDNAs encoding for neuropeptide Y (NPY), cocaine and amphetamine regulated transcript (CART) and cholecystokinin (CCK) were cloned in winter flounder, a species that undergoes a period of natural fasting during the winter. Tissue distribution studies show that these peptides are present in several peripheral tissues, including gut and gonads, as well as within the brain. We assessed the effects of season and fasting on the expression of these peptides. Our results show that NPY and CCK, but not CART, show seasonal differences in expression with higher hypothalamic NPY and lower gut CCK expression levels in the winter. In the summer, fasting induced an increase in hypothalamic NPY expression levels and a decrease in gut CCK levels, but did not affect hypothalamic CART expression levels. None of the peptides examined was affected by fasting in the winter. Our results suggest that NPY and CCK, but maybe not CART, might have a major role in the regulation of feeding in winter flounder and might contribute to the seasonal fluctuations in appetite in this species.
Collapse
Affiliation(s)
- Erin MacDonald
- Department of Biology, Memorial University of Newfoundland, NL, Canada
| | | |
Collapse
|
50
|
MacDonald E, Volkoff H. Neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) in winter skate (Raja ocellata): cDNA cloning, tissue distribution and mRNA expression responses to fasting. Gen Comp Endocrinol 2009; 161:252-61. [PMID: 19523382 DOI: 10.1016/j.ygcen.2009.01.021] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 01/09/2023]
Abstract
cDNAs encoding for neuropeptide Y (NPY), cocaine- and amphetamine-regulated transcript (CART) and cholecystokinin (CCK) were cloned in an elasmobranch fish, the winter skate. mRNA tissue distribution was examined for the three peptides as well as the effects of two weeks of fasting on their expression. Skate NPY, CART and CCK sequences display similarities with sequences for teleost fish but in general the degree of identity is relatively low (50%). All three peptides are present in brain and in several peripheral tissues, including gut and gonads. Within the brain, the three peptides are expressed in the hypothalamus, telencephalon, optic tectum and cerebellum. Two weeks of fasting induced an increase in telencephalon NPY and an increase in CCK in the gut but had no effects on hypothalamic NPY, CART and CCK, or on telencephalon CART. Our results provide basis for further investigation into the regulation of feeding in winter skate.
Collapse
Affiliation(s)
- Erin MacDonald
- Department of Biology, Memorial University of Newfoundland, NL, Canada
| | | |
Collapse
|